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Enhanced global symmetries and the chiral phase transition

Thomas Appelquist,* P. S. Rodrigues da Silva,† and Francesco Sannino‡

Department of Physics, Yale University, New Haven, Connecticut 06520-8120
~Received 1 July 1999; published 12 November 1999!

We examine the possibility that the physical spectrum of a vectorlike gauge field theory exhibits an en-
hanced global symmetry near a chiral phase transition. A transition from the Goldstone phase to the symmetric
phase is expected as the number of fermionsNf is increased to some critical value. Various investigations have
suggested that a parity-doubled spectrum develops as the critical value is approached. Using an effective
Lagrangian as a guide, we note that parity doubling is associated with the appearance of an enhanced global
symmetry in the spectrum of the theory. The enhanced symmetry would develop as the spectrum splits into two
sectors, with the first exhibiting the usual pattern of a spontaneously broken chiral symmetry, and the second
exhibiting an additional, unbroken symmetry and parity doubling. The first sector includes the Goldstone
bosons and other states such as massive scalar partners. The second includes a parity-degenerate vector and
axial vector along with other possible parity partners. We note that if such a near-critical theory describes
symmetry breaking in the electroweak theory, the additional symmetry suppresses the contribution of the
parity-doubled sector to theS parameter.@S0556-2821~99!01421-6#

PACS number~s!: 11.30.Rd, 12.39.Fe, 12.60.Nz
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I. INTRODUCTION

Gauge-field theories exhibit many different patterns of
frared behavior. During the past few years, there has b
much progress in understanding the possibilities in sup
symmetric gauge theories@1#. For nonsupersymmetric gaug
theories, less is known, but it is expected that the infra
behavior will vary according to the number of massless f
mions (Nf) coupled to the gauge fields. For a vectorli
theory such as QCD, it is known that for low values ofNf ,
the theory confines and chiral symmetry breaking occurs.
the other hand, for largeNf the theory loses asymptotic free
dom. In between, there is a conformal window where
theory does not confine, chiral symmetry is restored, and
theory acquires a long-range conformal symmetry. It h
been proposed that for an SU(N) gauge theory, there is
transition from the confining, chirally broken theory to th
chirally symmetric theory atNf'4N @2,3#. Recent lattice
simulations, however, seem to indicate@4# that the amount of
chiral symmetry breaking decreases substantially~for N
53) whenNf is only about 4.

Assuming that a single transition takes place at some c
cal value ofNf , we can ask questions about the spectrum
the theory near the transition. In Ref.@5#, it was argued by
studying Weinberg spectral function sum rules that for ne
critical theories parity partners become more degenerate
in QCD-like theories. This leads naturally to the idea th
parity doublets might form as chiral symmetry is being
stored. Lattice studies also indicate such a possibility@4#.

In this paper we observe using an effective-Lagrangian
a guide, that the formation of degenerate parity partner
associated with the appearance of an enhanced global
metry in the spectrum of states. We also note that this n
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symmetry could play a key role in describing a possib
strong electroweak Higgs sector. Whether the new symm
can be shown to emerge dynamically from an underly
gauge theory withNf near a critical value remains an ope
question.

It is worth noting that there exist examples of extra sy
metries, not manifestly present in the underlying theory,
dynamically generated at low energies. For instance, by
ing duality arguments, it has been argued@6# that a super-
symmetric SU~2! gauge theory withNf matter fields and
global symmetry SU(2Nf) is dual to a SU(Nf22) gauge
theory withNf matter fields. ForNf>5, the ultraviolet flavor
symmetry of the latter theory is SUL(Nf)3SUR(Nf)
3UB(1). Since its infrared global symmetry must b
SU(2Nf) ~that of the dual!, its infrared symmetry is en-
hanced.

In Sec. II we discuss the appearance of enhanced gl
symmetry. Confinement is assumed and the symmetry of
underlying gauge theory, SUL(Nf)3SUR(Nf), is built into
an effective Lagrangian describing the physical states of
theory. Parity invariance is imposed and the usual patter
chiral symmetry breaking@SUL(Nf)3SUR(Nf)→SUV(Nf)#
is assumed. TheNf

221 Goldstone bosons appear togeth
with scalar chiral partners. We augment the spectrum wit
set of vector fields for both the SUL(Nf) and SUR(Nf) sym-
metry groups. The Lagrangian thus takes the form of a lin
s model coupled to vectors. It could be expanded to inclu
fields corresponding to other states as well. The natural m
scale of this strongly interacting system is expected to be
order 2pv, wherev is the vacuum expectation value.

