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Bounds on heavy-to-heavy mesonic form factors
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We provide upper and lower bounds on the form factorsBfes D,D* by utilizing inclusive heavy quark
effective theory sum rules. These bounds are calculated to leading ordej-jf¥mg andas. The O(ag,BO)
corrections to the bounds at zero recoil are also presented. We compare our bounds with some of the form
factor models used in the literature. All the models we investigate fail to fall within the bounds for the
combination of form factors?—1)/(4w)| whas+ hagl?. [S0556-282(199)05221-

PACS numbegps): 11.55.Hx

I. INTRODUCTION This paper is organized as follows. In Sec. Il, we review

the derivation of the sum rules used to obtain the model-

Currently, heavy-to-heavy form factors are mainly de-independent bounds on form factors defined in Sec. IIl. Sec-
rived from models. These models are used to compute botion 11 also gives the proper combinations of structure func-

semileptonic decay8—D™)ev and, using factorization, tions used later for the bounds on each of the form factors. In

nonleptonic decayB— D)z These models are then often sec. |v, we perform the tree level nonperturbative expansion

used in Monte Carlo simulations to predict production rates;nq first order QCD perturbative calculation to eliminate the

and energy spectra, which in turn feeds into studies of backading uncertainty in the bounds. Section V provides the
grounds and efficiencies in many experimental settings. Ay, ,nqs on individual form factors explicitly with the struc-

Incorrect energy spept_rum_predlctlo_n could resu_lt In Incorrect, o fnctions given in the Appendix, and discusses various
backgrounds and efficiencies, leading to errors in experimen-

tal numbers. Therefore constraining the models is very im_mfluences of the parameters appearing in the expansion of
portant. Model independent information on the form factorsth_e bounds. Somg popular form fa‘;tor models_ are compared
can be obtained from the heavy quark effective theoryVith our bounds in Sec. VI. Orde#ss, corrections to the
(HQET). HQET [1-3] vastly simplifies the nonperturbative Pounds at zero recoil are computed in Sec. VII. The conclu-
calculation of form factors by relating all of them in the Sion of our work is summarized in Sec. VIII. The Appendix
infinite mass limit to a single universal Isgur-Wise function lists the perturbative corrections to the structure functions.
¢, which describes the nonperturbative physics of the light

degrees of freedom in the heavy mesons. This function is

normalized to unity at zero recoil, where the heavy meson in Il. REVIEW OF SUM RULES

the final state has the same velocity as the initial one. None-

theless, HQET does not predict the explicit form of the  The sum rules are derived by relating the inclusive decay

Isgur-Wise function. rate, calculated using the operator product expan&iiPe)
Since it is not possible to calculate heavy-to-heavy formgng perturbative QCD, to the sum of exclusive decay rates.

factors_from first principles, the next best thmg to do is to| the following, we follow[6,8] in the derivation of the

theoretically bound therh.A set of model independent bounds.

bounds on form factors has been deriyB], and can serve First, consider the time ordered product of two currents

as a consistency condition for phenomenological mOdelsoetweenB mesons in the momentum space:
Bounds toO(1/mg) at arbitrary momentum transfer had '

been presented if6,7] for heavy-to-heavy and heavy-to-

light form factors. However, as noted [6—8|, the lower i

bound is sensitive to perturbative corrections, and the leading Tw:_f d4xe*iq-x<B(V)|T[JMT(X)JV(O)]| B(v))
order in a4 correction should be included to provide more 2Mg

rgliable bounds_. Therefore, in th'is work we present an anal_y— = gM T VAV T+ GﬂvaﬁqaleT3+qﬂqu4
sis of the leading QCD corrections on the bou@s of indi-
vidual heavy-to-heavy, more specificalB— D ™)l v, form +(ghvP+vEgh)Ts, 1)

factors. The information of these bounds will help us rule out

unrealistic models, and may in turn be applied to certain
decay amplitudes that are of interest. whereJ* is ab—c axial vector or vector current. The time

ordered product can be expressed as a sum over hadronic or
partonic intermediate states. The sum over hadronic states

*Email address: chengwei@andrew.cmu.edu includes the matrix elemegH|J|B), whereH =D,D* is the

"Email address: adaml@cmuhep2.phys.cmu.edu final state heavy meson of interest. After inserting a com-

ISee, however4] for model independent parametrizations of the plete set of states and contracting with four-vecafs, ,
form factors. one obtains
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J|B)|?
T(e)= 51 2 (2m)*%(px+q —|< la E|_>|6
1 - [(Bla-dx)?
*ons 2 2P0 TS v
2

where T(e)= a T*"a,, e=Mg—Ey—v-q, and the sum
over X mcludes the usuali®p/2E, for each particle in the
stateX. We choose to work in the rest frame of tBeneson,
p=Mpgv, with the z axis pointing in the direction otﬁ) We
will hold g5 fixed while analytically continuing - q to the
complex plane.Ey= \/M2H+q32 is the H meson energy.
There are two cuts in the complexplane, 0< e<«, corre-
sponding to the decay procels-c, and —o<e<—2E,,

corresponding to twd quarks and aTquark in the final

state. The second cut will not be important for our discus-

sion.
The integral overe of the time ordered produci(e),

PHYSICAL REVIEW D 60 116002

whereE; denotes the first excited state that is more massive
than theH meson. Here the validity of the inequality relies
on the assumption that multiparticle final states with less
energy thark; contribute negligibly. This assumption is true
in large N, and is also confirmed by current experimental
data.

