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We evaluate the infinite volume, continuum limit of glueball masses in the valguenchedl approxima-
tion to lattice QCD. For the lightest scalar and tensor states we obtain masses of SBMeV and 2267
+104 MeV, respectively{S0556-282(99)02123-3

PACS numbds): 11.15.Ha, 12.38.Gc

[. INTRODUCTION the predictions of pure gauge theory.

In recent articles we described calculations of the infinite In Sec. Il we define a family of operators used to con-
volume, continuum limit of scalar and tensor glueball massestruct glueball propagators. In Sec. Il we describe the set of
in the valence(quenchell approximation to lattice QCD lattices on which propagators were evaluated and the algo-
[1,2]. For a single value of lattice spacing and lattice volume fithms we used to generate gauge configurations and esti-
we reported also a calculation of the decay coupling conmate error bars. In Secs. IV and V we present our results for
stants of the lightest scalar glueball to pairs of pseudoscaldcalar and tensor glueball propagators, respectively, and
mesons. The mass and decay calculations combined suppdf@sses extracted from these propagators. In Sec. VI we es-
the identification off ,(1710) as primarily composed of the timate the difference between the scalar and tensor masses
lightest scalar glueball3,4]. Evaluation of the mass of the We obtain in finite volumes and the corresponding infinite
lightest scalar quarkonium states and of quarkonium-gluebaiolume limits. In Sec. VIl we extrapolate scalar and tensor
mixing amplitudes[5] then yield a glueball component for Mmasses to their continuum limits. In Sec. VIII we compare
fo(1710) of 73.8-9.5%. In the present article, we describe our calculations with work by other groups0,11]. For com-
the glueball mass data of R¢l] in greater detail along with bined world average valence approximation scalar and tensor
an improved evaluation of the mass predictions which followglueball masses we obtain 16567 MeV and 2302 62
from these data. For the scalar and tensor glueball masses WV, respectively.
obtain 1648 58 MeV and 2267 104 MeV, respectively.

The valence approximation, on which our results depend,
may be viewed as replacing the momentum dependent color
dielectric constant arising from quark-antiquark vacuum po- We evaluated glueball propagators using operators built
larization with its zero-momentum limit6] and, for flavor  out of smeared link variables. Glueball operators built from
singlet mesons, shutting off transitions between valencdéink variables with an optimal choice of smearing couple
quark-antiquark pairs and gluons. The valence approximamore weakly to excited glueball states than do corresponding
tion is expected to be fairly reliable for low lying flavor operators built from unsmeared links. As a consequence, the
nonsinglet hadron masses, which are determined largely bglateau in effective mass plots for optimally smeared opera-
the low momentum behavior of the chromoelectric field.tors begins at a smaller time separation between source and
This expectation is supported by recent valence approximasink operators, extends over a larger number of time units,
tion calculations[7,8] of the masses of the lowest flavor and yields a fitted mass with smaller statistical noise than
multiplets of spin 1/2 and 3/2 baryons and pseudoscalar andgould be obtained from operators made from unsmeared link
vector mesons. The predicted masses are all within abowariables. Examples of the improvements which we obtained
10% of experiment. For the lowest valence approximatiorby a choice of smeared operators with be given in Secs. IV
glueball masses, the error arising from the valence approxand V.
mation’s omission of the momentum dependence of quark- Initially, we constructed smeared operators from gauge
antiquark vacuum polarization we thus also expect to be 10%nks fixed to Coulomb gauge. This method gave adequate
or less. Referencd®,9] show this error should tend to lower results for the largest values of lattice spacing we considered.
valence approximation masses below those of full QCD. FoAs the lattice spacing was made smaller, however, we found
flavor singlet configurations whose quantum numbers, if rethat the computer time required to gauge fix a large enough
alized as quarkonium, require nonzero orbital angular moensemble of configurations to obtain useful results became
mentum, it is shown in Ref[2] that the additional error unacceptably large. We then switched to a gauge invariant
arising from the valence approximation’s suppression ofmearing method. For the lattice sizes used in our extrapola-
transitions between valence quark-antiquark pairs and gluort®n to the continuum limit, the gauge invariant mass results
is likely to introduce an additional error of the order of 5% or had statistical uncertainties typically a factor of three smaller
less. For the lowest scalar glueball this error is examined irthan our earlier Coulomb gauge results. In the remainder of
detail in Ref.[5] and found to shift the valence approxima- the present article we discuss only the gauge invariant re-
tion mass by about 5% below its value in full QCD. It is sults. A summary of our Coulomb gauge mass calculations is
perhaps useful to mention that, for glueball masses, the vagiven in Ref.[1].
lence approximation simply amounts to a reinterpretation of A family of gauge invariant smeared operators we con-