We examine the spectrum and recognize that there
particular choice of the parameters that allows for a deg
erate vector and axial vector, while enlarging the global sy
metry to include an additional~unbroken! SUL(Nf)
3SUR(Nf). This happens as the spectrum of the theo
splits into two sectors with one displaying the addition
symmetry. We then briefly review the arguments~see Ref.
©1999 The American Physical Society07-1
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@5#! that an underlying near-critical SU(N) gauge theory
might naturally lead to a more degenerate vector-axial sp
trum than in QCD, and to an enhanced symmetry. Finally
note that even a discrete additional symmetry,Z2L3Z2R , of
the effective theory is adequate to insure the mass de
eracy of the vector and axial vector.1

The possible appearance of an additional, continu
symmetry was considered by Casalbuoniet al. in Refs.@7,8#.
These papers were restricted to the caseNf52 and did not
include discussion of the possible connection to a ne
critical underlying theory. The treatment in Ref.@7# made
use of a nonlinear realization for the Goldstone degree
freedom, using hidden gauge symmetry methods@9#. We
could generate the effective Lagrangian of Ref.@7# by inte-
grating out the massive scalar degrees of freedom, but
would keep some massive degrees of freedom~the vectors
fields! and neglect others. When we focus on low-ene
consequences~in Sec. III!, we will integrate out all the mas
sive degrees of freedom leading to the electroweak ch
Lagrangian. The treatment of Ref.@8# utilized a linear real-
ization for the scalars and focused on the decoupling of
vectors as they are made heavy relative to the weak sc
We do not take this limit here since we assume the ve
and scalar masses to be of the same order.

In Sec. III we embed the electroweak gauge group wit
the global symmetry group. We observe that the enhan
symmetry of the strongly interacting sector, which now p
vides electroweak symmetry breaking, plays an import
role. The additional symmetry is a partial custodial symm
try for the electroweakS parameter, in the sense that th
parity doubled part of the strong sector, by itself, makes
contribution toS. This is shown by integrating out the ma
sive physics to construct the terms in the low-energy e
troweak chiral Lagrangian. TheS parameter corresponds t
one such term.

We extend the study to fermions in a pseudoreal repre
tation of the underlying gauge group in Sec. IV. In this ca
parity is automatically enforced. The pseudoreal represe
tions allow for the lowest number of colors~i.e., N52) and
consequently for the lowest possible number of flavors
which the theory might show a dynamically enhanced sy
metry. The enhanced global symmetry is@SU(2Nf)#2 spon-
taneously broken to Sp(2Nf)3SU(2Nf).

In Sec. V we conclude and suggest some directions
future work. In the Appendix we provide an explicit repr
sentation for the Sp~4! generators.

II. EFFECTIVE LAGRANGIAN FOR SU L„NF…3SUR„NF…

GLOBAL SYMMETRY

To discuss the possible appearance of enhanced symm
in a strongly interacting spectrum, some description of
spectrum is needed. We will find it helpful to use an effe
tive Lagrangian possessing SUL(Nf)3SUR(Nf) symmetry,
the global invariance of the underlying gauge theory. W

1We thank Noriaki Kitazawa for suggesting the possibility of
discrete symmetry.
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assume that chiral symmetry is broken according to the s
dard pattern SUL(Nf)3SUR(Nf)→SUV(Nf). The Nf

221
Goldstone bosons are encoded in theNf3Nf real traceless
matrix F j

i with i , j 51,...,Nf . The complex matrixM5S
1 iF describes both the Goldstone bosons as well as ass
ated scalar partnersS. It transforms linearly under a chira
rotation:

M→uLMuR
† , ~2.1!

with uL/R in SUL/R(Nf).
To augment the massive spectrum, we introduce ve

and axial vector fields following a method outlined in Re
@10#. We first formally gauge the global chiral group intro
ducing the covariant derivative

DmM5]mM2 i g̃AL
mM1 i g̃MAR

m , ~2.2!

whereAL/R
m 5AL/R

m,aTa and Ta are the generators of SU(Nf),
with a51,...,Nf

221 and Tr@TaTb#5(1/2)dab. The left and
right couplings are the same since we assume parity inv
ance. Under a chiral transformation

AL/R
m 5uL/RAL

muL/R
† 2

i

g̃
]muL/RuL/R

† . ~2.3!

The effective Lagrangian needs only to be invariant un
global chiral transformations. Including terms only up
mass dimension four, it may be written in the form

L5
1

2
Tr@DmMDmM†#1m2 Tr@ALmAL

m1ARmAR
m#

1h Tr@ALmMAR
mM†#1r Tr@ALmAL

mMM†

1ARmAR
mM†M #1 i

s

2
Tr@ALm~MDmM†2DmMM†!

1ARm~M†DmM2DmM†M !#. ~2.4!

The parametersh, r, ands are dimensionless real paramete
while m2 is a common mass term. To this, we may add
kinetic term for the vector fields

LKin52
1

2
Tr@FLmnFL

mn1FRmnFR
mn#, ~2.5!

where

FL/R
mn 5]mAL/R

n 2]nAL/R
m 2 i g̃@AL/R

m ,AL/R
n #, ~2.6!

along with vector-interaction terms respecting only the g
bal symmetry. Finally, we may add the double trace term

Tr@MM†#Tr@AL
21AR

2 #, ~2.7!

at the dimension-four level. To arrange for symmetry bre
ing, a potentialV(M ,M†) must be added. When the effectiv
Lagrangian is extended to the dimension-six level a
higher, many new operators enter.
7-2
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ENHANCED GLOBAL SYMMETRIES AND THE CHIRAL . . . PHYSICAL REVIEW D 60 116007
Parity is also a symmetry and it acts on the fields acco
ing to

PM~x!~P!215M†~2x!, ~2.8!