A lower bound can be formed by combining E¢3) and
(4) to be

[(H(v")[a-J[B(v))|?
AM gE,

_ 1
/z—ﬂdeEQ(A—E)T(G)

X|1-—

€
el ©

Therefore, we find the bounds

€
deﬂ( - e)T(e)( 1- E- EH)

2

_KH(v)la-9[B)I?
AMgE,

times a weight functione"W,(¢), can be computed pertur-
batively in QCD[6,8]. For simplicity, we pick the weight

function W, (€) = 6(A — €), which corresponds to summing
over all hadronic resonances up to the excitation enérgy
with equal weight. Relating the integral with the hard cutoff As emphasized i8], the upper bound is essentially model

to the exclusive states requires local duality at the skala independent while the lower bound relies on the assumption

must be chosen large enough so that the structure functiorsbout the final state spectrum. These bounds can be used for

deB( —€)T(e). (6)

27T

can be calculated perturbatively.
Taking the zeroth moment df(e),

1
ﬁdeEG(A— €)T(e)

(X|a-J|B)|?

=2 0(Ex—En—8)(2m) 0% (at P~ 5

_ [(H(v)[a-J[B(v))[?

AMGE,, @

gives an upper bound on the matrix element.
The first moment ofl (¢) gives

—f deeO(A—¢€)T(€)

=X§H 0(A—Ex+Ep)(Ex—Ew)(2m)38%(py+0)

(X|]a-J[B)[?
AMgEy

;(El—EH)X;H 0(A—Ex+Eyp)

(X]a-J[B)|?

X (27 (Bt Dy

(4)

the decays at arbitrary momentum transjérand are good

for both heavy mesons and baryorifor baryons, a spin

sum[M/(2J+1)]Zss needs to be included in front of the
bounded factoy.

Since 1/€;—Ey)~ 1/AQCD, the lower bounds will be
limited to first order in Ihg. The upper bounds, on the
other hand, can be calculated to ordemglwnhout addi-
tional HQET parameters.

Ill. HADRONIC SIDE

The hadronic matrix elements for the semi-leptonic decay
of aB meson into a pseudoscalar me$dor a vector meson
D* may be parametrized as

D(v")[V¥B(v))
VMpMg
(D*(v',&)|V¥[B(p))
VMp«Mg
(D*(v',e)|A¥[B(v))

IMp«Mg

=h,(w)(v+Vv)*+h_(w)(v—Vv')*,

=ihy(w)e* " “Pelv vy,

= hAl(w)(w-I— 1)g*#

—[ha(@)V*+hp (@)V “]v-e*.

)

v’ is the velocity of the final state meson, and the variable
w=v-Vv' is a measure of the recoil. One may relat¢o the
momentum transfeg? by w=(M3+MZ—qg?)/(2MgMy).
Therefore, with a proper choice of the currelt and the

!
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four vectora*, one may readily select the form factor of 1
interest and the corresponding bounds. In the heavy quark
symmetry limit, these form factors satisfy the relati¢hs?] 0.9
£)
h+(w)=hv(w)=hA1(w)=hAg(w)Zf(w), =08
E
h_(w)=ha,(w)=0. (8) =07
3

o
=y

To boundh,_ (or hy), one may choosé”=A* (or V#)
anda*=(0,1,0,0). Then the factor to be bounded is

05 ™ ros LTI 2 s

(w+1)2 ) w’—1 )

1o |ha(@)]* or ( 1o Ihv(@)] FIG. 1. Upper and lower bounds om - 1)2|h, ()|2/(4e).
The thick solid (dotted curves are the upper and lower bounds
including perturbative corrections for HQET parameter(ggtde-
scribed in the text, and =1 GeV (2 GeV). The dashed curves are
the bounds without perturbative corrections, also for HQET param-
eter set(A). The thin solid curves show the dependenceAoand
N1, Using parameter setB) and(C), with A=1 GeV.

and the sum rule used to boundTiggpe=T1ihadronic- The
corresponding first excited state more massive thanthat
contributes to the sum rule is td€=1" state, i.eD;, since
scalars do not contribute ;.

For h,, one may take J*=V* and a*=(1
+Ep/Mp,0,0-0g3/Mp). Then the factor to be bounded is
[(w+1))w]|h,(w)|? and the combination of structure
functions used in the bounds is As a result of the heavy quark masses appearing in the

problem, both the strong coupling constan{mg) (~0.3
at 2 GeV) andAgcp/mg will be good expansion param-

T(e)=—2(1+ )T+ (1+ 0)?T,+(Mg—Mp—e)? eters. Sincew is never very far from 1, expanding in—1 is

) ) also possible. We will keep terms up to ordeg(w—1),
X(1+w)Ty+2(Mg=Mp—€)(1+w)Ts. (9 gropping terms of ordem(w—1)2, a2, Adcymd and
asAqcp/Mg -
The structure functions can be decomposed as

IV. PARTONIC SIDE

Sincea*=v#+v #, the first excited resonance that can con-
tribute in this case i9;, due to thee“**# structure of the T =Tm T, (12)
D* form factor.

