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We study the leading discretization errors for staggered fermions by first constructing the continuum effec-
tive Lagrangian, including terms @(a?), and then constructing the corresponding effective chiral Lagrang-
ian. The terms oD(a?) in the continuum effective Lagrangian completely break $#4) flavor symmetry
down to the discrete subgroup respected by the lattice theory. We find, however, tiyaheterms in the
potential of the chiral Lagrangian maintain &©(4) subgroup ofSU(4). It follows that the leading discreti-
zation errors in the pion masses &8€(4) symmetric, implying three degeneracies within the seven lattice
irreducible representations. These predictions hold also for perturbatively improved versions of the action.
These degeneracies are observed, to a surprising degree of accuracy, in existing data. We argu@@pé} the
symmetry does not extend to the masses and interactions of other hageotms mesons, baryons, gtor to
higher order ina?>. We show how it is possible that, for physical quark masse®@?), the newSQ(4)
symmetry can be spontaneously broken, leading to a staggered analogue of the Aoki phase of Wilson fermions.
This does not, however, appear to happen for presently studied versions of the staggered action.
[S0556-282(99)06923-4

PACS numbsd(s): 12.38.Gc, 11.15.Ha, 12.39.Fe

[. INTRODUCTION vector mesons, and we argue that this is also true for any
particle which remains massive in the chiral and continuum
Staggered fermionfsl] are one of the standard discretiza- limits. In other words, for such particles all lattice irreps
tions used in lattice simulations. Their major advantage ishould be split by terms ad(a?), even in the chiral limit.
that they retain a remnant of the continuum chiral symmetryPresent numerical results for vector mesons and baryons are
group at non-zero lattice spacing. Their major drawback isither of insufficient accuracy or do not consider enough ir-
that the continuum flavor symmetfySU(4) for a single reps to test this prediction.
staggered fermignis almost completely broken on the In the bulk of this article we explain how the enlarged
lattice—only a discrete subgroup remains. Although only arflavor symmetry is derived. The method is modeled on that
effect of O(a?), flavor breaking turns out to be numerically used to study flavor and parity breaking with Wilson fermi-
significant at typical lattice spacings. ons[7]. While straightforward in principle, the application of
In this paper we show that, in the Goldstone boson sectothe method to staggered fermions is considerably more com-
flavor symmetry is partially restored in the chiral limit. The plicated. One begins by determining all the lattice operators
discrete lattice flavor group enlarges to &(4) subgroup which are required fo©(a?) improvement. This has largely
of the continuumSU(4). This implies relations between been done by Luf8], but he missed some operators, and we
multi-pion interactions at very low momenta. The simplest ofcomplete the task in Appendix A. The second step is to write
these concerns the pion masses: seven lattice irreducible regiewn the effective continuum action which describes the lat-
resentationgirreps collapse into fourSQ(4) irreps in the tice theory, including errors proportional &, and deter-
chiral limit, implying three degeneracies. This result appliesmine the symmetries of its various components. This is done
to both the original form of staggered fermions and to vari-in Sec. Il. A side benefit of this analysis is seeing explicitly
ous improvements that have been recently suggg&tetl. how the lattice symmetry group emerges in continuum lan-
It turns out that these degeneracies are present both in dagaage. One then writes down the effective chiral Lagrangian
from a few years agf6] and from recent simulationg]. describing the interactions of the pseudo Goldstone bosons
Our derivation of these degeneracies applies only to thén the effective continuum theory, again including taé
leading order discretization errors. We find that they are vioterms. This is worked out in Sec. liWith details relegated to
lated by terms oD(a*). We have also studied the extension Appendix B), and it is at this stage that the symmetry resto-
of our result to the masses and interactions of hadrons otheation emerges. The implications of partial symmetry resto-
than the pions—we find that the partial flavor symmetry res+ation for pion masses are presented in Sec. IV and are com-
toration does not extend to the masses and interactions of thrared to the results of numerical simulations. In Sec. V we
explain why the partial symmetry restoration does not extend
to vector mesons.
*Email address: wlee@lanl.gov It turns out that the enlarged flavor symmetry which
TEmail address: sharpe@phys.washington.edu emerges in the chiral limit a(a?) can also be spontane-
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ously broken in that same limit. Whether this happens de-

pends on the sign of various unknown coefficients in the D=2 (y,®1)D,, (4)
chiral Lagrangian describing the lattice theory. This phenom- a

enon is analogous to the breaking of flavor in the Aoki phasg,, 5 (spir® flavor) notation explained in more detail in Ap-
for Wilson fermions[9,7]. The analogy is not precise, how- pendix A. The physical quark mass is proportional to the
ever, because the symmetry that is being broken here is ngt; .« staggered quark mass(w)a=Z(g? In(aw)my(a).

an exact symmetry ?J the lattice theory, but is instead Viorhere are no terms linear mbecause there are no operators
lated by terms ofO(a"). Thus there are only pseudo Gold- ¢ gimension 5 consistent with all the lattice symmetries.

stone bosons in the broken phase. The new phase, if it 06hjs js well known for the gauge theory, and has been shown
curs, is very narrow—in terms of the bare lattice quark;, Refs.[12,13 for staggered fermions.

masses it has a width @(a%). It appears that this phase is There are three types of contribution $g: gluonic op-

unlikely to occur for those versions of staggered fermionsyraiors, fermion bilinears and four-fermion operators:
presently in use, but it may occur for other improved ver-

sions. In Sec. VI we give a brief discussion of the properties sﬁzsg'“e+ sg”i”Jrng, (5)
of the new phase.

We close with some comments on the practical implica-The gluonic terms argl4]
tions of our result.

A preliminary report on this work was presented in Ref.
[10]. At that time we suggested that the enlarged symmetry
would apply also to hadrons other than the pions, a possibil-

ity we now think is incorrect.
y + >, Tr(D,F,,D,F ), ()
v

II. CONTINUUM EFFECTIVE ACTION

£3“~Tr(D,F,,D,F,,)+> Tr(D,F,D,F,)
mwp

wt ur=ptpy wtvp=utvp

. . o . _ where the symbot~ implies that each of the operators ap-
The first step in our analysis is to write down the effectivepears with a coefficient which depends ghand Ina. The
continuum action describing the interactions of quarks andrst term in Eq.(6) can be absorbed into a redefinition of the
gluons with momenta much below the cutoff<A~1/a  gjyon field, which leaves only two independent terms in
[11]. Integrating out modes near the cutoff introduces higher, glue_
dimension operators with coefficients suppressed by explicit "The enumeration of the fermionic operators is described

powers ofa. The constraint on these operators is that theyn appendix A, along with the notation used to refer to them.
must have t.he same symmetries as the underlying lattice agyost have been previously listed by Ly8]. There are 8
tion. We wish to include terms suppressed by up to tWoermion bilinears

powers ofa, and thus must determine all allowed operators
of dimension up to and including 6. This we do by writing

down the allowed lattice operators and then matching them LM ~Q(D)%Q+ 6(DiD+DDi)Q
onto continuum operators at the tree level. The result has the g
form _
+2, QD,DD,Q
Seri=Ss+a°Ss (1) ”
+ A 3 + raY 2
_ f G Lot 82Le). @ 2 Q(7,®1)DQ+mQD)?Q
The leading term is +> maDiQ+ m?QDQ+m3QQ, (7)
y3
L,=3TrF , F ., +Q(D+m)Q, ©)
e and 24 four-fermion operators. The latter we divide into two
with classes:

LEFN~[SXAT+[SXV]+[AXS]+[VXS]+[PXV]+[PXA]+[VXP]+[AXP]
FH[TXV]+[TXA]+[VXT]+[AXT]+{[SXS]-[PX P} +{[SX P]-[PX S]}
H{[SXT]=[PXT+{[TXS]-[TXPR+{[VXV]-[AXAT} +{[VXA]-[AXV]} (8)

(with compound operators enclosed in curly braced
LEFO~[T, XV, 1+ [T, XAV, XT,I+[AXT,J+{([V,XV,]-[A,XA,])
— 2 ([VXV]=[AXAD}IH{([V, XA, T=[A,XV,]) = 3([VXA]-[AXV])}. C)
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The essential point of the notation is that the first letter indi- TABLE I. The flavor(including chira) and rotation symmetries
cates the rotation property of the bilinears within the opera¥fespected by various terms in the effective action. In the last three
tor, while the second indicates the flavor. Thus[ B T] lines flavor and rotation symmetries are intertwined. See the text for
both bilinears are scalars and have “tensor” flavor, i.e. adetailed explanation.

flavor matrix of the form¢ ,¢,=¢

mv " . . .
Several of these operators are redundant, i.e. can be ahg'm In action [Flavor] X rotation symmetry
sorbed into the others by a field transformation. Although we g, (=0 [SU(4), X SU(4)r] X SO(4)
could use this to reduce the number of operators, we choose
. T S, (m#0) [SU(4)]xXSO(4)
not to do so, since it is little extra work to keep track of all lue [SU(4), X SU(4)s] X SW,

the operators. In this way we do not have to worry about the  piin ., _
subtleties of determining redundant operators with staggered ngn (m=0) [SU(4). X SU(4)r] X SW,
fermions|[5] Ss (m#0) [SU(4)]X SW,

' FF(A)

As noted in the Introduction, a variety of improvements to SEF(B) [U(1)axT3xSXA4)]1xSO(4)
the staggered fermion action are being tested in numerical 6 U(1)ax(T'4X SW, giag
simulations. All of these use perturbation theory, and thus Ss (M=0) U(1)ax (I'aXISW, giag
reduce, but do not remove, the errors proportional’toThis Se (m#0) L4 XISW, giag

implies that the form of the continuum effective action re-

mains the same as for unimproved staggered fermions, al- . .
though the size of the numerical coefficients multiplying thedoes not affect the flavor symmetry, but the third term in Eq.

a? terms is presumably reduced (6) breaks theSO(4) rotation symmetry down to its hyper-

For the subsequent analysis, it is crucial to understand th%UbIC subgroupSW,, because the index. is repeated 4

ilin . H
symmetries that are maintained by the various terms in thimes: The same holds true 6" : all terms in Eq(7) are
effective action. flavor singlets, but the fourth term brea8€(4)— SW,.

The leading order actios, is invariant under Euclidean  Flavor symmetry is broken only by the fé)(%-fermlon
translations, rotations and reflections, and also under char%@”_ns- This occurs in two stages. Al terms 35" have
conjugationC, fermion numbetJ (1), and the flavor group heir Lorentz and flavor indices contracted separately, e.g.
SU(4). In themassless limit the flavor symmetry enlarges to

the chiral symmetnSU(4), X SU(4)g. In general, we ex- TXV]= O ®

pectSg to break this symmetry down to that of the underly- [ ] ;;u Ep: ANV ®E,)

ing lattice theory, because we have include®jnall opera- _

tors consistent with the lattice symmetries. While it is XQY)QY)(7,,®€,)Q(Y), (11

possible that some symmetries will not be broken until .
higher order ina, this turns out not to be the case here. The@nd are thus Lorentz singlets. The appearance of flavor ma-

only exception is continuous translation invariance, which isifices implies that they break tt®U(4) symmetry, but the

a symmetry ofS. but is broken by the lattice to a discrete contraction of flavor indices between bilinears implies that

subgroup. This symmetry is effectively restored because wénSO(4) subgroup survives unbroken. This is the subgroup
We first note that fermion number, charge conjugationS(4):

and spatial inversiofiparity) are not broken byss. This is

obvious for fermion number. Charge conjugation does flip Q—=(18A1)Q, Arp=explwu,éy,), (12

the sign of vector and tensor bilinears, but this sign cancels . ) ) )

since these bilinears always appear in pairs. Parity also flip¥ith @, an antisymmetric matrix of real parameters. The

the sign of some bilinears, but again the overall sign cancel&PPearance of operators containing bilinears of all possible

This leaves us to consider the breaking of flavor and roflavors in Eq.(8) implies that no other continuous flavor

tation symmetry. In Table | we display the symmetries re-Symmetry remains. One can also show that no axial symme-
spected by each of the terms in the effective action. Thdi€s survive aside from thel(1), described above.
notation is as followsSW, is the hypercubic subgroup of the There is, however, an additional discrete flavor symmetry.

Euclidean rotation grousQ(4), T, is the Clifford group Al the four-fermion ?peratoriof both type A and B are
with four generators which square to the identit, indi- invariant under the “flavor reflections” generated by the

cates a semi-direct product, abb{1), is the axial symme- transformations
try: _
Q—(1®¢,)Q, Q—Q(1®¢,). (13

Q—exfifa(vs0&5)1Q, Q—QexHifa(ys® §5>],(10)

These transformations may change the sign of a bilinear,

which is the continuum equivalent of the lattice axial sym-

metry. The mean?ng 05W4,diagW_i” be described be|0W_- lin Ref.[10] we used a different basis for the generators, namely
We now explain the results in the table, commenting oni¢, ). Although the two choices of basis are equivalent, what we
their significance as we proceed. The gluonic ac@h‘e use here allows a more direct connection to the lattice symmetries.
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O(ve® O(ve® =(=)FuO(ve® In summary, we have learned that the bulk of flavor sym-
Qs £p) Q= QYs® £urn) Q=()7Qys SF)Q(M) metry breaking is caused by the subclass of four-fermion

operators in which flavor and Lorentz indices are correlated.

(see Appendix A for notation but this sign cancels in the We will now show that the contributions of these operators
four-fermion operators since all bilinears appear in flavorare suppressed in low momentum pion interactions.
diagonal pairs. The generators in Ef3) anticommute and
square to+1, and so generate the Clifford grolip. They
lie within the flavor grougSU(4), but notwithin the SO(4)
subgroup(which is composed of matrices containing an even In this section we work out the modifications to the chiral
number of¢,). They transform as a vector under the flavor Lagrangian implied by the addition of the actiafS;. We
SQ(4), andthus are combined with this group in a semi- begin by recalling the form of the Lagrangian describing the
direct product as shown in the table. long-distance dynamics of the QCD actio’,, close

The second stage of symmetry breaking is due to the sif0 the chiral limit. The spontaneous breakdown of
operators inS§™® | in which the flavor and Lorentz indices SU(4). X SU(4)g to vector SU(4) gives rise to 15 Gold-
are correlated. Two examples appear in AppendiB4s.  Stone modes, described by the fielis. These can be col-
(A18) and (A19)]; here we give anothefthis time in con- lected into anSU(4) matrix
tinuum notatiom:

Ill. EFFECTIVE CHIRAL LAGRANGIAN

15

TxA= 3 Q7meEQ() 20=eqidlh, =2 daTar A7
Y where f is the pion decay constantnormalized to f .
XQ) (72 ® £5,) QLY) =132 MeV). We adopt an unconventional normalization for
~QUY) (7,58 £,5)Q(Y) the generators,
XQY)(V5,,® £5,) Q(Y). (15) Ta={&,.1€u5,08,,,6s)- (18)

These operators are not invariant under either Lorentz ofjnderSuU, (4)x SUg(4), S transforms as

flavor SO(4) rotations If, however, we do a simultaneous

Lorentz and flavoihypercubicrotation, then the correlation 3 (x)— L3 (x)RT (19
between the indices is preserved. The restriction to hypercu-

bic, rather than continuous, rotations occurs because indic%here L(X) e SU_(4) and R(x) € SU(4). The chiral La-
are repeated 4 t|m<{e.g.',u In EQ. (1.5)]' The explicit form of grangian, correct up to quadratic order in meson masses and
this diagonal hypercubic rotation is momenta. is

Q) — (AR [ALZ1*)QU A ), (16) )

a_t 1 2 T
with A''S an element of the spinor representation restricted Ex 817(6#2(9"2 ) 4"me TE+2D, (20
to the hypercubic group, anti® the corresponding member

of the vector representation. Since these transformations iwith x a constant oD(A qcp). Expanding this in powers of
volve simultaneous Lorentz and flavor rotations, we refer tog one finds 15 degenerate pions with masses given by

the group they form a§W, g As noted aboveSg ® is

also invariant under the discrete flavor grdup the genera- m2= 2um[1+0(m/Agcp) |- (22)
tors of which transform as a vector undgW, 4. Thus the
flavor-rotation group oS5™® is I'yXI SW giag. The leading order term is the tree-level result, while the cor-

The symmetry group o8; is given by the intersection of rections come from loop diagrams and from higher order
the symmetry groups of its components. Combining theerms in the chiral Lagrangian.
above results, we find thdf,XSW, giaq is the symmetry The addition ofa?Sy breaks chiral symmetry and lifts the
group in general, and that in the chiral limit we get the ad-degeneracy of the pions. Generically, E21) becomes
ditional U(1),. Adding back in fermion number, charge
conjugation and parity, the resulting groups are indeed those mizcazf\écﬁ ZMm[1+O(m/AQCD)+O(azl\éco)]
of the underlying lattice theorj15]. This is most easily seen 29
using the presentation of the lattice group given in Re®):

the I'y is generated by single-site translations, while theyherec is a constant of order unity. Contributions propor-
SW, diagiS generated by lattice rotations. tional toa? are due tdSg, and lead to massive pions even in
the chiral limit. The only exception is the pion with flavéy
which remains massless beca$geespects thé (1), sym-
2The extra subtractions in the last two compound operators in Eqnetry whenm—0. It is instructive to rewrite the general
(9) are included to remove a Lorentz singlet component. form as
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2 2

m: m m m 2y 2

= 2PNt —— +aPA o > Tr(2sast. (25
Aqcp Aqcp AQep K

QCD
(23 . . . . .
These lead to rotation non-invariance in the pion propagator

where we have dropped all constants. This shows explicithp"d: thus, direction dependence of the extracted pion mass,
that we are doing a joint expansion & andm about the ~Put they <2:io not break 2th(3 flavor symmetry. Their C20n2tl’lbu—
continuum and chiral limits. If we treat both parameters adions tom are of sizeam’; and thus proportional ta"m®,
small, then we can ignore all but the first two terms. The key?'m or a°, and so are of third order in our joint expansion.
observation is then the following. While the combined effect

of all the terms proportional ta® (and any power ofm) in B. Matching of operators in S %

Eq. (23) is to break the chiral and Lorentz symmetries down

to the lattice subgrougsinceS; itself breaks the symmetry FF(A)
in this way), it is possible that tha? term which remains in  ©°Mes from the operators 8. These can match onto

the chiral limit has a larger symmetry. This turns out to peoperators without derivatives because they are singlets under

the case, and implies certain exact degeneracies betwe% tif'o?]_s' The eX[Z;:ICIt mappl?g IS _Worked4ouft| in Appendix
pions in different lattice irreps in the chiral limit. . At this stage, the potential retains &D(4) flavor sym-

To demonstrate this we need to determine the mapping dﬂ%ﬁ%’ since this is the symmetry of all the operators in
the operators irBg into the chiral Lagrangian. This is done N ) ) )
by matching the transformation properties of operators under USing the results of Appendix B, we find that the contri-
Lorentz and chiral symmetries. We denote the resulting conution to the potential is

. . . . 6 .
tributions to the total chiral Lagrangiafi’, i.e. —V§=ClTr(§5E§52T)

The first flavor-breaking contribution to the potentlai

£,=L3+aL3+0(a%). (24 +Co3[THE) ~ Tr(és3 é53) +H.c]

A precise statement of our result is that the parﬁ@fwith-
out derivatives, i.e. the potentiai®, is invariant under fla-
vor SO(4) transformations.Terms inﬁi involving deriva-
tives do breaksO(4) down to the lattice symmetry group. 1
But for very Io(v)v( r)nomentum interactiong, suchy t?mf P +C4§Ep [Tr(&5% &5, %) +H.C]
~m727, these terms give contributions suppressed relative to
those ofV® by n;i/{\éw: For exan;ple in the expression for +Cs3 2 [TH(ESESN) - Tr(€,5365,51)]
m:, Eq.(23), V} gives rise to the* term on the right-hand v
side while the terms im:f( containing derivatives give rise to
the non-leading term proportional &88m anda*. Note, how- +Cs E Tr(é,,~ §VMET). (26)
ever, that for pion interactions with?~ A2y the SO(4) H<v
symmetry will be broken.

In the following we work through the operators 8,
matching them ontd ©, with the aim of finding those which
contribute to the potentiab® .

+Cai > [Tr(£,3¢,3)+H.c]

The six unknown coefficient€; are all of sizeAgCD. All
terms respect the enlarged flavor symmetry and are Lorentz
singlets. To obtain the resu(26), we have collected the
contributions from the different operators in E¢R4)—(B6),

- (B10), (B11), (B15), and(B13), and then used Fierz trans-
A. Matching of operators in $¢"* and Sg"" formations to convert all operators to a form containing a

As noted above, most of these operators have the sanfdhgle flavor trace.
symmetries a$§,, and in particular do not break tr&U(4)
flavor symmetry. They lead to a renormalization of the terms C. Matching of operators in Sg™®
. . . . 4
in the continuum chiral Lagrangiad by a factor of the our final task is to match the operators 87®, i.e.

form 1+ "’?zA%CDJr "?‘Zm_z- Theg do contribute tg)vf(, but  those in which spin and flavor are correlated. These are the
their leading contribution ton?, is of orderO(a‘m), and  gperators which break flavor down to the lattice subgroup.
thus of second order in our joint expansion. The key point in this matching is that all the operators trans-
There are also terms i8¢"® and S2"" which are not in-  form non-trivially under rotations. To represent these opera-
variant under rotations. These map into operators whichors in the chiral Lagrangian requires the introduction of de-
themselves are not rotationally invariant, which requires ativatives, since these are the only objects available to
least four derivatives, e.g. introduce non-trivial rotation dependence. This implies that
the operators ir8§" ® make no contribution to the potential
Thus the result, Eq(26), is the full result forvf( and is
%We adopt the sign convention thaf=V? plus terms containing  SO(4) flavor symmetric as claimed. This is the central result
derivatives. of this paper.
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Although complete flavor breaking does not occur at firsttors of > are replaced by the identity, and the operator “con-
order in our joint expansion, it is interesting to see how ittracts” to one which iSSQ(4) symmetric.
enters at next order. An example of the operators that appear This analysis does not tell us whether the new t&28j is
when matchingS;™® is proportional toa* or a higher power o&2. To determine this
one must study the quark operators of dimension 8 allowed
[T,XV,]— 2 TH(3,—3,)S€,1TM(9,— 0,)3E,]. by the lattice symmetries, a task we have not undertaken.