PAL/R
m ~x!~P!215e~m!AR/L

m ~2x!, ~2.9!

wheree(m)51 for m50 and21 for m51,2,3.
The spectrum described by this effective Lagrangian c

sists of Goldstone bosons, a set of scalars, and massive
tor and axial vectors. With its massive vectors and axial v
tors, it is of course not renormalizable, but it ca
nevertheless provide a reasonable description of low-ly
states.~It is worth noting that a Lagrangian of this type do
this for the low-lying QCD resonances@11#!. While it cannot
be a complete description of the hadronic spectrum, it
sufficient content to guide a general discussion of enhan
symmetries.

Keeping only terms quadratic in the fields and tempora
neglecting the massive scalars, the Lagrangian Eq.~2.4!
takes the form

L5
1

2
Tr@]mF]mF#1&~s2g̃!v Tr@]mFAm#

1MA
2 Tr@AmAm#1MV

2 Tr@VmVm#, ~2.10!

where M5v1 iF, v is the vacuum expectation value an
we have defined the new vector fields

V5
AL1AR

&
, A5

AL2AR

&
. ~2.11!

The vector and axial masses are related to the effective
grangian parameters via

MA
25m21v2F r 1g̃222sg̃2

h

2G ,
MV

25m21v2F r 1
h

2G , ~2.12!

where the contribution from Eq.~2.7! has been absorbed int
m2. The terms proportional tov2 are Higgs-like contribu-
tions, arising from the spontaneous breaking.

The second term in Eq.~2.10! mixes the axial vector with
the Goldstone bosons. This kinetic mixing may be diagon
ized away by the field redefinition

A→A1v
g̃2s

&MA
2

]F, ~2.13!

leaving the mass spectrum unchanged@10#. The vector-axial
vector mass difference is given by

MA
22MV

25v2@ g̃222g̃s2h#. ~2.14!

In QCD this difference is known experimentally to be po
tive, a fact that can be understood by examining the We
berg spectral function sum rules~see Ref.@12#, and refer-
11600
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ences therein!. The effective Lagrangian description is o
course unrestrictive. Depending on the values of theg̃, s, and
h parameters, one can have a degenerate or even inv
mass spectrum.

What kind of underlying gauge theory might provide
degenerate or inverted spectrum? Clearly, it has to be dif
ent from QCD, allowing for a modification of the spectr
function sum rules. In Ref.@5#, an SU(N) gauge theory~with
N.2) andNf flavors was considered. IfNf is large enough
but below 11N/2, an infrared fixed point of the gauge cou
pling a* exists, determined by the first two terms in theb
function. For Nf near 11N/2, a* is small and the globa
symmetry group remains unbroken. For smallNf , on the
other hand, the chiral symmetry group SUL(Nf)3SUR(Nf)
breaks to its diagonal subgroup. One possibility is that
transition out of the broken phase takes place at a relativ
large value ofNf /N('4), corresponding to a relatively
weak infrared fixed point@2,3#. An alternate possibility is
that the transition takes place in the strong-coupling regim
corresponding to a small value ofNf /N @4#. The larger value
emerges from the renormalization-group improved gap eq
tion, as well as from instanton effects@13#, and saturates a
recently conjectured upper limit@14#. It corresponds to the
perturbative infrared fixed pointa* reaching a certain criti-
cal valueac . A similar result has also been obtained b
using a suitable effective Lagrangian@3#.

These studies also suggest that the order parameter
example the Goldstone boson decay constantFp[v, van-
ishes continuously at the transition relative to the intrin
renormalization scaleL of the gauge theory. In the broke
phase near the transition, the fact that one is approachi
phase with long-range conformal symmetry suggests tha
massive states scale to zero with the order parameter rel
to L @15#.

In Ref. @5# the spectrum of states in the broken phase n
a large-Nf /N transition was investigated using the spect
function sum rules. It was shown that the ordering pattern
vector-axial hadronic states need not be the same as in Q
like theories~small Nf /N). The crucial ingredient is tha
these theories contain an extended ‘‘conformal region’’ e
tending from roughly 2pFp to the scaleL where asymptotic
freedom sets in. In this region, the coupling remains close
an approximate infrared fixed point and the theory has
approximate long-range conformal symmetry. It was argu
that this leads to a reduced vector-axial mass splitting, co
pared to QCD-like theories. This suggests the interes
possibility that parity doublets begin to form as chiral sym
metry is being restored. That is, the vector-axial mass r
approaches unity as the masses decrease relative toL. Lat-
tice results seem to provide supporting evidence for suc
possibility @4#, although at smaller values ofNf /N.

If a parity-doubled spectrum does appear, it is natura
expect it to be associated with some new global symme
While we have not demonstrated the appearance of a
global symmetry using the underlying degrees of freedo
we can explore aspects of parity doubling at the effect
Lagrangian level. Returning to this description, we note t
vector-axial parity doubling corresponds to the parame
choice@see Eq.~2.14!#,
7-3
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g̃252g̃s1h. ~2.15!

