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Charge radii and magnetic polarizabilities of p and K* mesons in QCD string theory
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The effective action for light mesons in external uniform static electromagnetic fields was obtained on the
basis of QCD string theory. We imply that in the presence of light quarks the area law of the Wilson loop
integral is valid. The approximation of the Nambu-Goto straight-line string is used to simplify the problem.
The Coulomb-like short-range contribution which goes from one-gluon exchange is also neglected. We do not
take into account spin-orbital and spin-spin interactions of quarks and obsepatiti* mesons. The wave
function of the meson ground state is the Airy function. Using the virial theorem we estimate the mean charge
radii of mesons in terms of the string tension and the Airy function zero. On the basis of perturbative theory,
in the small external magnetic field we find the diamagnetic polarizability ahd K* mesons;3,=—0.8
X104 fm3, Byxx=—0.57x10"* fm3. [S0556-282(99)00323-9

PACS numbgs): 11.15.Tk, 11.25.Sq, 14.40.Aq

I. INTRODUCTION tributed lumps of field, and others. The necessary require-
ment is to have zero fermion modes. The condensation of
One of the important problems of particle physics is thezero modes leads to CSB. The confinement of quarks does
confinement of quarks. There is progress in understandingot allow them to be observed; i.e., quarks cannot move
the properties of mesons as a system in which quarks angutside of hadrons in large distances relative to each other.
antiquarks are connected by the relativistic string with aThis was confirmed by Monte Carlo simulations and experi-
Nambu-Goto self-interactiofl]. This binding interaction ments. Both nonperturbative effects of strong interactions
becomes strong at large distances and therefore it is impogsan be explained by introducing stochastic gluon vacuum
sible to describe the phenomenon using the perturbative agields with definite fundamental correlatof§,7]. Then the
proach. There are some difficulties in evaluating meson chatinear potential between quarks appears and it provides the
acteristics in the general case of a complicated stringonfinement of quarks. Besides, Regge trajectories are as-
configuration. Naturally, as a first step, we make some apymptotically linear with a universal slog&]. So the method
proximations and model assumptions to simplify the calcuof vacuum correlators in nonperturbative QCD and the dy-
lations. So here we consider the straight-line string as @amics of zero modes give an explanation of the double
simple configuration and quarks attached to the ends of thgature of light pseudoscalar particlgsons, kaons, and oth-
string. Such configurations were studied2). In the present er§ as Nambu-Goldstone particles and as the quark-
paper we investigate mesons in external, constant, and unéntiquark system with a confining linear potential. It should
form electromagnetic fields and use the path integral apbe noticed that confinement prevents the delocalization of
proach. It should be noted that in potential-like mod@&ls5]  zero modes over the whole voluni8], i.e., stabilizes the
meson characteristics are described reasonably. But in thep@enomena of CSB.

approaches there are some assumptignsthe relativistic In the present approach we make some assumptions. So
invariance is only the approximate, afid constituent quark we treat spin degrees of freedom as a perturbation and there-
masses are usddut not current quark masses fore it is questionable to apply this scheme to pions and

The recent development of the QCD string approactkaons. Onlyp andK* mesons are considered here because
[6-11 showed good results in describing heavy quarkoniathe energy shift for them due to the hyperfine spin interaction
baryons, and glueballs. QCD string theory takes into accour below 100 Me\{4]. Here short-range spin-orbital S and
the main nonperturbative effects of strong interactions: chiragpin-spinS; - S, interactions are not taken into account. Be-
symmetry breakingCSB) and the confinement of quarks. sides we neglect the Coulomb-like short-range contribution
Chiral symmetry breaking gives a nonzero quark condensaigue to the asymptotic freedom of QCD. This contribution is
({gq)). As a result the light quarksu( d quarks with cur-  important only for heavy quarkonig]. We imply also that
rent massem,=my=7 MeV acquire the dynamical masses in the presence of light quarks the structure of the vacuum
= uq=320 MeV. This phenomenon is important for light yields an area law of the Wilson loop integral. The restriction
pseudoscalar mesons as they possess a Nambu-Goldstone ofthe leading Regge trajectories is used as we consider here
ture. To get low masses of pseudoscalar mesons one needsoily p andK* mesons.
take into account spin interactions of quarks.[89] CSB It is important to calculate different intrinsic characteris-
was explained by the nonvanishing density of quéagka- tics of hadrons on the basis of QCD string theory and to
si)zero modes in the framework of QCD. Then the familiar compare them with experimental values. It will be the test of
PCAC (partial conserevation of axial vector curremheo-  this scheme. The charge raditend electromagnetic form
rems and the soft pion technique are reproduced. There afactorg and electromagnetic polarizabilities of mesons are
different stochastic vacuum configurations which are refundamental constants which characterize the complex struc-
sponsible for CSB: instantonfnti-insantong pieces of ture of particles. These values for some mesons are known
(anti-)self-dual fields(for example, torons or randomly dis- from the experimental data and therefore the estimation of
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them is reasonable. So we can check our notion about thgossessing spins in Minkowski spatsee Eq.(A8) in the
vacuum structure by coinciding experimental data and theocAppendix:
retical predictions. 1112] we made a crude estimate of the
charge radius and the electric polarizability of mesons and S . °°d Z(S):XD
nucleons. Here we evaluate the mean-squared radius using y)=i 0 s 20)=y z
the virial theorem and the magnetic polarizability mfand
K* mesons.
The electromagnetic polarizabilities of hadransB enter X
the induced electrid= «E and magnetioM = 8H dipole
moments, wherde,H are the strengths of electromagnetic