MFEVEPF @
(27 IV. RESULTS FOR PION MASSES

This leads to a direction dependent contribution to pion 1he partial restoration of continuum symme;riesﬁ@ _
masses that is correlated with their flavors. For example, thigPplies to all the multi-pion interactions encoded in the chiral
term renormalizes the mass squared opa0 pion with Lagrangian. We consider here only the simplest application

flavor &, (j=1-3) by a factor of }azAécov while it does of this result, namely to the masses of the pions.

t effact th f the b h 1 Sj i lead In the continuum, the pions form a 15-plet of flavor
not ettect tn€ mass ot the pion wi av_ég. Ince in lead- .SU(4) and are degenerate. On the lattice, states are classified
ing order in our joint expansion the pion mass squared i

tional toa? andm. thi le sh that th d%y the symmetries of the transfer matfi subgroup of the
proportional taa™ andm, this example Shows tha zeS?CO” symmetries of the lattice actipnAs shown by Golterman
order correction terms proportional to badt and a?m in

. [17], the pions fall into 7 irreps of this group: four
Eq. (23) break the symmetry down to the lattice subgroup. 3-dimensional reps with flavorg;, &s, &; and &g, and

three 1-dimensional reps with flavogs, &,5 and &s. Here
D. Contributions of O(a*) we have chosen the 4th direction as Euclidean time. These

We close this section with an observation concerningresu:tS hold :)rrers]pictivcre]_oflthedquark.mass. iimits. the oi
higher order discretization errors. The numerical results dis- Close to ot tbe chiral and continuum fimits, the pion
cussed in the following section indicate that ®6(4) sym- ~ MasSes are given by
metry is only weakly broken even at fairly large lattice spac- M (T.)2=2um+ a2 2 4
, . : . ) = a“A(T,+0(a“m)+0(a”), (30
ing. This raises the question of whether higher order w(Ta)"=2p (Ta) +O(@"m)+0(a%, (30

discretization errors break the flav8i(4). In particular, is  ith A(Ta)~/\?gco arising fromV® . Sincevi respects fla-

the enlarged flavor symmetry respected by higher order dis;,, SO(4) (as well as a discretexgroup which plays no role
cretization errors in the chiral limit?

, , ) . in relating pion massegsthe pions fall intocSQO(4) represen-
The analysis of the previous subsection has, in fact, angions:

swered this question in the negative. Terms in the chiral
Lagrangian involving derivatives do brea80O(4) and,
through wave-function renormalization, give flavor-breaking
contributions ofO(a?) to me. Nevertheless, it is interesting
to know whether the “direct” contributions oO(a“), i.e. A(&5)=0. (31)
those in the potentialy~®, breakSO(4).

To study this question, all we need to know is that, in the (i) Two four-dimensional irreps with flavos, andé .
chiral limit, any operator i/}~ ® must be symmetric under These receive masses

(i) A one-dimensional irrep with flavags, which receives
no mass from any of the terms mi, because of the exact
axial U(1) symmetry:

. 16
U(D)aX (T4 X SW, giag), (28 A(§M):f—z(C1+C2+C3+3C4+C5+3Ce), (32

for this is the symmetry of the lattice theory for=0. The

issue is whether all operators W{fa that respect this sym- 16
metry also respect a larger flavor symmetag was the case Alus)= ?(C1+CZ+3C3+C4_C5+3CG)'
for Vf(). That the answer is negative is shown by the ex- (33
ample

P (iii) One six-dimensional irrep with flavog,,, u#v,

with mass
> THESESESES)HH.C (29) 6
A(fﬂv)zf—2(2C3+2C4+4C6). (39

This does respect a larger symmetry than &), because

(when integrated over all space-timi is invariant under The mass shifts for these representations are independent,
rotations. But its flavor symmetry is the hypercubic groupand thus we can make no predictions for the ordering or
SW,, and notSQO(4). Thus flavor is completely broken by splittings. We also cannot predict tlsggn of the shifts, al-

higher order terms in the potential. though numerical data indicate that they are all positive with
Nevertheless, it is amusing to note that the contributiongresent forms of the staggered action.
of such terms to the pion masses do res|&0(4). This is We can finally see the degeneracies predicted in the chiral

because, when calculating pion masses, two of the four fadimit at finite lattice spacing. The lattice irreps with flavafs
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FIG. 1. Splittings between non-Goldstone and Goldstone pions FIG. 2. Splittings between non-Goldstone and Goldstone pions
at =6 in the quenched approximatig6]. Results are in lattice in dynamical simulation$4]. Notation is as in Fig. 1. The upper
units. The solid horizontal lines show the average value for thewo sets of points come from simulations with unimproved gauge
three pairs which are predicted to become degenerate in the chirghd fermion actions, while the lower two use improved gauge and
limit. Errors are approximate, as they have been obtained ignoringermion actiondthe latter being the “fat Naik” action). For clar-
the error in the Goldstone pion mass and the correlation betweefy, some points have been offset horizontally.
the masses of pions in different representations.

observed within error$ Furthermore, there is, in most cases,
and &, join together, as do those with flavoés and &,5,  a Statistically significant difference between the masses of
and those with flavors;; and &,. the pions in differenSQ(4) representations.

How well do these predictions compare to numerical The numerical data are thus consistent with a flavor
data? Two groups have calculated the masses of all sevéH(4) symmetry, not only in the chiral limit but also for
pion irreps with errors small enough to allow a test. Ishizuka’0n-Zero quark masses. As noted in the previous section, this
et al. made an extensive study of flavor symmetry breakingSYmMmetry is broken by both higher order terms in E3f).
several years ag®]. They worked in the quenched approxi- In partlcular,SO(4) breaking by the correction proporqonal
mation atB=6.0, and used two quark masses-0.01 and to m would be twice as large for the heawer_ masses in each
m=0.02. These masses correspond roughlymg3 and of the data gets_. It is apparent from the figures thgt such
2my/3, with mg the physical strange quark mass, and thus aréo(_4) preakmg IS small,_and thus that _the bulk of .th's cor-
moderately small. The chiral expansion parameterrecuon IsSQ(4) symmetric. Th's result is not explained by
(m, /4=t )2 is about 25% for such masses. The second cal'Ehe qh|_ral Lag(ang|an analysis. -
culation has been done recently by Orginos and Toussaint It is interesting to compare the two Qata Sets in '.:'g' 2. The.
[4]. They have done extensive calculations using a variety o 0 sets are approximately matched in the following sense:
perturbatively improved staggered fermion actions usin or both the smaller and the Iarge_r quark Masses, the values
moderately light dynamical quarks. o_f aMp_ and aM ,(&s) from thg unimproved and improved

