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Real time dynamics of colliding gauge fields and the ‘‘glue burst’’

W. Pöschl and B. Mu¨ller
Department of Physics, Duke University, Durham, North Carolina 27708-0305

~Received 22 December 1998; published 3 November 1999!

The Yang-Mills equations provide a classical mean field description of gauge fields. In view of developing
a coherent description of the formation of the quark gluon plasma in high energetic nucleus-nucleus collisions
we study pure gauge field dynamics in 311 dimensions. In collisions of wave packets, numerically simulated
on a SU~2! gauge lattice, we study transverse and longitudinal energy currents. For wave packets with different
polarizations in color space, we observe a time-delayed fragmentation after the collision resulting in a rapid
expansion into transverse directions. We call this phenomenon the ‘‘glue burst.’’ An analysis of the Yang-Mills
equations reveals the explanation for this behavior. It is pointed out that this effect could play a role in
ultrarelativistic heavy-ion collisions.@S0556-2821~99!00521-4#

PACS number~s!: 12.38.Gc, 02.60.Cb, 05.45.2a, 42.25.Fx
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I. INTRODUCTION

It is one of the most challenging topics in the theory
ultrarelativistic heavy-ion collisions to develop a cohere
description of the formation of the quark gluon plasma tha
based on quantum chromodynamics~QCD!. Various QCD-
based models for the time evolution of such collisions ha
been developed in recent years@1–6#. These models are
based on the idea of a perturbative scattering of parti
within transport models and describe in principle the evo
tion of a collision from the first contact of the nuclei throug
out the high density phase until the beginning of hadroni
tion. These models however contain still a variety
problems. One of the problems concerns the description
the initial state of the colliding nuclei. The transport equ
tions start from probability distributions of partons in th
phase space. In reality, however, the states of the nucle
described through coherent parton wave functions. The in
herent parton description especially breaks down at
changes of small transverse momenta.

McLerran and Venugopalan proposed@7# that the proper
solution of these difficulties is the perturbative expansion
around the empty QCD vacuum but around a vacuum of
mean color fields which accompany the quarks in the col
ing nuclei. In recent years, they and their collaborators@8,9#!
have developed an effective coherent description of the g
field dynamics at central rapidities. Their model allows f
solving the Yang-Mills equations in 211 dimensions within
a static light cone source model and provides classical co
ent solutions on a gauge lattice in the transverse plane a
center of collision@10#. The basic idea of this approach m
tivates the development of a combination of the parton c
cade model@3# with a coherent description of the initia
states.

Recently, we have proposed a combination of a ga
lattice description for the soft color fields with a transpo
model for color charged particles@11#. Leaving out the col-
lision terms first, this model then has been applied to sim
late the collision of clouds of color charged particles acco
panied by soft color fields in 311 dimensions@12#. The field
energy distributions obtained for times shortly after the c
lision have shown transverse energy flows resulting fr
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glue field scattering in the center of collision. For tim
larger than 1 fm/c glue field radiation seemed to be dom
nant. The sudden appearance of transverse energy flows
ing the overlap time of the nuclei was the motivation to stu
here the pure glue mean field dynamics leaving out the p
ticles.

The time evolution of colliding Yang-Mills field wave
packets was studied a few years ago in 111 dimensions
@13#. These calculations have shown that wave packets
parallel polarization in color space~Abelian case! do not
interact whereas wave packets polarized in different co
directions~non-Abelian case! decay after the collision into
low frequency modes. This mechanism of a coupling b
tween high-frequency short-wavelength modes and lo
frequency long-wavelength modes in the Yang-Mills equ
tions was first observed in numerical simulations of decay
slightly perturbed standing Yang-Mills waves@14#.

In the present paper, we focus on the transverse dynam
and the coupling between longitudinal and transverse ene
flows in collisions of localized Yang-Mills field configura
tions. A study of the transverse dynamics requires simu
tions in at least 211 dimensions. Subsequently, we descri
the method used to solve the Yang-Mills equations a
present results obtained from collisions simulated in 311
dimensions on a SU~2! gauge lattice. These studies also r
veal an interesting behavior of the time-evolution of no
Abelian gauge fields.

II. TIME EVOLUTION ON THE GAUGE LATTICE

In the Lie algebra LSU~2!, we define the adjoint gaug
fieldsA m(x)ªAc

m(x)Tc and the adjoint field strength tenso
F mn

ªFc
mnTc. Einsteins sum convention has to be applied

the Euclidean metric for upper and lower color indices and
the Mincowski metric for upper and lower Greek indice
The symbolsTc with color indexc51,2,3 denote the gen
erators of LSU~2! obeying the commutation relation
@Ta,Tb#25 i f abcT

c and henceA m(x),F (x)
mnPLSU(2) for all

xeR4. Here, we chose the representationTc51/2sc with the
Pauli matricessc. Further below, we use alsoT0

ª

1
2 12

which is linearly independent from the generatorsTc. With
©1999 The American Physical Society05-1
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these conventions, we denote the Yang-Mills equations
the short form

@Dm ,F mn#250, ~1!

whereDm is defined

Dmª]m2 igA m. ~2!

With this definition of the covariant derivativeDm on the
SU~2! main fold, and with the definitionsE m(x)
ªEc

m(x)Tc, B m(x)ªBc
m(x)Tc @E m(x),B m(x)PLSU(2)# of

the adjoint color electric and color magnetic field quantiti
the Yang-Mills equations Eq.~1! can be expressed in a form
which resembles the U~1! Maxwell equations in the vacuum

@DW ,EW#250, ~3!

@DW ,BW #250, ~4!

@DW 3,EW#25@D0 ,BW #2 , ~5!

@DW 3,BW #25@D0 ,EW#. ~6!

With the condition@A(t,xW ),A(t,xW8)#250 for all xW ,xW8PR3

for one arbitrary real timet, the equations~3!–~6! become
identical with the Maxwell equations. In this so-called Ab
lian @or U~1!# case, one expects a linear behavior of the
lution and it therefore provides an important test throu
comparison with the solution in the general non-Abeli
case. The Yang-Mills equations can be solved in an effic
manner on a gauge lattice in a Hamiltonian framework wh
we choose the temporal gaugeA 050.

A lattice version of the continuum Yang-Mills equation
is constructed by expressing the color field amplitudes
elements of the corresponding Lie algebra, i.e.,ExW ,k ,BxW ,k
PLSU(2) at each lattice sitexW . Subsequently, we use th
index symbolsj ,k,l 51,2,3 for the directions in the Euclid
ian subspaceR3. On the lattice the following variables ar
defined:

UxW ,l5exp@2 igalAl~x!#5U xW1 l ,2 l
† , ~7!

UxW ,kl5UxW ,kUxW1k,lUxW1k1 l ,2kUxW1 l ,2 l ~8!

In adjoint representation the color electric and color m
netic fields are expressed in terms of the above defined
variablesUxW ,l and plaquette variablesUxW ,kl in the following
way:

ExW , j5
1

igaj
U̇xW , jU xW , j

† , ~9!

BxW , j5
i

4gakal
e jkl~UxW ,kl2U xW ,kl

† !. ~10!

The lattice constant in the spatial directionsl 51,2,3 is de-
noted byal . As one can see from Eq.~7!, the gauge field
AxW ,l is expressed in terms of the link variablesUxW ,l
PSU(2), which represent the parallel transport of a fie
11450
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amplitude from a sitexPX to a neighboring site (x1 l )PX
in the directionl . We chooseUxW ,l andExW ,l as the basic dy-
namic field variables and numerically solve the followin
equations of motion:

U̇xW ,k~ t !5 igakExW ,k~ t !UxW ,k~ t !, ~11!

ĖxW ,k~ t !5
i

2ga1a2a3
(
l 51

3

$UxW ,kl~ t !2U xW ,kl
† ~ t !

2U xW2 l ,l
† ~ t !@UxW2 l ,kl~ t !

2U xW2 l ,kl
† ~ t !#UxW2 l ,l~ t !%. ~12!

III. CALCULATIONAL PROGRAM

In order to guide the reader through the remaining s
tions of this manuscript, we here first explain the calcu
tional program the results of which will be reported in th
remainder of our paper. The program has two major parts
the first part, our goal is to establish contact with the resu
reported by Huet al. @13# on collisions of Gaussian wav
packets of Yang-Mills fields in on spatial dimension. Tho
results showed that the interactions of two counterpropa
ing wave packets are strongly inelastic whenever the or
tations of the color vectors are not exactly parallel.

