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Real time dynamics of colliding gauge fields and the “glue burst”
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The Yang-Mills equations provide a classical mean field description of gauge fields. In view of developing
a coherent description of the formation of the quark gluon plasma in high energetic nucleus-nucleus collisions
we study pure gauge field dynamics ir-3 dimensions. In collisions of wave packets, numerically simulated
on a SU?2) gauge lattice, we study transverse and longitudinal energy currents. For wave packets with different
polarizations in color space, we observe a time-delayed fragmentation after the collision resulting in a rapid
expansion into transverse directions. We call this phenomenon the “glue burst.” An analysis of the Yang-Mills
equations reveals the explanation for this behavior. It is pointed out that this effect could play a role in
ultrarelativistic heavy-ion collision§S0556-282199)00521-4

PACS numbgs): 12.38.Gc, 02.60.Cb, 05.45a, 42.25.Fx

[. INTRODUCTION glue field scattering in the center of collision. For times
larger than 1 fmé glue field radiation seemed to be domi-
It is one of the most challenging topics in the theory of nant. The sudden appearance of transverse energy flows dur-
ultrarelativistic heavy-ion collisions to develop a coherenting the overlap time of the nuclei was the motivation to study
description of the formation of the quark gluon plasma that ishere the pure glue mean field dynamics leaving out the par-
based on quantum chromodynami€CD). Various QCD- ticles.
based models for the time evolution of such collisions have The time evolution of colliding Yang-Mills field wave
been developed in recent yedis—6]. These models are packets was studied a few years ago it IL dimensions
based on the idea of a perturbative scattering of particleEL3]. These calculations have shown that wave packets of
within transport models and describe in principle the evoluparallel polarization in color spacgbelian casg do not
tion of a collision from the first contact of the nuclei through- interact whereas wave packets polarized in different color
out the high density phase until the beginning of hadronizadirections(non-Abelian casedecay after the collision into
tion. These models however contain still a variety oflow frequency modes. This mechanism of a coupling be-
problems. One of the problems concerns the description diveen high-frequency short-wavelength modes and low-
the initial state of the colliding nuclei. The transport equa-frequency long-wavelength modes in the Yang-Mills equa-
tions start from probability distributions of partons in the tions was first observed in numerical simulations of decay of
phase space. In reality, however, the states of the nuclei agdightly perturbed standing Yang-Mills waves4].
described through coherent parton wave functions. The inco- In the present paper, we focus on the transverse dynamics
herent parton description especially breaks down at exand the coupling between longitudinal and transverse energy
changes of small transverse momenta. flows in collisions of localized Yang-Mills field configura-
McLerran and Venugopalan proposgf] that the proper tions. A study of the transverse dynamics requires simula-
solution of these difficulties is the perturbative expansion notions in at least 21 dimensions. Subsequently, we describe
around the empty QCD vacuum but around a vacuum of théhe method used to solve the Yang-Mills equations and
mean color fields which accompany the quarks in the collidfresent results obtained from collisions simulated i1 13
ing nuclei. In recent years, they and their collaboraf8y§]) ~ dimensions on a S@) gauge lattice. These studies also re-
have developed an effective coherent description of the glugeal an interesting behavior of the time-evolution of non-
field dynamics at central rapidities. Their model allows for Abelian gauge fields.
solving the Yang-Mills equations in21 dimensions within
a static light cone source model and provides classical coher-
ent solutions on a gauge lattice in the transverse plane at the II. TIME EVOLUTION ON THE GAUGE LATTICE
center of collisio10]. The basic idea of this approach mo- ) i .
tivates the development of a combination of the parton cas- N the Lie algebra LS(2), we define the adjoint gauge
cade model[3] with a coherent description of the initial 1€lds A*(x):=A¢(x)T® and the adjoint field strength tensor
states. FHV:=FE"TC. Einsteins sum convention has to be applied in
Recently, we have proposed a combination of a gaugéhe Euclidean metric for upper and lower color indices and in
lattice description for the soft color fields with a transportthe Mincowski metric for upper and lower Greek indices.
model for color charged particldd1]. Leaving out the col- The symbolsT® with color indexc=1,2,3 denote the gen-
lision terms first, this model then has been applied to simuerators of LSW2) obeying the commutation relations
late the collision of clouds of color charged particles accom{ T3, T°]_=if 4T and henced “(x), F {5y e LSU(2) for all
panied by soft color fields in8 1 dimensiong12]. The field ~ xeR*. Here, we chose the representatiti= 1/20° with the
energy distributions obtained for times shortly after the col-Pauli matriceso. Further below, we use als®®:=31,
lision have shown transverse energy flows resulting fromwhich is linearly independent from the generatdfs With
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these conventions, we denote the Yang-Mills equations immplitude from a sitexe X to a neighboring sitex+1) e X

the short form in the directionl. We choosé/f;, and&; | as the basic dy-
namic field variables and numerically solve the following
[Dy, F*"]-=0, 1) equations of motion:
whereD,, is defined )
. Us (1) =Tgay&s k(U (1), (1)
D, =dh—ig A~ @
With this definition of the covariant derivativ®, on the . ° ut
SU?2) main fold, and with the definitions£#(x) &)= 2ga 2y 2 {Us (1) =U g (1)
=EL(X) T, B#(X)=BE(X)T® [£#(X),B*(x) e LSU(2)] of
the adjoint color electric and color magnetic field quantities, —uxi_,,,(t)[ug_.,k.(t)
the Yang-Mills equations Ed1) can be expressed in a form +
which resembles the (@) Maxwell equations in the vacuum —Usg_y (D 1Uz—1 (D} (12
[D,E] =0, 3)
IIl. CALCULATIONAL PROGRAM
[D,B]-=0, 4 In order to guide the reader through the remaining sec-
. . tions of this manuscript, we here first explain the calcula-
[DX,E]_=[Dy,B]_, (5  tional program the results of which will be reported in the
remainder of our paper. The program has two major parts. In
[DX,B]_=[Dy,&]. (6)  the first part, our goal is to establish contact with the results

reported by Huet al. [13] on collisions of Gaussian wave

With the condition[ A(t,X),.A(t,X")]_=0 for all X,x’ €R®  packets of Yang-Mills fields in on spatial dimension. Those
for one arbitrary real time¢, the equation$3)—(6) become results showed that the interactions of two counterpropagat-
identical with the Maxwell equations. In this so-called Abe-ing wave packets are strongly inelastic whenever the orien-
lian [or U(1)] case, one expects a linear behavior of the sotations of the color vectors are not exactly parallel.
lution and it therefore provides an important test through Because we are here studying Yang-Mills dynamics on
comparison with the solution in the general non-Abelianthree-dimensional lattices, we will choose initial conditions
case. The Yang-Mills equations can be solved in an efficienthat resemble those of Rdfl3] as closely as possible, yet
manner on a gauge lattice in a Hamiltonian framework wherénvolve two transverse dimensions. Our two counter-
we choose the temporal gauge’=0. propagating wave packets are chosen to have a Gaussian

A lattice version of the continuum Yang-Mills equations shape in the longitudinal direction and no dependence at all
is constructed by expressing the color field amplitudes a# the other two spatial directions. In other words, we study
elements of the corresponding Lie algebra, i&.,B;x  collisions of plane wave packets with a Gaussian longitudi-
e LSU(2) at each lattice sit&. Subsequently, we use the nal profile. (These wave packets would be similar to ultra-
index symbolsj,k,|=1,2,3 for the directions in the Euclid- short pulses of nearly monochromatic light emitted by a fem-
ian subspac®®. On the lattice the following variables are tosecond laser.We do not claim that this calculatiotior

defined: Yang-Mills fieldg bears close semblance to any situation
that could occur in practice, but it is purely for comparative
Uz i=exd —igajA(x)]= UX+| S (7)  purposes.
The wave packets are characterized by the average longi-
Us = Us s sk Uik, -z, -1 (8 tudinal wave numbeks, the Gaussian width\ks of the

wave packet in Fourier space, the intensity of the plane wave
acket, and their polarization in real and in color space. We
xpress the intensity of the wave packets in terms of a pa-
rametero, denoting the cross sectional area containing the
amount of energy equal to a single field quantum. It will be
of importance to understand whether the wave packet inter-
(9)  actions correspond to a regime of weak coupling or not. The
condition for weak coupling isgA?<k;A or aAlkz<1,
i whereA is the amplitude of the wave packet. For the param-
By = mejkl(ui,kl_u;m)- (100 eter choices of the following sectiofksa= /2, Akza
K = /100, o= 100a?) this condition reads