Il. SMEARED OPERATORS
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TABLE I. Configurations analyzed. 1.5 T T T

B Lattice Skip Count Bin
5.70 16x24 50 8,094 8 10 . - '|' —
5.93 12x24 25 48,278 16 . 5 J‘_ L

16°x 24 25 30,640 16 = ¢ - J
6.17 24x 36 25 31,150 16 .
6.40 30< 322X 40 25 25,440 16 05 }
struct following the adaptation in Ref12] of the smearing 0.0 | ! ! | |
method of Ref[13]. A related method of gauge invariant 00 20 40 60 80
smearing is proposed in Refd4]. Forn>0, ¢>0, we de- t

fine iteratively a sequence of smeared, space-direction link FIG. 1. Scalar effective mass as a functiontdbr the lattice

. € . Oe : i
var!abIeUi” (x), with 9'1 (X) given by the unsmeared link 168y 04 at of 5.93 using the smeared operator witiof 5, e of
variableU;(x). Let u""Y<(x) be 1.0 ands of 3.

ui(n”)f(x):UinE(x)JreZ UFE(X)U{‘E(X+])[U{‘E(X+f)]T time required for_this iterat?ve maximizatio_n, on the_ other
] hand, was a negligible fraction of the total time required for
our calculation.
+e> [U]-”E(x—j)]TU{‘e(x—i)U?E(X+f—]), From the U“(x) we constructW;5(x) by taking the
i trace of the product of)“(x) around the boundary of a
(2.1  *ssquare of links beginning in thedirection. The sum of
WiS(x) over all sites with a fixed time value gives the
where the sum is over the two space directiposthogonal ~ zero-momentum loop variabMy/5(t).

to directioni. The projection ofui(“”)f(x) into SU(3) de- For each triple 4, ¢,s), a field coupling the vacuum only
fines the new smeared link variadl§"* <¢(x). to zero-momentum scalars states is
To find Ui(””)f(x) we maximize over S(B) the target
function
S's(t)= 2, ReW (1), (2.3
~
ReTHU" D00 [u™ D00 ™. (2.2 o

The required maximum is constructed by repeatedly apply\-"’r?e_re thef sm:}ms are qur spa(ée directibaad]. A pOSﬁib|e h
ing an algorithm related to the Cabbibo-Marinari-Okawatho!ce of the two independent operators coupling the
Monte Carlo method. We begin witt"*¢(x) chosen to vacuum only to zero-momentum tensor states is

be 1. We then multiplyd("*Y<(x) by a matrix in the S(R) e . " o

subgroup acting only on gauge index values 1 and 2 chosen ~ T1- (1) =2ReW5(t) —ReWs(t) —ReWs(t) (2.4)

to maximize the target function over this subgroup. This

multiplication and maximization step is repeated for the TheS(1) = VBReWSS(1) — /BReWES(t).