Because we are here studying Yang-Mills dynamics
three-dimensional lattices, we will choose initial conditio
that resemble those of Ref.@13# as closely as possible, ye
involve two transverse dimensions. Our two count
propagating wave packets are chosen to have a Gaus
shape in the longitudinal direction and no dependence a
in the other two spatial directions. In other words, we stu
collisions of plane wave packets with a Gaussian longitu
nal profile. ~These wave packets would be similar to ultr
short pulses of nearly monochromatic light emitted by a fe
tosecond laser.! We do not claim that this calculation~for
Yang-Mills fields! bears close semblance to any situati
that could occur in practice, but it is purely for comparati
purposes.

The wave packets are characterized by the average lo
tudinal wave numberk̄3 , the Gaussian widthDk3 of the
wave packet in Fourier space, the intensity of the plane w
packet, and their polarization in real and in color space.
express the intensity of the wave packets in terms of a
rameters, denoting the cross sectional area containing
amount of energy equal to a single field quantum. It will
of importance to understand whether the wave packet in
actions correspond to a regime of weak coupling or not. T
condition for weak coupling isgA2! k̄3A or aA/ k̄3!1,
whereA is the amplitude of the wave packet. For the para
eter choices of the following section~k̄3a5p/2, Dk3a
5p/100, s5100a2! this condition reads

gA

k̄3

5
g

25p5/4
!1, ~13!
5-2
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REAL TIME DYNAMICS OF COLLIDING GAUGE . . . PHYSICAL REVIEW D 60 114505
and thus is satisfied for all considered values of the coup
constant (g<14). Therefore, we do not expect that our r
sults presented below are contaminated by lattice artifac

As will be seen in the next section, our results do n
deviate drastically from those of Huet al. @13#. Colliding
wave packets with essentially nonabelian polarization in
act inelastically. Part of the energy initially residing in th
longitudinal motion is transferred into transverse degree
freedom~this effect could, of course, not be studied by t
previous authors who considered only one-dimensional
namics!. The time between initial interaction and clear em
gence of the inelasticity grows with decreasing value ofg in
a manner consistent with results from other studies of
dynamical instabilities of real-time Yang-Mills fields@14#.
While the presence of transverse dimensions obviou
changes the quantitative results in comparison with the
vious one-dimensional analysis, the results are qualitativ
similar. The interaction of the two colliding wave packets
analyzed in detail perturbatively in the two appendix
There we show analytically how, in the limit of weak co
pling, transverse degrees of freedom of the Yang-Mills fi
are excited by the interactions of two plane wave pack
and that the time required for the full development of t
scattered components grows asg22.

In the second part of our numerical program, we study
collision of two wave packets that are spatially localized
one of the two transverse dimensions. We still consi
Gaussian longitudinal profiles, not because we believe
they are physically realistic, but rather so that we do
change too many properties of the interacting waves at o
The transverse localization allows us, for the first time,
investigate the decoherence of individual components of
wave packets in the transverse direction, as it must occu
any truly three-dimensional scattering event. This was s
impossible in the cases of the first part of our present stu
because of the transverse homogeneity of the wave pac

The results of our numerical calculations show that
transverse dimensions play a much more significant role
finite size wave packets. The main effect of the interact
among the two wave packets no longer appears to be sim
the excitation of transverse field components, but the t
disintegration of the wave packets themselves. We have
been able to analyze this effect in detail analytically, but o
numerical results are consistent with the rapid break-up
the coherent wave packets into localized field lumps a
certain time after the initial interaction.

It may appear puzzling why the disintegration occurs w
a significant time delay. For this we note that the wave pa
ets propagate essentially with the speed of light~except for a
slight delay due to lattice artefacts of the dispersion relatio!.
The appearance of any disturbance in the structure of
wave packet is thus highly time dilated when viewed fro
the center-of-momentum frame. The decoherence of the
ferent components of the perturbed wave packets occurs
a long delay, just as in the case of radiation by a fast-mov
charged particle, where the delay is known as the Land
Pomeranchuk-Migdal effect@15#. It would be interesting to
analyze the phenomenon reported below in terms of th
concepts, but we have not yet done so.
11450
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IV. NUMERICAL RESULTS

A. Collision of plane wave packets

First, we study the collision of plane wave packets whi
have initially constant amplitude in the transverse planes
three-torus lattice implying periodic boundary condition1

The size is chosen 2032032000 lattice points. We denot
the lattice spacing in the space directionl by al . For a col-
lision, we initially arrange wave packets of a Gaussian sh
in the longitudinal direction.2 The average momenta of th
wave packets are (0,0,6 k̄3) and their momentum spread
denotedDk3 . As a consequence of the lattice discretizati
these quantities are restricted to values between the max
and minimal Fourier-momenta on the lattice:

kl
min5

p

~Nlal !
, kl

max5
p

~Nlal !
, ~14!

kl
min!Dkl! k̄l!kl

max. ~15!

The polarization in color space is defined by the unit vect
nW L for the left (L) andnW R for the and right (R) moving wave
packet, respectively. The polarization in coordinate spac
expressed by Kronecker symbolsd l ,k .

We express the initial conditions through the gauge fie

Al ,L
c 5d l1nL

cf~1t,x32ZL!, ~16!

Al ,R
c 5d l1nR

c f~2t,x32ZR!, ~17!

where the scalar functionf(t,x3) defines the initial wave
packet

f~ t,x3!5f0 expS 2
1

2
Dk3

2~ t1x3!2D cos@ k̄3~ t1x3!#,

~18!

f05A~2Dk3!/~Aps k̄3!~11e2( k̄3 /Dk3)2
!.

~19!

The amplitude factorf0 is determined for a normalized
wave packet whens5100a1a2 . The parameters is used to
control the amplitude and allows to adjust the energy c
tained in a wave packet. In a particle interpretation it d
scribes the total cross section per particle contained in
wave packet@13#. The second term inf0 is usually negligi-
bly small for wave packets sincek̄3 /Dk3@1. We chose the

1The periodic boundary conditions are a consequence of the t
topology. In the computer program, the indexi l of the lattice sites
runs from 0 toNl21. Wheni l reaches the valueNl , it is set toi l

50.
2Gaussian wave packets are taken for reasons of simplicity.

believe that the main features of the results presented in this p
do not depend on the detailed shape of the colliding wave pack
This expectation is supported by a recent calculation which show
time-delayed sudden increase of the transverse energy curren
colliding field configurations of a very different shape@16#.
5-3
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polarizations in color spacenW R5nW L5(0,0,1) for the Abelian
case andnW R5(0,0,1),nW L5(0,1,0) for the non-Abelian case
Once the initial fields are mapped on the lattice, the ti
evolution of the collision starts from the superposed init
conditions

U xW ,l
(0)5U xW ,l ,L

(0)
•U xW ,l ,R

(0) , ~20!

E xW ,l
(0)5E xW ,l ,R

(0) 1E xW ,l ,L
(0) , ~21!

respectively. A linear superposition of solutions obeys
Yang-Mills equations only if these solutions have no ov
lap. Therefore, the initial separationDZ should be much
larger than 1/Dk3 .

The calculation contains four parameters. The relat
color polarization which is parameterized by the angleuC
defined throughnW L•nW R5cos(uC). The average momentum o
the wave packetsk̄ and their widthDk3 and the coupling
constantg which can be rewritten in terms of the parame
s as g85g/As by simultaneously rescaling the fieldA as
A85AsA. Consequently, the system shows the same
namics for different values ofg and s, as long as the ratio
g85g/As is kept fixed. Multiplying the Eq.~33! in Sec. IV
by a factorg, shows that each amplitudeA m absorbs ag
such that nog is left over in Eq.~33!. For k̄3@Dk3 , the
energy contained in one wave packet is essentiallyk̄3 /s,
i.e., for givenk̄3 the energy is determined through the a
plitude and vice versa the amplitude is thus fixed by
energy. Once the amplitude is fixed, it makes sense to use
coupling constant as an additional parameter which de
mines the reaction dynamics of colliding wave packets. T
is preferable also in view of studies in the future where n
malized Dirac fields or color charged classical particles s
be included. In such casesg appears also in front of the
source current of the inhomogeneous Yang-Mills equatio
We therefore keep the explicit denotation ofg in the subse-
quent sections.

