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Glueball mass predictions of the valence approximation to lattice QCD

A. Vaccarino and D. Weingarten
IBM Research, P.O. Box 218, Yorktown Heights, New York 10598

~Received 28 June 1999; published 22 October 1999!

We evaluate the infinite volume, continuum limit of glueball masses in the valence~quenched! approxima-
tion to lattice QCD. For the lightest scalar and tensor states we obtain masses of 1648658 MeV and 2267
6104 MeV, respectively.@S0556-2821~99!02123-2#

PACS number~s!: 11.15.Ha, 12.38.Gc
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I. INTRODUCTION

In recent articles we described calculations of the infin
volume, continuum limit of scalar and tensor glueball mas
in the valence~quenched! approximation to lattice QCD
@1,2#. For a single value of lattice spacing and lattice volum
we reported also a calculation of the decay coupling c
stants of the lightest scalar glueball to pairs of pseudosc
mesons. The mass and decay calculations combined su
the identification off 0(1710) as primarily composed of th
lightest scalar glueball@3,4#. Evaluation of the mass of th
lightest scalar quarkonium states and of quarkonium-glue
mixing amplitudes@5# then yield a glueball component fo
f 0(1710) of 73.869.5%. In the present article, we describ
the glueball mass data of Ref.@1# in greater detail along with
an improved evaluation of the mass predictions which foll
from these data. For the scalar and tensor glueball masse
obtain 1648658 MeV and 22676104 MeV, respectively.

The valence approximation, on which our results depe
may be viewed as replacing the momentum dependent c
dielectric constant arising from quark-antiquark vacuum
larization with its zero-momentum limit@6# and, for flavor
singlet mesons, shutting off transitions between vale
quark-antiquark pairs and gluons. The valence approxi
tion is expected to be fairly reliable for low lying flavo
nonsinglet hadron masses, which are determined largel
the low momentum behavior of the chromoelectric fie
This expectation is supported by recent valence approxi
tion calculations@7,8# of the masses of the lowest flavo
multiplets of spin 1/2 and 3/2 baryons and pseudoscalar
vector mesons. The predicted masses are all within ab
10% of experiment. For the lowest valence approximat
glueball masses, the error arising from the valence appr
mation’s omission of the momentum dependence of qua
antiquark vacuum polarization we thus also expect to be 1
or less. References@2,9# show this error should tend to lowe
valence approximation masses below those of full QCD.
flavor singlet configurations whose quantum numbers, if
alized as quarkonium, require nonzero orbital angular m
mentum, it is shown in Ref.@2# that the additional error
arising from the valence approximation’s suppression
transitions between valence quark-antiquark pairs and glu
is likely to introduce an additional error of the order of 5%
less. For the lowest scalar glueball this error is examined
detail in Ref.@5# and found to shift the valence approxim
tion mass by about 5% below its value in full QCD. It
perhaps useful to mention that, for glueball masses, the
lence approximation simply amounts to a reinterpretation
0556-2821/99/60~11!/114501~14!/$15.00 60 1145
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the predictions of pure gauge theory.
In Sec. II we define a family of operators used to co

struct glueball propagators. In Sec. III we describe the se
lattices on which propagators were evaluated and the a
rithms we used to generate gauge configurations and
mate error bars. In Secs. IV and V we present our results
scalar and tensor glueball propagators, respectively,
masses extracted from these propagators. In Sec. VI we
timate the difference between the scalar and tensor ma
we obtain in finite volumes and the corresponding infin
volume limits. In Sec. VII we extrapolate scalar and tens
masses to their continuum limits. In Sec. VIII we compa
our calculations with work by other groups@10,11#. For com-
bined world average valence approximation scalar and te
glueball masses we obtain 1656647 MeV and 2302662
MeV, respectively.

II. SMEARED OPERATORS

We evaluated glueball propagators using operators b
out of smeared link variables. Glueball operators built fro
link variables with an optimal choice of smearing coup
more weakly to excited glueball states than do correspond
operators built from unsmeared links. As a consequence,
plateau in effective mass plots for optimally smeared ope
tors begins at a smaller time separation between source
sink operators, extends over a larger number of time un
and yields a fitted mass with smaller statistical noise th
would be obtained from operators made from unsmeared
variables. Examples of the improvements which we obtain
by a choice of smeared operators with be given in Secs
and V.

Initially, we constructed smeared operators from gau
links fixed to Coulomb gauge. This method gave adequ
results for the largest values of lattice spacing we conside
As the lattice spacing was made smaller, however, we fo
that the computer time required to gauge fix a large eno
ensemble of configurations to obtain useful results beca
unacceptably large. We then switched to a gauge invar
smearing method. For the lattice sizes used in our extrap
tion to the continuum limit, the gauge invariant mass resu
had statistical uncertainties typically a factor of three sma
than our earlier Coulomb gauge results. In the remainde
the present article we discuss only the gauge invariant
sults. A summary of our Coulomb gauge mass calculation
given in Ref.@1#.

A family of gauge invariant smeared operators we co
©1999 The American Physical Society01-1
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A. VACCARINO AND D. WEINGARTEN PHYSICAL REVIEW D 60 114501
struct following the adaptation in Ref.@12# of the smearing
method of Ref.@13#. A related method of gauge invarian
smearing is proposed in Refs.@14#. For n.0, e.0, we de-
fine iteratively a sequence of smeared, space-direction
variableUi

ne(x), with Ui
0e(x) given by the unsmeared lin

variableUi(x). Let ui
(n11)e(x) be

ui
(n11)e~x!5Ui

ne~x!1e(
j

U j
ne~x!Ui

ne~x1 ĵ !@Ui
ne~x1 î !#†

1e(
j

@U j
ne~x2 ĵ !#†Ui

ne~x2 ĵ !Ui
ne~x1 î 2 ĵ !,

~2.1!

where the sum is over the two space directionsj orthogonal
to direction i. The projection ofui

(n11)e(x) into SU~3! de-
fines the new smeared link variableUi

(n11)e(x).
To find Ui

(n11)e(x) we maximize over SU~3! the target
function

ReTr$Ui
(n11)e~x!@ui

(n11)e~x!#†%. ~2.2!

The required maximum is constructed by repeatedly ap
ing an algorithm related to the Cabbibo-Marinari-Okaw
Monte Carlo method. We begin withUi

(n11)e(x) chosen to
be 1. We then multiplyUi

(n11)e(x) by a matrix in the SU~2!
subgroup acting only on gauge index values 1 and 2 cho
to maximize the target function over this subgroup. T
multiplication and maximization step is repeated for t
SU~2! subgroup acting only on index values 2 and 3, then
the subgroup acting only on index values 1 and 3. The en
three step process is then repeated five times. Five repeti
we found sufficient to produce aUi

(n11)e(x) satisfactorily
close to the true maximum of the target function in Eq.~2.2!.
Iteratively maximizing the target function over SU~2! sub-
groups turns out to be much easier to program than a d
maximization over all of SU~3!. The additional compute

TABLE I. Configurations analyzed.

b Lattice Skip Count Bin

5.70 163324 50 8,094 8
5.93 123324 25 48,278 16

163324 25 30,640 16
6.17 243336 25 31,150 16
6.40 303322340 25 25,440 16

TABLE II. Glueball operator parameters.

b Lattice n e s

5.70 163324 3210 0.25 124
5.93 123324 527 1.00 426

163324 528 1.00 327
6.17 243336 7,8 1.00 7210
6.40 303322340 6,8 1.00 7211
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time required for this iterative maximization, on the oth
hand, was a negligible fraction of the total time required
our calculation.