In adjoint representation the color electric and color mag-
netic fields are expressed in terms of the above defined lin
variablesl{; | and plaquette variabldg; , in the following
way:

"
&= iga, U Z/IXJ,

The lattice constant in the spatial directions1,2,3 is de-

noted bya,. As one can see from E{7), the gauge field gA g
Az, is expressed in terms of the link variablég; ===
e SU(2), which represent the parallel transport of a field kg 257

<1, (13)
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and thus is satisfied for all considered values of the coupling IV. NUMERICAL RESULTS
constant ¢<14). Therefore, we do not expect that our re-
sults presented below are contaminated by lattice artifacts.

As will be seen in the next section, our results do not First, we study the collision of plane wave packets which

deviate drastically from those of Het al. [13]. Colliding have initially constant amplitude in the transverse planes of a

wave packets with essentially nonabelian polarization intertrée-torus lattice implying periodic boundary conditidns.

act inelastically. Part of the energy initially residing in the The siz_e is chqsen_ 2020 2000 "'?‘“ic‘? points. We denote
tthe lattice spacing in the space directiohy a,. For a col-

longitudinal motion is transferred into transverse degrees o

freedom(this effect could, of course, not be studied by the!'s'on' we initially arrange wave packets of a Gaussian shape

previous authors who considered only one-dimensional dy! the longitudinal directiort. The average momenta of the
namics. The time between initial interaction and clear emer-Wave packets are (0;8k;) and their momentum spread is
gence of the inelasticity grows with decreasing valugafi ~ denotedAks. As a consequence of the lattice discretization
a manner consistent with results from other studies of théhese quantities are restricted to values between the maximal
dynamical instabilities of real-time Yang-Mills fieldg4].  and minimal Fourier-momenta on the lattice:

While the presence of transverse dimensions obviously

A. Collision of plane wave packets

changes the quantitative results in comparison with the pre- min__ T max___ T (14)
vious one-dimensional analysis, the results are qualitatively bo(Na)' T (Nay)

similar. The interaction of the two colliding wave packets is _ .

analyzed in detail perturbatively in the two appendixes. k"< Ak <k <k™. (15

There we show analytically how, in the limit of weak cou-
pling, transverse degrees of freedom of the Yang-Mills fieldThe polarization in color space is defined by the unit vectors
are excited by the interactions of two plane wave packetsj, for the left (L) andrig for the and right R) moving wave
and that the time required for the full development of thepacket, respectively. The polarization in coordinate space is
scattered components grows gis>. expressed by Kronecker symbaigy .

In the second part of our numerical program, we study the We express the initial conditions through the gauge fields
collision of two wave packets that are spatially localized in

one of the two transverse dimensions. We still consider AV =8N p(+1,x3—2,), (16)
Gaussian longitudinal profiles, not because we believe that . .
they are physically realistic, but rather so that we do not Al r= 011Ng(—t,X3—ZR), 17

change too many properties of the interacting waves at once. ) . o

The transverse localization allows us, for the first time, towhere the scalar functio(t,x3) defines the initial wave
investigate the decoherence of individual components of th@acket

wave packets in the transverse direction, as it must occur in

. . . . . 1 _
any truly three-dimensional scattering event. This was still B(t,X3)= o ex;< _ —Akg(t+x3)2>cos{ks(t+x3)],
impossible in the cases of the first part of our present study, 2

because of the transverse homogeneity of the wave packets. (18
The results of our numerical calculations show that the _ _

transverse dimensions play a much more significant role for bo=(2Akg)/ (Vroks)(1+ e (a/dka?y,

finite size wave packets. The main effect of the interaction (19

among the two wave packets no longer appears to be simpl ) ) ) )
the excitation of transverse field components, but the tota%he amplitude factorg, is determined for a normalized
disintegration of the wave packets themselves. We have ng¢ave packet wheor=100a,a,. The parametew is used to
been able to analyze this effect in detail analytically, but ourcontrol the amplitude and allows to adjust the energy con-
numerical results are consistent with the rapid break-up of2ined in a wave packet. In a particle interpretation it de-
the coherent wave packets into localized field lumps at Sscribes the total cross section per particle contained in the
certain time after the initial interaction. wave packef13]. The second term i is usually negligi-

It may appear puzzling why the disintegration occurs withbly small for wave packets sindg/Ak;>1. We chose the
a significant time delay. For this we note that the wave pack-
ets propagate essentially with the speed of ligixcept for a
slight delay due to lattice artefacts of the dispersion relation
The appearance of any dlst_urban_ce in the StrL_Jcture of thE)pology. In the computer program, the indgof the lattice sites
wave packet is thus highly time dilated when viewed frompg from 0 toN, — 1. Wheni, reaches the valul, , it is set toi,
the center-of-momentum frame. The decoherence of the dif=
ferent components of the perturbed wave packets occurs with2gayssian wave packets are taken for reasons of simplicity. We
a long delay, just as in the case of radiation by a fast-movingelieve that the main features of the results presented in this paper
charged particle, where the delay is known as the Landauo not depend on the detailed shape of the colliding wave packets.
Pomeranchuk-Migdal effedtl5]. It would be interesting to  This expectation is supported by a recent calculation which shows a
analyze the phenomenon reported below in terms of thesgéme-delayed sudden increase of the transverse energy currents for
concepts, but we have not yet done so. colliding field configurations of a very different shafis.

1The periodic boundary conditions are a consequence of the torus
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The calculation contains four parameters. The relative
color polarization which is parameterized by the angle
defined throughn, - Ag=cos@c). The average momentum of
the wave packet& and their widthAk; and the coupling
constanty which can be rewritten in terms of the parameter
o asg’ =g/\/o by simultaneously rescaling the field as i 110000 1 114000
A’=\cA. Consequently, the system shows the same dy-
namics for different values af and o, as long as the ratio

polarizations in color spaagz=n, =(0,0,1) for the Abelian 5 ' - - - -
case andiz=(0,0,1),A, =(0,1,0) for the non-Abelian case. 11500
Once the initial fields are mapped on the lattice, the time AT 10 T
evolution of the collision starts from the superposed initial
conditions
2 L 4 i
©)_,,00) (0)
Ui =UyiL U irs (20
1 - 4 4
g(x*(,)l):g(x”(,)l),R‘FgE?(,)l),L' (2D £ o . ;
3
respectively. A linear superposition of solutions obeys theg> 4t + .
Yang-Mills equations only if these solutions have no over- g
lap. Therefore, the initial separatiohZ should be much & 37 16000 T 18000
larger than 14Kks;. 3
& 2} + :
o
[}
&
[
3
5