Similarly, a convenient choice to isolake is to choose 02
Jt=V* anda*=(1—-Ep/Mp,0,005/Mp). Thus, I

=l
—
w

T(e)=—2(1—w)T;+(1— 0)?T,+(Mg+Mp—e¢)?
X(1— w)?T4+2(Mg+Mp—e)(1—w)?Ts (10)

boundy (w—1)% w]|h_(w)|2. D; would be the first excited
resonance for the same reason as in the case of

It is impossible to single out,, andh,, individually by 0.05
any choice ofa*. One good choice is to tak#‘=A* and
a#=(Ep/Mp,0,0—qg3/Mp). Then

(@™-1) Ihy/(4w)
(=]

1 1.05 1 L1512 125

T(e)=—Ti;+w?Ty+(Mgw—M§—€)’T
(€) 1t Tt (Mo =€) T FIG. 2. Upper and lower bounds omf—1)/hy(w)|%(4w).

+20(Mgw—ME—€)Ts (1D The thick solid(dotted curves are the bounds with perturbative
corrections for HQET parameter set(A), and A
. S . 2 =1 GeV (2 GeV). The dashed curves are the bounds without per-
s the Cozmbmatl(_)n for 'boundln@(w l)/4w]|whA2(w) _ turbative corrections, also for HQET parameter @e}. The thin
+ hAa(w)l - The first excited resonance that would contrib- solid curves show the dependence Anmand\,, using parameter

ute in this case would be the unobseni2§. sets(B) and(C), with A=1 GeV.
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where the ternT;"™ contains the tree andl ocp/Mg contri- s very difficult to measure the parameteksand \; indi-

butions to the structure function, which has previously beeridually, but a certain linear combination is much better de-
calculated9—-11]. For these nonperturbative corrections, wetermined[13]. We will use three different parameter sets to
kee_zr%th;a fl:j”w der()jendence _ <tof b . show the dependence oh and N (A) A=0.4 GeV and
e leading ordeg corrections consist of bremsstra ——02 GeV, (B) A=0.3 GeV andh,=—0.1 Ge\V’,
lung radiation of a gluon from the heavy quarks and one Ioop 7
virtual corrections. We expand to first orderdn-1, defin- and(C) A=05 GeV and\,=—0.3 zGe S
ing The sum rule for boundinge{+ 1)?|h,_ (w)|?/(4w) uses
1
T, with the axial-axial current. The upper bound is simply
the zeroth moment of ;, which is, by Eq.(6),

To= %[Uﬁ(w—l)vi]. (13

(a)-i-l)2

2_1(0)AA (0)AA
The final results for the functionid; andV; are presented in |h ) P=ITP AT (16)

the Appendix. The perturbative correctionsTg were pre-
viously calculated if12,8], and agree with the results found
here.
We define the moments of the structure functions as  The variablex used for regularizing infrared divergences in
the kinematic region away from zero recoil disappears in the
final result. The first moment of; is needed for the lower

1 s
o dee™T, —I(“)+A(”) (14) bound, which is
2
where (w+1) Iha (a) |2>|(0)AA+A(O)AA
Ay
(M= i deenTYM 1 (DAA L A(1)AA
i o i = (I AT).

Ep,~Ep

1 . 1
Ai(“)=2—wiJ dee" Ui+ (0= 1)V]. a7

(15

The upper and lower bounds are shown in Fig.Ror this
section, the dotted curves are the bounds without perturba-
tive corrections using sefA) above, while the solid and
dashed curves represent the bounds including the perturba-
tive corrections withA=1 GeV andA=2 GeV, respec-
ively. We have shown the bounds in the kinematic range 1
isosL. 25, where the higher order correctien(w—1)>2
should be negligible. The thin solid curves use the other
HQET parameter set®) and(C).

A similar set of bounds for ¢?—1)|hy(w)|?/(4w) can
be obtained readily by changingA (axial-axial currentsto
VV (vector-vector currenjsin the above formulas. The
bounds in this case are shown in Fig. 2. The tree level
bounds go to zero at zero recoil because ofa#hel factor.

The bounds on the other form factors involve higher mo-

To form the bounds, one just takes the proper moments cments of T, and Ts. For h, the upper bound is ¢
the structure functions to form the combination required in+1)%/h, ()| o<h4PP®", where

The moments oTl’m can be found ifh5,6]. The moments for
the perturbative corrections can be straightforwardly ob-
tained from the functions in the Appendix. One thing to be
noted is that the integration variabkein the bounds was
defined in terms of hadronic variables. So when relating t
the partonic computations, the corresponding integratio
variable should be changed to the one defined by partonic
variables, namelyg,=my—m.—v-q. The relation between
them ise,= €, + 6, with 6=E.—Ey+Mg—m; andE. be-
ing the energy of the quark. We can now use these defini-
tions to calculate the bounds on the form factors.

