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Monopole clusters,Z„2… vortices, and confinement in SU„2…
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We extend our previous study of magnetic monopole currents in the maximally Abelian gauge to larger
lattices at small lattice spacings (204 at b52.5 and 324 at b52.5115). We confirm that at these weak
couplings there continues to be one monopole cluster that is very much longer than the rest and that the string
tension,K, is entirely due to it. The remaining clusters are compact objects whose population as a function of
radius follows a power law that deviates from the scale invariant form, but much too weakly to suggest a link
with the analytically calculable size distribution of small instantons. We also search for traces ofZ(2) vortices
in the Abelian projected fields, either as closed loops of ‘‘magnetic’’ flux or through appropriate correlations
among the monopoles. We find, by direct calculation, that there is no confining condensate of such flux loops.
We also find, through the calculation of doubly charged Wilson loops within the monopole fields, that there is
no suppression of theq52 effective string tension out to distances of at leastr .1.6/AK, suggesting that if
there are any vortices they are not encoded in the monopole fields.@S0556-2821~99!04821-3#

PACS number~s!: 11.15.Ha, 12.38.Aw, 14.80.Hv
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I. INTRODUCTION

Many recent efforts to elucidate the mechanism of c
finement in QCD and non-Abelian gauge theories have
cused on isolating a reduced set of variables that are res
sible for the confining behavior. In the dual superconduct
vacuum hypothesis@1,2# the crucial degrees of freedom a
the magnetic monopoles revealed after Abelian projection
the maximally Abelian gauge@2,3# one finds that the ex
tracted U~1! fields possess a string tension that appro
mately equals the original SU~2! string tension~‘‘Abelian
dominance’’! @4#, and that this is almost entirely due t
monopole currents in these Abelian fields~‘‘monopole domi-
nance’’! @5,6#. The magnetic currents observed in the ma
mally Abelian gauge are found to have non-trivial corre
tions with gauge-invariant quantities such as the action
topological charge densities~see for example@7,8# and ref-
erences therein! and this invites the hypothesis that the stru
tures formed by the magnetic monopoles correspond to s
lar objects in the SU~2! vacuum, seen after gauge fixing an
Abelian projection. If the magnetic monopoles truly refle
the otherwise unknown infrared physics of the SU~2!
vacuum, analysis of these structures may provide impor
information about the confinement mechanism.

The main purpose of this paper is to extend our previ
study @9# of monopole currents to lattices that are larger
physical units at the smallest lattice spacings. As reviewe
Sec. II, we obtained in@9# a strikingly simple monopole
picture atb52.3, 2.4. When the magnetic monopole curre
are organized into separate clusters, one finds in each
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configuration one and only one cluster which is very mu
larger than the rest and which percolates throughout the
tire lattice volume. Moreover, this largest cluster is alo
responsible for infrared physics such as the string tens
The remaining clusters are compact objects with radii va
ing with length roughly asr}Al and with a population tha
follows a power law as a function of length. We found th
exponent of this power law to be consistent with a univer
value of 3. This simple pattern became more confused ab
52.5. The scaling relations for cluster size that we est
lished in @9# suggested that ourL516 lattice atb52.5 was
simply too small. There was of course an alternative po
bility: that the simple picture we found at lowerb failed as
one approached the continuum limit. Clearly it is importa
to distinguish between these two possibilities, and this
what we propose to do in this paper. The cluster size sca
relations referred to above imply that anL532 lattice atb
52.5115 should have a large enough volume. Such ga
fixed lattice fields were made available to us by Bali~private
communication! and we have used them, supplemented
calculations on an intermediateL520 volume atb52.5, to
obtain evidence, as described in Sec. II and III, that
monopole picture we found previously is in fact valid
these lattice spacings and that the deviations we found
viously were due to too small a lattice size.

The fact that one has to go to space-time volumes that
ever larger, in physical units, as the lattice spacing decrea
hints at some kind of breakdown of ‘‘monopole dominanc
in the continuum limit. We finish Sec. II with a discussion
the form that this breakdown might take.

An attractive alternative to the dual superconducti
vacuum as a mechanism for confinement is vortex cond
sation @10–15#. Here the confining degrees of freedom a
the vortices created by the ’t Hooft dual disorder loops@10#
©1999 The American Physical Society06-1
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and the confining disorder is located in the centerZ(N) of
the SU(N) gauge group. When such a vortex intertwines
Wilson loop, the fields along the loop undergo a gauge tra
formation that varies from unity to a non-trivial element
the center as one goes once around the Wilson loop.
SU~2! this means that the Wilson loop acquires a factor
21. A condensate of such vortices will therefore complet
disorder the Wilson loop and will lead to linear confineme
At the center of the vortex, which will be a line inD52
11 and a sheet inD5311, the fields are clearly singula
~multivalued! if we demand that the vortex correspond to
gauge transformation almost everywhere. In a properly re
larized and renormalized theory, this singularity will b
smoothed out@10# into a core of finite size in which there i
a non-trivial but finite action density, and whose size will
O(1) in units of the physical length scale of the theory. O
can either try to study these vortices directly in the SU~2!
gauge fields or one can go to the center gauge@14,15#, where
one makes the gauge links as close to11 or 21 as possible,
and construct the corresponding fields where the link ma
ces take values inZ(2) ~‘‘center projection’’! and where the
only nontrivial fluctuations are singularZ(2) vortices. Just
as a ’t Hooft–Polyakov monopole will appear as a singu
Dirac monopole in the Abelian fields that one obtains af
Abelian projection, one would expect the presence of a v
tex in the SU~2! fields to appear as a singularZ(2) vortex
after center projection. This picture has received increas
attention recently and has, for example, proved successf
reproducing the static quark potential@13,14# ~‘‘center domi-
nance’’!. Our ability, in this paper, to address the question
how important are such vortices is constrained by the
that we only work with Abelian projected SU~2! fields. So
first we need to clarify how such vortices might be encod
in these Abelian fields and only then can we perform num
cal tests to see whether there is any sign of their prese
This is the content of Sec. III.

Finally there is a summary of the results in Sec. IV.

II. MONOPOLE CLUSTER STRUCTURE

A. Background

Fixing to the maximally Abelian gauge of SU~2! amounts
to maximizing with respect to gauge transformations
Morse functional

R52(
n,m

Tr@Um~n!• is3•Um
† ~n!• is3#. ~1!

