$\overline{B} \rightarrow K^* \gamma$ from $D \rightarrow K^* \overline{l} \nu$

Zoltan Ligeti *Theory Group, Fermilab, P.O. Box 500, Batavia, Illinois 60510*

Mark B. Wise *California Institute of Technology, Pasadena, California 91125* (Received 14 May 1999; published 8 November 1999)

The $\bar{B} \to K^* \gamma$ branching fraction is predicted using heavy quark spin symmetry at large recoil to relate the tensor and (αx) -vector form factors, using heavy quark flavor symmetry to relate the *B* decay form factors to the measured $D\rightarrow K^*\bar{I}\nu$ form factors, and extrapolating the semileptonic *B* decay form factors to large recoil assuming nearest pole dominance. This prediction agrees with data surprisingly well, and we comment on its implications for the extraction of $|V_{ub}|$ from $\overline{B} \rightarrow \rho l \overline{\nu}$. [S0556-2821(99)07023-X]

PACS number(s): 12.39.Hg, 12.15.Hh, 13.20.He

The next generation of *B* decay experiments will test the Cabibbo-Kobayashi-Maskawa (CKM) picture of quark mixing and *CP* violation with high precision. The basic approach is to determine the sides and angles of the unitarity triangle, and then check for the consistency of these results. A precise and model independent determination of the magnitude of the $b \rightarrow u$ CKM matrix element, $|V_{ub}|$, is particularly important. It is one of the least precisely known elements of the CKM matrix. At the present time the uncertainty of the standard model expectation for $sin(2\beta)$, the *CP* asymmetry in $B \rightarrow J/\psi K_S$, depends strongly on the uncertainty of $|V_{ub}|$.

Currently, most determinations of $|V_{ub}|$ rely on phenomenological models [1]. The more promising model independent approaches for the future include studying the hadronic invariant mass distribution in inclusive semileptonic \overline{B} \rightarrow *X_ue* $\bar{\nu}$ decay [2], measuring the inclusive \bar{B} \rightarrow *X_{ucd}* nonleptonic decay rate [3], and comparing the exclusive $\vec{B} \rightarrow \rho l \vec{\nu}$ and $\overline{B} \rightarrow \pi l \overline{\nu}$ decay rates in the large q^2 region with lattice results [4] or predictions based on heavy quark symmetry and chiral symmetry $[5-7]$. A major uncertainty in the latter method is the size of the symmetry breaking corrections. Another question for this approach is whether the *D* $\rightarrow K^* \bar{l} \nu$ (or $D \rightarrow \rho \bar{l} \nu$) form factors can be extrapolated to cover a larger fraction of the $\bar{B} \rightarrow \rho l \bar{\nu}$ phase space.

In this Brief Report some of these ingredients are tested by comparing the measured $\overline{B} \rightarrow K^* \gamma$ branching fraction with a prediction relying on *b* quark spin symmetry at large recoil to relate the tensor and (axial-)vector form factors, heavy quark flavor symmetry to relate the *B* decay form factors to the measured $D \rightarrow K^* \bar{l} \nu$ form factors, and an extrapolation of the semileptonic *B* decay form factors assuming nearest pole dominance. We denote by a superscript (*H* \rightarrow *V*) the form factors relevant for transitions between a pseudoscalar meson *H* containing a heavy quark, *Q*, and a member of the lowest lying multiplet of vector mesons, *V*. We view the form factors as functions of the dimensionless variable $y = v \cdot v'$, where $p = m_H v$, $p' = m_V v'$, and $q^2 = (p \cdot v')$ $(-p')^2 = m_H^2 + m_V^2 - 2m_H m_V y$. (Note that even though we are using the variable $v \cdot v'$, we are not treating the quarks in *V* as heavy.) An approach with some similarities to the one presented here can be found in Ref. $[8]$. This decay has also been considered in Refs. $[9,10]$.