From the Ui
ne(x) we constructWkl

nes(x) by taking the
trace of the product ofUi

ne(x) around the boundary of ans
3s square of links beginning in thek direction. The sum of
Wkl

nes(x) over all sites with a fixed time valuet gives the
zero-momentum loop variableWkl

nes(t).
For each triple (n,e,s), a field coupling the vacuum only

to zero-momentum scalars states is

Snes~ t !5(
iÞ j

ReWi j
nes~ t !, ~2.3!

where the sums are over space directionsi and j. A possible
choice of the two independent operators coupling
vacuum only to zero-momentum tensor states is

T1
nes~ t !52ReW12

nes~ t !2ReW23
nes~ t !2ReW31

nes~ t ! ~2.4!

T2
nes~ t !5A3ReW23

nes~ t !2A3ReW31
nes~ t !.

FIG. 1. Scalar effective mass as a function oft for the lattice
163324 atb of 5.93 using the smeared operator withn of 5, e of
1.0 ands of 3.

FIG. 2. Scalar mass fit and scalar effective mass as a functio
t for the lattice 163324 at b of 5.93 using the smeared operat
with n of 5, e of 1.0 ands of 4.
1-2
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GLUEBALL MASS PREDICTIONS OF THE VALENCE . . . PHYSICAL REVIEW D 60 114501
The optimal choice of (n,e,s) for each operator and lattic
spacing will be considered in the next section.

III. LATTICES, MONTE CARLO ALGORITHM
AND ERROR BARS

The set of lattices on which we evaluated scalar and
sor glueball propagators is listed in Table I.

On each lattice, an ensembles of gauge configurations
generated by a combination of the Cabbibo-Marinari-Oka
algorithm and the overrelaxed method of Ref.@15#. To up-
date a gauge link we first performed a microcanonical upd
in the SU~2! subgroup acting on gauge indices 1 and 2. T
was then repeated for the SU~2! subgroup acting on indices
and 3, and the subgroup acting on indices 1 and 3. Th
three update steps were then repeated on each link o
lattice. After four lattice sweeps each consisting of the th
microcanonical steps on each link, we carried out o
Cabibbo-Marinari-Okawa sweep of the full lattice.

At least 10000 sweeps were used in each case to gen
an initial equilibrium configuration. The number of swee
skipped between each configuration used to calculate pr
gators and the total number of configurations in each
semble are listed in the third and fourth columns, resp

FIG. 3. Scalar mass fit and scalar effective mass and fitted m
as a function oft for the lattice 163324 at b of 5.93 using the
smeared operator withn of 5, e of 1.0 ands of 5.

FIG. 4. Scalar mass fit and scalar effective mass as a functio
t for the lattice 163324 at b of 5.93 using the smeared operat
with n of 5, e of 1.0 ands of 6.
11450
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tively, of Table I. Although the number of sweeps skipped
each case was not sufficient to permit successive config
tions to be treated as statistically independent, we found s
cessive configurations to be sufficiently independent to j
tify the cost of evaluating glueball operators.

For the propagators, effective masses and fitted mass
be discussed in Secs. IV and V, we determined statist
uncertainties by the bootstrap method@16#. The bootstrap
algorithm can be applied directly, however, only to det
mine the uncertainties in quantities obtained from an
semble whose individual members are statistically indep
dent. We therefore partitioned each ensemble of correla
gauge configurations into successive disjoint bins with
fixed bin size. Bootstrap ensembles were then formed
randomly choosing a number of entire bins equal to the nu
ber of bins in the original partitioned ensemble. For bi
sufficiently large, propagator averages found on distinct b
will be nearly independent. It follows that for large enoug
bins, the binned bootstrap estimate of errors will be reliab
It is not hard to show that once bins are made large eno
to produce nearly independent bin averages, further incre
in bin size will leave bootstrap error estimates nearly u
changed. The only variation in errors as the bin size is

ss

of

FIG. 5. Scalar effective mass as a function oft for the lattice
163324 atb of 5.93 using the smeared operator withn of 5, e of
1.0 ands of 7.

FIG. 6. Scalar mass fit and scalar effective mass as a functio
t for the lattice 163324 at b of 5.93 using the smeared operat
with n of 6, e of 1.0 ands of 4.
1-3
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A. VACCARINO AND D. WEINGARTEN PHYSICAL REVIEW D 60 114501
creased further will come from statistical fluctuations in t
error estimates themselves. To determine the required
size for a particular error estimate to be reliable we app
the bootstrap method repeatedly with progressively lar
bin sizes until the estimated error became nearly indepen
of bin size. The final bin size we adopted for each latti
chosen to be large enough for all of the error estimates d
on that lattice, is given in the fifth column of Table I.

IV. SCALAR PROPAGATORS AND MASSES

From the scalar operator of Eq.~2.3!, a propagator for
scalars is defined to be

PS
nes~ t12t2!5^Snes~ t1!Snes~ t2!&2^Snes~ t1!&^Snes~ t2!&.

~4.1!

To reduce statistical noise,PS
nes(t12t2) is then averaged

over reflections and time direction displacements oft1 and
t2.

The collection of values of smearing iterationsn, smear-
ing parametere, and loop sizes for which propagators were
evaluated for each lattice are given in Table II. Atb of 5.70,
and atb of 5.93 on the lattice 163324, we ran with rela-

FIG. 7. Scalar mass fit and scalar effective mass as a functio
t for the lattice 163324 at b of 5.93 using the smeared operat
with n of 7, e of 1.0 ands of 4.

FIG. 8. Scalar mass fit and scalar effective mass as a functio
t for the lattice 163324 at b of 5.93 using the smeared operat
with n of 8, e of 1.0 ands of 4.
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tively larger ranges of parameters to try to find values wh
coupled efficiently to the lightest scalar glueball. For oth
lattices, the parameter range was then narrowed to cho
which, in physical units, were about the same as the va
range which gave best results atb of 5.93.

From the existence of a self-adjoint, positive, bound
transfer matrix for lattice QCD, it follows that a spectr
resolution can be constructed forPS

nes(t),

PS
nes~ t !5(

i
Zi$exp~2Eit !1exp@2Ei~L2t !#%,

~4.2!

Zi5u^ i uSnes~0!uvacuum&u2,

where the sum is over all zero-momentum, scalar states^ i u,
Ei is the energy of̂ i u, andL is the lattice period in the time
direction. For large values oft and L, the sum in Eq.~4.2!
approaches the asymptotic form

PS
nes~ t !→Z$exp~2mt!1exp@2m~L2t !#% ~4.3!

wherem is the smallestEi and thus the mass of the lighte
scalar glueball andZ is the correspondingZi . Fitting PS

nes(t)

of

of

FIG. 9. Scalar mass fit and scalar effective mass as a functio
t for the lattice 163324 at b of 5.70 using the smeared operat
with n of 6, e of 0.25 ands of 2.

