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Enhanced global symmetries and the chiral phase transition
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We examine the possibility that the physical spectrum of a vectorlike gauge field theory exhibits an en-
hanced global symmetry near a chiral phase transition. A transition from the Goldstone phase to the symmetric
phase is expected as the number of fermidpss increased to some critical value. Various investigations have
suggested that a parity-doubled spectrum develops as the critical value is approached. Using an effective
Lagrangian as a guide, we note that parity doubling is associated with the appearance of an enhanced global
symmetry in the spectrum of the theory. The enhanced symmetry would develop as the spectrum splits into two
sectors, with the first exhibiting the usual pattern of a spontaneously broken chiral symmetry, and the second
exhibiting an additional, unbroken symmetry and parity doubling. The first sector includes the Goldstone
bosons and other states such as massive scalar partners. The second includes a parity-degenerate vector and
axial vector along with other possible parity partners. We note that if such a near-critical theory describes
symmetry breaking in the electroweak theory, the additional symmetry suppresses the contribution of the
parity-doubled sector to th® parameter[S0556-282199)01421-§

PACS numbes): 11.30.Rd, 12.39.Fe, 12.60.Nz

[. INTRODUCTION symmetry could play a key role in describing a possible
strong electroweak Higgs sector. Whether the new symmetry
Gauge-field theories exhibit many different patterns of in-can be shown to emerge dynamically from an underlying
frared behavior. During the past few years, there has beegiauge theory witiN; near a critical value remains an open
much progress in understanding the possibilities in superquestion.
symmetric gauge theorig¢d]. For nonsupersymmetric gauge |t is worth noting that there exist examples of extra sym-
theories, less is known, but it is expected that the infraregnetries, not manifestly present in the underlying theory, but
behavior will vary according to the number of massless feryynamically generated at low energies. For instance, by us-
mions (Ny) coupled to the gauge fields. For a vectorlike jng quality arguments, it has been arguéd that a super-
theory such as QCD, it is known that for low valuesNf,  qymmetric SW2) gauge theory withN; matter fields and
the theory confines and chiral symmetry breaking occurs. O@Iobal symmetry SU(R,) is dual to a SUK,—2) gauge

the other hand, for Iarng_the theory loses asymptotic free- theory withN; matter fields. FON;=5, the ultraviolet flavor
dom. In between, there is a conformal window where the

theory does not confine, chiral symmetry is restored, and thgymmetry (.)f th? "'?‘“er theory is SUN¢) X SUR(Ny)
theory acquires a long-range conformal symmetry. It has’ Ug(1). Since its mfrarec_j g_IobaI symmetry m.ust be
been proposed that for an SN) gauge theory, there is a SU(2N;) (that of the dual its infrared symmetry is en-
transition from the confining, chirally broken theory to the hanced. ,
chirally symmetric theory aN;~4N [2,3]. Recent lattice In Sec. Il We_dlscuss _the appearance of enhanced global
simulations, however, seem to indicf#d that the amount of symmetry. Confinement is assumed and the symmetry of the
chiral symmetry breaking decreases substantigir N underlying gauge theory, $N¢) X SUr(Ny), is built into
=3) whenNs is only about 4. an effective Lagrangian describing the physical states of the
Assuming that a single transition takes place at some crititheory. Parity invariance is imposed and the usual pattern of
cal value ofN;, we can ask questions about the spectrum othiral symmetry breakingSU, (N¢) X SUg(N¢) — SUy(Ny) ]
the theory near the transition. In R¢8], it was argued by is assumed. Thed%—l Goldstone bosons appear together
studying Weinberg spectral function sum rules that for nearwith scalar chiral partners. We augment the spectrum with a
critical theories parity partners become more degenerate thaet of vector fields for both the S(UNs) and SW(N¢) sym-
in QCD-like theories. This leads naturally to the idea thatmetry groups. The Lagrangian thus takes the form of a linear
parity doublets might form as chiral symmetry is being re-oc model coupled to vectors. It could be expanded to include
stored. Lattice studies also indicate such a possiljiify fields corresponding to other states as well. The natural mass
In this paper we observe using an effective-Lagrangian ascale of this strongly interacting system is expected to be of
a guide, that the formation of degenerate parity partners isrder 2rv, wherev is the vacuum expectation value.
associated with the appearance of an enhanced global sym- We examine the spectrum and recognize that there is a
metry in the spectrum of states. We also note that this newarticular choice of the parameters that allows for a degen-
erate vector and axial vector, while enlarging the global sym-
metry to include an additional(unbroken SU, (Ny)