This condition does not yet reveal an additional symme
and therefore there is no reason to expect parity degene
to be stable in the presence of quantum corrections and
many higher dimensional operators that can be added to
effective Lagrangian in Eq.~2.4!.

However, for the special choices5g̃, r 5g̃2/2 andh5
2g̃2, the effective Lagrangian acquires a new continuo
global symmetry that protects the vector-axial mass diff
ence. The effective Lagrangian at the dimension-four le
takes the simple form

L5
1

2
Tr@]mM]mM†#1m2 Tr@ALmAL

m1ARmAR
m#,

~2.16!

along with vector kinetic and interaction terms, the intera
tion term Eq. ~2.7!, and the symmetry-breaking potenti
V(M ,M†). The theory now has two sectors, with the vec
and axial vector having their own unbroken glob
SUL(Nf)3SUR(Nf). The two sectors interact only throug
the product of singlet operators. The full global symmetry
@SUL(Nf)3SUR(Nf)#23UV(1) spontaneously broken t
SUV(Nf)3UV(1)3@SUL(Nf)3SUR(Nf)#. The vector and
axial vector become stable due to the emergence of a
conservation law. This enhanced symmetry would beco
exact only in the chiral limit. For finite but small~relative to
L! values of the mass scales in Eq.~2.16!, there are addi-
tional, smaller terms giving smaller mass splittings and sm
width-to-mass ratios.

It is, of course, a simple observation that a new symme
and conservation law emerge if a theory is split into tw
sectors by setting certain combinations of parameters to z
But here we were led to this possibility by looking for
symmetry basis for the parity doubling that has been hin
at by analyses of the underlying gauge theory. Although
have used a relatively simple effective Lagrangian, we
ticipate that the conclusion is true in general, that is, t
parity doublets form in the spectrum of a strongly interact
theory with chiral symmetry breaking only if the spectru
splits into two sectors, one exhibiting the spontaneous bre
ing and the other, parity-doubled, sector exhibiting an unb
ken additional symmetry.

We next observe that along with the additional glob
symmetry SUL(Nf)3SUR(Nf), the effective Lagrangian Eq
~2.16! possesses a discreteZ2L3Z2R symmetry. UnderZ2L
3Z2R the vector fields transform according to

AL→zLAL , AR→zRAR , ~2.17!

with zL/R51,21 and zL/RPZ2L/R . Actually, the discrete
symmetry alone is enough to insure vector-axial mass de
eracy and stability against decay. In that case, additiona
teraction terms, such as the single trace term

r Tr@AmLAL
mMM†1AmRAR

mM†M #, ~2.18!

are allowed, but degeneracy and stability are still insured
course, trilinear vector interactions will not respect this d
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crete symmetry. Nevertheless, one cannot rule out the po
bility that it is only this smaller, discrete symmetry that a
pears as an effective infrared symmetry of an underly
gauge theory near the chiral and/or conformal transition.

From the point of view of the underlying theory, the a
pearance of any additional symmetry in the spectrum,
criticality, would seem mysterious. The composite degree
freedom in both sectors are made of the same fundame
fermions with a single underlying SUL(Nf)3SUR(Nf) sym-
metry. If the symmetry of the parity-doubled sector is
unbroken SUL(Nf)3SUR(Nf), it would look as though the
chiral symmetry is being realized there in the Wigner-We
mode. If that is the case, chiral dynamics would have to
influenced by confinement and bound-state formation in
interesting new way. Whether a near-critical gauge the
can lead to this behavior is an unresolved question.

III. STRONGLY INTERACTING ELECTROWEAK
SECTOR

We next discuss the consequences of enhanced symm
for a strong symmetry breaking sector of the standard e
troweak theory, embedding the SUL(2)3UY(1) gauge sym-
metry in the global SUL(Nf)3SUR(Nf) chiral group. In this
section, for simplicity, we will restrict attention to th
SUL(2)3SUR(2) subgroup of the full global group@8#. The
electroweak gauge transformation then takes the form

M→uWMuY
† , ~3.1!

whereM is now a 232 matrix which can be written asM
5(1/&)@s1 i tW•pW #, whereuW5uL5exp@(i/2)eata# with ta

the Pauli matrices, and whereuY5exp@(i/2)e0t3#. The weak
vector boson fields transform as

Wm→uLWmuL
†2

i

g
]muLuL

† , ~3.2!

Bm→uYBmuY
†2

i

g8
]muYuY

† , ~3.3!

whereg and g8 are the standard electroweak coupling co
stants,Wm5Wm

a (ta/2) andBm5Bm(t3/2).
A convenient method of coupling the electroweak gau

fields to the globally invariant effective Lagrangian of Sec.
is to introduce a covariant derivative, which includes theW
and B fields as well as the strong vector and axial-vec
fields,

DmM5]mM2 igWmM1 ig8MBm2 i g̃cCL
mM1 i g̃c8MCR

m ,
~3.4!

where we have defined the new vector fields

CL
m5AL

m2
g

g̃
Wm, CR

m5AR
m2

g8

g̃
Bm, ~3.5!

and wherec and c8 are arbitrary real constants. Since th
AL/R

m transform as Eq.~2.3!, the CL/R
m transform under the

electroweak transformations as
7-4
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ENHANCED GLOBAL SYMMETRIES AND THE CHIRAL . . . PHYSICAL REVIEW D 60 116007
CL
m→uLCL

muL
† , CR

m→uYCR
muY

† . ~3.6!