In the following we present results from a simulated c
lision in the non-Abelian case with the parametersk̄3
5p/(2a3), Dk35p/(100a), g51, s5100a251.0 fm2.
The simulation was performed on a uniform lattice with co
stantsa15a25a35a using a time step sizeDt5a/10. If we
would consider a collision of nuclei at low energies,a
50.1 fm would be an appropriate choice for the above
rameter settings. In particular,Dk35p/(100a) corresponds
thus to a FWHM~full width half maximum! of 10 fm which
is approximately the diameter of a208Pb nucleus. It is impor-
tant to note that for the above chosen values, the calcula
runs in the regime of weak coupling.3 Subsequently, we refe

3By ‘‘weak coupling’’ on the lattice, it is understood that th
phase anglesgalEx,l

c Dt for each spatial directionl are much smaller
than 2p. The link matrices are updated according toUx,l(t1Dt/2)
5exp@2igalEx,l(t)Dt#•Ux,l(t2Dt/2). They have to obey the con
dition Ux,l(t1Dt/2).1. Further, the phase angles 0.5g« jklajakBx,l

have to be small.
11450
e
l

e
-

e

r

y-

-
e
he
r-

is
-
ll

s.

-

-

-

on

to the direction of the collision axis as the ‘‘longitudina
direction’’ and to directions perpendicular to the collisio
axis as the ‘‘transverse directions.’’ Accordingly, we defi
the transverse and longitudinal energy densities of the c
electric field

wT
(E)~ t,x3!5E dx1dx2(

l 51

2

Tr@El~ t,xW !El~ t,xW !#, ~22!

wL
(E)~ t,x3!5E dx1dx2 Tr@E3~ t,xW !E3~ t,xW !#.

~23!

Figure 1 displayswT
(E) plotted over thex3 coordinate at vari-

ous time stepstn as indicated on top of the curves.
At initial time t0 the distributionswT

(E)(t0 ,x3) of the wave
packets are completely filled resulting from the strong os
lations in the longitudinal direction according tok̄3
5p/(2a3). After 1500 time steps the wave packets are c
liding and have reached maximum overlap. The smo
white zone at the bottom results from a phase shift betw
the two superposed waves, i.e., the maxima of the w
packet ~1! to not coincide with the maxima of the wav
packet~2! at time stept1500. After the wave packets hav

FIG. 1. Transverse energy densitieswT
(E)(t,x3) are plotted over

the collision axis~longitudinal coordinate! for selected time steps
tn .
5-4
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REAL TIME DYNAMICS OF COLLIDING GAUGE . . . PHYSICAL REVIEW D 60 114505
passed through each other~at aboutt2500!, a small white zone
remains in the distributionwT

(E)(x3) of each and keeps con
tinuously growing. At time stept6000 (t5600a) the large
fraction of the initial high frequency oscillations is reduc
to a small remaining contribution visible on the surface
the distributions in Fig. 1. The height of the two recedi
humps decreases accordingly while the energy carried
each wave packet is constant in time. Almost all the ene
which has originally been carried by short wavelength mo
aroundk̄3 has been transmitted into long wavelength mod
which have filled up the vallies in the oscillating distributio
wT

(E)(x3). This behavior agrees qualitatively with results o
tained in Ref.@13# where collisions of wave packets hav
been studied on a one dimensional gauge lattice and
times not largert5600a. At time stept8000, however, we
observe that energy is partly transmitted back into high
quent modes before the wave packets start to decay ar
time stept10000. At time stept14000, the energy distribution
has expanded into longitudinal direction. The appearanc
a circular polarization of the receding wave packets could
principle lead to the same behavior before they decay. T
possibility, however, is excluded by our numerical resu
which show—in the case of plane waves—no excitation
modes withx2 polarization for all times. This can be verifie
down to floating point precision but it has also a fully an
lytic explanation through Eq.~33! in Sec. IV forn52.

This behavior does not appear in a collision of wave pa
ets which are equally polarized in color space. In this c
the shape of the two humps in the distributionwT

(E)(x3) at the
time stept14000 is almost identical to the shape at timet0 .
Deviations result from lattice dispersion.

In Fig. 2, the corresponding longitudinal energy densit
wL

(E)(t,x3) are displayed on a logarithmic scale for selec
time stepstn . We remember that the wave packets we
initially polarized into the transversex1 direction and conse
quently wL

(E) has to be zero as long as they propagate fr
However, when the colliding wave packets of different co
start overlapping, we observe an increasing longitudinal
ergy density in the overlap region around the center of c
lision at x35100 fm. Figure 2 clearly shows thatwL

(E)(t,z)
grows rather fast from time stept1000 until time stept1500
where it reaches a maximum and has grown by more t
two orders of magnitude. For larger times the hump
creases again and practically disappears att3000. Around
t6000, however, the longitudinal energy density grows ag
at the positions of the receding wave packets. After 100
time stepswL

(E)(z) has increased by five orders of magnitud
A comparison of Fig. 1 with Fig. 2 indicates that the to

color electric field energy on transverse links of the latt
decreases at large times while the total color electric fi
energy on longitudinal links increases. In order to underst
this behavior in detail, we explore the time dependence
these quantities for different values of the coupling consta
To be more precise, we define the transverse and longit
nal energy of the color electric fields as

WT
(E)~ t !5E dx1dx2dx3(

l 51

2

Tr@El~ t,xW !El~ t,xW !#, ~24!
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WL
(E)~ t !5E dx1dx2dx3 Tr@E3~ t,xW !E3~ t,xW !#. ~25!

The integration in the definitions~24! and~25! is carried out
over the whole lattice.

Figure 3 displaysWT
(E)(t) over a time interval of 600a

which corresponds to 6000 time steps. The energies are c
pared for different values of the coupling constantg. As
already mentioned above, values of the coupling cons
which differ fromg51 can be scaled out with the amplitud
of the wave functions. The amplitude of wave packets, ho
ever, determines the energy carried by a wave. Once
energy is fixed by describing a real physical system, it ma
sense to use different values of the coupling constant. H
the collision is performed for wave packets which are n
malized toN1N2a2/s particles and we refer to different va
ues ofg.

Figure 3 shows that for small coupling,WT
(E)(t) remains

unchanged through a long period of time after the collis
which occurs in an interval around the time stept1500. For
g54 the transverse color electric energy starts to decre
around time stept5000. A comparison with curves obtaine
for increasing values ofg shows that theWT

(E)(t) begins to
decrease at earlier times. For the largest valuesg
510,12,14, the decrease begins in the overlap region of

FIG. 2. Longitudinal energy densitieswL
(E)(t,x3) are plotted

over the collision axis~longitudinal coordinate! for selected time
stepstn .
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wave packets. In these cases, strong oscillations occur in
overlap region. The magnetic field energiesWT

(B)(t) show a
very similar behavior. The total energy of both wave pack
is 24.76 GeV for our numerical choicea50.1 fm.

Figure 4 displays the corresponding longitudinal field e
ergy WL

(E)(t). Before the wave packets start to overlap w
find WL

(E)(t)50 to a very high precision (10226). In the
overlap region, a humplike structure occurs which grows
increasing values ofg. For small values ofg, WL

(E)(t) van-
ishes after the wave packets have passed through each o
After a long time WL

(E)(t) grows very steeply. Figure 4
shows clearly that the time between overlap and sud
growth shrinks for increasing couplingg. We find, that this
time difference scales as 1/g2. Now the question arise
whether the energy deposit in longitudinal links can be as
ciated with fields propagating into transverse directions.
define energy currents, the Poynting vector is denoted in
adjoint representation

SWªcEW3BW . ~26!

With the transverse and longitudinal components of the v
tor ~26! the total transverse and longitudinal energy curre
are defined

i T~ t !ª(
l 51

2 E dx1dx2dx32uTr@Sl~ t,xW !#u, ~27!

FIG. 3. The transverse color electric field energyWT
(E)(t) as a

function of time is displayed for different values of the couplin
constantg. The time step width of each time step isDt5a3/10
50.01 fm.
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i L~ t !ª(
l 53

3 E dx1dx2dx32uTr@Sl~ t,xW !#u. ~28!

These definitions may be applied in the regime of weak c
pling to calculate the field energy currents.

