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We present a one-loop calculation of the static potential in th2BHiggs model. The connection to the
coupling constant definition used in lattice simulations is clarified. The consequences in comparing lattice
simulations and perturbative results for finite temperature applications are exp®B0&&6-282199)02323-1

PACS numbsds): 11.15.Ha, 12.15:y

I. INTRODUCTION from the static potential, whereas in perturbation theory the
modified minimal subtractionMS) scheme is used. The
The observed baryon asymmetry of the universe wasnain goal of this paper is to perform as perfect a comparison
eventually determined at the electroweak phase transitiogg possible, by determining thds gauge coupling con-
[1]. The most straightforward method to study this phasestants, which correspond to the different lattice results.
transition is to use resummed perturbation the@ee, e.g., The paper is organized as follows. Section Il contains the
Refs.[2—4]). In the low temperature Higgs phase the pertur-gne-loop static potential of the $2)-Higgs model using the
bative approach is expected to work well; however, it is N0ty scheme in the Feynman gauge. Section Ill relates the

able to describe the high temperature symmetric phasgontinyum version of the lattice gauge coupling constant to
which has serious infrared problems in perturbation theory

. N ' o the MS coupling. In Sec. IV the detailed comparison of lat-
Sl_n_ce the determlnatlo_n of thermodynamical quantltles at th"I"ice and perturbative predictions are presented. Section V
critical temperatures is baseq on the properties of bo“%ummarizes our results.
phases, non-perturbative techniques are necessary for a quan-
titative understanding of the phase transition.

One very successful possibility is to construct an effective
three-dimensional theory by using dimensional reduction,
which is a perturbative step. The nonperturbative study is
carried out in this effective three-dimensional modste, The one-loop static potential was calculated long ago in
e.g., Ref[5] and references thergimnalytical estimates are quantum chromodynamic8—10], and even the full two-
confirmed by numerical results and relative errors are beloop result was published recentlg1]. The calculation is
lieved to be at the percent level. based on the same principles and techniques in the case of

Another approach is to use four-dimensional simulationsthe SU2)-Higgs model. One calculates rectangular Wilson
The complete lattice analysis of the standard model is noloops of sizer Xt. The logarithm divided by-t gives the
feasible due to the presence of chiral fermions; however, thpotential at distance in thet—co limit.
infrared problems are connected only with the bosonic sec- Our calculation was performed in théS scheme and the
tor. These are the reasons why the problem is usually studiegeynman gauge but the result is gauge independent, as it
by simulating the SI(®)-Higgs model on four-dimensional should be for a physical observable. The relevant graphs are
lattices, and perturbative steps are used to include {1¢ U shown in Fig. 1. Other graphs, giving vanishing contribu-
gauge group and the fermions. Finite temperature simulatons in the Feynman gauge and are not shown in Fig. 1.
tions are carried out on lattices with volumbgl_g‘, where  Solid lines represent the heavy quaaktiquark propagator,
L.<L, are the temporal and spatial extensions of the latticewhile wavy lines the vector boson propagator. External
respectively. The lattice spacing is basically fixed by theheavy quark(antiquark propagators are not shown in the
number of the lattice points in the temporal directiph, ~ figure. The one-loop corrected vector boson propagator con-
=1/(L.a), whereT, is the critical temperature in physical tains scalar and ghost contributions as well. The result can be
units]; therefore huge lattices are needed to study the softonveniently given in momentum space. One obtains
modes. This problem is particularly severe for Higgs boson
masses around th& mass, for which the phase transition is
weak and typical correlation lengths are much larger than the 1ping the write-up of our results, prior to us, a similar, indepen-
lattice spacing. In this case asymmetric lattice spacings argent calculation for the gauge coupling constant was presented by
used, in particular the spatial lattice unit is approximately| aine [7), who compared four-dimensional and three-dimensional
four times larger than the temporal of@. results, too. Using his convention for the renormalized gauge cou-

Despite the fact that the two approaclipsrturbative and pling, which is a special case of our definition, the two results
lattice) are systematic and well defined, it is not easy toagree. However, as it will be discussed later, our definition for the
compare their predictions. The reason for this is that in latperturbative gauge couplings is closer to the actual lattice defini-
tice simulations the gauge coupling constant is determinedons.

II. CALCULATION OF THE ONE-LOOP STATIC
POTENTIAL
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wherek? denotes the square of the three—momenﬁJrMH
the Higgs mass anByw=My /M. The functionF is de-
fined as

2.2 2
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chooseM,=80 GeV. Figure 2 shows the dependenceé\of
and B on the dimensionless distanceM, for Ryw
=0.8314(corresponding to the end point of the first order
finite temperature phase transitipt?]), while Fig. 3 shows
the R,y dependence for=M..