SU(2) subgroup acting only on index values 2 and 3, then for 2°°(0) = VBReWST(t) ~ V3R (D)

the subgroup acting only on index values 1 and 3. The entire

three step process is then repeated five times. Five repetitions 15 ' ' '
we found sufficient to produce B{"*Y<(x) satisfactorily
close to the true maximum of the target function in Ej2).
Iteratively maximizing the target function over &) sub- 10l T _
groups turns out to be much easier to program than a direct ‘. -z I
maximization over all of S(B). The additional computer E | T ¢ 7
L

TABLE Il. Glueball operator parameters. 05 _|_ =
B Lattice n € s J'_ 1
5.70 16x24 3-10 0.25 4 0.0 ' ' ' ' '
5.93 13x 24 5-7 1.00 4-6 00 20 4i0 60 80

163x 24 5-8 1.00 37
6.17 28x% 36 7,8 1.00 710 FIG. 2. Scalar mass fit and scalar effective mass as a function of
6.40 30< 322X 40 6,8 1.00 11 t for the lattice 18x 24 atB of 5.93 using the smeared operator

with n of 5, € of 1.0 ands of 4.
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FIG. 3. Scalar mass fit and scalar effective mass and fitted mass FIG. 5. Scalar effective mass as a functiontdbr the lattice
as a function oft for the lattice 18x24 at 8 of 5.93 using the 16°x24 atp of 5.93 using the smeared operator wittof 5, e of
smeared operator with of 5, e of 1.0 ands of 5. 1.0 ands of 7.

The optimal choice oftf,e,s) for each operator and lattice

tively, of Table I. Although the number of sweeps skipped in
spacing will be considered in the next section. y g P bp

each case was not sufficient to permit successive configura-
tions to be treated as statistically independent, we found suc-
cessive configurations to be sufficiently independent to jus-
tify the cost of evaluating glueball operators.

The set of lattices on which we evaluated scalar and tent—) qur the prgpaggtors, (la\];fectlt\j/evmass%s ?nd T'tteéj rr:atsst(.es tlo
sor glueball propagators is listed in Table I. € discussed In Secs. an » WE getermined statistica

On each lattice, an ensembles of gauge configurations w certainties by the bootstrap methpif]. The bootstrap

generated by a combination of the Cabbibo-Marinari-Okaw&' gorithm can be applied directly, however, only to deter-

algorithm and the overrelaxed method of R@f5]. To up- MN€ the uncer_taipt?es in_quantities obtain.ed. from_ an en-
date a gauge link we first performed a microcanonical updat emble whose |nd|V|dqu .members are statistically indepen-
in the SU?2) subgroup acting on gauge indices 1 and 2. This ent. We th_erefofe pa_rt|t|oned each ensgr_nt_yle Of corr(_alated
was then repeated for the &) subgroup acting on indices 2 gauge _con_flguratlons into successive disjoint bins with a
and 3, and the subgroup acting on indices 1 and 3. Thesfg(ed bin size. Bootstrap ensembles were then formed by

three update steps were then repeated on each link of t 3ndomly choosing a number of entire bins equal to the num-

lattice. After four lattice sweeps each consisting of the thre er_qf bins in the original partitioned ensemble.. Fpr b'ns
microcanonical steps on each link, we carried out On(;_,sufflmently large, propagator averages found on distinct bins

Cabibbo-Marinari-Okawa sweep of the full lattice. W_i” be ”eﬁr'y independent. It .fOHOWS that for Ia_lrge enqugh
At least 10000 sweeps were used in each case to gener%ﬂé‘s' the binned bootstrap estimate of errors will be reliable.
an initial equilibrium configuration. The number of sweeps tis not hard to show that once _blns are made Iargg enough
skipped between each configuration used to calculate prop<I;lQ pr.odu.ce ne.arly independent bin averages, further increases
gators and the total number of configurations in each en! bin size will leave t?oc.’ts”?‘p error est|mate§ ngarly un-
semble are listed in the third and fourth columns, respecghanged' The only variation in errors as the bin size is in-

