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Charge radii and magnetic polarizabilities of r and K* mesons in QCD string theory
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International Educational Centre, 2727 Steeles Avenue West, Suite 202, Toronto, Ontario, Canada M3J 3G9

~Received 25 March 1999; published 12 November 1999!

The effective action for light mesons in external uniform static electromagnetic fields was obtained on the
basis of QCD string theory. We imply that in the presence of light quarks the area law of the Wilson loop
integral is valid. The approximation of the Nambu-Goto straight-line string is used to simplify the problem.
The Coulomb-like short-range contribution which goes from one-gluon exchange is also neglected. We do not
take into account spin-orbital and spin-spin interactions of quarks and observe ther andK* mesons. The wave
function of the meson ground state is the Airy function. Using the virial theorem we estimate the mean charge
radii of mesons in terms of the string tension and the Airy function zero. On the basis of perturbative theory,
in the small external magnetic field we find the diamagnetic polarizability ofr and K* mesons:br520.8
31024 fm3, bK* 520.5731024 fm3. @S0556-2821~99!00323-9#

PACS number~s!: 11.15.Tk, 11.25.Sq, 14.40.Aq
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I. INTRODUCTION

One of the important problems of particle physics is t
confinement of quarks. There is progress in understand
the properties of mesons as a system in which quarks
antiquarks are connected by the relativistic string with
Nambu-Goto self-interaction@1#. This binding interaction
becomes strong at large distances and therefore it is im
sible to describe the phenomenon using the perturbative
proach. There are some difficulties in evaluating meson c
acteristics in the general case of a complicated str
configuration. Naturally, as a first step, we make some
proximations and model assumptions to simplify the cal
lations. So here we consider the straight-line string a
simple configuration and quarks attached to the ends of
string. Such configurations were studied in@2#. In the present
paper we investigate mesons in external, constant, and
form electromagnetic fields and use the path integral
proach. It should be noted that in potential-like models@3–5#
meson characteristics are described reasonably. But in t
approaches there are some assumptions:~i! the relativistic
invariance is only the approximate, and~ii ! constituent quark
masses are used~but not current quark masses!.

The recent development of the QCD string approa
@6–11# showed good results in describing heavy quarkon
baryons, and glueballs. QCD string theory takes into acco
the main nonperturbative effects of strong interactions: ch
symmetry breaking~CSB! and the confinement of quarks
Chiral symmetry breaking gives a nonzero quark conden
(^q̄q&). As a result the light quarks (u, d quarks! with cur-
rent massesmu.md.7 MeV acquire the dynamical masse
mu.md.320 MeV. This phenomenon is important for ligh
pseudoscalar mesons as they possess a Nambu-Goldsto
ture. To get low masses of pseudoscalar mesons one nee
take into account spin interactions of quarks. In@8,9# CSB
was explained by the nonvanishing density of quark~qua-
si!zero modes in the framework of QCD. Then the famil
PCAC ~partial conserevation of axial vector current! theo-
rems and the soft pion technique are reproduced. There
different stochastic vacuum configurations which are
sponsible for CSB: instantons~anti-insantons!, pieces of
~anti-!self-dual fields~for example, torons or randomly dis
0556-2821/99/60~11!/116009~9!/$15.00 60 1160
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tributed lumps of field!, and others. The necessary requir
ment is to have zero fermion modes. The condensation
zero modes leads to CSB. The confinement of quarks d
not allow them to be observed; i.e., quarks cannot mo
outside of hadrons in large distances relative to each ot
This was confirmed by Monte Carlo simulations and expe
ments. Both nonperturbative effects of strong interactio
can be explained by introducing stochastic gluon vacu
fields with definite fundamental correlators@6,7#. Then the
linear potential between quarks appears and it provides
confinement of quarks. Besides, Regge trajectories are
ymptotically linear with a universal slope@7#. So the method
of vacuum correlators in nonperturbative QCD and the
namics of zero modes give an explanation of the dou
nature of light pseudoscalar particles~pions, kaons, and oth
ers! as Nambu-Goldstone particles and as the qua
antiquark system with a confining linear potential. It shou
be noticed that confinement prevents the delocalization
zero modes over the whole volume@8#, i.e., stabilizes the
phenomena of CSB.

In the present approach we make some assumptions
we treat spin degrees of freedom as a perturbation and th
fore it is questionable to apply this scheme to pions a
kaons. Onlyr andK* mesons are considered here beca
the energy shift for them due to the hyperfine spin interact
is below 100 MeV@4#. Here short-range spin-orbitalL•S and
spin-spinS1•S2 interactions are not taken into account. B
sides we neglect the Coulomb-like short-range contribut
due to the asymptotic freedom of QCD. This contribution
important only for heavy quarkonia@5#. We imply also that
in the presence of light quarks the structure of the vacu
yields an area law of the Wilson loop integral. The restricti
of the leading Regge trajectories is used as we consider
only r andK* mesons.