In the following Fig. 5, we show the total transverse e
ergy currenti T(t) in the overlap time region for differen
values of the coupling constant. The figure shows that th
is no transverse energy current before the wave packets
to overlap. In the overlap time region between the time st
t800 andt1500, we observe a strong increase of the transve
energy current. The maximum is reached at time stept1500
where the overlap is maximal. At decreasing overlap in ti
region betweent1500 andt2200, i T(t) vanishes. The height o
the humps increases for increasing values ofg and scales as
1/g2. To become more precise, in the time region of t
humps as shown in Fig. 5, the transverse current implies
oscillating structure of the time periodTt5l̄/4 over which
we have averaged to obtain the smooth curves in Fig. 5.l̄ is
here defined asl̄5(2p)/k3 . In the upper left panel in Fig
5, we show an example fork̄35p/(4a3) in the caseg58 in
which no averaging has been done. The curve display
period ofTt52a3 according tol̄58a3 . No averaging was
necessary for times after the overlap time region.

Fig. 6 displays the same transverse energy currents as
5 but for a larger time interval and on a larger scale. N
that the current is plotted in units of@ i T(t)#5c GeV in Fig. 6

FIG. 4. The longitudinal color electric field energyWL
(E)(t) as a

function of time is displayed for different values of the couplin
constantg. The time step width of each time step isDt5a3/10
50.01 fm.
5-6
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but in units@ i T(t)#5c MeV in Fig. 5. After passing through
the hump region between time stept800 andt2000, the energy
current tT(t) disappears. For the smallest couplingg54, it
takes about 3500 time steps ort.35 fm from maximum
overlap until to the point wherei T starts to regrow. This
time, i T grows to much larger values and stays large at la
times. The time delayt depends ong,Dk3 ,k̄3 . We find that
t;1/g2 but haven’t studied carefully the dependence onDk3

and k̄3 . For large k̄3 , one can argue analytically thatt
; k̄3

3/4. This will be further discussed in Appendix B. Som
few calculations for smallerk̄3 have shown thatt increases
monotonically for increasingk̄3 . The sudden increase ofi T
defines the ‘‘glue burst.’’ For large coupling it occurs a
ready in the overlap region.

The following Fig. 7 displays the corresponding longit
dinal energy currentsi L(t). It shows thati L decreases at th
same time wheni T increases.

B. Collision of transverse finite wave packets

Subsequently, we present some results from the collis
of wave packets with a finite transverse extent. We h
carried out similar calculations as in the case of plane wa
and found a similar, but even more pronounced behavior
the time dependence of the transverse and longitudinal

FIG. 5. The total transverse energy currenti T(t) as a function of
time is displayed for different values of the coupling constantg.
The average longitudinal momentum of the colliding wave pack

is k̄35p/(2a3). In the upper left window, the full time-dependenc
of the transverse energy current is displayed at the exampleg58

and k̄35p/(4a3).
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FIG. 6. Same as in Fig. 5 but for a larger time interval and o
larger scale for the transverse energy currenti T(t).

FIG. 7. The longitudinal energy currentsi L(t) corresponding to
the cases shown in Fig. 6 are displayed.i L(t) decreases at the sam
time wheni T(t) increases.
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ergy currents. Most of the calculations were carried out o
lattice of the size 432003800 points. The wave packet
have been initialized in the same way as in the case for p
wave packets. However, the initial wave functions depe
now also on the transverse coordinates. Since a lattice
the same extension in both transverse directions would
to an exceedingly large number of lattice points, we chos
small number of lattice points in thex1 direction. Thus, we
study the dynamics of a collision in the (x2 ,x3) plane inte-
grated over thex1 coordinate. Under these restrictions, t
scalar functionf(t,x2 ,x3) defines the initial wave packet

f~ t,x2 ,x3!ªf0 expS 2
1

2
Dk3

2~ t1x3!2D
3exp@2~Dk2x2!a#cos@ k̄3~ t1x3!#, ~29!

f0ªA~2Dk3!/~Aps k̄3!. ~30!

The additional factor exp@2(Dk2x2)
a# describes the shape o

the wave packet in the transversex2 direction. The paramete
Dk2 determines the transverse width and the parametea
controls the transverse shape. For large values ofa, we ob-
tain a sharp surface and the exponential tails are suppre
Since the transverse extension of the lattice is limited,
choose the extension of the initial wave packet in thex2
direction small enough to leave space for the transverse
namics after the collision. Good values areDk251/(40a2)
and a58. The wave packet is thus 8 fm wide and exten
over 80 lattice points into the main transverse direction. F
ther outside the amplitude is practically zero sincea is large.
For Dk35p/(100a3), the full width at half maximum
~FWHM! in longitudinal direction is 10 fm.

With the functionf(t,x2 ,x3) we determine the initial link
variables and the color electric field amplitudes and m
these data on the lattice at the initial positions of the wa
packets. For a collision, the wave packets have opposite
erage momenta6 k̄3 . The evolution of the collision is car
ried out in the same way as for plane wave packets. Figu
shows snapshots of the transverse energy density of the
electric fields which we define as

wT
(E)~ t,x2 ,x3!5E dx1(

l 51

2

Tr@El~ t,xW !El~ t,xW !#. ~31!

The simulation shown in Fig. 8 has been carried out for
non-Abelian case and with a couplingg56. The other pa-
rameter settings are as for plane waves above. The uppe
picture shows the distribution for the time stept100 where the
shape has almost not changed as compared to the initial
tribution. The wave packets decay into the transverse di
tions while they propagate free over the lattice. The up
right picture displayswT

(E)(t1500,x2 ,x3) at maximum over-
lap. In the middle leftwT

(E)(t3500,x2 ,x3) is displayed. The
distribution is almost identical with that obtained in the Ab
lian case at the same time stept3500. At the time stept4000,
11450
a

ne
d
ith
ad
a

ed.
e

y-

s
r-

p
e
v-

8
lor

e

left

is-
c-
r

however, the waves packets start to burst in non-Abe
case. The last two images correspond to the time stepst5000
and t6000.

In the Abelian case the wave packets continue to pro
gate undisturbed after the collision. Their time evoluti
agrees with that of a single wave packet sent from the lef
the right or from the right to the left, respectively. The ca
culation has been repeated with different lattice sizes as
example on a 4330031000 lattice and with smaller value
for the time step width. No significant changes in the tim
evolution of the solution have been found. The possibil
that boundary effects might lead to the time-delayed sud
decay is excluded. As already outlined above, the lattice
closed to the three-torus which implies periodic bound
conditions. Consequently, there are no points or links w
exceptional conditions on the lattice. In the case of collidi
plane waves, the symmetry under translation in transve
directions excludes boundary effects. The time-delayed s
den increase of the transverse field energy current appea
colliding plane waves which initially have different polariza
tion in color space but it does not appear in the Abelian c
which is identical with Maxwells field theory of U~1! gauge
symmetry. The time-delayed burst in colliding wave pack
of finite transverse extension, however, could result fr
small waves emitted into both transverse directions dur
the overlap time. Such waves could propagate around
lattice in transverse direction and collide again with the wa
packets. There are two reasons excluding such a scen
First, the time delay of the burst should then depend on
transverse number of lattice points. Such a dependence c
not be found. Second, a transversely emitted perturba
does not reach again either wave packet since its spee
limited. On the other hand, the sudden increase of the tra
verse energy current after the collision exists in the n
Abelian case of colliding plane waves. It therefore exists a
in collisions of transverse finite wave packets.

V. ANALYSIS OF THE YANG-MILLS EQUATIONS

In the following, we present the explanation of the gl
burst solution by analyzing the Yang-Mills equations~1!.
The details of the discussion are presented in Appendix
With the definition of the field tensorF mn

ªD mA n

2D nA m, we rewrite Eq.~1! for the gauge fields in the ad
joint denotation

@Dm ,~D mA n2D nA m!#250. ~32!

With the definition of the derivativeD m in Eq. ~2! follows:

]m]mA n5]m]nA m1 ig]m@A m,A n#21 ig@Am ,]mA n#2

2 ig@Am ,]nA m#21g2
†Am ,@A m,A n#2‡2 .

~33!

