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Calculation of the strange quark mass using domain wall fermions
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We present a first calculation of the strange quark mass using domain wall fermions. This paper contains an
overview of the domain wall discretization and a pedagogical presentation of the perturbative calculation
necessary for computing the mass renormalization. We combine the latter with numerical simulations to
estimate the strange quark mass. Our final result in the quenched approximatiq@€s MBV in the MS
scheme at a scale of 2 GeV. We find that domain wall fermions have a small perturbative mass renormaliza-
tion, similar to Wilson quarks, and exhibit good scaling beha\[i80556-282199)01723-3

PACS numbgs): 12.38.Gc, 12.15.Ff, 14.65.Bt

I. INTRODUCTION vector meson mass from the exponential decay in Euclidean
time of an appropriate correlation function. Using leading
The determination of the quark masses from first prin-order yPT one extrapolates in the bare quark magsto
ciples is an important task facing particle theorists todaywhere the meson mass takes on its physical value; then the
The light quark masses are among the most poorly detetorresponding value of the bare quark mass can be converted
mined parameters of the standard model. The cause of thg the renormalized quark mass in any desired scheme. This
difficulty is the confining nature of QCD: quarks exist only method implicitly uses the vector Ward identity, so the dif-
in bound states. Furthermore, most of the mass of light haq‘“erencemq—mc is renormalized byZ,,=Zg', wherem, is

rons is due to the energy of the color fields surrounding th?he bare quark mass corresponding to zero pion masZand
quarks rather than the quarks themselves; therefore a NONPELhe renormalization constant of the scalar density. Usually

turbatlve.treatment of QCD |s.reqU|'red to connect the quarl%ne converts the renormalized lattice quark mass to the con-
masses in the QCD Lagrangian with the spectrum of had-

ronic states measured experimentally. tinuum modified minimal subtractionMS) regularization

Next-to-lowest order chiral perturbation theoryRT)  Scheme by matching the weak coupling expansiong«h
quite precisely predicts the ratios of quark masgBsbut both schemes. Using this procedure the light quark mass
cannot set the absolute scale. The most promising method &= (My+mg)/2 and the strange quark masg may be
computing the light quark masséise., m,, my andmy) is computed independently, for example, using the pseudo-
lattice QCD. It has been suggested that QCD sum rules cagralar spectrum to firy and the vector spectrum to fixs.
be used to place fairly strict lower bounds on+m, and A comprehensive analysis of the light quark masses using
my-+m, by using analyticity conditionf2]; however, calcu- this method appears in Rg8].
lations of the values of the light quark masses from sum rules Recently several attempts have been made to remove
are thought to involve many uncertainties. some sources of uncertainty in the usual method. A large

The feasibility of calculating the quark masses throughsource of error in Wilson fermion calculations is the deter-
Monte Carlo simulation of lattice QCD has been recognizedmination of the chiral limit; since they explicitly break chiral
since the early days of the fiel@!]. Most previous work symmetry, Wilson quarks become massless at a nonzero
utilized two formulations of lattice fermions: Wilson fermi- critical bare quark massy.# 0. One can avoid this error by
ons which explicitly break chiral symmetry at finite lattice using the axial Ward identity to fix the bare quark mass
spacing and suffer from large discretization errors, and9,10]. One computeé0|doAq| ) and(0|P| ), whereA , is
Kogut-Susskind fermions which maintain a remnant chiralthe local non-singlet axial vector current afdthe non-
symmetry, but badly break flavor symmetry and seem tainglet pseudoscalar density, and then the quark mass is
have poorly converged weak-coupling expansions. Recentlyiven by the ratio/0|doAo|)/(0|P| ) and is renormalized
Sheikholeslami-WohlertSW) fermions[5], an improvement by Z,,=Z,/Zp. Since the vector meson and baryon spectra
of Wilson fermions, have also been used to compute the lightannot be used with this method, only one of eitimgior mg
quark massefs,7]. may be fixed independently; the other is necessarily related

The usual method of computing the light quark masses oiby chiral perturbation theory.
the lattice is the following. For fixed gauge coupling and  Another large uncertainty enters into the matching be-
various bare quark masses, one computes the pseudoscalatween lattice and continuum regularizations. The typical

scale at which this matching occurs is 2 GeV where the

validity of weak coupling perturbation thediy/CPT) is
*Present address: RIKEN BNL Research Center, Brookhaven Naenuous. In the case of Kogut-Susskind fermions, lattice
tional Lab, Upton, NY 11973. WCPT is untrustworthy: next-to-leading order corrections
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can be 50—-100 % of the leading order term. Therefore, nonnal proposal is made for QCD simulations: half of the extra
perturbative calculation of the renormalization factors is verydimension is discarded, and the domain walls effectively be-
desirable. Two methods are being explored presently whiclkome the boundaries of the extra dimension. For free field
may remove the need for a perturbative expansion of thé¢heory it has been shown that, for a range of the input pa-
lattice theory[11], or push it to a very high energy scale at rameters, a light four-dimensional mode of definite chirality
which the expansion parameter is much smalfleq. Finally, is bound to one boundary and a similar mode of opposite
the quenched approximation seems to give quark massesirality is bound to the other boundary; the mixing between
which are roughly 20% larger than unquenched quarkhe two modes is exponentially suppressed with the size of
masseg8]. Clearly this indicates that full QCD simulations the extra dimensiofl8—21]. Significant suppression of the
are necessary for a precise calculation of light quark massemixing between the modes was also seen in nonperturbative
Presently no consensus has been reached regarding thienulations, but whether or not it is purely exponential re-
values of the light quark masses, even within the quenchethains an open questid22—-24,16. Furthermore, the nons-
approximation. For example, using Wilson fermions and peringlet axial Ward identity is reproduced, and predictions
turbative matching, the strange quark mass is(21MeV  from chiral perturbation theory for the dependence of the
when the kaon is used to fix the bare quark mass an@)143 pseudoscalar meson mass on the quark mass and for the kaon
MeV when the¢ meson is used13], where the mass is mixing parameter are satisfi¢d2,23,14. Also, the expected

defined in theMS scheme at 2 GeVResults using the SW behavior of(qq) in the quenched approximation due to to-
action give a lighter strange quark mass of13® MeV [7]. pological zero modes is reproducgz#,25.

Furthermore, an exploratory nonperturbative determination The paper is structured as follows: Section Il introduces
of the quark mass renormalization agrees with the perturbahe details of the domain wall fermion action, Sec. Il con-
tive renormalization for the usual quark mass definition, butains the results of the one-loop calculation of the massive
differs with the perturbative renormalization for the axial quark self-energy, and Sec. IV gives the details of our Monte
Ward identity definition[11]. Using the nonperturbative Carlo simulations. In Sec. V we combine analytical and nu-
renormalization and the axial Ward identity, Rigif1] finds a  merical results to give a value for the strange quark mass.
strange quark mass of 13®) MeV. A more comprehensive Finally, we present our conclusions in Sec. VI and include
presentation of the current status appears in Ref. some details of our calculation in the Appendix.

In this paper, we employ a new fermion discretization to
compute the light quark masses: domain wall fermions. Do-
main wall fermions utilize a fictitious extréin this case,
fifth) dimension in order to preserve chiral symmetry at non- In this section we review some properties of domain wall
zero lattice spacing; the chiral symmetries of the continuunfermions in QCD, following the original boundary fermion
are exactly preserved in the limit of an infinite fifth dimen- variant by Shamif17]. We take a pedagogical point of view
sion [18,56]. The idea originated in the context of chiral and introduce notation and methods which will be relevant to
gauge theories. In Refl15], Kaplan constructed free lattice our work later in this paper. We write down the action and
chiral fermions, without doublers, ink2dimensions by con- the propagator, discuss the physics described by the light
sidering Dirac fermions in R+ 1 dimensions coupled to a modes coupled to the boundaries, and mention previous
mass defect in the extra dimension, or domain wall. For pework supporting the domain wall formulation of lattice
riodic boundary conditions in the extra dimension, an anti-QCD. For further details one should refer to the literature
domain wall also appears which supportk-d&imensional cited throughout the section.
chiral fermions of the opposite handedness. Although the
suitability of this approach for chiral gauge theories is still A. Action
under intensive study, its usefulness for simulations of
chirally symmetricvectorgauge theories such as QCD now
appears well establishdtbr a review, see Ref.16)).