V. BOUNDS ON INDIVIDUAL FORM FACTORS

the sum rules given in Sec. lll. Corrections of order

AdcdMy, aZ, ashgep/Mg, and as(g)—l)z should be

small and have been neglected. To this OrderA%D/mQ “For all the figures in this section we take,=4.8 GeV, m,
corrections will depend on 3 HQET parameté&rs A, and =1.4 GeV, a;=0.3 (corresponding to a scale of about 2 GeV),

\,. From the measured mass differenbz« —Mpg, a very  and\,=0.12 Ge\%. The values ofA and\; are discussed in the
accurate value ok, can be determinedy,,=0.12 Ge\f. It  text.
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2
hipper:(l_l_ w)z _m I g-O)VV_'_ I (ZO)VV+ I SZ)VV_ 2(M B— M D) | Ell)VV_i_(M B— M D)2| ZO)VV_i_ Z(M B— M D)I(SO)VV_ 2| (51)VV

2
_mAg_O)VV+ A(20)VV+ ASZ)VV_ Z(M B— M D)Agll)vv-‘r(MB_ M D)ZASO)VV_,’_ 2(MB_ MD)A(50)VV_ 2A(51)VV )

(18)
The lower bound is ¢ +1)?|h, ()| @=h'""®" where

(1-1-(1))2
MDl—MD

|
hfwer: htipper_ _ 1+ - Ig-l)VV_’_ I (21)VV+ | 23)VV_ 2(M B— M D)|E12)VV+ (M B— M D)2| Ell)VV_,’_ Z(M B— M D) I (Sl)VV

2
_2|'(52)VV_mAgl)VV_l_A(Zl)VV_I_AES)VV_Z(MB_ Mp) AV (Mg—Mp)2ARYV+ 2(Mg— Mp) ALYV

_ 2A(52)VV} . (19

They are plotted in Fig. 3. The perturbative physics pusheghis case, both the upper and lower bounds at the tree level
the bounds up from the tree level bounds in the region neaare identically zero. The perturbative corrections push both
the maximal momentum transfer while drags them down abounds away from zero. We still plot these negative lower
large recoil. Changing from 1 GeV to 2 GeV only slightly bounding curves for reference even though the real lower
loosens both bounds. bounds should be zero since the factors we are bounding are
Without explicitly writing out the bounds on «f all positive definite. Using\ =2GeV in the calculation wid-
~1)3h_(w)|? w, we simply state that they can be obtained€ns the upper bound by more than a factor of 2.
from Eq.(18) and (19) by (1) replacing each (+ ) factor Similarly, the upper bound for the combination
by (1— ) and(2) substitutingMg—Mp by Mg+Mp. The ~ @ha,+ha is (0?—1)[wha, (@) +ha (0)[?/(40)<hi"P,
bounds on this form factor are shown in Fig. 4. Notice that inwhere

4 N -
<
~ 4
NN R .
NS R _ 20002
§ ":_'. e a
35 AN & 1 <
= N "3:,... S
=N N ey —_— g
= >~ O p =
g N 1 0.001
~ -~ oy
3 r R
~ ~
25 L N e K S R B
| 1.05 1.1 1.15 1.2 1.25 1 1.05 1.1 1.15 1.2 1.25
o) o
FIG. 3. Upper and lower bounds om ¢ 1)?|h, ()|% ®, The FIG. 4. Upper and lower bounds o ¢ 1)?|h_(w)|% . The

thick solid (dotted curves are the bounds with perturbative correc-thick solid (dotted curves are the bounds with perturbative correc-
tions for HQET parameter séf\), andA=1GeV (2 GeV). The tions for HQET parameter séf\), andA=1 GeV (2 GeV). The
dashed curves are the bounds without perturbative corrections, alstashed curves are the bounds without perturbative corrections, also
for HQET parameter séf\). The thin solid curves show the depen- for HQET parameter sé€f\). The thin solid curves show the depen-
dence onA and \4, using parameter set®) and (C), with A dence onA and \q, using parameter set®) and (C), with A

=1 GeV. =1 GeV.
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haPPe'= —1 A4 021 P4 (Mg —Mpx) 1P =20 (Mg — Mp) 1 P4 0?1 P4 20(Mgo — Mps) 1944
— 20?1 A= AL W2 ADPAL (Mg — Mps ) 2ADMA = 20(Mgw — Mpx ) A{AA+ 02 ARAA
+20(Mgw—Mps ) ADAA— 2, 2ALDAA (20)
while the lower bound is ¢*—1)|whp (@) +ha, (w)|2/(4w)>hIOWer where
1
hlower hupper v By {_lg_l)AA"F wZI(zl)AA+(MBw_MD*)Zlgl)AA_zw(MBw_MD*)|512)AA+ w2|g3)AA
D’S D*
+20(Mgw—Mps )| VAR 2,2 @AA_ ADAAL ( ZAMAAL (Mpw—Mp« ) 2ADAM - 20 (Mgw— Mp« ) APAA