It is easy to see that this maximizes the matrix eleme
u@Um(n)#11u2 summed over all links. That is to say, it is th
gauge in which the SU~2! link matrices are made to look a
diagonal, and as Abelian, as possible—hence the name.
ing fixed to this gauge, the link matrices are then written i
factored form and the U~1! link angle „just the phase of
@Um(n)#11… is extracted. The U~1! field contains integer val-
ued monopole currents@17#, $ j m(n)%, which satisfy a conti-
nuity relation,Dm j m(n)50, and may be unambiguously a
signed to one of a set of mutually disconnected clo
networks or ‘‘clusters.’’
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In @9# we found that the clusters may be divided into tw
classes on the basis of their length, where the length is
tained by simply summing the current in the cluster:

l 5 (
n,m«cl

u j m~n!u. ~2!

The first class comprises the largest cluster, which is ph
cally the most interesting. It percolates the whole lattice v
ume and its lengthl max is simply proportional to the volume
L4 ~at least in the interval 2.3<b<2.5) when these are re
expressed in physical units, i.e.l maxAK}(LAK)4, whereK is
the SU~2! lattice string tension in lattice units and we u
1/AK to set our physical length scale. We remark that o
this range inb there is a factor of 2 change in the lattic
spacing, and so one might have expected that the extra u
violet fluctuations on the finer lattice would lead to signi
cant violations of the naive scaling relation. That is to s
one might expect to need to coarse grain the current
larger b to obtain reasonable scaling. That this is not
quired is perhaps surprising.

The remaining clusters were found to be much shor
Their population as a function of length~the ‘‘length spec-
trum’’ ! is described by a power law

N~ l !5
cl~b!

l g
, ~3!

whereg'3 for all lattice spacings and sizes tested and
coefficient cl(b) is proportional to the lattice volume,L4,
and depends weakly onb. The radius of gyration of these
clusters is small and approximately proportional to t
square root of the cluster length, just like a random wa
When folded with the length spectrum, this suggests@9# that
the ‘‘radius spectrum’’ should also be described by a pow
law

N~r !5
cr~b!

r h
, ~4!

with h'5 andcr(b) weakly dependent onb. Such a spec-
trum is close to the scale invariant spectrum
4-dimensional balls of radiusr, N(r)dr;dr/r31/r4, and
so one might try and relate these clusters to the SU~2! instan-
tons in the theory, which classically also possess a sc
invariant spectrum. It is well known, however, that the incl
sion of quantum corrections renders the spectrum of
latter far from scale invariant, at least for the small instanto
where perturbation theory can be trusted, and so such a
nexion does not seem to be possible@9#.

On sufficiently large volumes the difference in length b
tween the largest and second largest clusters is very mar
and where this gulf is clear one finds that the long ran
physics such as the monopole string tension arises so
from the largest cluster. This is the case atb52.3,L>10 and
at b52.4,L>16. On moving to a finerL516 lattice atb
52.5 the gulf was found to disappear and the origin of t
long range physics was no longer so clear-cut. This could
6-2
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MONOPOLE CLUSTERS,Z~2! VORTICES, AND . . . PHYSICAL REVIEW D60 114506
a mere finite volume effect, or, much more seriously,
might signal the breakdown of this monopole picture in t
weak coupling, continuum limit. Clearly this needs to
resolved and the only unambiguous way to do so is by p
forming the calculations on large enough lattices.

B. This calculation

The direct way to estimate the lattice size necessar
b52.5 to restore~if that is possible! our picture is as fol-
lows. Suppose that the average size of the second lar
cluster scales approximately as

l 2nd}La~AK !d. ~5!

We know thatl max}L4(AK)3 to a good approximation for the
largest cluster. So we will maintain the same ratio of leng
l 2nd/ l max, and a gulf between these, if

L1

L2
5S AK1

AK2
D 2@(32d)/(42a)#

. ~6!

If we take our directly calculated values ofl 2nd, they
seem to give roughlya.1 andd.22. This suggests tha
we need to scale our lattice size withb so as to keep
L(AK)5/3 constant. This estimate is not entirely reliable b
cause, on smaller lattices, the distributions of the ‘‘large
and ‘‘second largest’’ clusters overlap so that they excha
roles. An alternative estimate can be obtained from the ta
the distribution in Eq.~3! that integrates to unity. Doing s
@9# one obtainsa.2 and 0,d,0.25. This suggests that w
scale our lattice size so as to keepL(AK) $1.4→1.5% constant.
This estimate is also not very reliable, since it assumes
the distribution of secondary cluster sizes on different fi
configurations fluctuates no more than mildly about the
erage distribution given in Eq.~3!. In fact the fluctuations are
very large.@As we can see immediately when we try to ca
culate ^ l 2& in order to obtain a standard fluctuation—it d
verges for a length spectrum withN( l )}dl/ l 3.# Nonetheless,
the two very different estimates we have given above p
duce a very similar final criterion: to maintain the same g
between the largest and second largest clusters asb is varied,
one should chooseL so as to keepL(AK);1.5 constant.

So if we wish to match the clear picture on anL510
lattice atb52.3 @whereK50.136 (2)#, we should work on
a lattice that is roughlyL528 at b52.5 @where K
50.0346 (8)#. In particular we note that anL532 lattice at
b52.5115 @where K50.0324 (10)# is more than large
enough and an ensemble of 100 such configurations, alre
gauge fixed@6#, has been made available to us by the a
thors. The gauge fixing procedure used in obtaining thes
somewhat different from the one we have used in our pre
ous calculations~in its treatment of the Gribov copies—se
below!, and although this is not expected to affect the qu
tative features that are our primary interest here, it will ha
some effect on detailed questions of scaling, etc. We h
therefore also performed a calculation on an ensemble of
gauge fixedL520 field configurations atb52.5. While the
latter volume is not expected to be large enough to recrea
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clear gulf between the largest and remaining clusters,
would expect to find smaller finite size corrections than w
the L516 lattice we used previously.

In gauge fixing a configuration we select a local ma
mum of the Morse functional,R, of which on lattices large
enough to support non-perturbative physics there is typic
a very large number@18#. These correspond to the~lattice!
Gribov copies. Gauge dependent quantities appear to var
O(10%) depending upon the Gribov copy chosen; this
true not only of local quantities such as the magnetic curr
density @19# but also of supposedly long range, physic
numbers such as the Abelian and monopole string tens
@6,18#. Some criterion must be employed for the selection
the maxima ofR, and in the absence of a clear understand
of which maximum, if any, is the most ‘‘physical,’’ one
maximum was selected at random in@9#. An alternative strat-
egy, used in gauge fixing theL532 lattices atb52.5115, is
to pursue the global maximum ofR @6#. Each field configu-
ration is fixed to the maximally Abelian gauge 10 times u
ing a simulated annealing algorithm that already weights
distribution of maxima so selected towards those of higheR.
The solution with the largestR from these is selected. Detail
of this method are discussed in@6#. The difference in proce-
dures invites caution in comparing exact numbers betw
this ensemble and those studied previously; for examp
O(10%) suppression in the string tension is observed. I
likely that cluster lengths will differ by a correspondin
amount and this will prevent a quantitative scaling analy
using this ensemble. The power law indices do appear, h
ever, to be robust@20# and it also seems likely that ratios o
string tensions obtained on the same ensemble can be
ably compared with other ratios.