FIG. 10. Scalar mass fit and scalar effective mass as a func
of t for the lattice 123324 atb of 5.93 using the smeared operat
with n of 6, e of 1.0 ands of 6.
1-4
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GLUEBALL MASS PREDICTIONS OF THE VALENCE . . . PHYSICAL REVIEW D 60 114501
to the asymptotic form in Eq.~4.3! at t and t11 gives the
scalar effective massm(t), which at larget approachesm.

To extract values ofm from our data sets, we began b
examining effective mass graphs to find combinations on
ands for which m(t) shows a plateau att values for which
we have data, and to determine which of these combina
of n ands has the best plateaus.

Among the data sets used in our final extrapolation of
scalar mass to zero lattice spacing, we included the lar
range of values ofn ands for the lattice 163324 with b of
5.93. Scalar effective masses obtained for this case withn of
5 ands of 327 are shown in Figs. 1–5 , respectively. As t
loop sizes is increased, initially the effective mass grap
become flatter, as shown, for example, by a decrease in
difference betweenm(0) andm(2). It follows that the rela-
tive coupling of the corresponding operators to the light
scalar glueball increases withs. Beyonds of 5, however, this
trend reverse. Thus, as might be expected, the relative
pling to the lightest state becomes weaker again when
loop is made too large. Fors of 7 the effective mass grap
shows no sign of becoming flat even at the largestt for
which we have statistically significant data. Forn of 5, the
best coupling to the lightest state appears to occur withs of

FIG. 11. Scalar mass fit and scalar effective mass as a func
of t for the lattice 163324 atb of 5.93 using the smeared operat
with n of 7, e of 1.0 ands of 5.

FIG. 12. Scalar mass fit and scalar effective mass as a func
of t for the lattice 243336 atb of 6.17 using the smeared operat
with n of 7, e of 1.0 ands of 8.
11450
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4 or 5. For s fixed at 4, Fig. 2 and Figs. 6–8 show th
variation in the effective mass graph asn runs from 5 to 8,
respectively. The difference betweenm(0) andm(2) is least
at n of 6 and then grows again asn is raised toward 8.

In Figs. 1–8 the statistical uncertainty in effective mass
grows ast is made larger and tends to grow also ifn or s is
increased. Both of these phenomena are explained by
discussion in Ref.@17# of the statistical uncertainty in propa
gators.

Figures 9–13 show scalar effective masses for the eac
the values of lattice size andb listed in Table I. The param-
etersn ands for the data in Figs. 9–13 are chosen, for ea
lattice andb, from among the set which couple best to t
lightest scalar.

For each combination of lattice size andb, we deter-
mined a final value of the scalar mass from the collection
propagators for which the effective mass graph showed
least some evidence of a plateau at larget. For several dif-
ferent choices oft interval, each of these propagators w
fitted to the asymptotic form in Eq.~4.3! by minimizing the

TABLE III. Fitted scalar glueball mass in lattice units for var
ous choices ofn, s and fitting range for the lattice 163324 at b
55.93. ~DOF is degree of freedom.!

n s tmin tmax Mass x2/DOF

5 4 1 8 0.82760.006 2.26
5 4 2 8 0.79260.013 1.14
5 4 3 8 0.81760.029 1.22
5 4 4 8 0.83160.068 1.61

5 5 1 8 0.81060.006 0.85
5 5 2 8 0.79160.013 0.55
5 5 3 8 0.79860.028 0.67
5 5 4 8 0.76760.059 0.80

5 6 1 8 0.82460.007 1.32
5 6 2 8 0.79360.014 0.58
5 6 3 8 0.78560.031 0.71
5 6 4 8 0.72160.066 0.57

on

on

FIG. 13. Scalar mass fit and scalar effective mass as a func
of t for the lattice 322330340 at b of 6.40 using the smeared
operator withn of 8, e of 1.0 ands of 10.
1-5
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A. VACCARINO AND D. WEINGARTEN PHYSICAL REVIEW D 60 114501
fit’s correlatedx2. The upper limit of each fitting interva
tmax we fixed at the largestt for which we had statistically
significant propagator data. The lower limit of the fitting i
terval tmin was then progressively increased from 1 totmax
22. As tmin was increased, the fitted mass and the fit’sx2

per degree of freedom both generally decreased and the
tistical error bar increased. For eachn ands, the final choice
of tmin we took to be the smallest value for which the cor
sponding mass was within the error bars of all the fits w
the samen ands and largertmin . Our intent in this procedure
was to extract a mass from the largest time interval for wh
the propagator for each combination ofn ands was consis-
tent with the asymptotic form of Eq.~4.3!.

The solid horizontal lines in Figs. 2–5 and Figs. 6–
show the best fitted mass in each case and extend ove
interval of t on which these fits were made. The dashed lin
in these figures extend the solid lines to smallert to show the

TABLE IV. Fitted scalar glueball mass in lattice units for var
ous choices ofn, s and fitting range for the lattice 163324 at b
55.93.

n s tmin tmax Mass x2/DOF

6 4 1 8 0.81560.006 1.82
6 4 2 8 0.78560.012 0.96
6 4 3 8 0.81360.027 0.90
6 4 4 8 0.80660.064 1.20

6 5 1 8 0.80060.006 0.70
6 5 2 8 0.78560.012 0.50
6 5 3 8 0.79960.027 0.55
6 5 4 8 0.75560.054 0.53

6 6 1 8 0.81160.006 0.96
6 6 2 8 0.78860.013 0.51
6 6 3 8 0.78960.028 0.64
6 6 4 8 0.72260.060 0.39

TABLE V. Fitted scalar glueball mass in lattice units for vario
choices of n, s and fitting range for the lattice 163324 at b
55.93.

n s tmin tmax Mass x2/DOF

7 4 1 8 0.80360.006 1.41
7 4 2 8 0.77760.012 0.70
7 4 3 8 0.80960.026 0.48
7 4 4 8 0.78260.059 0.58

7 5 1 8 0.79260.006 0.61
7 5 2 8 0.77960.012 0.45
7 5 3 8 0.79860.027 0.42
7 5 4 8 0.74660.052 0.25

7 6 1 8 0.80060.006 0.75
7 6 2 8 0.78360.013 0.47
7 6 3 8 0.79360.027 0.55
7 6 4 8 0.72360.056 0.20
11450
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approach, with increasingt, of effective masses to the fina
mass values.

For the lattice 163324 with b of 5.93, Tables III–VI
show the results of our fits for all the combination ofn, s,
tmin and tmax which we examined. The best choice oftmin
and tmax turned out to be 2 and 8, respectively, for alln and
s. Tables VII–XI show the fitted masses found with the be
choice oftmin andtmax for all the lattice sizes,b, n ands for
which our effective mass data showed a plateau at larget.