+ AP 20(Mgw— Mpx ) ALDAA— 2,2 ALIAAL (21)

Figure 5 shows these bounds. The perturbative corrections (2) light-front model[16,17),
drive the lower bound negative. Again, these lower bounding (3) Bauer-Stech-Wirbe(BSW) II model [18-20,

curves are plotted for reference purposes ofiljhe lower (4) Neubert-StecfNS) model|[21],
bound withA=2 GeV is below the range plotted in this  (5) COQM Model[22].
graph) The ISGW2 model is the updated version of the original

At O(Aqcp/Mg), the upper bounds will not depend upon ISGW model which incorporates the constraints of heavy
N1 and \,. However, since 1Nlp;—Mp)~1/Aqcp they  quark symmetry and relativistic corrections. The BSW I
will affect the lower bounds. It is possible to obtain the uppermodel, derived from the BSW | model by improving the pole
bounds to ordeO(A2 D/m ), since at this order there are structure of form factors, is considered with updated pole
no new parameters in the OPE. These corrections onljnassed23]. The NS model was proposed as a simplified

slightly modify the above upper bounds, so we do not showalternative to the NRSX mode24] which specifies the
them here. Isgur-Wise function by several strong assumptions such as

the pole structure and the condition for the derivative of the
V1. COMPARISON WITH MODELS single-pole form factor. The form factors are then obtained
by employing the heavy quark symmetry relations. The
We choose from the literature the following commonly COQM model uses a covariant oscillator quark model to
used form factor models for comparison with our bounds: calculate the Isgur-Wise function, and then uses heavy quark
(1) Isgur-Scora-Grinstein-WisdSGW2) Model[14,15,  symmetry to relate it to the form factors.
Figures 6—10 are plots for the different form factors from

0.04
1
3 0.02
3 0.9
_2 —_
= 3
+
2 0 Zos
= L
] <
= =
g =07
8002 B
0.6
e T v~ R T R N T SR - R X »
n) P P M Loy L
05 05 L1 L1512 125
@

FIG. 5. Upper and lower bounds onw{-1)wha ()
+hp,(0)]?/(4w). The thick solid(dotted curves are the bounds FIG. 6. The model values ofe(+1)’|hs (w)|%(4w) along
with perturbative corrections for HQET parameter 68}, andA  wjith the corresponding bounds for comparison. The thick solid lines
=1 GeV (2 GeV). The dashed curves are the bounds without perare the upper and lower bounds. The thin solid curve is the ISGW2
turbative corrections, also for HQET parameter @t The thin  model. The long dashed curve is the LF model, and the short dashed
solid curves show the dependence Anand X\, using parameter curve is the BSW Il model. The dot-dashed curve is the NS model.
sets(B) and(C), with A=1 GeV. The dotted curve is the COQM model.
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ots | ] 45 ;
E)
= o1
2
=
+
<
I
£ 0.05
K
0
12 1.25 1 105 L1 L5 12 125
®
_FIG. 7. The model values Of"(z_l)|whA2,+hAa|2/(4w) along FIG. 9. The model values ofa(+1)2|h,|%w along with the
with the corresponding bounds for comparison. The curves are 18;qresponding bounds for comparison. The curves are labeled the
beled the same as in Fig. 6. same as in Fig. 6.

the models and the bounding curves. In plotting these fig-
ures, we usedn,=4.8 GeV,m,=1.4 GeV,a,=0.3 (cor- 'ar below the lower bound at large. .
responding to a scale of about 2 GeW,=0.12 GeV, In Fig. 7, t2he ISGW2 and I;IS models lie abovg the upper
A=1 GeV and current PDG data on heavy meson masseB0UNd for @°—1)|wha,+hy [*/(4w) at large recoil, while
As mentioned above, whila, can be measured from the the other models are closer to our bounds. Berl GeV
mass differencé/l g« — Mg to a high accuracyh, andA are they are above our bounds for most of the k|nemat'|c'range. If
not easy to obtain experimentally. Here we pick the param¥'¢ takeA=2 GeV, however, th_ey would be within our
. - bounds.(ISGW2 and NS would still be too large.
eter set (A) discussed above,A=0.4 GeV, \;= Only the ISGW2 model predicts a curve near our bounds
-0.2 Ge\; This Uncertainty in)\l and A will S“ghtly for ((1)2_1)|hv|2/(4(1)), shown in F|g 87 the rest are too
modify our bounds to the order and kinematic range we argmall. The light-front and BSW Il models will be between
working, as seen from Figs. 1-5. our bounds when the scale is set\at 2 GeV, but the NS
Figure 6 shows the model values of w( and COQM models still fall below the lower bound.
+1)?lha (w)[?/(4w) along with the corresponding bounds  As shown in Fig. 9, the ISGW2 model agrees with our
for comparison. The first three models have curves fallingoounds for @+ 1)?|h. |/ very well. For the same reason
within or close to the perturbative bounds, while the NS andas in Fig. 6, the NS and COQM models start from the posi-
COQM models have curves slightly off the bounds near zerdion predicted by heavy quark symmetry at zero recoil, with-
recoil because they are models designed for the Isgur-Wiseut perturbative corrections. The light-front, NS, and COQM
function without taking into account the perturbative correc-models stay below the lower bound, and the BSW Il model
tions. The COQM model, however, has a curve which fallsstarts above the bounds at=1, then cross the bounds and