It is important to calculate different intrinsic characteri
tics of hadrons on the basis of QCD string theory and
compare them with experimental values. It will be the test
this scheme. The charge radius~and electromagnetic form
factors! and electromagnetic polarizabilities of mesons a
fundamental constants which characterize the complex st
ture of particles. These values for some mesons are kn
from the experimental data and therefore the estimation
©1999 The American Physical Society09-1
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them is reasonable. So we can check our notion about
vacuum structure by coinciding experimental data and th
retical predictions. In@12# we made a crude estimate of th
charge radius and the electric polarizability of mesons
nucleons. Here we evaluate the mean-squared radius u
the virial theorem and the magnetic polarizability ofr and
K* mesons.

The electromagnetic polarizabilities of hadronsa, b enter
the induced electricD5aE and magneticM5bH dipole
moments, whereE,H are the strengths of electromagne
fields. As a result there is a contribution to the polarizat
potential@13,14# as follows:

U~a,b!52
1

2
aE22

1

2
bH2. ~1.1!

Electromagnetic polarizabilities are fundamental lo
energy characteristics of strong hadron interactions
therefore they can be calculated in the framework of nonp
turbative quantum chromodynamics—QCD string theory.

This paper is organized as follows. In Sec. II after d
scribing the general background we derive the effective
tion for mesons in external electromagnetic fields. T
ground state and charge radii of particles are found on
basis of exact solutions and the virial theorem in Sec.
Section IV contains the evaluation of the diamagnetic po
izabilities ofr andK* mesons using the perturbative expa
sion in a small magnetic field. In the conclusion we mak
comparison of our results with other approaches.

Units are chosen such that\5c51.

II. EFFECTIVE ACTION FOR LIGHT MESONS

To get the effective action for mesons in an external el
tromagnetic field we use the Green function of the qua
es
f

ns

11600
he
o-

d
ing

n

-
d
r-

-
c-
e
e
.
r-
-
a

-
s

possessing spins in Minkowski space@see Eq.~A8! in the
Appendix#:

S~x,y!5 i E
0

`

dsE
z(0)5y

z(s)5x

Dz

3S m12
i

2
gmżm~ t ! D P

3expH i E
0

sF1

4
żm

2 ~ t !2m1
21e1żm~ t !Am

el~z!

1Smn~e1Fmn
el 1gFmn!GdtJ F~x,y!, ~2.1!

wherezm(t) is the path of the quark with the boundary co
ditions zm(0)5ym , zm(s)5xm and

F~x,y!5P expH igE
y

x

AmdzmJ ~2.2!

is the path-ordered product~the parallel transporter!; Am is
the gluonic field andg is the coupling constant. Neglectin
quark-antiquark vacuum loops and omitting the annihilat
graph, the Green function of mesons~the quark-antiquark
system! takes the form@7#

G~x,x̄;y,ȳ!5tr^g5S~x,y!F~y,ȳ!g5S~ ȳ,x̄!F~ x̄,x!&,
~2.3!

where the bracketŝ•••& are the averaging over the extern
vacuum gluonic fields with the standard measure exp@iS(A)#.
Inserting Eq.~2.1! into Eq. ~2.3! we find the expression
G~x,x̄;y,ȳ!5tr E
0

`

dsE
0

`

ds̄E
z(0)5y

z(s)5x

DzS m11
i

2
gmżm~ t ! D E

z̄(0)5 ȳ

z̄( s̄)5 x̄
Dz̄S m12

i

2
gm ż̄m~ t̄ ! D PS

3expH i E
0

sF1

4
żm

2 ~ t !2m1
21e1żm~ t !Am

el~z!1e1SmnFmn
el ~z!Gdt

1 i E
0

s̄F1

4
ż̄m

2 ~ t̄ !2m2
21e2ż̄m~ t̄ !Am

el~ z̄!1e2SmnFmn
el ~ z̄!Gd t̄J

3K expH igSmnF E
0

s

Fmn~z!dt1E
0

s̄
Fmn~ z̄!d t̄G J W~C!L , ~2.4!
nal
where PS is the ordering operator of the spin matric
Smn ; e1 ,e2 are charges andm1 ,m2 are current masses o

the quark and antiquark;zm(t),z̄m( t̄ ) are the paths of the
quark and antiquark with the boundary conditio
zm(0)zm(0)5ym , zm(s)5xm , z̄m(0)5 ȳm , z̄m( s̄)5 x̄m, and

żm(t)5]zm /]t. Here we used the properties ofg matrices:
$g5 ,gm%50, @Smn ,g5#50. As compared with@7,17# we
added the interaction of charged quarks with the exter
9-2
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electromagnetic fields. The gauge- and Lorenz-invariant W
son loop operator is given by