The $\overline{B} \rightarrow K^* \gamma$ transition arises from a matrix element of the effective Hamiltonian

$$
H_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_{i=1}^8 C_i(\mu) O_i(\mu), \qquad (1)
$$

where G_F is the Fermi constant, and $C_i(\mu)$ are Wilson coefficients evaluated at a subtraction point μ . The $\bar{B} \rightarrow K^* \gamma$ matrix element of *H*eff is thought to be dominated by the operator

$$
O_7 = \frac{e}{16\pi^2} \overline{m}_b \overline{s}_L \sigma^{\mu\nu} F_{\mu\nu} b_R, \qquad (2)
$$

where *e* is the electromagnetic coupling, m_b is the modified minimal subtraction scheme $\overline{(MS)}$ *b* quark mass, and $F_{\mu\nu}$ is the electromagnetic field strength tensor. $O_1 - O_6$ are fourquark operators and O_8 involves the gluon field strength tensor.

The $\overline{B} \rightarrow K^* \gamma$ matrix element of O_7 can be expressed in terms of hadronic form factors, g_{\pm} and *h*, defined by

$$
\langle V(p', \epsilon) | \bar{q} \sigma_{\mu\nu} Q | H(p) \rangle
$$

= $g_+^{(H \to V)} \varepsilon_{\mu\nu\lambda\sigma} \epsilon^{*\lambda} (p + p')^{\sigma}$
+ $g_-^{(H \to V)} \varepsilon_{\mu\nu\lambda\sigma} \epsilon^{*\lambda} (p - p')^{\sigma}$
+ $h^{(H \to V)} \varepsilon_{\mu\nu\lambda\sigma} (p + p')^{\lambda} (p - p')^{\sigma} (\epsilon^* \cdot p),$

$$
\langle V(p', \epsilon)|\bar{q}\sigma_{\mu\nu}\gamma_5 Q|H(p)\rangle
$$

= $ig_+^{(H \to V)} [\epsilon_{\nu}^*(p+p')_{\mu} - \epsilon_{\mu}^*(p+p')_{\nu}] + ig_-^{(H \to V)}$

$$
\times [\epsilon_{\nu}^*(p-p')_{\mu} - \epsilon_{\mu}^*(p-p')_{\nu}] + ih^{(H \to V)}
$$

$$
\times [(p+p')_{\nu}(p-p')_{\mu} - (p+p')_{\mu}(p-p')_{\nu}] (\epsilon^* \cdot p).
$$

(3)

The second relation follows from the first one using the identity $\sigma^{\mu\nu} = (i/2) \varepsilon^{\mu\nu\alpha\beta} \sigma_{\alpha\beta} \gamma_5$. We use the convention ε^{0123} $=$ $-\epsilon_{0123}$ = 1. The $\bar{B} \rightarrow K^* \gamma$ decay rate is then given by

$$
\Gamma(\bar{B} \to K^* \gamma) = \frac{G_F^2 \alpha |V_{ts}^* V_{tb}|^2}{32\pi^4} \bar{m}_b^2 m_B^3
$$

$$
\times \left(1 - \frac{m_{K^*}^2}{m_B^2}\right)^3 |C_7|^2 |g_+^{(B \to K^*)}(y_0)|^2, \quad (4)
$$

where $y_0 = (m_B^2 + m_{K^*}^2)/(2m_B m_{K^*}) = 3.05$.

In semileptonic decays such as $D \rightarrow K^* \bar{l} \nu$ or $\bar{B} \rightarrow \rho l \bar{\nu}$ another set of form factors occurs, *g*, *f*, and a_{\pm} , defined by

$$
\langle V(p', \epsilon)|\overline{q}\gamma_{\mu}Q|H(p)\rangle = ig^{(H \to V)}\varepsilon_{\mu\nu\lambda\sigma}\epsilon^{*\nu}(p+p')^{\lambda}
$$

$$
\times (p-p')^{\sigma},
$$

$$
\langle V(p', \epsilon)|\overline{q}\gamma_{\mu}\gamma_{5}Q|H(p)\rangle = f^{(H \to V)}\epsilon_{\mu}^{*}
$$

$$
+ a_{+}^{(H \to V)}(\epsilon^{*} \cdot p)(p+p')_{\mu}
$$

$$
+ a_{-}^{(H \to V)}(\epsilon^{*} \cdot p)(p-p')_{\mu}.
$$

(5)

