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Conformality from field-string duality on Abelian orbifolds
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If the standard model is embedded in a conformal theory, what is the simplest possibility? We analyze all
Abelian orbifolds for discrete symmetryZp with p<7, and find that the simplest such theory is indeed
SU(3)7. Such a theory predicts the correct electroweak unification (sin2 u.0.231). A color coupling
aC(M ).0.07 suggests a conformal scaleM near to 10 TeV.@S0556-2821~99!50124-0#
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Since, in the context of field-string duality, there has be
a shift regarding the relationship of gravity to the stand
model of strong and electroweak interactions we shall be
by characterizing how gravity fits in, then to suggest mo
specifically how the standard model fits in to the stri
framework.

The descriptions of gravity and of the standard model
contained in the string theory. In the string picture in t
spacetime dimensions, or upon compactification to four
mensions, there is a massless spin-two graviton but the s
dard model is not manifest in the way we shall consider it
the conformal field theory extension of the standard mod
gravity is strikingly absent. The field-string duality does n
imply that the standard model already contains gravity a
in fact, it does not.

The situation is not analogous to the Regge-pole
resonance duality~despite a misleading earlier version of th
introduction!. That quite different duality led to the origin@1#
of string theory and originated from the realization@2–5#
phenomenologically that adding Regge pole and resona
descriptions is double counting and that the two descripti
aredual in that stronger sense. The duality@6# between the
field and string descriptions is not analogous because
conformal field theory~CFT! description does not contai
gravity. A first step to combining gravity with the standa
model would be adding the corresponding Lagrangians.

In the field theory description@7–10# used in this Rapid
Communication, one will simply ignore the massless sp
two graviton. Indeed since we are using the field theory
scription only below the conformal scale of;1 TeV ~or, as
suggested later in this paper, 10 TeV! and forgoing any re-
quirement of grand unification, the hierarchy between
weak scale and theory-generated scales likeMGUT or
M Planck is resolved. Moreover, seeking the graviton in t
field theory description is possibly resolvable by going to
higher dimension and restricting the range of the higher
mension. Here we are looking only at the strong and w
interactions at accessible energies below, say, 10 TeV.

Of course, if we ask questions in a different regime,
example, about scattering of particles with center-of-m
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energy of the orderM Planck then the graviton will become
crucial @11,12# and a string, rather than a field, descriptio
will be the viable one.

It is important to distinguish between the holographic d
scription of the five-dimensional gravity in (AdS)5 made by
the four-dimensional CFT and the origin of the fou
dimensional graviton. The latter could be described ho
graphically only by a lower three-dimensional field theo
which is not relevant to the real world. Therefore the gra
ton of our world can only arise bycompactificationof a
higher dimensional graviton. Introduction of gravity mu
break conformal invariance and it is an interesting quest
~which I will not answer! whether this breaking is related t
the mass and symmetry-breaking scales in the low-ene
theory. That is all I will say about gravity in the prese
paper; the remainder is on the standard model and its em
ding in a CFT.

An alternative to conformality, grand unification with su
persymmetry, leads to an impressively accurate gauge
pling unification@13#. In particular it predicts an electrowea
mixing angle at the Z pole, sin2 u50.231. This result may,
however, be fortuitous, but rather than abandon gauge c
pling unification, we can rederive sin2 u50.231 in a different
way by embedding the electroweakSU(2)3U(1) in
SU(N)3SU(N)3SU(N) to find sin2 u53/13.0.231
@9,10#. This will be a common feature of the models in th
paper.

The conformal theories will be finite without quadratic
logarithmic divergences. This requires appropriate eq
number of fermions and bosons which can cancel in lo
and which occur without the necessity of spacetime sup
symmetry. As we shall see in one example, it is possible
combine spacetime supersymmetry with conformality but
latter is the driving principle and the former is merely a
option: additional fermions and scalars are predicted by c
formality in the TeV range@9,10#, but in general these par
ticles are different and distinguishable from supersymme
partners. The boson-fermion cancellation is essential for
cancellation of infinities, and will play a central role in th
calculation of the cosmological constant~not discussed
here!. In the field picture, the cosmological constant me
sures the vacuum energy density.

