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Partial flavor symmetry restoration for chiral staggered fermions
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We study the leading discretization errors for staggered fermions by first constructing the continuum effec-
tive Lagrangian, including terms ofO(a2), and then constructing the corresponding effective chiral Lagrang-
ian. The terms ofO(a2) in the continuum effective Lagrangian completely break theSU(4) flavor symmetry
down to the discrete subgroup respected by the lattice theory. We find, however, that theO(a2) terms in the
potential of the chiral Lagrangian maintain anSO(4) subgroup ofSU(4). It follows that the leading discreti-
zation errors in the pion masses areSO(4) symmetric, implying three degeneracies within the seven lattice
irreducible representations. These predictions hold also for perturbatively improved versions of the action.
These degeneracies are observed, to a surprising degree of accuracy, in existing data. We argue that theSO(4)
symmetry does not extend to the masses and interactions of other hadrons~vector mesons, baryons, etc.! or to
higher order ina2. We show how it is possible that, for physical quark masses ofO(a2), the newSO(4)
symmetry can be spontaneously broken, leading to a staggered analogue of the Aoki phase of Wilson fermions.
This does not, however, appear to happen for presently studied versions of the staggered action.
@S0556-2821~99!06923-4#

PACS number~s!: 12.38.Gc, 11.15.Ha, 12.39.Fe
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I. INTRODUCTION

Staggered fermions@1# are one of the standard discretiz
tions used in lattice simulations. Their major advantage
that they retain a remnant of the continuum chiral symme
group at non-zero lattice spacing. Their major drawback
that the continuum flavor symmetry@SU(4) for a single
staggered fermion# is almost completely broken on th
lattice—only a discrete subgroup remains. Although only
effect of O(a2), flavor breaking turns out to be numerical
significant at typical lattice spacings.

In this paper we show that, in the Goldstone boson sec
flavor symmetry is partially restored in the chiral limit. Th
discrete lattice flavor group enlarges to anSO(4) subgroup
of the continuumSU(4). This implies relations betwee
multi-pion interactions at very low momenta. The simplest
these concerns the pion masses: seven lattice irreducible
resentations~irreps! collapse into fourSO(4) irreps in the
chiral limit, implying three degeneracies. This result appl
to both the original form of staggered fermions and to va
ous improvements that have been recently suggested@2–5#.
It turns out that these degeneracies are present both in
from a few years ago@6# and from recent simulations@4#.

Our derivation of these degeneracies applies only to
leading order discretization errors. We find that they are v
lated by terms ofO(a4). We have also studied the extensio
of our result to the masses and interactions of hadrons o
than the pions—we find that the partial flavor symmetry r
toration does not extend to the masses and interactions o
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vector mesons, and we argue that this is also true for
particle which remains massive in the chiral and continu
limits. In other words, for such particles all lattice irrep
should be split by terms ofO(a2), even in the chiral limit.
Present numerical results for vector mesons and baryons
either of insufficient accuracy or do not consider enough
reps to test this prediction.

In the bulk of this article we explain how the enlarge
flavor symmetry is derived. The method is modeled on t
used to study flavor and parity breaking with Wilson ferm
ons@7#. While straightforward in principle, the application o
the method to staggered fermions is considerably more c
plicated. One begins by determining all the lattice operat
which are required forO(a2) improvement. This has largely
been done by Luo@8#, but he missed some operators, and
complete the task in Appendix A. The second step is to w
down the effective continuum action which describes the
tice theory, including errors proportional toa2, and deter-
mine the symmetries of its various components. This is d
in Sec. II. A side benefit of this analysis is seeing explici
how the lattice symmetry group emerges in continuum l
guage. One then writes down the effective chiral Lagrang
describing the interactions of the pseudo Goldstone bos
in the effective continuum theory, again including thea2

terms. This is worked out in Sec. III~with details relegated to
Appendix B!, and it is at this stage that the symmetry res
ration emerges. The implications of partial symmetry res
ration for pion masses are presented in Sec. IV and are c
pared to the results of numerical simulations. In Sec. V
explain why the partial symmetry restoration does not exte
to vector mesons.

It turns out that the enlarged flavor symmetry whi
emerges in the chiral limit atO(a2) can also be spontane
©1999 The American Physical Society03-1
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ously broken in that same limit. Whether this happens
pends on the sign of various unknown coefficients in
chiral Lagrangian describing the lattice theory. This pheno
enon is analogous to the breaking of flavor in the Aoki ph
for Wilson fermions@9,7#. The analogy is not precise, how
ever, because the symmetry that is being broken here is
an exact symmetry of the lattice theory, but is instead v
lated by terms ofO(a4). Thus there are only pseudo Gold
stone bosons in the broken phase. The new phase, if it
curs, is very narrow—in terms of the bare lattice qua
masses it has a width ofO(a3). It appears that this phase
unlikely to occur for those versions of staggered fermio
presently in use, but it may occur for other improved v
sions. In Sec. VI we give a brief discussion of the propert
of the new phase.

We close with some comments on the practical impli
tions of our result.

A preliminary report on this work was presented in R
@10#. At that time we suggested that the enlarged symme
would apply also to hadrons other than the pions, a poss
ity we now think is incorrect.

II. CONTINUUM EFFECTIVE ACTION

The first step in our analysis is to write down the effecti
continuum action describing the interactions of quarks a
gluons with momenta much below the cutoff,p!L;1/a
@11#. Integrating out modes near the cutoff introduces hig
dimension operators with coefficients suppressed by exp
powers ofa. The constraint on these operators is that th
must have the same symmetries as the underlying lattice
tion. We wish to include terms suppressed by up to t
powers ofa, and thus must determine all allowed operato
of dimension up to and including 6. This we do by writin
down the allowed lattice operators and then matching th
onto continuum operators at the tree level. The result has
form

Seff5S41a2S6 ~1!

5E d4x~L41a2L6!. ~2!

The leading term is

L45 1
2 TrFmnFmn1Q̄~D” 1m!Q, ~3!

with
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m

~gm ^ 1!Dm , ~4!

in a (spin̂ flavor) notation explained in more detail in Ap
pendix A. The physical quark mass is proportional to t
bare staggered quark massm(m)a5Zm„g

2,ln(am)…m0(a).
There are no terms linear ina because there are no operato
of dimension 5 consistent with all the lattice symmetrie
This is well known for the gauge theory, and has been sho
in Refs.@12,13# for staggered fermions.

There are three types of contribution toS6: gluonic op-
erators, fermion bilinears and four-fermion operators:

S65S6
glue1S6

bilin1S6
FF. ~5!

The gluonic terms are@14#

L 6
glue;Tr~DmFmnDrFrn!1(

mnr
Tr~DmFnrDmFnr!

1(
mn

Tr~DmFmnDmFmn!, ~6!

where the symbol; implies that each of the operators a
pears with a coefficient which depends ong2 and lna. The
first term in Eq.~6! can be absorbed into a redefinition of th
gluon field, which leaves only two independent terms
L 6

glue.
The enumeration of the fermionic operators is describ

in Appendix A, along with the notation used to refer to the
Most have been previously listed by Luo@8#. There are 8
fermion bilinears

L 6
bilin;Q̄~D” !3Q1(

m
Q̄~Dm

2 D” 1D” Dm
2 !Q

1(
m

Q̄DmD” DmQ

1(
m

Q̄~gm ^ 1!Dm
3 Q1mQ̄~D” !2Q

1(
m

mQ̄Dm
2 Q1m2Q̄D” Q1m3Q̄Q, ~7!

and 24 four-fermion operators. The latter we divide into tw
classes:
L 6
FF(A);@S3A#1@S3V#1@A3S#1@V3S#1@P3V#1@P3A#1@V3P#1@A3P#

1@T3V#1@T3A#1@V3T#1@A3T#1$@S3S#2@P3P#%1$@S3P#2@P3S#%

1$@S3T#2@P3T#%1$@T3S#2@T3P#%1$@V3V#2@A3A#%1$@V3A#2@A3V#% ~8!