{0 O

IS
t
L

g’ =g/ \Jo is kept fixed. Multiplying the Eq(33) in Sec. IV 2L 1 )
by a factorg, shows that each amplitudd* absorbs &g

such that nog is left over in Eq.(33). For kg>Aks, the Tr T ]
energy contained in one wave packet is essent@l)ya, 0 , . b

i.e., for given?g the energy is determined through the am- 0 50 100 150 0 50 100 150 200

plitude and vice versa the amplitude is thus fixed by the longitudinal coordinate [fm]
energy. Once the amplitude is.f.ixed, it makes sense to use the FIG. 1. Transverse energy densitisf(t,x;) are plotted over
CQUp“ng CO“S“’?m as an addltlonal. parameter which det?rt'he collision axis(longitudinal coordinatefor selected time steps
mines the reaction dynamics of colliding wave packets. Thig

is preferable also in view of studies in the future where nor-"

malized Dirac fields or color charged classical particles shal{0 the direction of the collision axis as the “longitudinal
be included. In such casep appears also in front of the girection” and to directions perpendicular to the collision
source current of the inhomogeneous Yang-Mills equations,yis a5 the “transverse directions.” Accordingly, we define

We therefore keep the explicit denotation@fn the subse- ¢ {ransverse and longitudinal energy densities of the color

quent sections. electric field
In the following we present results from a simulated col-
lision in the non-Abelian case with the parametédcs 2
=7/(2a;), Aks=7/(1008), g=1, c=100°=1.0 fn?. w<TE>(t,x3):fdxldx2|2 THELRDER)], (22
=1

The simulation was performed on a uniform lattice with con-

stantsa; =a,=ag=a using a time step siz&t=a/10. If we

would consider a collision of nuclei at low energies, (E) _ - -

=0.1fm would be an appropriate choice for the above pa- Wi (t,x3)—f dxadp T E5(tX) E5(tX)].

rameter settings. In particulat\ks=7/(100a) corresponds (23

thus to a FWHM(full width half maximum of 10 fm which

is approximately the diameter 0f8%b nucleus. It is impor-  Figure 1 displaysv{® plotted over thex; coordinate at vari-

tant to note that for the above chosen values, the calculatiopus time steps,, as indicated on top of the curves.

runs in the regime of weak couplifgubsequently, we refer At initial time t, the distributionsv{®)(t,,x3) of the wave
packets are completely filled resulting from the strong oscil-
lations in the longitudinal direction according té;

3By “weak coupling” on the lattice, it is understood that the = 7/(2a3). After 1500 time steps the wave packets are col-

phase anglega,ES At for each spatial directiohare much smaller  liding and have reached maximum overlap. The smooth

than 2r. The link matrices are updated accordingdg,(t+ At/2) white zone at the bottom results from a phase shift between

=exg —iga &, (t)At]- U, (t—At/2). They have to obey the con- the two superposed waves, i.e., the maxima of the wave

dition ¢4, (t+ At/2)=1. Further, the phase angles @&, a;axBy | packet (1) to not coincide with the maxima of the wave

have to be small. packet(2) at time stept,sqo. After the wave packets have
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passed through each othHat about 5,0, a small white zone 3 ' ' ' ' '
remains in the distributiow(TE)(xg,) of each and keeps con-
tinuously growing. At time stefiggyo (t=600a) the large 1400
fraction of the initial high frequency oscillations is reduced
to a small remaining contribution visible on the surface of
the distributions in Fig. 1. The height of the two receding 11000 12000
humps decreases accordingly while the energy carried by T

each wave packet is constant in time. Almost all the energyg 1800
which has originally been carried by short wavelength modes> . . \ ‘ . . . .
aroundk, has been transmitted into long wavelength modesZ ' ' ‘ ' ' '

which have filled up the vallies in the oscillating distribution £

w{®(x5). This behavior agrees qualitatively with results ob- 16000 I 18000 s
tained in Ref.[13] where collisions of wave packets have

11500 11600
t1800

N
T

11200

times not larget=600a. At time steptgyg, however, we
observe that energy is partly transmitted back into high fre-
guent modes before the wave packets start to decay arou
time steptigooo- At time steptqsgee, the energy distribution
has expanded into longitudinal direction. The appearance 02
a circular polarization of the receding wave packets could in8 4 |- 110000 T+ 112000 1
principle lead to the same behavior before they decay. This
possibility, however, is excluded by our numerical results
which show—in the case of plane waves—no excitation of
modes withx, polarization for all times. This can be verified
down to floating point precision but it has also a fully ana- gL 1
lytic explanation through Eq33) in Sec. IV for v=2. L J
This behavior does not appear in a collision of wave pack- o
ets which are equally polarized in color space. In this case
the shape of the two humps in the distributiefP(x;) at the

time stepti400 iS almost identical to the shape at tirg FIG. 2. Longitudinal energy densities(®(t,x;) are plotted
Deviations result from lattice dispersion. over the collision axiglongitudinal coordinatefor selected time

In Fig. 2, the corresponding longitudinal energy densitiesstepst,,.
W(LE)(t,Xg) are displayed on a logarithmic scale for selected
time stepst,. We remember that the wave packets were £ ~ R
initially polarized into the transverse direction and conse- w{ )(t):f dx dxadxs TrLE(t,X)E3(t,X)]. (25
quentIyW(LE’ has to be zero as long as they propagate free.
However, when the colliding wave packets of different color The integration in the definition®4) and(25) is carried out
start overlapping, we observe an increasing longitudinal engyer the whole lattice.
ergy density in the overlap region around the center of col- Figure 3 displaysW(TE)(t) over a time interval of 608
lision at x;=100fm. Figure 2 clearly shows that{®(t,z)  which corresponds to 6000 time steps. The energies are com-
grows rather fast from time stefaogo until time steptisoo  pared for different values of the coupling constant As
where it reaches a maximum and has grown by more thagiready mentioned above, values of the coupling constant
two orders of magnitude. For larger times the hump dewnhich differ fromg=1 can be scaled out with the amplitude
creases again and practically disappeardsggo. Around  of the wave functions. The amplitude of wave packets, how-
teooo, hOwever, the longitudinal energy density grows againever, determines the energy carried by a wave. Once the
at the positions of the receding wave packets. After 1000@nergy is fixed by describing a real physical system, it makes
time stepav(¥)(z) has increased by five orders of magnitude.sense to use different values of the coupling constant. Here,

A comparison of Fig. 1 with Fig. 2 indicates that the total the collision is performed for wave packets which are nor-
color electric field energy on transverse links of the latticemalized toN;N,a?/ o particles and we refer to different val-
decreases at large times while the total color electric fieldies ofg.
energy on longitudinal links increases. In order to understand Figure 3 shows that for small coupling\/(TE)(t) remains
this behavior in detail, we explore the time dependence ofinchanged through a long period of time after the collision
these quantities for different values of the coupling constantyhich occurs in an interval around the time stggy,. For
To be more precise, we define the transverse and longitudy=4 the transverse color electric energy starts to decrease
nal energy of the color electric fields as around time stepsyo. A comparison with curves obtained

5 for increasing values of shows that tha\{®)(t) begins to

W(TE)(t):f dxldxzdxsz TE(LRENR)], (24) decrease at earlier times._ Fo_r the largest v_alu;es
=1 =10,12,14, the decrease begins in the overlap region of the
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FIG. 4. The longitudinal color electric field energyE)(t) as a
FIG. 3. The transverse color electric field enel§F)(t) as a  function of time is displayed for different values of the coupling
function of time is displayed for different values of the coupling constantg. The time step width of each time step Ad=a;/10

constantg. The time step width of each time step A&=a3/10 =0.01fm.
=0.01fm.
3
wave packets. In these cases, strong oscillations occur in the ()=, f dx,dx,dx32| Tr{ S, (t,X)]]. (29
=3

overlap region. The magnetic field energi&§®)(t) show a
very similar behavior. The total energy of both wave packet
is 24.76 GeV for our numerical choi@=0.1fm.