Ill. RELATION OF THE CONTINUUM VERSION
OF THE LATTICE COUPLING CONSTANT DEFINITION
TO THE MS COUPLING CONSTANT

Since we wish to compare results of lattice simulations
and continuum perturbation theory calculations, it is an es-

t5———r————1——+——7—

As it can be seen, our result does depend on the renormal-
ization scalew and it fully agrees with that of M. LainE7].

Equation(1) has to be Fourier transformed into coordinate
space. We applied the brute force method performing nu-
merical integration. As a check, we compared our results
with various pieces of the partly analytic calculation in Ref.
[7] for the derivative of the potentiglwith respect to dis-
tance. The agreement is excellent.

Our result is presented in Figs. 2 and 3, where the various
parts of the one-loop correction to the potential are plotted.
We define

3g2 exg—M4r)  g¢* b
o e sl AT BIOGUIME)],

©)

whereM3V= Mw— dMyy, with M,y the one-loop mass cor-
rection. SinceSM,, is scale dependent, so IiAS\,. A andB
are functions of the distance and Ryy=My/My,. We

v(r)
My 167

FIG. 2. The coefficients ofg*/(167%) (curve A and of
g*/(1672)log(u?/M2) (curve B of the static potential Eq(3) as a
function of distance time®V mass.R,,=0.8314.
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— 1 * *r T r 1 r ' T T TABLE I. Various quantities calculated for values Rf,,y used

in lattice simulations. For more explanation see the text. As usual
the numbers in the parentheses denote the errors in units of the last
— decimals. The errors of the different gauge couplings are dominated
by the lattice simulation errorourth row), therefore we did not
indicate them in rows 6 and 7.

. Ruw 0.2049 0.4220 0.595 0.8314

' T, (GeV) 38.3 72.6 100.0 128.4
- Mugce (GEV) 84312  78.62)  80.04) 76.7124)
1 02ie(M™1)  0.563G60) 0.578816) 0.578225) 0.5694)

| M screen(GEV) 74.97 80.44 80.70 81.77
95(To) 0.540 0.592 0.585 0.570
1 gaE"(T,) 0.589 0.589 0.579 0.562

performed the fit in the samerange as used in the lattice
1.5 studies and took the errors of the fitted function to be pro-
portional to the errors of the potential obtained in lattice

FIG. 3. The coefficients ofg*/(16m2) (curve A and of simulations.gﬁ(r) is then determined by taking the ratio of
g*/(16m2)log(u2/M?Z,) (curve B of the static potential Eq3) as a  the derivatives with respect toqf the one-loop potential and
function of Ry . The distance idy,* . the tree-level potential normalized by the square of the tree-

level coupling; i.e., we have

sential point to define the SB) gauge coupling in the same
way in both cases. However, in continuum perturbationgz(r):i
theory theMS running coupling constant at a given renor- R Ck
malization scale is more naturfhs used in Egs(l), (3), (did)[ = V()]
too], while in lattice simulations other definitions are ap- % '
E(I)lﬁg.lilgirg;c;gr\xs have to establish the relation between the (d/dr)j [d3k/(2m)3](expliK - 1)/ (K2 + Mgcreer)]
The lattice definition of the coupling constant is given in 4)
Ref.[13]. Note that we are using the local version below. For
the reader’s convenience we recall this definitiamspired
by Ref.[14]). First rectangular Wilson loops of size,f) are
measured. Extrapolating to largand dividing the logarithm
by —t one gets the static potential in the->c limit as a
function of r. The nonperturbative lattice static potential is

with V(r) given by Eq.(3), C,=3/4, andM gen0btained
from the fit. SinceM g¢reen MS\,: O(g?), for distances satis-
fying Mggreer- 1/r =0O(g?) we can put Eq(4) into the form

fitted by a finite lattice version of the Yukawa potential with 2.\ 2 1 MS\,

four parametergfor details see Ref.13]). One of these pa- OR(r) =gis(p)| 1+ 2117 Mcree

rameters is the mass in the exponential of the Yukawa po-

tential, which is usually called the screening mass. The gf,l—s(ﬂ) u?

