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We extend our previous study of magnetic monopole currents in the maximally Abelian gauge to larger
lattices at small lattice spacings (2@t 8=2.5 and 32 at 3=2.5115). We confirm that at these weak
couplings there continues to be one monopole cluster that is very much longer than the rest and that the string
tension,K, is entirely due to it. The remaining clusters are compact objects whose population as a function of
radius follows a power law that deviates from the scale invariant form, but much too weakly to suggest a link
with the analytically calculable size distribution of small instantons. We also search for trac€)ofortices
in the Abelian projected fields, either as closed loops of “magnetic” flux or through appropriate correlations
among the monopoles. We find, by direct calculation, that there is no confining condensate of such flux loops.
We also find, through the calculation of doubly charged Wilson loops within the monopole fields, that there is
no suppression of thg=2 effective string tension out to distances of at leastL.6A/K, suggesting that if
there are any vortices they are not encoded in the monopole fi88556-282199)04821-3

PACS numbd(s): 11.15.Ha, 12.38.Aw, 14.80.Hv

[. INTRODUCTION configuration one and only one cluster which is very much
larger than the rest and which percolates throughout the en-
Many recent efforts to elucidate the mechanism of condire lattice volume. Moreover, this largest cluster is alone
finement in QCD and non-Abelian gauge theories have foresponsible for infrared physics such as the string tension.
cused on isolating a reduced set of variables that are respoithe remaining clusters are compact objects with radii vary-
sible for the confining behavior. In the dual superconductingng with length roughly as o\l and with a population that
vacuum hypothesifl,2] the crucial degrees of freedom are follows a power law as a function of length. We found the
the magnetic monopoles revealed after Abelian projection. Iexponent of this power law to be consistent with a universal
the maximally Abelian gaugé2,3] one finds that the ex- value of 3. This simple pattern became more confuseél at
tracted U1) fields possess a string tension that approxi-=2.5. The scaling relations for cluster size that we estab-
mately equals the original SP) string tension(“Abelian  lished in[9] suggested that our= 16 lattice at3=2.5 was
dominance’) [4], and that this is almost entirely due to simply too small. There was of course an alternative possi-
monopole currents in these Abelian fieldmonopole domi-  bility: that the simple picture we found at lowg failed as
nance’) [5,6]. The magnetic currents observed in the maxi-one approached the continuum limit. Clearly it is important
mally Abelian gauge are found to have non-trivial correla-to distinguish between these two possibilities, and this is
tions with gauge-invariant quantities such as the action andrhat we propose to do in this paper. The cluster size scaling
topological charge densitigsee for exampl¢7,8] and ref-  relations referred to above imply that &r=32 lattice atg
erences therejrand this invites the hypothesis that the struc-=2.5115 should have a large enough volume. Such gauge
tures formed by the magnetic monopoles correspond to simfixed lattice fields were made available to us by Bptlivate
lar objects in the S(2) vacuum, seen after gauge fixing and communication and we have used them, supplemented by
Abelian projection. If the magnetic monopoles truly reflectcalculations on an intermediate=20 volume at3=2.5, to
the otherwise unknown infrared physics of the (83U obtain evidence, as described in Sec. Il and lll, that the
vacuum, analysis of these structures may provide importanhonopole picture we found previously is in fact valid at
information about the confinement mechanism. these lattice spacings and that the deviations we found pre-
The main purpose of this paper is to extend our previouwiously were due to too small a lattice size.
study[9] of monopole currents to lattices that are larger in  The fact that one has to go to space-time volumes that are
physical units at the smallest lattice spacings. As reviewed irver larger, in physical units, as the lattice spacing decreases,
Sec. I, we obtained 9] a strikingly simple monopole hints at some kind of breakdown of “monopole dominance”
picture at3=2.3, 2.4. When the magnetic monopole currentsin the continuum limit. We finish Sec. Il with a discussion of
are organized into separate clusters, one finds in each fiettie form that this breakdown might take.
An attractive alternative to the dual superconducting
vacuum as a mechanism for confinement is vortex conden-
*Email address: hart@ph.ed.ac.uk sation[10—15. Here the confining degrees of freedom are
"Email address: teper@thphys.ox.ac.uk the vortices created by the 't Hooft dual disorder lodp8]
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and the confining disorder is located in the cerif€éN) of In [9] we found that the clusters may be divided into two
the SUN) gauge group. When such a vortex intertwines aclasses on the basis of their length, where the length is ob-
Wilson loop, the fields along the loop undergo a gauge transained by simply summing the current in the cluster:
formation that varies from unity to a non-trivial element of
the center as one goes once around the Wilson loop. For |— E .
SU(2) this means that the Wilson loop acquires a factor of - “ﬂ(n)"
—1. A condensate of such vortices will therefore completely

disorder the Wilson loop and will lead to linear confinement.The first class comprises the largest cluster, which is physi-
At the center of the vortex, which will be a line iD=2  cally the most interesting. It percolates the whole lattice vol-
+1 and a sheet iD=3+1, the fields are clearly singular ume and its length,,, is simply proportional to the volume
(multivalued if we demand that the vortex correspond to aL# (at least in the interval 288<2.5) when these are re-
gauge transformation almost everywhere. In a properly reguexpressed in physical units, ij%ax\/Koc(L\/R){ whereK is
larized and renormalized theory, this singularity will be the SU2) lattice string tension in lattice units and we use
smoothed OUElO] into a core of finite size in which there is 1/\/R to set our physica' |ength scale. We remark that over
a non'triViaI but f|n|te aCtion density, and Whose Size W|” bethls range |nB there is a factor Of 2 Change in the |attice
O(1) in units of the physical length scale of the theory. Onespacing, and so one might have expected that the extra ultra-
can either try to study these vortices directly in the(3U yiolet fluctuations on the finer lattice would lead to signifi-
gauge fields or one can go to the center gdudels], where  cant violations of the naive scaling relation. That is to say,
one makes the gauge links as closettb or —1 as possible, one might expect to need to coarse grain the currents at
and construct the Corresponding f|e|dS Where the link matrifargerﬁ to Obtain reasonable Sca"ng_ That th|s iS not re-
ces take values i@(2) (“center projection’) and where the  quired is perhaps surprising.

only nontrivial fluctuations are singula(2) vortices. Just The remaining clusters were found to be much shorter.

as a 't Hooft—Polyakov monopole will appear as a singularrheir population as a function of lengtthe “length spec-
Dirac monopole in the Abelian fields that one obtains aftefirum) is described by a power law