The experimental values for the $D \rightarrow K^* \bar{l} \nu$ form factors assuming nearest pole dominance for the $q²$ dependences are $\lceil 11 \rceil$

$$
f^{(D \to K^*)}(y) = \frac{(1.9 \pm 0.1) \text{GeV}}{1 + 0.63(y - 1)},
$$

\n
$$
a_+^{(D \to K^*)}(y) = -\frac{(0.18 \pm 0.03) \text{GeV}^{-1}}{1 + 0.63(y - 1)},
$$

\n
$$
g^{(D \to K^*)}(y) = -\frac{(0.49 \pm 0.04) \text{GeV}^{-1}}{1 + 0.96(y - 1)}.
$$
 (6)

The shapes of these form factors are beginning to be probed
experimentally and the pole form is consistent with data
[11]. The form factor
$$
a_{-}
$$
 is not measured because its contri-
bution to the $D \rightarrow K^* \overline{l} \nu$ decay amplitude is suppressed by
the letter mesc. The minimal value of y is unity (corra)

the lepton mass. The minimal value of y is unity (corresponding to the zero recoil point) and the maximum value of *y* is $(m_D^2 + m_{K^*}^2)/(2m_D m_{K^*}) \approx 1.3$ (corresponding to q^2 $\overline{5}$ = 0). In comparison, the allowed kinematic region for \overline{B} $\rightarrow \rho l \bar{\nu}$ is $1 < y < 3.5$.

A prediction for the $\overline{B} \rightarrow K^* \gamma$ decay rate can be made using heavy quark spin symmetry, which implies relations between the tensor and $(axial-)vector$ form factors in the m_b →∞ limit [5,6]

$$
g^{(B \to K^*)} + g^{(B \to K^*)} = \frac{f^{(B \to K^*)} + 2g^{(B \to K^*)}m_B m_{K^*} y}{m_B},
$$
 (7)

$$
g^{(B \to K^*)} + g^{(B \to K^*)} = -2m_B g^{(B \to K^*)},
$$

,

$$
h^{(B \to K^*)} = \frac{a_+^{(B \to K^*)} - a_-^{(B \to K^*)} - 2g^{(B \to K^*)}}{2m_B}
$$

and, therefore,

$$
g_+^{(B \to K^*)} = -g^{(B \to K^*)} (m_B - m_{K^*}y) + f^{(B \to K^*)} / (2m_B). \tag{8}
$$

We use heavy quark symmetry again to obtain $g^{(B\to K^*)}$ and *f* $(f^{(B\to K^*)}$ from the measured $D\to K^*\bar{I}\nu$ form factors given in Eq. (6) [5]:

$$
f^{(B \to K^*)}(y) = \left(\frac{m_B}{m_D}\right)^{1/2} f^{(D \to K^*)}(y),
$$

$$
g^{(B \to K^*)}(y) = \left(\frac{m_D}{m_B}\right)^{1/2} g^{(D \to K^*)}(y).
$$
 (9)

For *y* not too large, Eq. (7) has order $1/m_b$ corrections, whereas Eq. (9) receives both order $1/m_b$ and $1/m_c$ corrections.

The model dependence in our prediction of $\Gamma(\overline{B} \to K^* \gamma)$ arises from the use of *b* quark spin symmetry at large recoil and due to the fact that the *B* decay form factors are extrapolated beyond $y=1.3$. In Ref. $[12]$ it was argued that the heavy quark spin symmetry relations in Eq. (7) should hold over the entire phase space without unusually large corrections. To extrapolate $f^{(B \to K^*)}$ and $g^{(B \to K^*)}$ to values of *y* >1.3 we assume the pole form; i.e., we simply use Eqs. (6) and (9) evaluated at $y_0 = 3.05$.¹ Although this is not a controlled approximation, it would not be surprising if the *y* dependence of $f^{(B \to K^*)}$ and $g^{(B \to K^*)}$ was consistent with a simple pole in this region. Between $y=1$ and $y=3.05$ the form factor $g^{(B \to K^*)}$ falls by roughly a factor of 3. In the spacelike region $0 < -Q^2 < 1$ GeV², over which the pion electromagnetic form factor falls by a factor of 2.7, its measured Q^2 dependence is consistent with a simple ρ pole [13].² Note also that if $g^{(B\rightarrow K^*)}$ and $f^{(B\rightarrow K^*)}$ have pole forms, then the *y* dependence of $g^{(B \to K^*)}_+$ given by Eq. (8) does not correspond to a simple pole.