What is needed first for the conformal approach is
simple model and that is the subject of this paper.
©1999 The American Physical Society01-1
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Here we shall focus on Abelian orbifolds characterized
the discrete groupZp . Non-Abelian orbifolds will be sys-
tematically analyzed elsewhere.

The steps in building a model for the Abelian case~par-
allel steps hold for non-Abelian orbifolds! are the following:

~1! Choose the discrete groupG. Here we are considering
only G5Zp . We definea5exp(2p i /p).

~2! Choose the embedding ofG,SU(4) by assigning4
5(aA1,aA2,aA3,aA4) such that (q51

q54Aq50(mod p). To
breakN54 supersymmetry toN50 ~or N51) requires that
none~or one! of the Aq is equal to zero~mod p).

~3! For chiral fermions one requires that4[” 4* for the
embedding ofG in SU(4).

The chiral fermions are in the bifundamental represen
tions of SU(N)p

(
i 51

i 5p

(
q51

q54

~Ni ,N̄i 1Aq
!. ~1!

If Aq50 we interpret (Ni ,N̄i) as a singlet plus an adjoint o
SU(N) i .

~4! The 6 of SU(4) is real 65(a1 ,a2 ,a3 ,2a1 ,2a2 ,
2a3) with a15A11A2 , a25A21A3 , a35A31A1 ~recall
that all components are defined modulop). The complex
scalars are in the bifundamentals

(
i 51

i 5p

(
j 51

j 53

~Ni ,N̄i 6aj
!. ~2!

The condition in terms ofaj for N50 is ( j 51
j 53(6aj )

Þ0(modp) @7#.
~5! Choose theN of ^ iSU(Ndi) ~where thedi are the

dimensions of the representrations ofG). For the Abelian
case wheredi[1, it is natural to chooseN53 the largest
SU(N) of the standard model~SM! gauge group. For a non
Abelian G with di[” 1 the choiceN52 would be indicated.

~6! The p quiver nodes are identified as color~C!, weak
isospin~W! or a thirdSU(3) ~H!. This specifies the embed
ding of the gauge groupSU(3)C3SU(3)W3SU(3)H,
^ SU(N)p. This quiver node identification is guided by~7!,
~8! and ~9! below.

~7! The quiver node identification is required to give thr
chiral families under Eq.~1!. It is sufficient to make three o
the (C1Aq) to be W and the fourth H, given that there
only one C quiver node, so that there are three (3,3,̄1). Pro-
vided that (3̄,3,1) is avoided by the (C2Aq) being H, the
remainder of the three family trinification will be automat
by chiral anomaly cancellation. Actually, a sufficient cond
tion for three families has been given; it is necessary o
that the difference between the number of (31Aq) nodes
and the number of (32Aq) nodes which are W is equal t
three.

~8! The complex scalars of Eq.~2! must be sufficient for
their vacuum expectation values to spontaneously br
SU(3)p→SU(3)C3SU(3)W3SU(3)H→SU(3)C3SU(2)W
3U(1)Y→SU(3)C3U(1)Q . Note that, unlike grand unified
theories~GUTs! with or without supersymmetry, the Higg
scalars are here prescribed by the conformality condit
12190
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This is more satisfactory because it implies that the Hig
sector cannot be chosen arbitrarily, but it does make mo
building more interesting

~9! Gauge coupling unification should apply at least to t
electroweak mixing angle sin2 u5gY

2/(g2
21gY

2).0.231. For
trinification Y5321/2(2l8W12l8H) so that (3/5)1/2Y is
correctly normalized. If we makegY

25(3/5)g1
2 andg2

252g1
2

then sin2 u53/13.0.231 with sufficient accuracy.
In the remainder of this paper we answer all these st

for the choiceG5Zp for successivep52, 3, . . . up top
57, then add some concluding remarks.

p52. In this casea521 and therefore one cannot co
struct any complex4 of SU(4) with 4[” 4* . Chiral fermions
are therefore impossible.

p53. The only possibilities areAq5(1,1,1,0) or Aq

5(1,1,21,21). The latter is real and leads to no chiral fe
mions. The former leavesN51 supersymmetry and is
simple three-family model@14# by the quiver node identifi-
cation C-W-H. The scalarsaj5(1,1,1) are sufficient to
spontaneously break to the SM. Gauge coupling unificat
is, however, missing since sin2 u53/8, in poor disagreemen
with experiment.