~with compound operators enclosed in curly braces! and

L 6
FF(B);@Tm3Vm#1@Tm3Am#1@Vm3Tm#1@Am3Tm#1$~@Vm3Vm#2@Am3Am#!

2 1
4 ~@V3V#2@A3A# !%1$~@Vm3Am#2@Am3Vm#!2 1

4 ~@V3A#2@A3V# !%. ~9!
3-2
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PARTIAL FLAVOR SYMMETRY RESTORATION FOR . . . PHYSICAL REVIEW D 60 114503
The essential point of the notation is that the first letter in
cates the rotation property of the bilinears within the ope
tor, while the second indicates the flavor. Thus in@S3T#
both bilinears are scalars and have ‘‘tensor’’ flavor, i.e
flavor matrix of the formjmjn[jmn .

Several of these operators are redundant, i.e. can be
sorbed into the others by a field transformation. Although
could use this to reduce the number of operators, we cho
not to do so, since it is little extra work to keep track of a
the operators. In this way we do not have to worry about
subtleties of determining redundant operators with stagge
fermions@5#.

As noted in the Introduction, a variety of improvements
the staggered fermion action are being tested in nume
simulations. All of these use perturbation theory, and th
reduce, but do not remove, the errors proportional toa2. This
implies that the form of the continuum effective action r
mains the same as for unimproved staggered fermions
though the size of the numerical coefficients multiplying t
a2 terms is presumably reduced.

For the subsequent analysis, it is crucial to understand
symmetries that are maintained by the various terms in
effective action.

The leading order actionS4 is invariant under Euclidean
translations, rotations and reflections, and also under ch
conjugationC, fermion numberU(1)V and the flavor group
SU(4). In themassless limit the flavor symmetry enlarges
the chiral symmetrySU(4)L3SU(4)R . In general, we ex-
pectS6 to break this symmetry down to that of the under
ing lattice theory, because we have included inS6 all opera-
tors consistent with the lattice symmetries. While it
possible that some symmetries will not be broken u
higher order ina, this turns out not to be the case here. T
only exception is continuous translation invariance, which
a symmetry ofSeff but is broken by the lattice to a discre
subgroup. This symmetry is effectively restored because
are considering only low-momentum modes.

We first note that fermion number, charge conjugat
and spatial inversion~parity! are not broken byS6. This is
obvious for fermion number. Charge conjugation does
the sign of vector and tensor bilinears, but this sign canc
since these bilinears always appear in pairs. Parity also
the sign of some bilinears, but again the overall sign canc

This leaves us to consider the breaking of flavor and
tation symmetry. In Table I we display the symmetries
spected by each of the terms in the effective action. T
notation is as follows:SW4 is the hypercubic subgroup of th
Euclidean rotation groupSO(4), G4 is the Clifford group
with four generators which square to the identity,’ indi-
cates a semi-direct product, andU(1)A is the axial symme-
try:

Q→exp@ iuA~g5^ j5!#Q, Q̄→Q̄exp@ iuA~g5^ j5!#,
~10!

which is the continuum equivalent of the lattice axial sy
metry. The meaning ofSW4,diag will be described below.

We now explain the results in the table, commenting
their significance as we proceed. The gluonic actionS6

glue
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does not affect the flavor symmetry, but the third term in E
~6! breaks theSO(4) rotation symmetry down to its hyper
cubic subgroupSW4, because the indexm is repeated 4
times. The same holds true forS6

bilin : all terms in Eq.~7! are
flavor singlets, but the fourth term breaksSO(4)→SW4.

Flavor symmetry is broken only by the four-fermio
terms. This occurs in two stages. All terms inS6

FF(A) have
their Lorentz and flavor indices contracted separately, e.

@T3V#[ (
m,n

(
r

Q̄~y!~gmn ^ jr!

3Q~y!Q̄~y!~gnm ^ jr!Q~y!, ~11!

and are thus Lorentz singlets. The appearance of flavor
trices implies that they break theSU(4) symmetry, but the
contraction of flavor indices between bilinears implies th
anSO(4) subgroup survives unbroken. This is the subgro
in which the 4 of SU(4) transforms in the spinor rep o
SO(4):

Q→~1^ L1/2!Q, L1/25exp~vmnjmn!, ~12!

with vmn an antisymmetric matrix of real parameters. T
appearance of operators containing bilinears of all poss
flavors in Eq. ~8! implies that no other continuous flavo
symmetry remains. One can also show that no axial sym
tries survive aside from theU(1)A described above.

There is, however, an additional discrete flavor symme
All the four-fermion operators~of both type A and B! are
invariant under the ‘‘flavor reflections’’ generated by th
transformations1

Q→~1^ jm!Q, Q̄→Q̄~1^ jm!. ~13!

These transformations may change the sign of a bilinear

1In Ref. @10# we used a different basis for the generators, nam
( i j5m). Although the two choices of basis are equivalent, what
use here allows a more direct connection to the lattice symmet

TABLE I. The flavor~including chiral! and rotation symmetries
respected by various terms in the effective action. In the last th
lines flavor and rotation symmetries are intertwined. See the tex
detailed explanation.

Term in action @Flavor# 3 rotation symmetry

S4 (m50) @SU(4)L3SU(4)R#3SO(4)
S4 (mÞ0) @SU(4)#3SO(4)
S6

glue @SU(4)L3SU(4)R#3SW4

S6
bilin (m50) @SU(4)L3SU(4)R#3SW4

S6
bilin (mÞ0) @SU(4)#3SW4

S6
FF(A) @U(1)A3G4’SO(4)#3SO(4)

S6
FF(B) U(1)A3(G4’SW4,diag)

S6 (m50) U(1)A3(G4’SW4,diag)
S6 (mÞ0) G4’SW4,diag
3-3
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WEONJONG LEE AND STEPHEN R. SHARPE PHYSICAL REVIEW D60 114503
Q̄~gS^ jF!Q→Q̄~gS^ jmFm!Q5~2 !F̃mQ̄~gS^ jF!Q
~14!

~see Appendix A for notation!, but this sign cancels in the
four-fermion operators since all bilinears appear in flav
diagonal pairs. The generators in Eq.~13! anticommute and
square to11, and so generate the Clifford groupG4. They
lie within the flavor groupSU(4), but notwithin theSO(4)
subgroup~which is composed of matrices containing an ev
number ofjm). They transform as a vector under the flav
SO(4), andthus are combined with this group in a sem
direct product as shown in the table.

The second stage of symmetry breaking is due to the
operators inS6

FF~B! , in which the flavor and Lorentz indice
are correlated. Two examples appear in Appendix A@Eqs.
~A18! and ~A19!#; here we give another~this time in con-
tinuum notation!:

@Tm3Am#[ (
m,n

Q̄~y!~gmn ^ jm5!Q~y!

3Q̄~y!~gnm ^ j5m!Q~y!

2Q̄~y!~gmn5^ jm5!Q~y!

3Q̄~y!~g5nm ^ j5m!Q~y!. ~15!