W~C!5
tr

NC
P expH igE

C
AmdzmJ , ~2.5!

whereNC is the color number, andC is the closed contour o
lines xx̄ and yȳ connected by pathsz(t),z̄( t̄ ) of the quark
and antiquark. The Wilson operator~2.5! contains both the
perturbative and nonperturbative interactions between qu
via gluonic fieldsAm . In accordance with the approach
@7#, spin interactions can be treated as perturbations.
justified for r andK* mesons. To construct the expressio
in spin interactions we write the relationship@7#

K expH igSmnF E
0

s

Fmn~z!dt1E
0

s̄
Fmn~ z̄!d t̄G J W~C!L

5expH SmnF E
0

s

dt
d

dsmn~ t !
1E

0

s̄
d t̄

d

dsmn~ t̄ !
G J ^W~C!&,

~2.6!

where dsmn(t) is the surface around the pointzm(t). The
zeroth order in spin-orbit and spin-spin interactions cor
sponds to neglecting the termsgSmnFmn in Eq. ~2.4!. We
suppose that mesons consist of quarks which move slo
with respect to the time fluctuations of the gluonic fiel
(Tq@Tg). It is the potential regime of the string. Volosh
@19# and Leutwyler@20# remarked that in another case (Tq
!Tg) the dynamics is nonpotential and the QCD sum ru
can be used. We consider the case when the distance
tween quarksr @Tg . Monte Carlo calculations@21,22# gave
Tg.0.2–0.3 fm. So we imply that the characteristic qua
relative distance isr .1 fm. This assumption will be con
firmed below by the calculation of the quark-antiquark re
tive coordinate.

The average Wilson integral~2.5! at large distances in
accordance with the area law can be represented
Minkowski space as

^W~C!&5exp~ is0S!, ~2.7!

wheres0 is the string tension andS is the area of the mini-
mal surface inside of the contourC. The surfaceS can be
parametrized by the Nambu-Goto form@23,24#

S5E
0

T

dtE
0

1

dbA~ẇmwm8 !22ẇm
2 w8n

2, ~2.8!

whereẇm5]wm /]t, wm8 5]wm /]b. Using the approxima-
tion @7# that the coordinates of the string world surfa
wm(t,b) can be taken as straight lines for the minimal s
face we write

wm~t,b!5zm~t!b1 z̄m~t!~12b!, ~2.9!

wheret is implied to be the proper time parameter for bo
trajectories,t5(tT)/s5( t̄ T)/ s̄. For uniform static externa
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electromagnetic fields we have the representation of the
tor potential through the strength tensorFmn :

An
cl~z!5

1

2
Fmnzm , An

cl~ z̄!5
1

2
Fmnz̄m . ~2.10!

The pathszm ,z̄m are expressed via the center of mass co
dinateRm and the relative coordinater m @7#,

zm~t!5Rm2
s̄

s1 s̄
r m , z̄m~t!5Rm1

s

s1 s̄
r m ,

~2.11!

with the boundary conditions forRm(t),r m(t):

Rm~0!5
m1ym1m2ȳm

m11m2
, Rm~T!5

m1xm1m2x̄m

m11m2
,

r m~0!5ym2 ȳm , r m~T!5xm2 x̄m .

The integration with respect tozm ,z̄m in Eq. ~2.4! is replaced
by an integration over new variablesRm ,r m . As t is a com-
mon time for the quark and antiquark~the time of the meson!
the parametrizationzm5(t,z), z̄m5(t,z̄) is possible @7#.
This leads to the constraintsR0(t)5t, r 0(t)50. In accor-
dance with the approach in@7# we introduce the dynamica
massesm1 ,m2 by the relationships

m15
T

2s
, m25

T

2s̄
. ~2.12!

Replacing the integration with respect tos, s̄ in Eq. ~2.4! by
the integration overdm1 and dm2 with the help of Eqs.
~2.7!–~2.11! we find @12# a two-point function in zeroth or-
der in the spin interactions

G~x,x̄;y,ȳ!52T2E
0

`dm1

2m1
2E0

`dm2

2m2
2E DRDr exp$ iSe f f%,

~2.13!

with the effective action

Se f f5E
0

T

dtF2
m1

2

2m1
2

m2
2

2m2
1

1

2
~m11m2!Ṙm

2 1
1

2
m̃ ṙ m

2

1
1

2
Fnm

el eS ṘmRn1
1

4
ṙ mr nD2

q

4
Fnm

el ~Ṙmr n1 ṙ mRn!

