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Conformality from field-string duality on Abelian orbifolds
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If the standard model is embedded in a conformal theory, what is the simplest possibility? We analyze all
Abelian orbifolds for discrete symmetrg, with p<7, and find that the simplest such theory is indeed
SU(3)". Such a theory predicts the correct electroweak unification? gsi9.231). A color coupling
ac(M)=0.07 suggests a conformal scélenear to 10 TeV[S0556-282(199)50124-(

PACS numbd(s): 11.25.Hf, 04.50+h, 11.15.Pg, 12.10.Dm

Since, in the context of field-string duality, there has beerenergy of the ordeM p4,cx then the graviton will become
a shift regarding the relationship of gravity to the standardcrucial [11,12] and a string, rather than a field, description
model of strong and electroweak interactions we shall begimvill be the viable one.
by characterizing how gravity fits in, then to suggest more It is important to distinguish between the holographic de-
specifically how the standard model fits in to the stringscription of the five-dimensional gravity ilAdSs made by
framework. the four-dimensional CFT and the origin of the four-
The descriptions of gravity and of the standard model arelimensional graviton. The latter could be described holo-
contained in the string theory. In the string picture in tengraphically only by a lower three-dimensional field theory
spacetime dimensions, or upon compactification to four diwhich is not relevant to the real world. Therefore the gravi-
mensions, there is a massless spin-two graviton but the staten of our world can only arise bgompactificationof a
dard model is not manifest in the way we shall consider it. Inhigher dimensional graviton. Introduction of gravity must
the conformal field theory extension of the standard modelbreak conformal invariance and it is an interesting question
gravity is strikingly absent. The field-string duality does not (which | will not answe) whether this breaking is related to
imply that the standard model already contains gravity andthe mass and symmetry-breaking scales in the low-energy
in fact, it does not. theory. That is all | will say about gravity in the present
The situation isnot analogous to the Regge-pole— paper; the remainder is on the standard model and its embed-
resonance dualitydespite a misleading earlier version of this ding in a CFT.
introduction. That quite different duality led to the origji] An alternative to conformality, grand unification with su-
of string theory and originated from the realizatif®-5]  persymmetry, leads to an impressively accurate gauge cou-
phenomenologically that adding Regge pole and resonangaing unification[13]. In particular it predicts an electroweak
descriptions is double counting and that the two descriptiongnixing angle at the Z pole, si®=0.231. This result may,
aredual in that stronger sense. The duali§] between the however, be fortuitous, but rather than abandon gauge cou-
field and string descriptions is not analogous because thgling unification, we can rederive €if=0.231 in a different
conformal field theory(CFT) description does not contain way by embedding the electrowea8U(2)XU(1) in
gravity. A first step to combining gravity with the standard SU(N)x SUN)xSU(N) to find sirf =3/13=0.231
model would be adding the corresponding Lagrangians. [9,10]. This will be a common feature of the models in this
In the field theory descriptiofi7—10] used in this Rapid paper.
Communication, one will simply ignore the massless spin- The conformal theories will be finite without quadratic or
two graviton. Indeed since we are using the field theory detogarithmic divergences. This requires appropriate equal
scription only below the conformal scale 6f1 TeV (or, as  number of fermions and bosons which can cancel in loops
suggested later in this paper, 10 Tieahd forgoing any re- and which occur without the necessity of spacetime super-
quirement of grand unification, the hierarchy between thesymmetry. As we shall see in one example, it is possible to
weak scale and theory-generated scales Mgyt or  combine spacetime supersymmetry with conformality but the
Mpianck IS resolved. Moreover, seeking the graviton in thelatter is the driving principle and the former is merely an
field theory description is possibly resolvable by going to aoption: additional fermions and scalars are predicted by con-
higher dimension and restricting the range of the higher diformality in the TeV rangd9,10], but in general these par-
mension. Here we are looking only at the strong and wealkicles are different and distinguishable from supersymmetric
interactions at accessible energies below, say, 10 TeV. partners. The boson-fermion cancellation is essential for the
Of course, if we ask questions in a different regime, forcancellation of infinities, and will play a central role in the
example, about scattering of particles with center-of-massalculation of the cosmological constafibot discussed
here. In the field picture, the cosmological constant mea-
sures the vacuum energy density.
*Email address: frampton@physics.unc.edu What is needed first for the conformal approach is a
"Permanent address. simple model and that is the subject of this paper.
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Here we shall focus on Abelian orbifolds characterized byThis is more satisfactory because it implies that the Higgs
the discrete grouZ,. Non-Abelian orbifolds will be sys- sector cannot be chosen arbitrarily, but it does make model
tematically analyzed elsewhere. building more interesting