Figure 4 displays the corresponding longitudinal field en-

(E)
ergy W, '(t). Before the wave packets start to overlap Weergy currentit(t) in the overlap time region for different

find W(LE)(t)_:O to a very high precision (10°). In the \ajies of the coupling constant. The figure shows that there
overlap region, a humplike structure occurs WhE'Ch grows fofis o transverse energy current before the wave packets start
increasing values of. For small values og, W{E(t) van- 15 overlap. In the overlap time region between the time steps
ishes after the wave packets have passed through each othgf, andt,,,, we observe a strong increase of the transverse
After a long time W{®(t) grows very steeply. Figure 4 energy current. The maximum is reached at time steg,
shows clearly that the time between overlap and suddefyhere the overlap is maximal. At decreasing overlap in time
growth shrinks for increasing couplirgy We find, that this  region between;s,oandt,,, i(t) vanishes. The height of
time difference scales asgfl Now the question arises the humps increases for increasing valueg aind scales as
whether the energy deposit in longitudinal links can be assot/g2. To become more precise, in the time region of the
ciated with fields propagating into transverse directions. Tthumps as shown in Fig. 5, the transverse current implies an
define energy currents, the Poynting vector is denoted in tthciIIating structure of the time perioﬂtzfm over which

djoint tati . R
acjoint representation we have averaged to obtain the smooth curves in Fiy.iS.
S:=cEXB. (26)  here defined a& =(2)/k;. In the upper left panel in Fig.
5, we show an example féi;= 7/(4a3) in the casegg=8 in
With the transverse and longitudinal components of the vecwhich no averaging has been done. The curve displays a
tor (26) the total transverse and longitudinal energy C“”ent%eriod of T,=2a; according to=8a,. No averaging was

are defined necessary for times after the overlap time region.
Fig. 6 displays the same transverse energy currents as Fig.
, 27) 5 but for a larger time interval and on a larger scale. Note
that the current is plotted in units pif;(t) ]=c GeV in Fig. 6

*These definitions may be applied in the regime of weak cou-
pling to calculate the field energy currents.
In the following Fig. 5, we show the total transverse en-

2
iT(t)==|§1 jdxldxzdx32|Tr[S|(t,>?)]
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number of time steps number of time steps
FIG. 5. The total transverse energy currgft) as a function of FIG. 6. Same as in Fig. 5 but for a larger time interval and on a

time is displayed for different values of the coupling constgnt larger scale for the transverse energy curig(t).

The average longitudinal momentum of the colliding wave packets
is ky=7/(2a3). In the upper left window, the full time-dependence

of the transverse energy current is displayed at the exagpl@ T T ' T '
andks=7/(4as).

but in units[i+(t)]=c MeV in Fig. 5. After passing through
the hump region between time sty andt,ggg, the energy
currentt(t) disappears. For the smallest coupligg 4, it
takes about 3500 time steps o35 fm from maximum
overlap until to the point wheré; starts to regrow. This
time, it grows to much larger values and stays large at later=
times. The time delay depends om,Aks,k;. We find that
7~ 1/g? but haven't studied carefully the dependence\ds
and k;. For largeks, one can argue analytically that
~k3%¥ This will be further discussed in Appendix B. Some
few calculations for smallek; have shown that increases
monotonically for increasingf;. The sudden increase of
defines the “glue burst.” For large coupling it occurs al-
ready in the overlap region.

The following Fig. 7 displays the corresponding longitu-

dinal energy currenti (t). It shows thai, decreases at the
same time whem; increases.

[cGeV]

longitudinal energy curren

B. Collision of transverse finite wave packets . “

0 1000 2000 3000 4000 5000 6000
number of time steps

Subsequently, we present some results from the collisior
of wave packets with a finite transverse extent. We have
carried out similar calculations as in the case of plane waves FiG. 7. The longitudinal energy curreritgt) corresponding to

and found a similar, but even more pronounced behavior fofhe cases shown in Fig. 6 are displayqt) decreases at the same
the time dependence of the transverse and longitudinal efime wheni(t) increases.
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ergy currents. Most of the calculations were carried out on d&owever, the waves packets start to burst in non-Abelian
lattice of the size 200X 800 points. The wave packets case. The last two images correspond to the time sigps
have been initialized in the same way as in the case for planandtgggo.
wave packets. However, the initial wave functions depend In the Abelian case the wave packets continue to propa-
now also on the transverse coordinates. Since a lattice witbate undisturbed after the collision. Their time evolution
the same extension in both transverse directions would leaagrees with that of a single wave packet sent from the left to
to an exceedingly large number of lattice points, we chose #e right or from the right to the left, respectively. The cal-
small number of lattice points in the, direction. Thus, we culation has been repeated with different lattice sizes as for
study the dynamics of a collision in the{,x3) plane inte- example on a 4 300x 1000 lattice and with smaller values
grated over thex; coordinate. Under these restrictions, thefor the time step width. No significant changes in the time
scalar functiong(t,x,,x3) defines the initial wave packet  evolution of the solution have been found. The possibility
that boundary effects might lead to the time-delayed sudden
decay is excluded. As already outlined above, the lattice is
closed to the three-torus which implies periodic boundary
_ conditions. Consequently, there are no points or links with
X exd — (Akyxp)“Jcogks(t+x3)], (290  exceptional conditions on the lattice. In the case of colliding
plane waves, the symmetry under translation in transverse
— directions excludes boundary effects. The time-delayed sud-
o= \(2Aks)/ (\Toks). (30 den increase of the transverse field energy current appears in
colliding plane waves which initially have different polariza-

The additional factor exp-(Ak,x,)?] describes the shape of fion in color space but it does not appear in the Abelian case
the wave packet in the transvepsedirection. The parameter Which is identical with Maxwells field theory of (1) gauge

Ak, determines the transverse width and the parameter Symmetry. The time-delayed burst in colliding wave packets
controls the transverse shape. For large values, ofie ob- of finite transverse extension, however, could result from
tain a sharp surface and the exponential tails are suppressé¥nall waves emitted into both transverse directions during
Since the transverse extension of the lattice is limited, wdh€ overlap time. Such waves could propagate around the
choose the extension of the initial wave packet in e lattice in transverse direction and collide again with the wave
direction small enough to leave space for the transverse dypackets. There are two reasons excluding such a scenario.
namics after the collision. Good values aké,=1/(40a,) First, the time delay of the burst should then depend on the
and a=8. The wave packet is thus 8 fm wide and extengdransverse number of lattice points. Such a dependence could
over 80 lattice points into the main transverse direction. FurNot be found. Second, a transversely emitted perturbation

ther outside the amplitude is practically zero sincis large. ~ d0€S not reach again either wave packet since its speed is
For Aks=/(100as), the full width at half maximum limited. On the other hand, the sudden increase of the trans-

(FWHM) in longitudinal direction is 10 fm. verse energy current after the collision exists in the non-
With the functiong(t,x,,xs) we determine the initial link Abelian case of colliding plane waves. It therefore exists also

variables and the color electric field amplitudes and magh collisions of transverse finite wave packets.

these data on the lattice at the initial positions of the wave
packets. For a collision, the wave packets have opposite av- V. ANALYSIS OF THE YANG-MILLS EQUATIONS

erage momenta: k3. The evolution of the collision is car- In the following, we present the explanation of the glue
ried out in the same way as for plane wave packets. Figure 8 st solution by analyzing the Yang-Mills equatiofts.
shows snapshots of the transverse energy density of the Colgf,o jetails of the discussion are presented in Appendix A.

electric fields which we define as With the definition of the field tensorF#":=D#A"
—DYA*, we rewrite Eq.(1) for the gauge fields in the ad-
joint denotation

1.2 2
d(t,X2,X3) =g ex;{ - zAks(H‘Xs)

2

Wi (t,%5,%3) = f dx >, THEELRELD]. (3D
=1 [D, (DFA"—DYA#)]_=0. (32)