Since the first suggestion that domain wall fermions offer o
a way to study chiral symmetry breaking of QGD7,18, —at> > Ys(xla)Dg g (X/a,yla) s (yla), (1)
considerable work has been done to assess the practicality of XY ss!
the method. In Ref{17], a simplification of Kaplan's origi-

1. DOMAIN WALL FERMIONS

On a lattice with spacing, the domain wall fermion ac-
tion is given by

wherex,y are four-dimensional Euclidean spacetime coordi-
nates ands,s’ e[1,Ng] are coordinates in the fifth dimen-
sion. The Dirac operator can be separated into a four-

The widespread belief is that the quenched approximation y'emﬁimensional partD”, and a one-dimensional pan,L:

aK- ¢ splitting which is smaller than the experimental value. Using
a regularization independent renormalization scheme, recent
quenched simulations with Kogut-Susskind fermions g'nwé'S
=106(7) MeV with the kaon as input versus 129 MeV with the

¢ as input[54]. On the other hand, a recent quenched study using¢ andy have been rescaled to be dimensionless. The first
the SW action with a nonperturbatively determined coefficientterm is the four-dimensional Wilson-Dirac operator with a
claims to reproduce the physickik ¢ splitting if their chiral fitis ~ mass term which is negative relative to the usudWilson
quadratic rather than line&®5]. fermion action:

aDs s (x,y)=aDl(x,y) 8¢+ 8(x—y)aD; 2)

ss
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|| 1 - - N .
abl(x,y)=> ; [(1+7,)U,(X)8(x+ n—Y) = % i,8D, 855 +W_ o, Py+W, P
. . )
F(1=y U (Y)o(X=p—Yy)] _
whereap, = sinap,, and theW" are related to thaD"~
+(aM—4)5(x—y). 3 by
For 1<s<Ng, the Dirac operator in the extra dimension is " |+
given by W, =aD, . +|aM—2> (1- cosap,)|dss . (10)
“
" 1 1 :
aDs,sr =—0ss T §(1+ ¥5)Os+1s T 5(1_ ¥5)Os-1s" - B. Mass matrix
(4) The discrete extra dimension can be interpreted as a flavor
space withNg—1 heavy fermions and one light flavp26].
Note that the five-dimensional fermions are coupledoia-  In that framework, thew= in Eq. (9) are mass matrices
dimensionalgauge fields which are identical at eagh.e.,  Which govern the flavor mixing. One can have several physi-
the link matrices obey cal pictures of how the mass hierarchy is maintained. The
chiral symmetry is manifest in the domain wall picture; since
U, (x)=U,(x) for we[1,4] the left- and right-handed modes are bound to opposite walls
.S s Al . . . .
in the extra dimension and are separated by a distAice
Uss(x)=1 for 1<s<N. (5) the chiral components can be rotated independently. The fla-

vor space picture also provides insight. ReferefZ@ re-
The boundary conditions in the fifth dimension are anti—Iates the mass hierarchy in te_rmsof a gener_ahzed seesaw
formula. In fact, the Froggatt-Niels¢@8] mechanism allows

periodic with a weightam which, as we will see, is propor- . . : )
. . ... one to establish an approximate conservation law which pro-
tional to the 4l quark mass. The Dirac operator for the fifth . o .

tects the light mass from large radiative correctip®g|.

dimension can be separated into its chiral components by the Let us examine the eigenvalues and eigenvectors of the

projectors,P. =(1* y5)/2, such that tree-level mass matrixin flavor spaceg for the action de-

scribed above in Eq$1)—(7). Details are presented in Refs.

[17,20, and we repeat them in Appendix A1l so that they

may be extended to the one-loop case. Since the mass matrix

In matrix notation, is not Hermitian, we diagonalize the mass matrix squared.
Let Q° be the zero momentum limit &V, Eq. (10):

D._,=D. P, +D:,P_. (6)

s,s’ “ss’ s,

-1 1 0 0
_ _bo 0 0 —am
0 1 1 0
aDL’+: : : : : 1 _bo 0 0
s,s’ ’ QO ,= 0 1 0 0 (11)
0 O 0 ... 1 0s,s ' ' . . . ,
—am 0 O -1 :
0 0 ... 1 —b,

where by=1—M. Here and in the rest of the paper, we
rescaleM so that it is dimensionless. As shown in Refs.

I
=
o
o

aDt=| o 1 ... 0 o | @) [17,20,19lr whe_n|bo|<1 the smallest eigenvalue ﬁoﬂg
S (and of Q) is
o 0 ... 1 -1 (7\‘”)2=(am)2M2(2—M)2+O((am)4)+0((1—M)Nz).z)
1

Since the perturbative calculation is simpler(four-) mo- Therefore, the mass of the light mode, given\§¥, has an

mentum space, we Fou_rier trgnsform the_ ordinary Spacetimgdditive renormalization which is suppressedN\gs- for
coordinates. The five-dimensional domain wall Dirac operagy,q range &M <2. (We elaborate on this restriction o

tor (2) becomes in the next section and throughout the remainder of the pa-
per) For|by|<1 the eigenvectors dflo(lg are given by

VM (2—M)e *G " Y(sgrb)s™t i=1,

= 2 [(m(i—1) (13)
S . .
—% (1 cosap,)|dss +aDg (8) \/N—sm( N [Ng+1—s]| i#1,

S

aDg g (ap)= 2 iy,sinap,+aM
y3
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where theith eigenvector corresponds to eigenvaldé)j?. F = =iv D .S - R

The constaniy, is defined through So5 (P)=ZLT17uPudssrt Ws o) G o P
P A +

1+b§—()\§)1))2 +(—|Y,LDM5S,S"+WS,S~)GS~SIP] (19
2| by ' (149 where p,=sinp,, and GR (G') is the inverse ofD'D

(bDY):

Note that the light eigenmode in E¢L3) is exponentially

concentrated at the=1 boundary while the heavyi ¥ 1) R

modes are not. Gy s

Once the eigenvectors of the mass matrix squared have
been found, the Dirac operator can be diagonalized easily.

coshag=

Following Ref.[20] let us define unitary matriced(® and Gl = 1 20
Vv(© such that =\ D2 wow* e (20
0 0
UL =0 and V() = E\IS)+1 s (19  we give GR and G- explicitly in Appendix B 1, but let us
mention their general behavior. The homogeneous solutions
Then the basis of
. t
WP =USLP e (p) +VELP i (p) (D'D)s 5By o =5 and (DD')soGg o
PP p)= e (p)P L (VOT)g ¢ are exponentials: ek a(p)s]. If 0<b(p)<1, then the so-
_ lutions are decaying exponentialg(p) is real and defined
+ g (P)P_(UOT)g (16)  through
diagonalize® D' andD'D. Furthermore, the Dirac operator EZJF 1+b?(p)
itself is diagonal in this basis, up to terms which vanish as cosha(p)= )] (22

N exp(—agNg) [20,21:
where

¥(—p)D(ap)y(p) =y —p)(VOP,
+UOp_)D(P UOT b(p)=1-M+ 2, (1— cosap,,). 23)
“

4 P,V(O)T) ¢diag(p)
o o If —1<b(p)<0, then the solutions oscillate:
=99 —p)(iap+VOWrUOTP (—1)%exd +a(p)s], with a as in Eq.(22). For |b(p)|>1
(ONn—\/(0)F dia there is no longer a mode bound to the domain wall: the
HUPWIVETP )y™p), (17 solutions of Eq.21) go like expg=ia(p)s] where « is now

defined through
where theVOWTUOT and UOW-VOT are diagonal in 9

s,s’ [20]. Let us definey= 3?9, the eigenstate of the light- p2+1+b%(p)
est eigenvalue of the mass mattsquared This mode has cosa(p)=———"— (24
. i A 2b(p)
the effective tree-level action
Thus,M must be in the range
st=at [ g+ mM2— M) x(p)
sra(2m) X P X(p). 0<M<2 25

18

18 in order for there to be a single massless fermionNgs
sinceVOWTUOT__,  =u@w-vOT| =)\ [20]. —., At greater values oM, “doubler” states in the other
’ ’ corners of the Brillouin zone become nearly massless. For
example, the four states with one component of momentum
near7r/a contribute, and so on in increments of 2 up to 8

The calculation of the tree-level fermion propaga8 <M <10 where again only a single state with all four mo-

proceeds similarly to the diagonalization of the mass matrixnenta neatr/a exists. In fact the action is symmetric under
presented above. The final expression for the propagator e changeM —10—M and i¢(x) — (— 1)%#* " Sy(x) so
complicated, so we write it here schematically; it is writtenthe physics of any region and the one reflected abdut
explicitly for the present action ifil7,20 and in Appendix =5 are identica[29]. Henceforth, we concentrate our dis-
B1l. As in Ref.[26] let us write the propagator aSg cussion on the single flavor theory near the origin of the
=D'/(DD") and project out its chiral eigenstates so that Brillouin zone. Also note that the range bf in Eq. (25) is

C. Propagator
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additively renormalized in the interacting theory, and we dis-necessary to evaluate the extent of the improvement, al-
cuss this renormalization in detail in Sec. Il B. though simulations to datg23], including the ones in this
work, are consistent with these expectations.

D. Summary of tree level properties

Let us emphasize the following points. For strictly infinite !l PERTURBATIVE MASS RENORMALIZATION

Ns (and m=0) there is a massless right-handed fermion | this section we present our one-loop calculation of the
bound to thes=1 wall and a left-handed fermion bound t0 quark mass renormalization. A renormalization factor is
the anti-domain wall as=c [15]. For large, but finittNs  needed in order to match a lattice definition of quark mass to
the mixing between the two chiralities is exponentially sup-5 ontinuum definition. We are also pursuing methods of

pressed at the tree levell7]. One describes a light computing renormalization factors nonperturbatively; how-
4-component Dirac fermion by coupling the two light mOdeSever, that work is beyond the scope of this paper.

with an explicit chiral symmetry breaking term[18]. Then We compute the matching factd,(u,a) between a
the light Dirac fermion has a mass in the free theory equal tf&]uark mass defined on a lattice with spacimgo a con-
[17,19 tinuum quark mass renormalized at momentum sgale
(0) — _ _MN
amy,’=M(2—M)[am+(1—M)"s]. (26) e
! mMS(p)=Zpn(p,@)mAT(a). (30)