Abelian projection, one would expect the presence of a vor-

tex in the SW2) fields to appear as a singul@{2) vortex c(B)

after center projection. This picture has received increasing N(l)= , 3)
attention recently and has, for example, proved successful in I

reproducing the static quark potentjaB,14 (“center domi- . . .

nance”). Our ability, in this paper, to address the question ofwher_e 7”3 for a_II lattice spacings and sizes tested aﬂd the
how important are such vortices is constrained by the facECefficientci(8) is proportional to the lattice voluma,”,
that we only work with Abelian projected $P) fields. So and depends weakly of. The radius of gyration of these

first we need to clarify how such vortices might be encoded?'USters is small and approximately proportional to the

in these Abelian fields and only then can we perform numeriSduare root of the cluster length, just like a random walk.

cal tests to see whether there is any sign of their presenci/hen folded with the length spectrum, this suggésishat

@

n,uecl

This is the content of Sec. III. the “radius spectrum” should also be described by a power
Finally there is a summary of the results in Sec. IV.  [aW
II. MONOPOLE CLUSTER STRUCTURE N(r)= ¢ (B) 4
(N=""7 @

A. Background

Fixing to the maximally Abelian gauge of $2) amounts  with »~5 andc,(B) weakly dependent of. Such a spec-
to maximizing with respect to gauge transformations thetrum is close to the scale invariant spectrum of

Morse functional 4-dimensional balls of radius, N(p)dp~dp/px1/p*, and
so one might try and relate these clusters to thé2ploistan-
_ - ; tons in the theory, which classically also possess a scale-
R=—2 TrU,(n)-ios-Ul(n)-ios]. A : .
% [Uu(n)-ios-U,n)-ios] @D invariant spectrum. It is well known, however, that the inclu-

sion of quantum corrections renders the spectrum of the
It is easy to see that this maximizes the matrix elementsatter far from scale invariant, at least for the small instantons
|[UM(n)]ll|2 summed over all links. That is to say, it is the where perturbation theory can be trusted, and so such a con-
gauge in which the S(2) link matrices are made to look as nexion does not seem to be possif@é
diagonal, and as Abelian, as possible—hence the name. Hav- On sufficiently large volumes the difference in length be-
ing fixed to this gauge, the link matrices are then written in atween the largest and second largest clusters is very marked,
factored form and the (@) link angle (just the phase of and where this gulf is clear one finds that the long range
[U,(n)]19) is extracted. The W) field contains integer val- physics such as the monopole string tension arises solely
ued monopole currenfd7], {j ,(n)}, which satisfy a conti- from the largest cluster. This is the casggat2.31. =10 and
nuity relation,A ,j ,(n)=0, and may be unambiguously as- at =2.4L.=16. On moving to a fineL =16 lattice atg
signed to one of a set of mutually disconnected closed=2.5 the gulf was found to disappear and the origin of the
networks or “clusters.” long range physics was no longer so clear-cut. This could be
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a mere finite volume effect, or, much more seriously, itclear gulf between the largest and remaining clusters, we
might signal the breakdown of this monopole picture in thewould expect to find smaller finite size corrections than with

weak coupling, continuum limit. Clearly this needs to bethe L =16 lattice we used previously.

resolved and the only unambiguous way to do so is by per- |n gauge fixing a configuration we select a local maxi-

forming the calculations on large enough lattices. mum of the Morse functionaR, of which on lattices large
enough to support non-perturbative physics there is typically
B. This calculation a very large numbel18]. These correspond to tH&ttice)

The direct way to estimate the lattice size necessary d¢IDoVv copies. Gauge dependent quantities appear to vary by
B=2.5 to restore(if that is possiblg our picture is as fol- ©O(10%) depending upon the Gribov copy chosen; this is
lows. Suppose that the average size of the second large§tie not only of local quantities such as the magnetic current

cluster scales approximately as density [19] but also of supposedly long range, physical
numbers such as the Abelian and monopole string tensions
Lo L4(VK)?®. (5  [6,18]. Some criterion must be employed for the selection of

. 5 - the maxima oR, and in the absence of a clear understanding
We know that ma<L*(VK)® to a good approximation for the of which maximum, if any, is the most “physical,” one
largest cluster. So we will maintain the same ratio of lengthsyaximum was selected at randon{®}. An alternative strat-

I2na/lmax, @nd @ gulf between these, if egy, used in gauge fixing tHe= 32 lattices aj3=2.5115, is
. K (3= 8)l(4—a)] to pursue the global maximum tEf[G]_. Each field configu-
1_ 1 ration is fixed to the maximally Abelian gauge 10 times us-
L 6) . . ) X )
L, \/K_z ing a simulated annealing algorithm that already weights the

distribution of maxima so selected towards those of higher

If we take our directly calculated values b4, they  The solution with the larges® from these is selected. Details
seem to give roughlyr=1 and 5= —2. This suggests that of this method are discussed[i]. The difference in proce-
we need to scale our lattice size wifh so as to keep dures invites caution in comparing exact numbers between
L(VK)®? constant. This estimate is not entirely reliable be-this ensemble and those studied previously; for example a
cause, on smaller lattices, the distributions of the “largest’O(10%) suppression in the string tension is observed. It is
and “second largest” clusters overlap so that they exchangékely that cluster lengths will differ by a corresponding
roles. An alternative estimate can be obtained from the tail ofmount and this will prevent a quantitative scaling analysis
the distribution in Eq(3) that integrates to unity. Doing so Uusing this ensemble. The power law indices do appear, how-
[9] one obtainsy=2 and 0< 5<0.25. This suggests that we €ver, to be robug20] and it also seems likely that ratios of
scale our lattice size so as to kekpyK)!4~13 constant. string tensions obtained on the same ensemble can be reli-
This estimate is also not very reliable, since it assumes tha@bly compared with other ratios.
the distribution of secondary cluster sizes on different field
configurations fluctuates no more than mildly about the av- .
erage distribution given in E¢3). In fact the fluctuations are C. Cluster properties
very large[As we can see immediately when we try to cal-  The fact that the largest cluster does not belong to the
culate(I?) in order to obtain a standard fluctuation—it di- same distribution as the smaller clusters is seen from the very
verges for a length spectrum wit(1)=d1/13.] Nonetheless, different scaling properties of these clusters with voligie
the two very different estimates we have given above proit is also apparent from the fact that the largest cluster is very
duce a very similar final criterion: to maintain the same gapmuch longer than the second largest cluster. Indeed for a
between the largest and second largest clustegsisgaried, large enough volume and for a reasonable size of the con-
one should choosk so as to keep. (yK) ~®° constant. figuration ensemble, there will be a substantial gulf between