gauge coupling at distanaeis defined as the ratio of the 1672 C+D |°9M_\2N . ®)

discreter derivative of the lattice simulated nonperturbative
potential and the discrete derivative of the tree-level lattice
Yukawa potential normalized by the square of the tree-levefc andD are functions oRyyy andMsgreen their values are
coupling and with the mass paramel@p,;. identified with ~ tabulated in Table Il foMscree= My =80 GeV. o
the screening mass. In practigByice (M aice) iS determined In this procedure_we have to crlciose the gauge coupling in
and is called the local renormalized gauge coupling constarii 0ne-loop potential so thgk(M ey reproduces the lat-
on the lattice. The lattice results at various Higgs bosorfice result(third row of Table ) for the appropriate value of
masses are collected in Table I. Data are from Refsthe Higgs boson mass. For our applicatigtiermodynami-
[6,12,13,15. cal quantities at and around the critical temperafyref the

To follow the above procedure in the case of the condirst order electroweak phase transitidhe scale of the one-
tinuum perturbative determination of the renormalized gaugdoop potential is chosen to bE.~2My, whereM, is the
coupling, we performed a fit of the one-loop potential with aHiggs boson mass at zero temperature. Thus the gauge cou-
tree-level Yukawa potential plus a constant term. The parampling appearing in the one-loop potential is actually &
eters of the fit are the coupling constant, the mass in thgauge coupling at scalE,. The MS gauge coupling values
exponent(perturbative “screening massMq. ) and the obtained from this procedure are given in the sixth row of
constant. For the various values of Higgs boson mass w&able I.
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TABLE II. The coefficientsC and D defined in Eq.(5) as a  features of the finite temperature electroweak phase transi-

function of Ry . tion. During the last years large scale numerical simulations
have been carried out in four dimensions in order to clarify
Ruw c D nonperturbative details[6,12,13,1%. Thermodynamical
0.2 4154 9919 quantities(e.g., critical temperature, jump of the order pa-
03 826 658 rameter, mterfece tension, Ia_tent hek_m_/e been determined
04 —6.47 112 and extrapolation to the continuum limit has been performed
05 _566 1.39 in several cases. Nevertheless, it has proven difficult to com-
' ' ' pare the perturbative and the lattice results, because the per-
0.6 —-5.23 2.74 . —
0.7 _408 3.55 tu.rbatlve approach used _tms scheme fer the gauge cou-
0.8 _4.83 4.06 pImg,_ whereas the lattice determln_atlon of_ the gauge
' ' ' coupling has been based on the static potential. The main
0.9 —4.72 4.39 reason for performing the one-loop calculation of the static
1.0 —4.65 4.62 potential is this kind of comparison.
11 —4.59 4.78 In this paper we use the published perturbative two-loop
12 —4.54 4.89 result for the finite temperature effective potential of the
13 —4.50 4.98 SU(2)-Higgs model[4]. Note that the numerical evaluation
14 —4.45 4.98 of the one-loop temperature integrals gives a result which
15 —4.40 5.01 agrees with the approximation based on high temperature

expansion within a few percent. The reason for this is that

e ) ) the perturbative expansion up to ordgtA? corresponds to
Another definition of the continuum perturbation theory 5 high temperature expansion, which is quite precise for the

one-loop “renormalized gauge coupling” at distancés  piggs boson masses we studied. It is known that the pertur-

given in Ref.[7]. It reads bative loop expansion becomes unreliable for Higgs boson
2 masses above approximately 50 G@&W., resummed pertur-
9R.Laind ") bation theory fails to predict the end-point of the electroweak
d phase transition, thus it gives a first order phase transition for
1 a[—V(r)] arbitrarily large Higgs boson massetn the physically rel-

- evant range of the parameter space the electroweak phase
Cr 3 3 2 22 aa2n transition can only be understood by means of non-
(d/dr)f (d*k/(2m)7)[explik - 1)/ (k"+M*)] perturbative methods. Therefore it is particularly instructive
©6) to see quantitatively how the perturbative and the lattice re-
sults agree for small Higgs boson masses and how they differ
whereM is a free mass parameter satisfyilt—M,g2  for larger ones. .
For thisM it is possible to show thagé LdM 1Y) canbe S!nce the finite temperature electroweak phase transition
. is fairly strong for Higgs boson masses below 50 GeV, lat-
tices with symmetric lattice spacings were used fdy,

expressed in terms sz—S(MW), [whereM,y is the physical
(one-loop pole mas$ and all the scale dependence is in- _ ;¢ GeV, My~34 GeV, andV,,~48 GeV. The phase

cluded inggs(M). AssumingM =My, the numerical dif-  ahsition gets weaker for larger Higgs boson masses, there-
ference between this definition and ours is small. Howeverso e Monte Carlo simulations for masses near Widoson

we believe that it is our definition which is the closest con-mass are technically difficult. For this parameter region dif-
ceivable to the local renormalized lattice gauge coupling Ofgrent |attice spacings were used in the temporal and the
Ref.[13]. In Table I(last row we givegzs""{T,) as calcu-  spatial directions. For this type of lattice regularization the
lated using Eq(6), equatinggﬁyLame(M\j\,l) with the values approach to the continuum limit is somewhat slower; how-
of the lattice simulation resulig? .M ice) and using the ever, even in this case it was possible to perform a con-

renormalization group equation to extrapolate to the scal@nuum limit extrapolation foM~67 GeV.