The simulation shown in Fig. 8 has been carried out for thawith the definition of the derivativ®* in Eq. (2) follows:
non-Abelian case and with a couplimg=6. The other pa-

rameter settings are as for plane waves above. The upper lefty, 9 A"=4,0" A*+igd [ A", A ]_+ig[ A, 0" A"]_
picture shows the distribution for the time stgp, where the . , ) ,

shape has almost not changed as compared to the initial dis- —iglA,, 0" A*]_+g°[A, [A* A" ]
tribution. The wave packets decay into the transverse direc- (33
tions while they propagate free over the lattice. The upper

right picture displaysw{®)(t;s00,X2,X3) at maximum over-  Since the time-delayed burstlike behavior of the solution oc-
lap. In the middle Ieftw(TE)(t3500,x2,x3) is displayed. The curs also in the case of colliding plane wave packets, we first
distribution is almost identical with that obtained in the Abe- consider this case. The phenomenon occurs in two steps. It is
lian case at the same time stegy,. At the time stef 4q00, based on a delicate interplay of color degrees of freedom
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FIG. 8. The transverse color electric field energy den&rﬂﬁ)(t,xz,xs) is shown for six selected snapshots taken at the time sigps
t1500: 3500, ta000s tsoo0, @Ndiggge- The corresponding pictures are ordered from the upper left to the lower right.

between the color subspaces span({,) and sparn(3) and provide a mechanism which transfers field energy from
between transverse and longitudinal degrees of freedom itfansverse into longitudinal field degrees of freedom. It is
the field amplitudes. explained by the equation for the longitudinal gauge field
The first step occurs in the overlap region of the wavecomponents which follows from E¢33) for v= 3. For plane
packets in both, time and space. The Yang-Mills equationsvave packets, only the fourth term and theterm do not
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vanish on the right-hand sid®RHS) of Eq. (33) in the case dinal energy densities are smaller by at least one order of

v=23 and therefore the equation magnitude in comparison to the transverse energy densities.
In the region ofks, Ak; andg where the above inequali-
9,0 A®=—ig[ A, ,dPDA*] +g2[A, [A*AD] ] ties do not hold, all terms on the RHS of E84) have to be
M JIR) — JIR] ] — 11—

taken into account in the discussion. The inclusion of the
additional terms makes the discussion more involved since

. . L . . (3) (3) _
describes the dynamics of the longitudinal field§® during ~ the color component&;™ and Ay can no longer be ne
the overlap time. In Eq(34) and subsequently, we denote glected. This case will be considered further below. In cases
number values of the Lorentz indices in parentheses in orddP" Which the above inequalities are valid, the dynamics of
to distinguish them from number values of the color indiceshe longitudinal fields in the overlap time is described in
The Greek symbols, however, are further on used without€@ding approximation, by the following equation:
parentheses since it is clear from above that they denote Lor-
entz indices. A summation occurs only over upper and lower 50&0«4329(Ai&3A‘2‘—A,ZL33A’1‘)T3+ng(ll)A(ll)Ags)Ts‘
index symbols, not for numbers. For reasons of simplicity, D3 (DAl 2n2 A1) A(3)es
we begin the discussion for the case where the longitudinal —g*ALAASTL+ g?A% ASDAPDT
fieIdsA(3) remain small thrqughout the qvgrlap time in com- — a2A3 ADAGIT2 (37)
parison to the transverse fields of the initial wave packets. 9" AW~z A1

. . - . 3) .
This implies that each color componentitf®) is small. For The orderg term on the RHS of Eq(37) acts as a source

initially polarized wave packets, as defined in the initial con- . o
ditions in Sec. lll, the above is equivalent to the assumptiori.erm for the third color component of the longitudinal gauge

3 -1
that the spatial componen#s; are small in the third color. leld A.( (t,X). When t_he wave packets start to overlap, the
RN . . space integral over this source term
The explanation is given in Appendix A.
For large enoughk,, the time intervals in which the over-
!ap within the period of one pair of overlapping_oscillations |3(t)::gJ d3x[A1(t,>?)(?(3)A’2‘(t,>?)—Az(t,i)a“)A’f(t,i)]
increases are short, preventins) from becoming large. m m
One can also argue, that for large both wave packets are (38)
located in widely separated regions in momentum space. T
discussion of the mechanism provided by E§9) shows
that this large separation also prevents, from growing
rapidly. Further Ak; should not be too large since the over-
lap time of the wave packet&and thus.A) grows with
Aks. Under these conditions, the field amplitudes obey th
inequalities|AA%|<|ALA%| and |ASAL|<|AZA4| during
the overlap time. Consequently, terms on the RHS of Eq
(34) which contain amplitudesAi are negligibly small.
These terms contain factoflg andT,, i.e., they contribute

(39

I'@(arts to grow. As Fig. 9 shows in a simplified manner, the
derivative #®A¥ is negative in the overlap region at the
beginning and’®A% is positive. Consequentlyg(t)>0 at
times before the wave packets have reached maximum over-
Aap. After the maximal overlap the derivatives change the
sign andl 5(t) <O.

Figure 9 displays in a qualitative manner the overlapping
of two wave packets. The situation occurs in principle for
each pair of overlapping oscillationNgach taken between

two minima) in colliding oscillating wave packets for which
to the first and second color. For simplicity and briefnes 3 g g P

these small terms are neglected preliminary. The remainin 3>0. The corresponding t'_me depen@ent pehavmr of the
terms on the r.h.s. act as source terms only for the third colopource currents(t) at ky=0 is depicted in Fig. 10. When
component in4® on the left-hand sideLHS) of (34) while  the penetrating wave humps increase their overlap, the lon-

the other color components remain zero. The remaining larg@itudinal contribution|s(t) to the source increases first.
terms on the RHS are Since the derivative on the opposite side of both humps has

opposite sign, the source term changes the sign as soon as
_ L 5 the two humps have passed the maximum overlap. The dis-
—ig[A, P A*]_=g(A, AL~ A%PAN)Ts, (35  cussion of step one in the collision applies in principle for
each overlapping pair of wave humps where each hump of
wave packei1) passes through each hump of wave packet
97 Ay [AD, AC ] =g?AL ANAPIT® (2) during the collision.
9A3 A()AG)rL As the source terng(ALo®AL— A2 AL grows in
gALAT AT . L Y
time, the longitudinal gauge fieldl **/(t,X) grows. At the

+02A2 ADAGITS time of maximal overlap, the source current changes the sign
9 AR A3 . 3 e o "
s (1) and cancels the fieldl (®)(t,X) as shown qualitatively by the
— g?ALASDARIT, (36)  dashed curve in Fig. 10.

During the whole time interval in which the wave packets
The validity of the above inequality hdfor example been  pass through each other the finite longitudinal gauge field
well verified for the parameter values used in the calculationd ®)(t,X) enters into the last term on the RHS of E§3)
of the numerical results presented in the previous sectioreading to an additional but small contribution to the source
The results demonstrate that in the overlap time the longituterm as long ag is not too large. For largg?, theg? term
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FIG. 9. Two colliding wave humps represented by gauge fields time [fm]
A; and A, at the beginning of the overlap. The wave packets are o o .
defined by  ¢(t,xs)= o exp[—l/%kg(Hx3)2]cos{?3(t+x3)] FIG. 10. The longitudinal contributioms(t) to the source is

plotted as a function of timédotted ling. The time dependence of
<Ks(t+x5)=<(2n+3/2)7 between the positions of two minima. the source term leads to a time dependence of the gaugeAficdd

The minima are shifted to zero. The initial polarization is defined byindicated by the dashed curve. The corresponding color electric
the Eqs.(16) and(17). The productsAllLa“)Afz‘ andAia“)A‘l‘ (plot- fnzeld is indicated by_the_ dot-dashed curve. The_contrlbuthn fr_om the
g“ term A A5(t) (solid line) adds to the gauge field resulting in the

total field A4;(t) (fat solid line.

where only one hump is plotted for each in the range<2/2)m=

ted as dashed ling®f the field amplitudegsolid lineg contribute
to a source current in the longitudinal Yang-Mills equation.