So if we wish to match the clear picture on &m=10  the distribution of largest cluster lengths and that of the sec-
lattice atB=2.3[whereK=0.136 (2)], we should work on ond largest clusters. By contrast the length distributions of
a lattice that is roughlyL=28 at 8=2.5 [where K  the second and third largest clusters strongly overlap. This is
=0.0346 (8). In particular we note that ah=32 lattice at  the situation that prevailed for the larger latticesgat 2.3
B=2.5115 [where K=0.0324 (10)] is more than large and 2.4 but which broke down on tHe=16 lattice atg
enough and an ensemble of 100 such configurations, already2.5. We can now compare what we find on &ur 20 and
gauge fixed 6], has been made available to us by the aul =32 lattices with the latter. This is done in Table I. There
thors. The gauge fixing procedure used in obtaining these iwe show the longest and shortest cluster lengths for the larg-
somewhat different from the one we have used in our previest, second largest and third largest clusters respectively over
ous calculationgin its treatment of the Gribov copies—see the ensemble. The ensemble sizes are not exactly the same,
below), and although this is not expected to affect the quali-but it is nonetheless clear that there is a real gulf between the
tative features that are our primary interest here, it will havdargest and second largest clusters onltke32 lattice while
some effect on detailed questions of scaling, etc. We havthere is significant overlap in the=16 case. The.=20
therefore also performed a calculation on an ensemble of 10lttice is a marginal case. We conclude from this that the
gauge fixed. = 20 field configurations g8=2.5. While the apparent loss of a well-separated largest cluster as s¢8h in
latter volume is not expected to be large enough to recreateat 8=2.5 was in fact a finite volume effect, and that our
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TABLE |. Range of lengths found for the largest, the second largest, their difference and for the third
largest clusters for the ensemblesNtonfigurations shown.

L 18 N Imax l 2nd l max_|2nd ISrd

12 2.3 500 2358-3970 18-220 2172-3930

14 2.4 500 894-3436 22-1112 28-3400

16 25 500 268-2462 22-910 4-2414

20 25 100 1718-5050 50-1644 318-4964 36-684
32 2.5115 100 11872-20040 114-4676 9066—-19886 92-2476

scaling analysis has proved reliable in predicting what volthe spectrum obtained on the=20 lattice at3=2.5 is y
ume one needs to use in order to regain the simple picture=2.98 (7) and is equally consistent. We also examine the
In Fig. 1 we show how the length of the largest clusterdependence o of the coefficientc;(8) in Eq. (3), adding
varies with the lattice volume when both are expressed ino the older work our calculations #=2.5 on theL =20
physical units(set by JK). To be specific, we have divided lattice. (We do not use thé. =32 lattice for this purpose
| mas/K by (LK)* and plotted the resulting numbers againstbecause of the different gauge fixing procedure yséave
L VK for both our new and our old calculations. The fact thatassume a constant pow@vhich is approximately the case
at fixed 8 the values fall on a horizontal line tells us that thatthenc,() is just proportional to the total length of the sec-
the length of the largest cluster is proportional to the volumedondary clusters. At fixeg we find this length to be propor-
at fixed lattice spacingtma<L%. The fact that the various tional toL* just as one might expecdtSmall clusters in very
horizontal lines almost coincide tells us that the current dendifferent parts of a large volume are presumably indepen-
sity in the largest cluster is consistent with scaling. That is todent) The dependence g8, on the other hand, is much less
say, it has a finite non-zero value in the continuum limit.clear. BetweerB=2.3 ands=2.4 it varies weakly, roughly
Thus the monopole whose world line traces out this largesas K®'>-%13 Betweeng=2.4 and3=2.5 it varies more
cluster percolates throughout the space-time volume and ittrongly, roughly a%48=0%% we can try to summarize this
world line is sufficiently smooth on short distance scales thaby saying that
its length does not show any sign of diverging as we take the
continuum limit. We note that the= 32 lattice deviates by ci(B)=constx L* K¢ (7)
~10% from the other values. This is consistent with what
we might have expected from the different gauge fixing pro.where/=0.5+ 0.5, which is consistent with what was found
cedure used in that case. previously[9].

Turning now to the secondary clusters, we display in Fig. The smaller clusters are compact objectsdin 4, and
2 the length spectrum that we obtain @t=2.5115. It is  having determined the cluster spectrum as a function of
clearly well described by a power law as in E§) and we fit  |ength we can then ask what is the spectrum when re-
the exponent to be=3.01(8). This is in accordance with expressed as a function of the radiie$ gyration of the
the universal value of 3 that was postulated[@} on the  cluster. In[9] we obtained this spectrum by determining the
basis of calculations on coarser lattices. The value one fits taverage radius as a function of length and folding that in

with the number density as a function of length. This is an

45 . . . . . . approximate procedur@orced upon us by the fact that we
£=2.3000 ~— did not foresee the interest of this spectrum during the pro-
425 | g:%"s‘ggg =1 cessing of the clusterand one can obtain the spectrum more
n §=2.5115 +—+— | accurately by calculating for each cluster and forming the
spectrum directly. Doing so for thé =32 lattice at g
z 375t i =2.5115, also in Fig. 2, we find a power law as in E4).
g with »=4.20(8). The spectrum on thd. =20 lattice atB
g 35t . =2.5 yields =4.27(6). Werecall that in[9] we claimed
°‘§ ﬁ % that the spectrum was consistent with the scale invariant re-
5 325t % 1 sultdr/rx1/r%, i.e. y=5. This followed from the fact that
-l % # { { } we found the radius of the smaller clusters to vary with their
length asr(l)=s+1.1%5 i.e. just what one would expect
275 L I fromsa rgndpm walk. Folded with a Igngth sp.ecFrtNﬁl)
~1/°, this givesp=5. On theL = 32 lattice we still find that
2.5 : : ' : : : the random walk ansatz provides an acceptable fit but we

S I't(lé)j 535 6 alsofind that (1) =s+t.1%%works equally well over similar
4 ranges. The latter, when folded wijh= 3, givesnp=4.2. Itis
FIG. 1. The current density of the largest cluster as a function oflear that the direct calculation &f(r) is much more accu-
lattice size in physical units for varioys. rate than the indirect approach.
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FIG. 2. The cluster spectra kg) length and(b) radius at3=2.5115 onL =32.