02 T

0.15
_ 80.002
S r:
3 =
=01 2
= )
0.001
g
0.05
L 4 1 0
oS N USRS T S [N S S SRS B S S PSS Y S ST TSSO S NS SO ST S NN SO S R
0 1 1.05 1.1 1.15 1.2 1.25 1 1.65 1‘.1 1.‘15 1[2 1.25
® ®
FIG. 8. The model values ofu?>— 1)|hy|%/(4w) along with the FIG. 10. The model values ofu(— 1)2|h_|% w along with the
corresponding bounds for comparison. The curves are labeled tt@rresponding bounds for comparison. The curves are labeled the
same as in Fig. 6. same as in Fig. 6.
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TABLE I. Order as and a8, corrections to the moments of the
structure functions at zero recoil, evaluated for1,2 GeV. For

this table,as=0.3, andn;=4.

PHYSICAL REVIEW D 60 116002

TABLE II. Bound on form factors at zero recoil, evaluated with
A=1 GeV.

Tree level O(as)  O(a?Bo)
A=1 GeV A=2 GeV
O(a)  O(afpo) O(a)  O(a3Bo)  ypper @)y . oo oo oote
pper— ——1ha,|
ALAA -0.071 0.016 -0.059 0.005 (0+1)2 1 0084  0.006
ADAA 0.0053 0.0040 0.024 0.018  Lower [ha |2
ALIAA -0.13 0.21 -0.042 0.22 @ '
ADAA 0.086 0.057 0.21 0.15 w2—1 0 0.011 0.007
ALAA -0.015 0.003 -0.013 -0.0004  Upper— ——[wh,,+ ha,l?
ADAA 0.0023 0.0014 0.0054 0.0036 i1 0 0005  -0.001
ALIAA 0.032 -0.033 0.015 0034 Lower ——[why,+h, |
AIAA -0.017 -0.011 -0.041 -0.029 @
APV 0.0063 0.0042 0.015 0.011 Upper‘*’L Ihy2 0 0.006  0.004
ALV 0.0038 0.0022 0.017 0.011 4o
ALY 0.26 0.13 0.32 0.24 . w?-1 o2 0 -0.003  -0.001
ADVY 0.062 0.042 0.14 0.10 ower —==In
APV -0.0060 0.0012 -0.0048 0.0002
AV 00014 0.0009 00032 00022  (ypper®t 1 Ih.|? 4 020 0.0
ALY -0.022 -0.024 -0.034 -0.037
AV -0.012 -0.008 -0.029 0021 | o, 4 0.19 -0.06
ower [hy]
enter the region under the lower bound. At large recaill, theU (0—1)? ho|2 0 0 0
ISGW2, BSW II, and NS model predictions would lie within pper—, [h-|
the bounds for most of the kinematic range with a larger (0—1)2 0 0 0
value forA. Lower ———1h_|?
Figure 10 shows the curves fowt 1)?|h_|%/w, where
most models are consistent with our bounds within the kine-
matic range of interest. The curve for the COQM model is )2
zero, since it uses heavy quark symmetry, which gives v — as( u
h_(w)=0 in the infinite masstmit, ’ o (m)=ag(m)tz =5 —Bot . @3

The scale we choose to plot these diagramsAis

=1 GeV, since this gives tighter bounds. Had we chosen . . .
2 GeV as our working scale, the bounds would be much Iesg\/e numerically calculate these corrections at zero recoil. In

stringent and thus would accommodate the models whicﬁlnalogy to Eq(14), we write the corrections to the moments

originally fell slightly outside our bounds in these diagrams;.Of the structure as
VIl. ORDER a?8, CORRECTIONS AT ZERO RECOIL 1

sho 5 f dee"T,=1M+ A" (24)
By using the techniques introduced in REZ5], we can &
calculate thea?B, contribution to the structure functions.
Typically, these corrections are about 90% of the ffl  whereA!™ now contains both th€©(«s) and theO(a?Bo)
rate, so they can be used as a rough estimate of the next ordssntributions to the'" moment of tha'" structure function
corrections. Th&)(aﬁﬂo) correction to the structure func- at zero recoil. The results for th@i(”)’s for the zeroth and

2 . .
tions, T/"*"°, can be related to th®(a) correction, T (\), ?)r(st zn}gor)r]entstgrt)e Sresented mftTabIIe |, dor-1,2 c?el\l/. Qre
calculated with a aluon mass. as(25 asBo) contributions are often large, especially
9 9 as|29] =1 GeV. This may be an indication that we need to go to

) a(V)(A) e A2 largerA to get a reliable perturpatiye expansion. .
TP g = [ | T*(\)— TY(0) |, If we look at the actual combination of structure functions
! 4w Jo z2 | ! A2+AZ that appear in our bounds, the situation is more promising.

