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Calculation of the strange quark mass using domain wall fermions
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We present a first calculation of the strange quark mass using domain wall fermions. This paper contains an
overview of the domain wall discretization and a pedagogical presentation of the perturbative calculation
necessary for computing the mass renormalization. We combine the latter with numerical simulations to
estimate the strange quark mass. Our final result in the quenched approximation is 95~26! MeV in the MS
scheme at a scale of 2 GeV. We find that domain wall fermions have a small perturbative mass renormaliza-
tion, similar to Wilson quarks, and exhibit good scaling behavior.@S0556-2821~99!01723-3#

PACS number~s!: 12.38.Gc, 12.15.Ff, 14.65.Bt
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I. INTRODUCTION

The determination of the quark masses from first pr
ciples is an important task facing particle theorists tod
The light quark masses are among the most poorly de
mined parameters of the standard model. The cause o
difficulty is the confining nature of QCD: quarks exist on
in bound states. Furthermore, most of the mass of light h
rons is due to the energy of the color fields surrounding
quarks rather than the quarks themselves; therefore a non
turbative treatment of QCD is required to connect the qu
masses in the QCD Lagrangian with the spectrum of h
ronic states measured experimentally.

Next-to-lowest order chiral perturbation theory (xPT)
quite precisely predicts the ratios of quark masses@1# but
cannot set the absolute scale. The most promising metho
computing the light quark masses~i.e., mu , md and ms) is
lattice QCD. It has been suggested that QCD sum rules
be used to place fairly strict lower bounds onms1mu and
md1mu by using analyticity conditions@2#; however, calcu-
lations of the values of the light quark masses from sum ru
are thought to involve many uncertainties@3#.

The feasibility of calculating the quark masses throu
Monte Carlo simulation of lattice QCD has been recogniz
since the early days of the field@4#. Most previous work
utilized two formulations of lattice fermions: Wilson ferm
ons which explicitly break chiral symmetry at finite lattic
spacing and suffer from large discretization errors, a
Kogut-Susskind fermions which maintain a remnant ch
symmetry, but badly break flavor symmetry and seem
have poorly converged weak-coupling expansions. Rece
Sheikholeslami-Wohlert~SW! fermions@5#, an improvement
of Wilson fermions, have also been used to compute the l
quark masses@6,7#.

The usual method of computing the light quark masses
the lattice is the following. For fixed gauge coupling a
various bare quark masses, one computes the pseudosca

*Present address: RIKEN BNL Research Center, Brookhaven
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vector meson mass from the exponential decay in Euclid
time of an appropriate correlation function. Using leadi
order xPT one extrapolates in the bare quark massmq to
where the meson mass takes on its physical value; then
corresponding value of the bare quark mass can be conve
to the renormalized quark mass in any desired scheme.
method implicitly uses the vector Ward identity, so the d
ferencemq2mc is renormalized byZm5ZS

21 , wheremc is
the bare quark mass corresponding to zero pion mass anZS

is the renormalization constant of the scalar density. Usu
one converts the renormalized lattice quark mass to the c
tinuum modified minimal subtraction (MS) regularization
scheme by matching the weak coupling expansions ofZS in
both schemes. Using this procedure the light quark m
ml[(mu1md)/2 and the strange quark massms may be
computed independently, for example, using the pseu
scalar spectrum to fixml and the vector spectrum to fixms .
A comprehensive analysis of the light quark masses us
this method appears in Ref.@8#.

Recently several attempts have been made to rem
some sources of uncertainty in the usual method. A la
source of error in Wilson fermion calculations is the det
mination of the chiral limit; since they explicitly break chira
symmetry, Wilson quarks become massless at a non
critical bare quark mass,mcÞ0. One can avoid this error by
using the axial Ward identity to fix the bare quark ma
@9,10#. One computeŝ0u]0A0up& and^0uPup&, whereAm is
the local non-singlet axial vector current andP the non-
singlet pseudoscalar density, and then the quark mas
given by the ratiô 0u]0A0up&/^0uPup& and is renormalized
by Zm5ZA /ZP . Since the vector meson and baryon spec
cannot be used with this method, only one of eitherml or ms
may be fixed independently; the other is necessarily rela
by chiral perturbation theory.

Another large uncertainty enters into the matching b
tween lattice and continuum regularizations. The typi
scale at which this matching occurs is 2 GeV where
validity of weak coupling perturbation theory~WCPT! is
tenuous. In the case of Kogut-Susskind fermions, latt
WCPT is untrustworthy: next-to-leading order correctio
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can be 50–100 % of the leading order term. Therefore, n
perturbative calculation of the renormalization factors is v
desirable. Two methods are being explored presently wh
may remove the need for a perturbative expansion of
lattice theory@11#, or push it to a very high energy scale
which the expansion parameter is much smaller@12#. Finally,
the quenched approximation seems to give quark ma
which are roughly 20% larger than unquenched qu
masses@8#. Clearly this indicates that full QCD simulation
are necessary for a precise calculation of light quark mas

Presently no consensus has been reached regardin
values of the light quark masses, even within the quenc
approximation. For example, using Wilson fermions and p
turbative matching, the strange quark mass is 115~2! MeV
when the kaon is used to fix the bare quark mass and 14~6!
MeV when thef meson is used@13#, where the mass is
defined in theMS scheme at 2 GeV.1 Results using the SW
action give a lighter strange quark mass of 95~16! MeV @7#.
Furthermore, an exploratory nonperturbative determina
of the quark mass renormalization agrees with the pertu
tive renormalization for the usual quark mass definition,
differs with the perturbative renormalization for the ax
Ward identity definition @11#. Using the nonperturbative
renormalization and the axial Ward identity, Ref.@11# finds a
strange quark mass of 130~18! MeV. A more comprehensive
presentation of the current status appears in Ref.@14#.

In this paper, we employ a new fermion discretization
compute the light quark masses: domain wall fermions. D
main wall fermions utilize a fictitious extra~in this case,
fifth! dimension in order to preserve chiral symmetry at no
zero lattice spacing; the chiral symmetries of the continu
are exactly preserved in the limit of an infinite fifth dime
sion @18,56#. The idea originated in the context of chir
gauge theories. In Ref.@15#, Kaplan constructed free lattic
chiral fermions, without doublers, in 2k dimensions by con-
sidering Dirac fermions in 2k11 dimensions coupled to
mass defect in the extra dimension, or domain wall. For
riodic boundary conditions in the extra dimension, an an
domain wall also appears which supports 2k-dimensional
chiral fermions of the opposite handedness. Although
suitability of this approach for chiral gauge theories is s
under intensive study, its usefulness for simulations
chirally symmetricvectorgauge theories such as QCD no
appears well established~for a review, see Ref.@16#!.

Since the first suggestion that domain wall fermions of
a way to study chiral symmetry breaking of QCD@17,18#,
considerable work has been done to assess the practical
the method. In Ref.@17#, a simplification of Kaplan’s origi-

1The widespread belief is that the quenched approximation yi
a K-f splitting which is smaller than the experimental value. Usi
a regularization independent renormalization scheme, re
quenched simulations with Kogut-Susskind fermions givems

MS

5106(7) MeV with the kaon as input versus 129~12! MeV with the
f as input@54#. On the other hand, a recent quenched study us
the SW action with a nonperturbatively determined coeffici
claims to reproduce the physicalK-f splitting if their chiral fit is
quadratic rather than linear@55#.
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nal proposal is made for QCD simulations: half of the ex
dimension is discarded, and the domain walls effectively
come the boundaries of the extra dimension. For free fi
theory it has been shown that, for a range of the input
rameters, a light four-dimensional mode of definite chiral
is bound to one boundary and a similar mode of oppo
chirality is bound to the other boundary; the mixing betwe
the two modes is exponentially suppressed with the size
the extra dimension@18–21#. Significant suppression of th
mixing between the modes was also seen in nonperturba
simulations, but whether or not it is purely exponential r
mains an open question@22–24,16#. Furthermore, the nons
inglet axial Ward identity is reproduced, and predictio
from chiral perturbation theory for the dependence of
pseudoscalar meson mass on the quark mass and for the
mixing parameter are satisfied@22,23,16#. Also, the expected
behavior of^q̄q& in the quenched approximation due to t
pological zero modes is reproduced@24,25#.

The paper is structured as follows: Section II introduc
the details of the domain wall fermion action, Sec. III co
tains the results of the one-loop calculation of the mass
quark self-energy, and Sec. IV gives the details of our Mo
Carlo simulations. In Sec. V we combine analytical and n
merical results to give a value for the strange quark ma
Finally, we present our conclusions in Sec. VI and inclu
some details of our calculation in the Appendix.

II. DOMAIN WALL FERMIONS

In this section we review some properties of domain w
fermions in QCD, following the original boundary fermio
variant by Shamir@17#. We take a pedagogical point of view
and introduce notation and methods which will be relevan
our work later in this paper. We write down the action a
the propagator, discuss the physics described by the l
modes coupled to the boundaries, and mention previ
work supporting the domain wall formulation of lattic
QCD. For further details one should refer to the literatu
cited throughout the section.

A. Action

On a lattice with spacinga, the domain wall fermion ac-
tion is given by

2a4(
x,y

(
s,s8

c̄s~x/a!Ds,s8~x/a,y/a!cs8~y/a!, ~1!

wherex,y are four-dimensional Euclidean spacetime coor
nates ands,s8P@1,Ns# are coordinates in the fifth dimen
sion. The Dirac operator can be separated into a fo
dimensional part,D i, and a one-dimensional part,D':

aDs,s8~x,y!5aDi~x,y!ds,s81d~x2y!aDs,s8
' ; ~2!

x and y have been rescaled to be dimensionless. The
term is the four-dimensional Wilson-Dirac operator with
mass term which is negative relative to the usual 4d Wilson
fermion action:
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CALCULATION OF THE STRANGE QUARK MASS USING . . . PHYSICAL REVIEW D60 114507
aDi~x,y!5
1

2 (
m

@~11gm!Um~x!d~x1m̂2y!

1~12gm!Um
† ~y!d~x2m̂2y!#

1~aM24!d~x2y!. ~3!

For 1,s,Ns , the Dirac operator in the extra dimension
given by

aDs,s8
'

52ds,s81
1

2
~11g5!ds11,s81

1

2
~12g5!ds21,s8 .

~4!