Treating the power as a free parameter in ther{ity=s  while the long distance contribution B(e™ °#). Thus asa
+t.1Y, we findu=0.57 (3) onL=32 at3=2.5115, consis- —0 the maximally Abelian gauge will be overwhelmingly
tent with u=0.58 (4) onL=20 at 3=2.5. Thus bothu  driven by ultraviolet rather than by physical fluctuations.
=0.5 andu=0.65 lie within about two standard deviations Moreover, at the location of the monopoles the Abelian
from the fitted value. Note that what the fitted powerand fields are far from unity and so one would expect theBU
u parametrize are the means of the distributions of lengthgields also to be far from unity. Thus the number of mono-
and radii respectively. That combining these does not giveyoles would seem to be constrained by the probability of
the directly calculated value ofy is not unexpected, and finding corresponding clumps of $2) fields with large
rgfle_cts Fhe importance of fluctuations around the mean in thBIaquette values. This probability depends on the detailed
distributions. form of the SU2) lattice action far from the Gaussian mini-
tlti’mm and one could easily choose an action where it is com-
. letely suppressed and yet which one would expect to be in
would seem that such objects do not have an exactly sca fe usual universality class. None of the above arguments are

invariant distribution in space-time, so that the number o ompletelv compelling of course. In the Gaussian approxi-
larger radius objects is somewhat greater than would be ex- P y peting ' bp

pected were this the case. Now it is known that an isolate&nat'on’ for example, theD(1/8) ultraviolet fluctuations

instanton(even with quantum fluctuationss associated with would not generate any monopoles at all, and in that case
a monopole cluster within its coresee[21,27 and refer- there would be no reason to expect any breakdown of mono-

ences therejnand that the scale invariant semiclassical den0e dominance. Nonetheless, the arguments do suggest that
sity of instantons acquires corrections due to quantum fluclt would be surprising if the long distance physics were to be
tuations. These corrections are, however, very large; itsefully and simply encoded in the monopole structiae
SU(2) the spectrum of small instantortehere perturbation defined on the smallest ultraviolet scaledi the way to the
theory is reliable goes adN(p)dpodp/px pt% wherep is  continuum limit.

the core size. The scale breaking we have observed for There are different ways in which monopole dominance
monopole clusters is negligible in comparison. Thus we caneould be lost. The most extreme possibility is thataas 0

not identify the “4-balls” with instantons. Indeed, the fact the fields simply cease to contain monopole clusters that are
that the monopole spectrum is so close to being scale invarlarge enough to disorder large Wilson loops. That this is
ant strongly suggests that these secondary clusters have maleed so has been argued 28] where it has been claimed
physical significance. In the next section we shall show exthat the exponent in our Eq. (3) (but defined for loops
plicitly that, in the large volume limit, they do not play any rather than for clusteysncreases rapidly with decreasiiag

localized excitations of the full S(2) vacuum(*“4-balls™ ), it

part in the long range confining physics. Of course this would not in itself preclude the existence of a
large percolating cluster, as long as this cluster could be
D. Breakdown of “monopole dominance™? decomposed into a large number of small and correlated in-

We finish this section by asking if there are hints from ourtersecting Ioop_s. Irrespective of this, we allso.note. that_ the
cluster analysis that “monopole dominance” might be volumes used if23] are very small by the criterion given in
breaking down as we approach the continuum limit. ThisEd- (6). For example, from our scaling relations we would
question is motivated by the observation that the monopole8XPect to need am=46 lattice at3=2.6 and anL=70
are identified by a gauge fixing procedure which involveslattice at3=2.7 in order to resolve our simple monopole
making the bare S(2) fields as diagonal as possible. Since picture, if it still holds at these values ¢@. This contrasts
the theory is renormalizable, the long distance physics inwith theL =12 andL = 20 lattices actually employed [123].
creasingly decouples from the fluctuations of the ultravioletSo it appears to us that while the claimq 28] are certainly
bare fields as we approach the continuum limit. For exampleinteresting, further calculations on much larger lattices are
the ultraviolet contribution to the action density @& 1/3) required.
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Our work suggests a somewhat different form of theshould not be swamped by the unphysical contribution of the
breakdown to the one above. We see from &g.that the secondary clusters. Of course this calculation uses a scale
ratio of the (total) monopole current residing in the physi- invariant dr/r x 1/r* spectrum, whereas, as we have seen,
cally irrelevant, smaller clusters to that residing in the largethere is significant scale breaking and the actual spectrum is
percolating cluster increases rapidly as-0 as 1A/K3~¢ closer todr/r x 1/r32 If we redo the above analysis with the
«1/a3"¢. This suggests that @s—0 a calculation of Wilson latter sp_ectrum, we see that we are (_)nly guaranteed to pre-
loops will become increasingly dominated by the fluctuatingS€rve this aspect of “monopole dominance”§t0.8. As
contribution of the unphysical monopoles that are eveidemonstrated in Ed7), there is some evidence that-0 but
denser on physical length scales, and that this will eventuallf} IS ot at all clear thag>0.8. All this indicates that even in
prevent us from extracting a potential or string tension. Thaft calculation that errs on the side of neglectmg t_he effect ‘.)f
is to say, calculations in the maximally Abelian gauge will the smaller clusters, they nonetheless will most likely domi-

) . . : nate the values of Wilson loops on fixed physical length
eventually acquire a similar problem to that which typically scales. It is only by separatingpthe percolatielgycluster fr%m

afflicts Abelian prOJegtlons using othe_r gauges. In our CaS%he other smaller clusters, and calculating Wilson loops just
we can overcome this problem by going to a large enough