Using Eqs. (6), (8), and (9) we obtain $g_{+}^{(B \to K^{*})}$ (3.05) $=0.38$. Then Eq. (4) gives the following prediction for the $\overline{B} \rightarrow K^* \gamma$ branching fraction:

$$
\mathcal{B}(\bar{B} \to K^* \gamma) = 4.1 \times 10^{-5}.
$$
 (10)

¹The *y* dependence of the nearest pole dominated form factors for *B* decay are expected to be almost the same as for *D* decay, so we continue to use Eq. (6) for $y > 1.3$. For example, with $m_{B_s^*}$ $=$ 5.42 GeV the "slope" of $g^{(B\to K^*)}$ is 0.94 (instead of 0.96), and with $m_{B_s^{**}}=5.87$ GeV the "slope" of the axial form factors is 0.62 (instead of 0.63).

²At higher $-Q^2$, it does appear to be falling somewhat faster.

To evaluate Eq. (4), we used $\tau_B = 1.6$ ps, $|C_7| = 0.31$, $|V_{tb}V_{ts}^*|=0.04$, and $\overline{m}_b=4.2$ GeV. This result compares unexpectedly well with the CLEO measurement $\mathcal{B}(\overline{B} \to K^* \gamma)$ $=$ (4.2 ± 0.8 ± 0.6) \times 10⁻⁵ [14], and lends support to the validity of heavy quark symmetry relations between *B* and *D* semileptonic form factors and to the hypothesis that the pole form can be extended beyond $y=1.3$. Of course, it is also possible that the agreement between our prediction and data is a result of a cancellation between large corrections. Note that the sign of the form factor $g^{(D\to K^*)}(y)$, which only enters differential distributions but not the total $D \rightarrow K^*$ rate, is very important for the prediction in Eq. (10) .

This set of approximations together with neglecting *SU*(3) violation in the form factors $f^{(H\rightarrow V)}$ and $g^{(H\rightarrow V)}$ also implies that the short distance contribution to the $\overline{B} \rightarrow \rho \gamma$ branching ratio is $B(\overline{B} \rightarrow \rho \gamma) = 0.80|V_{td}/V_{ts}|^2$ \times *B*($\bar{B} \rightarrow K^* \gamma$).

Including perturbative strong interaction corrections, the right-hand side of Eq. (9) gets multiplied by 1 $+(\alpha_s/\pi) \ln(m_b/m_c)$, but Eqs. (7) and (8) remain unaffected. Evaluating α_s at the scale $\sqrt{m_b m_c}$, this gives a 10% increase in the prediction for $g_+^{(B \to K^*)}$ and a 20% increase in the prediction for the $\overline{B} \to K^* \gamma$ branching ratio in Eq. (10).

The factors of m_D and m_B in Eq. (9) are kinematical in origin. At y near 1, the validity of Eq. (9) relies partly on the charm quark being heavy enough that the *B* and *D* hadrons have similar configurations for the light degrees of freedom. Even though $m_{K^*}/m_D \sim 1/2$, the typical momenta of the ''spectator'' light valence quark in the *K** meson is of order Λ_{OCD} . Near $y=1$ the corrections to Eq. (9) need not be larger than the order $\Lambda_{\text{QCD}} / m_{c,b}$ corrections that occur in some of the $B \rightarrow D^{(*)}$ or $\Lambda_b \rightarrow \Lambda_c$ semileptonic decay form factors. For example, the $1/m_c$ corrections in the matching of the full QCD weak current onto the current in the heavy quark effective theory (HQET) result in the following correction to the form factor $g^{(D\to K^*)}$:

$$
\delta g^{(D \to K^*)} = \frac{1}{4m_c} \left[4c^{(D \to K^*)} + \left(1 + \frac{\bar{\Lambda}}{m_D} \right) g^{(D \to K^*)} + \left(1 - \frac{\bar{\Lambda}}{m_D} \right) g^{(D \to K^*)} \right],
$$
\n(11)

where $c^{(H \rightarrow V)}$ is defined by the HQET matrix element

$$
\langle V(p', \epsilon) | \bar{q} i D_{\mu} Q | H(p) \rangle = i c^{(H \to V)} \varepsilon_{\mu \nu \lambda \sigma} \epsilon^{* \nu} (p + p')^{\lambda} \times (p - p')^{\sigma}.
$$
 (12)