Since the time-delayed burstlike behavior of the solution
curs also in the case of colliding plane wave packets, we
consider this case. The phenomenon occurs in two steps.
based on a delicate interplay of color degrees of freed
5-8
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FIG. 8. The transverse color electric field energy densitywT
(E)(t,x2 ,x3) is shown for six selected snapshots taken at the time stepst100,

t1500, t3500, t4000, t5000, andt6000. The corresponding pictures are ordered from the upper left to the lower right.
v
on

m
is
ld
between the color subspaces span(T1 ,T2) and span(T3) and
between transverse and longitudinal degrees of freedom
the field amplitudes.

The first step occurs in the overlap region of the wa
packets in both, time and space. The Yang-Mills equati
11450
in

e
s

provide a mechanism which transfers field energy fro
transverse into longitudinal field degrees of freedom. It
explained by the equation for the longitudinal gauge fie
components which follows from Eq.~33! for n53. For plane
wave packets, only the fourth term and theg2-term do not
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vanish on the right-hand side~RHS! of Eq. ~33! in the case
n53 and therefore the equation

]m]mA (3)52 ig@Am ,] (3)A m#21g2
†Am ,@A m,A (3)#2‡2

~34!

describes the dynamics of the longitudinal fieldsA (3) during
the overlap time. In Eq.~34! and subsequently, we deno
number values of the Lorentz indices in parentheses in o
to distinguish them from number values of the color indic
The Greek symbols, however, are further on used with
parentheses since it is clear from above that they denote
entz indices. A summation occurs only over upper and low
index symbols, not for numbers. For reasons of simplic
we begin the discussion for the case where the longitud
fieldsA (3) remain small throughout the overlap time in com
parison to the transverse fields of the initial wave pack
This implies that each color component inA (3) is small. For
initially polarized wave packets, as defined in the initial co
ditions in Sec. III, the above is equivalent to the assumpt
that the spatial componentsA3

m are small in the third color.
The explanation is given in Appendix A.

For large enoughk̄3 , the time intervals in which the over
lap within the period of one pair of overlapping oscillatio
increases are short, preventingA(3) from becoming large.
One can also argue, that for largek̄3 both wave packets ar
located in widely separated regions in momentum space.
discussion of the mechanism provided by Eq.~39! shows
that this large separation also preventsA(3) from growing
rapidly. Further,Dk3 should not be too large since the ove
lap time of the wave packets~and thusA(3)! grows with
Dk3 . Under these conditions, the field amplitudes obey
inequalities uAm

3 A3
mu!uAm

1 A1
mu and uAm

3 A3
mu!uAm

2 A2
mu during

the overlap time. Consequently, terms on the RHS of
~34! which contain amplitudesAm

3 are negligibly small.
These terms contain factorsT1 andT2 , i.e., they contribute
to the first and second color. For simplicity and briefne
these small terms are neglected preliminary. The remain
terms on the r.h.s. act as source terms only for the third c
component inA (3) on the left-hand side~LHS! of ~34! while
the other color components remain zero. The remaining la
terms on the RHS are

2 ig@Am ,]3A m#2.g~Am
1 ]3A2

m2Am
2 ]3A1

m!T3 , ~35!

g2
†A(1) ,@A (1),A (3)#2‡25g2A(1)

1 A1
(1)A3

(3)T3

2g2A(1)
3 A1

(1)A3
(3)T1

1g2A(1)
2 A2

(1)A3
(3)T3

2g2A(1)
3 A2

(1)A3
(3)T2. ~36!

The validity of the above inequality has~for example! been
well verified for the parameter values used in the calculat
of the numerical results presented in the previous sect
The results demonstrate that in the overlap time the long
11450
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dinal energy densities are smaller by at least one orde
magnitude in comparison to the transverse energy densi

In the region ofk̄3 , Dk3 andg where the above inequali
ties do not hold, all terms on the RHS of Eq.~34! have to be
taken into account in the discussion. The inclusion of
additional terms makes the discussion more involved si
the color componentsA1

(3) and A2
(3) can no longer be ne

glected. This case will be considered further below. In ca
for which the above inequalities are valid, the dynamics
the longitudinal fields in the overlap time is described
leading approximation, by the following equation:

]0]0A 3.g~Am
1 ]3A2

m2Am
2 ]3A1

m!T31g2A(1)
1 A1

(1)A3
(3)T3

2g2A(1)
3 A1

(1)A3
(3)T11g2A(1)

2 A2
(1)A3

(3)T3

2g2A(1)
3 A2

(1)A3
(3)T2. ~37!

The orderg term on the RHS of Eq.~37! acts as a source
term for the third color component of the longitudinal gau
field A (3)(t,xW ). When the wave packets start to overlap, t
space integral over this source term

I 3~ t !ªgE d3x@Am
1 ~ t,xW !] (3)A2

m~ t,xW !2Am
2 ~ t,xW !] (3)A1

m~ t,xW !#

~38!

starts to grow. As Fig. 9 shows in a simplified manner, t
derivative ] (3)A1

m is negative in the overlap region at th
beginning and] (3)A2

m is positive. Consequently,I 3(t).0 at
times before the wave packets have reached maximum o
lap. After the maximal overlap the derivatives change
sign andI 3(t),0.

Figure 9 displays in a qualitative manner the overlapp
of two wave packets. The situation occurs in principle f
each pair of overlapping oscillations~each taken between
two minima! in colliding oscillating wave packets for which
k̄3.0. The corresponding time dependent behavior of
source currentI 3(t) at k̄350 is depicted in Fig. 10. When
the penetrating wave humps increase their overlap, the
gitudinal contribution I 3(t) to the source increases firs
Since the derivative on the opposite side of both humps
opposite sign, the source term changes the sign as soo
the two humps have passed the maximum overlap. The
cussion of step one in the collision applies in principle f
each overlapping pair of wave humps where each hump
wave packet~1! passes through each hump of wave pac
~2! during the collision.

As the source termg(Am
1 ] (3)A2

m2Am
2 ] (3)A1

m) grows in
time, the longitudinal gauge fieldA (3)(t,xW ) grows. At the
time of maximal overlap, the source current changes the s
and cancels the fieldA (3)(t,xW ) as shown qualitatively by the
dashed curve in Fig. 10.

During the whole time interval in which the wave packe
pass through each other the finite longitudinal gauge fi
A (3)(t,xW ) enters into the last term on the RHS of Eq.~33!
leading to an additional but small contribution to the sou
term as long asg is not too large. For largeg2, theg2 term
5-10
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takes over during the overlap time as soon as the ordeg

term has generated a finite amplitudeÃ(3). In this case, the
burst occurs during the overlap phase. For largek̄3 and small
Dk3 the operator] (3) in the first RHS term of Eq.~37! is
approximately replaced by a factork̄3 . This shows that theg
term is larger than theg2 term for not too largeg. Indeed,
our calculations show that for not too large values ofg (g
,10) and for small overlap times, i.e., smallDk3 , the con-
tribution from theg2-term remains small compared to th
contribution resulting from the first source term on the rhs
Eq. ~37!. The g2 term itself acts only as a weak source
long asA (3) is small and it zero as long asA (3) is zero. In
particularA (3)50 just before the beginning of the overla
A finite longitudinal amplitudeA3

(3) has first to be generate
which is done by the fourth term on the rhs of Eq.~33! or the
first term on the RHS of Eq.~37!, respectively. This orderg
term acts as a initiator for theg2 term. It also switches off
again its contribution to the longitudinal gauge field wh
the wave packets have passed the maximum overlap.
fourth term goes to zero at vanishing overlap and does
contribute any further in the receding wave packets. Ho
ever, the g2 term causes a finite but small contributio
DA (3)(t) to the longitudinal gauge field during the overla

FIG. 9. Two colliding wave humps represented by gauge fie
A1 and A2 at the beginning of the overlap. The wave packets

defined by f(t,x3)5f0 exp@21/2Dk3
2(t1x3)2#cos@k̄3(t1x3)#

where only one hump is plotted for each in the range (2n21/2)p
<k3(t1x3)<(2n13/2)p between the positions of two minima
The minima are shifted to zero. The initial polarization is defined
the Eqs.~16! and~17!. The productsAm

1 ] (3)A2
m andAm

2 ] (3)A1
m ~plot-

ted as dashed lines! of the field amplitudes~solid lines! contribute
to a source current in the longitudinal Yang-Mills equation.
11450
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time. The qualitative time dependent behavior of this con
bution is shown by the solid line in Fig. 10.DA (3)(t) which
is not canceled after the overlap is proportional to the surf
under the dashed curve@Ã(3)(t)# in Fig. 10. The fat solid
curve depicts the time dependent behavior of the total lon
tudinal fieldA (3)(t) while the dashed curve is obtained with
out g2 term.