These operators are not invariant under either Lorentz
flavor SO(4) rotations.2 If, however, we do a simultaneou
Lorentz and flavorhypercubicrotation, then the correlation
between the indices is preserved. The restriction to hype
bic, rather than continuous, rotations occurs because ind
are repeated 4 times@e.g.m in Eq. ~15!#. The explicit form of
this diagonal hypercubic rotation is

Q~x!→~L1/2
HC

^ @L1/2
HC#* !Q~@LHC#21x!, ~16!

with L1/2
HC an element of the spinor representation restric

to the hypercubic group, andLHC the corresponding membe
of the vector representation. Since these transformations
volve simultaneous Lorentz and flavor rotations, we refer
the group they form asSW4,diag. As noted above,S6

FF(B) is
also invariant under the discrete flavor groupG4, the genera-
tors of which transform as a vector underSW4,diag. Thus the
flavor-rotation group ofS6

FF(B) is G4’SW4,diag.
The symmetry group ofS6 is given by the intersection o

the symmetry groups of its components. Combining
above results, we find thatG4’SW4,diag is the symmetry
group in general, and that in the chiral limit we get the a
ditional U(1)A . Adding back in fermion number, charg
conjugation and parity, the resulting groups are indeed th
of the underlying lattice theory@15#. This is most easily seen
using the presentation of the lattice group given in Ref.@16#:
the G4 is generated by single-site translations, while t
SW4,diag is generated by lattice rotations.

2The extra subtractions in the last two compound operators in
~9! are included to remove a Lorentz singlet component.
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In summary, we have learned that the bulk of flavor sy
metry breaking is caused by the subclass of four-ferm
operators in which flavor and Lorentz indices are correlat
We will now show that the contributions of these operato
are suppressed in low momentum pion interactions.

III. EFFECTIVE CHIRAL LAGRANGIAN

In this section we work out the modifications to the chir
Lagrangian implied by the addition of the actiona2S6. We
begin by recalling the form of the Lagrangian describing t
long-distance dynamics of the QCD action,S4, close
to the chiral limit. The spontaneous breakdown
SU(4)L3SU(4)R to vector SU(4) gives rise to 15 Gold-
stone modes, described by the fieldsf i . These can be col-
lected into anSU(4) matrix

S~x!5exp~ if/ f !, f5 (
a51

15

faTa , ~17!

where f is the pion decay constant~normalized to f p

5132 MeV). We adopt an unconventional normalization f
the generators,

Ta5$jm ,i jm5 ,i jmn ,j5%. ~18!

UnderSUL(4)3SUR(4), S transforms as

S~x!→LS~x!R† ~19!

where L(x)PSUL(4) and R(x)PSUR(4). The chiral La-
grangian, correct up to quadratic order in meson masses
momenta, is

L x
45

f 2

8
Tr~]mS]mS†!2

1

4
mm f2Tr~S1S†!, ~20!

with m a constant ofO(LQCD). Expanding this in powers o
f one finds 15 degenerate pions with masses given by

mp
2 52mm@11O~m/LQCD!#. ~21!

The leading order term is the tree-level result, while the c
rections come from loop diagrams and from higher ord
terms in the chiral Lagrangian.

The addition ofa2S6 breaks chiral symmetry and lifts th
degeneracy of the pions. Generically, Eq.~21! becomes

mp
2 5ca2LQCD

4 12mm@11O~m/LQCD!1O~a2LQCD
2 !#

~22!

wherec is a constant of order unity. Contributions propo
tional toa2 are due toS6, and lead to massive pions even
the chiral limit. The only exception is the pion with flavorj5
which remains massless becauseS6 respects theU(1)A sym-
metry whenm→0. It is instructive to rewrite the genera
form as

q.
3-4
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mp
2

LQCD
2

5a2LQCD
2 1

m

LQCD
1a2LQCD

2 m

LQCD
1

m2

LQCD
2

1 . . . ,

~23!

where we have dropped all constants. This shows explic
that we are doing a joint expansion ina2 and m about the
continuum and chiral limits. If we treat both parameters
small, then we can ignore all but the first two terms. The k
observation is then the following. While the combined effe
of all the terms proportional toa2 ~and any power ofm) in
Eq. ~23! is to break the chiral and Lorentz symmetries do
to the lattice subgroup~sinceS6 itself breaks the symmetry
in this way!, it is possible that thea2 term which remains in
the chiral limit has a larger symmetry. This turns out to
the case, and implies certain exact degeneracies betw
pions in different lattice irreps in the chiral limit.

To demonstrate this we need to determine the mappin
the operators inS6 into the chiral Lagrangian. This is don
by matching the transformation properties of operators un
Lorentz and chiral symmetries. We denote the resulting c
tributions to the total chiral LagrangianL x

6 , i.e.

Lx5L x
41a2L x

61O~a4!. ~24!

A precise statement of our result is that the part ofL x
6 with-

out derivatives, i.e. the potentialV x
6 , is invariant under fla-

vor SO(4) transformations.3 Terms inL x
6 involving deriva-

tives do breakSO(4) down to the lattice symmetry group
But for very low momentum interactions, such thatp2

;mp
2 , these terms give contributions suppressed relativ

those ofV x
6 by mp

2 /LQCD
2 . For example in the expression fo

mp
2 , Eq. ~23!, V x

6 gives rise to thea2 term on the right-hand
side while the terms inL x

6 containing derivatives give rise t
the non-leading term proportional toa2m anda4. Note, how-
ever, that for pion interactions withp2;LQCD

2 the SO(4)
symmetry will be broken.

In the following we work through the operators inS6,
matching them ontoL x

6 , with the aim of finding those which
contribute to the potentialV x

6 .

A. Matching of operators in S6
glue and S6

bilin

As noted above, most of these operators have the s
symmetries asS4, and in particular do not break theSU(4)
flavor symmetry. They lead to a renormalization of the ter
in the continuum chiral LagrangianL x

4 by a factor of the
form 11a2LQCD

2 1a2m2. They do contribute toV x
6 , but

their leading contribution tomp
2 is of order O(a2m), and

thus of second order in our joint expansion.
There are also terms inS6

glue and S6
bilin which are not in-

variant under rotations. These map into operators wh
themselves are not rotationally invariant, which requires
least four derivatives, e.g.

3We adopt the sign convention thatL x
65V x

6 plus terms containing
derivatives.
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Tr~]m
2 S]m

2 S†!. ~25!

These lead to rotation non-invariance in the pion propaga
and, thus, direction dependence of the extracted pion m
but they do not break the flavor symmetry. Their contrib
tions tomp

2 are of sizea2mp
4 and thus proportional toa2m2,

a4m or a6, and so are of third order in our joint expansio

B. Matching of operators in S6
FF„A…

The first flavor-breaking contribution to the potentialV x
6

comes from the operators inS6
FF(A) . These can match onto

operators without derivatives because they are singlets u
rotations. The explicit mapping is worked out in Append
B. At this stage, the potential retains anSO(4) flavor sym-
metry, since this is the symmetry of all the operators
S6

FF(A) .
Using the results of Appendix B, we find that the cont

bution to the potential is

2V x
65C1Tr~j5Sj5S†!

1C2
1
2 @Tr~S2!2Tr~j5Sj5S!1H.c.#

1C3
1
2 (

n
@Tr~jnSjnS!1H.c.#

1C4
1
2 (

n
@Tr~jn5Sj5nS!1H.c.#

1C5
1
2 (

n
@Tr~jnSjnS†!2Tr~jn5Sj5nS†!#

1C6 (
m,n

Tr~jmnSjnmS†!. ~26!

The six unknown coefficientsCi are all of sizeLQCD
6 . All

terms respect the enlarged flavor symmetry and are Lor
singlets. To obtain the result~26!, we have collected the
contributions from the different operators in Eqs.~B4!–~B6!,
~B10!, ~B11!, ~B15!, and ~B13!, and then used Fierz trans
formations to convert all operators to a form containing
single flavor trace.