By requiring invariance under the parity operation excha
ing the labelsL↔R we have the extra conditionc5c8.

The effective Lagrangian is constructed to be invari
under a local SUL(2)3UY(1) as well asCP. TheCP trans-
formation properties of the fields2 insure that the covarian
derivative transforms asM: i.e.,

CPDmM ~x!~CP!215h@DmM ~2x!#* . ~3.11!

The effective Lagrangian is then obtained by replacing in
~2.4! the covariant derivative with the new one in Eq.~3.4!.
To make the theory electroweak gauge invariant, one sub
tutes theAL/R with the CL/R , giving, through dimension
four,

L5
1

2
Tr@DmMDmM†#1m2 Tr@CLmCL

m1CRmCR
m#

1h Tr@CLmMCR
mM†#1r Tr@CLmCL

mMM†

1CRmCR
mM†M #1 i

s

2
Tr@CLm~MDmM†2DmMM†!

1CRm~M†DmM2DmM†M !#. ~3.12!

To this we add a kinetic term

LKin52
1

2
Tr@FLmnFL

mn1FRmnFR
mn#2

1

2
Tr@WmnWmn#

2
1

2
Tr@BmnBmn#, ~3.13!

where

Wmn5]mWn2]nWm2 ig@Wm ,Wn#,

Bmn5]mBn2]nBm ~3.14!

with the FL/R for the fieldsAL/R defined in Eq.~2.6!, along
with other interaction terms involving theCL/R fields, the
interaction term

Tr@MM†#Tr@CL
21CR

2 #, ~3.15!

and a symmetry-breaking potential.
One can show that this is the most general dimens

four, CP-invariant Lagrangian describing a strongly intera
ing set of scalars, vectors, and axial vectors with a sponta
ously broken SUL(2)3SUR(2) symmetry, and possessin

2Here we summarize theCP field transformations:

CPM~x!~CP!215hM* ~2x!, ~3.7!

CPAL/Rm~x!~CP!2152AL/R
m ~2x!, ~3.8!

CPWm~x!~CP!2152Wm~2x!, ~3.9!

CPBm~x!~CP!2152Bm~2x!, ~3.10!
whereh is an arbitraryC phase.
11600
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electroweak gauge invariance. It describes weak mixing
tween theAL/R fields and theW and Z, and, through the
mixing, conventional electroweak charges for theAL/R . The
extension of this effective Lagrangian to the relevant case
the larger symmetry group SUL(Nf)3SUR(Nf) with Nf
.2, is straightforward.

ReplacingM by its vacuum valuev/&, and keeping only
terms quadratic in the fields, the Lagrangian Eq.~3.12! takes
the form

L5MA
2 Tr@A2#1MV

2 Tr@V2#2
&

g̃
~12x!MA

2 Tr@~gW

2g8B!A#2
&

g̃
MV

2 Tr@~gW1g8B!V#1
MV

2

2g̃2 Tr@~gW

1g8B!2#1
MA

2

2g̃2 ~11d!Tr@~gW2g8B!2#1¯ , ~3.16!

where we have defined

MV
25m21v2F r 1

h

2G ,
MA

25m21v2F r 1g̃2c222sg̃c2
h

2G ,
x5

v2

2MA
2 g̃@ g̃c2s#,

d5
v2

2MA
2 @ g̃2~122c!12sg̃#. ~3.17!

The vectorV and axialA fields are defined in Eq.~2.11!.
This quadratic Lagrangian describes masses for theV andA,
weak mass mixing with theW andB, and a mass matrix for
the W and B. There is no further, kinetic energy mixin
among these fields. The vector and axial vector masses,MV

2

and MA
2, are arbitrary, depending on the choice of para

eters, although generically we expect them and the sc
masses to be of order 4p2v2.

The weak mixing terms in Eq.~3.16! provide a contribu-
tion from physics beyond the standard model to the obliq
electroweak corrections. These may be described by theS, T,
and U parameters, but the last two vanish in the pres
model because there is no breaking of weak isospin in
strong sector. While this is not apparent in Eq.~3.16!, it is
insured by the Ward identities and easily revealed throu
the mixing effects. TheS parameter receives contribution
from all the physics beyond the standard model, including
the model being used here, loops of pseudo Goldst
bosons~PGB’s!, the strongly interacting massive scalars, a
the vector and axial vector. The direct, vector-dominan
contribution of the vector and axial vector may be read
from Eq. ~3.16! together with the kinetic term for theV and
A. One finds
7-5
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Svect-dom5
8p

g̃2 FMA
2~12x!2

MZ
22MA

2 2
MV

2

MZ
22MV

2 G
'

8p

g̃2 @12~12x!2#. ~3.18!