*Electronic address: thomas.appelquist@yale.edu X SUr(N¢). This happens as the spectrum of the theory
"Electronic address: psr7@pantheon.yale.edu splits into two sectors with one displaying the additional
*Electronic address: francesco.sannino@yale.edu symmetry. We then briefly review the argumersee Ref.
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[5]) that an underlying near-critical SNJ gauge theory assume that chiral symmetry is broken according to the stan-
might naturally lead to a more degenerate vector-axial spedlard pattern SUN¢) X SUR(N¢) —SU,(N¢). The NZ—1

trum than in QCD, and to an enhanced symmetry. Finally weGoldstone bosons are encoded in te< N; real traceless
note that even a discrete additional symmefty, X Z,z, of  matrix q)} with i,j=1,...N;. The complex matrixM =S

the effective theory is adequate to insure the mass degen-i®d describes both the Goldstone bosons as well as associ-
eracy of the vector and axial vectbr. ated scalar partnerS It transforms linearly under a chiral

The possible appearance of an additional, continuousotation:
symmetry was considered by Casalbuenal.in Refs.[7,8].

These papers were restricted to the cise2 and did not M—uM UJFQ, 2.9
include discussion of the possible connection to a near-

critical underlying theory. The treatment in R¢¥] made  With up g in SU_r(Ny).

use of a nonlinear realization for the Goldstone degrees of TO augment the massive spectrum, we introduce vector
freedom, using hidden gauge symmetry methf@ls We and axial vector fields following a method outlined in Ref.
could generate the effective Lagrangian of &} by inte-  [10]. We first formally gauge the global chiral group intro-
grating out the massive scalar degrees of freedom, but th&tucing the covariant derivative

would keep some massive degrees of freedtim vectors

fields and neglect others. When we focus on low-energy D#M =M —igAM +iGMAg, 2.2
consequence@n Sec. ll), we will integrate out all the mas-

sive degrees of freedom leading to the electroweak chiravhereAfz=A{gT* and T are the generators of SN(),
Lagrangian. The treatment of Ré8] utilized a linear real- with a=1,...Nf—1 and TfT3T"]=(1/2)5*". The left and
ization for the scalars and focused on the decoupling of theight couplings are the same since we assume parity invari-
vectors as they are made heavy relative to the weak scalgnce. Under a chiral transformation

We do not take this limit here since we assume the vector
and scalar masses to be of the same order.

In Sec. lll we embed the electroweak gauge group within
the global symmetry group. We observe that the enhanced
symmetry of the strongly interacting sector, which now pro- The effective Lagrangian needs only to be invariant under
vides electroweak symmetry breaking, plays an importanglobal chiral transformations. Including terms only up to
role. The additional symmetry is a partial custodial symme-mass dimension four, it may be written in the form
try for the electroweakS parameter, in the sense that the
parity doubled part of the strong sector, by itself, makes no
contribution toS This is shown by integrating out the mas-
sive physics to construct the terms in the low-energy elec-

i
_ + T
Al jr=uRrALU R~ ] UL RU R - (2.3

1
L= THD,MD*M ]+ m* T AL, Af'+ Ag,AL]

troweak chiral Lagrangian. Th parameter corresponds to +h TI{ALMAEM ] +1 THAL AMMT
one such term.
We extend the study to fermions in a pseudoreal represen- + AR, AEMTM ] +i ETr[AL (MD*MT—D#MMT)
tation of the underlying gauge group in Sec. IV. In this case . 2 .
parity is automatically enforced. The pseudoreal representa- +AR#(MTD“M —DEMTM)]. (2.4)

tions allow for the lowest number of colofse., N=2) and

consequently for the lowest possible number of flavors fofrhg parameters, r, ands are dimensionless real parameters,
which the theory might show a dynamically enhaznced SYMyhile m? is a common mass term. To this, we may add a
metry. The enhanced global symmetryf 8U(2N) ] spon-  yinetic term for the vector fields

taneously broken to Sp{&) X SU(2Ny).
In Sec. V we conclude and suggest some directions for
future work. In the Appendix we provide an explicit repre- Lkin=— ETI’[FLM,,F’LW'F FrusFR"]s (2.9
sentation for the S@) generators.
where
Il. EFFECTIVE LAGRANGIAN FOR SU | (Ng) X SUs(NE)
GLOBAL SYMMETRY Flik= 0“Al = 0"Alr—TG[ALR AlRl, (2.6

To discuss the possible appearance of enhanced symmetarl ong with vector-interaction terms respecting only the glo-

in a strongly interacting spectrum, some description of th .
spectrum is needed. We will find it helpful to use an effecjaoal symmetry. Finally, we may add the double trace term,

tive Lagrangian possessing sW;) X SUg(N¢) symmetry, TIMMTITITAZ + A2 2

the global invariance of the underlying gauge theory. We ! ITTAL*AR], @7
at the dimension-four level. To arrange for symmetry break-
ing, a potentiaV(M,M ™) must be added. When the effective

lwe thank Noriaki Kitazawa for suggesting the possibility of a Lagrangian is extended to the dimension-six level and
discrete symmetry. higher, many new operators enter.
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Parity is also a symmetry and it acts on the fields accordences therein The effective Lagrangian description is of

ing to course unrestrictive. Depending on the values ofthg and
1wt h parameters, one can have a degenerate or even inverted
PM(X)(P)""=M(=x), (2.8 mass spectrum.