Therefore, neglecting exponentially small terms, domain
wall fermions describe a light mode whose massigtipli-  Zm is computed by equating the one-loop continuum fermion
catively renormalized. It also turns out that the light mode Propagator to the one-loop lattice fermion propagator. In this
satisfies continuum-like axial Ward identiti¢48]. These section we present the calculation of the full five-
features make domain wall fermions very attractive for simu-dimensional self-energy, and then we discuss its effedtlon
lating light quark physics, where chiral symmetry is crucial.and m. The wave function renormalization has been com-
Another virtue of the domain wall formulation is that in puted already in Ref20]; we have extended that work to the
the limit Nc— o the leading discretization errors for thel4 massive case and present the full one-loop calculation here
effective action ar@©(a?). In the massless theory, any gauge for clarity.? Only the main points are made in the body of the
invariant dimension-5 operator with the required lattice sym-section, while more details are given in Appendix B.
metries can be written as a linear combination of the follow-
ing two operatorg5]: A. Five-dimensional fermion self-energy

Olzaqu 27) The fermion self-energy(p,m), is given to one-loop
order by the Feynman diagrams shown in Fig. 1. Wepise
i denote the external momentum antb denote the momen-
0,= quWFWq (28)  tum in the loop integral. The tadpole graph has no fermion
propagator in the loop, so it has trivial dependence on the
fifth dimension; i.e., it is diagonal. On the other hand, the
fermion in the loop of the half-circle graph may propagate in
the fifth dimension(change flavorwhile the gluon is unaf-
fected. Therefore the half-circle graph has off-diagonal con-

whereD? is the second-order covariant derivative aﬁgp
=[D,,D,] is the field strength tensor. However, neither of
these terms is invariant under a chiral transformation

g—el€7sq tributions ins,s’ space.
Even with the extra dimension, the steps of evaluating the
a_)aeisys (29) half-circle graph are much like those for the calculation us-

ing Wilson fermiong33,34. First an integral which has the
Since chirality violating effects have been shown to vanisksame infrared [§—0) limit is subtracted from(p,m) to
asN,—, the contributions o0, and O, to the effective cancel logarithmic divergences. The difference may then be
action must be suppressed. In this sense, the domain wallylor expanded about zero lattice spacing. In the continuum
fermion action is anO(a)-improved action[30,23. Even
with an O(a)-improved action,O(a) errors can enter into
observables as the operators may req@i(e) improvement  2while this paper was in preparation, an independent one-loop
as well. However, such improvements would also violatecalculation of the quark mass renormalization appeared in[B&.
chiral symmetry and, by the same argument as above, awhich helped us in tracking down an error in our preliminary work
suppressed ablg—. Of course precise scaling tests are[32].
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limit, we neglect terms in the expansion which vanishaas TABLE I. Values ofM,;; estimated from the tadpole graph and
—0; since the coefficients dd(a) terms are exponentially computed with the 4D Wilson fermion action.
suppressed with increasimy, the leading discretization er-

rors are, in effectO(a?). The resulting expression can be B=6.3 B=6.0 B=5.85
arranged as follows: M@9(3.414) 0.676 0.754 0.812
. 9°Ce 12 P " M@Y(1/a) 0.985 1.17 1.41
= — | m .
1672 a0 1P 2 (3Y) «" [36] 0.1519 0.1572 0.1617
MY 0.708 0.819 0.908

After a lengthy calculation which is presented in Appendix
B, these terms can be further subdivided into

©) _ 1 (0) optimal value ofM which minimizes the extent of the light
o= lse 2T s (32 mode in the fifth dimension. At the tree level the wave func-
tion corresponding to the zero mode bound to $hel do-
(33) main wall is aé function in thes direction whenM =1; i.e.,
M=1 is the optimal value for free domain wall fermions
since the intrinsic quark mass arising from the mixing of
(34  modes on opposite walls is minimized. However, simulations
at 8~6.0 have shown that the optimd at which axial
where thel terms are proportional to i and thel andT  symmetries are preserved is somewhere around 1.7 and that
terms are finite integrals to be computed numerically. Weaxial symmetries are poorly respectedvat 1.0[22,23,16.
only need the renormalization of the lightest mode, so we The guestion now becomes, how is the whole rangpl of
delay further evaluation until we rotate the terms to the basigenormalized? It cannot be a simple uniform shift silde
which diagonalizes the one-loop mass matrix. We should=5 s a fixed point. If we consider only the tadpole contri-
note, however, that the and L terms are functions oM. bution to the self-energy, the shift is approximately uniform
SinceM becomes additively renormalized, this dependencen each region (&M <2, 2<M<4, ...), weighted by a
is the source of a systematic uncertainty: what numericajgctor
value ofM should one use to comput€) andl®? We will
address this issue in Sec. IllIB. To summarize, the five-

-
SO0 o 1

s,s’ s,s’ ss’ 2 s,s’

s@ 1@ @

s,s’ “s,s/ s,s’

dimensional one-loop effective action is given by % [1—codp,)]—42,0-2,—4 (37)
— _ _ 9°Cr coming f the Wil t S isingly, this simple pic-
_ 1\t ©0)_ g from the Wilson term. Surprisingly, this simple pic
vl p)[a WP + WP+ 167r2(I ZT)} ture also describes the nonperturbative data well, as will be

5 shown later in this paper. This tadpole-improved estimate of
1+ 9 CF( L4 (0= I” M was originally proposed in Ref20].
1 2

+ip

6 Perturbatively, the shift oM, is given through thea*
2 terms in Eq.(35):
+m3 CF<L<2>+I<2)>] Vo (p). (35) ) )
or” s Mo=— 2 s -9 0ot 38

B. Renormalization of M , . . . ,
|<°>=|g°g, is not diagonal in the extra dimension; the one-

We noted above, Eq25), that in the free theorf =01is  |oop calculation oM, for the light mode involves rotating to
the critical point where light modes begin to appear bound tqhe basis which diagonalizes the one-loop mass matrix.
the domain walls. The & contribution from the self-energy However, a reasonable first estimate Kbg assumes that the

graphs,, given in Eq.(32), shifts this value in the same tadpole graph is numerically much larger than the contribu-
way that the massless limit of Wilson-like fermions is tjon from 1(9:

shifted:
20%C:T

M=0—M=M,, (36) M= 62

(39

whereM. is the point at which the domain wall action first S : : .
supports light chiral modes on the boundaries. If the tadpol%'\rl]hereT is given in E.(56) and is ntgdmerlcally equal to 24.4.

contribution is dominant, the shifts are identical since thatd.ﬁTabI? I(\;vef_g};(e two \;a“:ﬁs df/ic , each col_mputed Wt'tht

graph is the same for domain wall and Wilson fermions. '2 erent detini '(st 0 € sfong coupling - constant,
Of course, the whole range ®1 corresponding to light 9v(3:418) and gy(1/a). There is an obvious problem in

modes is renormalized when the coupling is non-zero, excerﬂec'd'ng the relevant scale of this effect. In Sec. V we dis-

thatM =5 is a fixed point since the action is still symmetric

underM—10—M and i5(x) — (— 1)**u " Sy (x). For ex-

ample, for numerical simulations it is helpful to know the *The calculation has been carried through in R&1].
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Al : tured by Aoki[37] that there is a rang®l .<M <M where

: there is no gap due to the spontaneous breaking of flavor and
parity; evidence for the existence of this Aoki phase has been
found in lattice QCD simulationg38] and analytically using
an effective chiral Lagrangiaf89] where the width of this
: phase,M;—M,, was found to beO(a®). In the conven-
- - tional picture(see Ref[39] for a recent summajythe gap
' reopens afteM; and closes again a#l, when four of the
doubler modes become massless.

The spectrum of the Hermitian Wilson-Dirac Hamiltonian
has been studied in some detail in Rpf0]. Many level
crossings in the Hamiltonian were found uniformly in the
region aboveM;. These zeros were related to small
) _ instanton-like configurations and are presumably related to

FIG. 2. Expected spectrum of the Wilson-Dirac oper&bms a  the same lattice artifacts that give rise to so-called excep-
functhn ofM (Whlch is negatllve compared to the usual conventlontiona| configuration$41]. If the density of these zero modes
for Wilson fermions. There is a mass gap fo <M andMi s non7erq in the large volume limit, then the gap is closed
<M<Mg, and no gap in the Aoki regioM <M <M. and domain wall fermions cannot exist: the entire allowed
region ofM should then be in the Aoki phase. Since numeri-

cuss the choice of coupling constant and scale in detail, but 1%y evidencd 2225 for the existence of domain wall fer-
is clear that a perturbative estimate Bf; is not precise

h W © h that f mions is quite strong, we infer that the density of these zeros
enougn Tor our purposes. Yve note, nowever, that 1or a 1éqy, ichas in the large volume limisee Ref[16] for more

u%etails), at least for the couplings relevant to present simula-
V§ions. This is also consistent with the above studies of the

Aoki phase. However, we also note that at some strong cou-

As a result of the_above cor_15|d§rat|ons_, Itis desirable topling the conventional picture is for the whole region to be in
have a nonperturbative determinationMf since it appears A i phase, and at this coupling domain wall fermions

in the definition of th? lattice qu_alrl.< mass._A'd|rect search forcease to exist. The existence of the Aoki phase also reveals
M. would be numerically prohibitive, so it is fortunate that

. ; . i ) ~ why the size of the extra dimension must increase as the
th_er_e is a simple nonperturbatlve_ estimate ava!lable WhIC'?:oupling becomes stronger: as the gap gets smaller the size
originates from the overlap description of domain wall fer- of the extra dimension must increase to maintain the same

mions[33] (thus it is exact only foiNs—). In this case @ 5 qunt of suppression. We refer the reader to 2] for
transfer matrix can be defined which describes propagatiogjjar plausibility arguments on the behavior of domain fer-

in the fifth dimensiorn7= exd y;H"(—M)] where mions at strong and weak coupling.

