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Static potential in the SU„2…-Higgs model and coupling constant definitions in lattice
and continuum models

F. Csikor, Z. Fodor, P. Hegedu¨s, and A. Piro´th
Institute for Theoretical Physics, Eo¨tvös University, H-1088 Budapest, Hungary

~Received 7 June 1999; published 12 November 1999!

We present a one-loop calculation of the static potential in the SU~2!-Higgs model. The connection to the
coupling constant definition used in lattice simulations is clarified. The consequences in comparing lattice
simulations and perturbative results for finite temperature applications are explored.@S0556-2821~99!02323-1#

PACS number~s!: 11.15.Ha, 12.15.2y
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I. INTRODUCTION

The observed baryon asymmetry of the universe w
eventually determined at the electroweak phase trans
@1#. The most straightforward method to study this pha
transition is to use resummed perturbation theory~see, e.g.,
Refs.@2–4#!. In the low temperature Higgs phase the pert
bative approach is expected to work well; however, it is n
able to describe the high temperature symmetric ph
which has serious infrared problems in perturbation theo
Since the determination of thermodynamical quantities at
critical temperatures is based on the properties of b
phases, non-perturbative techniques are necessary for a q
titative understanding of the phase transition.

One very successful possibility is to construct an effect
three-dimensional theory by using dimensional reducti
which is a perturbative step. The nonperturbative study
carried out in this effective three-dimensional model~see,
e.g., Ref.@5# and references therein!. Analytical estimates are
confirmed by numerical results and relative errors are
lieved to be at the percent level.

Another approach is to use four-dimensional simulatio
The complete lattice analysis of the standard model is
feasible due to the presence of chiral fermions; however,
infrared problems are connected only with the bosonic s
tor. These are the reasons why the problem is usually stu
by simulating the SU~2!-Higgs model on four-dimensiona
lattices, and perturbative steps are used to include the U~1!
gauge group and the fermions. Finite temperature sim
tions are carried out on lattices with volumesLtLs

3 , where
Lt!Ls are the temporal and spatial extensions of the latt
respectively. The lattice spacing is basically fixed by t
number of the lattice points in the temporal direction@Tc
51/(Lta), whereTc is the critical temperature in physica
units#; therefore huge lattices are needed to study the
modes. This problem is particularly severe for Higgs bos
masses around theW mass, for which the phase transition
weak and typical correlation lengths are much larger than
lattice spacing. In this case asymmetric lattice spacings
used, in particular the spatial lattice unit is approximat
four times larger than the temporal one@6#.

Despite the fact that the two approaches~perturbative and
lattice! are systematic and well defined, it is not easy
compare their predictions. The reason for this is that in
tice simulations the gauge coupling constant is determi
0556-2821/99/60~11!/114511~6!/$15.00 60 1145
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from the static potential, whereas in perturbation theory
modified minimal subtraction (MS ) scheme is used. Th
main goal of this paper is to perform as perfect a compari
as possible, by determining theMS gauge coupling con-
stants, which correspond to the different lattice results.1

The paper is organized as follows. Section II contains
one-loop static potential of the SU~2!-Higgs model using the
MS scheme in the Feynman gauge. Section III relates
continuum version of the lattice gauge coupling constan
the MS coupling. In Sec. IV the detailed comparison of la
tice and perturbative predictions are presented. Sectio
summarizes our results.

II. CALCULATION OF THE ONE-LOOP STATIC
POTENTIAL

The one-loop static potential was calculated long ago
quantum chromodynamics@8–10#, and even the full two-
loop result was published recently@11#. The calculation is
based on the same principles and techniques in the cas
the SU~2!-Higgs model. One calculates rectangular Wils
loops of sizer 3t. The logarithm divided by2t gives the
potential at distancer in the t→` limit.