What kind of underlying gauge theory might provide a
degenerate or inverted spectrum? Clearly, it has to be differ-
ent from QCD, allowing for a modification of the spectral
function sum rules. In Ref5], an SUN) gauge theorywith

PAYR(X)(P) ™ t=e( ) Ak (—X), (2.9

wheree(u)=1 for u=0 and—1 for ©=1,2,3.

The spectrum described by this effective Lagrangian con . .
sists of Goldstone bosons, a set of scalars, and massive v = i) landTi\ll;I;:lvors'V\;as cgnfgdedred.' N ']f’ Ir?rge enough
tor and axial vectors. With its massive vectors and axial vec- '“.'t elow 1 » an infrared fixe pqlnt of the gauge cou-
tors, it is of course not renormalizable, but it can PliNg @, exists, determined by the first two terms in tfe
nevertheless provide a reasonable description of low-lyindunction. ForNy near 1N/2, , is small and the global
states((t is worth noting that a Lagrangian of this type does SYMMetry group remains unbroken. For smidll, on the
this for the low-lying QCD resonancgs1]). While it cannot ~ Other hand, the chiral symmetry group S8) X SUg(Ny)
be a complete description of the hadronic spectrum, it habr€aks to its diagonal subgroup. One possibility is that the
sufficient content to guide a general discussion of enhancei@nsition out of the broken phase takes place at a relatively
symmetries. large value ofN;/N(~4), corresponding to a relatively

Keeping only terms quadratic in the fields and temporarilyvéaK infrared fixed poin{2,3]. An alternate possibility is
neglecting the massive scalars, the Lagrangian @) that the transition takes place in the strong-coupling regime,
takes the form corresponding to a small value Nf /N [4]. The larger value

emerges from the renormalization-group improved gap equa-

1 _ tion, as well as from instanton effecf$3], and saturates a
L=5Tia,Po*®]+v2(s=G)v Trld, PA*] recently conjectured upper limftL4]. It corresponds to the
perturbative infrared fixed point, reaching a certain criti-

+MZTIAA*]+ME TV, VA, (210  cal valuea,. A similar result has also been obtained by

using a suitable effective Lagrangigai.
whereM=v+i®, v is the vacuum expectation value and  These studies also suggest that the order parameter, for
we have defined the new vector fields example the Goldstone boson decay conskv, van-
ishes continuously at the transition relative to the intrinsic
_ALtAR AL Ar 5 renormalization scalé of the gauge theory. In the broken
v Y, 213 phase near the transition, the fact that one is approaching a
phase with long-range conformal symmetry suggests that all
The vector and axial masses are related to the effective Lanassive states scale to zero with the order parameter relative

grangian parameters via to A [15].
In Ref.[5] the spectrum of states in the broken phase near
2 o ol =2 _h a largeN; /N transition was investigated using the spectral
Ma=m v r+g°—2s9- 20 function sum rules. It was shown that the ordering pattern for

vector-axial hadronic states need not be the same as in QCD-
like theories(small N¢/N). The crucial ingredient is that
; (2.12  these theories contain an extended “conformal region” ex-
tending from roughly 2ZrF _ to the scale\ where asymptotic
where the contribution from Eq2.7) has been absorbed into freedom sets in. In this region, the coupling remains close to
m?. The terms proportional te? are Higgs-like contribu- @n approximate infrared fixed point and the theory has an
tions, arising from the spontaneous breaking. approximate long-range conformal symmetry. It was argued
The second term in E42.10 mixes the axial vector with that this leads to a reduced vector-axial mass splitting, com-
the Goldstone bosons. This kinetic mixing may be diagonalPared to QCD-like theories. This suggests the interesting

h
r+§

M2 =m?+v?

ized away by the field redefinition possibility that parity doublets begin to form as chiral sym-

metry is being restored. That is, the vector-axial mass ratio
9-—s approaches unity as the masses decrease relatike Ltat-
A=AtV > 0P, (213 tice results seem to provide supporting evidence for such a
A possibility [4], although at smaller values &f; /N.

leaving the mass spectrum unchan@]. The vector-axial If a parity-doubled spectrum does appear, it is natural to
vector mass difference is given by expect it to be associated with some new global symmetry.
While we have not demonstrated the appearance of a new