In closing this section we emphasize that the simple re-
placement of

to the tadpole agrees well with the above nonperturbati
estimate.

HY(—M)=ysDl(—M) (40)

is the ordinary 4D Hermitian Wilson-Dirac Hamiltonian with ~ W

a mass term that is negative of the conventional @dirst M—M=M-M, (42)
supports exact zero modes Fisapproaches a critical value

MY defined by a vanishing pion mass. In this cdskas a  in the quark mas$26), though nonperturbative, is an ansatz
unit eigenvalue and propagation in the fifth dimension iswhich may or may not introduc®(a) errors. Furthermore,
unsuppressed. Thul, for domain wall fermions corre- M cannot really be uniformly shifted, even piecewise, over
sponds td\A\CNfor Wilson fermions, usually given in terms of the whole region. Nonperturbative effects such as instanton-

the hopping parametek,‘c"’: like artifacts may be importarithough these do seem to be
more or less uniformly distributed abowé.). However, as
1 previously mentioned, Ed42) is a very good fit to our nu-
M‘c’": — ( ZKW_4)' (41 merical data which we present in Sec. IV. Also the identifi-
Cc

cation in Eqg.(41) is only exact in the limitNg—oc. Again,

. . . . simulations indicate that this is a good approximatisae
We can simply takéV .= M‘C’V from existing numerical simu- Ref. [16]). g PP G

lations. In Table | we give the values @{" computed in Ref.
[36] and the corresponding value b which we use for
the rest of this work.

In Fig. 2 we show schematically what the spectrum of the In this section we concentrate on the renormalization of
four-dimensional Wilson-Dirac operator should look like the quark mass. We follow the method outlined in the case of
(with the domain wall convention for the sign bf) for the  the wave function renormalizatidi20]. The tree level quark
single flavor case. Ordinary Wilson fermion simulations aremass was given in Sec. Il B by finding the smallest eigen-
performed in the regioM <M., while the domain wall fer- value of the mass matrix squareﬁoﬂg. At the one-loop
mion simulations haveM ;<M <M,. It has been conjec- level, the mass matrix is renormalized:

C. Quark mass renormalization

114507-7
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FIG. 3. The three finite integrals evaluated at value#idfisee
Egs.(54)—-(56)].

Qzﬂo+gzﬂl. (43)

Qg is the tree-level mass matrig1) and(}, is the one-loop

correction given by the terms in E¢35):

Ce

0= 16,2

(2O yams @)

(44)

wheres)==30p_

We rotate the fermion fields to the basis which diagonal-

izes the one-loop matrig:
l//csiiag( p)= Us,s’ P.io(p) +Vs,s’ P_vs(p)

Jgiag(p)zgs/(p) P+(VT)S’,S+ES’(p)P7(UT)S’,S'
(49)
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2 3
+

El E

1
—Zj dxxIn (52
0

1 T 2
—4f dxln(—) +4
0 az

~ = df |1 =
|1:—16W2f_ww|ﬁ % {sir?l ,(Gr+G))

™
az

L

(53

sirel,
24

+2cosl ,[by—b(1) ]G+ >
“”

X

[bo—b(l)]éR—(z c0§|§—2 cosz%” G,

14

= d 1
@(w2—|2)|—4

+12Gg

+16q72J

_71-(2’77)4 (54)

A & I 1

T = _:|.6’7T2 ~
2 777(277)4 |2 [1—8_“(')b0]2

_ | 1
X[ 12D, cog2£
o

2 [1-eUb(h]?

T2 eia(l) |M 2a(l)
12—+ sinfe 2
(1—e*Mp(1)) % 2
. 4

) d , a1
+4(167%) | (27)4(9(77 1) (55)

= d¥ 1
T=1672 f (56)

_(2m)F i

Then the terms which control the renormalization of the lightwhere  z2=(1—x)(p?x+(m{)?), 1,=sinl, and T,

fermion mode are as follows:

=2sin(,/2). We have also used the definitions

VW UT|_ -1 =UW VT =mM(2-M) (46)
VIO FUT, = U1V 1= O(Nebg®)

—negligible 47
UL(l)’+UT|lvlva(l)'_VT|l’lET_’l (48)
U Ut =IOV =T, (49

VL@ F U =uL@ VT =M(2-M)L,
(50)

VI@FUT| =Uu1@ VI =M(2-M)T,.
(51)

The results of Ref[20] for L; andT, combined with our
results forL, andT, are that

N 1 [ (by '~ e~ M)~ (by—e*()

)= 2b(1)sinha(l) | (bg1—e ) + (by— <)
17 (57)
(e*—bg)?)

and

~ 1 [(bg'=e M)~ (by—e)

G = 2bMsinhal) | (b 1—e—0) + (by— e

~1-bg  eO-b() 59
(e"V—bg)? e™*=b(l) |

The quantitied(l), bg=b(0), and«(l) are defined in Sec.

Il C. The finite integrald ; ,T,, andT are plotted as functions
of the five-dimensional madd in Fig. 3.
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e B e AL s e s TABLE Il. Pseudoscalar mass and decay constant for the main
| | numerical data set.

i | | ]
4 L - B=5.8516x32 B=6.0,16x32 B=6.3,24x60
r l l b m aM_ af_. aM_ af. aM_ af_.
i | | ]
3f L - 0.025 0.30%6) 0.0764) 0.2455) 0.0565)
g | [ : 0.050 0.48%) 0.1044) 0.4235) 0.0884) 0.3404) 0.0643)
° 21 L 1 0.075 0.5884) 0.1144) 0.5175) 0.0944) 0.4254) 0.0723)
L | | -
L ! ! ]
. : : 7 M where our simulations have been performed with vertical
C L ] dashed lines. Between those, €% <1.0, C,, varies from
C | | ] 2.88 to 3.10. These values @f,, should be compared to
ol b L L Cn=2.16 for Wilson fermions, 3.22 for Sheikholeslami-
0 0.5 1 1.5 < Wobhlert fermions, and 6.54 for Kogut-Susskind fermions.
M
FIG. 4. The matching coefficien€,, as a functionM. The IV. MONTE CARLO RESULTS

dashed lines indicate the range Mfwhere numerical simulations

have been performed. In practice, Monte Carlo simulation of quenched QCD

using domain wall fermions is very similar to standard cal-

The expression for the fermion self-energy in the con-culations using Wilson fermions. We use the conjugate gra-
tinuum, using dimensional regularization in the&S scheme, dient algorithm to invert the five-dimensional fermion ma-
can be written as trix. Next, 4D quark fields are constructed from the 5D fields

o o at the two boundariefl8]:
S (p,mp)=ipS S+ m3 NS, 59
(PmTIPR IS 9 400 =P 100 +P_ iy (X)

wherem; is the continuum mass and

_ 1 Q2 A(x) =N (X)) P+ i (X)P_ . (65)
zgﬂszzf dxxln(—2> -1, (60)
0 Zc These are the simplest interpolating fields for the lightest
1 Q2 mode, and composite operators constructed from them sat-
22"524J dxln(—2> —2, (61) isfy exact continuum-like Ward identities in the limi
0 Zc —oo [18].

5 5 ) ) . For this exploratory calculation of the strange quark mass,
andzg=(1-x)(p“x+my). The lattice mass and continuum e compute the pseudoscalar meson mass and decay con-
mass are matched onto each other by combining these calCiant on a few dozen configurations at three lattice spacings.
lations so that, in Eq(30), Specifically we perform Monte Carlo simulations at three
values of the gauge couplingg=6/g>= 5.85, 6.0, and 6.3.

The size of the extra dimension for the main part of this
work for the three couplings was;= 14, 10, and 10, respec-
tively, and the 5D mass parameter wds=1.7, 1.7, and 1.5,

with the UOta?‘iO” thazjzl—gchEjll&_rz. The final_ mass res.pectively. The value dfl ~_1.7 at 6.0 !s the optimal value
renormalization factor between domain wall fermions andWhich suppresses propagation of the light mode in the extra

: . T - dimension, as found in a previous stu®3]. The M at the
continuum fermions in tht1S scheme is given b ’ -
¢ y other two B’s were ad hoc choices based on th8=6.0

LAT -MS
Z;" 24

m_ __'
LAT 5MS
Zl ZZ

(62

69°Cr value and the fact that the optinell should decrease to 1 in
Zn=1= 75—z [In(na)=Cnl, (63 the weak coupling limit. At all three gauge couplings the
mesonic two-point functions were computed with=0.075
where and 0.050, and g8=6.0 and 6.3 another mass=0.025,
was also included. The lattice volumes@t 6.0 and 6.3 are
1 1T - - roughly ~(1.6 fm)> while the B=5.85 volume is
Cm=Inm= 27627 1_|2)' (64) ~(2.0 fm)>. Our raw lattice simulation results are given in
Table II.
As discussed in detail in Sec. Il B, the parameMa'rs renor- In addition to the gauge Coup”ng and bare quark mass,

malized. Since the perturbative estimate of the renormalizadomain wall fermion simulations depend on the five-

tion (38) is large and untrustworthy, we use the andd®.  dimensional mash! and the size of the extra dimensibl.
The integralg54) and (55) are unchanged, except the trivial The study of how data are affected by changing these param-
replacemenM — M in Figs. 3 and 4. We mark the region of eters is important. Given the results of R3], we believe

114507-9
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[T T T ] We were able to test for finite volume errors@t 6.0 by
computing the pion mass witN,=10 on a 24x 40 lattice.
The resultsaM .=0.318(5) and 0.424), for m=0.025 and
0.050 respectively, are not statistically distinguishable from
the results on the £6& 32 lattice(see Table ).