C. Cluster properties

The fact that the largest cluster does not belong to
same distribution as the smaller clusters is seen from the
different scaling properties of these clusters with volume@9#.
It is also apparent from the fact that the largest cluster is v
much longer than the second largest cluster. Indeed fo
large enough volume and for a reasonable size of the c
figuration ensemble, there will be a substantial gulf betwe
the distribution of largest cluster lengths and that of the s
ond largest clusters. By contrast the length distributions
the second and third largest clusters strongly overlap. Th
the situation that prevailed for the larger lattices atb52.3
and 2.4 but which broke down on theL516 lattice atb
52.5. We can now compare what we find on ourL520 and
L532 lattices with the latter. This is done in Table I. The
we show the longest and shortest cluster lengths for the l
est, second largest and third largest clusters respectively
the ensemble. The ensemble sizes are not exactly the s
but it is nonetheless clear that there is a real gulf between
largest and second largest clusters on theL532 lattice while
there is significant overlap in theL516 case. TheL520
lattice is a marginal case. We conclude from this that
apparent loss of a well-separated largest cluster as seen i@9#
at b52.5 was in fact a finite volume effect, and that o
6-3
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TABLE I. Range of lengths found for the largest, the second largest, their difference and for the
largest clusters for the ensembles ofN configurations shown.

L b N lmax l 2nd l max–l2nd l 3rd

12 2.3 500 2358–3970 18–220 2172–3930
14 2.4 500 894–3436 22–1112 28–3400
16 2.5 500 268–2462 22–910 4–2414
20 2.5 100 1718–5050 50–1644 318–4964 36–684
32 2.5115 100 11872–20040 114–4676 9066–19886 92–247
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scaling analysis has proved reliable in predicting what v
ume one needs to use in order to regain the simple pictu

In Fig. 1 we show how the length of the largest clus
varies with the lattice volume when both are expressed
physical units~set byAK). To be specific, we have divide
l maxAK by (LAK)4 and plotted the resulting numbers again
LAK for both our new and our old calculations. The fact th
at fixedb the values fall on a horizontal line tells us that th
the length of the largest cluster is proportional to the volu
at fixed lattice spacing:l max}L4. The fact that the various
horizontal lines almost coincide tells us that the current d
sity in the largest cluster is consistent with scaling. That is
say, it has a finite non-zero value in the continuum lim
Thus the monopole whose world line traces out this larg
cluster percolates throughout the space-time volume an
world line is sufficiently smooth on short distance scales t
its length does not show any sign of diverging as we take
continuum limit. We note that theL532 lattice deviates by
;10% from the other values. This is consistent with wh
we might have expected from the different gauge fixing p
cedure used in that case.

Turning now to the secondary clusters, we display in F
2 the length spectrum that we obtain atb52.5115. It is
clearly well described by a power law as in Eq.~3! and we fit
the exponent to beg53.01 (8). This is in accordance with
the universal value of 3 that was postulated in@9# on the
basis of calculations on coarser lattices. The value one fit

FIG. 1. The current density of the largest cluster as a function
lattice size in physical units for variousb.
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the spectrum obtained on theL520 lattice atb52.5 is g
52.98 (7) and is equally consistent. We also examine
dependence onb of the coefficientcl(b) in Eq. ~3!, adding
to the older work our calculations atb52.5 on theL520
lattice. ~We do not use theL532 lattice for this purpose
because of the different gauge fixing procedure used.! If we
assume a constant power~which is approximately the case!,
thencl(b) is just proportional to the total length of the se
ondary clusters. At fixedb we find this length to be propor
tional toL4 just as one might expect.~Small clusters in very
different parts of a large volume are presumably indep
dent.! The dependence onb, on the other hand, is much les
clear. Betweenb52.3 andb52.4 it varies weakly, roughly
as K0.1260.13. Betweenb52.4 andb52.5 it varies more
strongly, roughly asK0.4860.09. We can try to summarize this
by saying that

cl~b!5const.3L4AKz ~7!

wherez50.560.5, which is consistent with what was foun
previously@9#.

The smaller clusters are compact objects ind54, and
having determined the cluster spectrum as a function
length we can then ask what is the spectrum when
expressed as a function of the radius~of gyration! of the
cluster. In@9# we obtained this spectrum by determining t
average radius as a function of length and folding that
with the number density as a function of length. This is
approximate procedure~forced upon us by the fact that w
did not foresee the interest of this spectrum during the p
cessing of the clusters! and one can obtain the spectrum mo
accurately by calculatingr for each cluster and forming th
spectrum directly. Doing so for theL532 lattice at b
52.5115, also in Fig. 2, we find a power law as in Eq.~4!
with h54.20 (8). The spectrum on theL520 lattice atb
52.5 yieldsh54.27 (6). We recall that in@9# we claimed
that the spectrum was consistent with the scale invariant
sult dr/r 31/r 4, i.e. h55. This followed from the fact that
we found the radius of the smaller clusters to vary with th
length asr ( l )5s1t.l 0.5, i.e. just what one would expec
from a random walk. Folded with a length spectrumN( l )
;1/l 3, this givesh55. On theL532 lattice we still find that
the random walk ansatz provides an acceptable fit but
also find thatr ( l )5s1t.l 0.65 works equally well over similar
ranges. The latter, when folded withg53, givesh54.2. It is
clear that the direct calculation ofN(r ) is much more accu-
rate than the indirect approach.
f

6-4
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FIG. 2. The cluster spectra by~a! length and~b! radius atb52.5115 onL532.
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Treating the power as a free parameter in the fit,r ( l )5s
1t.l u, we findu50.57 (3) onL532 atb52.5115, consis-
tent with u50.58 (4) on L520 at b52.5. Thus bothu
50.5 andu50.65 lie within about two standard deviation
from the fitted value. Note that what the fitted powersg and
u parametrize are the means of the distributions of leng
and radii respectively. That combining these does not g
the directly calculated value ofh is not unexpected, and
reflects the importance of fluctuations around the mean in
distributions.