As expected, for each lattice size andb, the fitted masses
in Tables VII–XI vary withn ands by an amount generally
less than the statistical uncertainty in each mass. Ther
also a weak tendency for masses to fall initially with increa
ing n ands, as the corresponding operator’s relative coupli
to the lightest glueball increases. Then, in some cases, w
n and s become too large the coupling to the lightest st
decreases, the fitted masses show some tendency to
again. To reduce this small remaining statistical uncertai

TABLE VI. Fitted scalar glueball mass in lattice units for var
ous choices ofn, s and fitting range for the lattice 163324 at b
55.93.

n s tmin tmax Mass x2/DOF

8 4 1 8 0.78960.007 0.97
8 4 2 8 0.76560.013 0.49
8 4 3 8 0.80360.031 0.18
8 4 4 8 0.75460.063 0.04

8 5 1 8 0.78460.006 0.63
8 5 2 8 0.76860.012 0.40
8 5 3 8 0.79160.029 0.31
8 5 4 8 0.74860.055 0.23

8 6 1 8 0.79160.006 0.77
8 6 2 8 0.77560.013 0.57
8 6 3 8 0.79760.028 0.54
8 6 4 8 0.71660.057 0.04

TABLE VII. Fitted scalar glueball mass in lattice units using th
best tmin and tmax for various choices ofn and s for the lattice
163324 atb of 5.70.

n s tmin tmax Mass x2/DOF

4 1 1 5 0.97160.019 0.23
4 2 1 5 0.95960.017 0.35
4 3 1 5 0.95260.016 0.39
4 4 1 5 0.98460.023 0.26
5 1 1 5 0.96460.018 0.26
5 2 1 5 0.95660.017 0.29
5 3 1 5 0.95360.017 0.23
5 4 1 5 0.98360.020 0.15
6 1 1 5 0.95860.017 0.27
6 2 1 5 0.95460.017 0.23
6 3 1 5 0.95660.017 0.13
6 4 1 5 0.98560.020 0.09
1-6
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GLUEBALL MASS PREDICTIONS OF THE VALENCE . . . PHYSICAL REVIEW D 60 114501
and systematic bias, our final value of mass for each lat
size andb was obtained by an additional fit of a sing
common mass to a set of masses from a range of seven
ands. The common mass was chosen to minimize the co
lated x2 of the fit of the common mass to the collection
different best mass values. The correlation matrix among
best mass values was determined by the bootstrap me
The set ofn and s used in each final fit was chosen b
examining a decreasing sequence of sets, starting withn
ands, and progressively eliminating the smallest and larg
n and s until a x2 per degree of freedom below 2.0 wa
obtained. The final fit was taken from the largest set of ch
nels yielding ax2 below 2.0. If several sets of equal siz
gavex2 per degree of freedom below 2.0, we chose amo
these the set with smallestx2 per degree of freedom. Table
XII–XVI show these combined fits and the set ofn and s
chosen for the final mass value for each lattice andb. In all
of these tables, it is clear that once enough of the largest
smallestn ands are eliminated to give an acceptablex2 per
degree of freedom, the fitted values vary only by small fr

TABLE VIII. Fitted scalar glueball mass in lattice units usin
the besttmin and tmax for various choices ofn ands for the lattice
123324 atb of 5.93.

n s tmin tmax Mass x2/DOF

5 4 3 7 0.75260.021 1.30
5 5 3 7 0.73760.020 1.01
5 6 3 7 0.74760.022 0.46
6 4 3 7 0.75460.020 0.97
6 5 3 7 0.74260.020 0.68
6 6 2 7 0.77260.010 0.51
6 6 3 7 0.75160.022 0.29
7 4 3 7 0.75760.020 0.72
7 5 3 7 0.74760.020 0.42
7 6 2 7 0.77260.010 0.28
7 6 3 7 0.75660.021 0.16

TABLE IX. Fitted scalar glueball mass in lattice units using t
best tmin and tmax for various choices ofn and s for the lattice
163324 atb of 5.93.

n s tmin tmax Mass x2/DOF

5 4 2 8 0.79260.013 1.14
5 5 2 8 0.79160.013 0.55
5 6 2 8 0.79360.014 0.58
6 4 2 8 0.78560.012 0.96
6 5 2 8 0.78560.012 0.50
6 6 2 8 0.78860.013 0.51
7 4 2 8 0.77760.012 0.70
7 5 2 8 0.77960.012 0.45
7 6 2 8 0.78360.013 0.47
8 4 2 8 0.76560.013 0.49
8 5 2 8 0.76860.012 0.40
8 6 2 8 0.77560.013 0.57
11450
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tions of their statistical uncertainty as additional changes
made in the set ofn and s. The final mass values are co
lected in Table XVII.

At several points in Tables XII–XVI, combined fits in
cluding several nearby values ofn ands yield largex2 while
separate fits to smaller subsets ofn ands give nearly equal
masses and acceptablex2. This phenomenon, we hav
found, does not indicate a problem with our data or our
and arises instead because propagators with nearby valu
n and s in some cases are very highly correlated and yi
slightly different masses. A similar problem would arise
trying to fit a single valuex to, say, a Gaussian random
variable X with dispersion 1, and a shifted copyX
10.0001. For any choice ofx the fit’s x2 is infinite. None-
theless, for a Monte Carlo ensemble of 1000X values, taking
x as either̂ X&61/A1000 or^X&10.000161/A1000 is a re-
liable estimate of the mean ofX with systematic error much
smaller than the statistical error.

An alternative way to extract a single mass from glueb
propagators for a range ofn, e and s uses the matrix of
propagators

MS
kdrnes~ t12t2!5^Skdr~ t1!Snes~ t2!&2^Skdr~ t1!&^Snes~ t2!&.

~4.4!

For larget and lattice time direction periodL, MS
kdrnes(t) has

the asymptotic form

TABLE X. Fitted scalar glueball mass in lattice units using t
best tmin and tmax for various choices ofn and s for the lattice
243336 atb of 6.17.

n s tmin tmax Mass x2/DOF

7 7 4 9 0.57060.018 0.22
7 8 4 9 0.56160.020 0.14
7 9 4 9 0.55460.024 0.30
7 10 4 9 0.54060.030 0.38
8 7 4 9 0.56260.019 0.18
8 8 4 9 0.55160.018 0.17
8 9 4 9 0.54560.021 0.10
8 10 4 9 0.53460.027 0.17

TABLE XI. Fitted scalar glueball mass in lattice units using th
besttmin and tmax for various choices ofn ands for the lattice 30
3322340 atb of 6.40.

n s tmin tmax Mass x2/DOF

6 7 4 12 0.46160.013 0.50
6 8 4 12 0.44660.012 0.57
6 9 3 12 0.44860.008 0.85
6 10 3 12 0.43560.009 0.57
6 11 3 12 0.43160.010 0.29
8 7 4 12 0.45660.013 0.37
8 8 4 12 0.44760.012 0.54
8 9 4 12 0.43460.011 0.53
8 10 3 12 0.43360.008 0.61
8 11 4 12 0.41760.013 0.63
1-7
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MS
kdrnes~ t !→Zkdrnes$exp~2mt!1exp@2m~L2t !#%

~4.5!

where m is the mass of the lightest scalar glueball a
Zkdrnes is a matrix independent oft. In principle,MS

kdrnes(t)
can be extracted from our data and fitted to Eq.~4.5! to
produce a value form. To find the bestm and Zkdrnes by
minimizing the fit’sx2, however, requires the statistical co
relation matrix among the fittedMS

kdrnes(t). If we fit, for
example, to three choices of (k,d,r ), three choices of
(n,e,s) and four values oft, the correlation matrix has 129

TABLE XII. Scalar glueball mass in lattice units found by com
bined fits to sets ofn ands for the lattice 163324 atb of 5.70. The
final set chosen is indicated by an arrow.

n s Mass x2/DOF

4,5,6 1,2,3,4 0.97860.013 4.85
4,5,6 1,2,3 0.97360.014 3.70
4,5 1,2,3,4 0.97560.014 5.39
5,6 1,2,3,4 0.97460.014 6.46
4 1,2,3,4 0.96560.014 8.95
5 1,2,3,4 0.96460.015 9.90
6 1,2,3,4 0.96660.015 10.20