2E
0

1

dbs0A~ẇmwm8 !22ẇm
2 w8n

2G , ~2.14!

where wm5Rm1@b2m1 /(m11m2)#r m ; m̃5m1m2 /(m1
1m2) is the reduced mass of the quark-antiquark systeme
5e11e2 , q5e12e2. As a first step we are interested he
in the spinless part and therefore the preexponential te

@m11( i /2)gmżm(t)#, @m22( i /2)gm ż̄m( t̄ )# and the constan
matrix SmnFmn

el was omitted in Eq.~2.13!. The expression
9-3
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~2.14! defines the effective Lagrangian for light mesons
external uniform static electromagnetic fields in accorda
with the formula Se f f5*0

TLe f fdt. The expression~2.14!
looks like a nonrelativistic one atFmn50, but it is not. The
author of@7# showed that the relativism is contained here d
to them̃ dependence and the spectrum is similar to that of
relativistic quark model.

The mass of the lowest states can be found on the bas
the relationship@25#

E DRDr exp$ iSe f f%

5K R5
m1x1m2x̄

m11m2
,r 5x2 x̄Uexp$2 iTM~m1 ,m2!%

3UR5
m1y1m2ȳ

m11m2
,r 5y2 ȳL , ~2.15!

where the massM(m1 ,m2) is the eigenfunction of the
Hamiltonian. After that the Green function~2.13! is derived
by integrating Eq.~2.14! over the dynamical massesm1 , m2.
In accordance with@7# we estimate the last integration o
dm1 ,dm2 using the steepest descent method which give
good accuracy when the Minkowski timeT→`. To have the
correct formulas, it is necessary to go into Euclidean sp
and return into Minkovski space on completing the fun
tional integration. We use this procedure.

III. GROUND STATE AND CHARGE RADII

The last term in Eq.~2.14! can be approximated with th
accuracy of;5% @7# by the relation

E
0

1

dbA~ẇmwm8 !22ẇm
2 w8n

2

5E
0

1

dbAr22S b2
m1

m11m2
D 2

~ ṙ3r !2.Ar2. ~3.1!

It is the potential regime at low orbital excitations of th
string when the orbital quantum numberl is small. As the
equalities R0(t)5t, r 0(t)50 are valid, only three-
dimensional quantities are dynamical. Taking into acco
~3.1!, from Eq. ~2.14! using the standard procedure we fin
the canonical three-momenta corresponding to the cente
mass coordinateRm and the relative coordinater m :

Pk5
]Le f f

]Ṙk

5~m11m2!Ṙk1
e

2
Fnk

el Rn1
q

4
Fnk

el r n ,

pk5
]Le f f

] ṙ k

5m̃ ṙ k1
e

8
Fnk

el r n1
q

4
Fnk

el Rn . ~3.2!

The HamiltonianH5pkṙ k1PkṘk2Le f f found from Eq.
~2.14! with the help of Eqs.~3.1!, ~3.2! takes the form
11600
e
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H5
m1

2

2m1
1

m2
2

2m2
1

m11m2

2
1

m11m2

2
Ṙk

2

1
m̃

2
ṙ k

22
e

2
~ER!2

q

4
~Er !1s0Ar2, ~3.3!

so that the equation for the eigenvalues is given by

HF5M~m1 ,m2!F. ~3.4!

The terms containing the strength of the electric field in E
~3.3! describes the interaction of the dipole electric mom
d with an external electric field. Using the definitions w
have

e

2
~ER!1

q

4
~Er !5

1

2
~e1r 11e2r 2!E5dE ~3.5!

and the interaction energy of the electric dipole moment w
a uniform static electric field isU52dE. Below we inves-
tigate the case of a pure magnetic field whenE50. The case
EÞ0, H50 was considered in@12#. Using Eq. ~3.2! the
equation for the eigenfunctionF of the auxiliary ‘‘Hamil-
tonian’’ H̃5H2m1

2/2m12m2
2/2m22(m11m2)/2 is given by

F 1

2m̃
S p2

e

8
~r3H!2

q

4
~R3H! D 2

1
1

2~m11m2! S P2
e

2
~R3H!2

q

4
~r3H! D 2

1s0Ar2GF5e~m,H!F, ~3.6!

wheree(m,H) is the eigenvalue. In accordance with the N
ether theorem we come to the conclusion that the canon
momentumP corresponding to the center of mass coor
nate is a constant, i.e.,P5const. Therefore it is possible t
choose the conditionP50. PuttingP50 andR50 into Eq.
~3.6! we arrive at the equation

F 1

2m̃
S p2

e

8
~r3H! D 2

1
q2

32~m11m2!
~r3H!21s0Ar2GF

5e~m,H!F. ~3.7!

The second term in Eq.~3.7! describes the effect of the reco
of the string. Such a term appears also in nonrelativis
models@26,13,14#. If we put R50 in Eq. ~2.13!, this term
would not appear@12#.