C. Matching of operators in S6
FF„B…

Our final task is to match the operators inS6
FF(B) , i.e.

those in which spin and flavor are correlated. These are
operators which break flavor down to the lattice subgro
The key point in this matching is that all the operators tra
form non-trivially under rotations. To represent these ope
tors in the chiral Lagrangian requires the introduction of d
rivatives, since these are the only objects available
introduce non-trivial rotation dependence. This implies th
the operators inS6

FF(B) make no contribution to the potentia.
Thus the result, Eq.~26!, is the full result forV x

6 and is
SO(4) flavor symmetric as claimed. This is the central res
of this paper.
3-5
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Although complete flavor breaking does not occur at fi
order in our joint expansion, it is interesting to see how
enters at next order. An example of the operators that ap
when matchingS6

FF(B) is

@Tm3Vm#→ (
mÞnÞrÞm

Tr@~]m2]n!Sjr#Tr@~]m2]n!Sjr#.

~27!

This leads to a direction dependent contribution to p
masses that is correlated with their flavors. For example,
term renormalizes the mass squared of apW 50 pion with
flavor j j ( j 51 –3) by a factor of 11a2LQCD

2 , while it does
not effect the mass of the pion with flavorj4. Since in lead-
ing order in our joint expansion the pion mass squared
proportional toa2 andm, this example shows that the seco
order correction terms proportional to botha4 and a2m in
Eq. ~23! break the symmetry down to the lattice subgroup

D. Contributions of O„a4
…

We close this section with an observation concern
higher order discretization errors. The numerical results
cussed in the following section indicate that theSO(4) sym-
metry is only weakly broken even at fairly large lattice spa
ing. This raises the question of whether higher ord
discretization errors break the flavorSO(4). In particular, is
the enlarged flavor symmetry respected by higher order
cretization errors in the chiral limit?

The analysis of the previous subsection has, in fact,
swered this question in the negative. Terms in the ch
Lagrangian involving derivatives do breakSO(4) and,
through wave-function renormalization, give flavor-breaki
contributions ofO(a4) to mp

2 . Nevertheless, it is interestin
to know whether the ‘‘direct’’ contributions ofO(a4), i.e.
those in the potentialsV x

n>8 , breakSO(4).
To study this question, all we need to know is that, in t

chiral limit, any operator inV x
n>8 must be symmetric unde

U~1!A3~G4’SW4,diag!, ~28!

for this is the symmetry of the lattice theory form50. The
issue is whether all operators inV x

n>8 that respect this sym
metry also respect a larger flavor symmetry~as was the case
for V x

6). That the answer is negative is shown by the e
ample

(
n

Tr~jnSjnSjnSjnS!1H.c. ~29!

This does respect a larger symmetry than Eq.~28!, because
~when integrated over all space-time! it is invariant under
rotations. But its flavor symmetry is the hypercubic gro
SW4, and notSO(4). Thus flavor is completely broken b
higher order terms in the potential.

Nevertheless, it is amusing to note that the contributio
of such terms to the pion masses do respectSO(4). This is
because, when calculating pion masses, two of the four
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tors ofS are replaced by the identity, and the operator ‘‘co
tracts’’ to one which isSO(4) symmetric.

This analysis does not tell us whether the new term~29! is
proportional toa4 or a higher power ofa2. To determine this
one must study the quark operators of dimension 8 allow
by the lattice symmetries, a task we have not undertaken

IV. RESULTS FOR PION MASSES

The partial restoration of continuum symmetries inV x
6

applies to all the multi-pion interactions encoded in the ch
Lagrangian. We consider here only the simplest applicat
of this result, namely to the masses of the pions.

In the continuum, the pions form a 15-plet of flavo
SU(4) and are degenerate. On the lattice, states are class
by the symmetries of the transfer matrix~a subgroup of the
symmetries of the lattice action!. As shown by Golterman
@17#, the pions fall into 7 irreps of this group: fou
3-dimensional reps with flavorsj i , j i5 , j i j and j i4, and
three 1-dimensional reps with flavorsj4 , j45 and j5. Here
we have chosen the 4th direction as Euclidean time. Th
results hold irrespective of the quark mass.

Close to both the chiral and continuum limits, the pio
masses are given by

Mp~Ta!252mm1a2D~Ta!1O~a2m!1O~a4!, ~30!

with D(Ta);LQCD
4 arising fromV x

6 . SinceV x
6 respects fla-

vor SO(4) ~as well as a discrete group which plays no ro
in relating pion masses!, the pions fall intoSO(4) represen-
tations:

~i! A one-dimensional irrep with flavorj5, which receives
no mass from any of the terms inL x

6 , because of the exac
axial U(1) symmetry:

D~j5!50. ~31!

~ii ! Two four-dimensional irreps with flavorsjm andjm5.
These receive masses

D~jm!5
16

f 2~C11C21C313C41C513C6!, ~32!

D~jm5!5
16

f 2~C11C213C31C42C513C6!.

~33!

~iii ! One six-dimensional irrep with flavorjmn , mÞn,
with mass

D~jmn!5
16

f 2 ~2C312C414C6!. ~34!

The mass shifts for these representations are indepen
and thus we can make no predictions for the ordering
splittings. We also cannot predict thesign of the shifts, al-
though numerical data indicate that they are all positive w
present forms of the staggered action.

We can finally see the degeneracies predicted in the ch
limit at finite lattice spacing. The lattice irreps with flavorsj i
3-6
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and j4 join together, as do those with flavorsj i5 and j45,
and those with flavorsj i j andj i4.

How well do these predictions compare to numeri
data? Two groups have calculated the masses of all s
pion irreps with errors small enough to allow a test. Ishizu
et al. made an extensive study of flavor symmetry break
several years ago@6#. They worked in the quenched approx
mation atb56.0, and used two quark massesm50.01 and
m50.02. These masses correspond roughly toms/3 and
2ms/3, with ms the physical strange quark mass, and thus
moderately small. The chiral expansion parame
(mp/4p f p)2 is about 25% for such masses. The second
culation has been done recently by Orginos and Touss
@4#. They have done extensive calculations using a variet
perturbatively improved staggered fermion actions us
moderately light dynamical quarks.

It turns out that the predicted degeneracies are observe
almost all the data sets, even at the largest quark ma
This is illustrated in Figs. 1 and 2, which show, respective
the results of Ref.@6# and a subset of the results from Re
@4#. For each of the six non-Goldstone pion irreps, we p
the difference

a2@Mp~Ta!22Mp~j5!2#5a4D~Ta!@11O~m/LQCD!

1O~a2LQCD
2 !#, ~35!

which removes the common contribution proportional to
quark mass. We order the flavors so that pairs which
predicted to become degenerate in the chiral limit are a
cent. For all pairs except one (j i andj4 at the heaviest quark
mass with unimproved fermions in Fig. 2!, degeneracy is

FIG. 1. Splittings between non-Goldstone and Goldstone pi
at b56 in the quenched approximation@6#. Results are in lattice
units. The solid horizontal lines show the average value for
three pairs which are predicted to become degenerate in the c
limit. Errors are approximate, as they have been obtained igno
the error in the Goldstone pion mass and the correlation betw
the masses of pions in different representations.
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observed within errors.4 Furthermore, there is, in most case
a statistically significant difference between the masses
the pions in differentSO(4) representations.

The numerical data are thus consistent with a fla
SO(4) symmetry, not only in the chiral limit but also fo
non-zero quark masses. As noted in the previous section,
symmetry is broken by both higher order terms in Eq.~35!.
In particular,SO(4) breaking by the correction proportiona
to m would be twice as large for the heavier masses in e
of the data sets. It is apparent from the figures that s
SO(4) breaking is small, and thus that the bulk of this co
rection isSO(4) symmetric. This result is not explained b
the chiral Lagrangian analysis.