As a consequence of this mechanism, a small longitud
field A (3)(t,xW ) is left over in the receding wave packets. Th
contribution initiates the second step which forms the bu
itself. Without restriction of the general case, we assume
the first wave packet is initially polarized in span(T1) and
the second wave packet is polarized in span(T2). As soon as
the wave packets obtain a small contribution in the gau
field componentA3

(3) , the spatial componentA (1) starts to
change the polarization in color space. In wave packet~1! the
componentsA2

(1) and A3
(1) grow whereasA1

(1) decreases ac
cordingly. In wave packet~2! the componentsA1

(1) andA3
(1)

grow whereasA2
(1) decreases accordingly. This behavior r

sults in a rapid change of theT3 terms on the rhs of Eq.~37!.
It is explained by the Yang-Mills equation for the first com
ponent which follows from Eq.~33! for n51. Analyzing the
RHS terms, we find

s
e

y

FIG. 10. The longitudinal contributionI 3(t) to the source is
plotted as a function of time~dotted line!. The time dependence o
the source term leads to a time dependence of the gauge fieldA3 as
indicated by the dashed curve. The corresponding color elec
field is indicated by the dot-dashed curve. The contribution from
g2 term DA3(t) ~solid line! adds to the gauge field resulting in th
total field A3(t) ~fat solid line!.
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]m]mA (1)52gA1
(1)] (3)A3

(3)T21gA1
(1)] (3)A3

(3)T1

2gA3
(3)] (3)A1

(1)T21gA3
(3)] (3)A2

(1)T11¯

1g2A3
(3)A3

(3)A1
(1)T11g2A3

(3)A3
(3)A2

(1)T21¯ ,

~39!

where we denote only the most important contributions
the r.h.s. The first four terms on the RHS come from
second term on the RHS of Eq.~33!. Similar contributions
which come from the third term are omitted for brevity sin
they do not bring a new aspect into the discussion. T
fourth term does not contribute for plane waves. The last
terms on the RHS of Eq.~39! come from theg2 term. For
details, we refer to Appendix A.

In the following we discuss the mechanism described
Eq. ~39!. The first, third, and sixth term on the RHS lead
excitations of modes in the color directionT2 in the wave
packet~1!. The second, fourth and fifth term act in a simil
manner for the wave packet~2!. As long asA3

(3) is small, the
contribution of theg2 term is suppressed quadratically b
A3

(3) . This suppression is eventually enhanced by an a
tional factor A2

(1) with small Fourier components locate

around1 k̄3 . If these amplitudes exceed a certain streng
the g2 term takes over to determine the dynamics ofA2

(1)

resulting in a fast growth of Fourier components at1 k̄3 . In
the case of wave packet~1!, these growing amplitudesA2

(1)

andA3
(3) enter essentially into the thirdg2 term on the RHS

of Eq. ~37! inducing the growth ofA3
(3) . In order to under-

stand the time delay of the burst, the leading orders in
time dependence of the gauge fields are discussed for w
packet~1! shortly after the collision

A2
(1).a2

(1)t1b2
(1)t21¯ , ~40!

A3
(3).a3

(3)t1b3
(3)t21¯ . ~41!

Both amplitudes are zero in wave packet~1! before the over-
lap of the wave packets.t50 defines here the begin of th
overlap. In an exact treatment of colliding Gaussian wa
packets, the begin of the overlap would be att52`. At
large distances, however, the contributions from the non
ear terms are strongly suppressed because in all contribu
nonlinear terms, products appear between exponent
small amplitudes from one wave packet and finite amplitu
from the other wave packet. The alternating source term g
erates and recancels contributions toA 3 almost perfectly
within a period of oscillation because the perturbatio
caused by theg2-term are threefold exponentially sup
pressed.t50 can therefore be defined close to the full ov
lap of both wave packets.t50 at a distance of two FWHM
between centers the wave packets is sufficient because a
distanceA3

(3) and A2
(1) are so small that the coefficients o

order zero in the expansions of Eq.~40! and Eq.~41! can be
neglected. These zero order coefficients decay exponent
for increasing initial distance and are therefore omitted
Eq. ~40! and Eq.~41!. Also numerical simulations on th
lattice starting the collision from much larger distances
11450
n
e

e
o

y

i-

,

e
ve

e

-
ng
lly
s
n-

s

-

hat

lly
n

o

verify the above argumentation, i.e.,A3
(3) is practically zero

when the wave packets have approached to a distance o
FWHM.

We insert the expansions of Eq.~40! and Eq.~41! into the
Yang-Mills equations and consider in leading powers
effects of theg2 term on theA3

(3) :

] t]
tA3

(3).2g2A2
(1)A3

(3)A2
(1)1¯52g2a2

(1)a3
(3)a2

(1)t31¯ .
~42!

We integrate both sides of Eq.~42! in time and find a leading
fourth order time dependence of the longitudinal color el
tric field E3

(3)52] tA3
(3) according to

E3
(3)~ t !.

g2

4
a2

(1)a3
(3)a2

(1)t41¯ . ~43!

Consequently, the longitudinal field energy as defined in
~25! increases asWL

(E)(t);t8 in the leading order of the time
dependence. The high power explains why the longitudi
polarization of the receding wave packets is small at sh
times after the collision but increases rapidly at large tim
This time-dependent behavior ofWL

(E)(t) together with the
resulting transverse expansion of the energy density distr
tion characterizes the ‘‘glue burst.’’

Our numerical results above show that the time-delay
the burst scales essentially as 1/g2. This scaling has the fol-
lowing analytic explanation. Each factorac

(m) in Eq. ~43! is
proportional tog2 and thus can be separated as

ac
(m)5ãc

(m)g2, ~44!

whereãc
(m) is independent ong. This g2 dependence result

from the contribution of theg2 term in Eq.~37! during the
overlap time as discussed above. The equation~43! rereads
now

E3
(3)~ t !.

1

4
ã2

(1)ã3
(3)ã2

(1)~g2t !41¯ ~45!

which explains the numerical observation, i.e.,WL
(E)(t)

;(g2t)8. As Fig. 4 shows, the burst leads to a peakli
shape inWL

(E)(t) at the burst time. The steep rise of th
longitudinal energy is immediately followed by a strong d
crease. This behavior has to be explained by the next ord
the expansions~40! and ~41!. The oscillating nature of the
solutions suggests that the coefficientsbm

c have opposite sign
as compared to the coefficientsam

c . This results in a next to
leading order term on the RHS of Eq.~45! which enters into
the expansion as

E3
(3)~ t !.¯1

1

5g2 ~ b̃2
(1)ã3

(3)ã2
(1)1¯ !~g2t !51¯ . ~46!

Due to the higher power int, this term takes over shortly
after the first term has increased the amplitude ofE3

(3)(t).
The opposite sign, however, turns the total amplitude ba
The following drop of the amplitude is stopped by an opp
site effect from the next higher order in Eq.~46! and so on.
5-12
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In Fig. 4, we observe thatWL
(E)(t) stays finite and seem

to oscillate irregularly around a finite average value after
burst which we denote preliminary asW̄L

(E)(`). This average
value is independent ong which is explained by Eq.~45!.
Equation~45! shows that in lowest order in time,g2 can be
completely scaled out witht. As discussed above, the lowe
order determines the rise of the first hump inWL

(E)(t) at the
beginning of the burst. The rise of the first hump determin
the value ofW̄L

(E)(`).
The above discussion is so far restricted to colliding pla

wave packets of Gaussian shape in longitudinal direct
The arguments made in the discussion, however, hold
wave packets of large finite transverse extension where
can neglect surface effects. For small transverse extens
the discussion is in principle similar but more involved sin
contributions from the surface can no longer be neglecte

Finally, the case whereA (3) is not small is considered. In
the Appendix A, we argue that the source terms on the R
of Eq. ~37! are suppressed by a factor 1/k̄3 in the regime of
large k̄3 . Theg2 term is even suppressed stronger. Whenk̄3
is not large the orderg term on the RHS of Eq.~37! is large
and thusA (3) grows rapidly after the begin of the overlap
ping. The source terms of orderg in the color directionsT1
and T2 become also large leading to large contributions
these colors inA (3). The polarization ofA (3) in the third
color during the overlap time vanishes therefore when we
to smallerk̄3 . The large amplitudes ofA (3) enter into theg2

terms on the RHS of Eq.~37! leading to rapid growth of
these terms during the overlap time. The burst occurs t
already in the overlap region without time delay.