Our calculation was performed in theMS scheme and the
Feynman gauge but the result is gauge independent,
should be for a physical observable. The relevant graphs
shown in Fig. 1. Other graphs, giving vanishing contrib
tions in the Feynman gauge and are not shown in Fig
Solid lines represent the heavy quark~antiquark! propagator,
while wavy lines the vector boson propagator. Extern
heavy quark~antiquark! propagators are not shown in th
figure. The one-loop corrected vector boson propagator c
tains scalar and ghost contributions as well. The result ca
conveniently given in momentum space. One obtains

1During the write-up of our results, prior to us, a similar, indepe
dent calculation for the gauge coupling constant was presente
Laine @7#, who compared four-dimensional and three-dimensio
results, too. Using his convention for the renormalized gauge c
pling, which is a special case of our definition, the two resu
agree. However, as it will be discussed later, our definition for
perturbative gauge couplings is closer to the actual lattice de
tions.
©1999 The American Physical Society11-1
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FIG. 1. Graphs giving nonvan
ishing contributions to the static
potential.
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wherek2 denotes the square of the three-momentumkW , MH
the Higgs mass andRHW5MH /MW . The functionF is de-
fined as

F~k2;m1
2 ,m2

2!

511
m1

21m2
2

m1
22m2

2
log

m1

m2
1

m1
22m2

2

k2
log

m1

m2

1
1

k2
A~m11m2!21k2)~~m12m2!21k2!

3 log
12A@~m12m2!21k2#/@~m11m2!21k2#

11A@~m12m2!21k2#/@~m11m2!21k2#
. ~2!

As it can be seen, our result does depend on the renor
ization scalem and it fully agrees with that of M. Laine@7#.

Equation~1! has to be Fourier transformed into coordina
space. We applied the brute force method performing
merical integration. As a check, we compared our res
with various pieces of the partly analytic calculation in R
@7# for the derivative of the potential~with respect to dis-
tance!. The agreement is excellent.

Our result is presented in Figs. 2 and 3, where the vari
parts of the one-loop correction to the potential are plott
We define

V~r !

MW
52

3g2

16p

exp~2MW
0 r !

MWr
1

g4

16p2
@A1B log~m2/MW

2 !#,

~3!

whereMW
0 5MW2dMW , with dMW the one-loop mass cor

rection. SincedMW is scale dependent, so isMW
0 . A andB

are functions of the distancer and RHW5MH /MW . We
11451
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chooseMW580 GeV. Figure 2 shows the dependence oA
and B on the dimensionless distancerM W for RHW
50.8314~corresponding to the end point of the first ord
finite temperature phase transition@12#!, while Fig. 3 shows
the RHW dependence forr 5MW

21 .

III. RELATION OF THE CONTINUUM VERSION
OF THE LATTICE COUPLING CONSTANT DEFINITION

TO THE MS COUPLING CONSTANT

Since we wish to compare results of lattice simulatio
and continuum perturbation theory calculations, it is an

FIG. 2. The coefficients ofg4/(16p2) ~curve A! and of
g4/(16p2)log(m2/MW

2 ) ~curve B! of the static potential Eq.~3! as a
function of distance timesW mass.RHW50.8314.
1-2
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STATIC POTENTIAL IN THE SU~2!-HIGGS MODEL . . . PHYSICAL REVIEW D 60 114511
sential point to define the SU~2! gauge coupling in the sam
way in both cases. However, in continuum perturbat
theory theMS running coupling constant at a given reno
malization scale is more natural@as used in Eqs.~1!, ~3!,
too#, while in lattice simulations other definitions are a
plied. Therefore we have to establish the relation between
coupling constants.

The lattice definition of the coupling constant is given
Ref. @13#. Note that we are using the local version below. F
the reader’s convenience we recall this definition~inspired
by Ref.@14#!. First rectangular Wilson loops of size (r ,t) are
measured. Extrapolating to larget and dividing the logarithm
by 2t one gets the static potential in thet→` limit as a
function of r. The nonperturbative lattice static potential
fitted by a finite lattice version of the Yukawa potential wi
four parameters~for details see Ref.@13#!. One of these pa-
rameters is the mass in the exponential of the Yukawa
tential, which is usually called the screening mass. T
gauge coupling at distancer is defined as the ratio of th
discreter derivative of the lattice simulated nonperturbati
potential and the discrete derivative of the tree-level latt
Yukawa potential normalized by the square of the tree-le
coupling and with the mass parameterM lattice identified with
the screening mass. In practiceglattice

2 (M lattice
21 ) is determined

and is called the local renormalized gauge coupling cons
on the lattice. The lattice results at various Higgs bos
masses are collected in Table I. Data are from R
@6,12,13,15#.