MIZ_\—M\Z/:VZ[gz—zgs— h]. (2.14 global symmetry using the underlying degrees of freedom,

we can explore aspects of parity doubling at the effective
In QCD this difference is known experimentally to be posi- Lagrangian level. Returning to this description, we note that
tive, a fact that can be understood by examining the Weinvector-axial parity doubling corresponds to the parameter
berg spectral function sum ruldsee Ref[12], and refer- choice[see Eq(2.14)],
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§°=2Gs+h. (2.15 crete symmetry. Nevertheless, one cannot rule out the possi-
bility that it is only this smaller, discrete symmetry that ap-
This condition does not yet reveal an additional symmetrypears as an effective infrared symmetry of an underlying
and therefore there is no reason to expect parity degeneragiauge theory near the chiral and/or conformal transition.
to be stable in the presence of quantum corrections and the From the point of view of the underlying theory, the ap-
many higher dimensional operators that can be added to thgearance of any additional symmetry in the spectrum, at
effective Lagrangian in Eq2.4). criticality, would seem mysterious. The composite degrees of
However, for the special choice=g, r=4%/2 andh= freedom in both sectors are made of the same fundamental
—9?, the effective Lagrangian acquires a new continuougermions with a single underlying SN;) X SUx(N;) sym-
global symmetry that protects the vector-axial mass differmetry. If the symmetry of the parity-doubled sector is an
ence. The effective Lagrangian at the dimension-four levelinbroken SY(N;) X SUR(Ns), it would look as though the
takes the simple form chiral symmetry is being realized there in the Wigner-Weyl
mode. If that is the case, chiral dynamics would have to be
influenced by confinement and bound-state formation in an
interesting new way. Whether a near-critical gauge theory
(2.16 can lead to this behavior is an unresolved question.

1
L=>Trd,Md*M 4+ m? TI[AL AL+ Ag, AR

along with vector kinetic and interaction terms, the interac-
tion term Eq.(2.7), and the symmetry-breaking potential
V(M,M"). The theory now has two sectors, with the vector
and axial vector having their own unbroken global We next discuss the consequences of enhanced symmetry
SU, (N§) X SUr(N¢). The two sectors interact only through for a strong symmetry breaking sector of the standard elec-
the product of singlet operators. The full global symmetry istroweak theory, embedding the 5(2) X Uy(1) gauge sym-
[SU, (Ng) X SUR(N{)1?XUy(1) spontaneously broken to metry in the global SY(N;) X SUr(Ns) chiral group. In this
SUy(N¢) X Uy(1)X[SU_(N{) X SUx(N;)]. The vector and section, for simplicity, we will restrict attention to the
axial vector become stable due to the emergence of a ne®U, (2) X SUx(2) subgroup of the full global grou]. The
conservation law. This enhanced symmetry would becomelectroweak gauge transformation then takes the form

exact only in the chiral limit. For finite but smdltelative to

Ill. STRONGLY INTERACTING ELECTROWEAK
SECTOR

A) values of the mass scales in H§.16), there are addi- M—uwMul, (3.0
tional, smaller terms giving smaller mass splittings and small ) ] ) ]
width-to-mass ratios. whereM is now a 2x2 matrix which can be written alsl

It is, of course, a simple observation that a new symmetry= (1/V2)[o+i7- 7], whereuy,=u, =ex{(i/2)e*7"] with 7
and conservation law emerge if a theory is split into twothe Pauli matrices, and wheug = exf(i/2)eo7°]. The weak
sectors by setting certain combinations of parameters to zer§ector boson fields transform as
But here we were led to this possibility by looking for a i
symmetry basis for the parity doubling that has been hinted WMHULWMUI_ _(gﬂuLu[, (3.2
at by analyses of the underlying gauge theory. Although we g
have used a relatively simple effective Lagrangian, we an-
ticipate that the conclusion is true in general, that is, that
parity doublets form in the spectrum of a strongly interacting
theory with chiral symmetry breaking only if the spectrum
splits into two sectors, one exhibiting the spontaneous breakwhereg andg’ are the standard electroweak coupling con-
ing and the other, parity-doubled, sector exhibiting an unbrostants W, =W (7%/2) andB,, = B#(TS/Z).
ken additional symmetry. A convenient method of coupling the electroweak gauge

We next observe that along with the additional globalfields to the globally invariant effective Lagrangian of Sec. Il
symmetry SY(N;) X SUz(Ns), the effective Lagrangian Eq. is to introduce a covariant derivative, which includes We
(2.16 possesses a discrefg, X Z,gr symmetry. UndeiZ,, ~ and B fields as well as the strong vector and axial-vector