In quantum theory instead of the path integration inr we
can use the replacementpk→2 i ]/]r k . We can apply Eq.
~3.7! to the leading trajectories with light quarks with mass
m15m2[m,m15m2[m (m̃5m/2) for r mesons and when
m1Þm2 , m1Þm2 for K* mesons.

An external magnetic field splits the energy levels like t
Zeeman effect for atoms. The difference with our case is
describe here the light quark-antiquark system in c.m. sys
~c.m.s.! with the linear potential between quarks. Therefo
the spectrum of the energy has other levels.
9-4
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We can consider a small external magnetic field so t
here perturbative theory can be applied. We receive a
approximation when the external fieldH is switched off (H
50) and the equation for the eigenvalue is given by

S 2
1

2m̃

]2

]r i
2

1s0Ar2D F5e~m!F. ~3.8!

Equation~3.8! gives the discrete values of the energye(m)
due to the shape of the potential energy. The numerical
lution of Eq. ~3.8! was obtained in@27#. It is useful to find
the solution to Eq.~3.8! for the ground state in analytica
form. After introducing the variables rk

5(2m̃s0)1/3r k , e(m̃)5(2m̃)21/3s0
2/3a(n) @7#, Eq. ~3.8! be-

comes

S 2
]2

]r i
2

1r D F~r!5a~n!F~r!. ~3.9!

The solution to Eq.~3.9! may be chosen in the formF(r)
5R(r)Ylm(u,f), whereYlm(u,f) are spherical functions
After setting the variableR(r)5x/r we come to the equa
tion for the radial function:

x9~r!1S a~n!2r2
l ~ l 11!

r2 D x~r!50, ~3.10!

wherex9(r)5]2x(r)/]r2, andl is an orbital quantum num
ber. The solutions to Eq.~3.10! for the ground statel 50 are
the Airy functions Ai„r2a(n)…, Bi„r2a(n)… @28#. The fi-
nite solution to Eq.~3.10! at r→`( l 50) is

x~r!5N Ai „r2a~n!…. ~3.11!

The constantN can be found from the normalization cond
tion

E
0

`

x2~r!dr51. ~3.12!

The requirement that this solution satisfies the condit
x(0)5N Ai „2a(n)…50 gives the Airy function zeros@28#,
a(1)[a152.3381, a(2)[a254.0879, and so on. The
main quantum numbern5nr1 l 11, wherenr is the radial
quantum number which defines the number of zeros of
function x(r) at r.0. For the ground state we should ta
the solution~3.11! at a(n)5a1 ~herenr50, l 50):

x0~r!5N0 Ai ~r2a1!. ~3.13!

Now let us estimate the mean-squared radius for the s
which is described by the functionF @the solution of Eq.
~3.8!#. Multiplying Eq. ~3.8! by the conjugated functionF*
and integrating over the volume we find the relations

^T&1^U&5e~m̃ !,
11600
t
st

o-

n

e

te

^T&52
1

mE F* ]k
2FdV, ^U&5s0E Ar2F* FdV.

~3.14!

It is seen from Eqs.~3.14! that the mean potential energ
^U&5s0^Ar2& is connected to the mean diameter^Ar2& ~be-
causer is the relative coordinate and quarks move arou
their center mass!, which defines the size of mesons. In a
cordance with the virial theorem@29# we have the connection
of the mean kinetic energy with the mean potential energ

2^T&5k^U&, ~3.15!

wherek is defined from the equalityU(lr )5lkU(r ). In our
case of the linear potentialk51 and from Eqs.~3.14!, ~3.15!
we get

^U&5
2

3
e~m̃ !5

2

3
~2m̃ !21/3s0

2/3a~n!. ~3.16!

The use of the steepest descent method for the estimatio
the integration inm ~at H50) leads to the conditions@7#

]M~m1 ,m2!

]m1
50,

]M~m1 ,m2!

]m2
50, ~3.17!

where the mass of the ground stateM(m1 ,m2) is given by
@see Eqs.~3.3!, ~3.4!#

M~m1 ,m2!5
m1

2

2m1
1

m2
2

2m2
1

m11m2

2
1~2m̃ !21/3s0

2/3a~n!.

~3.18!

Here we consider the more general case as compared
@7# when m1Þm2 (m1Þm2). This case is realized forK*
mesons. It is assumed that the current mass ofu,d quarks
(mu55.661.1 MeV, md59.961.1 MeV @30#!, m1, is
much less than the dynamical massm1(m1.330 MeV), i.e.,
m1!m1, and the mass of s quarks m2 (ms5199
633 MeV @30#!, is comparable withm1 but m2,m1. Using
these assumptions we neglect the termm1

2/2m1 in Eq. ~3.18!
and from Eqs.~3.17! have the equations

~2m̃s0!2/3a~n!53m1
2 , 3m2

21~2m̃s0!2/3a~n!53m2
2 .