. ) using that largest cluster, that we can hope to be able to
v.olume' that 'the physically relevf';mt percolating clustgr can b%xtract the string tension a@s—0.
simply identified.(The reason this cannot be done with other
typical Abelian gauge fixings is that there the unphysical
monopoles are dense on lattice scales, making any meaning-
ful separation into clusters impossihl&/e can then extract
the string tension using, in our Wilson loop calculation, only  In this section we begin by describing how we calculate
this largest monopole cluster. The fact that the length of thighe string tension from an arbitrary set of monopole currents.
cluster scales in physical units, with apparently no significan¥Ve then go on to show that even at the smallest lattice spac-
anomalous dimension, tells us that this calculation will notings, the string tension arises essentially entirely from the
be drowned in ultraviolet “noise” as we approach the con-largest cluster, as long as we use a sufficiently large volume.
tinuum limit. Of course, the fact that we can only do this for We then calculate the string tension for sources that have a
volumes that diverge in physical unitsas-0 is a symptom charge ofg=2, 3 and 4 times the basic charge, and compare
of the underlying breakdown of the Abelian projection. these results to a simple toy model calculation. Finally we
The qua"tative discussion in the previous paragraph overdiSCUSS the implications of our calculations for the question
estimates the effect of the secondary clusters; for examp@\,/hethel’ it is really monopoles or vortices that drive the con-
the contribution that a cluster of fixed size in lattice unitsfining physics.
makes to a Wilson loop of a fixed physical size will clearly
go to zero a®—0. So it is useful to ask how Wilson loops A. Monopole Wilson loops
are affected by the secondary clusters, and to do so using
approximations that underestimate the effect of these smallgS

clusters. Consider aRx R Wilson loop. A monopole cluster  ,,,qn61e currents through a surface spanning the Wilson
that has an extentthat is smaller thafR will affect it only loop, C (by default the minimal one is ®(S), then the
weakly through higher multipole fields which cannot on theirchar'geq Wilson loop has value '

own give rise to an area law decay and a string tension. So
we neglect such clusters and consider only those larger than W(C)=exdiq®(S)]. 8

R. Let us first neglect the observed breaking of scale invari-

ance and simply assume that /| and thaty=3. We then ~We may obtain the static potential from the rectangular Wil-
find, by integrating Eq(3) and using Eq(7), that the number son loops:

of secondary clusters withr>R is proportional to

L‘_‘\/_W/R“._ We further assume that such clusters must be V(r) = limVey(r,t)= limIn
within a distancet from the minimal surface of the Wilson oo oo
loop, where¢ is the screening length, if they are to disorder

that loop significantly. The lattice volume this encompassedhe string tensionK, may then be obtained from the long
is the area of the planar looR?, multiplied by a factor o  range behavior of this potentia¥(r)=Kr. The string ten-
for each of the two orthogonal directions @=4. So the sion may also be found from the Creutz ratios
probability for this Wilson loop to be disordered thus de-

creases WitlR as (R2£2/L4x L4VKE/R*) ~ JK{(&/R)2. So if K = lim Kog(r) = lim n (W(r+a,r)(W(r,r+a))
we look at a Wilson loop that is of a fixed size in physical oo eff e LW(r, )X W(r+a,r+a))
units, i.e.R/¢ fixed assuming scales as a physical quantity (10)

[9], then the influence of the secondary clusters will decrease

to zero asa—0 as long ag>0. If /<0, however, then we Square Creutz ratios at a givenare useful because they
would have to go to Wilson loops that were ever larger inprovide a relatively precise probe for the existence of con-
physical units as we approached the continuum limit, in orfining physics on that length scale. In addition Creutz ratios
der that the physical contribution from the percolating clusterare useful where the quality of the “data” precludes the

IIl. MONOPOLES, VORTICES AND THE STRING
TENSION

The monopole contribution to the string tension may be
timated using Wilson loops. If the magnetic flux due to the

(W(r,t))

(W(r,t+a))]| ©)
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double limit of the potential fit. This is so particularly when of charge+Q, at another random site. From this new en-
positivity is badly broken as it frequently is for our gauge semble we calculate the string tension from Creutz ratios.
dependent correlators. One-half of this is a crude estimate of the bias introduced in
The magnetic flux due to the monopole currents is founccorrecting the original configurations, and this is quoted as a
by solving a set of Maxwell equations with a dual vector second error on our string tension values, as appropriate.
potential reflecting the exclusively magnetic source terms.
An iterative algorithm being prohibitively slow oh=32,
we utilized a fast Fourier transform method to evaluate an
approximate solution as the convolution of the periodic lat- In [9] we observed that ap=2.3/>10 and atp
tice Coulomb propagator and the magnetic current sources 2.4L=14 theq=1 monopole string tension was produced
[24]. The error in this solution was then reduced to an acalmost entirely by the largest cluster, and the other clusters
ceptable level by using it as the starting point for the over-had a string tension near zero. At=2.5. = 16 the situation
relaxed, iterative method. was more confused; the smaller, power law clusters still had
We may use any subset of the monopo]e currents as thavery low string tension, but that of the Iargest cluster alone
source term to calculate the contribution to the Wilson loopgvas substantially less than the full monopole string tension.

and potential of those currents, provided that thigyare  This suggested some kind of constructive correlgtion be-
locally conserved andii) have net zero winding number tween the two sets of clusters. In our new calculation on an

around the periodic lattice in all directions, e.g. L =20 lattice atB=2.5, we still find a situation that is con-
fused, although somewhat less so than onltk€l6 lattice,
while on thelL =232 lattice at3=2.5115 the clear picture
seen aB=2.3 re-emerges, with nearly all the string tension
being produced by the largest cluster, and the remaining
If we choose complete clusters, then the first condition isclusters having a negligible contribution. To illustrate this we
always satisfied but the second condition is often not metlisplay in Fig. 3 the effective string tensions as a function of
(even though the winding number for all the clusters together for the lattices ay3=2.5 andg=2.5115.

must be zerp In such cases we introduce a “fix” as follows. The confused roles of the clusters on finer lattic®sare

At random sites in the lattice we introduce a Polyakov-likethus a finite volume effect and do not represent a breakdown
straight line of magnetic current of corrective charg®,, of the monopole picture as we near the continuum limit. As
for each direction, and use these as sources for a dual vectarresult of the differing scaling relations for the lengths of the
potential. Such lines represent static monopoles and a ramwo largest clusters, it is not enough to maintain a constant
dom gas of these can lead to a string tension. This introducdattice volume in physical units to reproduce the physics as
a systematic error to the monopole string tension that weve reduce the lattice spacing. Rather the lattice must actually
need to estimate. We do so by placing the same correctiveecome larger even in physical units, as discussed in Sec.
loop on an otherwise empty lattice, along with a second loopl B. The string tension arises from ‘“disordering”—i.e.