IIl. LATTICES, MONTE CARLO ALGORITHM
AND ERROR BARS

1.5 T T T 1.5 T T T
L
1.0 . 1.0 T n
-
= T . O |
Pl R
0.5 1 0.5 1
| I ‘
0.0 | | | ] ] 0.0 | | | ] ]
0.0 2.0 4.0 6.0 8.0 0.0 2.0 4.0 6.0 8.0

t

FIG. 4. Scalar mass fit and scalar effective mass as a function of FIG. 6. Scalar mass fit and scalar effective mass as a function of
t for the lattice 18x 24 atB of 5.93 using the smeared operator t for the lattice 18x24 at 8 of 5.93 using the smeared operator
with n of 5, € of 1.0 ands of 6. with n of 6, € of 1.0 ands of 4.
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FIG. 7. Scalar mass fit and scalar effective mass as a function of FIG. 9. Scalar mass fit and scalar effective mass as a function of
t for the lattice 18x 24 atB of 5.93 using the smeared operator t for the lattice 18X 24 at 8 of 5.70 using the smeared operator
with n of 7, € of 1.0 ands of 4. with n of 6, € of 0.25 ands of 2.

creased further will come from statistical fluctuations in thetively larger ranges of parameters to try to find values which
error estimates themselves. To determine the required bicoupled efficiently to the lightest scalar glueball. For other
size for a particular error estimate to be reliable we appliedattices, the parameter range was then narrowed to choices
the bootstrap method repeatedly with progressively largewhich, in physical units, were about the same as the value
bin sizes until the estimated error became nearly independerndnge which gave best results @tof 5.93.

of bin size. The final bin size we adopted for each lattice, From the existence of a self-adjoint, positive, bounded
chosen to be large enough for all of the error estimates dongansfer matrix for lattice QCD, it follows that a spectral
on that lattice, is given in the fifth column of Table I. resolution can be constructed fBES(t),

IV. SCALAR PROPAGATORS AND MASSES PLS(t) = S Z{exp(— Ejt) +exd — Ey(L— D)1},
1

From the scalar operator of E¢R.3), a propagator for

4.2
scalars is defined to be “.2

Zi= H Snes 0 2,
PSSty — ty) = (S15(t,) S"N(t)) — (S"S(t) ) S"(t)). (A1S™(O)]vacuum)

4.9

To reduce statistical noiséRs™(t;—t,) is then averaged
over reflections and time direction displacementg 0énd
t2.

The collection of values of smearing iteratiomssmear-
ing parameteg, and loop sizes for which propagators were
evaluated for each lattice are given in Table Il. Abf 5.70,
and atB of 5.93 on the lattice 1< 24, we ran with rela-

where the sum is over all zero-momentum, scalar states
E; is the energy ofi|, andL is the lattice period in the time
direction. For large values dfandL, the sum in Eq(4.2
approaches the asymptotic form
Pa(t)—Z{exp(—mt)+exd —m(L—-t)]} (4.3
wherem is the smallesg; and thus the mass of the lightest
scalar glueball and is the corresponding; . Fitting Pa°(t)

15 , , , 15 , . .
f ]
10 [ T 1.0 . -
. T Il
£ R U - J- . £ R - [
i \ <L
05| | 0.5 -
0.0 | | | | | 0.0 | | | | |
00 20 40 60 80 00 20 40 60 80

t

t

FIG. 8. Scalar mass fit and scalar effective mass as a function of FIG. 10. Scalar mass fit and scalar effective mass as a function
t for the lattice 18x 24 atB of 5.93 using the smeared operator of t for the lattice 13X 24 atB of 5.93 using the smeared operator
with n of 8, € of 1.0 ands of 4. with n of 6, € of 1.0 ands of 6.
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t

FIG. 11. Scalar mass fit and scalar effective mass as a function FIG. 13. Scalar mass fit and scalar effective mass as a function
of t for the lattice 18X 24 atB of 5.93 using the smeared operator of t for the lattice 32x30x40 at 3 of 6.40 using the smeared

with n of 7, € of 1.0 ands of 5.

to the asymptotic form in Eq4.3) att andt+1 gives the
scalar effective massi(t), which at larget approachesn.

operator withn of 8, e of 1.0 ands of 10.