Note that the five-dimensional fermions are coupled tofour-
dimensionalgauge fields which are identical at eachs; i.e.,
the link matrices obey

Um,s~x!5Um~x! for mP@1,4#,

U5,s~x!51 for 1<s,Ns . ~5!

The boundary conditions in the fifth dimension are an
periodic with a weightam which, as we will see, is propor
tional to the 4d quark mass. The Dirac operator for the fif
dimension can be separated into its chiral components by
projectors,P6[(16g5)/2, such that

Ds,s8
'

5Ds,s8
',1P11Ds,s8

',2P2 . ~6!

In matrix notation,

aDs,s8
',1

5S 21 1 0 . . . 0

0 21 1 . . . 0

A A A A A

0 0 0 . . . 1

2am 0 0 . . . 21

D ,

aDs,s8
',2

5S 21 0 . . . 0 2am

1 21 . . . 0 0

0 1 . . . 0 0

A A A A A

0 0 . . . 1 21

D . ~7!

Since the perturbative calculation is simpler in~four-! mo-
mentum space, we Fourier transform the ordinary space
coordinates. The five-dimensional domain wall Dirac ope
tor ~2! becomes

aDs,s8~ap!5F(
m

igm sinapm1aM

2(
m

~12 cosapm!Gds,s81aDs,s8
' ~8!
11450
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m

igmap̄mds,s81Ws,s8
1 P11Ws,s8

2 P2

~9!

whereap̄m[ sinapm , and theW6 are related to theaD',6

by

Ws,s8
6

5aDs,s8
',6

1FaM2(
m

~12 cosapm!Gds,s8 . ~10!

B. Mass matrix

The discrete extra dimension can be interpreted as a fla
space withNs21 heavy fermions and one light flavor@26#.
In that framework, theW6 in Eq. ~9! are mass matrices
which govern the flavor mixing. One can have several phy
cal pictures of how the mass hierarchy is maintained. T
chiral symmetry is manifest in the domain wall picture; sin
the left- and right-handed modes are bound to opposite w
in the extra dimension and are separated by a distanceNs ,
the chiral components can be rotated independently. The
vor space picture also provides insight. Reference@27# re-
lates the mass hierarchy in terms of a generalized see
formula. In fact, the Froggatt-Nielsen@28# mechanism allows
one to establish an approximate conservation law which p
tects the light mass from large radiative corrections@27#.

Let us examine the eigenvalues and eigenvectors of
tree-level mass matrix~in flavor space! for the action de-
scribed above in Eqs.~1!–~7!. Details are presented in Ref
@17,20#, and we repeat them in Appendix A 1 so that th
may be extended to the one-loop case. Since the mass m
is not Hermitian, we diagonalize the mass matrix squar
Let V0 be the zero momentum limit ofW2, Eq. ~10!:

V0s,s85S 2b0 0 . . . 0 2am

1 2b0 . . . 0 0

0 1 . . . 0 0

A A A A A

0 0 . . . 1 2b0

D , ~11!

where b0[12M . Here and in the rest of the paper, w
rescaleM so that it is dimensionless. As shown in Re
@17,20,19#, when ub0u,1 the smallest eigenvalue ofV0V0

†

~and ofV0
†V0) is

~l (1)!25~am!2M2~22M !21O„~am!4
…1O„~12M !Ns

….
~12!

Therefore, the mass of the light mode, given byl (1), has an
additive renormalization which is suppressed asNs→` for
the range 0,M,2. ~We elaborate on this restriction onM
in the next section and throughout the remainder of the
per.! For ub0u,1 the eigenvectors ofV0V0

† are given by

fs
( i )5H AM ~22M !e2a(s21)~sgnb0!s21 i 51,

A 2

Ns
sinS p~ i 21!

Ns
@Ns112s# D iÞ1 ,

~13!
7-3
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where thei th eigenvector corresponds to eigenvalue (l ( i ))2.
The constanta0 is defined through

cosha05
11b0

22~l0
(1)!2

2ub0u
. ~14!

Note that the light eigenmode in Eq.~13! is exponentially
concentrated at thes51 boundary while the heavy (i .1)
modes are not.

Once the eigenvectors of the mass matrix squared h
been found, the Dirac operator can be diagonalized ea
Following Ref. @20# let us define unitary matricesU (0) and
V(0) such that

Us,s8
(0) [fs8

(s) and Vs,s8
(0) [fNs112s8

(s) . ~15!

Then the basis

cs
diag~p![Us,s8

(0) P1cs8~p!1Vs,s8
(0) P2cs8~p!

c̄s
diag~p![c̄s8~p!P1~V(0)†!s8,s

1c̄s8~p!P2~U (0)†!s8,s ~16!

diagonalizesDD† andD†D. Furthermore, the Dirac operato
itself is diagonal in this basis, up to terms which vanish
Ns exp(2a0Ns) @20,21#:

c̄~2p!D~ap!c~p!5c̄diag~2p!~V(0)P1

1U (0)P2!D~P1U (0)†

1P2V(0)†!cdiag~p!

5c̄diag~2p!~ iap”̄1V(0)W1U (0)†P1

1U (0)W2V(0)†P2!cdiag~p!, ~17!

where theV(0)W1U (0)† and U (0)W2V(0)† are diagonal in
s,s8 @20#. Let us definex[cs51

diag , the eigenstate of the light
est eigenvalue of the mass matrix~squared!. This mode has
the effective tree-level action

S eff
tree5a4E

2p/a

p/a d4p

~2p!4x̄~2p!@ ip”1mM~22M !#x~p!,

~18!

sinceV(0)W1U (0)†us51,u515U (0)W2V(0)†u1,15l0
(1) @20#.

C. Propagator

The calculation of the tree-level fermion propagatorSF
proceeds similarly to the diagonalization of the mass ma
presented above. The final expression for the propagato
complicated, so we write it here schematically; it is writt
explicitly for the present action in@17,20# and in Appendix
B 1. As in Ref. @26# let us write the propagator asSF
5D†/(DD†) and project out its chiral eigenstates so that
11450
ve
ly.

s

x
is

Ss,s8
F

~p!5@~2 igmp̄mds,s91Ws,s9
2

!Gs9,s8
R P1

1~2 igmp̄mds,s91Ws,s9
1

!Gs9,s8
L P2# ~19!

where p̄m[sinpm , and GR (GL) is the inverse ofD†D
(DD†):

Gs9,s8
R [S 1

p̄21W1W2D
s9,s8

and

Gs9,s8
L [S 1

p̄21W2W1D
s9,s8

. ~20!

We give GR and GL explicitly in Appendix B 1, but let us
mention their general behavior. The homogeneous solut
of

~D†D !s,s9Gs9,s8
R

5ds,s8 and ~DD†!s,s9Gs9,s8
L

5ds,s8
~21!

are exponentials: exp@6a(p)s#. If 0,b(p),1, then the so-
lutions are decaying exponentials;a(p) is real and defined
through

cosha~p!5
p̄2111b2~p!

2ub~p!u
, ~22!

where

b~p![12M1(
m

~12 cosapm!. ~23!

If 21,b(p),0, then the solutions oscillate
(21)s exp@6a(p)s#, with a as in Eq.~22!. For ub(p)u.1
there is no longer a mode bound to the domain wall:
solutions of Eq.~21! go like exp@6ia(p)s# wherea is now
defined through

cosa~p!5
p̄2111b2~p!

2b~p!
. ~24!

Thus,M must be in the range

0,M,2 ~25!

in order for there to be a single massless fermion asNs
→`. At greater values ofM, ‘‘doubler’’ states in the other
corners of the Brillouin zone become nearly massless.
example, the four states with one component of momen
nearp/a contribute, and so on in increments of 2 up to
,M,10 where again only a single state with all four m
menta nearp/a exists. In fact the action is symmetric und
the changesM→102M and cs(x)→(21)(mxm1scs(x) so
the physics of any region and the one reflected aboutM
55 are identical@29#. Henceforth, we concentrate our di
cussion on the single flavor theory near the origin of t
Brillouin zone. Also note that the range ofM in Eq. ~25! is
7-4
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FIG. 1. One-loop fermion self-energy dia
grams: the~a! tadpole and~b! half-circle graphs.
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additively renormalized in the interacting theory, and we d
cuss this renormalization in detail in Sec. III B.

D. Summary of tree level properties

Let us emphasize the following points. For strictly infini
Ns ~and m50) there is a massless right-handed ferm
bound to thes51 wall and a left-handed fermion bound
the anti-domain wall ats5` @15#. For large, but finite,Ns
the mixing between the two chiralities is exponentially su
pressed at the tree level@17#. One describes a ligh
4-component Dirac fermion by coupling the two light mod
with an explicit chiral symmetry breaking termm @18#. Then
the light Dirac fermion has a mass in the free theory equa
@17,19#

amq
(0)5M ~22M !@am1~12M !Ns#. ~26!

Therefore, neglecting exponentially small terms, dom
wall fermions describe a light mode whose mass ismultipli-
catively renormalized. It also turns out that the light mo
satisfies continuum-like axial Ward identities@18#. These
features make domain wall fermions very attractive for sim
lating light quark physics, where chiral symmetry is cruci

Another virtue of the domain wall formulation is that i
the limit Ns→` the leading discretization errors for the 4d
effective action areO(a2). In the massless theory, any gau
invariant dimension-5 operator with the required lattice sy
metries can be written as a linear combination of the follo
ing two operators@5#:

O15q̄D2q ~27!

O25
i

2
q̄smnFmnq ~28!

whereD2 is the second-order covariant derivative andFmn

5@Dm ,Dn# is the field strength tensor. However, neither
these terms is invariant under a chiral transformation

q→ei eg5q

q̄→q̄ei eg5. ~29!

Since chirality violating effects have been shown to van
as Ns→`, the contributions ofO1 and O2 to the effective
action must be suppressed. In this sense, the domain
fermion action is anO(a)-improved action@30,23#. Even
with an O(a)-improved action,O(a) errors can enter into
observables as the operators may requireO(a) improvement
as well. However, such improvements would also viol
chiral symmetry and, by the same argument as above,
suppressed asNs→`. Of course precise scaling tests a
11450
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necessary to evaluate the extent of the improvement,
though simulations to date@23#, including the ones in this
work, are consistent with these expectations.

III. PERTURBATIVE MASS RENORMALIZATION

In this section we present our one-loop calculation of
quark mass renormalization. A renormalization factor
needed in order to match a lattice definition of quark mas
a continuum definition. We are also pursuing methods
computing renormalization factors nonperturbatively; ho
ever, that work is beyond the scope of this paper.