[
B“—uyBHul— aa“uyu;ﬁ, (3.3

X Z,r the vector fields transform according to fields,
Al—Zz A, Ar—ZrAR, (217  DAM=4*M—igWFM +ig’ MB#—igcClM +igc’ MCH,
(3.9
with z ,rk=1,—1 and z ,re Z, gr. Actually, the discrete ) )
symmetry alone is enough to insure vector-axial mass degeithere we have defined the new vector fields
eracy and stability against decay. In that case, additional in- ,
teraction terms, such as the single trace term Cf:Af_gWM, Cl=AL- QTB;L' (3.5

r TA, AFMMT+A RAEMTM], (2.18
e HRER and wherec andc’ are arbitrary real constants. Since the
are allowed, but degeneracy and stability are still insured. OA{r transform as Eq(2.3), the C{’z transform under the
course, trilinear vector interactions will not respect this dis-electroweak transformations as
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Cl—u Clul, CE—uyCEUY. (3.6)
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electroweak gauge invariance. It describes weak mixing be-
tween theA g fields and theW and Z, and, through the

By requiring invariance under the parity operation exchangmixing, conventional electroweak charges for theg. The

ing the labeld < R we have the extra conditioo—=c’

extension of this effective Lagrangian to the relevant case of

The effective Lagrangian is constructed to be invarianthe larger symmetry group SUN;) X SUg(Nf) with N

under a local S(2) X Uy(1) as well asCP. The CP trans-

formation properties of the fieldsnsure that the covariant

derivative transforms a§l: i.e.,

CPD,M(X)(CP) '=7[D*M(—x)]*.  (3.1D)

>2, is straightforward.

ReplacingM by its vacuum value/v2, and keeping only
terms quadratic in the fields, the Lagrangian E312 takes
the form

The effective Lagrangian is then obtained by replacing in Eq. | =M2 Tr{ A?]+ M2 Tr[V?]— ‘i(l Y)M2 T (gW

(2.4) the covariant derivative with the new one in E§.4).

To make the theory electroweak gauge invariant, one substi- 2

tutes theA g with the C g, giving, through dimension

four,
—1 Vi 2 " "
L=5T{D,MD*M"]+m?Tr[C, ,C'+ Cg,Ck]
+hTr[C ,MCEM ]+ Tr[C_ ,CIMMT
S
+CRMC§MTM]+iETr[CLM(MD“MT—D”“MMT)

+Cgr,(MTD*M—-D*M™M)]. (3.12

To this we add a kinetic term

Licn =~ 5 TP L FE"+ P AT~ 5 T, W2
1
-5 TiB,,B*], (3.13
where
W,,=d,W,—d,W,—ig[W,,W,],
B,,=d,B,—3,B, (3.14

with the F| g for the fieldsA g defined in Eq.(2.6), along
with other interaction terms involving th€ ,z fields, the
interaction term

T{MM T C2+C2], (3.19

and a symmetry-breaking potential.

V2 ) My
—g’B)A]—EMVTr[(gWJrg’B)V]Jr 2ngTr[(gW
Mz
+q’ B)2]+ (1+5)Tr[(gW—g B)2]+---, (3.1
where we have defined
M=m?+v3r+ 5|,
2
2 2 2 =22 2 h
Ma=m-+ver—+gc —ZSgc—E ,
V2
x= gz lge-sl,
2
o= [G2%(1—2c)+2s7]. (3.17

2M4

The vectorV and axialA fields are defined in Eq2.11).
This quadratic Lagrangian describes masses folthadA,
weak mass mixing with th&V andB, and a mass matrix for
the W and B. There is no further, kinetic energy mixing
among these fields. The vector and axial vector madéés,
and M,Z_\, are arbitrary, depending on the choice of param-
eters, although generically we expect them and the scalar
masses to be of ordermfv?.

The weak mixing terms in Eq3.16) provide a contribu-
tion from physics beyond the standard model to the oblique

One can show that this is the most general dimensionelectroweak corrections. These may be described b Ag
four, CP-invariant Lagrangian describing a strongly interact-and U parameters, but the last two vanish in the present
ing set of scalars, vectors, and axial vectors with a spontangnodel because there is no breaking of weak isospin in the
ously broken SY(2)xSUg(2) symmetry, and possessing strong sector. While this is not apparent in E8.16), it is

°Here we summarize theP field transformations:
CPM(X)(CP)~'=yM*(—Xx), (3.7)
CPAR.(X)(CP) ™= —Afir(—X), (3.9
CPW,(X)(CP) 1= —W¥(—Xx), 3.9
CPB,(X)(CP) '=—B*(—X), (3.10
where 7 is an arbitraryC phase.

insured by the Ward identities and easily revealed through
the mixing effects. TheS parameter receives contributions
from all the physics beyond the standard model, including, in
the model being used here, loops of pseudo Goldstone
bosongPGB’s), the strongly interacting massive scalars, and
the vector and axial vector. The direct, vector-dominance
contribution of the vector and axial vector may be read off
from Eq.(3.16) together with the kinetic term for thé and