4,5,6 2,3 0.97360.014 5.07

5,6 2,3,4 0.97360.014 7.25
5 2,3,4 0.96460.015 14.80

4,5 2,3 0.96660.014 3.46
5,6 2,3 0.96960.014 6.04

4,5 2 0.95760.015 1.70
4,5 3 0.95360.015 0.20
5,6 3 0.95360.015 1.67
5,6 2 0.95560.015 0.35
4 2,3 0.95560.014 1.36
5 2,3 0.95460.015 0.22
6 2,3 0.95560.015 0.11 ←

TABLE XIII. Scalar glueball mass in lattice units found b
combined fits to sets ofn ands for the lattice 123324 atb of 5.93.
The final set chosen is indicated by an arrow.

n s Mass x2/DOF

5,6,7 4,5,6 0.75260.020 2.35
5,6,7 4,5 0.75060.019 1.75
5,6,7 5,6 0.74760.020 0.98 ←
5,6 4,5,6 0.75260.019 3.72
6,7 4,5,6 0.75160.020 3.67
5,6 4,5 0.74960.019 2.88
5,6 5,6 0.74560.020 1.41
6,7 4,5 0.74760.020 2.52
6,7 5,6 0.74660.020 1.48
6 5,6 0.74260.020 1.19
7 5,6 0.74860.020 1.24
11450
entries. Our underlying data set is too small to provide re
able entries for such a large correlation matrix. As a con
quence the value ofm determined this way will have a sta
tistical error which cannot be estimated reliably. In practi
we found that the value ofm produced by this method wa
not stable as we varied the sets of (m,d,r ) and (n,e,s) and
the range oft used in the fit.

V. TENSOR PROPAGATORS AND MASSES

A propagator for tensors is defined to be

PT
nes~ t12t2!5(

i
@^Ti

nes~ t1!Ti
nes~ t2!&2^Ti

nes~ t1!&

3^Ti
nes~ t2!&#, ~5.1!

TABLE XIV. Scalar glueball mass in lattice units found b
combined fits to sets ofn ands for the lattice 163324 atb of 5.93.
The final set chosen is indicated by an arrow.

n s Mass x2/DOF

5,6,7,8 4,5,6 0.78160.011 1.90 ←
5,6,7,8 4,5 0.77960.011 2.77
5,6,7,8 5,6 0.77660.012 1.99
5,6,7 4,5,6 0.77960.011 2.14
5,6,7 4,5 0.77860.012 3.24
5,6,7 5,6 0.77660.012 2.29
6,7,8 4,5,6 0.78260.011 2.32
6,7,8 4,5 0.78060.011 3.50
6,7,8 5,6 0.77760.012 2.00
6,7 4,5,6 0.77860.011 3.01
7,8 4,5,6 0.77860.012 1.68
6 4,5,6 0.78660.012 0.21
7 4,5,6 0.77960.012 0.32
8 4,5,6 0.77160.012 0.86

TABLE XV. Scalar glueball mass in lattice units found by com
bined fits to sets ofn ands for the lattice 243336 atb of 6.17. The
final set chosen is indicated by an arrow.

n s Mass x2/DOF

7,8 7,8,9,10 0.55960.017 1.26 ←
7,8 7,8,9 0.55960.017 1.70
7,8 8,9,10 0.55360.017 1.46
7 7,8,9,10 0.56460.018 0.58
7 7,8,9 0.56660.018 0.60
7 8,9,10 0.55960.017 0.40
8 7,8,9,10 0.55560.017 0.63
8 7,8,9 0.55660.017 0.91
8 8,9,10 0.54960.018 0.30
7,8 7,8 0.55960.017 2.79
7 7,8 0.56660.018 1.18
8 7,8 0.55660.017 1.80
1-8
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where T1 and T2 are the tensor glueball operators of E
~2.4!, andPT

nes(t12t2) is then averaged over reflections a
time direction displacements oft1 andt2 to reduce statistica
noise.

Tensor propagators were found for gauge configura
ensembles and operator parameters listed in Tables I an
A tensor glueball mass was extracted from propagators
fitting the data to the tensor version of Eq.~4.3!. We ob-
tained a satisfactory tensor glueball mass signal only for
lattices withb of 5.93, 6.17 and 6.40. We did not find a
acceptable tensor signal atb of 5.70. Overall, the statistica
errors in the tensor data are larger than those in the sc
data of Sec. IV and, as a result, the fitting process encoun
complications not present in the scalar fits.

Tables XVIII–XXI list tensor masses for each gauge e
semble withb of 5.93 and above, for each set of opera
parameters in Table II, fitted on one or, in some cases,
choices of time interval. For all fits the high end of the fittin
rangetmax is chosen to be the largest value at which a s
tistically significant effective mass is found. The low end
the fitting rangetmin is then progressively increased. Th
smallesttmin yielding a mass within one standard deviati
of the masses for all largertmin is selected as the lowe
bound for an initial choice of the fitting range. For the latti
163324 atb of 5.93 and for the lattice 322330340 andb
of 6.40, however, we found that for almost all choices
operator parameters atmin one unit larger than the initia
choice yielded a noticeably lower mass. These second va
of tmin and the corresponding masses are also listed in Ta
XIX and XXI.

Effective mass plots for tensors are shown in Figs. 14–

TABLE XVI. Scalar glueball mass in lattice units found b
combined fits to sets ofn ands for the lattice 303322340 atb of
6.40. The final set chosen is indicated by an arrow.

n s Mass x2/DOF

6,8 7,8,9,10,11 0.441660.0074 3.72
6,8 8,9,10,11 0.441660.0074 4.13
6,8 9,10,11 0.441360.0076 5.37
6 9,10,11 0.447760.0082 9.90
8 9,10,11 0.436360.0078 2.55
6,8 10,11 0.432160.0077 1.14 ←
6,8 10 0.432760.0076 0.37
6,8 11 0.428160.0096 2.11
6 10,11 0.436060.0087 0.91
8 10,11 0.432660.0077 2.53

TABLE XVII. Final scalar glueball mass values.

b Lattice Mass

5.70 163324 0.95560.015
5.93 123324 0.74760.020

163324 0.78160.011
6.17 243336 0.55960.017
6.40 303322340 0.432160.0077
11450
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for the four lattices withb of 5.93 and larger, for typica
choices of operator parameters. The solid line in each fig
indicates the mass obtained from a fit over the time inter
which the line spans. The dashed line in each figures ext
the solid line to smallert to show the approach of effectiv
masses to the fitted value.