We compute the matching factorZm(m,a) between a
quark mass defined on a lattice with spacinga to a con-
tinuum quark mass renormalized at momentum scalem:

mMS~m!5Zm~m,a!mLAT~a!. ~30!

Zm is computed by equating the one-loop continuum ferm
propagator to the one-loop lattice fermion propagator. In t
section we present the calculation of the full fiv
dimensional self-energy, and then we discuss its effect oM
and m. The wave function renormalization has been co
puted already in Ref.@20#; we have extended that work to th
massive case and present the full one-loop calculation h
for clarity.2 Only the main points are made in the body of t
section, while more details are given in Appendix B.

A. Five-dimensional fermion self-energy

The fermion self-energy,S(p,m), is given to one-loop
order by the Feynman diagrams shown in Fig. 1. We usep to
denote the external momentum andl to denote the momen
tum in the loop integral. The tadpole graph has no ferm
propagator in the loop, so it has trivial dependence on
fifth dimension; i.e., it is diagonal. On the other hand, t
fermion in the loop of the half-circle graph may propagate
the fifth dimension~change flavor! while the gluon is unaf-
fected. Therefore the half-circle graph has off-diagonal c
tributions ins,s8 space.

Even with the extra dimension, the steps of evaluating
half-circle graph are much like those for the calculation u
ing Wilson fermions@33,34#. First an integral which has the
same infrared (p→0) limit is subtracted fromS(p,m) to
cancel logarithmic divergences. The difference may then
Taylor expanded about zero lattice spacing. In the continu

2While this paper was in preparation, an independent one-l
calculation of the quark mass renormalization appeared in Ref.@31#
which helped us in tracking down an error in our preliminary wo
@32#.
7-5
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limit, we neglect terms in the expansion which vanish asa
→0; since the coefficients ofO(a) terms are exponentially
suppressed with increasingNs , the leading discretization er
rors are, in effect,O(a2). The resulting expression can b
arranged as follows:

S5
g2CF

16p2 F1

a
S01 ip”S11mS2G . ~31!

After a lengthy calculation which is presented in Append
B, these terms can be further subdivided into

Ss,s8
(0)

5I s,s8
(0)

22Tds,s8 ~32!

Ss,s8
(1)

5Ls,s8
(1)

1I s,s8
(1)

2
T

2
ds,s8 ~33!

Ss,s8
(2)

5Ls,s8
(2)

1I s,s8
(2) ~34!

where theL terms are proportional to lna, and theI and T
terms are finite integrals to be computed numerically. W
only need the renormalization of the lightest mode, so
delay further evaluation until we rotate the terms to the ba
which diagonalizes the one-loop mass matrix. We sho
note, however, that theI and L terms are functions ofM.
SinceM becomes additively renormalized, this depende
is the source of a systematic uncertainty: what numer
value ofM should one use to computeI (1) andI (2)? We will
address this issue in Sec. III B. To summarize, the fi
dimensional one-loop effective action is given by

c̄s~2p!H a21FW1P11W2P21
g2CF

16p2 ~ I (0)22T!G
1 ip” F11

g2CF

16p2S L (1)1I (1)2
T

2D G
1m

g2CF

16p2 ~L (2)1I (2)!J
s,s8

cs8~p!. ~35!

B. Renormalization of M

We noted above, Eq.~25!, that in the free theoryM50 is
the critical point where light modes begin to appear bound
the domain walls. The 1/a contribution from the self-energy
graphs,S0 given in Eq.~32!, shifts this value in the sam
way that the massless limit of Wilson-like fermions
shifted:

M50→M5Mc , ~36!

whereMc is the point at which the domain wall action fir
supports light chiral modes on the boundaries. If the tadp
contribution is dominant, the shifts are identical since t
graph is the same for domain wall and Wilson fermions.

Of course, the whole range ofM corresponding to light
modes is renormalized when the coupling is non-zero, exc
that M55 is a fixed point since the action is still symmetr
under M→102M and cs(x)→(21)(mxm1scs(x). For ex-
ample, for numerical simulations it is helpful to know th
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optimal value ofM which minimizes the extent of the ligh
mode in the fifth dimension. At the tree level the wave fun
tion corresponding to the zero mode bound to thes51 do-
main wall is ad function in thes direction whenM51; i.e.,
M51 is the optimal value for free domain wall fermion
since the intrinsic quark mass arising from the mixing
modes on opposite walls is minimized. However, simulatio
at b'6.0 have shown that the optimalM at which axial
symmetries are preserved is somewhere around 1.7 and
axial symmetries are poorly respected atM51.0 @22,23,16#.

The question now becomes, how is the whole range oM
renormalized? It cannot be a simple uniform shift sinceM
55 is a fixed point. If we consider only the tadpole cont
bution to the self-energy, the shift is approximately unifor
in each region (0,M,2, 2,M,4, . . . ), weighted by a
factor

(
m

@12 cos~pm!#→4,2,0,22,24 ~37!

coming from the Wilson term. Surprisingly, this simple pi
ture also describes the nonperturbative data well, as wil
shown later in this paper. This tadpole-improved estimate
M was originally proposed in Ref.@20#.

Perturbatively, the shift ofMc is given through thea21

terms in Eq.~35!:

Mc52
g2CF

16p2 S (0)52
g2CF

16p2 ~ I (0)22T!. ~38!

I (0)5I s,s8
(0) is not diagonal in the extra dimension; the on

loop calculation ofMc for the light mode involves rotating to
the basis which diagonalizes the one-loop mass matr3

However, a reasonable first estimate forMc assumes that the
tadpole graph is numerically much larger than the contri
tion from I (0):

Mc
tad[

2g2CFT

16p2 , ~39!

whereT is given in Eq.~56! and is numerically equal to 24.4
In Table I we give two values ofMc

tad, each computed with
different definitions of the strong coupling constan
gV

2(3.41/a) and gV
2(1/a). There is an obvious problem in

deciding the relevant scale of this effect. In Sec. V we d

3The calculation has been carried through in Ref.@31#.

TABLE I. Values ofM crit estimated from the tadpole graph an
computed with the 4D Wilson fermion action.

b56.3 b56.0 b55.85

Mc
tad(3.41/a) 0.676 0.754 0.812

Mc
tad(1/a) 0.985 1.17 1.41

kc
W @36# 0.1519 0.1572 0.1617

Mc
W 0.708 0.819 0.908
7-6
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cuss the choice of coupling constant and scale in detail, b
is clear that a perturbative estimate ofMc is not precise
enough for our purposes. We note, however, that for a
sonable estimate of the renormalized coupling, the shift
to the tadpole agrees well with the above nonperturba
estimate.

As a result of the above considerations, it is desirable
have a nonperturbative determination ofMc since it appears
in the definition of the lattice quark mass. A direct search
Mc would be numerically prohibitive, so it is fortunate th
there is a simple nonperturbative estimate available wh
originates from the overlap description of domain wall fe
mions @35# ~thus it is exact only forNs→`). In this case a
transfer matrix can be defined which describes propaga
in the fifth dimensionT5 exp@g5H

W(2M)# where

HW~2M ![g5D i~2M ! ~40!

is the ordinary 4D Hermitian Wilson-Dirac Hamiltonian wit
a mass term that is negative of the conventional one.D i first
supports exact zero modes asM approaches a critical valu
Mc

W defined by a vanishing pion mass. In this caseT has a
unit eigenvalue and propagation in the fifth dimension
unsuppressed. ThusMc for domain wall fermions corre-
sponds toMc

W for Wilson fermions, usually given in terms o
the hopping parameter,kc

W :

Mc
W52S 1

2kc
W 24D . ~41!

We can simply takeMc5Mc
W from existing numerical simu-

lations. In Table I we give the values ofkc
W computed in Ref.

@36# and the corresponding value ofMc
W which we use for

the rest of this work.
In Fig. 2 we show schematically what the spectrum of

four-dimensional Wilson-Dirac operator should look lik
~with the domain wall convention for the sign ofM ) for the
single flavor case. Ordinary Wilson fermion simulations a
performed in the regionM,Mc , while the domain wall fer-
mion simulations haveM1,M,M2. It has been conjec

FIG. 2. Expected spectrum of the Wilson-Dirac operatorD i as a
function ofM ~which is negative compared to the usual convent
for Wilson fermions!. There is a mass gap forM,Mc and M1

,M,M2, and no gap in the Aoki regionMc,M,M1.
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tured by Aoki@37# that there is a rangeMc,M,M1 where
there is no gap due to the spontaneous breaking of flavor
parity; evidence for the existence of this Aoki phase has b
found in lattice QCD simulations@38# and analytically using
an effective chiral Lagrangian@39# where the width of this
phase,M12Mc , was found to beO(a3). In the conven-
tional picture~see Ref.@39# for a recent summary! the gap
reopens afterM1 and closes again atM2 when four of the
doubler modes become massless.

The spectrum of the Hermitian Wilson-Dirac Hamiltonia
has been studied in some detail in Ref.@40#. Many level
crossings in the Hamiltonian were found uniformly in th
region above M1. These zeros were related to sma
instanton-like configurations and are presumably related
the same lattice artifacts that give rise to so-called exc
tional configurations@41#. If the density of these zero mode
is non-zero in the large volume limit, then the gap is clos
and domain wall fermions cannot exist: the entire allow
region ofM should then be in the Aoki phase. Since nume
cal evidence@22–25# for the existence of domain wall fer
mions is quite strong, we infer that the density of these ze
vanishes in the large volume limit~see Ref.@16# for more
details!, at least for the couplings relevant to present simu
tions. This is also consistent with the above studies of
Aoki phase. However, we also note that at some strong c
pling the conventional picture is for the whole region to be
the Aoki phase, and at this coupling domain wall fermio
cease to exist. The existence of the Aoki phase also rev
why the size of the extra dimension must increase as
coupling becomes stronger: as the gap gets smaller the
of the extra dimension must increase to maintain the sa
amount of suppression. We refer the reader to Ref.@27# for
similar plausibility arguments on the behavior of domain fe
mions at strong and weak coupling.