A. One finds
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S Mf\(l—)()z M\2/ Among the contributions t& remaining in the limit of
Siectdon==7 > —— —> > enhanced symmetry, are loops of pseudo-Goldstone bosons,
g° | Mz—=Mz  Mz—Mj§

present wherN;>2. They may be estimated using chiral
8 perturbation theory, with the standard-model corrections re-
~—{1-(1-x)?]. (3.189  moved by convention. While they typically give contribu-
9 tions to S of order unity, their specific value depends on
Clearly, this contribution to th& parameter can take on any details such as mass estimates for the PGB's that arise from
value depending on the choice of parameters. Its typical or€lectroweak, QCD, and other interactidis]. An interest-
der of magnitude, with the strong-coupling estimgé  ing new feature in the limit of enhanced symmetry is that the
~472, is expected to bO(1). This expression can be seen PGB contr|bu_t|0n is not related to a direct, vector-qom!nance
to be equivalent to the familiar vector-dominance formula€ffect (which is now zera There will also be contributions
Svect—dom~47T[F\2//M\2/_ Fi/Mi] [16], with the identifica- from t'he strongly interacting TeV physms, represented in our
tions F2= (259 M2 and F2 = (252 M2(1— y)2. effective Lagrangian by the massive scalars. Our purpose
M M A A here is not to make these estimates, but only to point out that
an enhanced symmetry, leading to vector-axial vector degen-
s=gc, h=-7G2c? (3.19  eracy, will suppress contributions t8 purely from the
parity-doubled sector. These include the typically large vec-
gives x=0, leading immediately to the degeneracy of thetor dominance contribution discussed above.

We next observe that the choice

vector and axial vectofsee EQ.(3.17)], the relationF4 Finally we note that, as we discussed at the end of Sec.
=F,, and the vanishing 08,c..qgom The further choice I1l, it could be that only a lesser, discrete symmetry emerges
=2c?/2 leads to the collapse of the general effective La-in the physical spectrum. Even this would be sufficient to

grangian into the simple form insure vector-axial degeneracy and the vanishing of the vec-

tor dominance contribution to th® parameter. The discrete
1 gt ) . u symmetry of Sec. lll would only be possible if trilinear vec-
L=5TrD,MD*M ]+ m T C, ,C{+Cr,CRI, tor interactions are somehow suppressed. It will be interest-
(3.20 ing to explore the phenomenology of this possibility, in par-
ticular the effect on the self interactions of tiiéandZ.
along with the kinetic terms of EQq(3.13, interactions
among theCt' fields, the interaction term E¢3.15, and a IV. SU(2Ng) GLOBAL SYMMETRY
symmetry-breaking potential. HereDM=JM —igWM
+ig'MB is the standard electroweak covariant derivative, |n this section we adapt the above discussion to the inter-
andC{ are given by Eq(3.5). esting case of fermions in pseudoreal representations of the
The strongly interacting sector has split into two subsecgauge group. The simplest example is provided by an under-
tors, communicating only through the electroweak interaclying SU(2) gauge theory, a choice that will also offer the
tions. One subsector consists of the Goldstone bosons tgmallest value for the criticall; [19]. Such theories are cur-
gether with their massive scalar partners. The other consistently being investigated on the latti¢eee Ref[20]). The
of the degenerate vector and axial vector described by thguantum global symmetry fax; matter fields in the pseu-
Al fields. The mass mixing in Eq3.12) insures that they doreal representation of the gauge grdap] is SU(2Ny).
have conventional electroweak couplings. In the absence alVe expect the gauge dynamics to create a nonvanishing
electroweak interactions, there is an enhanced symmetdfgrmion-antifermion condensate which breaks the global
[SU (2)XSUr(2)]X[SU (2)XSUr(2)], breaking sponta- symmetry to Sp(Rl;). Since SU(Q;)DSU (Ny)
neously to SWY(2)X[SU_(2)XSUg(2)]. The electroweak X SUg(N;), the left-right independent groups are unified and
interactions explicitly break the enhanced symmetry toparity invariance is automatic.
SU (2)XUy(1). All of this may be generalized td;>2, This breaking pattern gives Nf'—Nf—l Goldstone
necessary to yield a near-critical theory. bosons which are contained in the antisymmetric maitik
The additional symmetry has an important effect on$he andi,j=1,...,2N;. With ue SU(2N;) we have
parameter, suppressing contributions that are typically large
in QCD-like theories. It does not suppress all contributions, M—uMu'. (4.1
of course, since the symmetry-breaking subsector gives con- ) !  aea a )
tributions that are expected to be of order unity. The parity-V& @ssociate a vector f'ewu_A#Z with T%, a generic
doubled subsector, however, cannot by itself contributg to 9enerator of SU(R), (a=1,...ANi—1), and TfT*T’]
becauses relies on electroweak symmetry breaking for its = (1/2)6*". Following the procedure outlined in the previous
existence. It is the coefficient of an operator in the low-Sections, we define a formal covariant derivative as
energy electroweak chiral Lagrangiahq(in Ref. [17]),
which may be written in the form TwW#”U BWUT, where
WH? and B,uv are defined in Eq(3.14) and U is the Gold- whereA transforms as
stone matrix field satisfying the nonlinear constraliht)
=UTU=1. Clearly theU operator, with its vacuum value
U=1, is necessary to coup&*” to B,,, .