Clearly, this contribution to theS parameter can take on an
value depending on the choice of parameters. Its typical
der of magnitude, with the strong-coupling estimateg̃2

'4p2, is expected to beO(1). This expression can be see
to be equivalent to the familiar vector-dominance formu
Svect-dom'4p@FV

2/MV
22FA

2/MA
2 # @16#, with the identifica-

tions FV
25(2/g̃2)MV

2 andFA
25(2/g̃2)MA

2(12x)2.
We next observe that the choice

s5g̃c, h52g̃2c2 ~3.19!

gives x50, leading immediately to the degeneracy of t
vector and axial vector@see Eq.~3.17!#, the relationFA
5FV , and the vanishing ofSvect-dom. The further choicer
5g̃2c2/2 leads to the collapse of the general effective L
grangian into the simple form

L5
1

2
Tr@DmMDmM†#1m2 Tr@CLmCL

m1CRmCR
m#,

~3.20!

along with the kinetic terms of Eq.~3.13!, interactions
among theCL/R

m fields, the interaction term Eq.~3.15!, and a
symmetry-breaking potential. Here,DM5]M2 igWM
1 ig8MB is the standard electroweak covariant derivati
andCL/R

m are given by Eq.~3.5!.
The strongly interacting sector has split into two subs

tors, communicating only through the electroweak inter
tions. One subsector consists of the Goldstone bosons
gether with their massive scalar partners. The other con
of the degenerate vector and axial vector described by
AL/R

m fields. The mass mixing in Eq.~3.12! insures that they
have conventional electroweak couplings. In the absenc
electroweak interactions, there is an enhanced symm
@SUL(2)3SUR(2)#3@SUL(2)3SUR(2)#, breaking sponta-
neously to SUV(2)3@SUL(2)3SUR(2)#. The electroweak
interactions explicitly break the enhanced symmetry
SUL(2)3UY(1). All of this may be generalized toNf.2,
necessary to yield a near-critical theory.

The additional symmetry has an important effect on thS
parameter, suppressing contributions that are typically la
in QCD-like theories. It does not suppress all contributio
of course, since the symmetry-breaking subsector gives
tributions that are expected to be of order unity. The par
doubled subsector, however, cannot by itself contribute tS,
becauseS relies on electroweak symmetry breaking for
existence. It is the coefficient of an operator in the lo
energy electroweak chiral Lagrangian (L1 in Ref. @17#!,
which may be written in the form TrWmnUBmnU†, where
Wmn and Bmn are defined in Eq.~3.14! and U is the Gold-
stone matrix field satisfying the nonlinear constraintUU†

5U†U51. Clearly theU operator, with its vacuum value
U51, is necessary to coupleWmn to Bmn .
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Among the contributions toS remaining in the limit of
enhanced symmetry, are loops of pseudo-Goldstone bos
present whenNf.2. They may be estimated using chir
perturbation theory, with the standard-model corrections
moved by convention. While they typically give contribu
tions to S of order unity, their specific value depends o
details such as mass estimates for the PGB’s that arise
electroweak, QCD, and other interactions@18#. An interest-
ing new feature in the limit of enhanced symmetry is that
PGB contribution is not related to a direct, vector-dominan
effect ~which is now zero!. There will also be contributions
from the strongly interacting TeV physics, represented in
effective Lagrangian by the massive scalars. Our purp
here is not to make these estimates, but only to point out
an enhanced symmetry, leading to vector-axial vector deg
eracy, will suppress contributions toS purely from the
parity-doubled sector. These include the typically large v
tor dominance contribution discussed above.

Finally we note that, as we discussed at the end of S
III, it could be that only a lesser, discrete symmetry emer
in the physical spectrum. Even this would be sufficient
insure vector-axial degeneracy and the vanishing of the v
tor dominance contribution to theS parameter. The discret
symmetry of Sec. III would only be possible if trilinear vec
tor interactions are somehow suppressed. It will be inter
ing to explore the phenomenology of this possibility, in pa
ticular the effect on the self interactions of theW andZ.

IV. SU„2NF… GLOBAL SYMMETRY

In this section we adapt the above discussion to the in
esting case of fermions in pseudoreal representations of
gauge group. The simplest example is provided by an un
lying SU~2! gauge theory, a choice that will also offer th
smallest value for the criticalNf @19#. Such theories are cur
rently being investigated on the lattice~see Ref.@20#!. The
quantum global symmetry forNf matter fields in the pseu
doreal representation of the gauge group@21# is SU(2Nf).
We expect the gauge dynamics to create a nonvanis
fermion-antifermion condensate which breaks the glo
symmetry to Sp(2Nf). Since SU(2Nf).SUL(Nf)
3SUR(Nf), the left-right independent groups are unified a
parity invariance is automatic.

This breaking pattern gives 2Nf
22Nf21 Goldstone

bosons which are contained in the antisymmetric matrixMi j

and i , j 51,...,2Nf . With uPSU(2Nf) we have

M→uMuT. ~4.1!