~3.19!

From Eqs.~3.19! we arrive at the expression for the dynam
cal massm2 ~for s quarks!:

m25Am1
21m2

2. ~3.20!

To find m1 the perturbation in the parameterm2
2/m1

2 will be
assumed. Using the relationm2.m1@11m2

2/(2m1
2)# which

is obtained from Eq.~3.20! and the definition of the reduce
massm̃5m1m2 /(m11m2) from Eqs.~3.19! we arrive at the
equation

m1.As0S a~n!

3 D 3/4S 11
m2

2

8m1
2D . ~3.21!
9-5
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In zeroth order we come to the valuem0[m1
(0)

5As0@a(n)/3#3/4 @7#. The next order gives the relationshi

m1.As0S a~n!

3 D 3/4

1
m2

2

8As0
S 3

a~n! D
3/4

. ~3.22!

In a particular casem250 we arrive at m15m25m0

5As0@a(n)/3#3/4 @7#. The value of the string tensions0
50.15 GeV2 was found from a comparison of the expe
mental slope of the linear Regge trajectories,a8
50.85 GeV22, and the variablea851/8s0 @7#. It leads for
the lowest statenr50, l 50, a(1)52.3381 to the valuem0
5321 MeV @7#. This means that forr mesons whenm1
5mu , m25md we have the dynamical masses ofu, d quarks
m15m25m0. For K* mesons using Eq.~3.20! andm25ms
.200 MeV @30# from Eq. ~3.22! we get the reasonable va
ues

m1.337 MeV, m2.392 MeV, m̃.181 MeV.
~3.23!

Inserting the equation̂U&5^s0Ar2& into the left-hand side
of Eq. ~3.16! one gives the expression

^Ar2&5
2

3
~2m̃s0!21/3a~n!. ~3.24!

From Eqs.~3.20!, ~3.22! using the first order in the paramet
m2

2/m1
2 we find

2m̃.m0S 11
3m2

2

8m0
2D Fm05As0S a~n!

3 D 3/4G . ~3.25!

Equation~3.24! with the help of Eq.~3.25! gives an approxi-
mate relation for the mean relative coordinate:

^Ar2&5
2

As0
S a~n!

3 D 3/4F11
3m2

2

8s0
S 3

a~n! D
3/2G21/3

.

~3.26!

For r mesons puttingm250 in Eq. ~3.26! we arrive at

^Ar2&5
2

As0
S a~n!

3 D 3/4

. ~3.27!

The same expression~3.27! was found in@12# using another
method. With the help of the definition of the center of ma
coordinate we can write an approximate relation for
mean charge radius ofr mesons:1

A^r r
2&.

1

2
^Ar2&. ~3.28!

1The relationshipA^r2&.^Ar2& is confirmed by numerical calcu
lations.
11600
s
e

At s050.15 GeV2 @7,11# and a(1)52.3381, Eqs.~3.27!,
~3.28! give

A^r r
2&.0.42 fm ~^Ar2&50.84 fm!. ~3.29!

The value~3.29! characterizes the radius of the sphere wh
the wave function of ther meson is concentrated~remember
that r is the distance between quarks!. We know only
the experimental data forp6 mesons which have the sam
quark structure asr6 mesons: ^r p6

2 &expt5(0.4460.02)

fm2 (A^r p6
2 &expt.0.66 fm) @31#.

For calculating the relative coordinate ofK* mesons we
should use Eq.~3.24! or ~3.26! with the conditionsm15mu
andm25ms Eqs.~3.23!. As a result formula~3.24! gives the
value of the mean relative coordinate ofK* mesons:

^Ar2&K* 50.79 fm. ~3.30!

With the help of this relation we can estimate the me
charge radius ofK* mesons:

A^r K*
2 &.

m2

m11m2
^Ar2&K* 50.54̂ Ar2&K* 50.43 fm.

~3.31!

The experimental data of the mean charge radius ofK6 me-
sons having an analogous quark structure asK* mesons are
A^r K6

2 &5(0.5360.05) fm @32#, ^r K6
2 &5(0.3460.05) fm2

@31# and for neutralK0 mesonsA^r K0
2 &5(0.2860.09) fm

@32#. So expression~3.26! gives a resonable value for th
charge radius ofK* mesons, although we need the expe
mental data of the charge radius ofK* mesons .

The first perturbative one-gluon exchange contribution
Hamiltonian ~3.3! determines the spin-spin correction su
as the Breit-Fermi hyperfine interaction@9#. The spin-spin
interaction is important to explain the Nambu-Goldsto
phenomenon which takes place for thel 5s50 channel.