In closing this section we emphasize that the simple
placement of

M→M̃[M2Mc
W ~42!

in the quark mass~26!, though nonperturbative, is an ansa
which may or may not introduceO(a) errors. Furthermore
M cannot really be uniformly shifted, even piecewise, ov
the whole region. Nonperturbative effects such as instan
like artifacts may be important~though these do seem to b
more or less uniformly distributed aboveMc). However, as
previously mentioned, Eq.~42! is a very good fit to our nu-
merical data which we present in Sec. IV. Also the ident
cation in Eq.~41! is only exact in the limitNs→`. Again,
simulations indicate that this is a good approximation~see
Ref. @16#!.

C. Quark mass renormalization

In this section we concentrate on the renormalization
the quark mass. We follow the method outlined in the case
the wave function renormalization@20#. The tree level quark
mass was given in Sec. II B by finding the smallest eige
value of the mass matrix squared,V0V0

† . At the one-loop
level, the mass matrix is renormalized:
7-7
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V[V01g2V1 . ~43!

V0 is the tree-level mass matrix~11! andV1 is the one-loop
correction given by the terms in Eq.~35!:

V1[
CF

16p2 ~S (0),21amS (2),2! ~44!

whereS ( j ),6[S ( j )P6 .
We rotate the fermion fields to the basis which diagon

izes the one-loop matrixV:

cs
diag~p![Us,s8P1cs8~p!1Vs,s8P2cs8~p!

c̄s
diag~p![c̄s8~p!P1~V†!s8,s1c̄s8~p!P2~U†!s8,s .

~45!

Then the terms which control the renormalization of the lig
fermion mode are as follows:

VW1U†us51,u515UW2V†u1,15mM~22M ! ~46!

VI (0),1U†u1,15UI (0),2V†u1,15O~Nsb0
Ns!

→negligible ~47!

UL (1),1U†u1,15VL(1),2V†u1,1[L̃1 ~48!

UI (1),1U†u1,15VI (1),2V†u1,1[ Ĩ 1 ~49!

VL(2),1U†u1,15UL (2),2V†u1,1[M ~22M !L̃2
~50!

VI (2),1U†u1,15UI (2),2V†u1,1[M ~22M ! Ĩ 2 .
~51!

The results of Ref.@20# for L̃1 and Ĩ 1 combined with our
results forL̃2 and Ĩ 2 are that

FIG. 3. The three finite integrals evaluated at values ofM @see
Eqs.~54!–~56!#.
11450
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t

L̃1522E
0

1

dxx lnS p

azD
2

1
3

2
~52!

L̃2524E
0

1

dx lnS p

azD
2

14 ~53!

Ĩ 15216p2E
2p

p d4l

~2p!4 H 1

8 l̂ 2 (
m

$sin2l m~G̃R1G̃L!

12 cosl m@b02b~ l !#G̃R%1(
m

sin2l m

2 l̂ 4

3F @b02b~ l !#G̃R2S 2 cos2
l m

2
2(

n
cos2

l n

2 D G̃L

1 l̂ 2G̃RG J 116p2E
2p

p d4l

~2p!4 Q~p22 l 2!
1

l 4 ~54!

Ĩ 25216p2E
2p

p d4l

~2p!4

1

l̂ 2

1

@12e2a( l )b0#2

3F l̄ 2(
m

cos2
l m

2

1

@12ea( l )b~ l !#2

2 l̄ 2
e2a( l )

~12ea( l )b~ l !!
1(

m
sin

l m

2
e22a( l )G

14~16p2!E
2p

p d4l

~2p!4 Q~p22 l 2!
1

l 4 ~55!

T516p2E
2p

p d4l

~2p!4

1

l̂ 2
, ~56!

where z25(12x)(p2x1(mq
(0))2), l̄ m[ sin lm and l̂ m

[2 sin(lm/2). We have also used the definitions

G̃R~ l !5
1

2b~ l !sinha~ l ! F ~b0
212e2a( l )!2~b02ea( l )!

~b0
212e2a( l )!1~b02ea( l )!

2
12b0

2

~ea( l )2b0!2G ~57!

and

G̃L~ l !5
1

2b~ l !sinha~ l ! F ~b0
212e2a( l )!2~b02ea( l )!

~b0
212e2a( l )!1~b02ea( l )!

2
12b0

2

~ea( l )2b0!2

ea( l )2b~ l !

e2a( l )2b~ l !
G . ~58!

The quantitiesb( l ), b05b(0), anda( l ) are defined in Sec
II C. The finite integralsĨ 1 , Ĩ 2, andT are plotted as functions
of the five-dimensional massM in Fig. 3.
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The expression for the fermion self-energy in the co
tinuum, using dimensional regularization in theMS scheme,
can be written as

S~p,mf !5 ip”S1
MS1mfS2

MS, ~59!

wheremf is the continuum mass and

S1
MS52E

0

1

dxx lnS Q2

zc
2 D 21, ~60!

S2
MS54E

0

1

dx lnS Q2

zc
2 D 22 , ~61!

andzc
2[(12x)(p2x1mf

2). The lattice mass and continuum
mass are matched onto each other by combining these c
lations so that, in Eq.~30!,

Zm5
Z2

LAT

Z1
LAT

Z1
MS

Z2
MS

, ~62!

with the notation thatZj[12g2CFS j /16p2. The final mass
renormalization factor between domain wall fermions a
continuum fermions in theMS scheme is given by

Zm512
6g2CF

16p2 @ ln~ma!2Cm#, ~63!

where

Cm5 ln p2
1

4
1

1

6 S T

2
1 Ĩ 12 Ĩ 2D . ~64!

As discussed in detail in Sec. III B, the parameterM is renor-
malized. Since the perturbative estimate of the renormal
tion ~38! is large and untrustworthy, we use the ansatz~42!.
The integrals~54! and~55! are unchanged, except the trivi
replacementM→M̃ in Figs. 3 and 4. We mark the region o

FIG. 4. The matching coefficientCm as a functionM. The
dashed lines indicate the range ofM where numerical simulations
have been performed.
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M̃ where our simulations have been performed with verti
dashed lines. Between those, 0.7,M̃,1.0, Cm varies from
2.88 to 3.10. These values ofCm should be compared to
Cm52.16 for Wilson fermions, 3.22 for Sheikholeslam
Wohlert fermions, and 6.54 for Kogut-Susskind fermions

IV. MONTE CARLO RESULTS

In practice, Monte Carlo simulation of quenched QC
using domain wall fermions is very similar to standard c
culations using Wilson fermions. We use the conjugate g
dient algorithm to invert the five-dimensional fermion m
trix. Next, 4D quark fields are constructed from the 5D fiel
at the two boundaries@18#:

q~x!5P1c1~x!1P2cNs
~x!

q̄~x!5c̄Ns
~x!P11c̄1~x!P2 . ~65!

These are the simplest interpolating fields for the light
mode, and composite operators constructed from them
isfy exact continuum-like Ward identities in the limitNs
→` @18#.

For this exploratory calculation of the strange quark ma
we compute the pseudoscalar meson mass and decay
stant on a few dozen configurations at three lattice spaci
Specifically we perform Monte Carlo simulations at thr
values of the gauge coupling:b[6/g25 5.85, 6.0, and 6.3.
The size of the extra dimension for the main part of th
work for the three couplings wasNs514, 10, and 10, respec
tively, and the 5D mass parameter wasM51.7, 1.7, and 1.5,
respectively. The value ofM'1.7 at 6.0 is the optimal value
which suppresses propagation of the light mode in the e
dimension, as found in a previous study@23#. The M at the
other two b ’s were ad hoc choices based on theb56.0
value and the fact that the optimalM should decrease to 1 in
the weak coupling limit. At all three gauge couplings th
mesonic two-point functions were computed withm50.075
and 0.050, and atb56.0 and 6.3 another mass,m50.025,
was also included. The lattice volumes atb56.0 and 6.3 are
roughly '(1.6 fm)3 while the b55.85 volume is
'(2.0 fm)3. Our raw lattice simulation results are given
Table II.

In addition to the gauge coupling and bare quark ma
domain wall fermion simulations depend on the fiv
dimensional massM and the size of the extra dimensionNs .
The study of how data are affected by changing these par
eters is important. Given the results of Ref.@23#, we believe

TABLE II. Pseudoscalar mass and decay constant for the m
numerical data set.

b55.85, 163332 b56.0, 163332 b56.3, 243360
m aMp a fp aMp a fp aMp a fp

0.025 0.309~6! 0.076~4! 0.245~5! 0.056~5!

0.050 0.488~5! 0.104~4! 0.423~5! 0.088~4! 0.340~4! 0.066~3!

0.075 0.588~4! 0.114~4! 0.517~5! 0.094~4! 0.425~4! 0.072~3!
7-9
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that we have takenNs large enough so that corrections due
the mixing of the two light modes in the center of the ex
dimension are smaller than the rest of our uncertain
which we will show later to be'10% –20%. The effect of a
finite Ns is to give the pion an additional intrinsic massmI :

~aMp!25AM̃~22M̃ !~m1mI !. ~66!

In the free theorymI5u12M uNs @19#, and in the interact-
ing theory mI is expected to decay exponentiallymI
;exp(2aNs).

Indeed we find a nonzero intercept when we extrapo
the pion mass squared tom50 for b55.85 and 6.0~see Fig.
5!, but find that theb56.3 mass squared does extrapolate
zero. We have repeated simulations atb56.0 using Ns
514 and found that the pion mass decreases by a few
cent~compare Tables II and III! signaling a statistically sig-
nificantmI . However, errors in determining the lattice spa
ing from f p are much larger than the difference inaMp and
so theNs510 results are sufficient for this work.

A thorough study of theNs dependence at a stronger co
pling, b55.7, was presented in Refs.@24,25#. They find two
important results. First, physical results were unchanged
tween Ns532 and 48. This is consistent with argumen
above concerning the behavior of domain wall fermions
stronger coupling. They usedM51.65 in their study. It is
possible that a larger value would decrease the value oNs
required to reach the asymptotic region. Second, even in
limit, the pion mass does not vanish asm→0, which is then
presumably a~4D! finite volume effect.

FIG. 5. Lattice pseudoscalar mass vsm for the threeb values.
Asterisks indicate linear extrapolations tom50 with jackknifed
errors and are slightly displaced horizontally for clarity.

TABLE III. Pseudoscalar mass (aMp) for the b56.0, Ns514
numerical data set.

m M51.5 M51.7 M51.9 M52.1

0.025 0.290~9! 0.293~7! 0.290~7! 0.281~11!