T.. In lattice simulations the gauge coupling constants are
determined from the static potential, whereas masses are ex-

IV. COMPARISON OF PHYSICAL OBSERVABLES tracted from correlation functions. On the one hand the cal-
DETERMINED IN LATTICE SIMULATIONS culation of the previous section connects the gauge coupling

WITH PERTURBATIVE PREDICTIONS definitions between th®IS scheme and the scheme based on

the static potential. On the other hand, one can use the zero

In the previous section we presented a calculation contemperature effective potential in order to include the most
necting the renormalized gauge coupling constant oM important mass renormalization effects. The Higgs boson
scheme ang3 obtained from the static potential at different mass obtained from the asymptotics of the correlation func-
distances. In this section we compare the lattice results antibn corresponds to the physical mass determined by the pole
the perturbative predictions for the finite temperature elecof the propagators, i.e., the solution pf—M?=TII(p?),
troweak phase transition. Lattice Monte Carlo simulationswhereIl(p?) is the self-energy. The effective potential ap-
provide a well-defined and systematic approach to study thproach suggested by Arnold and Esping8happroximates
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TABLE Ill. Comparison of the perturbative and the lattice re-  TABLE IV. Values of the four different pulls for various Higgs
sults. The Monte Carlo data are from Ref§,12,13,15 (in some  boson masses.
cases we have refined the analysis in order to have a more accurate

lattice prediction. Note that for the mass of the W boson—the m, (GeV) 16.47) 33.710) 47.616) 66.514)
dimensionful quantity setting the scale of the theory—80 GeV is
used. Pr 4.75 2.60 0.71 0.67
Py 0.47 —-0.33 -0.3 325
My 16.47) 33.710) 47.616)  66.514) Po -1.36 -0.4 -1.08 22.5
o9& 0.5616) 0.5859) 0.5857)  0.5827) Py —-0.33 1.27 35 19.2

T./My  pert. 2.723) 2.291) 2.152) 1.992)

nonpert. 2.3%6) 2.154) 2.105) 1.937) ) . . .
o, /T, pert. 43023 1587) 0.974) 0.652) systematic error. Whenever the data did not make it possible

to carry out the systematic extrapolation the difference be-

t. 4.586) 1.6514 1.006 0 .
4 nonper @) 19 a6 tween theL,;=2 and thelL,=3 results was used to estimate
QI pert. 0.917)  0.222) 0.0926) 0.04%52) the systematic error. As a conservative estimate we added the
nonpert. 1.5@7) 0.24(3) 0.122) 0 y :

statistical and systematic errors linearly. For some of the
quantities onlyl ;=2 data exist. In these cases only the sta-
tistical errors are listed and an asterisk is used in Table Il as
an indication. A correct comparison has to include errors on
the parameters used in the perturbative calculation. These

. . : certainties are connected with the fact that neither the
argued that the difference between the two expressions is of. .
5 2 ; .~ Higgs boson mass nor the gauge coupling constant can be
orderg’v“ (v is the zero-temperature vacuum expectatlond

valud. which does not affect our discussion. In this scheme etermined exactly in lattice simulations. Including these er-
' ) — . ' rors, the perturbative prediction for an observable is rather an
the correction to théMS potential reads

interval than one definite value.

alT? pert. 0.7010) 0.06716) 0.0222) 0.00965)
nonpert. 0.7711) 0.053(5)f 0.008(2) 0

I1(p?) by I1(0) in the above dispersion relation. It has been

2 1 ™ To obtain a better measure of the correspondence between

SV= (’;( M2+ =—50N | + — ¢*, 7) perturbative and nonperturbative results, and to incorporate

2 2p 4 their errors, one introduces “pulls” defined by the expres-
sion
where
4o 4 ) perturbative mean- nonperturbative mean
5m2:99_v = — 99" |ogM_W + 2 ) pull= perturbative errof nonperturbative errof
25672’ 256 w 3