fields. As a result there is a contribution to the polarization % ex ifs “2(0 —m2+e.z (HAE(z
potential[13,14 as follows: ol4 u(V) M+ €2, (DA, (2)

i

1 1
Ulap)==zal =5 % . 3 u(@FS o uy)

dt]d)(x,y), (2.1

Electromagnetic polarizabilities are fundamental low-
energy characteristics of strong hadron interactions an
therefore they can be calculated in the framework of nonper*
turbative quantum chromodynamics—QCD string theory. «

This paper is organized as follows. In Sec. Il after de- <D(x,y)=Pexp{igf A,Ldzﬂ] (2.2)
scribing the general background we derive the effective ac- y
tion for mesons in external electromagnetic fields. The
ground state and charge radii of particles are found on thés the path-ordered produéthe parallel transportgrA, is
basis of exact solutions and the virial theorem in Sec. Il1.the gluonic field andy is the coupling constant. Neglecting
Section IV contains the evaluation of the diamagnetic polarduark-antiquark vacuum loops and omitting the annihilation
izabilities of p andK* mesons using the perturbative expan-9draph, the Green function of mesofthe quark-antiquark
sion in a small magnetic field. In the conclusion we make sSystem takes the fornj7]
comparison of our results with other approaches.

Units are chosen such that=c=1. G(X,%;Y,y) =t ysS(X,y) D (y,y) 755()’,—X)<D(ZX)>1( )
2.3

herez,(t) is the path of the quark with the boundary con-
itions z,,(0)=y,,, z,(s)=x, and

Il. EFFECTIVE ACTION FOR LIGHT MESONS .
where the bracketé - -) are the averaging over the external

To get the effective action for mesons in an external elecvacuum gluonic fields with the standard measurd i€p)].
tromagnetic field we use the Green function of the quarkdnserting Eq.(2.1) into Eq.(2.3) we find the expression

i 2(s)=x ([
m1+§yﬂzﬂ(t) _ _Dz ml—iyﬂz#(t) Ps

. o o __ (z(s)=x
G(x,x;y,y)=trf dsJ dsJ Dz
0 0 z(0)=y

z(0)=y

-JS 1'2 2 ' el el
Xexp i . Zz#(t)—ml+ele(t)AM(z)+e12M,,FM(z)
.
fOFW(z)dH fOSFW(?)dq]W(C)» (2.4

dt

S|l — L B
+if(:[‘_";i(t)_m%+ezz’”(t)Azl(z)+922#,,FZIV(2)
><<exp{ig2w

where Py is the ordering operator of the spin matriceszﬂ(o)zu(o):yw z,(S)=X,, ?ﬂ(o)zyﬂl ?M(Z) :Zu and
i €1,€ are chgrges anth,,m, are current masses of z,(t)=dz,/t. Here we used the properties gfmatrices:
the quark and anthuarkzﬂ(_t),zﬂ(t) are the paths of _the {¥5.7.=0, [2,,,75]=0. As compared with7,17] we
quark and antiquark with the boundary conditionsadded the interaction of charged quarks with the external
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electromagnetic fields. The gauge- and Lorenz-invariant Wilelectromagnetic fields we have the representation of the vec-
son loop operator is given by tor potential through the strength tensey, :