0.050 0.394~7! 0.411~5! 0.412~7! 0.396~8!

0.075 0.487~7! 0.510~7! 0.490~7!
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We were able to test for finite volume errors atb56.0 by
computing the pion mass withNs510 on a 243340 lattice.
The results,aMp50.318(5) and 0.427~4!, for m50.025 and
0.050 respectively, are not statistically distinguishable fr
the results on the 163332 lattice~see Table II!.

Since the quark mass, even at the tree level, explic
depends onM, we performed several more runs atb56.0
with m50.025, 0.050, and 0.075, varyingM between 1.5
and 2.1 on roughly 20 configurations withNs514.4 Table III
displays the values ofaMp obtained from these simulations
and Fig. 6 shows (aMp)2 as a function ofm. The linear least
squares fits extrapolate to (aMp)250 at m50 within the
~uncorrelated! errors for eachM separately. Furthermore, i
Fig. 7 we plot (aMp)2 as a function ofM for the three values
of m. We can test the ansatz~42! simply by fitting the data to

~aMp!25AmM̃~22M̃ !, ~67!

for eachm. The dashed lines in Fig. 7 are fits to Eq.~67! and
have goodx2’s; eachx2 per degree of freedom is less than
and A is the same within~uncorrelated! errors for eachm:
A53.48(8), 3.42~6!, and 3.52~4! for m50.025, 0.05, and
0.075, respectively. Therefore, the ansatz~42! is well justi-
fied in this work. At present the data do not permit a mo
general fit. Given these observations we find the definition
the lattice quark mass

mLAT5mM̃~22M̃ ! ~68!

to be very reasonable and suitable for this work.

V. QUARK MASS AND COUPLING CONSTANT

We believe we have a good understanding of the dep
dence of hadron spectrum onM, so now we concentrate o
the data at one value ofM per lattice spacing~as listed in
Table IV!. We compute the pion decay constanta fp for
three massesm for eachb and extrapolate linearly to the
chiral limit, m50 ~see Fig. 8!. We determine the lattice
spacing by setting this extrapolated value to the phys
pion decay constant,f p5130.7 MeV. Here we must empha
size that in this exploratory calculation, the determination
the inverse lattice spacing has a large systematic uncerta
due to having only a few data points to extrapolatea fp to
m50. In the continuum,xPT gives a one-loop correction t
the decay constant which goes as@42#

f p5 f F11
Mp

2

~4p f !2 lnS Mp
2

L2 D G , ~69!

wheref is the tree-level decay constant andL is the cutoff.
With only three quark masses we cannot resolve the loga
mic behavior off p , so we extrapolate linearly tom50 ~see
Fig. 8!. We should remark that the signal for the decay co
stant is rather noisy:a fp varies by as much as 10% depen

4In the interest of frugality, we did not extend them50.075,
M51.7 data fromNs510 to Ns514.
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FIG. 6. Pion meson mass squared as a function ofm for b56.0. Lines are least squares fits which extrapolate to (aMp)250 at m
50 for all four values ofM within the errors shown by asterisks.
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ing on the range of Euclidean time over which one compu
correlation functions. Since the determination of the latt
spacing for this work is through the extrapolation ofa fp to
m50, it comes with a large uncertainty.

Next, we use chiral perturbation theory as a guide to
terpolate the pion mass squared linearly in the quark m
Mp

2 ;m to the value ofm which gives the physical kaon

FIG. 7. Pion meson mass squared as a function ofM at b
56.0. Ns514 except for theM51.7, m50.075 point which has

Ns510. The dotted lines are fits to (aMp)25AmM̃(22M̃ ).
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mass, 495 MeV. That value must then be doubled to t
into account the fact that we use degenerate quarks in
simulations, while the physical kaon has one strange qu
and one lighter non-strange quark.5 We denote the paramete
m corresponding to the physical kaon byms and display our
results in Table IV. Using Eq.~68! we obtainms

LAT , the
domain wall strange quark mass.

Combining Eqs.~30! and ~63! the following expression
relates a quark mass computed on a lattice with spacinga to
the quark mass defined in the modified minimal subtract
scheme of dimensional regularization at momentum scalem:

ms
MS~m!5ms

LATF12
2as

p
„ln~ma!2Cm…G , ~70!

where we have substitutedg2/4p5as andCF54/3. The last
quantity we need is the coupling constantas . In a one-loop
calculation such as this, there is ambiguity in the definiti
of the coupling constant. The matching equation~70! is de-
rived by equating the poles of the one-loop quark propa
tors computed in the continuum and on the lattice. Each p
cedure uses a differently defined coupling constant; howe

5To be accurate one should usem5(ms1ml)/2, settingml with
the physicalMp . However, in this exploratory work, we have ne
glected this'4% effect.
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the difference between the two coupling constants is a hig
order correction in perturbation theory:

as
LAT2as

CONT5O~as
2!. ~71!

It has been known for some time that the bare coupling c
stant is not a good expansion parameter for lattice pertu
tion theory@43#. Therefore we use a physical definition r
lated to the heavy quark potential. Specifically, we define
coupling constant using the two-loop perturbative express
for the plaquette~the 131 Wilson loop!:

2 lnK 1

3
TrUplaqL 5

4p

3
aV~3.41/a!@121.19aV1O~aV

2 !#.

~72!

The scale 3.41/a has been computed by estimating and mi
mizing the effect of higher order terms@43#. One can runaV
to any other scale using the universal two-loop beta funct

FIG. 8. Lattice pseudoscalar decay constant vsm for the threeb
values. Asterisks indicate linear extrapolations tom50 with jack-
knifed errors.

TABLE IV. Summary of simulation parameters and results.

b55.85 b56.0 b56.3

No. configurations 18 30 11
volume 163332 163332 243360
Ns 14 10 10
M 1.7 1.7 1.5
a21( f p) ~GeV! 1.57~15! 1.89~14! 2.72~34!

ms ~MeV! 73~7! 75~6! 76~10!

Mc
W 0.908 0.819 0.708

Cm 2.94 3.01 2.94
ms

LAT ~MeV! 70~7! 74~6! 73~10!

^Tr Uplaq/3& 0.5751 0.5937 0.6224
aV(3.41/a) 0.157 0.146 0.131
Zm(m52 GeV) 1.30 1.34 1.34
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Alternatively, one can compute the continuumMS coupling
constantaMS from aV ~at a scaleq) perturbatively@44#:

aMS~qe25/6!5aV~q!F11
2aV

p
1O~aV

2 !G . ~73!

Although the three-loop beta function has been computed
aMS @45#, we choose to use the two-loop beta function f
consistency; the difference comes in below the 1% level

The remaining problem is to decide on the scales a
corresponding couplings to insert in the matching equat
~70!. References@46,47# advocate the reorganizing of lattic
perturbation theory as we described above, so that the re
ing expression may be ‘‘horizontally matched’’ to the co
tinuum perturbative expansion. In converting our latti
quark mass into a continuum quark mass we follow the p
cedure described in Ref.@8#. Then the continuum matching
scalem should be set to the ‘‘best’’ lattice scale which min
mizes the higher order corrections to the fermion self-ener
Unfortunately, it is harder to estimatem for logarithmically
divergent graphs than it was in the case of the plaque
Therefore we resort to trying a spread ofm values. Evidence
from previous work indicates that in the rangem
50.5/a–p/a the higher order, ultraviolet-dominated, effec
are minimized@43,8#. Finally, the quark mass is run to
GeV using the two-loop running equation@48#. We also test
the systematic error by repeating the procedure for differ
values ofm. In Table V we give the strange quark masses
the matching scales,m(m), and the mass run tom52 GeV;
we also give our values ofaMS at different scales. Our sta

TABLE V. Strange quark masses~in MeV! in theMS scheme at
increasing values of the matching scalem. We give the mass a
both the matching scalem and at 2 GeV. The first pair of masses a
without tadpole improvement and the second pair include tadp
improvement.

m aMS(m) m(m) m (2 GeV) mTI(m) mTI (2 GeV)

b55.85
0.5/a 0.275 114~11! 96~9! 108~11! 90~9!

1/a 0.199 96~9! 92~9! 93~9! 90~9!

2.0 GeV 0.181 91~9! 91~9! 90~9! 90~9!

2/a 0.156 85~8! 90~9! 85~8! 90~9!

p/a 0.137 81~8! 90~9! 81~8! 90~9!

b56.0
0.5/a 0.243 116~9! 102~8! 111~8! 97~7!

1/a 0.182 99~8! 99~8! 97~7! 96~7!

2.0 GeV 0.178 98~8! 98~8! 96~7! 96~7!

2/a 0.146 89~7! 97~7! 89~7! 97~7!

p/a 0.129 85~6! 96~7! 85~7! 97~7!

b56.3
0.5/a 0.202 107~14! 101~13! 103~14! 97~13!

2.0 GeV 0.175 99~13! 99~13! 97~13! 97~13!

1/a 0.159 94~12! 98~13! 93~12! 96~13!

2/a 0.131 86~11! 97~13! 86~11! 97~13!

p/a 0.118 82~11! 97~13! 83~11! 97~13!
7-12
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tistical errors are 3–4 times larger than the variation
m(2 GeV) computed with different values ofm, so we can-
not argue that one particular scale minimizes higher or
effects in Eq.~70!.

One might try to improve the perturbation expansion
nonperturbatively estimating ultraviolet effects which sp
the convergence. For example, the tadpole-improvement
scription advocates perturbatively expanding the quan
mLAT/u0, where u0 is designed to be sensitive to sho
distance fluctuations@43#. Therefore, the tadpole-improve
quark mass, in theMS scheme, is related tomLAT/u0 pertur-
batively by

mMS
TI

~m!5~mLAT/u0!F12
2as

p
~ ln ma2@Cm2CT# !G ,

~74!

whereu0 is defined to be the fourth root of the plaquette

u0[ K 1

3
TrUplaqL 1/4

, ~75!

and it is computed from Monte Carlo simulation. The matc
ing coefficient is modified at the one loop level by the p
turbative expansion ofu0:

u0512
1

12
g2[12

2

p
CTas , ~76!

which definesCT . In Table V we give the tadpole-improve
strange quark mass for the various matching scales,mTI(m),
as well as the mass run to 2 GeV,mTI(2 GeV). At the lower
scalesm<2 GeV, tadpole-improvement lowers the mass
4–6 MeV, indicating that the unimproved perturbative res
has significant higher order corrections. On the other ha
there is no significant difference between the standard
improved expansions when the matching is done atm.2
GeV. Therefore, we will choose for our final result the im
proved mass with the matching done atm52/a, mMS

TI (2/a) in
Table V, and assign a 2 MeV systematic error due to th
arbitrary choice of scale. We perturbatively run our final
sult to 2 GeV for comparison with other results.