B. Largest cluster

QﬂZAEX;Z ja(x,y,z,t=1)=0. (11)
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TABLE I1l. Monopole string tensions from Wilson loops of TABLE IIl. Ratio of monopole string tensions from Wilson
varying charge, using all curreiftall” ), current from the largest loops of varying charge, in the static plasma model and measured at
cluster along*lge” ) and the remaining curreiftabl” ). B=2.5115 onL=32.

q K-all K-lge K-abl q R(q) K(q)/K(g=1)
pB=25,L=20 1 0.035(3) 0.026 3) (1) <0.0015 2 1.827(1) 2.00(9)
3 2.192(1 2.88(14
p=25115,L=32 1 0.0270(10) 0.0240(10) (3) <0.0010 4 5 52621; 3 96225;
2 0.0520(10) 0.0450(10) (4) <0.0022 i '
3 0.075(2
4 010309 SK(N,z,q)<{1~coga®(N,z,&)1}. (14)

] o ] Integrating over allz|<N¢, the ratio of string tensions cal-
switches in S|gn—0f t_he_: Wilson loop by the mon_opoles. A culated using charge and chargeg=1 Wilson loops is
monopole that is sufficiently close to a large Wilson loop

will multiply the loop by expiqs] which would naively sug- N 1 _aly
gest that even-charged loops are not disordered and have no K(N,q) fo dal 1—co qﬂLlNdy'e
string tension. In a screened monopole plasma, however, &N, q)= ! =

the monopole is moved away from the loop, the flux falls K(N,q=1) JNda 1—co Wfl dy-e”
and the possibility for disorder and a string tension exists. 0 a/N

(This will also occur without screening, but only when the (15

monopole is a distance away from the Wilson loop that is ) ) ) )

comparable to the size of the lopClearly the exact value for thlsf static monopole assumption. This may be evgluated
of the string tension will depend upon the details of thenumerically, and extrapolated d$—, where there is a
screening mechanism, especially as we increpskhis can well-defined limit,R(q). The results for smatj are shown in

be calculated in the usual saddle point approximafib®) Table Ill, where the error oR(q) reflects the extrapolation
where one finds that the string tension is proportiona) to uncertainty. Comparing these numbers to the actual ratio of
[15]. One can obtain a crude model estimate with much les§tring tensions, we find this simplistic model works remark-
effort, and this we do in the next subsection. Returning to oubly well for =2, but becomes less reliable as we increase
lattice calculations, we list in Table Il the monopole string d- This no doubt reflects the increasing importance of the
tensions that we obtain using Chargé’\/”son |oops atB neglected ﬂUC'[uatiOI‘lS Of the ﬂuX aWay from the mean
=2.5115 on thd =32 lattice. We see that they are indeed Screened values.

consistent with a scaling relatidR(q) =q, at least up ta

=4. D. Monopoles or vortices?

The fact that the Abelian fields that one extracts in the
C. Simple model maximally Abelian gauge, and their corresponding mono-
It is useful to consider here a simple model for the disor-P0les, successfully reproduce the @Ufundamental string
dering of Abelian Wilson loops of various charges by mono-teénsion provides some evidence for the dual superconducter
poles. We consider only static monopolesde 4, with a model of confinement. As we remarked in the Introduction,

mean field type of screening, assuming that the macroscopifCWever, an attractive alternative picture exists, based on
exponential falloff in the flux with screening lengthcould ~ VOrteéx condensation, and one has comparable evidence for
be applied on the microscopic scale also. For numerical redhat picture, obtained by going to the maximal center gauge
sons we also impose a cutoff: beyohdscreening lengths and calculating Wilson loops using the singular vortices ob-

the flux is set exactly zero. The magnetic field is thus tained after center projection. _
Since the Abelian projected fields seem to contain the full

1 string tension, it is reasonable to assume that they encode all
B —ze‘dlf, d=N¢, the significant confining fluctuations in the &)fields, even
B(d)= 2d (12 if these are vortices. How would one expect a vortex to be
0, d>N¢&. encoded in the Abelian fields? And how can we test for their
presence?
The flux from a monopole distancesN¢ above a large Recall that the kind of vortex we are interested in has a
(spacelikg Wilson loop through that loop is smooth core and flips the sign of any Wilson loop that it

threads. Consider now a space-like Wilson loop in some time
_ _Z slice of our Abelian projected lattice field. We observe that it
P(N.z,8)= wL/Ngdyexp( yg) ' (13 will flip its sign if threaded by a loop of magnetic flux whose
core contains a total flux equal te. If the core size is not
Considering a slab of monopoles and antimonopoles all disarbitrarily large, so that @arge enough Wilson loop has
tance z above the loop(and similar beloy, the chargeq negligible probability to overlap with the actual core, then a
Wilson loop gives a string tensidi9] condensate of such fluxes will lead to linear confinement.

1
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Since the original S(2) vortex has a smooth core, the sim- of monopoles So if we calculate the string tension due to
plest expectation is that this flux, if it reflects the vortex, the monopoles, and if we find a significant suppression of the
should not have a singular monopole source; rather it shoulg=2 string tension, then this will indicate the significant
be a closed loop of magnetic flux. If its length is much largerpresence of such correlations and hence of vortices.

than the size of the Wilson loop, it can easily thread the loop  This latter way of encoding vortices in the Abelian pro-
an odd number of times and can disorder it. So the naturgbcted fields might seem less natural given the smoothness of
way for aZ(2) vortex to be encoded in the Abelian projectedhe ynderlyingz(2) vortices. As pointed out ifi15], how-
fields is as a closed loop of magnetic flux, in roughly thegyer, such correlated monopole structures actually occur in
same position and with a smooth core of roughly the samg hat one usually regards as a standard example of a field

]E:;E.S It tg's (')S Izoeangcftxg{tges :t:ellpre?elrg N thte(SLtJ theory that demonstrates linear confinement driven by mono-
: , We would exp ur Abelian Tields contain WOpole condensation: the Georgi-Glashow model in three di-

kind of confining fluctuations: singular magnetic monopolesmensions_ This model couples an @Jgauge field to a

and smooth closed loops ofr(units off magnetic flux. Since ; o L .
these closed loops of I?qu a(re smo?)th, ?hey will be hard toscalar Higgs field in the adjoint representation of the gauge

identify individually in the midst of the magnetic fluxes gen- group. The theory_has_a Higgs phase, and th(_a Higgs field
erated by the monopoles. Their presence can however ives the gauge field into a vacuum state which has only
easily tested for as follows. The flux in the(D) fields is ~Y(1) gauge symmetry, save in the cores of extended topo-
conserved and so any flux either originates on the monopoldggical objects. These 't Hooft—Polyakov monopoles are
or closes on itself as part of a closed flux loop. The monoMagnetically charged with respect to the1lfields, and
poles are easy to identify and their flux can be calculated. sgive rise to the linear confining potential, at least in the semi-
for any Wilson loop,C, we can calculate the fluB,,{C), classical approximationi16] which holds good when the
due to the monopoles and we can subtract it from the totatharged vector bosons are heavy. As pointed ouftlf,