takes over during the overlap time as soon as the agder time. The qualitative time dependent behavior of this contri-
term has generated a finite amplitudé®). In this case, the bution is shown by the solid line in Fig. 18.4 ®)(t) which

burst occurs during the overlap phase. For ldegand small IS not canceled after the overlap is proportional to the surface
Akg the operator?® in the first RHS term of Eq(37) is  under the dashed cunfeds)(t)] in Fig. 10. The fat solid
approximately replaced by a factios. This shows that thg curve dgpicts the time. dependent behavior of the total longi-
term is larger than the? term for not too largey. Indeed, tudinal field.A)(t) while the dashed curve is obtained with-
our calculations show that for not too large valuesgofg out g* term. _ _ o
<10) and for small overlap times, i.e., smalks, the con- ~ AS & consequence of t.hIS mechan!sm, a small longitudinal
tribution from theg?-term remains small compared to the f|eld,.4(3).(t,>?.) is left over in the receding wave packets. This
contribution resulting from the first source term on the rhs ofcontribution initiates the second step which forms the burst
Eq. (37). The g2 term itself acts only as a weak source asltself: Without restriction Qf_the generall case, we assume that
long as.A® is small and it zero as long a$® is zero. In the first wave packet is !nmally .pola.nzed in spdn] and
particular.A®=0 just before the beginning of the overlap. the second wave packet is polarized in sfgi( As soon as

A finite longitudinal amplitudeA$®) has first to be generated the wave packet?g)obtam a small contnbunoq in the gauge
which is done by the fourth term on the rhs of E83) or the  fi€ld componen®A™, the spatial component () starts to
first term on the RHS of Eq37), respectively. This ordey change the polarization in color space. In wave patKethe
term acts as a initiator for thg? term. It also switches off componentsASY and A§Y grow whereasA(™) decreases ac-
again its contribution to the longitudinal gauge field whencordingly. In wave packef2) the components{" and A"

the wave packets have passed the maximum overlap. THgFow WhereasA(zl) decreases accordingly. This behavior re-
fourth term goes to zero at vanishing overlap and does natults in a rapid change of tHe® terms on the rhs of Eq37).
contribute any further in the receding wave packets. Howdt is explained by the Yang-Mills equation for the first com-
ever, theg? term causes a finite but small contribution ponent which follows from Eq(33) for v=1. Analyzing the
AA®t) to the longitudinal gauge field during the overlap RHS terms, we find
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3,0* AW =—gAM g 3 AT+ gAN o5 AT verify the above argumentation, i.é\{®) is practically zero
3) (D)2 @) (1)1 when the wave packets have approached to a distance of two
—0ASI3AT T+ A d3yA T+ FWHM.

We insert the expansions of E@0) and Eq.(41) into the
2ABIABGIAMD)TL, 2AR AR A T2, ...

TOTATAT AT HOTATATA T Yang-Mills equations and consider in leading powers the

(39) effects of theg? term on theA$®:

where we denote only the most important contributions on 3,9'A%= — g?ANADIAN +- .- = — g2afMaiPaf s+ -- .
the r.h.s. The first four terms on the RHS come from the (42
second term on the RHS of E3). Similar contributions ] . o ] )
which come from the third term are omitted for brevity since We integrate both sides of EGt2) in time and find a leading
they do not bring a new aspect into the discussion. Thdourth order time dependence of the longitudinal color elec-
fourth term does not contribute for plane waves. The last twdric field E$Y=—3,A$Y according to
terms on the RHS of E¢39) come from theg? term. For 2
details, we refer to Appendix A. EQ)(t)= g—a(l)a(3)a(1)t4+-~- ) (43)

In the following we discuss the mechanism described by 3 472 78 72
Eq. (39). The first, third, and sixth term on the RHS lead to o ] ] ]
excitations of modes in the color directiai? in the wave Consequently, the longitudinal field energy as defined in Eq.
packet(1). The second, fourth and fifth term act in a similar (25) increases aW(._E)_(t)~t8 in the leading order of the time
manner for the wave packé). As long asA{? is small, the ~dependence. The high power explains why the longitudinal
contribution of theg? term is suppressed quadratically by polanzatlon of the.rgcedlng'wave packet§ is small at 'short
A(ss)- This suppression is eventually enhanced by an adgitimes after the collision but increases rapidly at large times.

. . ! is time- i (E) i
tional factor A& with small Fourier components located | S time-dependent behavior . “(t) together with the

d+Ke. If th litud d tain st thresulting transverse expansion of the energy density distribu-
aroun 3. ese amplitudes exceed a certain strengthy; " 1 oo onioes the “glue burst.”

the g* term takes over to determine the dynamlc_sﬁéf) Our numerical results above show that the time-delay of
resulting in a fast growth of Fourier componentstaits. In the burst scales essentially ag?/This scaling has the fol-
the case of wave packét), these growing amplitudeé(zl) lowing analytic explanation. Each facta@“) in Eq. (43) is
andA(33) enter essentially into the thil’(gl2 term on the RHS  proportional tog2 and thus can be separated as

of Eq. (37) inducing the growth oA{®). In order to under-

stand the time delay of the burst, the leading orders in the aM=alg?, (44)
time dependence of the gauge fields are discussed for wave
packet(1) shortly after the collision wherea!” is independent og. This g? dependence results
from the contribution of they? term in Eq.(37) during the
AD=alt+ b2+ - (400  overlap time as discussed above. The equati® rereads
now
AP =aPt+bPt2+- - (41) L
EG) (1) = —a@m@am(g2t)4+ - - 4
Both amplitudes are zero in wave pack®x before the over- ) 472 78 72 (gt) 49

lap of the wave packets=0 defines here the begin of the ) i ) e
overlap. In an exact treatment of colliding Gaussian wavevhich explains the numerical observation, i.&\V™(t)
packets, the begin of the overlap would betat—=. At ~(g°)%. As Fig. 4 shows, the burst leads to a peaklike
large distances, however, the contributions from the nonlinshape inW)(t) at the burst time. The steep rise of the
ear terms are strongly suppressed because in all contributigngitudinal energy is immediately followed by a strong de-
nonlinear terms, products appear between exponentiallprease. This behavior has to be explained by the next order in
small amplitudes from one wave packet and finite amplitudeghe expansion$40) and (41). The oscillating nature of the
from the other wave packet. The alternating source term gersolutions suggests that the coefficieh;shave opposite sign
erates and recancels contributions A0' almost perfectly as compared to the coefficieru%. This results in a next to
within a period of oscillation because the perturbationsleading order term on the RHS of E@t5) which enters into
caused by theg?-term are threefold exponentially sup- the expansion as

pressedt=0 can therefore be defined close to the full over-
lap of both wave packet$=0 at a distance of two FWHM
between centers the wave packets is sufficient because at that
distanceA$® and AJ are so small that the coefficients of
order zero in the expansions of E40) and Eq.(41) can be  Due to the higher power im, this term takes over shortly
neglected. These zero order coefficients decay exponentiallfter the first term has increased the amplitudelzgff)(t).

for increasing initial distance and are therefore omitted inThe opposite sign, however, turns the total amplitude back.
Eqg. (400 and Eq.(41). Also numerical simulations on the The following drop of the amplitude is stopped by an oppo-
lattice starting the collision from much larger distances dosite effect from the next higher order in E@6) and so on.