It is interesting to compare the two data sets in Fig. 2. T
two sets are approximately matched in the following sen
for both the smaller and the larger quark masses, the va
of aMr and aMp(j5) from the unimproved and improve
simulations agree closely. This means that they have roug
the same lattice spacing and quark mass, and can thu
used to observe the effect of improvement on flavor symm
try breaking. At non-zero quark mass the flavor breaking
substantially reduced, particularly for pions with flavorjm5.
On the other hand, if one extrapolates linearly to the ch
limit, the effect of improvement is much smaller. It is als
noteworthy that, for improved fermions, for which one c
do the chiral extrapolation with little uncertainty, the patte
of flavor breaking is consistent with only theC4 term in Eqs.
~32!–~34! being substantial. We have no explanation for th
observation.

4In simulations, the masses of the various pions are correla
and thus the differences between them are more significant tha
error bars suggest. It would be interesting to directly calculate
errors in these differences.

s

e
ral
g

en

FIG. 2. Splittings between non-Goldstone and Goldstone pi
in dynamical simulations@4#. Notation is as in Fig. 1. The uppe
two sets of points come from simulations with unimproved gau
and fermion actions, while the lower two use improved gauge
fermion actions~the latter being the ‘‘fat1Naik’’ action!. For clar-
ity, some points have been offset horizontally.
3-7



e
ty

d
.0

th
ri

ne

tr
cle
rg
f

pr

o
ha
, a
tio

or
its
a
se

ity.
e-

ing
me

r-
new

tail
he

-

so
d
e-

WEONJONG LEE AND STEPHEN R. SHARPE PHYSICAL REVIEW D60 114503
Finally, we can use the data to look at the absolute siz
the discretization errors in the chiral limit. The quanti
shown in the figures should be of size (aL)4, with L
;LQCD. Performing a linear extrapolation tom50, and
taking the result for the flavorsjmn as representative, we fin
the correction to be 0.031 for the quenched data and 0
~0.11! for the improved~resp. unimproved! dynamical simu-
lations. The lattice spacing for these simulations~obtained
from extrapolating the rho mass to the chiral limit! is roughly
1/a52 GeV for the quenched data and 1.3 GeV for bo
dynamical simulations. Thus one finds that the scale desc
ing the discretization errors isL'0.8, 0.7 and 0.7 GeV for
the three cases. These rather large values illustrate the
for further improvement of staggered fermions.

V. NON-GOLDSTONE PARTICLES

An interesting question is whether the partial symme
restoration found in the pion sector extends to other parti
such as the vector mesons and light baryons. A naive a
ment against such an extension goes as follows. Even
pions, the enlarged symmetry is not respected by terms
portional toa2p2. For other hadrons, e.g. ther meson, one
hasup2u5mr

2@mp
2 , and so the flavor-breaking terms are n

suppressed compared to other discretization errors. We
studied this question in detail for vector mesons, and find
explained in this section, that indeed symmetry restora
does not occur.

The essential difference from pions is that the vect
remain massive in the combined chiral and continuum lim
Indeed, the simplest way to include them in the chiral L
grangian is by expanding in inverse powers of their mas
ct
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@18#. At leading order they are sources having fixed veloc
Higher order terms fit naturally into a chiral expansion b
cause the expansion parameters match: 1/mr'1/(4p f p).

The key point is that there is no obstacle to construct
terms, at leading order in the chiral expansion, with the sa
transformation properties as those contained inL 6

FF(B) . In
particular, unlike for pions, one does not have to build Lo
entz non-singlets using derivatives. Instead, one has two
Lorentz vectors, namely the rho field itselfrm and the four-
velocity of the heavy source,vm . What is particularly im-
portant is that additional factors ofvm can be added at no
cost in the chiral expansion. To see how this works in de
is straightforward but tedious. We give only an example. T
result of matching the operators (@V3V#2@A3A#) and
(@Vm3Vm#2@Am3Am#) onto operators in the chiral La
grangian includes the following mass terms:

(
m,n

Tr@rm
† jnrmjn#1(

n
Tr@rn

†jnrnjn#

1(
m,n

Tr@rm
† jnrmjn#vnvn , ~36!

with unknown coefficients. Hererm is a flavor matrix con-
taining theSU(4) 15-plet of vector mesons. There are al
similar terms with ‘‘axial’’ flavor. Note that both the secon
and third terms break Lorentz invariance and flavor symm
try.

Performing a similar analysis with all the operators inL6
we find the following form for thea2 contribution to the
vector meson mass matrix in the chiral limit:
L r
65R1(

m
Tr@rm

† rm#1R2(
m

Tr@rm
† j5rmj5#1R3(

m,n
Tr@rm

† jnrmjn#1R4(
m,n

Tr@rm
† jn5rmjn5#

1R5 (
m,n,l

Tr@rm
† jnlrmjnl#1R6(

m
Tr@rm

† jmrmjm#1R7(
m

Tr@rm
† jm5rmjm5#

1R8 (
mÞn

Tr@rm
† jmnrmjmn#1R9(

m
Tr@rm

† j4rmj4#1R10(
m

Tr@rm
† j45rmj45#1R11(

m,n
Tr@rm

† j4nrmj4n#. ~37!
ies.

l

he
ere

ym-
Here we have specialized to the rest frame, in whichvW 50
and r450. The unknown coefficientsRi are of size
a2LQCD

4 . These 11 coefficients break the vector meson o
down into the 11 lattice irreps found by Golterman@17#.
These are the states created by the bilinears

Q̄~gk^ j5!Q, Q̄~gk^ jm!Q, Q̄~gk^ j4!Q,

Q̄~gk^ jk!Q, Q̄~gk^ jm5!Q, Q̄~gk^ j45!Q,
et

Q̄~gk^ jk5!Q, Q̄~gk^ jm4!Q, Q̄~gk^ j lm!Q,

Q̄~gk^ jk4!Q, Q̄~gk^ jmk!Q, ~38!

where kÞ lÞm. Thus there are no predicted degenerac
Note that the terms in the last line of Eq.~37!, which are
present because of the vectorvm , are necessary to lift al
degeneracies.

The conclusion we draw from this example is that t
pions are a special case, and that for all other particles th
is no reason to expect a partial restoration of the lattice s
3-8
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metry. At the present time there are no numerical res
accurate or extensive enough to test this prediction.

VI. ‘‘AOKI PHASE’’ FOR STAGGERED FERMIONS?

As the quark mass is lowered, there comes a poin
which the effects of the quark mass term and the lead
discretization errors are comparable. This occurs for phys
massesm;a2, implying lattice massesam;a3. At this
point the competition between the two contributions can le
to unexpected patterns of symmetry breaking. For Wils
fermions one has the possibility of the spontaneous bre
down of flavor and parity symmetries, i.e. an ‘‘Aoki phase
containing exactly massless Goldstone bosons@9#. What we
wish to point out here is that an analogous phenomenon
occur with staggered fermions—theSO(4) flavor symmetry
of thea2 terms can be broken spontaneously. The method
use is a direct generalization of the work of Ref.@7# on the
Aoki phase for Wilson fermions.

That symmetry breaking can occur is clear from the fo
for pion masses, Eq.~30!. If the corrections ofO(a2) @called
D(Ta) in the equation# are negative for some pion flavor
thenMp(Ta)2 will become negative for small enough qua
mass. This signals vacuum instability and the possibility
spontaneous symmetry breaking. As noted in Sec.
present versions of the staggered action appear to hav
D(Ta) positive, in which case symmetry breaking does n
occur.5 Nevertheless, it is possible that alternate improv
versions will lead to symmetry breaking, and we discuss
possibility briefly.