If the secondary monopole clusters can be associated
localized excitations of the full SU~2! vacuum~‘‘4-balls’’ !, it
would seem that such objects do not have an exactly s
invariant distribution in space-time, so that the number
larger radius objects is somewhat greater than would be
pected were this the case. Now it is known that an isola
instanton~even with quantum fluctuations! is associated with
a monopole cluster within its core~see @21,22# and refer-
ences therein! and that the scale invariant semiclassical d
sity of instantons acquires corrections due to quantum fl
tuations. These corrections are, however, very large;
SU~2! the spectrum of small instantons~where perturbation
theory is reliable! goes asN(r)dr}dr/r3r10/3, wherer is
the core size. The scale breaking we have observed
monopole clusters is negligible in comparison. Thus we c
not identify the ‘‘4-balls’’ with instantons. Indeed, the fa
that the monopole spectrum is so close to being scale inv
ant strongly suggests that these secondary clusters hav
physical significance. In the next section we shall show
plicitly that, in the large volume limit, they do not play an
part in the long range confining physics.

D. Breakdown of ‘‘monopole dominance’’?

We finish this section by asking if there are hints from o
cluster analysis that ‘‘monopole dominance’’ might b
breaking down as we approach the continuum limit. T
question is motivated by the observation that the monop
are identified by a gauge fixing procedure which involv
making the bare SU~2! fields as diagonal as possible. Sin
the theory is renormalizable, the long distance physics
creasingly decouples from the fluctuations of the ultravio
bare fields as we approach the continuum limit. For exam
the ultraviolet contribution to the action density isO(1/b)
11450
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while the long distance contribution isO(e2cb). Thus asa
→0 the maximally Abelian gauge will be overwhelming
driven by ultraviolet rather than by physical fluctuation
Moreover, at the location of the monopoles the Abeli
fields are far from unity and so one would expect the SU~2!
fields also to be far from unity. Thus the number of mon
poles would seem to be constrained by the probability
finding corresponding clumps of SU~2! fields with large
plaquette values. This probability depends on the deta
form of the SU~2! lattice action far from the Gaussian min
mum and one could easily choose an action where it is c
pletely suppressed and yet which one would expect to b
the usual universality class. None of the above arguments
completely compelling of course. In the Gaussian appro
mation, for example, theO(1/b) ultraviolet fluctuations
would not generate any monopoles at all, and in that c
there would be no reason to expect any breakdown of mo
pole dominance. Nonetheless, the arguments do sugges
it would be surprising if the long distance physics were to
usefully and simply encoded in the monopole structure~as
defined on the smallest ultraviolet scales! all the way to the
continuum limit.

There are different ways in which monopole dominan
could be lost. The most extreme possibility is that asa→0
the fields simply cease to contain monopole clusters that
large enough to disorder large Wilson loops. That this
indeed so has been argued in@23# where it has been claime
that the exponentg in our Eq. ~3! ~but defined for loops
rather than for clusters! increases rapidly with decreasinga.
Of course this would not in itself preclude the existence o
large percolating cluster, as long as this cluster could
decomposed into a large number of small and correlated
tersecting loops. Irrespective of this, we also note that
volumes used in@23# are very small by the criterion given in
Eq. ~6!. For example, from our scaling relations we wou
expect to need anL.46 lattice atb52.6 and anL.70
lattice at b52.7 in order to resolve our simple monopo
picture, if it still holds at these values ofb. This contrasts
with theL512 andL520 lattices actually employed in@23#.
So it appears to us that while the claims in@23# are certainly
interesting, further calculations on much larger lattices
required.
6-5
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Our work suggests a somewhat different form of t
breakdown to the one above. We see from Eq.~7! that the
ratio of the ~total! monopole current residing in the phys
cally irrelevant, smaller clusters to that residing in the lar
percolating cluster increases rapidly asa→0 as 1/AK32z

}1/a32z. This suggests that asa→0 a calculation of Wilson
loops will become increasingly dominated by the fluctuat
contribution of the unphysical monopoles that are e
denser on physical length scales, and that this will eventu
prevent us from extracting a potential or string tension. T
is to say, calculations in the maximally Abelian gauge w
eventually acquire a similar problem to that which typica
afflicts Abelian projections using other gauges. In our c
we can overcome this problem by going to a large eno
volume that the physically relevant percolating cluster can
simply identified.~The reason this cannot be done with oth
typical Abelian gauge fixings is that there the unphysi
monopoles are dense on lattice scales, making any mean
ful separation into clusters impossible.! We can then extrac
the string tension using, in our Wilson loop calculation, on
this largest monopole cluster. The fact that the length of
cluster scales in physical units, with apparently no signific
anomalous dimension, tells us that this calculation will n
be drowned in ultraviolet ‘‘noise’’ as we approach the co
tinuum limit. Of course, the fact that we can only do this f
volumes that diverge in physical units asa→0 is a symptom
of the underlying breakdown of the Abelian projection.

The qualitative discussion in the previous paragraph ov
estimates the effect of the secondary clusters; for exam
the contribution that a cluster of fixed size in lattice un
makes to a Wilson loop of a fixed physical size will clear
go to zero asa→0. So it is useful to ask how Wilson loop
are affected by the secondary clusters, and to do so u
approximations that underestimate the effect of these sm
clusters. Consider anR3R Wilson loop. A monopole cluste
that has an extentr that is smaller thanR will affect it only
weakly through higher multipole fields which cannot on th
own give rise to an area law decay and a string tension
we neglect such clusters and consider only those larger
R. Let us first neglect the observed breaking of scale inv
ance and simply assume thatr}Al and thatg53. We then
find, by integrating Eq.~3! and using Eq.~7!, that the number
of secondary clusters withr .R is proportional to
L4AKz/R4. We further assume that such clusters must
within a distancej from the minimal surface of the Wilson
loop, wherej is the screening length, if they are to disord
that loop significantly. The lattice volume this encompas
is the area of the planar loop,R2, multiplied by a factor ofj
for each of the two orthogonal directions ind54. So the
probability for this Wilson loop to be disordered thus d
creases withR as (R2j2/L43L4AKz/R4);AKz(j/R)2. So if
we look at a Wilson loop that is of a fixed size in physic
units, i.e.R/j fixed assumingj scales as a physical quanti
@9#, then the influence of the secondary clusters will decre
to zero asa→0 as long asz.0. If z,0, however, then we
would have to go to Wilson loops that were ever larger
physical units as we approached the continuum limit, in
der that the physical contribution from the percolating clus
11450
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should not be swamped by the unphysical contribution of
secondary clusters. Of course this calculation uses a s
invariant dr/r 31/r 4 spectrum, whereas, as we have se
there is significant scale breaking and the actual spectru
closer todr/r 31/r 3.2. If we redo the above analysis with th
latter spectrum, we see that we are only guaranteed to
serve this aspect of ‘‘monopole dominance’’ ifz.0.8. As
demonstrated in Eq.~7!, there is some evidence thatz.0 but
it is not at all clear thatz.0.8. All this indicates that even in
a calculation that errs on the side of neglecting the effec
the smaller clusters, they nonetheless will most likely dom
nate the values of Wilson loops on fixed physical leng
scales. It is only by separating the percolating cluster fr
the other smaller clusters, and calculating Wilson loops j
using that largest cluster, that we can hope to be able
extract the string tension asa→0.