We associate a vector fieldAm5Am
a Ta with Ta, a generic

generator of SU(2Nf), (a51,...,4Nf
221), and Tr@TaTb#

5(1/2)dab. Following the procedure outlined in the previou
sections, we define a formal covariant derivative as

DmM5]mM2 i g̃AmM2 i g̃MAm
T , ~4.2!

whereA transforms as

Am→uAmu†2
i

g̃
]muu†. ~4.3!
7-6
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With electroweak interactions turned off, the effective L
grangian reads

L5
1

2
Tr@DMDM†#1m2 Tr@A2#1r Tr@A2MM†#

1h Tr@AMATM†#1 is Tr@A~MDM†2DMM†!#,

~4.4!

together with the kinetic term

LKin52
1

2
Tr@FmnFmn#, ~4.5!

whereFmn5]mAn2]nAm2 i g̃@Am ,An#, along with globally
invariant vector interaction terms, an interaction term p
portional to TrA2 Tr MM†, and a symmetry-breaking poten
tial.

The global symmetry is enhanced to SU(2Nf)
3SU(2Nf) for the parameter choices5g̃, h5g̃2 and r
5g̃2. The effective Lagrangian then takes the form

L5
1

2
Tr@]M]M†#1m2 Tr@A2# ~4.6!

together with the same terms as above. The spontan
breaking leads to the vacuum symmetry Sp(2Nf)
3SU(2Nf).

To proceed further, we simplify the notation by choosi
Nf52. We divide the generators$T% of SU~4! into two
classes, calling the generators of Sp~4! $Sa% with a
51,...,10 and the broken generators$Xi% with i 51,...,5. We
have

STE1ES50, ~4.7!

with

E5
1

2&
S 0
-1

1
0D . ~4.8!

In the Appendix we provide a convenient representation
the $S% and$X% generators. We define the antisymmetric m
son matrixM5(2MT) as

M5&@s1 i2&XiP i #E, ~4.9!

where the fiveP i fields are the Goldstone bosons associa
with the breaking of SU~4!→Sp~4!.

It is convenient to divide the vector fieldA in the follow-
ing way:

A5AX1AS , ~4.10!

whereAX5AX
i Xi , andAS5AS

aSa. TheAX are the axial vec-
tor fields while theAS are the vectors. Then expandingM
around its vacuum value&vE and keeping only terms qua
dratic in the fields, the Lagrangian Eq.~4.4! takes the form
11600
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L5
1

2
@]s]s1]P i]P i #2v

~ g̃2s!

&
]P iAX

i 1MX
2 Tr@AX

2 #

1MS
2 Tr@AS

2# ~4.11!

with

MS
25m21

v2

4
@r 2h#,

MX
25m21

v2

4
@2g̃21r 24g̃s1h#. ~4.12!

For the choice of parameters associated with an additio
SU~4! global symmetry~i.e., s5g̃, h5g̃2 and r 5g̃2) the
vector-axial vector mass difference vanishes, as do the w
to mass ratios.

We next treat the above theory as an electrowe
symmetry-breaking sector by gauging the SUL(2)3UY(1)
subgroup. It is convenient to introduce a vector fieldGm . If
we were to gauge the entire SU~4! flavor symmetry thenGm
would transform under chiral rotations in the standard wa

Gm→uGmu†2
i

g
]muu†. ~4.13!

We identify the electroweak gauge transformations in
following way:

u5S uL

0
0

uR*
D , ~4.14!

with uL/RPSUL/R(2). Then

Gm5S Wm

0

0

2
g8

g
Bm

T D , ~4.15!

whereWm5Wm
a (ta/2) andBm5Bm(t3/2), andg andg8 are

the electroweak couplings. It is easy to verify that the el
troweak transformation properties of the gauge bosons
respected@see Eq.~3.3!#.

Using the left-right generators defined in Eq.~A10! we
have

G5WaLa2
g8

g
B3R3T, ~4.16!

with a51,2,3. In terms of the axial and vector type gene
tors we have

G5GX1GS ~4.17!

with

GX5
1

&
S Wa2

g8

g
BaDXa, GS5

1

&
S Wa1

g8

g
BaDSa.

~4.18!
7-7
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The covariant derivative including the weak vector boso
and the composite vector fields is

DmM5]mM2 ig~GmM1MGm
T !2 i g̃c~CmM1MCm

T !,

~4.19!

where c is a real coefficient and we have introduced t
vectorCm

C5A2
g

g̃
G, ~4.20!

transforming covariantly under electroweak rotations.
We extend the effective Lagrangian of Eq.~4.4! to in-

clude electroweak interactions by replacing the old covar
derivative with the one in Eq.~4.19!. To render the full
theory invariant under electroweak transformations we a
substituteA with C giving

L5
1

2
Tr@DMDM†#1m2 Tr@C2#1r Tr@C2MM†#

1h Tr@CMCTM†#1 is Tr@C~MDM†2DMM†!#.

~4.21!

To this we add kinetic terms, interaction terms involving t
C fields, the interaction term TrC2 Tr MM†, and a
symmetry-breaking potential.