The function $c^{(H \to V)}$ is not known, but it could be computed in lattice QCD. Neglecting it, and using Eqs. (6) and (7) with $B \rightarrow D$, we find that $\delta g^{(D \rightarrow K^*)}/g^{(D \rightarrow K^*)}$ is about $\{-0.20, \}$ -0.13 at $y = \{1,1.3\}$. It is not surprising that heavy quark symmetry is useful near $y=1$, but at $y=y_0$ there is no obvious reason why the relation between $g^{(D\to K^*)}$ and $g^{(B\to K^*)}$ in Eq. (9) should be valid. Strictly speaking, our prediction for $\Gamma(\overline{B} \to K^* \gamma)$ does not depend on this assumption. As long as Eq. (9) holds for $1 \le y \le 1.3$ and the *B* decay form factors have the pole form for $y > 1.3$, Eq. (10) follows. We do not need to assume that the *D* decay form factors also continue to be dominated by the nearest pole for $y > 1.3$ (which is beyond the $D \rightarrow K^* \bar{l} \nu$ kinematic range). Nonetheless, under the assumption that the pole form continues to hold for the *D* decay form factors, the order Λ_{QCD}/m_c contribution to $\delta g^{(D\to K^*)}/g^{(D\to K^*)}$ from the last two terms in Eq. (11) is not anomalously large even at $y = y_0$.

If we take Eq. (10) as (circumstantial) evidence that heavy quark symmetry violation in scaling the *g* and *f* form factors from *D* to *B* decay is small, this has implications for extracting $|V_{ub}|$ from $\bar{B} \rightarrow \rho l \bar{\nu}$. The measurement $B(D)$ $\rightarrow \rho^{0} \bar{l} \nu$ /*B*(*D* $\rightarrow \bar{K}^{*0} \bar{l} \nu$)=0.047±0.013 [15] suggests that *SU*(3) symmetry violation in the $D \rightarrow V$ form factors is also small. Assuming *SU*(3) symmetry for these form factors, but keeping the explicit m_V dependence in the matrix element and in the phase space, the measured form factors in Eq. (6) imply $B(D \to \rho^0 \bar{l} \nu) / B(D \to \bar{K}^{*0} \bar{l} \nu) = 0.044$ [7].³

The differential decay rate for semileptonic B decay (neglecting the lepton mass, and not summing over the lepton type *l*) is

$$
\frac{\mathrm{d}\Gamma(\bar{B}\to\rho l\bar{\nu})}{\mathrm{d}y} = \frac{G_F^2|V_{ub}|^2}{48\pi^3}m_Bm_\rho^2 S^{(B\to\rho)}(y). \tag{13}
$$

Here $S^{(H \to V)}(y)$ is the function

$$
S^{(H \to V)}(y) = \sqrt{y^2 - 1} \{ |f^{(H \to V)}(y)|^2 (2 + y^2 - 6yr + 3r^2) + 4 \text{ Re}[a_+^{(H \to V)}(y) f^{*(H \to V)}(y)] m_H^2 r(y - r) + 4 |a_+^{(H \to V)}(y)|^2 m_H^4 r^2 (y^2 - 1)^2 + 8 |g^{(H \to V)}(y)|^2 m_H^4 r^2 (1 + r^2 - 2yr)(y^2 - 1) \},
$$
\n(14)

with $r = m_V/m_H$. $S^{(B\rightarrow\rho)}(y)$ can be estimated using combinations of *SU*(3) flavor symmetry and heavy quark symmetry. *SU*(3) symmetry implies that the $\overline{B}^0 \rightarrow \rho^+$ form factors are equal to the $B \rightarrow K^*$ form factors and the $B^- \rightarrow \rho^0$ form factors are equal to $1/\sqrt{2}$ times the $B \rightarrow K^*$ form factors. Heavy quark symmetry implies the relations in Eq. (9) and $\lceil 5 \rceil$

$$
a_{+}^{(B \to K^{*})}(y) = \frac{1}{2} \left(\frac{m_{D}}{m_{B}} \right)^{1/2} \left[a_{+}^{(D \to K^{*})}(y) \left(1 + \frac{m_{D}}{m_{B}} \right) - a_{-}^{(D \to K^{*})}(y) \left(1 - \frac{m_{D}}{m_{B}} \right) \right].
$$
 (15)