Since the quark mass, even at the tree level, explicitly
depends orM, we performed several more runs @t 6.0
with m=0.025, 0.050, and 0.075, varyind between 1.5
and 2.1 on roughly 20 configurations with= 14 Table IlI
displays the values &M . obtained from these simulations,
and Fig. 6 showsgM )? as a function ofn. The linear least
squares fits extrapolate t@k1,)>=0 at m=0 within the
(uncorrelated errors for eachM separately. Furthermore, in
0 0.05 0.1 Fig. 7 we plot @M )2 as a function oM for the three values

m of m. We can test the ansat42) simply by fitting the data to

FIG. 5. Lattice pseudoscalar massmdor the threeg values. 5 - ~
Asterisks indicate linear extrapolations =0 with jackknifed (@Mp)*=AmM(2—M), (67)

errors and are slightly displaced horizontally for clarity. for eachm. The dashed lines in Fig. 7 are fits to B67) and

21 2 i
that we have takeN, large enough so that corrections due to 1aVe 9000¢”'s; eachy” per degree of freedom is less than 1,

the mixing of the two light modes in the center of the extra@1dA IS the same withinfuncorrelateg errors for eachm:

dimension are smaller than the rest of our uncertaintie§:3'4a8)’ 3'42(?)' aﬂd 3f'524) Lor m=0.02_5, 0|C|)5 a.nd
which we will show later to be=10%—-20%. The effect of a 0.075, respectively. Therefore, the ansat?) is well justi-

. ; ; : o PR . fied in this work. At present the data do not permit a more
finite Ng is t th dditional int ase: I . ) -

nite N 15 10 give the pion an additionat intrinsic m general fit. Given these observations we find the definition of
~ ~ the latti k

(aM_)?= AR(2— ) (m+m)). 66) e lattice quark mass

mAT=mM(2—M 68
In the free theorym,=|1—M|Ns [19], and in the interact- ( ) 68

ing theory m, is expected to decay exponentiallyy  to be very reasonable and suitable for this work.
~exp(—aNy).
Indeed we find a nonzero intercept when we extrapolate
the pion mass squared ho=0 for 3=5.85 and 6.Qsee Fig.
5), but find that the8=6.3 mass squared does extrapolate to We believe we have a good understanding of the depen-
zero. We have repeated simulations @&+6.0 usingNg  dence of hadron spectrum dw, so now we concentrate on
=14 and found that the pion mass decreases by a few pethe data at one value df per lattice spacindas listed in
cent(compare Tables Il and IlIsignaling a statistically sig- Table V). We compute the pion decay constant, for
nificantm, . However, errors in determining the lattice spac-three masses for each8 and extrapolate linearly to the
ing from f__ are much larger than the differencedM . and  chiral limit, m=0 (see Fig. 8 We determine the lattice
so theNg= 10 results are sufficient for this work. spacing by setting this extrapolated value to the physical
A thorough study of thé\, dependence at a stronger cou- pion decay constant,.=130.7 MeV. Here we must empha-
pling, 3=5.7, was presented in Ref24,25. They find two  size that in this exploratory calculation, the determination of
important results. First, physical results were unchanged béhe inverse lattice spacing has a large systematic uncertainty
tween N¢=32 and 48. This is consistent with argumentsdue to having only a few data points to extrapolate, to
above concerning the behavior of domain wall fermions atm=0. In the continuumyPT gives a one-loop correction to
stronger coupling. They useld =1.65 in their study. It is the decay constant which goes[4g]
possible that a larger value would decrease the valuggof
required to reach the asymptotic region. Second, even in this
limit, the pion mass does not vanishras-0, which is then
presumably d4D) finite volume effect.

V. QUARK MASS AND COUPLING CONSTANT

f=f

w

M2 M2
1+—(4W}T)2|n(A—§H, (69)

wheref is the tree-level decay constant andis the cutoff.
TABLE Ill. Pseudoscalar massaM ) for the 3=6.0, Nj=14  With only three quark masses we cannot resolve the logarith-

numerical data set. mic behavior off ., so we extrapolate linearly tm=0 (see
Fig. 8. We should remark that the signal for the decay con-

m M=1.5 M=17 M=19 M=21 stant is rather noisyaf . varies by as much as 10% depend-

0.025 0.29(9) 0.2937) 0.29Q7) 0.28111)

0.050 0.3947) 0.4115) 0.4127) 0.3969)

0.075 0.4877) 0.51Q7) 0.49Q7) “In the interest of frugality, we did not extend the=0.075,

M=1.7 data fromNg=10 to Ng=14.
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—T—TT —r —T—r—r e S S 0. T Tt T T
03— I I ] 3 T T
- M=15 ] - -
0.2 —~ -~ 02— —
o | 1 o I :
13 13 L i
z | 1 3 | ]
01— — 01— —
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0.0 A T B B 0.0 T T I B
0.00 0.02 0.04 0.06 0.08 0.00 0.02 0.04 0.08 0.08
m m

FIG. 6. Pion meson mass squared as a functiomdér 8=6.0. Lines are least squares fits which extrapolateatdl {)2=0 at m
=0 for all four values ofV within the errors shown by asterisks.

ing on the range of Euclidean time over which one computesnass, 495 MeV. That value must then be doubled to take
correlation functions. Since the determination of the latticeinto account the fact that we use degenerate quarks in our
spacing for this work is through the extrapolationadf, to ~ simulations, while the physical kaon has one strange quark
m=0, it comes with a large uncertainty. and one lighter non-strange quarkve denote the parameter

Next, we use chiral perturbation theory as a guide to in-m corresponding to the physical kaon by and display our
terpolate the pion mass squared linearly in the quark massesults in Table IV. Using Eq(68) we obtainmi”T, the
Mfr~m to the value ofm which gives the physical kaon domain wall strange quark mass.

Combining Eqs.(30) and (63) the following expression

03—+ rrr 7 T r T T T T relates a quark mass computed on a lattice with spagiiog
- . the quark mass defined in the modified minimal subtraction
r TR SR SN . scheme of dimensional regularization at momentum seale
- § -7 § u
02 = MS LAT 2as
L i Mg (M):ms 1_7(|n(ﬂa)_cm) ) (70)
P @ E 77
= [T v
~ L 4 where we have substituted/4m= ag andCr=4/3. The last
0.1+ — quantity we need is the coupling constant. In a one-loop
bR g calculation such as this, there is ambiguity in the definition
- N 8?075 8 of the coupling constant. The matching equat{@f) is de-
- o 0.050 rived by equating the poles of the one-loop quark propaga-
- & 0.025 tors computed in the continuum and on the lattice. Each pro-
ol o b cedure uses a differently defined coupling constant; however,
1.4 1.6 1.8 2 2.2
M
FIG. 7. Pion meson mass squared as a functiorMoft 5To be accurate one should use= (mg+m,)/2, settingm, with
=6.0. Ng=14 except for theM =1.7, m=0.075 point which has  the physicalM ,. However, in this exploratory work, we have ne-
Ny=10. The dotted lines are fits ta¥1,)2=AmM(2—M). glected this~4% effect.
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TABLE IV. Summary of simulation parameters and results. TABLE V. Strange quark masséis MeV) in theMS scheme at
increasing values of the matching scale We give the mass at
B=5.85 B=6.0 B=6.3 both the matching scaje and at 2 GeV. The first pair of masses are
i ) without tadpole improvement and the second pair include tadpole

No. configurations 18 30 11 improvement.

volume 16x32 16x 32 2£4x60

Ns 14 10 10 2 ams(u) m(u) m(2GeV) m'(u) m' (2 GeV)

M 1.7 1.7 15

a~i(f,) (GeV) 1.5715) 1.8914) 2.7234) B=5.85

m; (MeV) 73(7) 75(6) 76(10) 0.5/a 0.275 11411 96(9) 108(11) 90(9)

MY 0.908 0.819 o7og 1A 0199  969) 929 939 90(9)

Cn 294 301 294 2.0GeV 0.181 90 91(9) 90(9) 90(9)

mAT (MeV) 70(7) 74(6) 73(10) 2/a 0.156  8%8) 90(9) 85(8) 920(9)

(Tr Upad® 0.5751 0.5937 06224  Ta 0137 818 909 819 90(9)

ay(3.41k) 0.157 0.146 0.131 B=6.0

Zn(n=2 GeV) 1.30 1.34 1.34 0.5k 0.243 1169) 1028)  111(8) 97(7)
1/a 0.182  998) 99(8) 97(7) 96(7)

. . . ., 20Gev 0.178 9 98(8 96(7 96(7
the difference between the two coupling constants is a hlgheil ¢ 0146 8 673) 93(7) 86(7) 937)
order correction in perturbation theory: a ' il Y A7) Y
mla 0.129 856) 96(7) 85(7) 97(7)
AT — aSONT=0(a?). (71) B=63
0.5 0.202 10714 101130 10314 97(13)
It has been known for some time that the bare coupling con2.0 GeV  0.175  9@3) 9913  97(13) ~ 97(13

stant is not a good expansion parameter for lattice perturba/a 0.159 9412  98(13) 9312 96(13)
tion theory[43]. Therefore we use a physical definition re- 2/a 0.131 8l)  97(13  86(1)) 97(13)
lated to the heavy quark potential. Specifically, we define ther/a 0.118 8211 9713 831 97(13)

coupling constant using the two-loop perturbative expressior
for the plaquettéthe 1X 1 Wilson loop:

Alternatively, one can compute the continudns coupling
1 A constantays from ay (at a scaleg) perturbatively[44]:

- In<§TrUp|aq> =3 av(3.418)[1- 119+ O(ad)].
(72) ays(qe ¥ =ay(q)

26!\/ 2
1+ T"’O(af\/) . (73)

The scale 3.4% has been computed by estimating and mini- pthough the three-loop beta function has been computed for
mizing the effect of higher order ternj43]. One can runx, airs [45], we choose to use the two-loop beta function for

to any other scale using the universal two-loop beta funCt'onconsistency; the difference comes in below the 1% level.