tr _ o1 — 1
W(C):N—CPexp{ngCA#dzM), (2.5 Aﬁ(z)zEFWz#, Ai(z)zszz#. (2.10

whereNc is the color number, an@ is the closed contour of The pathsz, ZL are expressed via the center of mass coor-

lines xx andyy connected by paths(t),z(t) of the quark dinateR, and the relative coordinatg, [7],
and antiquark. The Wilson operat(®.5) contains both the —

perturbative and nonperturbative interactions between quarks

S — S
z,(1)=R,——=r z,(1)=R,+——=r

via gluonic fieldsA, . In accordance with the approach in s+s ©’ s+s ©’

[7], spin interactions can be treated as perturbations. It is (2.12
justified for p andK* mesons. To construct the expressions

in spin interactions we write the relationsHip| with the boundary conditions fdr,(7),r ,(7):
<ex%igzﬂv JSFMV(Z)dt+ J;Fp,v(?)dj+w(c)> R (O):Ml R (T):M,
0 0 a 1t uo a 1t o
s é s— 6 —v —v —v —x
=exp 2, f dt———+ fsdt —| ({(W(C)), "WO=Ya Yo Fu(D=Xu =X

The integration with respect i, ,z,, in Eq.(2.4) is replaced
by an integration over new variablés, ,r ,. As 7 is a com-
where 80,,(t) is the surface around the poiaf(t). The ~MO" time for the quark and antiquafthe time of the mesgn
zeroth order in spin-orbit and spin-spin interactions correthe parametrizatiore,=(7,2), z,=(7.2) is possible[7].
sponds to neglecting the terng ,,F,, in Eq. (2.4. We  This leads to the constrainBy(r)=r, ro(7)=0. In accor-
suppose that mesons consist of quarks which move slowlglance with the approach 7] we introduce the dynamical
with respect to the time fluctuations of the gluonic fieldsmassegu;,u, by the relationships
(Tg>Ty). It is the potential regime of the string. Voloshin

[19] and Leutwyler[20] remarked that in another cas&( _T _T
<T,) the dynamics is nonpotential and the QCD sum rules Mimogr Mmoo
can be used. We consider the case when the distance be-

tween quarks>T,. Monte Carlo calculationf21,22 gave  Replacing the integration with respectsos in Eq. (2.4) by
T4=0.2-0.3 fm. So we imply that the characteristic quarkthe integration overdu,; and du, with the help of Egs.

relative distance is=1 fm. This assumption will be con- (27)_(21]) we find [12] a two_point function in zeroth or-
firmed below by the calculation of the quark-antiquark rela-der in the spin interactions

tive coordinate.
The average Wilson integrdR.5 at large distances in ocdlulJ»wd'u2
0

accordance with the area law can be represented in G(x,X;y,y)=—T? FJ DRDr exp{iSei},
M2

(2.6

(2.12

’ . 02u?
Minkowski space as M1

(2.13
(W(C))=expliooS), @D ith the effective action
wherea is the string tension an8is the area of the mini- T m2 m 1 1
mal surface inside of the conto@. The surfaceS can be Soeo= | drl = =2 — 2 Tt w RE+ —ur2
. eff 2 2 2(/-“1 ,LL2) " 2/u’r,u,
parametrized by the Nambu-Goto fofi23,24] L1 22
Tar (" VoW ) 2—w2w'2 +}Fe' RR+£ ~dpel (R 41 R
S= o dr o d'B\/(WMWM) _W/_LW o (28) 2 Vp,e YA 4r,u.rv 4 Vp,( ,u.rV r,u v)
. 1 - -
wherew,,=dow,, /a7, W/, =w,/dB. Using the approxima- —f dﬁao\/(wﬂwL)z—wiw’ﬁ , (2.19
tion [7] that the coordinates of the string world surface 0
w,(7,B) can be taken as straight lines for the minimal sur- ~
face we write where W, =R, +[B—pi/(p1+ )17 w=papal (g
+ u») is the reduced mass of the quark-antiquark system,
WM(T'B):Z,L(T),BJF;M(T)(l—ﬂ), (2.9 =e;+e,, q=e;—e,. As a first step we are interested here