It turns out that the predicted degeneracies are observed mulations agree closgly. This means that they have roughly
almost all the data sets, even at the largest quark massd8€ Same lattice spacing and quark mass, and can thus be
This is illustrated in Figs. 1 and 2, which show, respectively,US€d t0 observe the effect of improvement on flavor symme-
the results of Ref[6] and a subset of the results from Ref. 'Y bréaking. At non-zero quark mass the flavor breaking is

[4]. For each of the six non-Goldstone pion irreps, we plotSubstantially reduced, particularly for pions with flavys.
the difference On the other hand, if one extrapolates linearly to the chiral

limit, the effect of improvement is much smaller. It is also
noteworthy that, for improved fermions, for which one can

2 2_ 29_ .4 I do the chiral extrapolation with little uncertainty, the pattern
AIM+(Ta)"~M(£5)7]=a"A(Ta)[ 1+ O(M/Agco) of flavor breaking is consistent with only ti@, term in Egs.
+O(a2AéCD)], (35)  (32—(34) being substantial. We have no explanation for this
observation.

which removes the common contribution proportional to the
quark mass. We order the flavors so that pairs which are4 simulations, the masses of the various pions are correlated,
predicted to become degenerate in the chiral limit are adjaand thus the differences between them are more significant than the

cent. For all pairs except oné&;(andé&, at the heaviest quark error bars suggest. It would be interesting to directly calculate the
mass with unimproved fermions in Fig),2degeneracy is errors in these differences.

114503-7



WEONJONG LEE AND STEPHEN R. SHARPE PHYSICAL REVIEW &0 114503

Finally, we can use the data to look at the absolute size df18]. At leading order they are sources having fixed velocity.
the discretization errors in the chiral limit. The quantity Higher order terms fit naturally into a chiral expansion be-
shown in the figures should be of sizaX)* with A cause the expansion parameters matam,4/1/(4=f ;).
~Aqcp- Performing a linear extrapolation tm=0, and The key point is that there is no obstacle to constructing
taking the result for the flavorg,, as representative, we find terms, at leading order in the chiral expansion, with the same
the correction to be 0.031 for the quenched data and 0.096ansformation properties as those containect@f(B). In
(0.1)) for the improved(resp. unimproveddynamical simu-  particular, unlike for pions, one does not have to build Lor-
lations. The lattice spacing for these simulatiqobtained  entz non-singlets using derivatives. Instead, one has two new
from extrapolating the rho mass to the chiral lim#& roughly  Lorentz vectors, namely the rho field itsglf, and the four-
1/a=2 GeV for the quenched data and 1.3 GeV for bothvelocity of the heavy source;,. What is particularly im-
dynamical simulations. Thus one finds that the scale descrilportant is that additional factors of, can be added at no
ing the discretization errors i5~0.8, 0.7 and 0.7 GeV for cost in the chiral expansion. To see how this works in detail
the three cases. These rather large values illustrate the negostraightforward but tedious. We give only an example. The

for further improvement of staggered fermions. result of matching the operator§ (XV]—[AXA]) and
([V,XV,]-[A,XA,]) onto operators in the chiral La-
V. NON-GOLDSTONE PARTICLES grangian includes the following mass terms:

An interesting question is whether the partial symmetry t +
restoration found in the pion sector extends to other particles ZV Tp,épuéslt EV: Trp,€up.é,]
such as the vector mesons and light baryons. A naive argu- .
ment against such an extension goes as follows. Even for N
pions, the enlarged symmetry is not respected by terms pro- +E Tpuéupuénlvivy, (36)
portional toa?p?. For other hadrons, e.g. themeson, one o
has|p?|= mﬁ> me, and so the flavor-breaking terms are not
suppressed compared to other discretization errors. We hawéith unknown coefficients. Herg, is a flavor matrix con-
studied this question in detail for vector mesons, and find, atining theSU(4) 15-plet of vector mesons. There are also
explained in this section, that indeed symmetry restoratiosimilar terms with “axial” flavor. Note that both the second
does not occur. and third terms break Lorentz invariance and flavor symme-
The essential difference from pions is that the vectorgry.
remain massive in the combined chiral and continuum limits. Performing a similar analysis with all the operators(g
Indeed, the simplest way to include them in the chiral La-we find the following form for thea? contribution to the
grangian is by expanding in inverse powers of their massegector meson mass matrix in the chiral limit:

Lo= ng Tilplp, ]+ Rz% Tt p) éspés]+ Rs% T pl&,p, €]+ R“sz T pl&,5p 5]
tRs 2 THpLénpuénl tRe2 T pLEupubult Re2 Trlp,€usputys]
v m “

+R8§ TP &P u€ ] T ReD T pléap,éal+ R0 Tr[pL§45p,L§45]+Rnﬂ2 Tl éapuéa]. (37
mFV 12 12 v

Here we have specialized to the rest frame, in whichO Q1®&s)Q, QM®Em)Q,  Q(W® &m)Q,

and p,=0. The unknown coefficientsR; are of size

aZAgCP. These 11 co<_affici_ents break the vector meson octet Qn®&EW)Q, Q(V®E&mdQ, (39)
down into the 11 lattice irreps found by Goltermh7].

These are the states created by the bilinears wherek#1#m. Thus there are no predicted degeneracies.

Note that the terms in the last line of E@7), which are
_ _ _ present because of the vectoy,, are necessary to lift all
Qn®&5)Q, Q(v®EmQ,  Q(w®E4)Q, degeneracies.
The conclusion we draw from this example is that the
o o o pions are a special case, and that for all other particles there
Q(®&)Q, Q(Y®é&ms)Q, Q(yk®é45)Q, iS no reason to expect a partial restoration of the lattice sym-
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metry. At the present time there are no numerical results (2)=exp(i6[§M-nM])=cose+i sing[£,-n,], (39
accurate or extensive enough to test this prediction.
wheren, is an arbitrary vector of unit length. For<00
VI. “AOKI PHASE” FOR STAGGERED FERMIONS? <, flavor SO(4) is broken to anSO(3) subgroup, and
here are three Goldstone pions. As noted above, these are
ot exactly massless because termsCinof O(a’m) and

(a*) break theSO(4) explicitly.

As the quark mass is lowered, there comes a point a
which the effects of the quark mass term and the leadin

discretization errors are comparable. This occurs for physica It is instructive to work out the full spectrum of pions in

— 2 . . . _ 3 .
massesm—a“, implying lattice masseam~—a“. At this éhe broken phase. We display thesefigr= 5,4, i.e. for the

point the competition between the two contributions can lead " " © condensate (i) = exp(6&,). The pions

to unexpected patterns of symmetry breaking. For Wilson : ' A -
fermions one has the possibility of the spontaneous breal{’-‘re labeled by their flavor, defined by the direction of exci

down of flavor and parity symmetries, i.e. an “Aoki phase” ?"0” .Of th? condenzsaté —2<2)equ¢aTa). The results are
containing exactly massless Goldstone bog®sWhat we given 'T units Oi 1&.|C4|/f N hi— Cth
wish to point out here is that an analogous phenomenon can (I)ﬂ F aVOfTa—fj(,jlfﬁj » with ] =1,2,3. For eacl), these
occur V\éith staggered fermions—ti80(4) flavor symmetry wo flavors mix, and there are two mass eigenstates
of thea“ terms can be broken spontaneously. The method we _ _ ; ' 2 _
use is a direct generalization of the work of Rfgf] on the 40c=cosb(¢)) +sinfh(y), M=0, (40
Aoki phase for Wilson fermions.