In Fig. 9 we plot our results for the strange quark ma
~with statistical error bars only! in the MS scheme at the
scale 2 GeV along with those obtained using other ferm
discretizations. In choosing the data to which we comp
the domain wall results, we used those which were obtai
with the same method. The masses were computed by fi
the kaon to be its physical mass and the matchings to
continuum were computed perturbatively. Unfortunately,
can only set the lattice spacing usingf p while the other data
in Fig. 9 use ther meson mass. In typical Wilson fermio
simulations@51#, as well as preliminary domain wall fermio
simulations@52#, there is a'15% systematic uncertaint
due to choosingf p vs M r to set the scale.

In this first work, the statistical errors are rather larg
about 15%, yet it is encouraging that we see no signific
signs of scaling violations. As argued in Sec. II C, discre
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zation errors should beO(a2) rather thanO(a) since wrong-
chirality operators are suppressed; however, a more pre
study is needed to draw a firm conclusion. Since no sc
dependence can be detected within the statistical error
this exploratory study, we take a weighted average of
strange quark mass determined at the three lattice spacin
give 95 MeV with a purely statistical uncertainty of 5 MeV
A linear extrapolation to the continuum limit raises the ce
tral value by 15 MeV, but of course has a large uncertain
Given that we do not expect to haveO(a) scaling violations,
we take 95 MeV as our strange quark mass but add the
MeV in quadrature with the rest of our systematic errors.

At this time we assume the systematic uncertaint
quoted in Table VI. The largest systematic error arises fr
the ambiguity in which physical quantity is used to fix th
lattice spacing. As mentioned above, preliminary results
experience with Wilson fermions lead us to believe the
could be at least a 15% uncertainty using domain wall f
mions. Considering that our calculation off p was done with
only a few quark masses, we conservatively estimate a 2
systematic uncertainty ina21; the other systematic errors ar
small in comparison. For example, the uncertainty in mat
ing scale induces an error of 2 MeV. We have not yet co
puted the strange quark mass by fixing thef meson to its
physical mass, but in Wilson fermion simulations there is
O(10%) difference from the strange quark mass using

FIG. 9. Strange quark mass in theMS scheme at 2 GeV. Ou
results are displayed as squares, Wilson fermions as diamonds@13#,
Sheikholeslami-Wohlert fermions as circles@7#, and Kogut-
Susskind results as crosses@49,50#.

TABLE VI. Sources of systematic uncertainty in computing t
strange quark mass.

Source Estimated size

Using f p vs M r to seta 20%
Matching scale,m 2%
Using f vsK to setms 10%
Continuum extrapolation 16%
7-13
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TOM BLUM, AMARJIT SONI, AND MATTHEW WINGATE PHYSICAL REVIEW D 60 114507
kaon. For now we include this error as a systematic unc
tainty in our calculation, but it must be explicitly checke
with domain wall fermions. Of course quenching also
duces a systematic error; however, we are unable to add
its effects without a full dynamical-fermion simulation.

Adding the statistical and systematic errors in quadratu
our final result for the strange quark mass within t
quenched approximation is

mMS~2 GeV!595~26!MeV. ~77!

VI. CONCLUSIONS

This work has focused on the steps needed to compute
light quark masses with the domain wall fermion discretiz
tion. We have extended the calculation of the domain w
fermion self-energy to the massive case. We find that
perturbative mass renormalization factor which matches
domain wall lattice regularization to theMS regularization
scheme is as well behaved as that for Wilson fermions.

In conjunction with the perturbative calculation, we ha
performed numerical simulations of quenched lattice Q
using domain wall fermions. Atb56.0 the pion mass
squared vanishes linearly inm as m→0, and the ansatzM
→M2Mc

W is a good fit to the data. Finally we compute th
strange quark massmMS(2 GeV) at three lattice spacings
Within our errors, the results are scale independent, so
take a weighted average givingmMS(2 GeV)595(26) MeV,
where systematic uncertainties~except for quenching effects!
have been added in quadrature with the statistical error.

We intend to perform a larger scale calculation which w
include the vector meson spectrum. This will allow us
calculate the ‘‘average’’ light quark mass (mu1md)/2 to-
gether with the strange quark mass. In addition we will
able to estimate the systematic error due to setting the la
scale fromf p vs M r . A higher statistics study will be able t
sensitively test for scaling violations, and possibly give
value for the light quark masses which is comparable in p
cision to other lattice calculations.

Future prospects for this formulation are promising. D
main wall fermions have an advantage over Wilson ferm
ons, improved or not, in that they have chiral symme
which is broken only by the explicit massm coupling the
boundaries—the mixing of the two modes in between
boundaries can be made negligible compared tom. Conse-
quently there is no mixing between operators of differe
chirality and the quark mass is protected from additive ren
malization. A lattice discretization which respects the ax
symmetries of continuum QCD has an excellent chance
improve calculations of matrix elements involving light ha
rons.
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APPENDIX A: DIAGONALIZATION

1. Tree level

In this appendix we discuss the spectrum of the dom
wall Dirac operator at zero momentum at the tree level.
though this work appears in Ref.@17#, a treatment here is
useful to establish our notation, which is similar to Ref.@20#.

Given the mass matrixV0, defined in Eq.~11!, we wish
to solve the eigenvalue equation

~V0V0
†!s,s8fs8

( i )
5~l0

( i )!2fs
( i ) , ~A1!

where the indexi P@1,Ns# labels the eigenstates. The gene
equation to be satisfied is

~11b0
22l0

2!fs2b0~fs111fs21!50. ~A2!

If 0 ,b0,1, then the general solutions are of the form

fs5Aea0s1Be2a0s ~A3!

wherea0 is defined through

cosha05
11b0

22~l0
( i )!2

2ub0u
. ~A4!

If 21,b0,0, then the general solutions are of the form

fs5~21!s~Aea0s1Be2a0s!. ~A5!

For (l0
( i ))2,(12b0)2 or (l0

( i ))2.(11b0)2, a becomes
imaginary and

cosia05
11b0

22~l0
( i )!2

2b0
. ~A6!

Let us concentrate on the first case of exponential damp
We must apply the boundary conditions

@b0
21a2m22~l0

(1)!2#f12b0f21amb0fNs
50 ~A7!

@11b0
22~l0

(1)!2#fNs
2b0fNs211amb0f150.

~A8!

In order to make these conditions consistent with the gen
equation~A2!, fs50 andfs5Ns11 must satisfy

2b0f01f15~am!2f12amb0fNs
~A9!
7-14
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2b0fNs115amb0f1 . ~A10!

As has been found previously@17,20,19#, the eigenvalue is

~l (1)!25~am!2~12b0
2!21O„~am!4

…1O~b0
Ns!

5~am!2M2~22M !21O„~am!4
…1O„~12M !Ns

….

~A11!

The corresponding normalized eigenvector is

fs
(1)5A12b0

2e2a0(s21)5AM ~22M !e2a0(s21).
~A12!

The eigenvectors corresponding to the heavier modes ca
decomposed into a basis of sine functions

fs
( i )5A 2

Ns
sinS p~ i 21!

Ns
@Ns112s# D for iÞ1.

~A13!

Note that, ifb0,0, then

fs
(1)5~21!sA12b0

2e2a0(s21) ~A14!

while the other eigenvectors and all the eigenvalues are
changed. Also, the eigenvalues and eigenvectors are
same forV0

†V0 with the substitutions→Ns112s. Let us
define unitary matrices which diagonalizeV0V0

† as

Us,s8
(0) [fs8

(s) ~A15!

and which diagonalizeV0
†V0 as

Vs,s8
(0) [fNs112s8

(s) . ~A16!

2. One-loop level

As in Appendix A 1, we want to derive an effective actio
for the lightest eigenstate. In general this involves comput
one-loop corrections to the matricesU and V which diago-
nalize the square of the mass matrix,V. However, it has
already been shown@20,21# that the light mode is stable
under radiative corrections. Following Ref.@20#, let us write
the mass matrix as

V5W21g2V1[W21
g2CF

16p2 ~S (0),21amS (2),2!,

~A17!

where the S ( j ) are given in Eqs.~32!–~34! and S ( j ),6

[S ( j )P6 . Then, to diagonalizeVV† to O(g2), one must
compute the corrections toU andV:

U (0)→U[~11g2U (1)!U (0)

V(0)→V[~11g2V(1)!V(0). ~A18!

If we write the one-loop eigenvalue equations as
11450
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~UVV†U†!s,s85@~l0
(s)!21g2~l1

(s)!2#ds,s8 ~A19!

and

~VV†VV†!s,s85@~l0
(s)!21g2~l1

(s)!2#ds,s8 , ~A20!

then it can be shown that@20#

Us,s8
(1)

5@l0
(s)~U (0)V1V(0)†!s,s8

1l0
(s8)~U (0)V1V(0)†!s8,s#/@~l0

(s)!22~l0
(s8)!2#

Vs,s8
(1)

5@~U (0)V1V(0)†!s,s8l0
(s8)

1~U (0)V1V(0)†!s8,sl0
(s)#/@~l0

(s)!22~l0
(s8)!2#

for sÞs8, and

Us,s
(1)5Vs,s

(1)50, ~A21!

and, most importantly,

~l1
(s)!252~U (0)V1V(0)†!s,sl0

(s) . ~A22!

Therefore, in order to compute the quark mass to one lo
we need (U (0)V1V(0)†)1,1. Aoki and Taniguchi@20# have
shown thatU (0)S0,2V(0)† is negligibly small, and in Appen-
dix B we compute U (0)S (2),2V(0)†u1,1 and
V(0)S (2),1U (0)†u1,1.

APPENDIX B: PERTURBATIVE CALCULATION—
DETAILS

1. Feynman rules

The Feynman rules are similar to those for Wilson ferm
ons plus plaquette-action gluons@53#.

In the gauge sector, we use the usual four dimensio
plaquette action

Sg5b(
plaq

1

3
Re Tr~12Uplaq!. ~B1!

In the five dimensional picture there are simplyNs copies of
the gauge field, and in the flavor interpretation the gluons
simply flavorless.