III. MONOPOLES, VORTICES AND THE STRING
TENSION

In this section we begin by describing how we calcula
the string tension from an arbitrary set of monopole curren
We then go on to show that even at the smallest lattice sp
ings, the string tension arises essentially entirely from
largest cluster, as long as we use a sufficiently large volu
We then calculate the string tension for sources that hav
charge ofq52, 3 and 4 times the basic charge, and comp
these results to a simple toy model calculation. Finally
discuss the implications of our calculations for the quest
whether it is really monopoles or vortices that drive the co
fining physics.

A. Monopole Wilson loops

The monopole contribution to the string tension may
estimated using Wilson loops. If the magnetic flux due to
monopole currents through a surface spanning the Wil
loop, C ~by default the minimal one!, is F(S), then the
chargeq Wilson loop has value

W~C!5exp@ iqF~S!#. ~8!

We may obtain the static potential from the rectangular W
son loops:

V~r !5 lim
t→`

Veff~r ,t ![ lim
t→`

lnF ^W~r ,t !&

^W~r ,t1a!&G . ~9!

The string tension,K, may then be obtained from the lon
range behavior of this potential,V(r ).Kr . The string ten-
sion may also be found from the Creutz ratios

K5 lim
r→`

Keff~r ![ lim
r→`

lnF ^W~r 1a,r !&^W~r ,r 1a!&

^W~r ,r !&^W~r 1a,r 1a!&G .
~10!

Square Creutz ratios at a givenr are useful because the
provide a relatively precise probe for the existence of c
fining physics on that length scale. In addition Creutz rat
are useful where the quality of the ‘‘data’’ precludes t
6-6
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FIG. 3. The effective string
tension for all clusters~‘‘all’’ !, the
largest cluster alone~‘‘lge’’ ! and
the remaining clusters~‘‘abl’’ ! on
lattices ~a! b52.5,L516, ~b! b
52.5,L520 and~c! b52.5115,L
532.
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Sec.
.

double limit of the potential fit. This is so particularly whe
positivity is badly broken as it frequently is for our gaug
dependent correlators.

The magnetic flux due to the monopole currents is fou
by solving a set of Maxwell equations with a dual vect
potential reflecting the exclusively magnetic source term
An iterative algorithm being prohibitively slow onL532,
we utilized a fast Fourier transform method to evaluate
approximate solution as the convolution of the periodic l
tice Coulomb propagator and the magnetic current sou
@24#. The error in this solution was then reduced to an
ceptable level by using it as the starting point for the ov
relaxed, iterative method.

We may use any subset of the monopole currents as
source term to calculate the contribution to the Wilson loo
and potential of those currents, provided that they~i! are
locally conserved and~ii ! have net zero winding numbe
around the periodic lattice in all directions, e.g.

Qm54[ (
x,y,z

j 4~x,y,z,t51!50. ~11!

If we choose complete clusters, then the first condition
always satisfied but the second condition is often not m
~even though the winding number for all the clusters toget
must be zero!. In such cases we introduce a ‘‘fix’’ as follows
At random sites in the lattice we introduce a Polyakov-li
straight line of magnetic current of corrective charge2Qm
for each direction, and use these as sources for a dual ve
potential. Such lines represent static monopoles and a
dom gas of these can lead to a string tension. This introdu
a systematic error to the monopole string tension that
need to estimate. We do so by placing the same correc
loop on an otherwise empty lattice, along with a second lo
11450
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of charge1Qm at another random site. From this new e
semble we calculate the string tension from Creutz rat
One-half of this is a crude estimate of the bias introduced
correcting the original configurations, and this is quoted a
second error on our string tension values, as appropriate

B. Largest cluster

In @9# we observed that atb52.3,L>10 and at b
52.4,L>14 theq51 monopole string tension was produce
almost entirely by the largest cluster, and the other clus
had a string tension near zero. Atb52.5,L516 the situation
was more confused; the smaller, power law clusters still h
a very low string tension, but that of the largest cluster alo
was substantially less than the full monopole string tensi
This suggested some kind of constructive correlation
tween the two sets of clusters. In our new calculation on
L520 lattice atb52.5, we still find a situation that is con
fused, although somewhat less so than on theL516 lattice,
while on theL532 lattice atb52.5115 the clear picture
seen atb52.3 re-emerges, with nearly all the string tensi
being produced by the largest cluster, and the remain
clusters having a negligible contribution. To illustrate this w
display in Fig. 3 the effective string tensions as a function
r for the lattices atb52.5 andb52.5115.

The confused roles of the clusters on finer lattices@9# are
thus a finite volume effect and do not represent a breakdo
of the monopole picture as we near the continuum limit.
a result of the differing scaling relations for the lengths of t
two largest clusters, it is not enough to maintain a const
lattice volume in physical units to reproduce the physics
we reduce the lattice spacing. Rather the lattice must actu
become larger even in physical units, as discussed in
II B. The string tension arises from ‘‘disordering’’—i.e
6-7



A
op

e
r,
lls
ts
e
i

he

o
es
ou
g

ed

or
o

p

re

di

-

ted

of
rk-
se

the
an

he
o-

cter
n,
on
for

ge
b-

full
e all

be
eir

s a
it

ime
t it
e

a
nt.

f
t d at

A. HART AND M. TEPER PHYSICAL REVIEW D60 114506
switches in sign—of the Wilson loop by the monopoles.
monopole that is sufficiently close to a large Wilson lo
will multiply the loop by exp@iqp# which would naively sug-
gest that even-charged loops are not disordered and hav
string tension. In a screened monopole plasma, howeve
the monopole is moved away from the loop, the flux fa
and the possibility for disorder and a string tension exis
~This will also occur without screening, but only when th
monopole is a distance away from the Wilson loop that
comparable to the size of the loop.! Clearly the exact value
of the string tension will depend upon the details of t
screening mechanism, especially as we increaseq. This can
be calculated in the usual saddle point approximation@16#
where one finds that the string tension is proportional tq
@15#. One can obtain a crude model estimate with much l
effort, and this we do in the next subsection. Returning to
lattice calculations, we list in Table II the monopole strin
tensions that we obtain using chargeq Wilson loops atb
52.5115 on theL532 lattice. We see that they are inde
consistent with a scaling relationR(q)5q, at least up toq
54.