ReplacingM by its vacuum value and retaining only qu
dratic mass terms for the vectors we have

L5MX
2~11d!

g2

g̃2 Tr@GX
2 #1MX

2 Tr@AX
2 #22

g

g̃
MX

2~12x!

3Tr@GXAX#1MS
2 TrFAS

21
g2

g̃2 GS
222

g

g̃
GSASG1¯ ,

~4.22!

where we have identified

MS
25m21

v2

4
@r 2h#,

MX
25m21

v2

4
@r 1h12g̃2c224sg̃c#,

d5
v2

2MX
2 @ g̃222g̃~ g̃c2s!#,

x5
v2

2MX
2 g̃~ g̃c2s!. ~4.23!

The generalization of this discussion to the caseNf.2, nec-
essary for near criticality of the underlying gauge theory
straightforward.

From this point on, the discussion of enhanced symme
parity degeneracy, and the estimate of theS parameter pro-
ceeds as in the previous section. The choice of parame
s5g̃c and h5r 5g̃2c2 leads to the enhanced symmetry
11600
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the strongly interacting sector and to parity degeneracy.
contribution to theS parameter from the parity-doubled se
tor by itself is zero. The contribution from the symmetr
breaking sector is modified by the presence of the lar
number of pseudo-Goldstone bosons@19# associated with the
SU(2Nf) global symmetry.

V. CONCLUSIONS

In this paper we used an effective Lagrangian to expl
some features that might arise in a strongly coupled ga
theory when the number of fermionsNf is near a critical
value for the transition to chiral symmetry. It has been
gued that this transition is second order or higher and th
long-range conformal symmetry also sets in at the transit
It has also been suggested that near the transition, p
doublets may begin to form@5,4#.

We explored this possibility using as a guide an effect
Lagrangian with a linear realization of the global chiral sym
metry. The spectrum was taken to consist of a set of Go
stone particles, associated massive scalars, and a set of
sive vectors and axial vectors. It was observed that pa
doubling is associated with the appearance of an enhan
global symmetry, consisting of the spontaneously brok
chiral symmetry of the underlying theory@SUL(Nf)
3SUR(Nf)# together with an additional, unbroken symm
try, either continuous or discrete. The additional symme
leads to the degeneracy of the vector and axial vector, an
their stability with respect to decay into the Goldsto
bosons.

It is worth noting that the effective Lagrangian employ
here, while describing the global symmetries, does not ac
rately describe the dynamics of a chiral and/or conform
transition. That is, it cannot be used directly as the basis
a Landau-Ginzburg theory of this transition with its expect
nonanalytic behavior@2#. In Ref. @3#, an approach to such
Landau-Ginzburg theory was developed, restricted to o
the scalar degrees of freedom, and it described the u
global symmetries. This approach could perhaps be exten
to include the vectors of the present effective Lagrangi
We expect that it would describe the same symmetries
have considered here, both the spontaneously broken s
metry and the additional, unbroken symmetry.

Despite the hints in Refs.@5, 4#, it has not been estab
lished that an underlying gauge theory leads to these
hanced symmetries asNf approaches a critical value for th
chiral transition. If it is to happen, an unusual and interest
interplay between confinement and chiral symmetry break
would have to develop at the transition.

We also noted, by electroweak gauging of a subgroup
the chiral flavor group, that the enhanced symmetry provi
a partial custodial symmetry for theSparameter, in that there
is no contribution from the parity-doubled sector by itself.
could be interesting to explore further the consequence
an enhanced symmetry for electroweak precision meas
ments.
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APPENDIX: EXPLICIT REALIZATION OF THE SP „4…
GENERATORS

We conveniently represent the generators of SU~4! in the
following way:

Sa5S A
B†

B
2ATD , Xi5S C

D†
D
CTD , ~A1!

whereA is Hermitian,C is Hermitian and traceless,B5BT

andD52DT. The $S% are also a representation of the Sp~4!
generators since they obey the relationSTE1ES50. We
define

Sa5
1

2&
S ta

0
0

2taTD , a51,2,3,4. ~A2!

For a51,2,3 we have the standard Pauli matrices, while
a54 we define t451. These are the generators f
SUV(2)3UV(1). Fora55,...,10,

Sa5
1

2&
S 0
Ba†

Ba

0 D , a55,...,10 ~A3!
r,
.

ys

R

to

nd
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B551 B75t3 B95t1,

B65 i1 B85 i t3 B105 i t1. ~A4!

The five axial type generators$Xi% are

Xi5
1

2&
S t i

0
0

t iT D , i 51,2,3. ~A5!

t i are the standard Pauli matrices. Fori 54,5

Xi5
1

2&
S 0
Di†

Di

0 D , i 54,5, ~A6!

and

D45t2, D55 i t2. ~A7!

The generators are normalized as follows:

Tr@SaSb#5Tr@XaXb#5
1

2
dab, Tr@XiSa#50. ~A8!

The SUL/R(2) generators are readily identified as

La[
Sa1Xa

&
, ~A9!

Ra[
XaT2SaT

&
, ~A10!

anda51,2,3.
i,

ys.
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