1 .
E<33>(t>:---+szg”ag”aglu---)(gzt)5+---. (46)
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In Fig. 4, we observe that®)(t) stays finite and seems maximum transverse energy current at total overlap and
to oscillate irregularly around a finite average value after thescale like 1¢? but for different reasons. This and also the
burst which we denote preliminary HT&EE)(OC). This average burst can be explained by analyzing the Yang-Mills equa-

value is independent og which is explained by Eq@5).  tions. _ _ _ .
Equation(45) shows that in lowest order in timg? can be The question arises, whether this pure classical phenom-

completely scaled out with As discussed above, the lowest €10 could play a role in high energy nucleus-nucleus colli-
order determines the rise of the first humprLE)(t) atthe Sions.In the present calculations each wave packet was car-

beginning of the burst. The rise of the first hump determine§ying an energy of about 10 GeV. The size of the finite wave
the value ofW(E)(x) packets was 10 fm in longitudinal and 8 fm in the transverse
b .

directions. The energy of about 10 GeV is close to the upper

The above discussion is so far restricted to colliding plangjm;t that can be described on a lattice with the constnt
wave packets of Gaussian shape in longitudinal direction_ g 1 tm for the above size of the wave packet. It is well
The arguments made in the discussion, however, hold fog,q\yn experimentally that about half of the energy in a
wave packets of large finite transverse extension where WELcleus is carried by glue fields. A°%Pb nucleus at 100
can neglect surface effects. For small transverse extensionga\//nucleon carries thus about 10 TeV in glue fields. It

the d?scqssion is in principle similar but more involved since,, 4 14 pe interesting, to study the pure glue field dynamics
contributions from the surfggg can no longer be neglected. o|assically in colliding finite wave packets each carrying an

Finally, the case wherel™ is not small is considered. In energy of 10 TeV. This, however, requires extremely small
the Appendix A, we argue that the source terms on the RHgytice” constants and very large numbers of lattice points.
of Eq. (37) are suppressed by a factokiin the regime of  The size of the wave packets can be adjusted to the size of
largeks. Theg? term is even suppressed stronger. Wkgn  colliding Pb nuclei, i.e., it should have an extension of about
is not large the ordeg term on the RHS of Eq37) is large 11 fm in the transverse directions. Such a description of
and thusA ®) grows rapidly after the begin of the overlap- course is still very rough and would require much improve-
ping. The source terms of ordgrin the color directionsl; ment in the future. It would also be interesting to perform a
and T, become also large leading to large contributions inFourier analysis of the collisions in three dimensions for
these colors in4®). The polarization of4 ) in the third ~ each color separately. There is also hope that Dirac-Fermion
color during the overlap time vanishes therefore when we gdields can be included in the future.

to smallerks. The large amplitudes oft @) enter into theg?
terms on the RHS of Eq37) leading to rapid growth of ACKNOWLEDGMENTS
these terms during the overlap time. The burst occurs thus
already in the overlap region without time delay.

Generally, we may conclude that the time delay increase

when we go from smaE to IargeE,. In this context we
refer also to Appendix B.
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APPENDIX A: ANALYSIS OF THE SOURCE TERMS

We discuss the source terms on the RHS of the the Yang-
VI. SUMMARY AND OUTLOOK Mills equations which read

We have studied time-dependent solutions of the classical

Yang-Mills equations which describe the collision of initially =~ 9,9*A"=4d,d"A*+igd, [A* A"]_+ig[ A, " A"]-

olarized wave packets in color space and position space. )
\F;Ve have simulzﬂed the collisionspon a threg dimensir())nal —|g[,4#,aVA#]ergZ[A#,[A#,AV]f]f_
gauge lattice numerically applying the Hamiltonian approach (A1)
of Kogut and Susskind to describe the dynamics of the color
fields in SU2) gauge symmetry. As a function of time, we Since the time-delayed burstlike behavior of the solution oc-
have calculated the transverse and longitudinal energy deurs also in the case of colliding plane waves, it is sufficient
sities i) (t,x5) andw{E)(t,x3) of the color electric fields. to discuss Eq(Al) for this case. We argue that wave packets
For initially transverse polarized colliding plane wave pack-with large but finite transverse extension can be considered
ets and for colliding finite wave packets as well, the longitu-as plane waves.
dinal energy densities show a strongly time dependent in- The numerical results presented in the Sec. Il have
crease in the overlap region around the center of collision bushown that longitudinal energy densities correspond essen-
vanish when the wave packets recede. A similar timedially to transverse energy currents. The longitudinal energy
dependent behavior was found for the transverse total energjensities therefore exhibit the basic feature of the glue burst
current. A certain timer after the collision both the longitu- solution. The corresponding color electric field components
dinal color electric field energy and the transverse energare determined by the negative time derivative of the longi-
current increase rapidly while the distributiom(TE)(t,xg) tudinal components of the gauge fields. We therefore begin
starts simultaneously to decay. Visualizations in three diwith the discussion of the time evolution of these field com-
mensions show that the wave packets suddenly decay fast ppnents and we set=3 in Eq. (Al). Before the collision,
a decoherent manner when the timés reached. Both, the both wave packets are polarized in tke direction in Eu-
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clidean space. Accordingly, the longitudinal components are —ig[A, L PBAR] = —ig[(A T +A2T,+ . ..),
A3=0 before overlap. In the following we focus on the time . g
region where both wave packets start to oveflap. BAYTI+HALT?+ .. )]
The first term on the RHS of E¢A1) contains a sum of
four terms =~ —ig(ALPAL[T,, T2
0,0" A3= 9o A%+ 91 P AL+ 0,03 A2+ 3305 A3, +ALPALT, T
(A2)

=g(ALPAL—AZIPAN TS, (A6)
The first term on the RHS of EgA2) is zero because we use
the temporal gauge in whicll°®=0. The second term and .
the third term are zero becauseA'=0 andd,.A?=0 for As long as the wave packets do not overlap, the C(_)Ior _|nd|ces
plane waves that propagate into the direction. Fory=3, 1 and 2 refer here at thg same time to the C?ntnbuuons of
explicitly considering the contribution from E¢A2) on the wave packet 1 and_2. E|rst, th? case th@tég IS smgll
RHS and expanding the sum on the LHS, EAL) now during the overlap tln_1e is 90n5|dered. Thls assgmptlon, as
reads shown further below, is equivalent to the |nequal|AiA§|
<|ALAY| and|ASAL|<|AZAL|. The inequalities allow a ne-
043 143 2 43 3 43_ . 343, ... glection of the terms—ig[A3T;,0%(A4T +A4T?)]_ and
G00 AZH 1T AT Gp0° AT 930" A7= 050" A+ (A3) —ig[(AiTﬁAiTz)_,aSAgT?’]’f on the RHS of Eq.(A6).
Consequently, excitations of modes in the color subspace
This shows that the remaining term of the expres¢i®) is  span{T{,T,) in A3(t,X) are neglected during the overlap
canceled by the last term on the LHS of EA3). For plane time. These components will be included further below
waves, the second and third term on the LHS are zero. Thehere the case of Iargb\iA’3‘| is considered. Excitations
contributions from the other source terms in E41) are  occur then only in the third color degree of freedom which is
indicated by the dots. the only remaining component id 3. The remaining term
The second term on the RHS of E@\1) is zero initially ~ on the RHS in Eq(A6) acts as a source term for the third
because of two reasons. First3=0 at the very start of the color component of the longitudinal gauge fied®(t,X). Its
overlapping. The second reason is explained in the followingeffect is discussed in Sec. IV.
analysis. The term irzvﬂ[A“,A3], corresponding tqu=0 In the following, theg? term is analyzed. It splits into
vanishes due to temporal gauge, fhe 3 term vanishes be-
cause of the commutator, and tle=1,2 terms vanish for 5 3 ) 1.3
plane wave packets. Consequently, we find 97TA, [A* A ] =g AL [AS A% ]

+97[ A, [A%A%_]-. (A7)

31 —
ad,[A*,A%]_=0. (A4)