IV. PERTURBATIVE EXPANSION AND MAGNETIC
POLARIZABILITIES

To calculate the magnetic polarizability of mesons in a
cordance with Eq.~1.1! we should know the Hamiltonian
depending on the magnetic fieldH. From Eq.~3.7! we arrive
at the expression of the auxiliary ‘‘Hamiltonian’’:

H̃52
1

2m̃

]2

]r k
2

1
e

8m̃
HL

1S e2

128m̃
1

q2

32~m11m2!D @r2H22~rH !2#1s0Ar2,

~4.1!

whereL52 i (r3]) (]k5]/]r k) is the angular momentum
Considering the external magnetic fieldH5(0,0,H) expres-
sion ~4.1! is rewritten as
9-6
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H̃52
1

2m̃

]2

]r i
2

1
eH

8m̃
L3

1S e2

4m̃
1

q2

m11m2
D H2

32
~r 1

21r 2
2!1s0Ar2, ~4.2!

whereL35 i (r 2]12r 1]2) is the third projection of the angu
lar momentum.

Now let us consider the magnetic polarizability of meso
on the basis of perturbative theory. We can rewrite Eq.~4.2!
in the form

H̃5H01
eH

8m̃
L31S e2

4m̃
1

q2

m11m2
D H2r 2 sin2 u

32
, ~4.3!

whereu is the angle betweenH and the relative coordinater
and the free Hamiltonian is given by

H052
1

2m̃

]2

]r k
2

1s0Ar2.

For small magnetic fieldsH the second and third terms o
Eq. ~4.3! can be considered as a perturbation. Then using
standard perturbative method@33#, we find a shift of the
energy in the stateun& with the accuracy of second order
H:

DEn5^nu
eH

8m̃
L31S e2

4m̃
1

q2

m11m2
D H2r 2 sin2 u

32
un&

1(
n8

^n8ueHL3 /~8m̃ !un&u2

En2En8

. ~4.4!

For the ground statel 50 (s state! the first and third terms
of Eq. ~4.4! do not give a contribution to the energy becau
L3u0&50. Taking the mean value and using the conditi
(1/4p)* sin2udV52/3, from Eq.~4.4! we come to

DE05S e2

4m̃
1

q2

m11m2
D H2

48
^r2&. ~4.5!

Comparing Eq.~4.5! with Eq. ~1.1! we find the magnetic
polarizability of light mesons:

b52
1

24S e2

4m̃
1

q2

m11m2
D ^r2&. ~4.6!

It should be noticed that herêr2& means the mean-square
relative coordinate of the quark-antiquark system. Expr
sion~4.6! is similar to the Langevin formula for the magnet
susceptibility of atoms. It is seen that we have here only
diamagnetic polarizability asb,0. To calculate the para
magnetic polarizability one needs to take into account
interaction of the meson spin with the magnetic field. Us
the approximate relation̂ r2&.^Ar2&2, parameterse5e1
1e2 , q5e12e2 , expression~3.27!, and the dynamica
11600
s
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masses ofu,d quarksm15m2 , m̃5m/2 we find from Eq.
~4.6! the relationship for the diamagnetic polarizability ofr
mesons:

br.2
~e1

21e2
2!

6ms0
S a~n!

3 D 3/2

. ~4.7!

Calculating Eq. ~4.7! for charged r mesons at s0
50.15 GeV2, m5m05321 GeV, e152e/3, e25e/3, e2

51/137, n51 in Gaussian units one takes the value

br.20.831024 fm3. ~4.8!

In rationalized units, the polarizability is 4p times greater.
For K* mesons, Eq.~4.6! at the values~3.23, ~3.31!

(^r2&.^Ar2&2) leads to the magnitude

bK* 520.5731024 fm3. ~4.9!

Unfortunately there are no experimental data ofr and K*
meson polarizabilities yet.

V. CONCLUSION

QCD string theory allows us to estimate the mean-squa
radii and magnetic polarizabilities ofr,K* mesons. These
quantities were derived as functions of the string tens
which is a fundamental variable in this approach. It is n
difficult to calculate the magnetic polarizabilities of excite
states of mesons using this approach. For that we should
the quantum numbersnr51, l 50 (n52) and evaluate the
mean relative coordinate in accordance with Eq.~3.26!. Then
Eq. ~4.6! gives the necessary polarizabilities. To have mo
precise values of the meson electromagnetic characteri
one needs to take into account spin corrections. Especia
is important for light pseudoscalar mesons (p,K mesons!. In
principle it is possible to receive spin-orbit and spin-sp
interactions using the general expressions~2.4!, ~2.6!.

The Nambu-Jona-Lasinio~NJL! model @34# having a
good basis in the framework of QCD@35# describes chiral
symmetry breaking but not the confinement of quarks@7,36#.
Besides this model has free parameters and the calcu
polarizabilities of mesons@37# are parameter dependent.