The steps in building a model for the Abelian cdpar- (9) Gauge coupling unification should apply at least to the
allel steps hold for non-Abelian orbifolglare the following:  glectroweak mixing angle S%rg:gg/(g§+g$)zo_231_ For

(1) Choose the discrete grodp Here we are considering rinification Y=3"Y2(— \gy+2\gy) SO that (3/5)2Y is

only I'=2,. We definea=exp(2mi/p). correctl ; 2_ 2 2_52
. . y normalized. If we makgy=(3/5)g7 andg5=29g]
(2) Choose the embedding &iC SU(4) by assigning! then sirf 6=3/13=0.231 with sufficient accuracy.

— (AL A Ag A Q=45 — . .
0 (akj(;i Z’a % a) sucth tt;?t_%q: Aﬁ/_(i(mod p). ;I;]Ot In the remainder of this paper we answer all these steps
ngenae(or_one)&:ff)etLSngE ;y ual_to ig:c(m_od) ;equwes at for the choicel’=Z,, for successivp=2, 3,... up top
. q q : P). " =7, then add some concluding remarks.
(3) For chiral fermions one requires thd#4* for the _ . B
p=2. In this casex=—1 and therefore one cannot co-

embedding ofl” in SU(4). . : .
The chiral fermions are in the bifundamental representa-StruCt any °°”_“p'e’4 O_f SLY4) with 447 Chiral fermions
tions of SU(N)P are therefore |mp055|ble._ o
p=3. The only possibilities areA,=(1,1,1,0) orA,
=p q=4 _ =(1,1,—1,—1). The latter is real and leads to no chiral fer-
> >N Nita)- (1) mions. The former leaved/=1 supersymmetry and is a
mtast simple three-family model14] by the quiver node identifi-
cation C-W-H. The scalarg;=(1,1,1) are sufficient to
spontaneously break to the SM. Gauge coupling unification
is, however, missing since $ii=3/8, in poor disagreement
with experiment.
p=4. The only complex\'=0 choice isA;=(1,1,1,1).
But thena;=(2,2,2) and any quiver node identification such
as C-W-H-H has 4 families and the scalars are insufficient to
i=p j=3 break spontaneously the symmetry to the SM gauge group.
> > (NiNiq). (2 p=5. The two inequivalent complex choices akg,
i=1 j=1 . =(1,1,1,2) andA,=(1,3,3,3). By drawing the quiver, how-
L A e wi=3. ever, and using the rules for three chiral families givefi7in
The condition in terms ofa; for N=0 is 2{21(*2a))  apove, one finds that the node identification and the prescrip-
#0(modp) [7]. tion of the scalars as;=(2,2,2) anda;=(1,1,1), respec-

~(5) Choose theN of ©@;SU(Nd;) (where thed; are the yely, does not permit spontaneous breaking to the standard
dimensions of the representrations Iof. For the Abelian ,0del.

If Aq=0 we interpret N;,N;) as a singlet plus an adjoint of
SU(N); .