flux, B(C), so as to obtain the remaining flux, however, this conventional picture cannot be true on large
enough length scales since eventually the presence of the
Bs(C)=B(C) = Bmod C), (160  charged massivaV* fields will lead to the breaking of

strings between doubly charged sour¢i® W possessing

which comes from closed flux loops. The correspondingtwice the fundamental unit of chargeA plasma of mono-
value of the Wilson loop will be~ 849 In this way we can poles, on the other hand, will predict the linear confinement
calculate the potential due to the non-monopole flux, and ibf such double charges. So it was argued that in this limit it
we find a non-zero string tension, this demonstrates the exs Z(2) vortices, which do not disorder doubly charged Wil-
istence of a condensate of such flux loops and provides evison loops, that drive the confinemeit5]. The crossover
dence for corresponding(2) vortices. If the flux loops carry between the two pictures, it is argued, would occur beyond a
ar units of flux, Wilson loops corresponding to sources withcertain length scale dictated by tié~ mass, where the dis-
an even charge will have zero string tension. tribution of monopole flux would no longer be purely Cou-

We remark here that in (@) lattice gauge theories, such lombic, but would be collimated into structures of lower
loops of magnetic flux are not usually discussed as signifidimension—essentially strings of alternating monopoles and
cant degrees of freedom. That is not because they cannantimonopoles—that reflect tixg2) vortices of the vacuum.
exist but rather that the dynamics is such that they usually Of course one cannot carry this argument over in all its
play no significant role[One can always smoothly reduce details to the case of the pure YJgauge theory. Here there
the usual W1) action by increasing the core size of such aare no explicit Higgs oW~ fields; any analogous objects
loop. Ultimately they contribute a non-confining “spin would need to be composite. The theory also has only one
wave” contribution to the interactioh.The Abelian pro- scale, and so one would not expect an extended intermediate
jected fields, on the other hand, are not generated from sonregion between the onset of confining behavior and the col-
local U(1) action. They may possess any structures that arémation of the flux signallingZ(2) disorder. But it does
kinematically allowed. raise the possibility that th&(2) vortices in the S(2) fields

Vortices can also be encoded in the Abelian fields in amight be encoded, after Abelian projection, in such correla-
more subtle way than the above. This involves long-distancéions among the monopoles rather than in separate smooth
correlations among the monopoles.ds2+1 suppose that closed loops of magnetic flux.
at least some of the monopoles lie along “lines” in such a To probe for the presence of smooth loops of magnetic
way that each monopole is followed by an antimonopoleflux in the Abelian projected fields, we have calculated the
(and vice verspas we follow the line. This will generate an “difference” flux, as defined in Eq(16), and the resulting
alternating flux of= 7 along the ling[14]. So a Wilson loop  string tension, and to probe for vortex-like ensembles of
threaded by this line will acquire a factor ef1. Such cor- monopoles we have calculated the monopole string tension,
related ensembles can therefore encode the vortices in th&(q), for various source chargeg,
original three dimensional SB) fields. A similar restriction We start with the latter. In Table IV we show tle
of monopole current world lines to two dimensional sheets=1,2 monopole effective string tensions that we have ob-
can be envisaged id=3+1. In both cases, their presence tained from Creutz ratios on tHe= 32 lattice at3=2.5115.
would be signalled by the fact that they do not disorder Wil-We see that foq=2, just as forq=1, there are very few
son loops corresponding to an even chaigdike a plasma transients at smalf, and the extraction of an asymptotic
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TABLE IV. Effective monopole string tensions from Creutz ra- It is worth stepping back at this point and reflecting upon
tios for charges|=1,2 and from the difference of @) and mono-  the tentative nature of the above arguments. Our calculation

pole fluxes af3=2.5115 onL =32. of the monopole string tension takes each monopole to be a
o source of a simple Coulombic flux, as obtained by solving
r Ker(r), q=1 Ken(r), =2 Kei (1), =1 Maxwell’s equations. Treating the monopoles as being “iso-
> 0.02572(8) 0.0511 (2) 0.0799 (2) Itatedk mr':hltst;/]vay r|]s the (_)b\l/‘|((j)us tstartlng p0||nt |f' (:Bnet \_/;/l_shes
3 0.02371(9) 0.0497 (2) 0.0335(2) o ask what the physics is “due to monopoles.” But it is no
guarantee that such a question makes any sense. Indeed it is
4 0.02355(10) 0.0483 (3) 0.0176 (5) - L o
only in the Villain model that one has the exact factorization
5 0.02414(14) 0.0492 (5) 0.0102 (9) . . .
6 0.02487(1 0.0496 (7 0.0082 (13) of Wilson loops into monopole and non-monopole pieces
: (17) ' @ : 062 (2 that is needed for this question to be clearly unambiguous.
! 0.02565(20) 0.0501(7) 0.0 (21) For example, it is not priori clear that the ensemble of
8 0.02628(37) 0.0493 (25 0.0076 (53) monopoles one obtains in the maximally Abelian gauge is
9 0.02652(29) 0.0556 (58) —0.0076(27) even qualitatively such as one would expect from a generic

U(1) action. If it is not, then one must ask what are the
) ) ) fluctuations in the S(2) fields that determine the nature of
string tension appears to be unambiguous. We have accurajge monopole ensemble, and whether these features of the
calculations out to a distance o¥9a which corresponds 1o gnsemple have a significant effect on the calculated string
tension. If they do, then the question we are asking, whether

1.6 the string tension is “due to monopoles,” becomes intrinsi-
r=9a~-— (17)  cally ambiguous. Our demonstration that there is no suppres-
VK sion of theq=2 monopole string tension may be regarded as

a first step, but only a first step, towards showing that the
in physical units at thig3. Out to this distance there is abso- monopole ensemble does not possess such features that re-
lutely no hint of any reduction in thg=2 effective string quire additional explanation. One should also mention that
tension. It has been pointed ofiit4] that when the Wilson the Abelian fields are periodic in72 (in the sense that the
loop is not much larger than the typical vortex core, it is notnumber density of plaquette angles peaks at multiples of
completely unnatural to obtain an effective string tension27), which is the requirement for Dirac strings to be invis-
comparable to the one from a monopole plasma. Here thile, and that they possess a screening length that is charac-
size is beginning to be large compared to the natural scale déristic of plasma$9]. Equally, if we had found a significant
the theory, however, and it is hard not to view the lack of anyflux loop condensate in the Abelian fields, we would have
variation at all in theq=2 effective string tension as point- had to study carefully thépresumably non-trivial correla-
ing to the absence of the kind of correlations among thdions between the monopoles and flux loops in order to de-
monopoles that might be encodi@f2) vortices. termine if there was any sense in claiming that some physics