(220 The O(aﬁﬂo) corrections to the upper and lower bounds on
W _ . the form factors at zero recoil are shown in Table II for
where ag™ is the strong coupling constant evaluated in the=1 Gev. In this case, th®(a’g) corrections tend to be
V scheme” [26], and is related to the modified minimal rather small, so it seems that the perturbative expansion for
subtraction (M$ coupling constanig by the bounds is under control.
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VIII. DISCUSSION observed that th®(«2,) corrections to the bounds at zero

As discussed earlier, our bounds on the form factors aréeco'I are small fO'A.: 1 .Gek\‘/., Wh'cr} In turn suggests ttat a”
derived to order\ ocp/Mg and contain leading perturbative pertgrbatlve eXpa”S';’” n this pr_ob €m seems _to work wetl,
QCD corrections. They are constructed to be model indeperprovIdecj tzhat thé)(_“sﬁ()) corrections dominate in the com-
dent and can be used to test various model predictions for tHé€t€ O(as) corrections. _ _ _
form factors. Furthermore, they may be used to bound inclu- Among the models we considered in this work, the
sive or exclusive decay rates. The validity of the lower!SGW2, LF, and BSW Il models “pass” most of the quali-
bounds requires the extra assumption of negligible multiparfications withA=2 GeV. For smaller values af, ISGW2
ticle production in the decays. This assumption is rathe®€€ms to do the best. However, all models fail, over essen-
mild, since it is true in the larghl, limit and is supported by t|ally the whole kinematic range, for the form factor combi-
current experimental data. The upper bound is rigoroushation @*—1)|why +hy [?/4w, and thus the models should
valid without this extra assumption. Therefore, any signifi-be modified to satisfy this bound.
cant deviation of the phenomenological form factor beyond

the upper bound indicates the need for some modification of ACKNOWLEDGMENTS
the model. In general, our bounds are stricter and more ac-
curate near zero recoil. The authors would like to thank Fred Gilman and Ira

The bounds become much less stringent whers in-  Rothstein for useful discussions. This work was supported in
creased. Therefore, we should use the smallest valdefof ~ part by the Department of Energy under Grant No. DE-
which there is a reasonable perturbative expansion. We ald6G02-91ER40682.

APPENDIX: RADIATIVE CORRECTIONS TO THE STRUCTURE FUNCTIONS

The structure functions from perturbative corrections are written in the gt (as/7)[ U7+ (0 —1)V;7] for theith
structure function and curredt my, is the mass of the quark,m. is the mass of the quark,z=m./m,,, o=v-v’, and\ is
the mass of the gluon used for infrared regularization. We have takei wherever possible:

(et 2myz)[26°+4mpez-+ m2(3—2z+37%)]

UVV

1 , (A1)

Imz(e+myz)°

z

4 N 1+z
45my(e+myz)°(e+2myz)

3 1-z

VY= log(2) | 5(€) + [10e+ 58my,e°z— mie(15+ 182— 133?)

+mie®z(35— 94z+ 1512%) + 2mie?z2(135— 1102+ 472%) + 8mp ez°(45— 31z+ 52%) + 80m§(1—2) 2*], (A2)

w8 41+2)
Uz'= [32+3(1—z)z|09(z)

o(€)— [€5—3m,ed(1—22) + m2e*(28— 132+ 137)

45m2(e+myz)®
—2m3e3(23—59z+ 1122 — 62°) — 2mie?z(63— 962+ 1022 — 22°) — Ampez?(27— 34z+ 27%) — 40mi(1—2)2%],
(A3)

2
315myz(e+myz)’(e+2myz)

2(19-62z+197%) 4(1—-3z+97z°—32°)
27(1-2)%z 9(1-2)°%z

VvV

2

o(e)—

)

X [7€822+ €'my(280+ 472%) + €m2z(2520- 1962 — 2672+ 1312°) + €°m37%(10444- 12162 — 1862%+ 20%°)

| 16|
09(z)+ 979

+26*'mpz3(12060- 15372— 23322+ 10%°%) + 2 mp z*(15960- 1905 — 27722+ 702°)

16\ e?—\?

96z

+4€°miz5(6061— 550z — 9672+ 10z2%) + 8em/z8(1306- 64z— 172%) + 56mSz’(33+22) ]+

N 82 \/e2—\?