To follow the above procedure in the case of the co
tinuum perturbative determination of the renormalized ga
coupling, we performed a fit of the one-loop potential with
tree-level Yukawa potential plus a constant term. The par
eters of the fit are the coupling constant, the mass in
exponent~perturbative ‘‘screening mass’’M screen) and the
constant. For the various values of Higgs boson mass

FIG. 3. The coefficients ofg4/(16p2) ~curve A! and of
g4/(16p2)log(m2/MW

2 ) ~curve B! of the static potential Eq.~3! as a
function of RHW . The distance isMW

21 .
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performed the fit in the samer range as used in the lattic
studies and took the errors of the fitted function to be p
portional to the errors of the potential obtained in latti
simulations.gR

2(r ) is then determined by taking the ratio o
the derivatives with respect tor of the one-loop potential and
the tree-level potential normalized by the square of the tr
level coupling; i.e., we have

gR
2~r !5

1

CF

3
~d/dr !@2V~r !#

~d/dr !E @d3k/~2p!3#~exp~ ikW•rW !/~k21M screen
2 !#

,

~4!

with V(r ) given by Eq.~3!, CF53/4, andM screenobtained
from the fit. SinceM screen2MW

0 5O(g2), for distances satis-
fying M screen21/r 5O(g2) we can put Eq.~4! into the form

gR
2~r !5gMS

2
~m!F11

1

2 S 12
MW

0

M screen
D G

1
gMS

4
~m!

16p2 S C1D log
m2

MW
2 D . ~5!

C andD are functions ofRHW andM screen, their values are
tabulated in Table II forM screen5MW580 GeV.

In this procedure we have to choose the gauge couplin
the one-loop potential so thatgR

2(M screen
21 ) reproduces the lat-

tice result~third row of Table I! for the appropriate value o
the Higgs boson mass. For our applications~thermodynami-
cal quantities at and around the critical temperatureTc of the
first order electroweak phase transition! the scale of the one
loop potential is chosen to beTc'2MH , whereMH is the
Higgs boson mass at zero temperature. Thus the gauge
pling appearing in the one-loop potential is actually theMS
gauge coupling at scaleTc . The MS gauge coupling values
obtained from this procedure are given in the sixth row
Table I.

TABLE I. Various quantities calculated for values ofRHW used
in lattice simulations. For more explanation see the text. As us
the numbers in the parentheses denote the errors in units of the
decimals. The errors of the different gauge couplings are domin
by the lattice simulation errors~fourth row!, therefore we did not
indicate them in rows 6 and 7.

RHW 0.2049 0.4220 0.595 0.8314

Tc ~GeV! 38.3 72.6 100.0 128.4
M lattice ~GeV! 84.3~12! 78.6~2! 80.0~4! 76.7~24!

glattice
2 (M 21) 0.5630~60! 0.5788~16! 0.5782~25! 0.569~4!

M screen~GeV! 74.97 80.44 80.70 81.77

gMS
2 (Tc) 0.540 0.592 0.585 0.570

gMS
2,Laine(Tc) 0.589 0.589 0.579 0.562
1-3
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Another definition of the continuum perturbation theo
one-loop ‘‘renormalized gauge coupling’’ at distancer is
given in Ref.@7#. It reads

gR,Laine
2 ~r !

5
1

CF

d

dr
@2V~r !#

~d/dr !E ~d3k/~2p!3!@exp~ ikW•rW !/~k21M2!#

,

~6!

whereM is a free mass parameter satisfyingM2MW}g2.
For this M it is possible to show thatgR,Laine

2 (M 21) can be
expressed in terms ofgMS

2 (MW), @whereMW is the physical
~one-loop! pole mass# and all the scale dependence is i
cluded ingMS

2 (MW). AssumingM5MW , the numerical dif-
ference between this definition and ours is small. Howev
we believe that it is our definition which is the closest co
ceivable to the local renormalized lattice gauge coupling
Ref. @13#. In Table I~last row! we givegMS

2,Laine(Tc) as calcu-
lated using Eq.~6!, equatinggR,Laine

2 (MW
21) with the values

of the lattice simulation resultsglattice
2 (M lattice

21 ) and using the
renormalization group equation to extrapolate to the sc
Tc .