The propagator of a gluon~in Feynman gauge! with mo-
mentumq is given by

Dmn~q!5
dmn

4(
r

sin2~aqr/2!

[
dmn

q̂2
. ~B2!

The one-gluon–fermion vertex with incoming~outgoing!
momentump1 (p2) is gtnvm(q), where

vm~q!5~ igm cosaqm2 sinaqm!, ~B3!
7-15
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q5(p11p2)/2, and tn is one of the eight generator
of SU(3). The two-gluon–fermion vertex with gluon in
dices n,m and n,m8 and fermion momenta as above
(g2/2)$tn ,tn8%dm,m8 , with

wm~q!52~ igm sinaqm1 cosaqm!. ~B4!

The massive fermion propagator for the boundary wall va
ant used in this work was derived in Ref.@17# and also Ref.
@20# whose notation we adopt. The tree-levelGR andGL, as
defined in Eq.~20!, are given by

Gs,s8
R

5Gs,s8
0

1A11ea(s1s8)12A12 cosha~s2s8!

1A22e2a(s1s8) ~B5!

and

Gs,s8
L

5Gs,s8
0

1B11ea(s1s8)12B12 cosha~s2s8!

1B22e2a(s1s8). ~B6!

The inhomogeneous part of the solution is

Gs,s8
0

5A cosh@a~Ns2us2s8u!#, ~B7!

and the constants defined implicitly above are

A5
1

4b sinha sinh~aNs!
~B8!

A115~e22aNs21!~12bee2a!~12m2!A/F
~B9!

A1252b sinha@112m cosh~aNs!1m2#A/F
~B10!

A225~12e2aNs!~12bea!~12m2!A/F
~B11!

B115~e22aNs21!e2a~e2a2b!~12m2!A/F
~B12!

B1252b sinha@112m cosh~aNs!1m2#A/F
~B13!

B225~12e2aNs!ea~ea2b!~12m2!A/F
~B14!

where

F5eaNs@12bea1m2~be2a21!#24bmsinha

1e2aNs@be2a211m2~12bea!#. ~B15!
11450
i-

2. Tadpole diagram

The tadpole diagram~Fig. 1a! is simple to compute. Since
it has no fermion propagator in the loop, it is equivalent
the case for Wilson fermions:

Ss,s8
tad

~p!5
16p2ds,s8

a (
m

E
2p

p d4l

~2p!4 wm~ap!Dmn~ l !

52
ds,s8

2 S ip”1
4

aDT, ~B16!

whereT is a finite integral:

T516p2E
2p

p d4l

~2p!4

1

4(
m

sin2~ l m/2!

524.4. ~B17!

3. Taylor expansion

The calculation of the half-circle graph~Fig. 1b! with
domain wall fermions parallels the same calculation w
Wilson fermions @34#. The contribution of the half-circle
graph to the fermion self-energy is

Ss,s8
h-c

~p,m!5
16p2

a E
2p

p d4l

~2p!4(
m,n

vmS l 1ap

2 D
3Ss,s8

F
~ l ,am!Dmn~ap2 l !vnS l 1ap

2 D
~B18!

[
16p2

a E
2p

p d4l

~2p!4 E~ l ,ap,am!. ~B19!

The second line above defines the integrandE.
A simple Taylor expansion of Eq.~B18! about zero lattice

spacing would not be valid due to the logarithmic divergen
of the integral. That is, the coefficients of the power series
a would have a lna dependence, which must first be sep
rated before expanding the Taylor series. We subtract
then add back a similar half-circle graph built fro
continuum-like Feynman rules designed to have the sa
infrared behavior as the present rules:

Ss,s8
IR

~p,m!5
16p2

a E
2p

p d4l

~2p!4Q~p22 l 2!

3
~ igm!Ss,s8

IR
~ l ,am!~ igm!

~ap2 l !2
~B20!

[
16p2

a E
2p

p d4l

~2p!4 EIR~ l ,ap,am!. ~B21!
7-16
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The step functionQ(p22 l 2) makes the integral sphericall
symmetric and therefore easier to evaluate. We will spe
the continuum-like fermion propagatorSIR in the next sec-
tion.

Now we can write the half-circle graph in terms of
Taylor expansion of (S2S IR)

Sh-c~p,m!5
16p2

a E
l
Q~p22 l 2!EIR~ l ,ap,am!

1
1

aEl
@E~ l ,ap,am!

2Q~p22 l 2!EIR~ l ,ap,am!#

5
16p2

a E
l
Q~p22 l 2!@EIR~ l ,ap,am!2EIR~ l ,0,0!#

1
1

aEl
E~ l ,0,0!1E

l

d

da
@E~ l ,ap,am!

2Q~p22 l 2!EIR~ l ,ap,am!#ua501O~a!.

~B22!

We use a shorthand notation for the loop integral, nam
* l[*d4l /(2p)4. Equation~B22! is the ‘‘master’’ equation
for computing the half-circle graph: in the remainder of th
Appendix, we compute the various terms appearing within

4. Infrared terms

In this section, we computeEIR and dEIR/da. The IR
(a→0) limit of the fermion propagator is

SIR~ l ,am!5
1

l 21a2~mq
(0)!2 (

1,2
~2 i ł 2amd61D6!C6P6 ,

~B23!

where d15ds,1ds8,Ns
, d25ds,Ns

ds8,1 , D65ds71,s8
2b0ds,s8 , and

C15~12b0
2!b0

2Ns2s2s81amq
(0)b0

Ns~b0
s2s81b0

2s1s8!
~B24!

C25~12b0
2!b0

s1s8221amq
(0)b0

Ns~b0
s2s81b0

2s1s8!.
~B25!

Note also the presence of the tree-level quark massmq
(0)

5mM(22M ) which was defined above in Eq.~26!.
Let us first compute the integral ofdEIR/da. Since the IR

vertices are justigm , there will be just two terms, one with
dSIR( l ,am)/da and the other withd(ap2 l )22/da. The re-
sult for the first term is
11450
y

ly

t.

E
l
Q(

m

~ igm!SIR~ l ,am!~22p!~ap2 l !~ igm!

~ap2 l !4 U
a50

5E
l
Q (

1,2

2 ip”C7
0 P6

l 4
, ~B26!

where C0[Cua50, and Q5Q(p22 l 2). Note that theD6

term in the fermion propagator is antisymmetric inl and so
vanishes upon integration above. The second term co
from taking the derivative ofSIR:

d

da
SIR~ l ,am!ua50

52SIR~ l ,0!F d

da
@SIR~ l ,am!#21GU

a50

SIR~ l ,0!

5 (
1,2

m

l 4 @~2 i ł 1D6!C6
0 P6d6~2 i łC 6

0 1D6C7
0 !P6#.

~B27!

After some algebra, we have

E
l

1

l 2 F ~ igm!
d

da
SIR~ igm!G

s,s8
U

a50

524~16p2!mq
(0)E

l
Q

12b0
2

l 4 @b0
Ns2s1s821P1

2b0
Ns1s2s821P2#. ~B28!

The integration of theEIR( l ,ap,am)2EIR( l ,0,0) term of Eq.
~B22! is quite similar to that for Wilson fermions~see e.g.
@34#!. We delay writing down the answer, since it simplifie
greatly upon diagonalization in flavor space.

5. Finite terms

Let us first look at the numerator ofE( l ,ap,am). For the
time being we suppress the indicess,s8:

N[(
m

vm@~ l 1ap!/2#SF~ l ,am!vm@~ l 1ap!/2#

5(
m

F igm cos
1

2
~ l 1ap!m2 sin

1

2
~ l 1ap!mG

3@~2 i ł̄ 1W2!GRP11~2 i ł̄ 1W1!GLP2#

3F igm cos
1

2
~ l 1ap!m2 sin

1

2
~ l 1ap!mG . ~B29!

Multiplying the factors ofN gives
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N52(
m

~2 igm ł̄ gm1W2!GRP2S cos2
1

2
~ l 1ap!mD2(

m
~2 igm ł̄ gm1W1!GLP1S cos2

1

2
~ l 1ap!mD

1~2 i ł̄ 1W2!GRP1S (
m

sin2
1

2
~ l 1ap!mD 1~2 i ł̄ 1W1!GLP2S (

m
sin2

1

2
~ l 1ap!mD

2(
m

igm~2 i ł̄ 1W2!GRP1S 1

2
sin~ l 1ap!mD2(

m
~2 i ł̄ 1W2!igmGRP2S 1

2
sin~ l 1ap!mD

2(
m

igm~2 i ł̄ 1W1!GLP2S 1

2
sin~ l 1ap!mD2(

m
~2 i ł̄ 1W1!igmGLP1S 1

2
sin~ l 1ap!mD , ~B30!

where, as usual,ł̄ [(ngn l̄ n . To compute* lE( l ,0,0) we divide Eq.~B30! by l̂ 2 and integrate. Since the integration region
symmetric inl m , the terms odd inl m in Eq. ~B30! vanish upon integration. The result is given by

E
l
E~ l ,0,0!5E

l

1

l̂ 2 H (m sin2
l m

2
@~W0

2GR!s,s8P11~W0
1GL!s,s8P2#

2(
m

cos2
l m

2
@~W0

1GL!s,s8P11~W0
2GR!s,s8P2#2

l̄ 2

2
~Gs,s8

R
1Gs,s8

L
!J ~B31!
whereW0
6[W6uam50.

Next we compute

d

da
E~ l ,ap,am!ua50[ ip” E 11mE 2, ~B32!

where

ip” E 15(
m

2vm@~ l 1ap!/2#SF~ l ,am!

3
d

da
$vm@~ l 1ap!/2#%~ l 2ap!̂22

1N d

da
@~ l 2ap!̂22#

and

mE 25vm@~ l 1ap!/2#
dSF

da
vm@~ l 1ap!/2#~ l 2ap!̂22.

~B33!
11450
Note thatvmSF(dvm /da) is the same as Eq.~B30! with the
replacements

cos2
1

2
~ l 1ap!m→2

pm

2
sin~ l 1ap!m

sin2
1

2
~ l 1ap!m→ pm

2
sin~ l 1ap!m ~B34!

1

2
sin~ l 1ap!m→ pm

2
cos~ l 1ap!m .