4 or 5. Fors fixed at 4, Fig. 2 and Figs. 6—8 show the
variation in the effective mass graph asuns from 5 to 8,

To extract values ofn from our data sets, we began by respectively. The difference betwer{0) andm(2) is least
examining effective mass graphs to find combinations of atn of 6 and then grows again asis raised toward 8.
ands for which m(t) shows a plateau datvalues for which
we have data, and to determine which of these combinatiogrows ast is made larger and tends to grow alsaibr s is
increased. Both of these phenomena are explained by the

of n ands has the best plateaus.

In Figs. 1-8 the statistical uncertainty in effective masses

Among the data sets used in our final extrapolation of thediscussion in Refl17] of the statistical uncertainty in propa-

scalar mass to zero lattice spacing, we included the largesgiators.

range of values oh ands for the lattice 18x 24 with 8 of Figures 9—13 show scalar effective masses for the each of
5.93. Scalar effective masses obtained for this casemith  the values of lattice size ang@l listed in Table I. The param-

5 ands of 3—7 are shown in Figs. 1-5, respectively. As the etersn ands for the data in Figs. 9—-13 are chosen, for each
loop sizes is increased, initially the effective mass graphslattice andB, from among the set which couple best to the
become flatter, as shown, for example, by a decrease in tHghtest scalar.

difference betweem(0) andm(2). It follows that the rela- For each combination of lattice size am#] we deter-
tive coupling of the corresponding operators to the lightesmined a final value of the scalar mass from the collection of
scalar glueball increases wighBeyonds of 5, however, this  propagators for which the effective mass graph showed at
trend reverse. Thus, as might be expected, the relative coleast some evidence of a plateau at largEor several dif-
pling to the lightest state becomes weaker again when thkerent choices ot interval, each of these propagators was

loop is made too large. Farof 7 the effective mass graph fitted to the asymptotic form in Ed4.3) by minimizing the
shows no sign of becoming flat even at the largesbr
which we have statistically significant data. Roof 5, the

best coupling to the lightest state appears to occur with

=5.93. (DOF is degree of freedom.

TABLE lll. Fitted scalar glueball mass in lattice units for vari-
ous choices of, s and fitting range for the lattice $&24 at

1.5
n s tmin tmax Mass x%/DOF
5 4 1 8 0.827-0.006 2.26
10k . 5 4 2 8 0.792-0.013 1.14
. 5 4 3 8 0.81%0.029 1.22
g T 5 4 4 8 0.8310.068 1.61
b * o9 _T e
o5 T =1 . . 5 5 1 8 0.816-0.006 0.85
l T T 5 5 2 8 0.79%0.013 0.55
L J 5 5 3 8 0.79&0.028 0.67
00 | | | | | | 5 5 4 8 0.767-0.059 0.80
0.0 20 40 : 60 80 100 5 6 1 8 0.824-0.007 1.32
5 6 2 8 0.79%0.014 0.58
FIG. 12. Scalar mass fit and scalar effective mass as a functiof 6 3 8 0.7850.031 0.71
of t for the lattice 24x 36 atB of 6.17 using the smeared operator 5 6 4 8 0.7210.066 0.57

with n of 7, € of 1.0 ands of 8.

114501-5



A. VACCARINO AND D. WEINGARTEN PHYSICAL REVIEW D60 114501

TABLE IV. Fitted scalar glueball mass in lattice units for vari- TABLE VI. Fitted scalar glueball mass in lattice units for vari-
ous choices of, s and fitting range for the lattice $&24 at B ous choices of, s and fitting range for the lattice $&24 at 3
=5.93. =5.93.