Tables XXII–XXV list tensor masses found by combin
ing, as discussed in Sec. IV, the masses fitted to various
of operators and choices of time interval. Table XXII corr
sponds to the lattices 123324 atb of 5.93 with fits using the
single time interval given in Table XXII. Table XXIV cor-
responds to the lattice 243336 at b of 6.17 with fits using
the single time interval in Table XX. In Tables XXII an
XXIV, all combined fits with acceptablex2 per degree of
freedom give masses consistent with each other to wi
statistical uncertainties. In each case, the mass correspon

TABLE XVIII. Fitted tensor glueball mass in lattice units usin
the besttmin and tmax for various choices ofn ands for the lattice
123324 atb55.93.

n s tmin tmax Mass x2/DOF

5 4 2 5 1.26060.036 1.15
5 5 2 5 1.22660.029 0.70
5 6 2 5 1.22460.031 0.41
6 4 2 5 1.25060.034 1.00
6 5 2 5 1.21860.029 0.66
6 6 2 5 1.21360.029 0.42
7 4 2 5 1.24560.032 0.59
7 5 2 5 1.20960.029 0.45
7 6 2 5 1.20660.028 0.31

TABLE XIX. Fitted tensor glueball mass in lattice units fo
various choices ofn, s, tmin and tmax for the lattice 163324 at b
55.93.

n s tmin tmax Mass x2/DOF

5 4 1 5 1.32760.013 0.51
5 4 2 5 1.28460.043 0.34
5 5 1 5 1.28560.011 0.72
5 5 2 5 1.27060.039 1.02
5 6 1 5 1.28460.011 1.54
5 6 2 5 1.25260.042 2.04
6 4 1 5 1.30260.012 0.53
6 4 2 5 1.28260.043 0.70
6 5 1 5 1.26760.011 0.83
6 5 2 5 1.26460.037 1.24
6 6 1 5 1.26460.011 1.54
6 6 2 5 1.24360.037 2.18
7 4 1 5 1.28260.012 0.79
7 4 2 5 1.27860.042 1.19
7 5 1 5 1.25260.011 0.95
7 5 2 5 1.25560.036 1.42
7 6 1 5 1.24960.011 1.64
7 6 2 5 1.23360.035 2.37
1-9
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to the largest set with acceptablex2, marked with an arrow,
is chosen as the final value.

Table XXIII for the lattice 163324 at b of 5.93 shows
combined fits using both choices oftmin of Table XIX. The
combined fits using the smallertmin have unacceptably high
x2 per degree of freedom. For the fits using the largertmin
the x2 is acceptable, and the fitted masses are all consis
with each other within statistical uncertainties. The mass
the largest set of operators with the largertmin is chosen as
the final number. Table XXV for the lattice 322330340 at
b of 6.40 also gives combined fits for bothtmin in Table
XXI. Most fits for bothtmin have acceptablex2 per degree of
freedom. The masses obtained from the largertmin all lie one
standard deviation or a bit more below the masses fo

TABLE XX. Fitted tensor glueball mass in lattice units usin
the besttmin and tmax for various choices ofn ands for the lattice
243336 atb56.17.

n s tmin tmax Mass x2/DOF

7 7 3 7 0.86160.029 0.75
7 8 3 7 0.83060.027 0.24
7 9 3 7 0.82060.028 0.07
7 10 3 7 0.81360.034 0.53
8 7 2 7 0.87060.010 0.46
8 8 3 7 0.81960.026 0.49
8 9 2 7 0.83960.009 0.27
8 10 3 7 0.81560.031 0.08

TABLE XXI. Fitted tensor glueball mass in lattice units fo
various choices ofn, s, tmin and tmax for the lattice 322330340 at
b56.4.

n s tmin tmax Mass x2/DOF

6 6 4 9 0.68060.043 0.71
6 6 5 9 0.64260.073 0.84
6 7 4 9 0.66060.034 0.65
6 7 5 9 0.64360.063 0.84
6 8 4 9 0.65260.029 0.33
6 8 5 9 0.63860.059 0.41
6 9 3 9 0.68860.016 0.58
6 9 4 9 0.65760.030 0.38
6 10 3 9 0.67560.016 0.56
6 10 4 9 0.67060.032 0.69
6 11 3 9 0.66060.017 0.31
6 11 4 9 0.66560.033 0.38
8 6 4 9 0.65860.038 0.46
8 6 5 9 0.65160.068 0.60
8 7 4 9 0.63660.030 0.50
8 8 4 9 0.63460.027 0.19
8 9 4 9 0.63760.026 0.25
8 10 3 9 0.66060.014 0.35
8 10 4 9 0.65360.027 0.42
8 11 3 9 0.64660.015 0.15
8 11 4 9 0.65360.026 0.17
11450
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with the smallertmin , however, and all have significantl
betterx2 than the fits with the smallertmin . The mass found
from the largest set of operators for the largertmin is there-
fore chosen as the final result.

The collection of final tensor masses is listed in Tab
XXVI.

VI. VOLUME DEPENDENCE

We now consider an estimate of the difference betwe
the scalar and tensor glueball masses in Table XVII a
XXVI for finite lattice periodL and the infinite volume limits
of these quantities.

For large values ofL, scalarm0(L) and tensorm2(L)
glueball masses deviate from their infinite volume limits,m0
andm2, respectively, by@18#

ms~L !5msF12gs

exp~2A3m0L/2!

m0L
2OS exp~2m0L !

m0L D G
~6.1!

wheres is 0 or 2. In Ref.@19# for b near 6.0, data form0(L)
is shown to fit the two leading terms in Eq.~6.1! reasonably
well at 4 values ofL ranging from 6/m0 to 12/m0. This result

FIG. 14. Tensor mass fit and tensor effective mass as a func
of t for the lattice 123324 atb of 5.93 using the smeared operat
with n of 6, e of 1.0 ands of 6.

FIG. 15. Tensor mass fit and tensor effective mass as a func
of t for the lattice 163324 atb of 5.93 using the smeared operat
with n of 6, e of 1.0 ands of 5.
1-10
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is plausible since forL ranging from 6/m0 to 12/m0, the third
term in Eq.~6.1! is smaller than the second by a factor ran
ing from O(0.4) toO(0.2). For our data atb of 5.93, Table
XVII shows thatm0 is above 0.75 so thatL of 12 and 16 are
larger than 8/m0 and 12/m0, respectively. Thus we believ
that for the data atb of 5.93, the leading two terms of Eq
~6.1! likely provide a fairly reliable estimate of theL depen-
dence ofm0(L) andm2(L).

Fitting theb55.93 data in Table XVII to the two leading
terms of Eq.~6.1! yields m0 of 0.78360.012 andg0 of
150061100. In addition a bootstrap calculation yields wi
95% probability,

m02m0~16!

m0
<0.0037. ~6.2!

At b55.93, Table XXVI combined with the leading tw
terms of Eq. ~6.1! gives m2 of 1.23660.037 andg2 is
130061200. A bootstrap calculation yields, with 95% pro
ability,

m22m2~16!

m2
<0.0048 ~6.3!

FIG. 16. Tensor mass fit and tensor effective mass as a func
of t for the lattice 243336 atb of 6.17 using the smeared operat
with n of 7, e of 1.0 ands of 9.

FIG. 17. Tensor mass fit and tensor effective mass as a func
of t for the lattice 322330340 at b of 6.40 using the smeare
operator withn of 8, e of 1.0 ands of 10.
11450
-

.
Overall, it appears to us safe to conclude that atb of 5.93

the difference between scalar and tensor masses forL of 16
and their infinite volume limits are of the order of 0.5%
less. In Sec. VII we show that the scalar and tensor glue
masses in Tables XVII and XXVI withb of 5.93 and greater
andm0L fixed at about 13 are not far from asymptotic sc
ing. We therefore expect the fractional volume depend
errors found in these masses to be about the same a
errors atb of 5.93. Thus the finite volume errors in a
masses in Tables XVII and XXVI withb of 5.93 and greater
andm0L of about 13 should be 0.5% or less.