_ P i AT
D,M=d,M—igA,M—iGMAT, 4.2

i
t T
A,—UA,U —aaﬂuu . (4.3
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With electroweak interactions turned off, the effective La- 1 (G—s)

grangian reads L= E[&a’ﬂ(ﬂ— 1 1 Y, c7HiAix+ M)Z(Tr[A)z(]

1 2 2
L= TDMDM]+m? T A?|+r T AZMM'] +MSTIAS] (419

UVEATE t t with

+hTTAMA™™M ] +is THA(MDMT-DMM™],
2
v
44 MZ=m?+ S lr=hl,

together with the kinetic term
2 V2

1 Mg=m?+ —[2G2+r —4gs+h]. (4.12
I-Kir‘lz - ETr[F;LVFMV]! (45) 4

_ _ For the choice of parameters associated with an additional
whereF ,,=d,A,~d,A,—iG[A,,A,], along with globally  sy4) global symmetry(i.e., s=§, h=G2 andr=g?) the
invariant vector interaction terms, an interaction term pro~ector-axial vector mass difference vanishes, as do the width
portional to TrA2 TrMMT, and a symmetry-breaking poten- to mass ratios.
tial. . We next treat the above theory as an electroweak

The global symmetry is enhanced o SWG?  symmetry-breaking sector by gauging the $2)x Uy(1)

X SU(2Ny) for the parameter choice=G, h=0" andr  supgroup. It is convenient to introduce a vector figlg. If

=G°. The effective Lagrangian then takes the form we were to gauge the entire $4) flavor symmetry theiG,
would transform under chiral rotations in the standard way

1
L=5Ti oMM +m? TI{A?] (4.6) |
T t
G,—uG,u —E&Muu . (4.13
together with the same terms as above. The spontaneous

breaking leads to the vacuum symmetry S¥P  We identify the electroweak gauge transformations in the
X SU(2Ny). following way:
To proceed further, we simplify the notation by choosing

N;=2. We divide the generator§l} of SU(4) into two fu. O
classes, calling the generators of (§p {S%} with a U=l o ug)’ (4.14
=1,...,10 and the broken generat$¥} with i=1,...,5. We
have with u ;re SU/r(2). Then
STE+ES=0, 4.7 W 0
G.=| & _9 .7 4.1

1 /0 1 whereW ,=W?(7%/2) andB,=B ,(7°/2), andg andg’ are
E=— . 4.9 o L TR .
2v3\-1 0 the electroweak couplings. It is easy to verify that the elec-
troweak transformation properties of the gauge bosons are

In the Appendix we provide a convenient representation fo(espe_ctec[see EQ-(_3-3)]- _ _
the{S} and{X} generators. We define the antisymmetric me- Using the left-right generators defined in E#10) we

son matrixM=(—MT") as have

M =\/§[0'+i2\/?XiHi]E, (49) G=WaL2a— %83R3T, (41@
where the fivdl' fields are the Goldstone bosons associated
with the breaking of S()—Sp(4). with a=1,2,3. In terms of the axial and vector type genera-

It is convenient to divide the vector field in the follow-  tors we have
ing way:
G=Gx+Gg (4.17
A=A +Ag, 4.1 .
x T As (4.10 with

whereAy=ALX', andAg=A2S%. TheAy are the axial vec- , ,
tor field; while theAg are the vectors._Then expandiig GX:i(Wa_ 9 a)xa, Gs:i Wa+ g_Ba> R
around its vacuum valug2vE and keeping only terms qua- V2 g V2 g
dratic in the fields, the Lagrangian E@.4) takes the form (4.18

116007-7
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The covariant derivative including the weak vector bosonghe strongly interacting sector and to parity degeneracy. The

and the composite vector fields is contribution to theS parameter from the parity-doubled sec-
_ o . tor by itself is zero. The contribution from the symmetry-
D,M=d,M-ig(GM+MG,)—igc(C,M+MC)), breaking sector is modified by the presence of the larger

(4.19 number of pseudo-Goldstone bos$h8] associated with the

. . . SU(2N;) global symmetry.
where c is a real coefficient and we have introduced the

vectorC,, V. CONCLUSIONS
g In this paper we used an effective Lagrangian to explore
C=A—-=G, (4.20 some features that might arise in a strongly coupled gauge
g theory when the number of fermior¥; is near a critical

value for the transition to chiral symmetry. It has been ar-
gued that this transition is second order or higher and that a