Before doing so, however, we stress an important diff
ence between the Aoki phase with Wilson fermions and
present analysis. With Wilson fermions, the flavor symme
in question is an exact symmetry of the lattice theory, and
breaking leads to massless Goldstone bosons at non-zer
tice spacing. In the present case, the flavor symmetry is o
approximate—it is violated by terms of sizea4. These terms
lead only to small corrections to the masses of most of
pions in the region of interest (Mp

2 ;a2L4). The only excep-
tions are the Goldstone pions (fG below!, which become
pseudo Goldstone bosons withMG

2 ;a4L6.
To simplify the discussion we assume that only theC4

term in L x
6 is present@see Eq.~26!#, and assume thatC4

itself is negative. A straightforward calculation finds the fo
lowing features as the magnitude of the quark mass is
duced. For umu greater than the critical valuemc
524a2uC4u/(m f 2);a2L3, the condensate is given by^S&
5sgn(m)1, and the mass formulas of Sec. IV apply wi
m→umu. When umu5mc the pions with flavorjm become
massless@see Eqs.~31!–~34!#, and there is a second orde
phase transition. Forumu<mc it is useful to introduce the
angleu defined by cosu5m/mc , with 0<u<p. Minimizing
the potential, one finds that the condensate swings from11
to 21 according to

5When m becomes negative, the vacuum expectation value^S&
flips from 11 to 21, and the result~30! remains valid withm
→umu.
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^S&5exp~ iu@jm•nm#!5cosu1 i sinu@jm•nm#, ~39!

where nm is an arbitrary vector of unit length. For 0,u
,p, flavor SO(4) is broken to anSO(3) subgroup, and
there are three Goldstone pions. As noted above, these
not exactly massless because terms inLx of O(a2m) and
O(a4) break theSO(4) explicitly.

It is instructive to work out the full spectrum of pions i
the broken phase. We display these fornm5dm4, i.e. for the
case in which the condensate is^S&5exp(iuj4). The pions
are labeled by their flavor, defined by the direction of ex
tation of the condensate,S5^S&exp(ifaTa). The results are
given in units of 16a2uC4u/ f 2.

~i! Flavor Ta5j j ,i j4 j , with j 51,2,3. For eachj, these
two flavors mix, and there are two mass eigenstates

40fG5cosuf~j j !1sinuf~j4 j !, MG
2 50, ~40!

fNG15cosuf~j4 j !2sinuf~j j !, MNG1
2 51.

~41!

At the end points, the Goldstone modes are pure flavorj j ,
but at the mid-point they become pure flavorj4 j .

~ii ! Flavor Ta5j4. This single state has

M253 sin2u. ~42!

This vanishes at the end points, due to the restoration
SO(4) symmetry, which makes the masses of all the fla
jm states equal.

~iii ! Flavor Ta5 i j jk . Three states with

M25cos2u. ~43!

These become degenerate with the other tensors at the
points, due toSO(4) restoration. This degeneracy recurs
the mid-point, where all six tensors are massless. This is
however, caused bySO(4) restoration: thej4 j states are
massless due to the spontaneous breaking of flavorSO(4),
while the j jk states are massless because of an accide
axial SO(3) symmetry of the potential about its classic
minimum atm50. The latter states will presumably becom
massive when quantum corrections are included.

~iv! FlavorsTa5 i j j 5. Three states which are always ma
sive:

M2511cos2u. ~44!

These become degenerate with thej j at the mid-point, a
result that can be understood as due to the restoration o
U(1)A symmetry.

~v! FlavorsTa5j5 ,i j45. These mix according to

fNG25cosuf~j45!1sinuf~j5!, MNG2
2 52, ~45!

fNG35cosuf~j5!2sinuf~j45!, MNG3
2 53.

~46!

The degeneracy between flavorsj45 andj4 at the mid-point
is again due toU(1)A restoration.
3-9
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VII. CONCLUSIONS

We have studied discretization errors for staggered fer
ons, by constructing a sequence of effective Lagrangia
Our central result is that, close to the continuum limit, t
potential term in the chiral Lagrangian describin
pion interactions respects a chiral symmetry gro
U(1)A3@G4’SO(4)#, which is much larger than that of th
underlying lattice theory. FullSO(4) rotation invariance is
also maintained. The enlarged symmetry predicts degen
cies in the pion masses which are observed in numerical
with surprisingly small deviations.

While this result is pleasing, it has limited applicabilit
The enlarged symmetry is broken in pion interactions
terms ofO(a4), O(a2m) and O(a2p2), and also does no
hold for hadrons other than pions. We do not know whet
it holds for other pion properties, e.g. the decay constan

An interesting question is whether our result can be u
to simplify the improvement of the staggered fermion actio
Complete non-perturbative improvement atO(a2) is pro-
hibitively difficult because of the number of additional o
erators that are needed. If flavor symmetry were partia
restored, if only approximately as at finite quark mass, th
one should be able to get away with fewer operators.
extreme example is the flavor breaking in pion masses al
After symmetry restoration there are only three independ
differences, so one could imagine a non-perturbative tun
of the coefficients of just three operators so as to elimin
these differences. This approach was suggested by Le
@5#, who pointed out that tree level improvement of the sta
gered action contains only three-flavor breaking ter
~which can be written either as four-fermion operators@8# or
as bilinears with fat links@5#!. One can show that these thre
operators do give independent contributions to the pion s
tings, so that such tuning is feasible. On the other hand,
flavor-breaking part of the potentialV x

6 contains six indepen
dent parameters (C1–C6 in our notation!, and so to remove it
non-perturbatively would require introducing six improv
ment operators. Furthermore, there is no simplification if o
wishes to completely improve the full spectrum, for whi
there is no symmetry restoration. Thus it is unclear to w
extent limited flavor restoration will help. Numerical tes
are needed to investigate this issue, and exploratory work
been done in Refs.@2–4#.
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APPENDIX A: ENUMERATING OPERATORS
OF DIMENSION 6

In this appendix we explain how to determine all ope
tors of dimension 6 which are singlets under the lattice sy
11450
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metry group. These are the operators which must be adde
removeO(a2) errors from the staggered action~modulo pos-
sible redundancies!. Conversely, when converted to con
tinuum form, they are the operators which appear in the c
tinuum effective Lagrangian atO(a2). Luo has cataloged
these operators previously@8#, but did not find all of them.

We use the notation of Refs.@19–21#, the relevant parts of
which we briefly review here. The continuum theory d
scribes four fermion flavors, which are collected into a fie
Qa,a , with a and a respectively spinor and flavor indices
Bilinears are labeled by a spin and a flavor matrix:

Q̄a,a~gS!ab~jF!abQb,b[Q̄a,a~gS^ jF!aa,bbQb,b

[Q̄~gS^ jF!Q. ~A1!

The spin matrices are labeled by a hypercube vectorSm ,
with components 0 or 1,

gS5g1
S1g2

S2g3
S3g4

S4 . ~A2!

The flavor matrices are labeled similarly by the hypercu
vector Fm , except that they are built out of the comple
conjugate matrices,jm5gm* . This is simply a convention
since these two bases are unitarily equivalent. Finally,
use abbreviations such as

gmn[gmgn , gm5[gmg5 . ~A3!

The lattice bilinears which correspond in the continuu
limit to Eq. ~A1! are

(
CD

x̄~y!C~gS^ jF!CDx~y!D , ~A4!

wherey labels the 24 hypercubes,C and D are hypercube
vectors, and the hypercube field is defined in terms of
underlying staggered fermion by

x~y!C5
1

4
x~y1C!. ~A5!