³This prediction would be $|V_{cd}/V_{cs}|^2/2 \approx 0.026$ with $m_\rho = m_{K^*}$. Phase space enhances $D \rightarrow \rho$ compared to $D \rightarrow K^*$ to yield the quoted prediction.

FIG. 1. $S^{(B\rightarrow\rho)}(y)$ defined in Eq. (13) using the measured *D* \rightarrow *K*^{*} \overline{l} *v* form factors plus heavy quark and *SU*(3) symmetry.

In the large m_c limit, $(a_+^{(D \to K^*)} + a_-^{(D \to K^*)})/(a_+^{(D \to K^*)})$ $(a^{(D \to K^*)})$ is of order Λ_{QCD}/m_c , so we can set $a^{(D \to K^*)}$ $=-a_+^{(D\to K^*)}$, yielding

$$
a_{+}^{(B \to K^{*})}(y) = \left(\frac{m_D}{m_B}\right)^{1/2} a_{+}^{(D \to K^{*})}(y). \tag{16}
$$

Equation (16) may have significant corrections. In the large m_c limit, $(g_+^{(D \to K^*)} + g_-^{(D \to K^*)})/(g_+^{(D \to K^*)} - g_-^{(D \to K^*)})$ is also of order Λ_{QCD}/m_c . From Eq. (7) with $B \rightarrow D$ and Eq. (6) we find that $g_{-}^{(D \to K^*)} = -\lambda g_{+}^{(D \to K^*)}$, where $\lambda = \{0.86, 1.04\}$ at $y = \{1,1.3\}.$

Using Eqs. (9) and (16), and *SU*(3) to get the \bar{B}^0 $\rightarrow \rho^+ l \bar{\nu}_l$ form factors from those for $D \rightarrow K^* \bar{l} \nu$ given in Eq. (6), yields $S^{(B\rightarrow\rho)}(y)$, plotted in Fig. 1 in the region $1 \le y$ \leq 2. In this region $a_+^{(B\to\rho)}$ and $g^{(B\to\rho)}$ make a modest contribution to the differential rate. For $y > 2$, $S^{(B \to \rho)}(y)$ is quite sensitive to the form of $a_+^{(B\to K^*)}$ in Eq. (16) which relies on

setting $a_{-}^{(D \to K^*)} = -a_{+}^{(D \to K^*)}$. An extraction of $|V_{ub}|$ from $\overline{B} \rightarrow \rho l \overline{\nu}$ data using Fig. 1 in the limited range $1 < y < 1.3$ is model independent, with corrections to $|V_{ub}|$ first order in *SU*(3) and heavy quark symmetry breaking. Extrapolation to a larger region increases the uncertainties both because the sensitivity to setting $a_{-}^{(D \to K^*)} = -a_{+}^{(D \to K^*)}$ increases and because the dependence on the functional form used for the extrapolation of the form factors increases.

In summary, we predicted in Eq. (10) the $\overline{B} \rightarrow K^* \gamma$ branching fraction in surprising agreement with CLEO data using *b* quark spin symmetry at large recoil to relate the tensor and (axial-)vector form factors, using heavy quark flavor symmetry to relate the *B* decay form factors to the measured $D \rightarrow K^* \bar{l} \nu$ form factors, and extrapolating the semileptonic *B* decay form factors to large recoil assuming nearest pole dominance. Although this agreement could be accidental, it suggests that heavy quark symmetry can be used to relate *D* and *B* semileptonic form factors and that $f^{(B \to K^*)}$ and $g^{(B \to K^*)}$ can be extrapolated to $y > 1.3$ using the pole form. This is encouraging for the extraction of $|V_{ub}|$ from $\overline{B} \rightarrow \rho l \overline{\nu}$ using Fig. 1. If experimental data on the $D \rightarrow \rho \overline{l} \nu$ and $\overline{B} \rightarrow K^* l \overline{l}$ differential decay rates become available, then a model independent determination of $|V_{ub}|$ can be made with corrections only of order $m_s/m_{c,b}$ (rather than m_s/Λ_{QCD} and $\Lambda_{\text{QCD}}/m_{c,b}$ [6,7,16].