Generally, we may conclude that the time delay increa
when we go from smallk̄3 to large k̄3 . In this context we
refer also to Appendix B.

VI. SUMMARY AND OUTLOOK

We have studied time-dependent solutions of the class
Yang-Mills equations which describe the collision of initial
polarized wave packets in color space and position sp
We have simulated the collisions on a three dimensio
gauge lattice numerically applying the Hamiltonian approa
of Kogut and Susskind to describe the dynamics of the co
fields in SU~2! gauge symmetry. As a function of time, w
have calculated the transverse and longitudinal energy
sities wT

(E)(t,x3) and wL
(E)(t,x3) of the color electric fields.

For initially transverse polarized colliding plane wave pac
ets and for colliding finite wave packets as well, the longi
dinal energy densities show a strongly time dependent
crease in the overlap region around the center of collision
vanish when the wave packets recede. A similar tim
dependent behavior was found for the transverse total en
current. A certain timet after the collision both the longitu
dinal color electric field energy and the transverse ene
current increase rapidly while the distributionwT

(E)(t,x3)
starts simultaneously to decay. Visualizations in three
mensions show that the wave packets suddenly decay fa
a decoherent manner when the timet is reached. Both, the
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maximum transverse energy current at total overlap ant
scale like 1/g2 but for different reasons. This and also th
burst can be explained by analyzing the Yang-Mills equ
tions.

The question arises, whether this pure classical phen
enon could play a role in high energy nucleus-nucleus co
sions. In the present calculations each wave packet was
rying an energy of about 10 GeV. The size of the finite wa
packets was 10 fm in longitudinal and 8 fm in the transve
directions. The energy of about 10 GeV is close to the up
limit that can be described on a lattice with the constantal
50.1 fm for the above size of the wave packet. It is w
known experimentally that about half of the energy in
nucleus is carried by glue fields. A208Pb nucleus at 100
GeV/nucleon carries thus about 10 TeV in glue fields.
would be interesting, to study the pure glue field dynam
classically in colliding finite wave packets each carrying
energy of 10 TeV. This, however, requires extremely sm
lattice constants and very large numbers of lattice poin
The size of the wave packets can be adjusted to the siz
colliding Pb nuclei, i.e., it should have an extension of ab
11 fm in the transverse directions. Such a description
course is still very rough and would require much improv
ment in the future. It would also be interesting to perform
Fourier analysis of the collisions in three dimensions
each color separately. There is also hope that Dirac-Ferm
fields can be included in the future.
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APPENDIX A: ANALYSIS OF THE SOURCE TERMS

We discuss the source terms on the RHS of the the Ya
Mills equations which read

]m]mA n5]m]nA m1 ig]m@A m,A n#21 ig@Am ,]mA n#2

2 ig@Am ,]nA m#21g2
†Am ,@A m,A n#2‡2 .

~A1!

Since the time-delayed burstlike behavior of the solution
curs also in the case of colliding plane waves, it is sufficie
to discuss Eq.~A1! for this case. We argue that wave packe
with large but finite transverse extension can be conside
as plane waves.

The numerical results presented in the Sec. III ha
shown that longitudinal energy densities correspond es
tially to transverse energy currents. The longitudinal ene
densities therefore exhibit the basic feature of the glue b
solution. The corresponding color electric field compone
are determined by the negative time derivative of the lon
tudinal components of the gauge fields. We therefore be
with the discussion of the time evolution of these field co
ponents and we setn53 in Eq. ~A1!. Before the collision,
both wave packets are polarized in thex1 direction in Eu-
5-13
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clidean space. Accordingly, the longitudinal components
A 350 before overlap. In the following we focus on the tim
region where both wave packets start to overlap.4

The first term on the RHS of Eq.~A1! contains a sum of
four terms

]m]mA 35]0]3A 01]1]3A 11]2]3A 21]3]3A 3.
~A2!

The first term on the RHS of Eq.~A2! is zero because we us
the temporal gauge in whichA 050. The second term an
the third term are zero because]1A 150 and]2A 250 for
plane waves that propagate into thex3 direction. Forn53,
explicitly considering the contribution from Eq.~A2! on the
RHS and expanding the sum on the LHS, Eq.~A1! now
reads

]0]0A 31]1]1A 31]2]2A 31]3]3A 35]3]3A 31¯ .
~A3!

This shows that the remaining term of the expression~A2! is
canceled by the last term on the LHS of Eq.~A3!. For plane
waves, the second and third term on the LHS are zero.
contributions from the other source terms in Eq.~A1! are
indicated by the dots.

The second term on the RHS of Eq.~A1! is zero initially
because of two reasons. First,A 350 at the very start of the
overlapping. The second reason is explained in the follow
analysis. The term in]m@A m,A 3#2 corresponding tom50
vanishes due to temporal gauge, them53 term vanishes be
cause of the commutator, and them51,2 terms vanish for
plane wave packets. Consequently, we find

]m@A m,A 3#250. ~A4!

By similar arguments and because of@A3 ,]3A 3#250, we
obtain

ig@Am ,]mA 3#25 ig@A1 ,]1A 3#21 ig@A2 ,]2A 3#2

1 ig@A3 ,]3A 3#250 ~A5!

for the third term on the RHS of Eq.~A1!.
The fourth term on the RHS of Eq.~A1! plays an impor-

tant role in the overlap region. According to our calculati
for plane waves, we assume that the colliding wave pac
are initially polarized in color space in the directionsT1 and
T2 , respectively. When the wave packets start to overla
superposition of two colors occurs and we obtain

4Gaussian wave packets start to overlap at infinitely large
tances. What we mean by ‘‘starting to overlap’’ in this context
the transition from a distance region in which excitations of
amplitudeA 3 are exponentially suppressed into a distance reg
where finite but small excitation~caused by theg2 term! appear.
This transition is located at relatively small distances and has
ready been outlined in Sec. IV in the discussion of Eqs.~40! and
~41!.
11450
e

e

g

ts

a

2 ig@Am ,]3A m#252 ig@~Am
1 T11Am

2 T21 . . . !,

]3~A1
mT11A2

mT21 . . . !#2

.2 ig~Am
1 ]3A2

m@T1 ,T2#2

1Am
2 ]3A1

m@T2 ,T1#2!

5g~Am
1 ]3A2

m2Am
2 ]3A1

m!T3 . ~A6!

As long as the wave packets do not overlap, the color indi
1 and 2 refer here at the same time to the contributions
wave packet 1 and 2. First, the case whereA (3) is small
during the overlap time is considered. This assumption,
shown further below, is equivalent to the inequalityuAm

3 A3
mu

!uAm
1 A1

mu anduAm
3 A3

mu!uAm
2 A2

mu. The inequalities allow a ne
glection of the terms2 ig@Am

3 T3 ,]3(A1
mT11A2

mT2)#2 and
2 ig@(Am

1 T11Am
2 T2),]3A3

mT3#2 on the RHS of Eq.~A6!.
Consequently, excitations of modes in the color subsp
span(T1 ,T2) in A 3(t,xW ) are neglected during the overla
time. These components will be included further belo
where the case of largeuAm

3 A3
mu is considered. Excitations

occur then only in the third color degree of freedom which
the only remaining component inA 3. The remaining term
on the RHS in Eq.~A6! acts as a source term for the thir
color component of the longitudinal gauge fieldA 3(t,xW ). Its
effect is discussed in Sec. IV.

In the following, theg2 term is analyzed. It splits into

g2
†Am ,@A m,A 3#2‡25g2

†A1 ,@A 1,A 3#2‡2

1g2
†A2 ,@A 2,A 3#2‡2 . ~A7!