The matrices (gS^ jF) are unitarily equivalent to
(gS^ jF).

It will be useful in the following to define hypercub
fields at zero physical momentum, which are obtained
averaging over allNy hypercubes:

xC5
1

Ny
(

y
x~y!C . ~A6!

The 16 xC transform in the defining representation of th
lattice symmetry group. We always use the argumenty when
referring to the fields which reside on individual hypercub
and drop this argument for the zero-momentum fields.

We begin with a comment on fermion bilinears of dime
sion 6. Luo lists seven such operators. We note however
one linear combination, which in Luo’s notation is

x̄~y!~D 2D” 2D”D 2!x~y!, ~A7!
3-10
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has negative parity under lattice charge conjugation an
thus forbidden. Furthermore, there are two additional ope
tors, not included explicitly by Luo,

m2x̄~y!D” x~y! and m3x̄~y!x~y!. ~A8!

These are, however, redundant, since they can be abso
by changing the normalization of the fields and quark ma

We now turn to four-fermion operators. We want to co
struct all such lattice operators which are singlets under
lattice symmetry group and which correspond to operator
dimension 6 in the continuum. The latter requirement
cludes operators containing derivatives or factors of
quark mass. Since the quark mass does not appear, the
struction is effectively in the chiral limit, and thus the lattic
operators must also be singlets underU(1)A .

We construct operators by the following steps. The
make use of the fact that, to generate the lattice symm
group, one can replace rotations about a point on the la
with those about the center of a hypercube, and similarly
reflections. These two choices differ only by translations

~1! Multiply two bilinears residing on the same hype
cube, and sum over hypercubes:

O~S,F,S8,F8!5(
y

x̄~y!~gS^ jF!x~y!

3x̄~y!~gS8^ jF8!x~y!. ~A9!

This operator is manifestly invariant under translations
two units. Gauge invariance is maintained~in a way which
maintains rotation and reflection properties! by including the
usual average of products of gauge links along the sho
paths between thex̄ andx. This can be done in two ways
joining the x̄ and x within the bilinears or between the b
linears. If we ignore the gauge links, these two choices
related by a Fierz transformation. This remains true in
presence of the links, up to additional higher dimensio
operators involving gauge fields. Thus we need consider o
one linear combination of color structures. We do not nee
specify our choice for the following analysis. Luo uses t
linear combination which arises in perturbation theory:

1
2 ~contract within bilinears!2 1

6 ~contract between bilinears!.
~A10!

When we compare our operators to his, we are implic
using this choice.

~2! Form linear combinations of theO(S,F,S8,F8) which
are singlets under the symmetry group of the hypercub
rotations and reflections—and also charge conjugation.
label this groupW4

C . The transformation properties of bilin
ears underW4

C have been worked out by Verstegen@22# and
are listed in his Tables 3 and 4. The bilinears fall into
irreps. To form a four-fermion operator which is a sing
one must combine two bilinears which reside in the sa
irrep. Since mostW4

C irreps appear multiple times, there a
a large number of ways of doing this.
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~3! At this stage the operators are not invariant und
single site translations. This can be accomplished by ap
ing the projector

)
m

1
2 ~11Tm!, ~A11!

with Tm the translation operator in themth direction. Note
that theTm commutes when acting on operators with an ev
fermion number, such as the four-fermion operators un
consideration. Thus the order of the factors in the produc
Eq. ~A11! is unimportant.

~4! The resulting operators are singlets under all latt
symmetries exceptU(1)A . We now apply the constraint tha
they do not contain derivatives. This can be done by tak
the tree level matrix elements with all external quark sta
having zerophysicalmomentum, i.e. mod(pma,p)50. This
matrix element will vanish if the lattice operator correspon
to a continuum operator containing one or more derivativ
But in evaluating this matrix element each of the hypercu
fields can be replaced by its zero-momentum counterpa
x(y)A→xA . Thus we are led to consider linear combin
tions of operators of the form

O8~S,S8,F,F8!5)
m

1
2 ~11Tm!x̄~gS^ jF!xx̄~gS8^ jF8!x.

~A12!

We can simplify this using the known translation propert
of the zero-momentum hypercube field:

Tmx5~ I ^ jm!x⇒Tmx̄~gS^ jF!x5~21!F̃mx̄~gS^ jF!x,
~A13!

where

F̃m5modS (
nÞm

Fn,2D . ~A14!

We thus find that

O8~S,S8,F,F8!5)
m

1
2 @11~2 !(F̃2F̃8)m#

3x̄~gS^ jF!xx̄~gS8^ jF8!x.

~A15!

This operator vanishes unlessF̃5F̃8, which implies F
5F8. In other words, if the two bilinears have different fla
vor, then the projection onto a translation singlet produce
continuum operator containing derivatives. Thus we co
clude that, in step~2!, we must keep only those bilinears i
which F5F8.

~5! Finally, we select those from the resulting list whic
are singlets underU(1)A .

Our claim is that this procedure produces all sing
dimension-6 operators.

Thus we must determine which of the lattice four-fermi
operators satisfyingF5F8 ~‘‘diagonal in flavor’’! are sin-
3-11
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glets under hypercube rotations and reflections. This i
straightforward, though tedious, group theoretical exerc
which can be done using the tools presented in@22#. First,
one finds that to make a singlet it is necessary thatS5S8, so
that the operator is diagonal in both spin and flavor. Then
problem reduces to picking out theW4 singlets in the produc
of vectors in which each index appears twice, e.g.gm ^ gm
^ jn ^ jn . Note that the ‘‘square’’ of a flavor matrix trans
forms in the same way as the ‘‘square’’ of a spin matrix. T
result is that there are 35 singlets@21#:

~A! There are 25 operators in which the spin and fla
indices are separately contracted. For the spin matrices
use the notation

S51^ 1, P5g5^ g5 , V5(
m

gm ^ gm ,

A5(
m

gm5^ g5m , T5 (
m,n

gmn ^ gnm ,

~A16!

while for flavor matrices we use the same notation withgm
→jm . The 25 operators are simply the products of the
possible spin structures with the 5 flavor structures. The
tation we use is exemplified by

@A3T#[(
m

(
m,r

x̄~y!~gm5^ jnr!x~y!

3x̄~y!~g5m ^ jrn!x~y!. ~A17!

~B! The remaining 10 operators have the spin and fla
matrices coupled. They are

@Vm3Vm#[(
m

x̄~y!~gm ^ jm!x~y!

3x̄~y!~gm ^ jm!x~y!, ~A18!

along with @Vm3Am#, @Am3Vm# and @Am3Am# defined
analogously:

@Vm3Tm#[ (
m,n

x̄~y!~gm ^ jmn!x~y!x̄~y!~gm ^ jnm!x~y!

2x̄~y!~gm ^ jmn5!x~y!x̄~y!~gm ^ j5nm!x~y!,

~A19!

with @Tm3Vm#, @Am3Tm# and @Tm3Am# defined analo-
gously; and finally@T13T1# and@T23T2#, the definitions
of which we do not reproduce since they areU(1)A non-
singlets.

Next we select from these operators those linear com
nations that areU(1)A singlets. This is automatically true fo
those operators consisting of odd bilinears.6 There are 16 of

6An even or odd bilinear is one in which thex̄ andx are separated
by an even or odd number of links.
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these, all of which were found by Luo. The relation to Luo
basis is

@S3A#5F9 , @S3V#5F13, ~A20!

@A3S#52F3 , @V3S#5F11, ~A21!

@P3V#5F10, @P3A#52F17, ~A22!