That symmetry breaking can occur is clear from the form
for pion masses, Eq30). If the corrections of(a?) [called

A(T,) in the equatioh are negative for some pion flavors, at the end points, the Goldstone modes are pure flayor
thenM ,(T,)? will become negative for small enough quark but at the mid-point they become pure fla .
mass. This signals vacuum instability and the possibility of ) Flavor T,= &,. This single state has

spontaneous symmetry breaking. As noted in Sec. IV,
present versions of the staggered action appear to have all MZ2=3 sirfo. (42)
A(T,) positive, in which case symmetry breaking does not
occur® Nevertheless, it is possible that alternate improvedThis vanishes at the end points, due to the restoration of
versions will lead to symmetry breaking, and we discuss thiSO(4) symmetry, which makes the masses of all the flavor
possibility briefly. ¢, states equal.
Before doing so, however, we stress an important differ- (i) Flavor T,=i ¢, . Three states with
ence between the Aoki phase with Wilson fermions and the
present analysis. With Wilson fermions, the flavor symmetry MZ2=cosé. (43
in question is an exact symmetry of the lattice theory, and its
breaking leads to massless Goldstone bosons at non-zero |dtese become degenerate with the other tensors at the end
tice spacing. In the present case, the flavor symmetry is onloints, due taSQ(4) restoration. This degeneracy recurs at
approximate—it is violated by terms of siz8. These terms the mid-point, where all six tensors are massless. This is not,
lead only to small corrections to the masses of most of théiowever, caused b§(4) restoration: thef,; states are
pions in the region of interest{2~a?A*%). The only excep- Massless due to the spontaneous breaking of flava#),
tions are the Goldstone pionsp¢ below), which become While the £, states are massless because of an accidental
pseudo Goldstone bosons with? ~a*A®. axial SQ(3) symmetry of the potential about its classical
To simplify the discussion we assume that only g ~ Minimum atm=0. The latter states will presumably become

term in Ei is presenfsee Eq.(26)], and assume that, magsive when qua}ntum corrections are included.

itself is negative. A straightforward calculation finds the fol- (V) FlavorsTa=i¢js. Three states which are always mas-
lowing features as the magnitude of the quark mass is re?'V€:

duced. For |m| greater than the critical valuem,
=24a%|C,4|/(nf?)~a%A3, the condensate is given Ky )
=sgn(n)1, and the mass formulas of Sec. IV apply with
m—|m|. When |m|=m, the pions with flavoré, become
masslesgsee Eqs(31)—(34)], and there is a second order
phase transition. Fom|<m, it is useful to introduce the
angle ¢ defined by cog=nm/m., with 0= <. Minimizing
:ge_pftae:élc;arlai?]getgnds that the condensate swings fidm brnea=COSOG(E40) +SINO(Es), Ml%lG2:21 (45)

Pne1=COSOB(E4j) —SiNOB(E), Mg =1.
(41

MZ2=1+co<6. (44)

These become degenerate with theat the mid-point, a
result that can be understood as due to the restoration of the
U(1)a symmetry.

(v) FlavorsT,= &5,i é45. These mix according to

PnGa=COSOP(£5) —SiNOB(£45), MRgs=3.
(46)
®When m becomes negative, the vacuum expectation vakip
flips from +1 to —1, and the result30) remains valid withm  The degeneracy between flavdig and £, at the mid-point
—|ml. is again due tdJ(1), restoration.
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VIl. CONCLUSIONS metry group. These are the operators which must be added to
-removeO(a?) errors from the staggered actitmodulo pos-

We have studied discretization errors for staggered ferml—sible redundancies Conversely, when converted to con-

ons, by constructing a sequence of effect!ve Lag_rarjglan%muum form, they are the operators which appear in the con-

Our central result is that, close to the continuum limit, the,. frecti . > h loged
otential term in the chiral Lagrangian describing tinuum eftective Lag_ranglan aD(g ). Lug as cataloge

P these operators previoud§], but did not find all of them.

pion interactions respects a chiral symmetry group, .
7 We use the notation of Refgl9-21], the relevant parts of
U(1)ax[I'4 1 SQ(4)], which is much larger than that of the which we briefly review here. The continuum theory de-

underlying lattice theory. FUISQ(4) rotation invariance Is scribes four fermion flavors, which are collected into a field

also maintained. The enlarged symmetry predicts degeneras with o and a respectively spinor and flavor indices
cies in the pion masses which are observed in numerical da%.“:a’ P ey sp . '
ilinears are labeled by a spin and a flavor matrix:

with surprisingly small deviations.

While this result is pleasing, it has limited applicability. = _=
The enlarged symmetry is broken in pion interactions by Qual ¥9)ap(£r)apQpn=Qual ¥s® éF)aa 6Qp.0
terms ofO(a%), O(a’m) and Q(azpz), and also does not = Q(ys® £)Q. (A1)
hold for hadrons other than pions. We do not know whether
it holds for other pion properties, e.g. the decay constants. The spin matrices are labeled by a hypercube vesipr

An interesting question is whether our result can be usegyith components 0 or 1,
to simplify the improvement of the staggered fermion action.
Complete non-perturbative improvement @{a?) is pro- vs= yfl'ygz'ygg"yi“. (A2)
hibitively difficult because of the number of additional op-
erators that are needed. If flavor symmetry were partiallyThe flavor matrices are labeled similarly by the hypercube
restored, if only approximately as at finite quark mass, thervector F,, except that they are built out of the complex
one should be able to get away with fewer operators. Arconjugate matricesgﬂzy::. This is simply a convention,
extreme example is the flavor breaking in pion masses alongince these two bases are unitarily equivalent. Finally, we
After symmetry restoration there are only three independengise abbreviations such as
differences, so one could imagine a non-perturbative tuning
of the coefficients of just three operators so as to eliminate Yur="YuVvs  Yus5=YuVs5- (A3)
these differences. This approach was suggested by Lepage _ . ) ) )
[5], who pointed out that tree level improvement of the stag-. The lattice bilinears which correspond in the continuum
gered action contains only three-flavor breaking termdimit to Eq. (A1) are
(which can be written either as four-fermion operaf@kor
as bilinears with fat link$5]). One can show that these three z ;(Y)c( ys® &8) cox(Y)o » (A4)
operators do give independent contributions to the pion split- CD
tings, so that such tuning is feasible. On the other hand, the
flavor-breaking part of the potentia’li contains six indepen- wherey labels the 2 hypercupesp and D are hypercube
dent parametersd;—Cq in our notation, and so to remove it vectors, and the hypercupe field is defined in terms of the
non-perturbatively would require introducing six improve- underlying staggered fermion by
ment operators. Furthermore, there is no simplification if one 1
wishes to completely improve the full spectrum, for which xY)e==x(y+C). (AB)
there is no symmetry restoration. Thus it is unclear to what 4
extent limited flavor restoration will help. Numerical testsT e matrices W are unitarily equivalent to
are needed to investigate this issue, and exploratory work het%j 2 é0) Ys¥or y €4

S .

been done in Refg2—4]. It will be useful in the following to define hypercube
fields at zero physical momentum, which are obtained by
averaging over alN, hypercubes:

We thank Maarten Golterman, Peter Lepage and Doug 1
Toussaint for helpful discussions and comments. This work Xe=r > xYe. (AB)
was supported in part by DOE contracts DE-FGO3- y Y
96ER40956 and DOE-W7405-ENG-86. S.S. is very grateful . o .
to the Center for Computational Physics at the University offhe 16 xc transform in the defining representation of the

Tsukuba for the hospitality received there while part of thislattice symmetry group. We always use the argunyamhen
work was done. referring to the fields which reside on individual hypercubes,

and drop this argument for the zero-momentum fields.