The second possibility is that the vortices might be en-was “due to monopoles.” The fact that we have not found
coded not in correlations among the monopoles but rather iBny sign of such a flux loop condensate, or of any anomalous
closed loops carryingr units of magnetic flux. Such loops features of the monopole plasma, means that we are not yet
would contribute tdK(g=1) but not toK(q=2). We recall  forced to confront this quite general problem. But this ques-
that there has been a calculationtofq), calculated within ~ tion clearly needs systematic exploration.
the full Abelian fields at3=2.5115, and that there it was

found [6] that there is a finitej=2 effective string tension IV. SUMMARY
that extends out to at least as farras9a, and that the ratio
of the U(1) string tensions iK(q=2)/K(q=1)=2.23(5). We have studied the magnetic monopole currents ob-

While this suggests that closed flux loops are not importantiained after fixing to the maximally Abelian gauge of @Y
these string tensions necessarily include the contributioon lattices that are both large in physical units and have a
from monopoles, and it would be useful to have a calculatiorrelatively small lattice spacing. The monopole clusters are
that excludes the latter. We have therefore calculated th&und to divide into two clear classes, both on the basis of
effective string tension using only the flux that comes fromtheir lengths and their physical properties. The smaller clus-
closed flux loops, as defined in E@.6). The results of this ters have a distribution of lengths which follows a power
calculation are listed in Table IV fog=1. We see that, law, and the exponent is consistent with 3, as was previously
within small errors, there is asymptotically no string tensionseen on coarser lattic¢8]. These clusters are compact ob-
from such loopsa potential fit to the Wilson loops yields jects, and their radii also follow a power law whose exponent
K<0.0025). This shows in a direct way that there is nowe found to be 4.21). This is close to, but a little less than,
significant condensate of closed loops of flux in the Abelianthe scale invariant value of 5, which indicates that if the
projected fields. smaller clusters correspond to objects in the(BWacuum,

In conclusion, our investigations here have shown no sigrthese objects have a size distribution which yields slightly
of vortices encoded in the Abelian projected fields in eithemore large radius objects than would be expected in a purely
of the two ways that one might plausibly have expected thenscale invariant theory. This scale breaking is, however, far
to be. too weak to encourage the identification of such objects with
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the small instantons in the theory. loops of higher charges, and found that the corresponding
That is not to say that instantons are necessarily irrelmonopole string tensions appear to be simply proportional to
evant; the correlations between the monopole currents anthe charge, at least up tp=4. This is what is predicted by a
the action and topological charge densiti¢3,8,21,22 and  saddle point treatment of the(l) lattice gauge theorj15]
references therejnindicate some connection. It would be as can be seen more simply, if more approximately, within
interesting to measure the correlations separately using thaur simplistic charge plasma model.
largest cluster and the remaining power law clusters. Our main reason for studying these higlyestring ten-
The small clusters do not appear relevant to the longsions was to probe for any sign of a condensatez @)
range physics; they produce a zero, or at most a very smaNortices in the Abelian projected fields. It might, of course,
contribution to the string tension. Indeed the string tension ise that such vortices are simply not encoded in the Abelian
consistent with being produced by the largest cluster alondields. It is plausible, however, to infer from the observed
The fact that there should be a large percolating monopolenonopole and center dominance that both when we force the
cluster associated with the long-distance physics is an ol§U(2) link matrices to be as Abelian as possible and when
idea(see[25] for an early referenge The properties that we we force them to be as close tol as possible, the resulting
find for this cluster, however, are certainly not those associAbelian andZ(2) fields capture essentially all the long range
ated with naive percolation. In particular, as we approach theonfining disorder present in the original &)fields. In the
continuum limit the density of monopoles belonging to thiscase ofZ(2) fields the disorder must be encoded by vortices
cluster goes to zero. And indeed the fraction of the totalthere is nothing elgeIn the Abelian case however the dis-
monopole current that arises from this largest cluster alserder can be carried either by monopoles or by closed loops
appears to go to zero. This is because this single very largsef “magnetic” flux. We argued that such a closed loop, car-
cluster seems to percolate on physical and not on latticeying a net magnetic flux ofr units, provides a plausible
length scales, while the physically unimportant secondaryvay for the Abelian fields to encode the presence of an un-
clusters have an approximatley constant density in latticelerlying Z(2) vortex. Our study of the monopole(l) *“dif-
units. All this reproduces the properties that we previouslyference gas” showed, however, that there is no significant
obtained on coarser lattices, but which seemed to be losjontribution to confinement from such loops of magnetic
when going to finer lattice spacings, albeit on volumes of &lux. An alternative[14,15 is that theZ(2) disorder is en-
smaller physical extent. This study demonstrates that theoded in correlated strings ¢éantymonopoles. If such cor-
breakdown was a finite volume effect, rather than a failure otelations were important, however, they would lead to a sig-
the monopole picture in the weak coupling limit. The volumenificant suppression of thg=2 string tension, and this we
at which the picture was restored was as predicted by th@o not observe. Instead we find that the effective monopole
scaling relations derived from the coarser lattices. string tensions satisfit(q=2)=2K(q=1) very accurately
The fact that one has to go to volumes that are ever largep distances that are quite substantial in physical units. While
asa—0 can be interpreted as a breakdown of the Abelianhere is a limit to what one can conclude ab@g®) vortices
projection. As we remarked, something like this is not unex-n a study that focuses solely on the Abelian projected fields,
pected: aa—0 the Abelian projection will presumably be the fact that they do not manifest themselves in any of the
increasingly driven by the irrelevant ultraviolet fluctuations ways that one might expect must cast some doubt on their
of the SU2) link matrices. This leads to an increasing frac- importance in the S(2) vacuum.
tion of the monopole current — that belonging to the smaller
clusters — containing no physics and this contributes an in- ACKNOWLEDGMENTS
creasing background “noise” to attempts at extracting
physical observables as we approach the continuum limit. The gauge fixed. =32 field configurations were crucial
Fortunately the unphysical gas of monopoles that one obtairn® the work of this paper and we are very grateful to Gunnar
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