After some algebra, the result isE s,s8
1

5E s,s8
1,1 P11E s,s8

1,2 P2 ,
where
E
l
E s,s8

1,1
52E

l
H 1

8 l̂ 2 F l̄ 2~Gs,s8
R

1Gs,s8
L

!1(
m

cosl m@~W0
2GR!s,s81~W0

1GL!s,s8#G1
1

2 l̂ 4 F l̄ 2S (
m

sin2
lm

2 DGs,s8
R

2(
m

l̄ m
2 S 2 cos2

l m

2
2(

n
cos2

l n

2 DGs,s8
L

1
l̄ 2

2
@~W0

2GR!s,s81~W0
1GL!s,s8#G J ~B35!

and
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E
l
E s,s8

1,2
52E

l
H 1

8 l̂ 2 F l̄ 2~Gs,s8
R

1Gs,s8
L

!1(
m

cosl m@~W0
2GR!s,s81~W0

1GL!s,s8#G1
1

2 l̂ 4 F l̄ 2S (
m

sin2
lm

2 DGs,s8
L

2(
m

l̄ m
2 S 2 cos2

l m

2
2(

n
cos2

l n

2 DGs,s8
R

1
l̄ 2

2
@~W0

2GR!s,s81~W0
1GL!s,s8#G J . ~B36!

For the second term in Eq.~B33!, the calculation is simplified through the use of the identity

d

da
Ss,s8~ l ,am!ua5052Ss,s9~ l ,0!F d

da
Ds9,s-~ l ,am!GU

a50

Ss-,s8~ l ,0!5Ss,s9~ l ,0!@m~ds9,Ns
ds-,1P11ds9,1ds-,Ns

P2!#Ss-,s8~ l ,0!.

~B37!

The term generated by taking this derivative is proportional, therefore, to the massm. We express the coefficient by

E s,s8
2

5(
m

1

l̂ 2
vmS l m

2 D @Ss,Ns
P1S1,s81Ss,1P2SNs ,s8#vmS l m

2 D . ~B38!

Algebraic manipulation similar to above givesE s,s8
2

5E s,s8
2,1 P11E s,s8

2,2 P2 with

E
l
E s,s8

2,1
5E

l

1

l̂ 2 H l̄ 2(
m

cos2
l m

2
Gs,Ns

R G1,s8
L

2 l̄ 2(
m

sin2
l m

2
Gs,1

L GNs ,s8
R

1(
m

sin2
l m

2
~W0

2GR!s,Ns
~W0

2GR!1,s82(
m

cos2
l m

2
~W0

1GL!s,1~W0
1GL!Ns ,s8

2
l̄ 2

2
@Gs,Ns

R ~W0
2GR!1,s81~W0

2GR!s,Ns
G1,s8

L
1Gs,1

L ~W0
1GL!Ns ,s81~W0

1GL!s,1GNs ,s8
R

#J ~B39!

and

E
l
E s,s8

2,2
5E

l

1

l̂ 2 H l̄ 2(
m

cos2
l m

2
Gs,1

L GNs ,s8
R

2 l̄ 2(
m

sin2
l m

2
Gs,Ns

R G1,s8
L

1(
m

sin2
l m

2
~W0

1GL!s,1~W0
1GL!Ns ,s82(

m
cos2

l m

2
~W0

2GR!s,Ns
~W0

2GR!1,s8

2
l̄ 2

2
@Gs,Ns

R ~W0
2GR!1,s81~W0

2GR!s,Ns
G1,s8

L
1Gs,1

L ~W0
1GL!Ns ,s81~W0

1GL!s,1GNs ,s8
R

#J . ~B40!

6. Diagonalization of the self-energy

Returning to the calculation ofEIR( l ,ap,am)2EIR( l ,0,0), we diagonalize the IR fermion propagator. We refer the rea
to Appendix A for the explanation of the matrices which diagonalize the mass matrix. In thea→0 limit, the propagator for
light mode is

S1,1
IR ~ l ,am!5

1

l 21a2~mq
(0)!2 (

1,2
~2 i ł 1am!, ~B41!

since the pieces of the full 5D propagator~B23! transform as follows in the diagonal basis:

UC1U†5VC2V†511O~Nsb0
Ns! ~B42!

VD2C2U†5UD1C1V†5O~Ns
2b0

2Ns! ~B43!

Vd2C2U†5Ud1C1V†5b0~12b0
2!am. ~B44!
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Then the calculation of theEIR( l ,ap,am)2EIR( l ,0,0) term proceeds identically to that in the case of ordinary fo
dimensional Wilson fermions@33,34#. The result is

16p2

a E
l
Q~p22 l 2!@EIR~ l ,ap,am!2EIR~ l ,0,0!#52E

0

1

dxH 2ip” xF lnS p

azD
2

2
3

2G14mq
(0)F lnS p

azD
2

21G J
[~ ip” L̃11mq

(0)L̃2!, ~B45!

wherez2[(12x)@p2x1(mq
(0)#2).

Next we compute the derivative term of Eq.~B22! for the light mode. Recalling the notation from Eq.~33!,

16p2E
l

d

da
@E~ l ,ap,am!2Q~p22 l 2!EIR~ l ,ap,am!#ua50[ ip” Ĩ 11mq

(0) Ĩ 2 . ~B46!

CombiningE 1 @Eqs.~B35! and ~B36!# and its IR counterpart~B26! gives

Ĩ 1516p2E
2p

p d4l

~2p!4 H 1

8 l̂ 2 (
m

$sin2l m~G̃R1G̃L!12 cosl m@b02b~ l !#G̃R%

1(
m

sin2l m

2 l̂ 4 F @b02b~ l !#G̃R2S 2 cos2
l m

2
2(

n
cos2

l n

2 D G̃L1 l̂ 2G̃RG J 216p2E
2p

p d4l

~2p!4 Q~p22 l 2!
1

l 4 ~B47!

where

G̃R~ l ![(
s,s8

~U (0)!1,sGs,s8
R

~ l !~U (0)†!s8,15(
s,s8

~V(0)!1,sGs,s8
L

~ l !~V(0)†!s8,1

5
1

2b~ l !sinha~ l ! F ~b0
212e2a( l )!2~b02ea( l )!

~b0
212e2a( l )!1~b02ea( l )!

2
12b0

2

~ea( l )2b0!2G ~B48!

and

G̃L~ l ![(
s,s8

~U (0)!1,sGs,s8
L

~ l !~U (0)†!s8,15(
s,s8

~V(0)!1,sGs,s8
R

~ l !~V(0)†!s8,1

5
1

2b~ l !sinha~ l ! F ~b0
212e2a( l )!2~b02ea( l )!

~b0
212e2a( l )!1~b02ea( l )!

2
12b0

2

~ea( l )2b0!2

ea( l )2b~ l !

e2a( l )2b~ l !
G . ~B49!

Likewise, combiningE 2 @Eqs.~B39! and ~B40!# and its IR counterpart~B28! gives

Ĩ 25
16p2

12b0
2E

2p

p d4l

~2p!4

1

2 l̂ 2 H 2 l̄ 2(
m

cos2
l m

2
@V1,sGs,Ns

R G1,s8
L U†

s8,11U1,sGs,1
L GNs ,s8

R V†
s8,1#

1 l̄ 2(
m

sin2
l m

2
@V1,sGs,1

L GNs ,s8
R U†

s8,Ns
1U1,sGs,Ns

R G1,s8
L V†

s8,Ns
#

1
l̄ 2

2
@V1,sGs,Ns

R ~W2GR!1,s8U
†

s8,11U1,sGs,Ns

R ~W2GR!1,s8V
†

s8,1#

1
l̄ 2

2
@V1,s~W2GR!s,Ns

G1,s8
L U†

s8,11U1,s~W2GR!s,Ns
G1,s8

L V†
s8,1#

1
l̄ 2

2
@V1,sGs,1

L ~W1GL!Ns ,s8U
†

s8,11U1,sGs,1
L ~W1GL!Ns ,s8V

†
s8,1#

1
l̄ 2

2
@V1,s~W1GL!s,1GNs ,s8

R U†
s8,11U1,s~W1GL!s,1GNs ,s8

R V†
s8,1#
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1(
m

cos2
l m

2
@V1,s~W1GL!s,1~W1GL!Ns ,s8U

†
s8,11U1,s~W2GR!s,Ns

~W2GR!1,s8V
†

s8,1#

2(
m

sin2
l m

2
@V1,s~W2GR!s,Ns

~W2GR!1,s8U
†

s8,11U1,s~W1GL!s,1~W1GL!Ns ,s8V
†

s8,1#J
24~16p2!E

2p

p d4l

~2p!4 Q~p22 l 2!
1

l 4 . ~B50!

Summing over internal indices we find that

V1,sGs,Ns

R G1,s8
L U†

s8,15
1

~ea( l )2b0!2

e2a( l )

@12ea( l )b~ l !#2
[G1~ l ! ~B51!

U1,sGs,1
L GNs ,s8

R V†
s8,15G1~ l ! ~B52!

V1,sGs,Ns

R ~W2GR!1,s8U
†

s8,15@e2a( l )2b~ l !#G1~ l ! ~B53!

V1,s~W2GR!s,Ns
G1,s8

L U†
s8,15@e2a( l )2b~ l !#G1~ l ! ~B54!

U1,sGs,1
L ~W1GL!Ns ,s8V

†
s8,15@e2a( l )2b~ l !#G1~ l ! ~B55!

U1,s~W1GL!s,1GNs ,s8
R V†

s8,15@e2a( l )2b~ l !#G1~ l ! ~B56!

V1,s~W2GR!s,Ns
~W2GR!1,s8U

†
s8,15@e2a( l )2b~ l !#2G1~ l ! ~B57!

U1,s~W1GL!s,1~W1GL!Ns ,s8V
†

s8,15@e2a( l )2b~ l !#2G1~ l !. ~B58!

All other terms in Eq.~B50! vanish asNs→`. Substituting Eqs.~B51!–~B58! into ~B50! gives the final result

Ĩ 25216p2E
2p

p d4l

~2p!4

1

l̂ 2

1

~ea( l )2b0!2 F l̄ 2(
m

cos2
l m

2

1

@12ea( l )b~ l !#2

2 l̄ 2
e2a( l )

@12ea( l )b~ l !#
1(

m
sin

l m

2
e22a( l )G24~16p2!E

2p

p d4l

~2p!4 Q~p22 l 2!
1

l 4 . ~B59!
ta
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