C. Simple model

It is useful to consider here a simple model for the dis
dering of Abelian Wilson loops of various charges by mon
poles. We consider only static monopoles ind54, with a
mean field type of screening, assuming that the macrosco
exponential falloff in the flux with screening lengthj could
be applied on the microscopic scale also. For numerical
sons we also impose a cutoff: beyondN screening lengths
the flux is set exactly zero. The magnetic field is thus

B~d!5H 1

2d2
e2d/j, d<Nj,

0, d.Nj.

~12!

The flux from a monopole distancez<Nj above a large
~spacelike! Wilson loop through that loop is

F~N,z,j!5pE
z/Nj

1

dy expS 2
z

yj D . ~13!

Considering a slab of monopoles and antimonopoles all
tancez above the loop~and similar below!, the chargeq
Wilson loop gives a string tension@9#

TABLE II. Monopole string tensions from Wilson loops o
varying charge, using all current~‘‘all’’ !, current from the larges
cluster alone~‘‘lge’’ ! and the remaining current~‘‘abl’’ !.

q K-all K-lge K-abl

b52.5, L520 1 0.035~3! 0.026 ~3! ~1! ,0.0015

b52.5115,L532 1 0.0270~10! 0.0240 ~10! ~3! ,0.0010
2 0.0520 ~10! 0.0450 ~10! ~4! ,0.0022
3 0.075 ~2!

4 0.103 ~5!
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dK~N,z,q!}$12cos@qF~N,z,j!#%. ~14!

Integrating over alluzu<Nj, the ratio of string tensions cal
culated using chargeq and chargeq51 Wilson loops is

R~N,q![
K~N,q!

K~N,q51!
5

E
0

N

daS 12cosFqpE
a/N

1

dy•e2a/yG D
E

0

N

daS 12cosFpE
a/N

1

dy•e2a/yG D
~15!

for this static monopole assumption. This may be evalua
numerically, and extrapolated asN→`, where there is a
well-defined limit,R(q). The results for smallq are shown in
Table III, where the error onR(q) reflects the extrapolation
uncertainty. Comparing these numbers to the actual ratio
string tensions, we find this simplistic model works rema
ably well for q52, but becomes less reliable as we increa
q. This no doubt reflects the increasing importance of
neglected fluctuations of the flux away from the me
screened values.

D. Monopoles or vortices?

The fact that the Abelian fields that one extracts in t
maximally Abelian gauge, and their corresponding mon
poles, successfully reproduce the SU~2! fundamental string
tension provides some evidence for the dual supercondu
model of confinement. As we remarked in the Introductio
however, an attractive alternative picture exists, based
vortex condensation, and one has comparable evidence
that picture, obtained by going to the maximal center gau
and calculating Wilson loops using the singular vortices o
tained after center projection.

Since the Abelian projected fields seem to contain the
string tension, it is reasonable to assume that they encod
the significant confining fluctuations in the SU~2! fields, even
if these are vortices. How would one expect a vortex to
encoded in the Abelian fields? And how can we test for th
presence?

Recall that the kind of vortex we are interested in ha
smooth core and flips the sign of any Wilson loop that
threads. Consider now a space-like Wilson loop in some t
slice of our Abelian projected lattice field. We observe tha
will flip its sign if threaded by a loop of magnetic flux whos
core contains a total flux equal top. If the core size is not
arbitrarily large, so that a~large enough! Wilson loop has
negligible probability to overlap with the actual core, then
condensate of such fluxes will lead to linear confineme

TABLE III. Ratio of monopole string tensions from Wilson
loops of varying charge, in the static plasma model and measure
b52.5115 onL532.

q R(q) K(q)/K(q51)

2 1.827~1! 2.00 ~9!

3 2.192~1! 2.88 ~14!

4 2.526~1! 3.96 ~25!
6-8
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MONOPOLE CLUSTERS,Z~2! VORTICES, AND . . . PHYSICAL REVIEW D60 114506
Since the original SU~2! vortex has a smooth core, the sim
plest expectation is that this flux, if it reflects the vorte
should not have a singular monopole source; rather it sho
be a closed loop of magnetic flux. If its length is much larg
than the size of the Wilson loop, it can easily thread the lo
an odd number of times and can disorder it. So the nat
way for aZ(2) vortex to be encoded in the Abelian project
fields is as a closed loop of magnetic flux, in roughly t
same position and with a smooth core of roughly the sa
size. If this is so and if vortices are present in the SU~2!
fields, we would expect that our Abelian fields contain tw
kind of confining fluctuations: singular magnetic monopo
and smooth closed loops of (p units of! magnetic flux. Since
these closed loops of flux are smooth, they will be hard
identify individually in the midst of the magnetic fluxes ge
erated by the monopoles. Their presence can howeve
easily tested for as follows. The flux in the U~1! fields is
conserved and so any flux either originates on the monop
or closes on itself as part of a closed flux loop. The mo
poles are easy to identify and their flux can be calculated
for any Wilson loop,C, we can calculate the flux,Bmon(C),
due to the monopoles and we can subtract it from the t
flux, B(C), so as to obtain the remaining flux,

Bd~C![B~C!2Bmon~C!, ~16!

which comes from closed flux loops. The correspond
value of the Wilson loop will bee2Bd(C). In this way we can
calculate the potential due to the non-monopole flux, an
we find a non-zero string tension, this demonstrates the
istence of a condensate of such flux loops and provides
dence for correspondingZ(2) vortices. If the flux loops carry
p units of flux, Wilson loops corresponding to sources w
an even charge will have zero string tension.

We remark here that in U~1! lattice gauge theories, suc
loops of magnetic flux are not usually discussed as sign
cant degrees of freedom. That is not because they ca
exist but rather that the dynamics is such that they usu
play no significant role.@One can always smoothly reduc
the usual U~1! action by increasing the core size of such
loop. Ultimately they contribute a non-confining ‘‘spi
wave’’ contribution to the interaction.# The Abelian pro-
jected fields, on the other hand, are not generated from s
local U~1! action. They may possess any structures that
kinematically allowed.