IV. COMPARISON OF PHYSICAL OBSERVABLES
DETERMINED IN LATTICE SIMULATIONS

WITH PERTURBATIVE PREDICTIONS

In the previous section we presented a calculation c
necting the renormalized gauge coupling constant of theMS
scheme andgR

2 obtained from the static potential at differe
distances. In this section we compare the lattice results
the perturbative predictions for the finite temperature el
troweak phase transition. Lattice Monte Carlo simulatio
provide a well-defined and systematic approach to study

TABLE II. The coefficientsC and D defined in Eq.~5! as a
function of RHW .

RHW C D

0.2 241.54 222.19
0.3 28.26 26.58
0.4 26.47 21.12
0.5 25.66 1.39
0.6 25.23 2.74
0.7 24.98 3.55
0.8 24.83 4.06
0.9 24.72 4.39
1.0 24.65 4.62
1.1 24.59 4.78
1.2 24.54 4.89
1.3 24.50 4.98
1.4 24.45 4.98
1.5 24.40 5.01
11451
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features of the finite temperature electroweak phase tra
tion. During the last years large scale numerical simulatio
have been carried out in four dimensions in order to clar
nonperturbative details @6,12,13,15#. Thermodynamical
quantities~e.g., critical temperature, jump of the order p
rameter, interface tension, latent heat! have been determine
and extrapolation to the continuum limit has been perform
in several cases. Nevertheless, it has proven difficult to c
pare the perturbative and the lattice results, because the
turbative approach used theMS scheme for the gauge cou
pling, whereas the lattice determination of the gau
coupling has been based on the static potential. The m
reason for performing the one-loop calculation of the sta
potential is this kind of comparison.

In this paper we use the published perturbative two-lo
result for the finite temperature effective potential of t
SU~2!-Higgs model@4#. Note that the numerical evaluatio
of the one-loop temperature integrals gives a result wh
agrees with the approximation based on high tempera
expansion within a few percent. The reason for this is t
the perturbative expansion up to orderg4,l2 corresponds to
a high temperature expansion, which is quite precise for
Higgs boson masses we studied. It is known that the per
bative loop expansion becomes unreliable for Higgs bo
masses above approximately 50 GeV~e.g., resummed pertur
bation theory fails to predict the end-point of the electrowe
phase transition, thus it gives a first order phase transition
arbitrarily large Higgs boson masses!. In the physically rel-
evant range of the parameter space the electroweak p
transition can only be understood by means of no
perturbative methods. Therefore it is particularly instructi
to see quantitatively how the perturbative and the lattice
sults agree for small Higgs boson masses and how they d
for larger ones.

Since the finite temperature electroweak phase transi
is fairly strong for Higgs boson masses below 50 GeV, l
tices with symmetric lattice spacings were used forMH
'16 GeV, MH'34 GeV, andMH'48 GeV. The phase
transition gets weaker for larger Higgs boson masses, th
fore Monte Carlo simulations for masses near theW-boson
mass are technically difficult. For this parameter region d
ferent lattice spacings were used in the temporal and
spatial directions. For this type of lattice regularization t
approach to the continuum limit is somewhat slower; ho
ever, even in this case it was possible to perform a c
tinuum limit extrapolation forMH'67 GeV.