, . . .__long-range conformal symmetry also sets in at the transition.
clude electroweak interactions by replacing the old covariang ™\ = " ieo been suggested that near the transition, parity

derlvatl_ve Wlth the one in Eq(4.19. To rende_r the full doublets may begin to forfs,4].
theory invariant under electroweak transformations we also . S . . .
We explored this possibility using as a guide an effective

substituteA with C giving Lagrangian with a linear realization of the global chiral sym-
metry. The spectrum was taken to consist of a set of Gold-

transforming covariantly under electroweak rotations.
We extend the effective Lagrangian of E@.4) to in-

1
L= ETr[D MDM™+m? Tr{ C?]+r T C?MM "] stone particles, associated massive scalars, and a set of mas-
sive vectors and axial vectors. It was observed that parity
+hT{CMC™MT]+isT{C(MDM'—=DMM™M]. doubling is associated with the appearance of an enhanced

global symmetry, consisting of the spontaneously broken
(420 chiral symmetry of the underlying theory SU, (Ny)
X SUr(Ns)] together with an additional, unbroken symme-
try, either continuous or discrete. The additional symmetry
leads to the degeneracy of the vector and axial vector, and to
their stability with respect to decay into the Goldstone

To this we add kinetic terms, interaction terms involving the
C fields, the interaction term T2TrMM', and a
symmetry-breaking potential.

ReplacingM by its vacuum value and retaining only qua-

: bosons.
dratic mass terms for the vectors we have It is worth noting that the effective Lagrangian employed
g2 g here, while describing the global symmetries, does not accu-
L=M2(1+6) =3 T G2+ MATHAZ]—-2=M2(1—x) rately describe the dynamics of a chiral and/or conformal
g 9 transition. That is, it cannot be used directly as the basis for
g2 g a Landau-Ginzburg theory of this transition with its expected
XTI GyAx]+METr A§+§—2G§_26GSAS + nonanalytic behaviof2]. In Ref.[3], an approach to such a

Landau-Ginzburg theory was developed, restricted to only
(4.22  the scalar degrees of freedom, and it described the usual
global symmetries. This approach could perhaps be extended

where we have identified to include the vectors of the present effective Lagrangian.

V2 We expect that it would describe the same symmetries we
Mgz m?+ —[r—h], have considered here, both the spontaneously broken sym-
4 metry and the additional, unbroken symmetry.
5 Despite the hints in Refd5, 4], it has not been estab-
2 v lished that an underlying gauge theory leads to these en-
M2=m?+ —[r +h+2g%c?— 4stc], naerlying gaug y !
4 hanced symmetries &é; approaches a critical value for the

chiral transition. If it is to happen, an unusual and interesting
interplay between confinement and chiral symmetry breaking

_ =2 o
0= 2|\/|§<[g ~29(gc—9)l, would have to develop at the transition.
We also noted, by electroweak gauging of a subgroup of
v2 the chiral flavor group, that the enhanced symmetry provides
X~ oM i@("QC— S). (4.23  a partial custodial symmetry for ttf&parameter, in that there

is no contribution from the parity-doubled sector by itself. It
could be interesting to explore further the consequences of

The generalization of this discussion to the chlse- 2, nec- S
essary for near criticality of the underlying gauge theory, isaner?tnhanced symmetry for electroweak precision measure-
s.

straightforward.

From this point on, the discussion of enhanced symmetry,
parity degeneracy, and the estimate of $iparameter pro-
ceeds as in the previous section. The choice of parameters We thank Sekhar Chivukula for a careful reading of this
s=Tc andh=r=5>c? leads to the enhanced symmetry of manuscript. We also thank Joseph Schechter, Adriano Na-
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APPENDIX: EXPUC(I;TEEEQIAI-%QLEN OF THE SP (4) iz 5t o ). =45, (A6)
2V2
We conveniently represent the generators of8lh the q
following way: an
A B - [cC D*=7% D°=ir. (A7)
Sa:(BT _AT)- = DT cT/ (Al)

The generators are normalized as follows:
whereA is Hermitian,C is Hermitian and traceles=B"
andD=—DT. The{S} are also a representation of the($p

1 .
achy — ayby1_ — <ab iQal—
generators since they obey the relatiShE+ES=0. We TS =T X"X"]= 2 0% TIX'S=0. (A8)

define
L . The SY ,r(2) generators are readily identified as
T 0
azﬁ( 0 _aT|s a=1,2,3,4. (A2) Sy xa
L= , (A9)
Fora=1,2,3 we have the standard Pauli matrices, while for V2
a=4 we define 7"=1. These are the generators for i et
SUy(2)xXUy(1). Fora=5,...,10, Razu' (A10)
! 0 B 5,...,10 A3 *
AL A A3 anda=1.23.
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