VII. CONTINUUM LIMIT

The nonzero lattice spacing scalar and tensor glue
masses in lattice units given in Tables XVII and XXVI, re
spectively, we now convert to physical units and extrapol
to zero lattice spacing.

To convert masses in lattice units to physical units,
divide by a known mass measured in lattice units. One na
ral choice for this conversion factor is the rho massmr(a)a.
Values ofmr(a)a for three of the fourb in Tables XVII and
XXVI are given in Ref.@7#. For the largestb in Tables XVII
and XXVI, Ref. @7# does not reportmr(a)a. For the threeb
considered in Ref.@7#, however, the ratio@LMS̄

(0)
a#/@mr(a)a#

is found to be independent ofb to within statistical errors.

TABLE XXII. Tensor glueball mass in lattice units found b
combined fits to sets ofn ands for the lattice 123324 atb of 5.93.
The final set chosen is indicated by an arrow.

n s Mass x2/DOF

5,6,7 4,5,6 1.18860.025 2.13 ←
5,6,7 4,5 1.20760.028 1.73
5,6,7 5,6 1.19560.025 1.33
5,6 4,5 1.20660.029 1.97
5,6 5,6 1.19960.026 1.29
6,7 4,5 1.20560.029 1.90
6,7 5,6 1.20760.027 0.88

TABLE XXIII. Tensor glueball mass in lattice units found b
combined fits to sets ofn ands for the lattice 163324 atb of 5.93.
The final set chosen is indicated by an arrow.

n s tmin tmax Mass x2/DOF

5,6,7 4,5 1 5 1.25660.011 ‘31.87
5,6 4,5 1 5 1.26060.011 44.45

5,6,7 4,5,6 2 5 1.23460.034 0.60 ←
5,6,7 4,5 2 5 1.25260.036 0.48
5,6,7 5,6 2 5 1.23660.036 0.86
5,6 4,5 2 5 1.25460.036 0.59
5,6 5,6 2 5 1.23960.035 1.01
6,7 4,5 2 5 1.25660.037 0.60
6,7 5,6 2 5 1.23960.034 1.13

on

on
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HereLMS̄
(0)

a is obtained by the 2-loop Callan-Symanzik equ
tion from aMS̄ found from its mean-field improved@20# re-
lation to b. Since@LMS̄

(0)
a#/@mr(a)a# is constant within er-

rors, converting to physical units usingLMS̄
(0)

a then
extrapolating to zero lattice spacing should give resu
nearly equivalent to those found usingmr(a)a. Table
XXVII lists, for each b, the corresponding mean-field im
provedaMS̄ andLMS̄

(0)
a.

The b dependence of valence approximation glueb
masses is determined entirely by the pure gauge part of
QCD action. The leading irrelevant operator in the pu
gauge plaquette action has lattice spacing dependenc
O(a2). Thus for scalar and tensor glueball massesm0 and
m2, respectively, we extrapolate to the continuum limit b

ms~a!a

LMS̄
(0)

a
5

ms

LMS̄
(0) 1C@LMS̄

(0)
a#2, ~7.1!

wheres is 0 or 2.
If LMS̄

(0)
a in Eq. ~7.1! were replaced bymr(a)a, then since

the leading irrelevant operator in the quark action has lat
spacing dependence ofO(a) it might be argued that the qua
draticO(a2) term in the equation’s right hand side should

TABLE XXIV. Tensor glueball mass in lattice units found b
combined fits to sets ofn ands for the lattice 243336 atb56.17
The final set chosen is indicated by an arrow.

n s Mass x2/DOF

7,8 7,8,9,10 0.85660.010 2.84
7,8 7,8,9 0.85660.010 3.83
7,8 8,9,10 0.83860.012 1.24 ←
7,8 7,8 0.86560.011 4.19
7,8 8,9 0.83860.012 1.72
7,8 9,10 0.84060.012 0.21

TABLE XXV. Tensor glueball mass in lattice units found b
combined fits to sets ofn and s for the lattice 322330340 at b
56.4 The final set chosen is indicated by an arrow.

n s Mass tmin tmax x2/DOF

6,8 6,7,8,9,10,11 3,4 9 0.65560.012 1.81
6,8 6,7,8,9,10 3,4 9 0.65960.014 2.04
6,8 7,8,9,10,11 3,4 9 0.65560.012 2.06
6,8 6,7,8,9 3,4 9 0.67660.015 1.52
6,8 7,8,9,10 3,4 9 0.65960.013 2.41
6,8 8,9,10,11 3,4 9 0.65560.012 2.22

6,8 6,7,8,9,10,11 4,5 9 0.63160.022 0.56 ←
6,8 6,7,8,9,10 4,5 9 0.63560.024 0.65
6,8 7,8,9,10,11 4,5 9 0.63260.021 0.60
6,8 6,7,8,9 4,5 9 0.62760.024 0.56
6,8 7,8,9,10 4,5 9 0.63560.025 0.73
6,8 8,9,10,11 4,5 9 0.63060.022 0.65
11450
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a linearO(a). This in turn would contradict our claim tha
extrapolation using eithermr(a)a or LMS̄

(0)
a will give nearly

equal results. An answer to this objection is that the appro
mate constancy of@LMS̄

(0)
a#/@mr(a)a# implies that theO(a)

irrelevant contribution tomr(a)a is quite small. The con-
stancy of@LMS̄

(0)
a#/@mr(a)a# as a function ofa or equiva-

lently as a function ofb cannot be explained by a cancell
tion of anO(a) term inLMS̄

(0)
a with anO(a) term inmr(a)a

sinceLMS̄
(0)

a is defined to fulfill the true continuum two-loop
Callan-Synamzik equation and itself has noO(a) correc-
tions. The leading correction to theb dependence ofLMS̄

(0)
a

is by a multiplicative factor of@11O(b2)#. If LMS̄
(0)

a is re-
placed bymr(a)a, any significanta dependence which ap
pears will come from theO(a2) term in ms(a)a. Thus Eq.
~7.1! even with mr(a)a substituted forLMS̄

(0)
a will remain

correct.
The scalar data of Tables XVII combined withLMS̄

(0)
a of

Table XXVII fitted to Eq. ~7.1! at the three largestb is
shown in Fig. 18. The predicted continuum limitm0 /LMS̄

(0) is
7.01660.167. The fit in Fig. 18 has ax2 of 0.6 over a range
in which the term@LMS̄

(0)
a#2 varies by more than a factor o

3.4. The variation of@ms(a)a#/@LMS̄
(0)

a# over the fitting
range, however, is only slight. Each of the three nonz
lattice spacing values of@ms(a)a#/@LMS̄

(0)
a# is within 1.6

standard deviations of the extrapolated zero lattice spa
result. Thus we believe the extrapolation to zero lattice sp
ing is quite reliable and would expect the predicted co
tinuum mass to be not very different from what would
obtained by any other reasonable, smooth extrapolation
the data.