We begin with a comment on fermion bilinears of dimen-
sion 6. Luo lists seven such operators. We note however that
one linear combination, which in Luo’s notation is

ACKNOWLEDGMENTS

APPENDIX A: ENUMERATING OPERATORS
OF DIMENSION 6

In this appendix we explain how to determine all opera- -
tors of dimension 6 which are singlets under the lattice sym- x(Y)(D2D—DD?)x(y), (A7)
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has negative parity under lattice charge conjugation and is (3) At this stage the operators are not invariant under
thus forbidden. Furthermore, there are two additional operasingle site translations. This can be accomplished by apply-
tors, not included explicitly by Luo, ing the projector

m2x(y)Dx(y) and mex(y)x(y). (A8) I t1+7,), (A11)
N

These are, however, redundant, since they can be absorbed ) . o
by changing the normalization of the fields and quark massWith 7, the translation operator in theth direction. Note
struct all such lattice operators which are singlets under thérmion number, such as the four-fermion operators under
lattice symmetry group and which correspond to operators 0q;onS|derat.|on. Thus the order of the factors in the product in
dimension 6 in the continuum. The latter requirement ex-Ed- (A11) is unimportant. _ _
cludes operators containing derivatives or factors of the (4) The resulting operators are singlets under all lattice
quark mass. Since the quark mass does not appear, the cdiymmetries excep/(1),. We now apply the constraint that
struction is effectively in the chiral limit, and thus the lattice they do not contain derivatives. This can be done by taking
operators must also be singlets untl ), . the tree level matrix elements with all external quark states

We construct operators by the following steps. Thesdlaving zergphysicalmomentum, i.e. mog{,a,m)=0. This
make use of the fact that, to generate the lattice symmetrgat”x element will vanish if the lattice operator corresponds
group, one can replace rotations about a point on the lattick® @ continuum operator containing one or more derivatives.
with those about the center of a hypercube, and similarly foBUt in evaluating this matrix element each of the hypercube
reflections. These two choices differ only by translations. fields can be replaced by its zero-momentum counterparts:

(1) Multiply two bilinears residing on the same hyper- X(¥)a—xa- Thus we are led to consider linear combina-

cube, and sum over hypercubes: tions of Operators of the form
R — T "(S,S',F,FH)=]] 3(1+7, @ Ep)X.
O(SF,S F)=> x(¥)(7s® &) x(y) o'(ss ) 1;[ 2(I+T)x(vs®@ &) xx(vs @ &r)x
g (A12)
XX(Y) (s @& )x(y)- (A9) We can simplify this using the known translation properties

. . . . . _ of the zero-momentum hypercube field:
This operator is manifestly invariant under translations by

two units. Gauge invariance is maintainéd a way which T v=(I T = (=D ve® £c)
maintains rotation and reflection properiiéy including the wx =18 x=Tux(ys® Ep)x= (=1 x( 73®§F()AX1’3)
usual average of_products of gauge links along the shortest

paths between thg and y. This can be done in two ways: where
joining the y and y within the bilinears or between the bi- )

linears. If we ignore the gauge links, these two choices are E,=mod > F,?2
related by a Fierz transformation. This remains true in the . vEp

presence of the links, up to additional higher dimensional ]

operators involving gauge fields. Thus we need consider onlyVe thus find that

one linear combination of color structures. We do not need to

specify our choice for the following analysis. Luo uses the O’(S,S’,F,F'):H %[1+(_)(E7F’)M]
linear combination which arises in perturbation theory: u

(A14)

1 (contract within bilinears— & (contract between bilinears Xx(vs®Ep) xx(ys ®&rr) X-
(A10) (A15)

When we compare our operators to his, we are implicitlyThis operator vanishes unless=F’, which implies F
using this ch_0|ce. o ) =F’. In other words, if the two bilinears have different fla-
(2) Form linear combinations of th@(S,F,S’",F’) which  yor, then the projection onto a translation singlet produces a
are singlets under the symmetry group of the hypercube—ontinuum operator containing derivatives. Thus we con-
rotations and reflections—and also charge conjugation. Wejyde that, in steff2), we must keep only those bilinears in
label this groupW$ . The transformation properties of bilin- \hich F=F'.
ears undelV; have been worked out by Verstegez®] and (5) Finally, we select those from the resulting list which
are listed in his Tables 3 and 4. The bilinears fall into 56are singlets unded (1), .
irreps. To form a four-fermion operator which is a singlet  Our claim is that this procedure produces all singlet
one must combine two bilinears which reside in the samelimension-6 operators.
irrep. Since most irreps appear multiple times, there are  Thus we must determine which of the lattice four-fermion
a large number of ways of doing this. operators satisfying==F' (“diagonal in flavor”) are sin-
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glets under hypercube rotations and reflections. This is #ese, all of which were found by Luo. The relation to Luo’s
straightforward, though tedious, group theoretical exercisdasis is

which can be done using the tools presentedl2i#)]. First,

one finds that to make a singlet it is necessary §:as', so [SXA]=Fy, [SXV]=TF3, (A20)
that the operator is diagonal in both spin and flavor. Then the

problem reduces to picking out thi, singlets in the product [AXS]=—F3, [VXS]=71, (A21)
of vectors in which each index appears twice, eg® vy, _ _

® &, €&,. Note that the “square” of a flavor matrix trans- [PXV]=7F10, [PXA]==F17, (A22)
forms in the same way as the “square” of a spin matrix. The [VXP]=F,, [AXP]=-Fis, (A23)

result is that there are 35 singlggl]:
(A) There are 25 operators in which the spin and flavor

— (L - 1
indices are separately contracted. For the spin matrices we [TXV]==(GFstFre),  [TXAI=(F6t 3710,

use the notation (A24)
[VXT]=—(3F+Fig), [AXT]=(Fg+3F1a),
S=181, P=y507y5, V=2 7,87%,, (A25)
"
[TMXVM]=(—%}'5+]-'16), [TMXAM]z(_fG"'%flz)'
AZE 7M5® 75/.1.! T= Z ’YMV® ’)/V/.L' (A26)
m u<v
(A16) [V, XT,]=(—3F7+ Fig), [AMXTM]:(_fs‘*‘%jEM)-)
A27

while for flavor matrices we use the same notation with
—&,. The 25 operators are simply the products of the 5To determine which of the operators composed of even bi-
possible spin structures with the 5 flavor structures. The nolinears areU(1), invariant, we note that any such operator

tation we use is exemplified by must, under flavor-spin Fierz transformation, transform into
an operator composed of two odd bilinears. Conversely, if
N o we Fierz transform each of the above 16 operators, we will
XT]= . . ’
[AXT] ; Ep XY (5@ Eup) X(Y) find all even-even diagonal operators. Note that some of the
o odd-odd operators Fierz transform back into odd-odd opera-
XX(Y) (V5,265 x(Y). (Al7)  tors, so that we can end up with less than 16 even-even

operators. Using the Fierz tables collected in Appendix A of

(B) The remaining 10 operators have the spin and flavoRet [21], we find that there are 8 even-eveifil), singlets:
matrices coupled. They are