The remaining problem is to decide on the scales and
corresponding couplings to insert in the matching equation
(70). Reference$46,47 advocate the reorganizing of lattice
perturbation theory as we described above, so that the result-
ing expression may be “horizontally matched” to the con-
tinuum perturbative expansion. In converting our lattice
quark mass into a continuum quark mass we follow the pro-
cedure described in Ref8]. Then the continuum matching
scaleu should be set to the “best” lattice scale which mini-
mizes the higher order corrections to the fermion self-energy.
Unfortunately, it is harder to estimage for logarithmically
divergent graphs than it was in the case of the plaquette.
Therefore we resort to trying a spreadofvalues. Evidence
from previous work indicates that in the rangg
=0.5/a—/a the higher order, ultraviolet-dominated, effects
are minimized[43,8]. Finally, the quark mass is run to 2
GeV using the two-loop running equatip#8]. We also test
the systematic error by repeating the procedure for different

FIG. 8. Lattice pseudoscalar decay constanisr the threeg ~ Vvalues ofu. In Table V we give the strange quark masses at
values. Asterisks indicate linear extrapolationsrte:0 with jack- ~ the matching scalesn(w), and the mass run ta=2 GeV;
knifed errors. we also give our values atys at different scales. Our sta-

0.15 | T T T T T

0 0.05 0.1
m
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tistical errors are 3—4 times larger than the variation in O L B S B B e R
m(2 GeV) computed with different values @f, so we can- i & ]
not argue that one particular scale minimizes higher order - % g ? < GeV
effects in Eq.(70). 120 - 7
One might try to improve the perturbation expansion by L i
nonperturbatively estimating ultraviolet effects which spoil — r % 1
the convergence. For example, the tadpole-improvement pre- c i ]
scription advocates perturbatively expanding the quantity Z 100 |- —
mAT/ug, where u, is designed to be sensitive to short- 2, [ ¥ ]
distance fluctuation$43]. Therefore, the tadpole-improved B L *% ]
quark mass, in thS scheme, is related t@-*T/u, pertur- 80 I ¥ B
batively by L ]
Tl LAT zaS : :

Migs(4) = (M~""/ug) 1_7(|nﬂa_[cm_CT])} ol ol

(74 0 0.05 0.1 0.15 0.2
a (fm)

whereug is defined to be the fourth root of the plaquette -
FIG. 9. Strange quark mass in thS scheme at 2 GeV. Our
1 1/4 results are displayed as squares, Wilson fermions as dianjd8Hs
uOE<§TrU p|aq> , (75  Sheikholeslami-Wohlert fermions as circlg¥], and Kogut-
Susskind results as crosdé®,50.

and it is computed from Monte Carlo simulation. The match-
ing coefficient is modified at the one loop level by the per
turbative expansion adi:

zation errors should b®(a?) rather tharD(a) since wrong-
“chirality operators are suppressed; however, a more precise
study is needed to draw a firm conclusion. Since no scale
dependence can be detected within the statistical errors in
—1- i 2=1- 2 Cra (76) this exploratory study, we take a weighted average of the
s’ strange quark mass determined at the three lattice spacings to
give 95 MeV with a purely statistical uncertainty of 5 MeV.
which defineCt. In Table V we give the tadpole-improved A linear extrapolation to the continuum limit raises the cen-
strange quark mass for the various matching scaté¥u), tral value by 15 MeV, but of course has a large uncertainty.
as well as the mass run to 2 GeM,T'(Z GeV). At the lower  Given that we do not expect to ha@{a) scaling violations,
scalesu<2 GeV, tadpole-improvement lowers the mass bywe take 95 MeV as our strange quark mass but add the 15
4—6 MeV, indicating that the unimproved perturbative resultMeV in quadrature with the rest of our systematic errors.
has significant higher order corrections. On the other hand, At this time we assume the systematic uncertainties
there is no significant difference between the standard anguoted in Table VI. The largest systematic error arises from
improved expansions when the matching is donguat2  the ambiguity in which physical quantity is used to fix the
GeV. Therefore, we will choose for our final result the im- Iattice_ SDacing- As mentioned_above, preliminary results and
proved mass with the matching donewat 2/a, mL_IS(Z/a) in  experience with Wilson fermions lead us to believe there
Table V, and assiya 2 MeV systematic error due to the co_uld be at I_eas_t a 15% uncertalnty_ using domain wa_ll fer-
arbitrary choice of scale. We perturbatively run our final re-Mions. Considering that our calculation iof was done with
sult to 2 GeV for comparison with other results. only a fe\(v quark masses, we conservatively e§t|mate a 20%
In Fig. 9 we plot our results for the strange quark massSystematic uncertainty ia~1; the other systematic errors are

(with statistical error bars onlyin the MS scheme at the _small in C(_)mparison. For example, the uncertainty in match-
iorlng scale induces an error of 2 MeV. We have not yet com-

uted the strange quark mass by fixing #hemeson to its
hysical mass, but in Wilson fermion simulations there is an
(10%) difference from the strange quark mass using the

discretizations. In choosing the data to which we compar@
the domain wall results, we used those which were obtaine
with the same method. The masses were computed by fixin
the kaon to be its physical mass and the matchings to the _ o _
continuum were computed perturbatively. Unfortunately, we TABLE VI. Sources of systematic uncertainty in computing the
can only set the lattice spacing usihgwhile the other data strange quark mass.

in Fig. 9 use thep meson mass. In typical Wilson fermion

. ; S . . Source Estimated size
simulationg51], as well as preliminary domain wall fermion
simulations[52], there is a~15% systematic uncertainty Usingf, vsM, to seta 20%
due to choosind . vsM,, to set the scale. Matching scaleu 2%
In this first work, the statistical errors are rather large,Using ¢ vsK to setm 10%
about 15%, yet it is encouraging that we see no significanEontinuum extrapolation 16%

signs of scaling violations. As argued in Sec. Il C, discreti
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kaon. For now we include this error as a systematic uncerdniversity. Simulations were performed on the Cray T3E'’s
tainty in our calculation, but it must be explicitly checked at the National Energy Research Supercomputer Center.
with domain wall fermions. Of course quenching also in-
duces a systematic error; however, we are unable to address
its effects without a full dynamical-fermion simulation. APPENDIX A: DIAGONALIZATION

Adding the statistical and systematic errors in quadrature,
our final result for the strange quark mass within the 1. Tree level

quenched approximation is In this appendix we discuss the spectrum of the domain
wall Dirac operator at zero momentum at the tree level. Al-
Miys(2 GeV) =93(26)MeV. (77 though this work appears in Refl7], a treatment here is
useful to establish our notation, which is similar to H&0].
Given the mass matrif,, defined in Eq(11), we wish
VI. CONCLUSIONS to solve the eigenvalue equation

This work has focused on the steps needed to compute the
light quark masses with the domain wall fermion discretiza-
tion. We have extended the calculation of the domain wall
fermion self-energy to the massive case. We find that thevhere the indexe[1,N;] labels the eigenstates. The general
perturbative mass renormalization factor which matches thequation to be satisfied is
domain wall lattice regularization to thelS regularization
scheme is as well behaved as that for Wilson fermions. (1+b2=N2) ps— Do pes1+ hps_1)=0. (A2)

In conjunction with the perturbative calculation, we have
performed numerical simulations of quenched lattice QCD )
using domain wall fermions. At3=6.0 the pion mass If 0<by<1, then the general solutions are of the form
squared vanishes linearly im asm—0, and the ansati
—M-MYis a good fit to the data. Finally we compute the ¢s=Ae*S+Be “0° (A3)
strange quark masswys(2 GeV) at three lattice spacings.

Within our errors, the results are scale independent, so
take a weighted average givimgys(2 GeV)=95(26) MeV,
where systematic uncertaintiésxcept for quenching effegts ‘
have been added in quadrature with the statistical error. 1+b3—(\{)2

We intend to perform a larger scale calculation which will COShQOZW' (A4)
include the vector meson spectrum. This will allow us to
calculate the “average” light quark massn(+my)/2 to- .
gether with the strange quark mass. In addition we will belf ~1<Po<0, then the general solutions are of the form
able to estimate the systematic error due to setting the lattice
scale fromf . vs M, . A higher statistics study will be able to = (—1)%(Ae*0>+Be “0%), (AB)
sensitively test for scaling violations, and possibly give a
value for the light quark masses which is comparable in pre
cision to other lattice calculations.

Future prospects for this formulation are promising. Do-
main wall fermions have an advantage over Wilson fermi- 1+b2— (A2
ons, improved or not, in that they have chiral symmetry cosiag=——r %"
which is broken only by the explicit mass coupling the 2by
boundaries—the mixing of the two modes in between the , ) .
boundaries can be made negligible comparedhtcConse- Let us concentrate on the first casg_of exponential damping.
quently there is no mixing between operators of different/V& must apply the boundary conditions
chirality and the quark mass is protected from additive renor-
malization. A lattice discretization which respects the axial [b3+a?m?—(A{M)2])¢p1— b, + amhypy =0 (A7)
symmetries of continuum QCD has an excellent chance to
improve calculations of matrix elements involving light had-
rons. [1+b(2,—()\gl))2](;sz— bopn, -1 +ambye,=0.