@V3P#5F4 , @A3P#52F15, ~A23!

@T3V#52~ 1
2 F51F16!, @T3A#5~F61 1

2 F12!,
~A24!

@V3T#52~ 1
2 F71F18!, @A3T#5~F81 1

2 F14!,
~A25!

@Tm3Vm#5~2 1
2 F51F16!, @Tm3Am#5~2F61 1

2 F12!,
~A26!

@Vm3Tm#5~2 1
2 F71F18!, @Am3Tm#5~2F81 1

2 F14!.
~A27!

To determine which of the operators composed of even
linears areU(1)A invariant, we note that any such operat
must, under flavor-spin Fierz transformation, transform in
an operator composed of two odd bilinears. Conversely
we Fierz transform each of the above 16 operators, we
find all even-even diagonal operators. Note that some of
odd-odd operators Fierz transform back into odd-odd ope
tors, so that we can end up with less than 16 even-e
operators. Using the Fierz tables collected in Appendix A
Ref. @21#, we find that there are 8 even-evenU(1)A singlets:

$@S3S#2@P3P#%5 1
2 ~F11F2!, ~A28!

$@Vm3Vm#2@Am3Am#%5 1
2 ~F12F2!,

~A29!

$@S3P#2@P3S#%, ~A30!

$@Vm3Am#2@Am3Vm#%, ~A31!

$@V3V#2@A3A#%, ~A32!

$@V3A#2@A3V#%, ~A33!

$@S3T#2@P3T#%, ~A34!

$@T3S#2@T3P#%. ~A35!

The first two are related to two of Luo’s operators, while t
remaining six are new. Note that no@T3T# operators are
U(1)A singlets.

The continuum versions of these operators~which appear
in the effective Lagrangian for unimproved or partially im
proved staggered fermions! can be obtained simply by re
placing thex ’s with Q’s, and removing the overbar on th
matrices. In the text we use the same notation for the co
sponding continuum operators, e.g.@S3V#, as we do for the
lattice operators.
3-12
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APPENDIX B: MAPPING OF OPERATORS IN S6
FF„A…

INTO V x
6

The operators inS6
FF(A) break into three classes accordin

to the spin of the bilinears.

1. Operators with spin structure V or A

The general form of these operators is a linear comb
tion of @V3F# and@A3F#, with F denoting the flavor. The
flavor structure of these operators is a sum of terms of
form

OF56(
m

@QR~gm ^ FR!QR6QL~gm ^ FL!QL#2

~B1!

whereFL,R are Hermitian matrices in flavor space. Both6
signs are positive~negative! if the spin is V (A). For the
axial operators, the internal minus sign is due to the extrag5,
while the external sign appears because for spinA the Dirac
matrix is igmg5 so as to be Hermitian. To determine th
form of the corresponding operator inL x

6 , we promoteFL,R

to spurion fields. If they transform asFL→LFLL† and FR
→RFRR†, thenOF is invariant under chiral transformation
We then build all the operators out ofS which are chiral
singlets, quadratic inF @linear and cubic terms are forbidde
by theF→2F symmetry, while quartic terms would be o
O(a4)], and parity invariant (FL↔FR andS↔S†). At the
end, we setFL5FR5F, whereF is the flavor matrix appear
ing in the operator under consideration~e.g. j5 for
@V3P#).

It turns out that there is only one non-trivial operator in
which OF can map:

OF→cTr~FLSFRS†!. ~B2!

The constant,c, is unknown, but has the same magnitu
~and sign! for both V and A spins. The sign is the sam
because the overall sign in Eq.~B1! cancels with the ‘‘inter-
nal’’ sign coming from the fact that this operator contai
one factor each ofFL andFR . A second operator allowed b
the symmetries,

Tr~FL!Tr~SFRS†!1Tr~FR!Tr~S†FLS!, ~B3!

turns out to be a field independent constant when one
FL5FR5F. This is either because Tr(F)50 ~true for flavor
P and T) or becauseSS†51 ~for flavor singlet bilinears!.
Finally, the operators Tr(FL

2)Tr(SS†) and Tr(FL
2SS†) are

trivial for any F.
Thus we find that the operators map into the followi

terms in the potentialV x
6 :
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@V3S# and @A3S#→4c, ~B4!

@V3P# and @A3P#→cTr~j5Sj5S†!, ~B5!

@V3T# and @A3T#→c (
m,n

Tr~jmnSjnmS†!,

~B6!

~@V3V#2@A3A# ! and ~@A3V#2@V3A# !

→c(
n

$Tr~jnSjnS†!2Tr~jn5Sj5nS†!%. ~B7!

The fact that the same constantc appears in all these tran
scriptions is crucial for the last of these mappings, Eq.~B7!.
A check of this result is that the operator is invariant und
the axial U(1) only if the relative coefficient of the two
terms is21. Apart from this, the fact that the same consta
c appears in all transcriptions does not lead to useful re
tions because the coefficients of the underlying quark op
tors are different and unknown.

2. Operators with spin structure S or P

The chiral structure of operators of the form@S3F# and
@P3F# is

OF85@QL~1^ F̃L!QR6QR~1^ F̃R!QL#2, ~B8!

with the 6 sign corresponding toS or P. Here the spurions
must transform asF̃L→LF̃LR† and F̃R→RF̃RL†. The non-
trivial operators onto whichO8 maps are

OF8→6c1Tr~ F̃RS!Tr~ F̃LS†!1c2@Tr~ F̃RS!21Tr~ F̃LS†!2#

1c3@Tr~ F̃RSF̃RS!1Tr~ F̃LS†F̃LS†!#. ~B9!

From this we find that

@S3V# and @P3V#→6c1Tr~jnS!Tr~jnS†!

1c2@Tr~jnS!21H.c.#

1c3@Tr~jnSjnS!1H.c.# ~B10!

@S3A# and @P3A#→6c1(
n

Tr~jn5S!Tr~j5nS†!

1c2(
n

@Tr~jn5S!Tr~j5nS!1H.c.#

1c3(
n

@Tr~jn5Sj5nS!1H.c.#.

~B11!

For the operators which are linear combinations, we find
3-13
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~@S3S#2@P3P# !→c1@Tr~S!Tr~S†!1Tr~j5S!Tr~j5S†!#

1c2@Tr~S!22Tr~j5S!21H.c.#

1c3@Tr~S2!2Tr~j5Sj5S!1H.c.#,

~B12!

with (@S3P#2@P3S#) mapping onto the same three oper
tors except that thec2 andc3 terms change sign. A check o
these results is that the relative plus sign in thec1 term and
minus signs in the other terms are those needed to m
these operators invariant underU(1)A . Finally, for the flavor
T only thec1 term survives:

~@S3T#2@P3T# !→2c1 (
m,n

Tr~jmnS!Tr~jnmS†!.

~B13!

3. Operators with spin structure T

There are two such operators,@T3V# and@T3A#. These
have a slightly different chiral structure to that of theSandP
operators,
11450
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OF95 (
m,n

@QL~gmn ^ F̃L!QR#21@QR~gnm ^ F̃R!QL#2.

~B14!

In particular, there are no cross terms betweenL̄R and R̄L
bilinears. It follows that the mapping is as in Eq.~B9! except
that there is noc1 term, and the other terms have new coe
ficientsc28 andc38 . From this we find that

@T3V#→1c28 (
n

@Tr~jnS!21H.c.#

1c38 (
n

@Tr~jnSjnS!1H.c.#, ~B15!

@T3A#→2c28 (
n

@Tr~jn5S!21H.c.#

1c38 (
n

@Tr~jn5Sj5nS!1H.c.#. ~B16!
tt.
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