n s tmin tmax Mass X%/DOF n s tmin tmax Mass X%/ DOF
6 4 1 8 0.815-0.006 1.82 8 4 1 8 0.78%0.007 0.97
6 4 2 8 0.785:0.012 0.96 8 4 2 8 0.765:0.013 0.49
6 4 3 8 0.8130.027 0.90 8 4 3 8 0.8030.031 0.18
6 4 4 8 0.806:0.064 1.20 8 4 4 8 0.754-0.063 0.04
6 5 1 8 0.806:0.006 0.70 8 5 1 8 0.784-0.006 0.63
6 5 2 8 0.7850.012 0.50 8 5 2 8 0.768&0.012 0.40
6 5 3 8 0.79%0.027 0.55 8 5 3 8 0.79%0.029 0.31
6 5 4 8 0.755:0.054 0.53 8 5 4 8 0.7480.055 0.23
6 6 1 8 0.81%0.006 0.96 8 6 1 8 0.7910.006 0.77
6 6 2 8 0.7880.013 0.51 8 6 2 8 0.7750.013 0.57
6 6 3 8 0.78%-0.028 0.64 8 6 3 8 0.79%0.028 0.54
6 6 4 8 0.722-0.060 0.39 8 6 4 8 0.716:0.057 0.04

fit's correlatedy?. The upper limit of each fitting interval approach, with increasing of effective masses to the final

tmax We fixed at the largedt for which we had statistically mass values.

significant propagator data. The lower limit of the fitting in-  For the lattice 18x24 with 8 of 5.93, Tables IlI-VI

terval t,;, was then progressively increased from 1t{q,  show the results of our fits for all the combination rofs,

—2. Ast,;, was increased, the fitted mass and the fifs  t.,;, andt, ., which we examined. The best choice tgf;,

per degree of freedom both generally decreased and the standt,,,, turned out to be 2 and 8, respectively, for miand

tistical error bar increased. For eaclands, the final choice s. Tables VII-XI show the fitted masses found with the best

of t,,in we took to be the smallest value for which the corre-choice oft,,;, andt,,,, for all the lattice sizesg3, n ands for

sponding mass was within the error bars of all the fits withwhich our effective mass data showed a plateau at large

the samen ands and largett,,;,. Our intent in this procedure As expected, for each lattice size adthe fitted masses

was to extract a mass from the largest time interval for whichin Tables VII-XI vary withn ands by an amount generally

the propagator for each combinationmfinds was consis- less than the statistical uncertainty in each mass. There is

tent with the asymptotic form of Ed4.3). also a weak tendency for masses to fall initially with increas-
The solid horizontal lines in Figs. 2-5 and Figs. 6—13ing n ands, as the corresponding operator’s relative coupling

show the best fitted mass in each case and extend over tie the lightest glueball increases. Then, in some cases, when

interval oft on which these fits were made. The dashed linesy and s become too large the coupling to the lightest state

in these figures extend the solid lines to smaller show the  decreases, the fitted masses show some tendency to rise

again. To reduce this small remaining statistical uncertainty

TABLE V. Fitted scalar glueball mass in lattice units for various

choices ofn, s and fitting range for the lattice 624 at g TABLE VII. Fitted scalar glueball mass in lattice units using the
=5.93. bestt,,;, and t,,., for various choices of and s for the lattice

16°x 24 atB of 5.70.
n s tin tmax Mass x?/DOF

2

7 4 1 8 0.803:0.006 1.41 n L Mass X/DOF
7 4 2 8 0.7770.012 0.70 4 1 1 5 0.9710.019 0.23
7 4 3 8 0.8090.026 0.48 4 2 1 5 0.9590.017 0.35
7 4 4 8 0.782-0.059 0.58 4 3 1 5 0.952-0.016 0.39
7 5 1 8 0.792-0.006 0.61 4 4 L 5 0.984-0.023 0.26

5 1 1 5 0.964-0.018 0.26
7 5 2 8 0.77%0.012 0.45

5 2 1 5 0.956:0.017 0.29
7 5 3 8 0.7980.027 0.42
7 5 4 8 0.746-0.052 0.25 5 3 1 5 0.9530.017 0.23

i i i 5 4 1 5 0.9830.020 0.15

7 6 1 8 0.80&:0.006 0.75 6 1 1 5 0.958 0.017 0.27
7 6 2 8 0.783%0.013 0.47 6 2 1 5 0.954-0.017 0.23
7 6 3 8 0.7930.027 0.55 6 3 1 5 0.956-0.017 0.13
7 6 4 8 0.723%0.056 0.20 6 4 1 5 0.985-0.020 0.09
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TABLE VIII. Fitted scalar glueball mass in lattice units using TABLE X. Fitted scalar glueball mass in lattice units using the
the best ,;, andt,,,, for various choices oh ands for the lattice  bestt,,;, and t,., for various choices oh and s for the lattice