(A8)

(QoQd)se dD =026, (A1)

Wﬁ/hereao is defined through

For (\{N)2<(1—bg)? or (\{))2>(1+bg)% « becomes
imaginary and

(AB)
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—bodn 1 =ambyes . (A10) (UQOTUN o =[(\)2+ 2\ P)?]6,s  (AL9)
As has been found previous]{7,20,19, the eigenvalue is  and
(N®)2=(am)%(1-b3)2+O((am)*)+O(by°) VTV o =[(A\D)2+g2(\P)2]6.s,  (A20)

=(am)?M?(2—M)?+0((am)*)+O((1—M)Ns).
(A11)

then it can be shown th§20]

_ o . U2 =P U@V,
The corresponding normalized eigenvector is '

pP=1-Dbje V= /M(2—M)e (D),

(A12)

FAEUOQNVON )= (M)

1 ’
VU =[O0, VO N
The eigenvectors corresponding to the heavier modes can be

decomposed into a basis of sine functions +(UOQVON, ADTAS)Z- (2]
. 2 m(i—1 f ", and
¢g):\/N—sin( (N SNt 1-s]| for ix1. ors#s. an
S S
(A13) ufl=vil=o, (A21)
Note that, ifby<<O, then and, most importantly,
(M=(-1)sJ1-Dbje @~V (A14) (A 2=2(U@0, VO AP (A22)

while the other eigenvectors and all the eigenvalues are URrherefore, in order to compute the quark mass to one loop,

changed. Also, the eigenvalues and eigenvectors are thgs need p©@0,vOnN, ;. Acki and Taniguchi[20] have

same forQ}Q, with the substitutiors—Ng+1—s. Let US  shown thaty @3, _vV(OTis negligibly small, and in Appen-

define unitary matrices which diagonaligk,Q] as dix B we compute u@3@.-yO1,  and
VO @+ YOt ‘

U© = 4 (AL5) |1

s,s’ s/

and which diagonalizélgﬂo as
APPENDIX B: PERTURBATIVE CALCULATION—

0) — 4(9) DETAILS
Vs,s’z Ng+1-s'* (A16)
1. Feynman rules

The Feynman rules are similar to those for Wilson fermi-
2. One-loop level ons plus plaquette-action gluofs3].
In the gauge sector, we use the usual four dimensional

As in Appendix A 1, we want to derive an effective acnoné)laquette action

for the lightest eigenstate. In general this involves computin
one-loop corrections to the matriceksandV which diago- 1
nalize the square of the mass matrfX, However, it has Sg:BE §Re Tr(1=Upag)- (B1)
already been showf20,2] that the light mode is stable plad
under radiative corrections. Following R¢R0], let us write

the mass matrix as In the five dimensional picture there are simply copies of

the gauge field, and in the flavor interpretation the gluons are
9°Ck o . simply flavorless.
16772(2( ) +ams (@), The propagator of a gluotin Feynman gaugewith mo-
(A17) mentumg is given by

Q:W_+gzﬂlEW_+

where the={) are given in Egs.(32-(34) and %0)-* S Suv
=3P, . Then, to diagonaliz€2Q" to O(g?), one must D,(q)= = i (B2)
compute the corrections 1d andV: 42 sinz(aqp/2)

p

U(O)—>UE(l+g2U(l))U(O)
The one-gluon—fermion vertex with incomin@utgoing
VO _v=(1+g2v)vO, (A18) momentump, (p,) is gt,v,(q), where
If we write the one-loop eigenvalue equations as v,(q)=(iy,cosaq,— sinaq,), (B3)
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q=(p;+py)/2, and t, is one of the eight generators 2. Tadpole diagram
of SU(3). The two-gluon—fermion vertex with gluon in-  The tadpole diagrartFig. 18 is simple to compute. Since
d|c;es n,u and n,u’ and fermion momenta as above is jt has no fermion propagator in the loop, it is equivalent to
(9°72){tn ,th/} 3, 0 » With the case for Wilson fermions:
o 16725 o = d4
w,(q)=~(i,sinag,+ cosad,). (B4) Soe(p=—Fr 2 f Z?Wu(8P)D (1)
M -
The massive fermion propagator for the boundary wall vari- Ss g 4
ant used in this work was derived in R¢L7] and also Ref. =— 2 ip+ a)T, (B16)

[20] whose notation we adopt. The tree-le@dt andG', as
defined in Eq(20), are given by
whereT is a finite integral:

GR.,=GY_+A,,es*s)" 1 2A,  cosha(s—s')

e T=1672 f r 4 24.4. (B17)
—a(s+s’ = . 2 4 = &
TA-_e et (B5) CT S st 2
o
and
3. Taylor expansion
G-, =G°_+B,.e¥s"sV+ 2B, cosha(s—s') The calculation of the half-circle graptFig. 1b with
S es domain wall fermions parallels the same calculation with
+B_ e asts) (86)  Wilson fermions[34]. The contribution of the half-circle
graph to the fermion self-energy is
The inhomogeneous part of the solution is h-c 3 16772f” d*l I+ap
o ES,S’(p'm)_ a o (277)4;} VM 2
G =Acoshia(Ns—[s—s'|)], (B7)
F I+ap
and the constants defined implicitly above are XS;s (L amb,,(ap=hv,| ——
1 (B18)
A= Ib sinha sinh aNy) (B8)
167% (= dl
A, =(e?Ns—1)(1-be®—a)(1-m?)AIF E—f ——zE(l,ap,am). (B19)
(B9) a J-n(2m)
A, _=2bsinha[1+2mcosk aNg) + m?]A/F The second line above defines the integr&nd
(B10) A simple Taylor expansion of EqB18) about zero lattice
spacing would not be valid due to the logarithmic divergence
A =(1—e?Ns)(1—be)(1—m?)AIF of the integral. That is, the coefficients of the power series in

(B11) a would have a Ira dependence, which must first be sepa-
rated before expanding the Taylor series. We subtract and
(a-2aNg_ 1\a-a(a—a_ - then add back a similar half-circle graph built from
Biv=(e e “(e b)(1=m*)A/F (B12) continuum-like Feynman rules designed to have the same
infrared behavior as the present rules:

B, _=2bsinha[1+2mcosk aNg)+ m?]A/F

(B13) IR _16772J'7T d’l 2_ 2
ES‘S,(p,m)— a o (277)46(77 I )
B__=(1—e?Ns)e*(e*—b)(1—m?)A/F
(B14 (7085 amiy,) 820
where (ap—1)?
F=eN{1-be*+m?(be “~1)]—4bmsinha 1672 (= dY
e MNo[be e~ 1+m?(1—be)]. (815) " a f_w(zw)“E (l.ap.am). B2
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The step functior® (72—1?) makes the integral spherically
symmetric and therefore easier to evaluate. We will specify
the continuum-like fermion propagat&® in the next sec-

IR —
f@E (12,)9"(am)(~2p)(@p= 1) 7,)
(ap—1) o

tion.

Now we can write the half-circle graph in terms of a

Taylor expansion of ¥ —3'R)

> p,m)= ! 2—12)E'R(1,ap,am)

! [
+ EL[E( ,ap,amy

—0(m?—1%)ER(l,ap,am)]

2[ER(1,ap,am)—ER(1,0,0)]

1JE(I 00)+J’ —[E(l,ap,am)

—0(m?—1%)ER(I,ap,am)]|,—o+ O(a).

(B22)

We use a shorthand notation for the loop integral, namely
[,=[d%/(2m)*. Equation(B22) is the “master” equation
for computing the half-circle graph: in the remainder of this

_ it ~O
||zSC P+ (B26)

g e

where C°=C|,_o, and ®=0(72—1?). Note that theA .

term in the fermion propagator is antisymmetricliand so
vanishes upon integration above. The second term comes
from taking the derivative o8'R:

d
ESIR(I 1am)|a:0

SR(1,0)

a=0

d
= — SR ,0)[ﬁ[s'R(| ,am)]l}

m
=2 qal(=it+4.)CIP. 8. (~HCL+A.CEP.].
+’_

Appendix, we compute the various terms appearing within it.

4. Infrared terms

In this section, we comput&'® and dE'R/da. The IR
(a—0) limit of the fermion propagator is

SR am):; > (—it—ams.+A.)C.P.
’ 12+a%(mid)? 7 ST
(B23)
where 6, = 55,153',Nsa o-= 5S,N563’,11 AL=0gs 1s’
—Dbgds s, and

C,=(1-b)b2 ">+ am©@bds(bg ™ +by**)
(B24)

C_=(1-b2)by"s 2+amPbys(b§ s +by ).
(B25)

Note also the presence of the tree-level quark rrm&ﬂ%
=mM(2—M) which was defined above in E(R6).

Let us first compute the integral dE'R/da. Since the IR
there will be just two terms, one with
dSR(l,am)/da and the other witld(ap—1) “?/da. The re-

vertices are justy,,

sult for the first term is

(B27)
After some algebra, we have
1 IR
fl i (Im) ST(iy,)
ss'la=0
=—4(16a72)m(0)f [b sosts'ip
—bpst P, (B29)

The integration of th&'R(l,ap,am)—E'R(1,0,0) term of Eq.
(B22) is quite similar to that for Wilson fermion&ee e.g.
[34]). We delay writing down the answer, since it simplifies
greatly upon diagonalization in flavor space.