The instanton vacuum theory~IVT ! developed in@38–40#
does not give the confinement of quarks phenomenon@7#.
This theory is like the NJL model@36# and takes into accoun
only chiral symmetry breaking. Therefore the calculation
the meson electromagnetic polarizabilities on the basis of
IVT gave the similar results@41# as in the NJL model.

All this shows that the theoretical evaluation of the char
radii and the magnetic polarizabilities ofr,K* mesons is
possible on the basis of a good description of chiral symm
try breaking and the confinement of quarks in the framew
of QCD string theory but with some approximations a
model assumptions. Naturally that theory was derived us
the nonperturbative QCD, i.e., first principals of QCD.
9-7
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APPENDIX

In this appendix we derive the one-quark Green funct
using the Fock-Schwinger method. Starting with the a
proach @15# and introducing external electromagnetic a
gluonic fields we write the Green function of quarks whi
possess spins in Minkowski space:

S~x,y!5^xu~D̂1m1!21uy&

5^xu~m12D̂ !~m1
22D̂2!21uy&

5^c~x!c̄~y!&, ~A1!

wheree1 and m1 are the charge and mass of the quark,D̂
5gmDm , Dm5]m2 ie1Am

el2 igAm , Am5Am
a la; gm and la

are the Dirac and Gell-Mann matrices, respectively;Am
el and

Am
a are the electromagnetic and gluonic vector potenti

respectively. The inverse operator (m1
22D̂2)21 can be rep-

resented in the proper times @16#:

~m1
22D̂2!215 i E

0

`

dsexp$2 is~m1
22D̂2!%. ~A2!

Using the properties of Dirac matrices$gm ,gn%52dmn

we find the squared operator

D̂25Dm
2 1Smn~e1Fmn

el 1gFmn!, ~A3!

where

Smn52
i

4
@gm ,gn#, Fmn

el 5]mAn
el2]nAm

el ,

Fmn5]mAn2]nAm2 ig@Am ,An#,
11600
n
-

s,

Smn are the spin matrices, andFmn
el andFmn are the strength

of electromagnetic and gluonic fields, respectively. Insert
relationship~A2! into Eq.~A1! with the help of Eq.~A3! we
get

S~x,y!5 i E
0

`

dŝ xu~m12D̂ !

3exp$2 is@m1
22Dm

2 2Smn~e1Fmn
el 1gFmn!#%uy&.

~A4!

The exponent in Eq.~A4! plays the role of the evolution
operator which defines the dynamics of the ‘‘Hamiltonian
m1

22Dm
2 2Smn(e1Fmn

el 1gFmn) with initial uy& and final^xu
states wheres means the proper time. Therefore it is conv
nient to represent the matrix element in Eq.~A4! as a path
integral @16#:

S~x,y!5 i E
0

`

dsNE
z(0)5y

z(s)5x

DpDzP

3~m12D̂ !expF i E
0

s

dt@pmżm2m1
2

2~pm2e1Am
el2gAm!21Smn~e1Fmn

el 1gFmn!#G ,
~A5!

wherezm(t) is the path of a quark with the boundary cond
tions z(0)5y, z(s)5x, D̂5 igm(pm2e1Am

el2gAm) and P
means ordering;N is a constant which is connected to th
measure definition and it will be chosen later. The path in
gration over the momenta can be rewritten in the form~see
@7,18#!
NE Dp~m12D̂ !expH i E
0

s

dt@pmżm2~pm2e1Am
el2gAm!2#J

5NE Dp expF i E
0

s

dt~pmżm!G S m11
1

2
gm

d

dpm
DexpH 2 i E

0

s

dt~pm2e1Am
el2gAm!2J

5NE DpS m12
i

2
gmżmDexpH i E

0

s

dt@pmżm2~pm2e1Am
el2gAm!2#J

5NE DpS m12
i

2
gmżmDexpH i E

0

s

dtF2pm
2 1

1

4
żm

2 1~e1Am
el1gAm!żmG J . ~A6!

In Eq. ~A6! we used integration by parts~see@18#! and made a continuity of shiftspm→pm1e1Am
el1gAm and thenpm

→pm1 żm/2. The constantN in Eq. ~A6! is defined by the relation
9-8
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NE Dp expH 2 i E
0

s

dt~pm
2 !J 51. ~A7!

Taking into account Eqs.~A6!, ~A7! we find from Eq.~A5! the Green function of the quark:

S~x,y!5 i E
0

`

dsE
z(0)5y

z(s)5x

DzS m12
i

2
gmżm~ t ! D P expH i E

0

s

dtF1

4
żm

2 ~ t !2m1
21~e1Am

el1gAm!żm~ t !1Smn~e1Fmn
el 1gFmn!G J .

~A8!
.
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