The tensor data of Tables XXVI combined withLMS̄
(0)

a of
Table XXVII fitted to Eq. ~7.1! at the three largestb, the
only b for which tensor masses were found, is shown in F
19. The predicted continuum limitm2/LMS̄

(0) is 9.6560.36.
The fit in Fig. 19 has ax2 of 0.8, while, as before, the term

TABLE XXVI. Final tensor glueball mass values.

b Lattice Mass

5.93 123324 1.18860.025
163324 1.23460.034

6.17 243336 0.83860.012
6.40 303322340 0.63160.022

TABLE XXVII. For each b, mean-field improvedaMS̄ and
LMS̄

(0)
a obtained from the 2-loop Callan-Synamzik equation.

b aMS̄ LMS̄
(0)

a

5.700 0.14557 0.16612
5.930 0.13180 0.11444
6.170 0.12183 0.08265
6.400 0.11407 0.06177
1-12
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@LMS̄
(0)

a#2 in Eq. ~7.1! varies by more than a factor of 3.4 ove
the fitting range.

To obtain scalar and tensor glueball masses in units
MeV, we combine the continuum limitLMS̄

(0) /mr of 0.305

60.008 @7# with mr of 770 MeV to give LMS̄
(0) of 234.9

66.2 MeV. The scalar glueball mass becomes 1648658
MeV and the tensor mass becomes 22676104 MeV. The
continuum limit results are summarized in Table XXVIII.

For LMS̄
(0) /mr we take the value given in Ref.@7# for a

lattice with period of about 2.4 Fermi. For the rho ma
obtained atb of 5.7 from a combination of propagators fo
rho operators with smearing parameters 0, 1 and 2, the
Fermi result differs from the result for period 3.6 Fermi by
bit over one standard deviation. This difference appears t
largely a consequence of a slightly poorer separtion of
rho component of the propagator from excited state com
nents in the 2.4 Fermi rho mass calculation than in the
Fermi calculation@21#. For the rho operator with smearin
parameter 4, which couples more weakly to excited sta
the difference atb of 5.7 between 2.4 Fermi and 3.6 Ferm
predictions is much less than one standard deviation. T
overall it appears to us reasonable to take the 2.4 Fe
calculations as the infinite volume limit, within statistic
errors. The continuum limit values ofLMS̄

(0) /mr for the the
data combining smearings 0, 1 and 2 and for the data f
smearing 4 are nearly identical.

FIG. 18. The scalar glueball mass in units ofLMS̄
(0) extrapolated

to zero lattice spacing linearly in@LMS̄
(0)

#2.

FIG. 19. The tensor glueball mass in units ofLMS̄
(0) extrapolated

to zero lattice spacing linearly in@LMS̄
(0)

#2.
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VIII. COMPARISON WITH OTHER RESULTS

An independent calculation of the infinite volume, co
tinuum limit of the valence approximation to several glueb
masses is reported in Ref.@10#. A second, more recent, ca
culation appears in Ref.@11#. A comparison of Ref.@10# with
the original analysis@1# of our results appears in Ref.@2#.

The calculation of Ref.@10# uses the same plaquette a
tion we use but takes a different set of glueball operato
The gauge field ensembles of Ref.@10# range from 1000 to
3000 configurations. For the scalar and tensor masses
@10# reports 1550650 MeV and 22706100 MeV, respec-
tively. The predicted zero lattice spacing masses are not
tually found by extrapolation to zero lattice spacing, but a
obtained instead from calculations atb of 6.40 of glueball
masses in units of the square root of string tension,As, then
converted to MeV using an assumedAs of 440 MeV with
zero uncertainty. The uncertainties given in the masses
entirely the uncertainties in theb of 6.40 calculations of
masses in units ofAs and are thus missing at least a cont
bution from the uncertainty inAs. A graph shown in Ref.
@10# suggests that the b of 6.40 value of
@m0(a)a#/@As(a)a# is about 50 MeV below the data’s zer
lattice spacing limit. An additional error of650 MeV in the
scalar mass is therefore proposed in Ref.@10# as a conse-
quence of the absence of extrapolation to zero lattice sp
ing. Since@m0(a)a#/@As(a)a# of Ref. @10# is clearly rising
as lattice spacing falls, it does not appear to us that a s
metric error of650 MeV an accurate representation of t
effect of the absence of extrapolation. If the statistical er
and extrapolation error in the scalar mass are, nonethe
taken at face value and combined the result is a predictio
1550671 MeV. No estimate is given for the extrapolatio
error in the tensor mass, which is found to be only wea
dependent on lattice spacing if measured in units ofAs. A
scalar mass of 1550671 MeV is a bit over one standar
deviations below the result 1648658 MeV in Table XXVIII,
while the tensor mass of 22706100 MeV is in close agree
ment with our value of 22676104 MeV.

If the continuum limit of the Ref.@10# data is found by
extrapolation to zero lattice spacing of@m0(a)a#/@LMS̄

(0)
a#,

following Sec. VII, the result form0 /LMS̄
(0) is 6.6760.33.

Converted to MeV usingLMS̄
(0) of 234.966.2 MeV, m0 be-

comes 1567688 MeV. This value is less than a standa

TABLE XXVIII. Continuum limit scalar and tensor gluebal
masses and their conversion to MeV.

m0 /LMS̄
(0) 7.01660.167

m2 /LMS̄
(0) 9.6560.36

m2 /m0 1.37560.066

LMS̄
(0) /mr 0.30560.008

mr 770 MeV

LMS̄
(0) 234.966.2 MeV

m0 1648658 MeV
m2 22676104 MeV
1-13
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deviation below the prediction 1648658 MeV in Table
XXVIII.

The calculation of Ref.@11# uses an improved action wit
time direction lattice spacing chosen smaller than the sp
direction. The gauge field ensembles range in size from 4
to 10000 configurations. Masses measured in units of
parameterr 0

21 @22# are extrapolated to zero lattice spacin
then converted to MeV using a value ofr 0

21 found by ex-
trapolation ofr 0

21/mr to zero lattice spacing. As a result o
working at relatively large values of lattice spacing, som
ambiguity is encountered in matching the scalar mass’s
tice spacing dependence to the small lattice spac
asymptotic behavior expected for the improved action. T
ing this uncertainty into account, the scalar mass is predic
to be 1730694 MeV. The tensor mass, for which the e
trapolation to zero lattice spacing encounters no problem
predicted to be 24006122 MeV. Both numbers are a b
under one standard deviation above the predictions in T
XXVIII. For the ratio m2 /m0 Ref. @11# predicts 1.39
c

et

ar

d

11450
ce
0
e

,

e
t-
g
-
d

is

le

60.04, in good agreement with the value 1.37560.066 in
Table XXVIII. Thus the difference between Table XXVII
and Ref.@11# is almost entirely a discrepancy in overall ma
scale.

Combining our extrapolation of 6.6760.33 for the data in
Ref. @10# with 7.01660.167 in Table XXVIII gives 6.95
60.15 for m0 /LMS̄

(0) , thus 1631655 MeV. Combining
1631655 MeV with 1730694 MeV of Ref. @11# gives a
world average valence approximation scalar mass of 1
647 MeV. This number is consistent with the unmixed sc
lar mass of 1622629 MeV found in Ref.@5# taking the ob-
served statesf 0(1710), f 0(1500) andf 0(1400) as the mixed
versions of the scalar glueball and the two isoscalar spin z
quarkonium states, respectively. The statef 0(1710) in this
calculation is assigned a glueball component of 73.869.5 %.
Combining 22706100 MeV, 22676104 MeV and 2400
6122 MeV gives a world average valence approximat
tensor mass of 2302662 MeV.
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