5. Finite terms

Let us first look at the numerator &fl,ap,am). For the
time being we suppress the indicgs’:

N=2 v, [(1+ap)/2]St(l,amv [ (1+ap)/2]
y23

1 1
1Yu co%(l +ap),— sinz(l +ap),

-3

o

X[(—it +WT)GRP, +(—it +W")G-P_]

1 1
X iy#co%(H—ap)ﬂ— sinE(H—ap)M (B29)

Multiplying the factors of\/ gives
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1 — 1
co§§(l +ap), —% (—iy,t y#+W+)GLP+(co§§(I +ap),

=2 (—iy,ty, +W)GRP_
Y23

+(—H_+W)GRP+(E sinZ%(Hap)M

y7

+(—iT+w+)GLP_(2 sinZ%(IJrap)M

n

> iyﬂ(—ii_+W_)GRP+(;sin(l+ap) 2 (—it+W)iy,GRP (1S|n(l+ap)
Y23

, (B30)

_ 1 _ 1
—}M‘, iyﬂ(—ii+W+)GLP(Esin(l+ap)# _% (—i++W*)iy#GLP+<§sin(I+ap)#

where, as usuaTEEVyVI—V. To computef,E(1,0,0) we divide Eq(B30) by 12 and integrate. Since the integration region is
symmetric inl ,, the terms odd i, in Eq. (B30) vanish upon integration. The result is given by

fE(I,o,0>=fAi S S AL (Wy Gy P+ (WY G P_]
| ||2 o 2 ' '

I -
> co§5”“[(ngL)s,s,P++(W5<3R)S,S,P_]— (GEy+Ggq) (B31)
yn
|
whereWy =W* |40 Note thatv,S™(dv,,/da) is the same as E4B30) with the
Next we compute replacements
d .
EE(I,ap,am)|a=oE|¢51+m82, (B32)
1 Pu .
where co§§(|+ap)ﬂﬂ— - sin(l +ap),
ipsl=2> 2v, [(I+ap)/2]S"(l,am)
I 1
g sinzz(l+ap)ﬂ—>%sin(l+ap)ﬂ (B34)
— MT—an) 2
X galvul(+ap)/2]}(l—ap)
AT P2 g Py
da 55|n(l+ap)#—>7cos{l+ap)ﬂ.
and
2 ds T—ap) 2 1 1+
mE-=v [ (I +ap)/2]avﬂ[(l+ap)/2](|—ap) . After some algebra, the result&ss,—ESS,P++€ss,
(B33)  Wwhere
|
1 B — |,u
f.gif;:_f.{gfz[ Z(Gss,+G;S,)+§ cosl ,[(Wy GR)g e+ (W5 Gh)gor]| + [ (% sm2 GEy
I -
> I_i(Zcog?”—E cos"— Gog+ 5 [(W(;GR)S,S,HWJGL)S,S,]}] (B35)
N v
and
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fgi'yz—f{ ]A-Z[I (GSS’+GSS')+2 cosl [ (Wo GR)g s+ (Wy GHg ]|+ =3 ( SIn2 ) s.s'
L I8l Eﬂ
_ E I_IZL(ZCO§_|2"_E co 52—)GSS/+I [(WOG )SS’+(W0 )SS,]:H. (836)
I v

For the second term in E¢gB33), the calculation is simplified through the use of the identity

SSW’S!(I ,0) = SS,S"(' ,0)[m( 6S’I,N555”,,1P+ + 53",155’”,NSP7)]SS,”,S’(I ,0) .
a=0
(B37)

The term generated by taking this derivative is proportional, therefore, to therma&e express the coefficient by

d d
ﬁss,s'(l 1am)|a=0: - Ss,s"(l 10)[ﬁDs”,s”’(l ,am)

2 1 | I
Eeg=2 72Va| 5 | (S P+ Sie+ SsaP-Sy w1V, (B38)
o
Algebraic manipulation similar to above givééy —55;’, +£SS,P with
2,+ 1 12 I,u R L 12 R IM L R
3= =112 co$-£GR G, —12>) siP2GL.GR .
| S,S I|2 m 2 \Ng S m 2 3 s:S
ol _ _ |
+2 SiP 2 (Wo GR)gn (Wo GR) 1= 2 008 (Wg GY)sa(Wo GH ), o
® M
12
—g[G?,NS(WaGR)l,sr+(W66R>S,N Glg+G5y(Wg Gy, s+ (W G L)slGN o] (B39
and
fleﬁ';, fl {22 cosZ—GglGN S,—|22 sm2 GE\.Gry
L I _ _
+ 20 i (Wg G5 a(Wo Gh)n, o= 2 08— (Wo GF)gn (Wo GF) g
“ M
12
——[G N (Wo GR) 1 g+ (Wo GR)gn Gl g+ Ga( Wy Gl o +(Wg L)slGN sl (B40)

6. Diagonalization of the self-energy

Returning to the calculation &'?(1,ap,am)—E'R(1,0,0), we diagonalize the IR fermion propagator. We refer the reader
to Appendix A for the explanation of the matrices which diagonalize the mass matrix. -ttt limit, the propagator for
light mode is

SFy(l,am) = 2 (—it+am), (B41)

12+ a2 (m(o))2

since the pieces of the full 5D propagat®23) transform as follows in the diagonal basis:

UC,UT=VC_V'=1+0(Nb} (B42)
VA_C_U'T=UA,C,V'=0(NZb2") (B43)
V8. C_UT=U6,C VI=by(1-bd)am. (B44)
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Then the calculation of thé&z(l,ap,am)—Eg(l,0,0) term proceeds identically to that in the case of ordinary four-
dimensional Wilson fermiong33,34]. The result is
m\? 3 )2
Inl—| — = Infl—| -1
az 2 az

2

1
O(m*—1%)[E(l,ap,am)—Ejx(1,0,0]=— f dx( 2ipx
| 0
wherez?=(1-x)[p?x+(m{”]?).
Next we compute the derivative term of E@22) for the light mode. Recalling the notation from Eg3),
d ~
16772f JalE(.ap.am—0(m*=1)ER(l,ap,am)]|ao=ipT1+m{’T,. (B46)
[

Combining&! [Egs.(B35) and (B36)] and its IR counterpartB26) gives

~ = d4
|1=1@an7 W[ le{smzl Gu)+2cod ,[by—b(1)]Gg}
il - | e eon d4l 1
+> SIT”{[bO—b(I)]GR—(ZcosZ?”—E cosz?" G +1%Gg 16772f 2n )4@)( |2)|—4 (B47)
I v -
where
Gr(=2 (UO); G, (NUOT 1= (V) G (VO
1 (bg t—e M)~ (by—eM) 1-b
~2b(Dsinha(l) {(bol—e—a“))ﬂbo—ea(')) T e 0 _pg)? (B48
and
GL(=2 (U, G (DUOT)g 1= (V@) GZ (VT
__ 1 (bg'—e M) —(bo—e*")  1-bf eW—p() ©49
~2b(hsinha(l) | (byt—e= M)+ (by—e*M) (e —bg)2 e 2N —p(l)|’

Likewise, combiningE? [Egs. (B39) and (B40)] and its IR counterpariB28) gives

- l6x? (7 dYM 1| — |
_ _q2 M R ) L ~R T,
'2 1—béfw<2w)4 272{ | % c08 5 TV1sGln Gro U s 1+ UssGsiGr Vs al

— o
+12 sm2g”[Vl,sGé,lGﬁs,s,U*s/,N; U1GEN G Ve n,]
M

|2
+ 5 [V1sGEn (W GR) 15 UTs 1+ U1 Gy (W GR) oV 1]

N

|2
_[Vls(W G )sNG157U s’, 1+U15(W GR)SN 15! s',l]

N

|2
+ 5 [V1Gsa(WHGhy_ Uy 1+ U1Go1(W Gy, VT 4]

N

|2
+ 5 Vi W Gh51GY o U's 1+ Us(WHGH1GY Vs 1]

N
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|
+2 oS [Vag(WHGHsa(WH Gy, s UTs 1+ Us (W G5 (W GR) 1 VT 4]
M
Ll . .
=2 SIS [Vig(W GR)gn (W GR)1 Uy 1+ Us (W GH (W GHy, Vs 1]
M

7 d 1
—4(16772)J7 W@(wz—lz)ﬁ. (B50)

Summing over internal indices we find that

2a(l

ViGN Gro Uy 1= (ea<'>1—bo)2 [ 1_;“;; e =Gy(l) (B51)

U1sG5iGy oV s 1=Ga(l) (B52)

V1 Gon (W GR) 1 UTy i=[e™“V—b(1)]Gy(]) (853
Vis(WGR)gn Gr o UTe i=[e™“V—b(1)]Gy(]) (B54)

U1 GE (W Ghy, o VTe i=[e“V—b(1)]Gy(]) (B55)

Ur (W GH)51Gf (VTe 1=[e“V—b(1)]G(]) (B56)
VisWGR)g (W GR)1 Uy 1=[e"*O—b(1)1Gy(1) (B57)
Up (W GH)s (W™ Gy, o Ve 1=[e~ O =b(1)]Gy(1). (B58)

All other terms in Eq(B50) vanish adNs—oc. Substituting Eqs(B51)—(B58) into (B50) gives the final result

~ = dY 1 1 — | 1
[ =—16q72f = 12>, cog-t — ——
i —m (2m)* 72 (e20)—py)? % 2 [1-eOp(1)]?
— e 0 | 7 d 1
_ 12 i P a—2a(l) | _ 2 2_ 12y
e T SM e 4(167%) | 52w =17, (859
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