In lattice simulations the gauge coupling constants
determined from the static potential, whereas masses are
tracted from correlation functions. On the one hand the c
culation of the previous section connects the gauge coup
definitions between theMS scheme and the scheme based
the static potential. On the other hand, one can use the
temperature effective potential in order to include the m
important mass renormalization effects. The Higgs bos
mass obtained from the asymptotics of the correlation fu
tion corresponds to the physical mass determined by the
of the propagators, i.e., the solution ofp22M25P(p2),
whereP(p2) is the self-energy. The effective potential a
proach suggested by Arnold and Espinosa@2# approximates
1-4
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STATIC POTENTIAL IN THE SU~2!-HIGGS MODEL . . . PHYSICAL REVIEW D 60 114511
P(p2) by P(0) in the above dispersion relation. It has be
argued that the difference between the two expressions
order g5v2 (v is the zero-temperature vacuum expectat
value!, which does not affect our discussion. In this sche
the correction to theMS potential reads

dV5
w2

2 S dm21
1

2b2dl D1
dl

4
w4, ~7!

where

dm25
9g4v2

256p2 , dl52
9g4

256p2 S log
MW

2

m
1

2

3D . ~8!

Herem is the renormalization scale andMW is theW-boson
mass atT50. The above notation corresponds to a tree-le
potential of the formm2w2/21lw4/4. Note that this treat-
ment is analogous to previous comparisons of the pertu
tive and lattice results@16#.

In Refs. @6,12,13,15# several observables were dete
mined, including renormalized masses at zero tempera
(MH ,MW), critical temperatures (Tc), jumps of the order
parameter (w1), latent heats (Q), and surface tensions (s)
for different Higgs boson masses. As usual, the dimensio
quantities were normalized by the proper power of the cr
cal temperature.~This convention is adapted in the prese
paper, too.! The simulations were performed onLt52,3,4,5
lattices (Lt is the temporal extension of the finite
temperature lattice! and whenever it was possible a syste
atic continuum limit extrapolation was carried out assum
standard 1/a2 corrections for the bosonic theory.

The statistical errors of these observables are norm
determined by comparing statistically independent samp
Jackknife and bootstrap techniques were used@17# and cor-
related fits were performed@18# to obtain reliable estimate
of the statistical uncertainties. The systematic errors du
finite lattice spacing can be obtained by 1/a2 extrapolation.
In cases where it was possible to carry out the continu
limit extrapolation we saw that the difference between
Lt52 and theLt53 data was a fairly good estimator of th

TABLE III. Comparison of the perturbative and the lattice r
sults. The Monte Carlo data are from Refs.@6,12,13,15# ~in some
cases we have refined the analysis in order to have a more acc
lattice prediction!. Note that for the mass of the W boson—th
dimensionful quantity setting the scale of the theory—80 GeV
used.

MH 16.4~7! 33.7~10! 47.6~16! 66.5~14!

gR
2 0.561~6! 0.585~9! 0.585~7! 0.582~7!

Tc /MH pert. 2.72~3! 2.28~1! 2.15~2! 1.99~2!

nonpert. 2.34~5! 2.15~4! 2.10~5! 1.93~7!

w1 /Tc pert. 4.30~23! 1.58~7! 0.97~4! 0.65~2!

nonpert. 4.53~26! 1.65~14! 1.00~6! 0
Q/Tc

4 pert. 0.97~7! 0.22~2! 0.092~6! 0.045~2!

nonpert. 1.57~37! 0.24(3)* 0.12~2! 0
s/Tc

3 pert. 0.70~10! 0.067~6! 0.022~2! 0.0096~5!

nonpert. 0.77~11! 0.053(5)* 0.008(2)* 0
11451
of
n
e

l

a-

re

ul
-
t

-
g

ly
s.

to

m
e

systematic error. Whenever the data did not make it poss
to carry out the systematic extrapolation the difference
tween theLt52 and theLt53 results was used to estima
the systematic error. As a conservative estimate we added
statistical and systematic errors linearly. For some of
quantities onlyLt52 data exist. In these cases only the s
tistical errors are listed and an asterisk is used in Table II
an indication. A correct comparison has to include errors
the parameters used in the perturbative calculation. Th
uncertainties are connected with the fact that neither
Higgs boson mass nor the gauge coupling constant can
determined exactly in lattice simulations. Including these
rors, the perturbative prediction for an observable is rathe
interval than one definite value.

To obtain a better measure of the correspondence betw
perturbative and nonperturbative results, and to incorpo
their errors, one introduces ‘‘pulls’’ defined by the expre
sion

pull5
perturbative mean2nonperturbative mean

perturbative error1nonperturbative error
. ~9!