_ o _ The four different pulls at different Higgs boson masses are
Here u is the renormalization scale amdly is theW-boson  tabulated in Table IV and plotted in Fig. 4. For the sake of
mass aff =0. The above notation corresponds to a tree-levetonvenience, we used the shorthaRg= pull of Tc/My,

potential of the formm?¢?/2+ \ ¢*/4. Note that this treat- P,=pullof ¢, /Tc, Po=pull of Q/T&, and P,=pull of
ment is analogous to previous comparisons of the perturbq;/-r%_

tive and lattice results16]. The quantity which has the smallest pull even for large
In Refs. [6,12,13,1% several observables were deter- Higgs boson masses iE./M, . A quadratic fit was per-

mined, including renormalized masses at zero temperaturg o4 to this quantity as a function &.,,. The result is
(My,Myy), critical temperaturesT), jumps of the order Hw

parameter ¢, ), latent heats @), and surface tensionsrj Te

for different Higgs boson masses. As usual, the dimensionful Mo 2.494-0.84Ryw+ 0.22:Rﬁw. (10
guantities were normalized by the proper power of the criti- H

cal temperature(This convention is adapted in the present In Ref.[12] the end point result for the four-dimensional

paper, t00. The simulations were performed &n=2,3,45  gy)_Higgs model was perturbatively converted to the stan-
lattices (. is the temporal extension of the finite- yary model. In this step the deviation between the two defi-

temperature Iatt!c)e_and whene\_/er It was po_ssnble a SySte.m'nitions of the gauge couplingg% and the one based on the
atic continuum limit extrapolation was carried out assuming

standard B2 corrections for the bosonic theory. P, P, Py P,

The statistical errors of these observables are normally , F™ K3 T =P
determined by comparing statistically independent samples ,| = ER
Jackknife and bootstrap techniques were udel and cor-  p____=_=_| - _____ L ________| | P
related fits were performeld 8] to obtain reliable estimates , | . ° 1.
of the statistical uncertainties. The systematic errors due t¢, E J.4
finite lattice Spacing can be obtained b)&%t/extrapolation. 164337476 665 164 33.7 47.6 665 164 39.7 476 665 164 33.7 476 665

. . . M, (GeV)
In cases where it was possible to carry out the continuum i

limit extrapolation we saw that the difference between the FIG. 4. “Pulls” plotted against the Higgs mass. Arrows indicate
L,=2 and theL ;=3 data was a fairly good estimator of the values outside the interval-5,5].
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static potentigl was neglected. The estimated uncertaintythe gauge coupling constant is essential is the ratio of the
due to this simplification was included into the systematiccritical temperature to the Higgs boson mass. As it has been
error of the end point Higgs boson mass. Using the results afbserved already fdvl ;=35 GeV the perturbative value of
the present paper we can also refine the value of the standalq is larger than in lattice simulations. This sort of discrep-
model end point Higgs mass. This is done by perturbativelyancy disappears for larger Higgs boson masses. A plausible
taking into account fermions and thg1) factor of the stan- reason for this fact is the convergence of the high tempera-
dard modelfor details see the fourth paper of RE5]). The  ture expansion used in the perturbative approach. In two-
improvement is established by precisely converting the latloop perturbation theory one uses the high temperature ex-
tice simulation renormalized gauge coupling of the(8Y  pansion also up to second order, which might be inaccurate
Higgs model into the perturbati\@%(MW)_ The new value for the smallest Higgs mass case with temperatures
of the standard model end point Higgs boson mass is 72.50 GeV and Higgs field expectation value200 GeV.
+1.4 GeV. This does not deviate much from the old valueNevertheless, the observed differences are on the percent
72.4+1.7 GeV of Ref[12]. However, the error is smaller, level and they do not affect the electroweak phase transition
since the uncertainty arising from the gauge coupling definisignificantly. For small Higgs boson mass& and 34
tions is eliminated. GeV) we expect similar differences between lattice and per-
turbative predictions for other quantitigthe jump of the
V. SUMMARY order parameter, the latent heat and the surface tension
however, present lattice data have too large errors and the
In this paper we presented the one-loop static potential inlifferences cannot be seen yet.
the SU2)-Higgs model. This calculation is in agreement The most dramatic differences appear clearly as we get
with Ref. [7]. Using the potential it was possible to connectcloser to the end point. The perturbative approach gives non-
the gauge coupling constant used in finite temperature fielganishing jump of the order parameter, nonvanishing latent
theory and in lattice simulations. As expected the numericaheat and interface tension, while the lattice results suggest
difference between the two conventions is not that large, it isapid decrease of these quantities and no phase transition
within a few percent. With this connection we were able tobeyond the end point. Using the results of the present paper
perform a precise comparison between the predictions of peiwe refined the value of the standard model end point Higgs

turbative and lattice approaches. boson mass of Ref12] and obtained 7241.4 GeV.
We reanalyzed the existing lattice data and performed a
continuum limit extrapolation whenever it was possible. The ACKNOWLEDGMENTS
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