(4) The 6 of SU(4) is real 6=(a;,a,,a3,—a;,—a,,
—ag) with a;=A+A,, a,=A,+A;, ag=Az+A; (recall
that all components are defined moduy®. The complex
scalars are in the bifundamentals

case whera;=1, it is natural to choosél=3 the largest p=6. Here we can discuss three inequivalent complex
SU(N) of the standard mod¢EM) gauge group. For a non- pogsibilities as follows:
AbelianI" with d;#1 the choiceN=2 would be indicated. (6A) Ay=(1,1,1,3) which implies;=(2,2,2). Requiring

_(6) The p quiver nodes are identified as colal), weak  three families means a node identification C-W-X-H-X-H
isospin(W) or a thirdSU(3) (H). This specifies the embed- \yhere X is either W or H. But whatever we choose for the X
ding of the gauge groupsU(3)cXSUB)wXSU(3)4C  the scalar representations are insufficient to bi@ak3)® in
®SU(N)P. This quiver node identification is guided 6),  the desired fashion down to the SM. This illustrates the dif-
(8) and (9) below. ficulty of model building when the scalars are not in arbitrary

(7) The quiver node identification is required to give threeepresentations.
chiral families under Eq(l). It is sufficient to make three of (6B) Ag=(1,1,2,2) which impliesa;=(2,3,3). Here the
the (C+A,) to be W and the fourth H, given that there is family number can be only zero, two or four as can be seen
only one C quiver node, so that there are three (B)3Pro-  py inspection of theA, and the related quiver diagram. So
vided that (33,1) is avoided by theG—A,) being H, the  (6B) is of no phenomenological interest.
remainder of the three family trinification will be automatic ~ (6C) A;=(1,3,4,4) which impliesa;=(1,1,4). Requiring
by chiral anomaly cancellation. Actually, a sufficient condi- three families needs a quiver node identification which is of
tion for three families has been given; it is necessary onlythe formeither C-W-H-H-W-H or C-H-H-W-W-H. The sca-
that the difference between the number of{{&;) nodes lar representations implied k& =(1,1,4) are, however, eas-
and the number of (3 A,) nodes which are W is equal to ily seen to be insufficient to do the required spontaneous
three. symmetry breakingSSB for both of these identifications.

(8) The complex scalars of E42) must be sufficient for p=7. Having been stymied mainly by the rigidity of the
their vacuum expectation values to spontaneously breagcalar representation for glk<6, for p=7 there are the first
SU(3)P—SU(3)cXSU(3)WwXSU(3)y—SU(3)cXSU(2)y  cases which work. Six inequivalent complex embeddings of
XU(1)y—SU(3)cXU(1)g. Note that, unlike grand unified Z;CSU(4) require consideration.
theories(GUT9) with or without supersymmetry, the Higgs (7TA) Aq=(1,1,1,4)=a;=(2,2,2). For the required nodes
scalars are here prescribed by the conformality conditionC-W-X-H-H-X-H the scalars ar@nsufficientfor SSB.
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(7B) Aq=(1,1,2,3)>a;=(2,3,3). The node identification
C-W-H-W-H-H-H leads to asuccessfumodel.

(70 Aq=(1,2,2,2)>2a;=(3,3,3). Choosing C-H-W-X-
X-H-H to derive three families, the scaldia! in SSB.

(7D) Aq=(1,3,5,5)=a;=(1,1,3). The node choice C-W-
H-H-H-W-H leads to asuccessfumodel. This is Model A of
[10].

(7B) Aq=(1,4,4,5=a;=(1,2,2). The nodes C-H-H-H-
W-W-H are successful

(7TF) Aq=(2,4,4,4)a;=(1,1,1). Scalarsnsufficientfor
SSB.

The three successful moddlgB), (7D) and (7E) lead to
ana3(M)=0.07. Sincexz(1 TeV)=0.10 this suggest a con-
formal scaleM =10 TeV[10]. The above models have less
generators than aB(6) GUT and thusSU(3)” merits fur-
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N=0 case, a fixed poinfl5]. It is known that in theN
—oo |limit the theories become conformal, but although this
't Hooft limit [16] is where the field-string duality is derived
we know that finiteness survives to finite N in thé=4 case
[17] and this makes it plausible that at least a conformal
point occurs also for the/=0 theories withN=3 derived
above.

The conformal structure cannot by itself predict all the
dimensionless ratios of the standard model such as mass ra-
tios and mixing angles because these receive contributions,
in general, from soft breaking of conformality. With a spe-
cific assumption about the pattern of conformal symmetry
breaking, however, more work should lead to definite predic-
tions for such quantities.

ther study. It is possible, and under investigation, that non-

Abelian orbifolds will lead to a simpler model.
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