12°x 24 atB of 5.93. 243X 36 at g of 6.17.

n s tmin tmax Mass X%/DOF n s tmin tmax Mass X2/DOF
5 4 3 7 0.752:0.021 1.30 7 7 4 9 0.57@0.018 0.22
5 5 3 7 0.737-0.020 1.01 7 8 4 9 0.5610.020 0.14
5 6 3 7 0.7470.022 0.46 7 9 4 9 0.554-0.024 0.30
6 4 3 7 0.754-0.020 0.97 7 10 4 9 0.546:0.030 0.38
6 5 3 7 0.742-0.020 0.68 8 7 4 9 0.5620.019 0.18
6 6 2 7 0.7720.010 0.51 8 8 4 9 0.5510.018 0.17
6 6 3 7 0.751*0.022 0.29 8 9 4 9 0.545-0.021 0.10
7 4 3 7 0.757-0.020 0.72 8 10 4 9 0.5340.027 0.17
7 5 3 7 0.747-0.020 0.42

7 6 2 7 0.772:0.010 0.28 . . . . .

7 6 3 7 0.756-0.021 016 tions of their statistical uncertainty as additional changes are

made in the set of ands. The final mass values are col-
lected in Table XVII.

o ) At several points in Tables XII-XVI, combined fits in-
and systematic bias, our final value of mass for each Iattlcgmding several nearby values ofinds yield largey? while
size andB was obtained by an additional fit of a single separate fits to smaller subsetsroéinds give nearly equal
common mass to a set of masses from a range of seneraly55ses and acceptabj@. This phenomenon, we have
ands. 'I;he common mass was chosen to minimize the correfynd, does not indicate a problem with our data or our fits
lated x“ of the fit of the common mass to the collection of 5 arises instead because propagators with nearby values of
best mass values was determined by the bootstrap methaglightly different masses. A similar problem would arise in
The set ofn and s used in each final fit was chosen by ying to fit a single valuex to, say, a Gaussian random
examining a decreasing sequence of sets, starting with all \,5riaple X with dispersion 1, and a shifted copX
ands, and progressively eliminating the smallest and largest, g 90oo1. For any choice of the fit's y?2 is infinite. None-

) 5 . . . _
nands until a x* per degree of freedom below 2.0 was thg|ess, for a Monte Carlo ensemble of 1000alues, taking
obtained. The final fit was taken from the largest set of chany either X) = 1/\1000 or(X)+0.000% 1/y/1000 is a re-

. . 2 .
nels y|2eld|ng ax” below 2.0. If several sets of equal size |izpe estimate of the mean of with systematic error much
gave x~ per degree of freedom below 2.0, we chose amongmaller than the statistical error.

these the set with smalle,s?_ per d_egree of freedom. Tables  ap giternative way to extract a single mass from glueball
XII-XVI show these combined fits and the_set ofand s propagators for a range of, € and s uses the matrix of
chosen for the final mass value for each lattice gndn all propagators

of these tables, it is clear that once enough of the largest and

smallestn ands are eliminated to give an acceptatj@per — ME™S(t; —t,) = (SK (1) S"S(t,)) — (S (11) }(S™(t,)).
degree of freedom, the fitted values vary only by small frac- (4.4

For larget and lattice time direction period, M£<S(t) has

TABLE IX. Fitted scalar glueball mass in lattice units using the the asymptotic form

bestt,, andt,a, for various choices oh and s for the lattice

16°x 24 at of 5.93. TABLE XI. Fitted scalar glueball mass in lattice units using the
bestt,,i, andt,, . for various choices of ands for the lattice 30

n s tin tmax Mass x*/DOF X 32X 40 at 83 of 6.40.