p54. The only complexN50 choice isAq5(1,1,1,1).
But thenaj5(2,2,2) and any quiver node identification su
as C-W-H-H has 4 families and the scalars are insufficien
break spontaneously the symmetry to the SM gauge gro

p55. The two inequivalent complex choices areAq
5(1,1,1,2) andAq5(1,3,3,3). By drawing the quiver, how
ever, and using the rules for three chiral families given in~7!
above, one finds that the node identification and the presc
tion of the scalars asaj5(2,2,2) andaj5(1,1,1), respec-
tively, does not permit spontaneous breaking to the stand
model.

p56. Here we can discuss three inequivalent comp
possibilities as follows:

~6A! Aq5(1,1,1,3) which impliesaj5(2,2,2). Requiring
three families means a node identification C-W-X-H-X-
where X is either W or H. But whatever we choose for the
the scalar representations are insufficient to breakSU(3)6 in
the desired fashion down to the SM. This illustrates the d
ficulty of model building when the scalars are not in arbitra
representations.

~6B! Aq5(1,1,2,2) which impliesaj5(2,3,3). Here the
family number can be only zero, two or four as can be se
by inspection of theAq and the related quiver diagram. S
~6B! is of no phenomenological interest.

~6C! Aq5(1,3,4,4) which impliesaj5(1,1,4). Requiring
three families needs a quiver node identification which is
the formeitherC-W-H-H-W-H or C-H-H-W-W-H. The sca-
lar representations implied byaj5(1,1,4) are, however, eas
ily seen to be insufficient to do the required spontane
symmetry breaking~SSB! for both of these identifications.

p57. Having been stymied mainly by the rigidity of th
scalar representation for allp<6, for p57 there are the first
cases which work. Six inequivalent complex embeddings
Z7,SU(4) require consideration.

~7A! Aq5(1,1,1,4)⇒aj5(2,2,2). For the required node
C-W-X-H-H-X-H the scalars areinsufficientfor SSB.
1-2
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~7B! Aq5(1,1,2,3)⇒aj5(2,3,3). The node identification
C-W-H-W-H-H-H leads to asuccessfulmodel.

~7C! Aq5(1,2,2,2)⇒aj5(3,3,3). Choosing C-H-W-X-
X-H-H to derive three families, the scalarsfail in SSB.

~7D! Aq5(1,3,5,5)⇒aj5(1,1,3). The node choice C-W
H-H-H-W-H leads to asuccessfulmodel. This is Model A of
@10#.

~7E! Aq5(1,4,4,5)⇒aj5(1,2,2). The nodes C-H-H-H
W-W-H aresuccessful.

~7F! Aq5(2,4,4,4)⇒aj5(1,1,1). Scalarsinsufficientfor
SSB.

The three successful models~7B!, ~7D! and ~7E! lead to
ana3(M ).0.07. Sincea3(1 TeV)>0.10 this suggest a con
formal scaleM.10 TeV @10#. The above models have les
generators than anE(6) GUT and thusSU(3)7 merits fur-
ther study. It is possible, and under investigation, that n
Abelian orbifolds will lead to a simpler model.

For such field theories it is important to establish the
istence of a fixed manifold with respect to the renormali
tion group. It could be a fixed line but more likely, in th
-

12190
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N50 case, a fixed point@15#. It is known that in theN
→` limit the theories become conformal, but although th
’t Hooft limit @16# is where the field-string duality is derive
we know that finiteness survives to finite N in theN54 case
@17# and this makes it plausible that at least a conform
point occurs also for theN50 theories withN53 derived
above.

The conformal structure cannot by itself predict all t
dimensionless ratios of the standard model such as mas
tios and mixing angles because these receive contributi
in general, from soft breaking of conformality. With a sp
cific assumption about the pattern of conformal symme
breaking, however, more work should lead to definite pred
tions for such quantities.

The hospitality of Bielefeld University is acknowledge
while this work was done. The work was supported in p
by the US Department of Energy under Grant No. DE-FG0
97ER-41036.
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