We thank Jeff Richman for a conversation that led to this paper and Adam Falk for useful remarks. M.B.W. was supported in part by the U.S. Department of Energy under Grant No. DE-FG03-92-ER 40701. Fermilab is operated by Universities Research Association, Inc., under DOE Contract No. DE-AC02-76CH03000.

- [1] CLEO Collaboration, J. Bartelt et al., Phys. Rev. Lett. 71, 4111 (1993); CLEO Collaboration, J. Alexander et al., *ibid.* 77, 5000 (1996).
- @2# A. F. Falk, Z. Ligeti, and M. B. Wise, Phys. Lett. B **406**, 225 ~1997!; R. D. Dikeman and N. G. Uraltsev, Nucl. Phys. **B509**, 378 (1998); I. Bigi, R. D. Dikeman, and N. Uraltsev, Eur. Phys. J. C 4, 453 (1998).
- [3] A. F. Falk and A. A. Petrov, Report No. JHU-TIPAC-99003, hep-ph/9903518.
- [4] J. M. Flynn and C. T. Sachrajda, Report No. SHEP-97-20, hep-lat/9710057, and references therein.
- [5] N. Isgur and M. B. Wise, Phys. Rev. D 42, 2388 (1990).
- [6] Z. Ligeti and M. B. Wise, Phys. Rev. D 53, 4937 (1996).
- @7# Z. Ligeti, I. W. Stewart, and M. B. Wise, Phys. Lett. B **420**, 359 (1998).
- [8] P. A. Griffin, M. Masip, and M. McGuigan, Phys. Rev. D 50, 5751 (1994); P. Santorelli, Z. Phys. C 61, 449 (1994).
- [9] UKQCD Collaboration, L. Del Debbio et al., Phys. Lett. B 416, 392 (1998); APE Collaboration, A. Abada et al., *ibid.* **365**, 275 (1996); UKQCD Collaboration, D. R. Burford *et al.*,

Nucl. Phys. **B447**, 425 (1995); C. Bernard, P. Hsieh, and A. Soni, Phys. Rev. Lett. **72**, 1402 (1994).

- [10] P. Ball and V. M. Braun, Phys. Rev. D 58, 094016 (1998); J. M. Soares, hep-ph/9810421; hep-ph/9810402; J. Charles *et al.*, Phys. Lett. B 451, 187 (1999); S. Veseli and M. G. Olsson, *ibid.* 367, 309 (1996); B. Stech, *ibid.* 354, 447 (1995); S. Narison, *ibid.* **327**, 354 (1994); B. Holdom and M. Sutherland, Phys. Rev. D 49, 2356 (1994); P. O'Donnell and H. K. K. Tung, *ibid.* 48, 2145 (1993); P. J. O'Donnell and Q. P. Xu, Phys. Lett. B 325, 219 (1994); A. Ali and T. Mannel, *ibid.* 264, 447 (1991); G. Burdman and J. F. Donoghue, *ibid.* 270, 55 $(1991).$
- @11# E791 Collaboration, E. M. Aitala *et al.*, Phys. Rev. Lett. **80**, 1393 (1998).
- [12] N. Isgur, Phys. Rev. D 43, 810 (1991).
- [13] C. J. Bebek et al., Phys. Rev. D 17, 1693 (1978).
- [14] CLEO Collaboration, R. Ammar *et al.*, Report No. CLEO CONF 96-05, ICHEP96 PA05-093.
- @15# E791 Collaboration, E. M. Aitala *et al.*, Phys. Lett. B **397**, 325 $(1997).$
- [16] B. Grinstein, Phys. Rev. Lett. **71**, 3067 (1993).