in the spinless part and therefore the preexponential terms

where 7 is implied to be_the_proper time parameter for both[m1+(i/2)7#'zﬂ(t)], [mz—(i/Z)YMZL(T)] and the constant
trajectories, 7= (tT)/s=(tT)/s. For uniform static external matrix Equilu was omitted in Eq(2.13. The expression
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(2.14 defines the effective Lagrangian for light mesons in m?2  m2
external uniform static electromagnetic fields in accordance H
with the formula Syi=f(Leid7. The expression2.14

looks like a nonrelativistic one &,,=0, but it is not. The

+ + o
__t .2 M1 M2 n M1 MZRE
2my 2un 2 2

v =0, _ R q
author of] 7] showed that the relativism is contained here due + Erﬁ— E(ER) - Z(Er) + ao\/r—z, (3.3
to the. dependence and the spectrum is similar to that of the
relativistic quark model. so that the equation for the eigenvalues is given by
The mass of the lowest states can be found on the basis of B
the relationshig 25] HE®=M(p1,12)®. 3.4
The terms containing the strength of the electric field in Eq.
f DRDr exp{iSesi (3.3 describes the interaction of the dipole electric moment
d with an external electric field. Using the definitions we
. have
X TF poX .
=<R=1—2,r=x—;‘exp[—|TM(,u1,,u2)} e q 1
Mt o E(ER)+ Z(Er)zz(elrlJrezrz)E:dE (3.5
oy _ . . o .
X ‘ R= M,r =y—y> , (2.195 and the interaction energy of the electric dipole moment with
Mt a uniform static electric field it) = — dE. Below we inves-

tigate the case of a pure magnetic field witen0. The case

where the massM(uy,u,) is the eigenfunction of the g2 \1_ o \yas considered ifil2]. Using Eq.(3.2) the

Hamlltomap. LRl funcyc(ﬂ.l&’) il equation for the eigenfunctio® of the auxiliary “Hamil-
by integrating Eq(2.14) over the dynamical masses , u». = 5 5 7
In accordance witli7] we estimate the last integration on toMan” H="H—mi/2u,—ma/2py= (u1+ p)/2 is given by

du,,du, using the steepest descent method which gives E 2

2

good accuracy when the Minkowski tinfe—. To have the
correct formulas, it is necessary to go into Euclidean spac
and return into Minkovski space on completing the func-
tional integration. We use this procedure.

e q
T g(l’XH)— Z(RX H)

2

e q
+m(H_E(RXH)_Z(rXH)

+aoyr?

wheree(u,H) is the eigenvalue. In accordance with the No-
1 . : ether theorem we come to the conclusion that the canonical
f dﬁ\/(WMWL)Z—WiW',Z, momentumlIl corresponding to the center of mass coordi-
0 nate is a constant, i.elI=const. Therefore it is possible to
choose the conditiohl=0. Puttingll=0 andR=0 into Eq.

Ill. GROUND STATE AND CHARGE RADII
C=e(u,H)P, (3.6)

The last term in Eq(2.14) can be approximated with the
accuracy of~5% [7] by the relation

2 . .
1 251 . 3.6) we arrive at the equation
=f dg \/rz— B— (rxr)?=+r2. (3.1 38 a
0 Mt 1 ( e 2 92 =
| m— —(rXH) | + 25— (rXH)?+ o I | @
It is the potential regime at low orbital excitations of the | 2u 8 32yt p2) 0

string when the orbital quantum numblers small. As the

equalities Ry(7)=7, ro(7)=0 are valid, only three- =e(p,H)®. (3.7
dimensional quantities are dynamical. Taking into accounrhe second term in Eq3.7) describes the effect of the recoil
(3.1), from Eq.(2.14 using the standard procedure we find of the string. Such a term appears also in nonrelativistic
the canonical three-momenta corresponding to the center gfiggels[26,13,14. If we put R=0 in Eq. (2.13, this term
mass coordinat®, and the relative coordinate, : would not appeaf12].