(A4)
9¢*z
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2

VV_ +
3mi(1-2)z 3m3(1-2)z

4=

log(2) | 5(e€)

2[4€*+ myed(11+ 162) + m2e?z(21+ 262) + 2miez?(9+ 10z) + 20m;jz°]
+ L

(A5)
45m2(e+myz)®
2(2—z+57%) 2(1-2z+37° 4z
W=— ( 5 ) A 5 )Iog(z) 8(e)— ————————[14e>+ mpe*(77+ 62z) + mez(125+ 12%)
omg(1-2)%z  3mi(1-2)%z 315m,(e+myz)’
+mie?z?(135+ 143) + mie(323— 282) 28+ 56mpz*], (AB)
3-5z 1-3272
uyV= + log(z) | 8(€) — ———————[2€>—2mye*(2—52) + m2e3(57— 222+ 2172
5 3mb(1_Z)Z 3mb(1—z)22 g( ) ( ) 45n§(€+mb2)5[ b ( ) b ( )
+mie?z(147— 462+ 232%) + 2myez?(63— 182+ 57%) + 20mp(3—2) 2°], (A7)
v | 13-93z+6972-257° 5—14z+4272—30z%+92* 8Ve?—\?  ANZJe?—\?
Vg '=|— 3 + log(z) — log| —| |d(€e)— > -
27my(1—2)°%z amy(1—2)*z Imyz "\ my 9¢e’myz 9e*myz

2

+ [140¢”+ 2€%myz(630— 72+ %) + 7€°m3z2(757— 162+ 32?)
315myz(e+myz) ' (e+2myz)

+ e*miz3(12339- 3882+ 852%) + €°miz*(16345- 580z+ 1317%) + 2mpz°(12715- 4362+ 517%)

+2emiz8(2963- 14%— 77%) + 28m/(z’ (37+2)]. (A8)
16 2(1+z e(e+2myz)[2€>+ 4emyz+m2(3+ 22+ 37%)
u’;A=—[—+ ( )Iog(z) S(e)+ 2l 0 1 (A9)
3 1-z ImZ(e+myz)®
an | 4(11-52z+117%) 7-3z+452°—97° 16 [\ 1 s o4 )
Vit= 5 - 3 log(z)+ —log| —| | 8(€) + —5[106 z—2€e"m,(40—19z°)
27(1-2) 9(1-2) 9 My 45my(e+myz)
16ye—\?
— €®m2z(415+ 382— 572%) — ?m3z?(735+ 110z— 372%) — 4emyz3(125+ 222— 57%) — 40mp 24 (4+ 2) |+ oz
€
8N\2\Je2—\
N o (A10)
4  4(1+2)
USA=—| =+ —————10g(2) | 8(€) - ————[€®—3°my(1—22) + *m?(28— 172+ 1372
2 z 32(1_2) g( ) ( ) 451]%(6+me)5[ b( ) b( )
—2e°m(23—53z+ 1972%— 62°) — 2€?myz(75— 782+ 2022 — 22°) — 4empz?(39— 282+ 47%) — 40m(1—2) 2°],
(A11)
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2
315myz(e+myz)’(e+2m,2)

AA

2(43—-110z+4372%) 4(1—3z—922+37%)
2 = -

27(1-2)%z 9(1-2)3%z
X[7€82%+ €'my(280+ 472%) + €¥mz(2520- 1962+ 272+ 1312%) + €>mz?(10444- 1048& + 182°+ 20%°)

o(€)—

| 16I N
0g(z)+ 9 og Hb

+2e*mpz3(12312- 106%+ 2972+ 1092°%) + 2€3myz*(17028- 10772+ 132+ 702°) + 4€?miz®

16\e’—\? . 8A\2\e2—\?
2 1

X (6601— 316z — 3072+ 102%) + 8em/z®(1282- 58z— 1372%) + 56m>z (33+22) ]+ 5 oc
€“Z €Z

(A12)

2(1+32) 2(1-52)

UAA_ _ _
3miz(1-2)2 3miz(1-2)

2=

5100(2) | 6(€)

2[4€*+ € my(11+ 162) + €2m3z( 45+ 262) + 2emiz?(33+ 10z) + 20miz°]
+ L
45m3(e+myz)®

(A13)

[2(6—192— 4622+ 112%) 2(1—T7z+2522—37%)

9miz(1-2)* 3m2z(1—2)°

4z
S(€)— ———————[14e+ €*m,(77+ 622)
315m,(e+myz)’

AA_
V4 -

log(2)

+emiz(377+ 12%) + €2miz?(69%H 14%) + emp( 275— 282) 28+ 56mpz*], (A14)

7-52 (1+4z—32%)

UAA
* |83my(1-2)z 3m,(1-2)%z

[—2€%+2e*my(2—52) — €8m3(57— 10z+ 217?)

log(z) | 8(e)+

45m2(e+myz)®
— €?miz(195— 10z+ 237%) — 2emyz?(111— 62+ 52%) — 20mp(3— 2) %], (A15)

8\e?—\?

962mb2

AA (61— 2257+ 817>—25z%)  (5—26z+90z2— 4223+ 97%) 8 A
Vgh=— - 2 log(z) + ——log| —
27Tmy(1-2)°%z Im,(1—2)%z 9Impz T\ my

4N2\[e2—\? 2
- + [140€”+ 2€%myz(630— 72+ 2%) + 7€°m3z3(757— 4z+ 322)
9¢e*myz 315myz(e+myz)’(e+2myz)

o(e)—

+ *miz3(12843+ 80z+ 852%) + €3myz*(18481+ 24& + 1312%) + €2m;z°(14875+ 322+ 517%)
+2emfz5(2867- 1372— 72%) + 28m[z’(37+ 2)]. (A16)
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