By similar arguments and because[od;,3°.4%]_=0, we  First, we consider the contribution of the first term on the
obtain RHS of Eq.(A7). The second term does not contribute if

both wave packets are polarized into thedirection. Other-
ig[ A, 0" A%]_=ig[A;,0"A3]_+ig[A,,02A3%]_ wise, it would contribute in an analogous manner. Subse-
- ’ ' quently, according to the convention in Sec. IV, number val-
+ig[As,°A%]_=0 (A5) ues of indices in Minkowski-space are denoted in
parentheses in order to distinguish from color indices. As

for the third term on the RHS of E¢A1). argued in Sec. IV, for large enoughy and small enough

The fourth term on the RHS of E¢AL) plays an impor- Ak, the longitudinal fields4 ) are essentially polarized in
tant role in the overlap region. According to our calculationhe T-direction in color space after the step one. The con-
for plane waves, we assume that the colliding wave packetgihytions to the first and second color direction are therefore
are initially polarized in color space in the directiohg and neglected. This is sufficient since th&(3)s-component
T,, respectively. When the wave packets start to overlap, @yhich is zero initially becomes always finite in the overlap
superposition of two colors occurs and we obtain region as shown above where a finite amplitude remains after

the overlapping. Neglecting!® andA%, we obtain

4Gaussian wave packets start to overlap at infinitely large dis-
tances. What we mean by ‘“starting to overlap” in this context is [A(l),A(3)]_2[A(ll)T1+A(21)T2+A(31)T3,A(33)T3]_
the transition from a distance region in which excitations of the
amplitude A2 are exponentially suppressed into a distance region = —iA(ll)A(33)T2+iA(21)A§33)T1 (A8)
where finite but small excitatioficaused by they® term) appear.
This transition is located at relatively small distances and has al-
ready been outlined in Sec. IV in the discussion of E4§) and  for the inner commutator. Inserting this result into the LHS
(41). of Eq. (A7), leads to
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9L A@) [AD,A®] ]
— g7 Aq) AP AT —IADAPD T

= AL ADAPT - g2A% ADAPIT!
+g°AL ASDADTE - g?A% ASDADITZ (A9)

As soon as the gauge fields obtain a small contribution in the

componentAY®) | the spacial componentd?) starts to
change the polarization in color space. In wave patKethe
componentsASY and A{Y grow whereasA{") decreases
accordingly’ In wave packet2) the component&{" and
AV grow whereasA$" decreases accordingly.

This behavior is explained by the Yang-Mills equation for
the first component

9,0* AM=9, 9B A +iga, [ A+ AD]_
+ig[A, " AM]_—ig[ A, ,dBA#]_
+g7[A, [A* AD] ], (A10)

The first term on the RHS of EqA10) does not contribute
for plane waves sincé!”) 4 #=0. The second term yields the
contributions

iga,[A* AD]_
=ig[ AP T3+ ADTLH ATZ 4.0
+ig[ADTS 4+ -+ 9, ADTL 4+ 9,ADT2 4]
= —gAM 35 AI T2+ g AN g 5 ADIT?
—gAP 95 ANT2+ gAD g 5 AT -
(A11)

of which the first and third lead to excitations of modes in
the color directionT? in the wave packetl). The second and

fourth term leads to excitations of modes in the color direc-

tion T* in the wave packet?).
We now discuss thg? term. Here[ A™M, AM]_=0 in
the inner commutator and ¥=0 for polarized wave pack-

ets. For the essential contributions of the inner commutato

we find
[A®,AD] =[9,A3T3+ ... APTI+ADTZ 4.7
=iAPABTZ—-iAPADTI+... (A12)

Inserting the RHS of Eq(A12) into theg? term, we obtain

SSince the fields of the original wave packets are superptsexl
non-linear mannerin the overlap region, it is subtle to talk in terms

of wave packets. For initially polarized wave packets, one can es-
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0L A, [A* AW ] =07 Ag) [A®,AD] ]
:gZA(33)A(33)A(11)T1
+g?AP AP AT 4.
(A13)

It has to be shown that in the regime of larig|, the con-
dition of small . A® during the overlap is equivalent to the
conditions|AS A4 | <|ALA%| and|ASA4|<|AZAL]. With the
above equatiotA6) follows

I0yd VAP =g(ALdPAL - AZIBANT,  (ALD)

for the overlap region. From the inequalities follows directly
that|A$)| is small. This amplitude enters into tgé term of
Eq. (A10). From Eq.(A13) together with Eq(A6) follows
that theg? term is quadratically small ia$>). Consequently,
the g term is neglected in EqA12). At the begin of the
overlap. A® is zero. From Eq(A12) follows that only the
third color component ind®) grows during the overlap
time. For large|ks| and for wave packets defined by the
initial conditions (16) to (18) the operatord®) is approxi-
mately replaced by a factde;. Further, two time integra-
tions of Eq.(A12) lead to an additional factd«gz. The RHS
of Eq. (A12) is therefore suppressed by a factokslin the

regime of largek;. Consequently, the source term on the
RHS of Eq.(A12) is small and thus the field amplitudé(®
remains small accordingly.

The inverse conclusion is provided by the condition that
A®) is small. It has to be shown that? andA{? are small.
A enters linearly into the RHS of E¢A11) and quadrati-
cally into the RHS of Eq(A13). The generator3 . are lin-
early independent in LS@). Therefore Eq(A10) represents
a system of three equations, one for ed¢ch The RHS of
the equation for the third color is composed by Bllterms
on the RHS of Eq(A1l) and Eq.(A13). Each of these terms
contains at least one fact8£>. The source terms on RHS of
IrEq. (A10) in the third color direction are therefore small and

consequenthA{Y) on the LHS remains small. For lardg,

this trend is even enhanced by th&slbehavior ofA$" with
the above initial conditionsA$ is zero sinced ® is zero
throughout the whole collision. This follows obviously from
Eq. (A10) when we replace the explicit space indgy by
the space index2). All terms on the RHS which contain
A®@) remain zero. Further, the derivative€) A* are zero
for colliding plane waves.

APPENDIX B: TIME DELAY AT LARGE MOMENTA

sentially distinguish between the field contribution of wave packet

(1) and wave packet2) during full overlap wherA$®)| is much
smaller tharA{? and AS" . Field modes which are excited during

In this appendix, we briefly discuss tEg-scaling in the
overlap region and in the burst region. As discussed in Sec.

overlap do not belong to any wave packet during overlap. SuchV, for not too largeg, the fourth term on the RHS in the

modes are distributed aroukd=0 in momentum space.

equation
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9,0 A'=3,0" AF+iga, [ A+ A"]_+ig[ A, 0" A"]_ 9o AP =g(AdOAL— AZIBIAN T, (B3)

—ig[ A, 0" A*]_+g’[A, [A* A"]_]- In the overlap region, the differentiatio#*®) in the source
(81 term is replaced by a factde;. After two time integrations
of Eg. (B3) the RHS obtains an additional facto@ This

acts as the dominant source term for the longitudinal f'eldshows that the amplitudd ® is proportional to M during
components in the overlap region of the colliding wave pathhe overlap time. The height of the humpw.[E (t3 2) fol-

ets. We treat Eq(B1) first for v=3. Assuming that during V
the overlap time the wave packets deviate not much fron%ows therefore a k3 scaling in the overlap region. Further,

their initial form A®)~1/k; enters into they? term on the RHS of EqB1).
Consequently, the coefficien& which appear in Eq(45)

in the section 4, depend @&~ 1/k; on k;. Separating fac-
tors 1k from the coefficients leads to

d(t,X3) =g exp( - %Aké(tﬂs)z) cog k(t+x3)],
(B2)

1
_ — @)t _(1)_(3)_(1) —3/4\4 ...
we can make the approximatiai®©® A #=k3A* at largeks. B (D=7a (g%ks )"+ (B4)

At large ks, the evolution of the field component®) dur- _ o _ .
ing the overlap is described by E(7). Omitting theg?  With new coefficientsaf =agks. We conclude that the time
term on the RHS of Eq(37), the equation reads delay of the burst scales &g®*.
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