In quantum theory instead of the path integratiom we

9Lt I a_e can use the replacemeni— —id/dr,. We can apply Eqg.
= ry =(pat p)Ret SFURF 7R, (3.7) to the leading trajectories with light quarks with masses
mi=mMy=mM,u1=wr,=u (u=wul2) for p mesons and when
ILoii ~. € q my# My, uq17 uo for K* mesons.
M= =l o+ gF,‘fLrvnL ZF‘jLRy, (3.2 An external magnetic field splits the energy levels like the
I Zeeman effect for atoms. The difference with our case is we

_ ) describe here the light quark-antiquark system in c.m. system
The Hamiltonian H= mr+ I \Ry— L¢ss found from Eg.  (c.m.s) with the linear potential between quarks. Therefore
(2.14) with the help of Eqs(3.1), (3.2 takes the form the spectrum of the energy has other levels.
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We can consider a small external magnetic field so that 1
here perturbative theory can be applied. We receive a first (T)=— —j D* grddV, <U>=<Tof Jr2* ddv.
approximation when the external fieldl is switched off H K (3.14
=0) and the equation for the eigenvalue is given by
It is seen from Eqgs(3.14) that the mean potential energy
(U)=ao(r?) is connected to the mean diametglr?) (be-
C=e(un)P. (3.8 causer is the relative coordinate and quarks move around
their center magswhich defines the size of mesons. In ac-

. . . cordance with the virial theorefi29] we have the connection
Equation(3.8) gives the d|scretc_e values of the enerqy._L) of the mean kinetic energy with the mean potential energy:
due to the shape of the potential energy. The numerical so-

1 4
- = —+op\r?

2u or;

lution of Eq. (3.8) was obtained if27]. It is useful to find 2(T)=k(U), (3.15
the solution to Eq(3.8) for the ground state in analytical
form. After introducing the variables py,  wherek is defined from the equality (A\r)=\kU(r). In our
:(2;60)1/3rk, e(ﬁ)z(zp)*ll%gﬂa(n) [7], Eq. (3.8 be-  case of the linear potenti&l=1 and from Eqs(3.14), (3.19
comes we get

& (U)= Ee(m: E(2;1>‘1’3az’3a(n> (3.16

—Fﬂ? ®(p)=a(n)P(p). (3.9 3 3 0 ' '
Pi

The use of the steepest descent method for the estimation of
The solution to Eq(3.9) may be chosen in the forr(p)  the integration inw (at H=0) leads to the condition¥]
=R(p)Y,n(6,¢), whereY,,(8,¢) are spherical functions.

After setting the variabl&R(p) = x/p we come to the equa- IM(pi.pg)  — IM(p1.pp)
. . S =0, =0, (3.17
tion for the radial function: dpq Ao
I(1+1) where the mass of the ground staté(w,u») iS given by
X"(p)+|an)—p——7 )X(p)=0, (3.10 [see Egs(3.3), (3.4]
p
2 2
my  m; o upt g ~ y
wherey” (p) = #*x(p)/dp?, andl is an orbital quantum num-  M(#1,12)= 2_M1+ 2_M2+ 5> +t(2w) Yiogla(n).
ber. The solutions to Ed3.10 for the ground state=0 are (3.18
the Airy functions A{p—a(n)), Bi(p—a(n)) [28]. The fi-
nite solution to Eq(3.10 at p—«(1=0) is Here we consider the more general case as compared with
[7] when w1 # u, (My#m,). This case is realized fak*
x(p)=NAi(p—a(n)). (3.1)) mesons. It is assumed that the current mass,df quarks

(m,=5.6+1.1 MeV, my=9.9+-1.1 MeV [30]), m,, is
The constanN can be found from the normalization condi- much less than the dynamical masg( ;=330 MeV), i.e.,
tion m;<wq, and the mass ofs quarks m, (mg=199
+33 MeV[30]), is comparable withs, butm,< 4. Using
0 these assumptions we neglect the terﬁniZMl in Eq. (3.18

*(p)dp=1. (3.12 ;
o, X \PEP and from Eqs(3.17 have the equations

The requirement that this solution satisfies the condition (2uoo)*a(n)=3ui, 3mj+(2uoq)*a(n)=3u;.
x(0)=NAi(—a(n))=0 gives the Airy function zerog28|, (3.19
a(1l)=a;=2.3381, a(2)=a,=4.0879, and so on. The prroy Egs(3.19 we arrive at the expression for the dynami-
main quantum numbem=n,+1+1, wheren, is the radial 5 massu, (for s quarks:
guantum number which defines the number of zeros of the
function y(p) at p>0. For the ground state we should take o= m (3.20
the solution(3.11) ata(n)=a, (heren,=0, |=0):

To find u; the perturbation in the parameter/ .3 will be

Xo(p)=NoAi(p—ay). (813  assumed. Using the relation,= [ 1+m%/(212)] which
is obtained from Eq(3.20 and the definition of the reduced