First, we consider the contribution of the first term on t
RHS of Eq. ~A7!. The second term does not contribute
both wave packets are polarized into thex1 direction. Other-
wise, it would contribute in an analogous manner. Sub
quently, according to the convention in Sec. IV, number v
ues of indices in Minkowski-space are denoted
parentheses in order to distinguish from color indices.
argued in Sec. IV, for large enoughk̄3 and small enough
Dk3 , the longitudinal fieldsA (3) are essentially polarized in
the T3-direction in color space after the step one. The co
tributions to the first and second color direction are theref
neglected. This is sufficient since theA(3)3-component
~which is zero initially! becomes always finite in the overla
region as shown above where a finite amplitude remains a
the overlapping. NeglectingA1

(3) andA2
(3) , we obtain

@A (1),A (3)#2.@A1
(1)T11A2

(1)T21A3
(1)T3,A3

(3)T3#2

52 iA1
(1)A3

(3)T21 iA2
(1)A3

(3)T1 ~A8!

for the inner commutator. Inserting this result into the LH
of Eq. ~A7!, leads to

-

n

l-
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g2
†A(1) ,@A (1),A (3)#2‡2

52g2@A(1) ,iA1
(1)A3

(3)T22 iA2
(1)A3

(3)T1#2

5g2A(1)
1 A1

(1)A3
(3)T32g2A(1)

3 A1
(1)A3

(3)T1

1g2A(1)
2 A2

(1)A3
(3)T32g2A(1)

3 A2
(1)A3

(3)T2. ~A9!

As soon as the gauge fields obtain a small contribution in
component A3

(3) , the spacial componentA (1) starts to
change the polarization in color space. In wave packet~1! the
componentsA2

(1) and A3
(1) grow whereasA1

(1) decreases
accordingly.5 In wave packet~2! the componentsA1

(1) and
A3

(1) grow whereasA2
(1) decreases accordingly.

This behavior is explained by the Yang-Mills equation f
the first component

]m]mA (1)5]m] (1)A m1 ig]m@A m,A (1)#2

1 ig@Am ,]mA (1)#22 ig@Am ,] (1)A m#2

1g2
†Am ,@A m,A (1)#2‡2 . ~A10!

The first term on the RHS of Eq.~A10! does not contribute
for plane waves since] (1)A m50. The second term yields th
contributions

ig]m@A m,A (1)#2

5 ig@]3A3
(3)T31¯ ,A1

(1)T11A2
(1)T21¯#2

1 ig@A3
(3)T31¯ ,]3A1

(1)T11]3A2
(1)T21¯#2

52gA1
(1)] (3)A3

(3)T21gA1
(1)] (3)A3

(3)T1

2gA3
(3)] (3)A1

(1)T21gA3
(3)] (3)A2

(1)T11¯

~A11!

of which the first and third lead to excitations of modes
the color directionT2 in the wave packet~1!. The second and
fourth term leads to excitations of modes in the color dir
tion T1 in the wave packet~2!.

We now discuss theg2 term. Here,@A (1),A (1)#250 in
the inner commutator andA (2)50 for polarized wave pack
ets. For the essential contributions of the inner commuta
we find

@A (3),A (1)#25@]3A3
(3)T31 . . . ,A1

(1)T11A2
(1)T21¯#2

5 iA3
(3)A1

(1)T22 iA3
(3)A2

(1)T11¯ ~A12!

Inserting the RHS of Eq.~A12! into theg2 term, we obtain

5Since the fields of the original wave packets are superposed~in a
non-linear manner! in the overlap region, it is subtle to talk in term
of wave packets. For initially polarized wave packets, one can
sentially distinguish between the field contribution of wave pac
~1! and wave packet~2! during full overlap whenuA3

(3)u is much
smaller thanA1

(1) andA2
(1) . Field modes which are excited durin

overlap do not belong to any wave packet during overlap. S

modes are distributed aroundk̄350 in momentum space.
11450
e

-

or

g2
†Am ,@A m,A (1)#2‡25g2

†A(3) ,@A (3),A (1)#2‡2

5g2A3
(3)A3

(3)A1
(1)T1

1g2A3
(3)A3

(3)A2
(1)T21¯ .

~A13!

It has to be shown that in the regime of largeuk̄3u, the con-
dition of smallA (3) during the overlap is equivalent to th
conditionsuAm

3 A3
mu!uAm

1 A1
mu anduAm

3 A3
mu!uAm

2 A2
mu. With the

above equation~A6! follows

] (0)]
(0)A (3).g~Am

1 ] (3)A2
m2Am

2 ] (3)A1
m!T3 ~A14!

for the overlap region. From the inequalities follows direc
that uA3

(3)u is small. This amplitude enters into theg2 term of
Eq. ~A10!. From Eq.~A13! together with Eq.~A6! follows
that theg2 term is quadratically small inA3

(3). Consequently,
the g2 term is neglected in Eq.~A12!. At the begin of the
overlapA (3) is zero. From Eq.~A12! follows that only the
third color component inA (3) grows during the overlap
time. For largeuk̄3u and for wave packets defined by th
initial conditions ~16! to ~18! the operator] (3) is approxi-
mately replaced by a factork̄3 . Further, two time integra-
tions of Eq.~A12! lead to an additional factork̄3

22. The RHS

of Eq. ~A12! is therefore suppressed by a factor 1/k̄3 in the
regime of largek̄3 . Consequently, the source term on t
RHS of Eq.~A12! is small and thus the field amplitudeA (3)

remains small accordingly.
The inverse conclusion is provided by the condition th

A (3) is small. It has to be shown thatA3
(1) andA3

(2) are small.
A (3) enters linearly into the RHS of Eq.~A11! and quadrati-
cally into the RHS of Eq.~A13!. The generatorsTc are lin-
early independent in LSU~2!. Therefore Eq.~A10! represents
a system of three equations, one for eachTc . The RHS of
the equation for the third color is composed by allT3 terms
on the RHS of Eq.~A11! and Eq.~A13!. Each of these terms
contains at least one factorA3

(3). The source terms on RHS o
Eq. ~A10! in the third color direction are therefore small an
consequentlyA3

(1) on the LHS remains small. For largek̄3 ,

this trend is even enhanced by the 1/k̄3 behavior ofA3
(1) with

the above initial conditions.A3
(2) is zero sinceA (2) is zero

throughout the whole collision. This follows obviously from
Eq. ~A10! when we replace the explicit space index~1! by
the space index~2!. All terms on the RHS which contain
A (2) remain zero. Further, the derivatives] (2)A m are zero
for colliding plane waves.

APPENDIX B: TIME DELAY AT LARGE MOMENTA

In this appendix, we briefly discuss thek̄3-scaling in the
overlap region and in the burst region. As discussed in S
IV, for not too largeg, the fourth term on the RHS in the
equation

s-
t

h
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]m]mA n5]m]nA m1 ig]m@A m,A n#21 ig@Am ,]mA n#2

2 ig@Am ,]nA m#21g2
†Am ,@A m,A n#2‡2

~B1!

acts as the dominant source term for the longitudinal fi
components in the overlap region of the colliding wave pa
ets. We treat Eq.~B1! first for n53. Assuming that during
the overlap time the wave packets deviate not much fr
their initial form

f~ t,x3!5f0 expS 2
1

2
Dk3

2~ t1x3!2D cos@ k̄3~ t1x3!#,

~B2!

we can make the approximation] (3)A m. k̄3A m at largek̄3 .
At large k̄3 , the evolution of the field componentA (3) dur-
ing the overlap is described by Eq.~37!. Omitting the g2

term on the RHS of Eq.~37!, the equation reads
t,

11450
d
-

]0]0A (3).g~Am
1 ] (3)A2

m2Am
2 ] (3)A1

m!T3 . ~B3!

In the overlap region, the differentiation] (3) in the source
term is replaced by a factork̄3 . After two time integrations
of Eq. ~B3! the RHS obtains an additional factor 1/k̄3

2. This
shows that the amplitudeA (3) is proportional to 1/k̄3 during
the overlap time. The height of the hump inwL

(E)(t,z) fol-
lows therefore a 1/k̄3

2 scaling in the overlap region. Furthe
A (3);1̄/k3 enters into theg2 term on the RHS of Eq.~B1!.
Consequently, the coefficientsãc

m which appear in Eq.~45!

in the section 4, depend asãc
m;1/k̄3 on k̄3 . Separating fac-

tors 1/k̄3 from the coefficients leads to

E3
(3)~ t !.

1

4
ā2

(1)ā3
(3)ā2

(1)~g2k̄3
23/4t !41¯ ~B4!

with new coefficientsāc
m5ãc

mk̄3 . We conclude that the time

delay of the burst scales ask̄3
3/4.
6,
e-
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