Vortices can also be encoded in the Abelian fields in
more subtle way than the above. This involves long-dista
correlations among the monopoles. Ind5211 suppose tha
at least some of the monopoles lie along ‘‘lines’’ in such
way that each monopole is followed by an antimonop
~and vice versa! as we follow the line. This will generate a
alternating flux of6p along the line@14#. So a Wilson loop
threaded by this line will acquire a factor of21. Such cor-
related ensembles can therefore encode the vortices in
original three dimensional SU~2! fields. A similar restriction
of monopole current world lines to two dimensional she
can be envisaged ind5311. In both cases, their presenc
would be signalled by the fact that they do not disorder W
son loops corresponding to an even charge~unlike a plasma
11450
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of monopoles!. So if we calculate the string tension due
the monopoles, and if we find a significant suppression of
q52 string tension, then this will indicate the significa
presence of such correlations and hence of vortices.

This latter way of encoding vortices in the Abelian pr
jected fields might seem less natural given the smoothnes
the underlyingZ(2) vortices. As pointed out in@15#, how-
ever, such correlated monopole structures actually occu
what one usually regards as a standard example of a
theory that demonstrates linear confinement driven by mo
pole condensation: the Georgi-Glashow model in three
mensions. This model couples an SU~2! gauge field to a
scalar Higgs field in the adjoint representation of the gau
group. The theory has a Higgs phase, and the Higgs fi
drives the gauge field into a vacuum state which has o
U~1! gauge symmetry, save in the cores of extended to
logical objects. These ’t Hooft–Polyakov monopoles a
magnetically charged with respect to the U~1! fields, and
give rise to the linear confining potential, at least in the se
classical approximation@16# which holds good when the
charged vector bosons are heavy. As pointed out in@15#,
however, this conventional picture cannot be true on la
enough length scales since eventually the presence of
charged massiveW6 fields will lead to the breaking of
strings between doubly charged sources~the W6 possessing
twice the fundamental unit of charge!. A plasma of mono-
poles, on the other hand, will predict the linear confinem
of such double charges. So it was argued that in this lim
is Z(2) vortices, which do not disorder doubly charged W
son loops, that drive the confinement@15#. The crossover
between the two pictures, it is argued, would occur beyon
certain length scale dictated by theW6 mass, where the dis
tribution of monopole flux would no longer be purely Co
lombic, but would be collimated into structures of low
dimension—essentially strings of alternating monopoles
antimonopoles—that reflect theZ(2) vortices of the vacuum

Of course one cannot carry this argument over in all
details to the case of the pure SU~2! gauge theory. Here ther
are no explicit Higgs orW6 fields; any analogous object
would need to be composite. The theory also has only
scale, and so one would not expect an extended intermed
region between the onset of confining behavior and the
limation of the flux signallingZ(2) disorder. But it does
raise the possibility that theZ(2) vortices in the SU~2! fields
might be encoded, after Abelian projection, in such corre
tions among the monopoles rather than in separate sm
closed loops of magnetic flux.

To probe for the presence of smooth loops of magne
flux in the Abelian projected fields, we have calculated t
‘‘difference’’ flux, as defined in Eq.~16!, and the resulting
string tension, and to probe for vortex-like ensembles
monopoles we have calculated the monopole string tens
K(q), for various source charges,q.

We start with the latter. In Table IV we show theq
51,2 monopole effective string tensions that we have
tained from Creutz ratios on theL532 lattice atb52.5115.
We see that forq52, just as forq51, there are very few
transients at smallr, and the extraction of an asymptot
6-9
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A. HART AND M. TEPER PHYSICAL REVIEW D60 114506
string tension appears to be unambiguous. We have acc
calculations out to a distance ofr 59a which corresponds to

r 59a;
1.6

AK
~17!

in physical units at thisb. Out to this distance there is abs
lutely no hint of any reduction in theq52 effective string
tension. It has been pointed out@14# that when the Wilson
loop is not much larger than the typical vortex core, it is n
completely unnatural to obtain an effective string tens
comparable to the one from a monopole plasma. Here
size is beginning to be large compared to the natural sca
the theory, however, and it is hard not to view the lack of a
variation at all in theq52 effective string tension as poin
ing to the absence of the kind of correlations among
monopoles that might be encodingZ(2) vortices.

The second possibility is that the vortices might be e
coded not in correlations among the monopoles but rathe
closed loops carryingp units of magnetic flux. Such loop
would contribute toK(q51) but not toK(q52). We recall
that there has been a calculation ofK(q), calculated within
the full Abelian fields atb52.5115, and that there it wa
found @6# that there is a finiteq52 effective string tension
that extends out to at least as far asr 59a, and that the ratio
of the U~1! string tensions isK(q52)/K(q51)52.23 (5).
While this suggests that closed flux loops are not importa
these string tensions necessarily include the contribu
from monopoles, and it would be useful to have a calculat
that excludes the latter. We have therefore calculated
effective string tension using only the flux that comes fro
closed flux loops, as defined in Eq.~16!. The results of this
calculation are listed in Table IV forq51. We see that,
within small errors, there is asymptotically no string tensi
from such loops~a potential fit to the Wilson loops yield
K,0.0025). This shows in a direct way that there is
significant condensate of closed loops of flux in the Abel
projected fields.

In conclusion, our investigations here have shown no s
of vortices encoded in the Abelian projected fields in eith
of the two ways that one might plausibly have expected th
to be.

TABLE IV. Effective monopole string tensions from Creutz r
tios for chargesq51,2 and from the difference of U~1! and mono-
pole fluxes atb52.5115 onL532.

r K eff(r ), q51 Keff(r ), q52 Keff
diff(r ), q51

2 0.02572~8! 0.0511 ~2! 0.0799 ~2!

3 0.02371~9! 0.0497 ~2! 0.0335 ~2!

4 0.02355~10! 0.0483 ~3! 0.0176 ~5!

5 0.02414~14! 0.0492 ~5! 0.0102 ~9!

6 0.02487~17! 0.0496 ~7! 0.0082 ~13!

7 0.02565~20! 0.0501 ~7! 0.0062 ~21!

8 0.02628~37! 0.0493 ~25! 0.0076 ~53!