Now let us estimate the mean-squared radius for the state \oo7 — ;
S X ; ) = + f Egs.(3.1 h
which is described by the functio® [the solution of Eq. eqatjs;%nmw/(m 12) from Egs.(3.19 we arrive at the

(3.8)]. Multiplying Eq. (3.8) by the conjugated functio®*

and integrating over the volume we find the relations 304 2
a(n) mz

- M1=VO T 1+_2 . (321)
(T +U)=e(p), B
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In zeroth order we come to the valugiy=u{®
=Joo[a(n)/3]¥*[7]. The next order gives the relationship

3/4 mg
+
8 VO

In a particular casem,=0 we arrive at u,=pu,=pug
=Joo[a(n)/3]¥* [7]. The value of the string tensionr,
=0.15 GeV\f was found from a comparison of the experi-
mental slope of the linear Regge trajectories;’
=0.85 GeV ?, and the variablex’ =1/80 [7]. It leads for
the lowest state, =0, 1=0, a(1)=2.3381 to the valug.,
=321 MeV [7]. This means that fop mesons whemm;
=m,, Mm,=my we have the dynamical massesupfl quarks
1= o= po. For K* mesons using Eq3.20 andm,=mg
=200 MeV[30] from Eq.(3.22 we get the reasonable val-
ues

3 3/4

a(n)

a(n)
3

Mlz\/o'—o

(3.22

©n1=337 MeV, u,~392 MeV, =181 MeV.
(3.23

Inserting the equatiofU)=(oor?) into the left-hand side
of Eq. (3.16 one gives the expression

(V)= §(2M00) a(n). (3.29

From Eqs(3.20), (3.22 using the first order in the parameter

m3/ w2 we find

3m2 3/4

1+ —
8#0

a(n)

3 (3.29

2= o

07

Equation(3.24) with the help of Eq(3.25 gives an approxi-
mate relation for the mean relative coordinate:

s
(3.2

0 in Eqg.(3.26 we arrive at

3m2[ 3 313

a(n)

a(n)

<F>r

80'0

For p mesons puttingn, =

in) 3/4

(3.27

2 2
<\/I'—>— \/0_—0

The same expressid.27) was found in[12] using another

method. With the help of the definition of the center of mass H=——=—
coordinate we can write an approximate relation for the

mean charge radius @f mesons-

@:%M—%. (3.28

The relationship\(r?)=(\r?) is confirmed by numerical calcu-
lations.

PHYSICAL REVIEW D 60 116009

At 0,=0.15 GeV [7,11] and a(1)=2.3381, Eqs.(3.27),
(3.28 give

V(r3)=0.42 fm ((\?)=0.84 fm).

The value(3.29 characterizes the radius of the sphere where
the wave function of th@ meson is concentratédemember
that r is the distance between quarksVe know only
the experimental data for™ mesons which have the same
quark structure asp™ mesons: (rii)expt=(0.44i 0.02)

fm? (\/<rii>expeo.66 fm) [31].

For calculating the relative coordinate kif mesons we
should use Eq(3.29 or (3.26 with the conditionsu;= u,,
andu,= us EQs.(3.23. As a result formuld3.24) gives the
value of the mean relative coordinate Kf mesons:

(3.29

(Jr?)x»=0.79 fm. (3.30
With the help of this relation we can estimate the mean
charge radius oK* mesons:

(1)« =0.54\r%)«=0.43 fm.
(3.31)

The experimental data of the mean charge radius ofme-
sons having an analogous quark structur&asmesons are
\/<r2K¢)=(O.53iO.05) fm [32], <ri:>=(0.34i0.05) frr?
[31] and for neutralk® mesons\/<r2K0)=(0.28t0.09) fm
[32]. So expression3.26) gives a resonable value for the
charge radius oK* mesons, although we need the experi-
mental data of the charge radiuskf mesons .

The first perturbative one-gluon exchange contribution to
Hamiltonian (3.3 determines the spin-spin correction such
as the Breit-Fermi hyperfine interactig@]. The spin-spin
interaction is important to explain the Nambu-Goldstone
phenomenon which takes place for thes=0 channel.