{[SXSI=[PXPl}=3(F1+F), (A28)
[ViX Vil = 2 X () (7,8 £)X(Y) VXV, T [A XA T = 5B F),
o (A29)
XX(Y) (v, ®E)x(Y), (A18)
{[SXP]-[PXS]}, (A30)
along with [V, xA,], [A,XV,] and [A,XA,] defined
analogously: IV XA ]-T[ALXV ], (A31)
[V XTul= 3 X7, X (VX (7,8 £ X(Y) (VT IAXALL (A32)
e {[VXA]-[AXV]}, (A33)
X (Y@ €)X (VXY (7, ® €51 X(Y),
(A19) {[SXT]-[PXTI}, (A34)
with [T,xV,], [A,XT,] and [T,xA,] defined analo- {[TXS]=[TXP]}. (A35)

gously; and finaly T, XT. ] and[T_XT_], the definitions The first two are related to two of Luo’s operators, while the

gnvﬁ'éh we do not reproduce since they dsg1), non- remaining six are new. Note that §d X T| operators are
gets. U(1)a singlets.

natli\loixst tvrzgt Z?E?i;rogntr;:;e 19rF1)i§riztzrustotpnoast?cglrlle?rzgc;gbl_ The continuum versions of these operatarbich appear
A SINGIELS. y in the effective Lagrangian for unimproved or partially im-

those operators consisting of odd biline&Ehere are 16 of proved staggered fermionsan be obtained simply by re-
placing they’s with Q’s, and removing the overbar on the
matrices. In the text we use the same notation for the corre-

®An even or odd bilinear is one in which theandy are separated Sponding continuum operators, e.§x V], as we do for the
by an even or odd number of links. lattice operators.
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APPENDIX B: MAPPING OF OPERATORS IN S5F [VXS] and [AXS]—4c, (B4)
INTO V§
The operators ii85"™ break into three classes according [VXP] and [AXP]—cTr(&2 37, (B5)

to the spin of the bilinears.

[VXT] and [AXT]—c > Tr(¢,, 3,50,
u<v

1. Operators with spin structure V or A (B6)

The general form of these operators is a linear combina-

tion of [VX F] and[ AXF], with F denoting the flavor. The ([VXV]-[AXA]) and ([AXV]-[VXA])
flavor structure of these operators is a sum of terms of the
form

—c {Tr(e,36,3N)-Tr(£,s36,50).  (B7)

Op=*2 [Qr(7,8FR)Qr* QL(7,8F QLT |
© The fact that the same constantippears in all these tran-

(B1) scriptions is crucial for the last of these mappings, @BY).

A check of this result is that the operator is invariant under

the axialU(1) only if the relative coefficient of the two
whereF" R are Hermitian matrices in flavor space. Bath  terms is— 1. Apart from this, the fact that the same constant
signs are positivénegative if the spin isV (A). For the ¢ appears in all transcriptions does not lead to useful rela-
axial operators, the internal minus sign is due to the exita  tions because the coefficients of the underlying quark opera-
while the external sign appears because for gpthe Dirac  tors are different and unknown.
matrix isiy,ys so as to be Hermitian. To determine the
form of the corresponding operatorlhi, we promoteF |
to spurion fields. If they transform &, —LF LT andFg .
—RFgR', thenOk is invariant under chiral transformations. The chiral structure of operators of the fofr8x F] and
We then build all the operators out & which are chiral [PXF]is
singlets, quadratic i [linear and cubic terms are forbidden , = = —
by the F— —F symmetry, while quartic terms would be of Or=[QL(1®F )Qr* Qr(1®Fr)Q 1%, (B8)
O(a%)], and parity invariant £, < Fr andS<37). At the
end, we seF, =Fr=F, whereF is the flavor matrix appear- With the = sign corresponding t§ or P. Here the spurions
ing in the operator under consideratiofe.g. ¢ for  must transform a§, —LF R" andFg—RFgL". The non-

2. Operators with spin structure S or P

[VXP]). trivial operators onto whicl®’ maps are
It turns out that there is only one non-trivial operator into
which O can map: Ot — = Tr(FRI)THF S +¢o[ THFRE)2+ Tr(F 2 1)?]
+eg[ THFRIFRY) + Tr(F S TF 3] (B9)
Op—CTr(F SFRSM). (B2) SRR ot

From this we find that

The constantg, is unknown, but has the same magnitude

+
(and sign for both V and A spins. The sign is the same [SxV] and [PXV]—=c,Tr(§,2)Tr(¢,%7)

because the overall sign in E@1) cancels with the “inter- e[ Tr(£,3)2+H.c]
nal” sign coming from the fact that this operator contains "
one factor each df, andFy. A second operator allowed by +eg[Tr(§,%¢,2)+H.c] (B10)

the symmetries,

[SXA] and [PXA]—=c,>, Tr(£,s3)Tr(£s,37)
THFO)TICFREN+Tr(FR) Tr(STFLD), (B3) v

022 [TH(£,63)Tr(és,3) +H.e]
turns out to be a field independent constant when one sets v
F_.=Fgr=F. This is either because T} =0 (true for flavor

P andT) or because& 3 T=1 (for flavor singlet bilinears +¢3, [Tr(£,5365,5)+H.cl.

Finally, the operators TR})Tr(23") and TrF2s3T) are "

trivial for any F. (B11)
Thus we find that the operators map into the following

terms in the potentiavf(: For the operators which are linear combinations, we find
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([SXS]=[PXP])—cy [Tr(X)Tr(XN) + Tr(&3) Tr(és2 )]
+C,[Tr(2)2—Tr(£s3)2+H.c]

+Ca[ Tr(E?) —Tr(£53653) +H.cl,
(B12)

with ([SX P]—[PXS]) mapping onto the same three opera-that there is na; term, and the other terms have new coef-

PHYSICAL REVIEW &0 114503
0= 2 [Qu(7,,®F QR +[Qr(7,, 8 FRI QI
u<v
(B14)

In particular, there are no cross terms betweéhand RL
bilinears. It follows that the mapping is as in E89) except

tors except that the, andc terms change sign. A check on ficientsc) andc). From this we find that

these results is that the relative plus sign in ¢heerm and

minus signs in the other terms are those needed to make

these operators invariant undé(1), . Finally, for the flavor
T only thec, term survives:

([S><T]—[P><T])—>201M§<:V Tr(€,,S)Tr(€,,37).
(B13)

3. Operators with spin structure T

There are two such operatof3, X V] and[ T X A]. These
have a slightly different chiral structure to that of thRandP
operators,

[TXV]—+ch > [TH(£,5)2+H.c]

+cp X [Tr(€,2¢,3)+H.c], (B15)

[TXA]——ch > [Tr(£,53)%+H.cl]

+ch > [Tr(€,s365,3)+H.c]. (B16)
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