9 0.02652~25! 0.0556 ~58! 20.0076 ~27!
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It is worth stepping back at this point and reflecting up
the tentative nature of the above arguments. Our calcula
of the monopole string tension takes each monopole to b
source of a simple Coulombic flux, as obtained by solvi
Maxwell’s equations. Treating the monopoles as being ‘‘is
lated’’ in this way is the obvious starting point if one wishe
to ask what the physics is ‘‘due to monopoles.’’ But it is n
guarantee that such a question makes any sense. Indee
only in the Villain model that one has the exact factorizati
of Wilson loops into monopole and non-monopole piec
that is needed for this question to be clearly unambiguo
For example, it is nota priori clear that the ensemble o
monopoles one obtains in the maximally Abelian gauge
even qualitatively such as one would expect from a gen
U~1! action. If it is not, then one must ask what are t
fluctuations in the SU~2! fields that determine the nature o
the monopole ensemble, and whether these features o
ensemble have a significant effect on the calculated st
tension. If they do, then the question we are asking, whe
the string tension is ‘‘due to monopoles,’’ becomes intrin
cally ambiguous. Our demonstration that there is no supp
sion of theq52 monopole string tension may be regarded
a first step, but only a first step, towards showing that
monopole ensemble does not possess such features th
quire additional explanation. One should also mention t
the Abelian fields are periodic in 2p ~in the sense that the
number density of plaquette angles peaks at multiples
2p), which is the requirement for Dirac strings to be invi
ible, and that they possess a screening length that is cha
teristic of plasmas@9#. Equally, if we had found a significan
flux loop condensate in the Abelian fields, we would ha
had to study carefully the~presumably! non-trivial correla-
tions between the monopoles and flux loops in order to
termine if there was any sense in claiming that some phy
was ‘‘due to monopoles.’’ The fact that we have not fou
any sign of such a flux loop condensate, or of any anomal
features of the monopole plasma, means that we are no
forced to confront this quite general problem. But this qu
tion clearly needs systematic exploration.

IV. SUMMARY

We have studied the magnetic monopole currents
tained after fixing to the maximally Abelian gauge of SU~2!,
on lattices that are both large in physical units and hav
relatively small lattice spacing. The monopole clusters
found to divide into two clear classes, both on the basis
their lengths and their physical properties. The smaller cl
ters have a distribution of lengths which follows a pow
law, and the exponent is consistent with 3, as was previou
seen on coarser lattices@9#. These clusters are compact o
jects, and their radii also follow a power law whose expon
we found to be 4.2~1!. This is close to, but a little less than
the scale invariant value of 5, which indicates that if t
smaller clusters correspond to objects in the SU~2! vacuum,
these objects have a size distribution which yields sligh
more large radius objects than would be expected in a pu
scale invariant theory. This scale breaking is, however,
too weak to encourage the identification of such objects w
6-10



re
a

e
t

n
a

n
n
o
o

oc
th
is
ta
ls
r

tic
ar
tic
sl
lo
f
th
o
e
th

rg
ia
ex
e
ns
c-
lle
in

ng
m
ai
is
an
to

on

ing
l to

in

e,
ian
d
the
en

e

es
-
ps

r-

n-

nt
tic

ig-

ole

ile

ds,
he
eir

l
ar
re
p-
/
C

MONOPOLE CLUSTERS,Z~2! VORTICES, AND . . . PHYSICAL REVIEW D60 114506
the small instantons in the theory.
That is not to say that instantons are necessarily ir

evant; the correlations between the monopole currents
the action and topological charge densities~ @7,8,21,22# and
references therein! indicate some connection. It would b
interesting to measure the correlations separately using
largest cluster and the remaining power law clusters.

The small clusters do not appear relevant to the lo
range physics; they produce a zero, or at most a very sm
contribution to the string tension. Indeed the string tensio
consistent with being produced by the largest cluster alo
The fact that there should be a large percolating monop
cluster associated with the long-distance physics is an
idea~see@25# for an early reference!. The properties that we
find for this cluster, however, are certainly not those ass
ated with naive percolation. In particular, as we approach
continuum limit the density of monopoles belonging to th
cluster goes to zero. And indeed the fraction of the to
monopole current that arises from this largest cluster a
appears to go to zero. This is because this single very la
cluster seems to percolate on physical and not on lat
length scales, while the physically unimportant second
clusters have an approximatley constant density in lat
units. All this reproduces the properties that we previou
obtained on coarser lattices, but which seemed to be
when going to finer lattice spacings, albeit on volumes o
smaller physical extent. This study demonstrates that
breakdown was a finite volume effect, rather than a failure
the monopole picture in the weak coupling limit. The volum
at which the picture was restored was as predicted by
scaling relations derived from the coarser lattices.

The fact that one has to go to volumes that are ever la
as a→0 can be interpreted as a breakdown of the Abel
projection. As we remarked, something like this is not un
pected: asa→0 the Abelian projection will presumably b
increasingly driven by the irrelevant ultraviolet fluctuatio
of the SU~2! link matrices. This leads to an increasing fra
tion of the monopole current — that belonging to the sma
clusters — containing no physics and this contributes an
creasing background ‘‘noise’’ to attempts at extracti
physical observables as we approach the continuum li
Fortunately the unphysical gas of monopoles that one obt
by Abelian projection within the maximally Abelian gauge
sufficiently dilute that one can isolate the physically relev
‘‘percolating’’ cluster, even if the price is that one has
work with ever larger volumes.

We also calculated the monopole contribution to Wils
-
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loops of higher charges, and found that the correspond
monopole string tensions appear to be simply proportiona
the charge, at least up toq54. This is what is predicted by a
saddle point treatment of the U~1! lattice gauge theory@15#
as can be seen more simply, if more approximately, with
our simplistic charge plasma model.

Our main reason for studying these higher-q string ten-
sions was to probe for any sign of a condensate ofZ(2)
vortices in the Abelian projected fields. It might, of cours
be that such vortices are simply not encoded in the Abel
fields. It is plausible, however, to infer from the observe
monopole and center dominance that both when we force
SU~2! link matrices to be as Abelian as possible and wh
we force them to be as close to61 as possible, the resulting
Abelian andZ(2) fields capture essentially all the long rang
confining disorder present in the original SU~2! fields. In the
case ofZ(2) fields the disorder must be encoded by vortic
~there is nothing else!. In the Abelian case however the dis
order can be carried either by monopoles or by closed loo
of ‘‘magnetic’’ flux. We argued that such a closed loop, ca
rying a net magnetic flux ofp units, provides a plausible
way for the Abelian fields to encode the presence of an u
derlyingZ(2) vortex. Our study of the monopole-U~1! ‘‘dif-
ference gas’’ showed, however, that there is no significa
contribution to confinement from such loops of magne
flux. An alternative@14,15# is that theZ(2) disorder is en-
coded in correlated strings of~anti!monopoles. If such cor-
relations were important, however, they would lead to a s
nificant suppression of theq52 string tension, and this we
do not observe. Instead we find that the effective monop
string tensions satisfyK(q52)52K(q51) very accurately
to distances that are quite substantial in physical units. Wh
there is a limit to what one can conclude aboutZ(2) vortices
in a study that focuses solely on the Abelian projected fiel
the fact that they do not manifest themselves in any of t
ways that one might expect must cast some doubt on th
importance in the SU~2! vacuum.
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