()=

M+,u

IV. PERTURBATIVE EXPANSION AND MAGNETIC
POLARIZABILITIES

To calculate the magnetic polarizability of mesons in ac-
cordance with Eq(1.1) we should know the Hamiltonian
depending on the magnetic fiettl From Eq.(3.7) we arrive
at the expression of the auxiliary “Hamiltonian”:

1 6 e
+—HL

21 &rk 8u

2 2

e q

2142 _ 2
128:L+32(/~L1+M2) (PR () ]+00\/r—2,

4.9

whereL =—i(rxd) (d¢=2aldry) is the angular momentum.
Considering the external magnetic figtt=(0,0H) expres-
sion (4.1) is rewritten as
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~ 1 ¢ eH masses ofu,d quarksu;=pu,, w=u/2 we find from Eq.
H=-—=—5+—=Ls (4.6) the relationship for the diamagnetic polarizability mf
2p dri 8u mesons:
2 2 2
e q H
+| —= —(ri+r5)+o \/r—2 4.2 2 a2 312
du M1t pe PR 4.2 __(eire)jan) 4.7
P 6/.L0'0 3
whereL;=i(r,d,—rd5) is the third projection of the angu-
lar momentum. . ) o Calculating Eq. (4.7) for charged p mesons at oy
Now let us consider the magnetic polarizability of mesons_ 15 GeV, u=puo=321GeV, e,=2e/3, e,=el3,
on the basis of perturbative theory. We can rewrite @®  _1/137 n=1 in Gaussian units one takes the value
in the form ’
. eHL N o2 g | HZ2sir? g ws B,~—0.8x10"* fm3. (4.8
“Ten 0 lap matpe) 320 S o
In rationalized units, the polarizability is#times greater.
whered is the angle betweeH and the relative coordinate |2:or K* mesons, Eq(4.6) at the values(3.23, (3.3)
and the free Hamiltonian is given by ((r?)=(\r?)?) leads to the magnitude
1 +=—057x107* fm®, 4.9
0T T =3 + ao\/r—z B 4.9
2,(L Jd k

o ) Unfortunately there are no experimental datapoénd K*
For small magnetic field$i the second and third terms of meson polarizabilities yet.

Eq. (4.3 can be considered as a perturbation. Then using the

standard perturbative methd®3], we find a shift of the

energy in the statén) with the accuracy of second order in V. CONCLUSION
H:

QCD string theory allows us to estimate the mean-squared
H2r2 sir? 9 radii qr_1d magnetic polarizabilities of K* mesons. Thesg
In) quantities were derived as functions of the string tension
32 which is a fundamental variable in this approach. It is not
- difficult to calculate the magnetic polarizabilities of excited
> (n'leHLs/(8u)[n)|? 4.4 states of mesons using this approach. For that we should take
Y E,—E, : : the quantum numbens, =1, |=0 (n=2) and evaluate the
mean relative coordinate in accordance with 8g26). Then

For the ground state=0 (s state the first and third terms Ed. (4.6) gives the necessary polarizabilities. To have more
of Eq. (4.4) do not give a contribution to the energy becausePrecise values of the meson electromagnetic characteristics
L3/0Y=0. Taking the mean value and using the conditionone needs to take into account spin corrections. Especially it

2 2

e q
Ay Mt M2

eH
AEn:<n|_~ L3+
8u

(1/47) [ sirfodQ=2/3, from Eq.(4.4) we come to is important for light pseudoscalar mesons K mesons In
principle it is possible to receive spin-orbit and spin-spin
2 q? H2 interactions using the general expressi@hd), (2.6).
AEy=| —= T 78 r?y. (4.5 The Nambu-Jona-LasinidNJL) model [34] having a
A M1 H2 good basis in the framework of QC[35] describes chiral

symmetry breaking but not the confinement of qudik86].
Besides this model has free parameters and the calculated
polarizabilities of mesong37] are parameter dependent.
The instanton vacuum theotivT) developed if38—-4Q
(r?). (4.6) does not give the confinement of quarks phenomgdn
This theory is like the NJL mod¢B6] and takes into account
only chiral symmetry breaking. Therefore the calculation of
It should be noticed that hexg?) means the mean-squared the meson electromagnetic polarizabilities on the basis of the
relative coordinate of the quark-antiquark system. ExprestyT gave the similar resultf41] as in the NJL model.
sion(4.6) is similar to the Langevin formula for the magnetic  All this shows that the theoretical evaluation of the charge
susceptibility of atoms. It is seen that we have here only theadii and the magnetic polarizabilities @fK* mesons is
diamagnetic polarizability ag<0. To calculate the para- possible on the basis of a good description of chiral symme-
magnetic polarizability one needs to take into account thery breaking and the confinement of quarks in the framework
interaction of the meson spin with the magnetic field. Usingof QCD string theory but with some approximations and
the approximate relatior?)=(\r?)?, parameterse=e;  model assumptions. Naturally that theory was derived using
+e,, q=e;—e,, expression(3.27, and the dynamical the nonperturbative QCD, i.e., first principals of QCD.