The four different pulls at different Higgs boson masses
tabulated in Table IV and plotted in Fig. 4. For the sake
convenience, we used the shorthandPT5pull of TC /MH ,
Pf5pull of w1 /TC , PQ5pull of Q/TC

4 , and Ps5pull of
s/TC

3 .
The quantity which has the smallest pull even for lar

Higgs boson masses isTc /MH . A quadratic fit was per-
formed to this quantity as a function ofRHW . The result is

Tc

MH
52.49420.842RHW10.223RHW

2 . ~10!

In Ref. @12# the end point result for the four-dimension
SU~2!-Higgs model was perturbatively converted to the sta
dard model. In this step the deviation between the two d
nitions of the gauge coupling (gMS

2 and the one based on th

FIG. 4. ‘‘Pulls’’ plotted against the Higgs mass. Arrows indica
values outside the interval@25,5#.

ate

s

TABLE IV. Values of the four different pulls for various Higgs
boson masses.

mH ~GeV! 16.4~7! 33.7~10! 47.6~16! 66.5~14!

PT 4.75 2.60 0.71 0.67
Pf 0.47 20.33 20.3 32.5
PQ 21.36 20.4 21.08 22.5
Ps 20.33 1.27 3.5 19.2
1-5
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static potential! was neglected. The estimated uncertain
due to this simplification was included into the systema
error of the end point Higgs boson mass. Using the result
the present paper we can also refine the value of the stan
model end point Higgs mass. This is done by perturbativ
taking into account fermions and the U~1! factor of the stan-
dard model~for details see the fourth paper of Ref.@5#!. The
improvement is established by precisely converting the
tice simulation renormalized gauge coupling of the SU~2!-
Higgs model into the perturbativegMS

2 (MW). The new value
of the standard model end point Higgs boson mass is 7
61.4 GeV. This does not deviate much from the old va
72.461.7 GeV of Ref.@12#. However, the error is smaller
since the uncertainty arising from the gauge coupling defi
tions is eliminated.

V. SUMMARY

In this paper we presented the one-loop static potentia
the SU~2!-Higgs model. This calculation is in agreeme
with Ref. @7#. Using the potential it was possible to conne
the gauge coupling constant used in finite temperature fi
theory and in lattice simulations. As expected the numer
difference between the two conventions is not that large,
within a few percent. With this connection we were able
perform a precise comparison between the predictions of
turbative and lattice approaches.

We reanalyzed the existing lattice data and performe
continuum limit extrapolation whenever it was possible. T
relationship between the two definitions of the gauge c
pling constants turned out to be marginal, as the lattice d
have errors, usually larger than this few percent. The o
quantity which is measured so precisely that the definition
s.

at
h
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the gauge coupling constant is essential is the ratio of
critical temperature to the Higgs boson mass. As it has b
observed already forMH'35 GeV the perturbative value o
Tc is larger than in lattice simulations. This sort of discre
ancy disappears for larger Higgs boson masses. A plaus
reason for this fact is the convergence of the high tempe
ture expansion used in the perturbative approach. In t
loop perturbation theory one uses the high temperature
pansion also up to second order, which might be inaccu
for the smallest Higgs mass case with temperatu
'50 GeV and Higgs field expectation values'200 GeV.
Nevertheless, the observed differences are on the per
level and they do not affect the electroweak phase transi
significantly. For small Higgs boson masses~16 and 34
GeV! we expect similar differences between lattice and p
turbative predictions for other quantities~the jump of the
order parameter, the latent heat and the surface tens!;
however, present lattice data have too large errors and
differences cannot be seen yet.

The most dramatic differences appear clearly as we
closer to the end point. The perturbative approach gives n
vanishing jump of the order parameter, nonvanishing lat
heat and interface tension, while the lattice results sugg
rapid decrease of these quantities and no phase trans
beyond the end point. Using the results of the present pa
we refined the value of the standard model end point Hi
boson mass of Ref.@12# and obtained 72.161.4 GeV.
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