Comparing Eq.(4.5 with Eq. (1.1) we find the magnetic
polarizability of light mesons:

2 2

1

I a
p= 24

—+
4u M1t M2
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APPENDIX s ., are the spin matrices, arief, andF ,, are the strength
In this appendix we derive the one-quark Green functiorPf elgctror_nagne_tic and gluonic_ fields, respectively. Inserting
using the Fock-Schwinger method. Starting with the apJelationship(A2) into Eq.(A1) with the help of Eq(A3) we
proach[15] and introducing external electromagnetic and9et
gluonic fields we write the Green function of quarks which
possess spins in Minkowski space:

Sty =i [ “ds(x|(m, ~B)
S(x,y)=(x|(D+my)~Yy)
Xexp{—is[m?—D2—3  (e;F% +gF,,)1y).
~(x](my~ B) (m— D7) ) Lo
(A4)

= (Y0 u(y)), (A1) . .

(P 9(y)) The exponent in EqA4) plays the role of the evolution
wheree, andm, are the charge and mass of the quddk, OPerator which defines the dynamics of the “Hamiltonian”
= 'y,uD,un Duzﬁﬂ_ielAil_igAu' A,LL:A,taL)\a; Yu and \? mi_ Di_EMV(elFZIV+gF/LV) Wlth initial |y> and fmal(xl
are the Dirac and Gell-Mann matrices, respectivélf;and ~ States where means the proper time. Therefore itis conve-
AZ are the electromagnetic and gluonic vector potentialsnlent o represent the matrix element in B44) as a path

N integral[16]:
respectively. The inverse operatoni— D?)~! can be rep- gral[16]
resented in the proper tine[16]:

(= z(s)=x
& S(X,y)=|f dst DpDzP
(mf—f)z)*:if dsexp[—is(m:—D?)}. (A2 0 2(0)=y
0

~ S .
x(ml—D)exp{iI dt[p,z,—m3
0
Using the properties of Dirac matricds,,y,}=26,,

we find the squared operator _(p,u-_elAil_gAM)2+2MV(e1FiIV+gF;LV)] ,

D2=D2+3,,(e:F5, +gF,.), (A3) (A5)
where ) ) )
wherez,(t) is the path of a quark with the boundary condi-
tions z(0)=vy, z(s)=Xx, I5=iyﬂ(pﬂ—e1A‘;'—gAﬂ) and P
means orderingN is a constant which is connected to the
measure definition and it will be chosen later. The path inte-
gration over the momenta can be rewritten in the fdgme
Fu=0d,A,—d,A,—ig[A,,A] [7,18)

i
E,LLV: - Z[yu!YV]! FZIV:(?MA?I_{?VAZI!

~ S .
Nf Dp(ml—D)exp{ifodt[pﬂzﬂ—(pM—elAz'—gAﬂ)z]]
[° ; 1 S [® el 2

:Nf Dpex |f0dt(pMzM) 57#5_[3# ex —|fodt(pM—e1AM—gAﬂ)

[ (s )
:Nf Dp(ml—Eyuzﬂ)exp[lJOdt[pMzM—(pM—elAi'—gAﬂ)z]]

[ s
=NJ Dp(ml—iy#zﬂ)exp[ijodt

In Eq. (A6) we used integration by parfsee[18]) and made a continuity of shifts,— pﬂ+e1AfL'+gAM and thenp,,
HpMJr'zM/Z. The constanN in Eq. (A6) is defined by the relation

m;+

- 2+1'2+ A%+ gA );
p,u, ZZ/_L (el " g ,u,)zp,

| (n6)
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NJ Dpexp{—if:dt(pi)}=1.
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(A7)

Taking into account EqgA6), (A7) we find from Eq.(A5) the Green function of the quark:

ke z(s)=x i . s
S(X,y):if dsf B Dz(ml—zyuzﬂ(t))Pexp[if dt
0 z(0)=y 0

1. .
220 - M+ (@Al gA,)Z, (D) +3,,(e1FF, +gF,,)

(A8)
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