s 5 3 8 omroos  oss " S Wn e Mass  UDOF

5 6 2 8 0.7930.014 0.58 6 7 4 12 0.4610.013 0.50

6 4 2 8 0.785:-0.012 0.96 6 8 4 12 0.446:0.012 0.57

6 5 2 8 0.785:-0.012 0.50 6 9 3 12 0.448 0.008 0.85

6 6 2 8 0.7880.013 0.51 6 10 3 12 0.43%0.009 0.57

7 4 2 8 0.777-0.012 0.70 6 11 3 12 0.43%0.010 0.29

7 5 2 8 0.77%0.012 0.45 8 7 4 12 0.456:0.013 0.37

7 6 2 8 0.783%0.013 0.47 8 8 4 12 0.44%0.012 0.54

8 4 2 8 0.765:0.013 0.49 8 9 4 12 0.4340.011 0.53

8 5 2 8 0.7680.012 0.40 8 10 3 12 0.433:0.008 0.61

8 6 2 8 0.775:0.013 0.57 8 11 4 12 0.41%0.013 0.63
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TABLE XIl. Scalar glueball mass in lattice units found by com-
bined fits to sets ofi ands for the lattice 18X 24 atg of 5.70. The
final set chosen is indicated by an arrow.

PHYSICAL REVIEW D60 114501

TABLE XIV. Scalar glueball mass in lattice units found by
combined fits to sets af ands for the lattice 18 24 at of 5.93.
The final set chosen is indicated by an arrow.

n s Mass x?/DOF n s Mass x?/DOF
45,6 1,2,3,4 0.9780.013 4.85 5,6,7,8 4,5,6 0.78%10.011 1.90 «—
45,6 1,2,3 0.9730.014 3.70 5,6,7,8 4,5 0.7720.011 2.77
4,5 1,2,3,4 0.9750.014 5.39 5,6,7,8 5,6 0.7760.012 1.99
5,6 1,2,3,4 0.9740.014 6.46 5,6,7 45,6 0.77920.011 2.14
4 1,2,3,4 0.9650.014 8.95 5,6,7 4,5 0.7780.012 3.24
5 1,2,3,4 0.964 0.015 9.90 5,6,7 5,6 0.776:0.012 2.29
6 1,2,3,4 0.966:0.015 10.20 6,7,8 45,6 0.7820.011 2.32
6,7,8 4.5 0.78€:0.011 3.50
456 23 0.9730.014 507 6,7,8 5,6 0.77%0.012 2.00
5,6 2,3,4 0.9720.014 7.25 6,7 4,5,6 0.7780.011 3.01
5 2,34 0.964-0.015 14.80 7,8 4,56 0.77&0.012 1.68
6 45,6 0.786:0.012 0.21
4,5 2,3 0.966:0.014 3.46 7 456 0.779 0.012 0.32
5,6 2,3 0.9690.014 6.04 8 456 0.77%0.012 0.86
4,5 2 0.9570.015 1.70
4,5 3 0.9530.015 0.20
56 3 0.9520.015 1.67 entries. Our underlying data set is too small to provide reli-
5.6 2 0.955 0.015 0.35 able entries for such a large correlation matrix. As a conse-
4 2.3 0.955% 0.014 1.36 quence the value ah determined this way will have a sta-
5 2.3 0.954 0.015 0.22 tistical error which cannot be estimated reliably. In practice,
6 23 0.955 0.015 0.11 we found that the value ah produced by this method was

MEMS(t) — ZKOM S exp( —mt) +exd —m(L—1)]}
(4.5

not stable as we varied the sets af,¢,r) and (,e,s) and
the range of used in the fit.

V. TENSOR PROPAGATORS AND MASSES

where m is the mass of the lightest scalar glueball and A propagator for tensors is defined to be

Zkomes is a matrix independent df In principle, M <S(t)

can be extracted from our data and fitted to E45) to
produce a value fom. To find the besim and ZX°"s py
minimizing the fit's y?, however, requires the statistical cor-
relation matrix among the fittet 5" <(t). If we fit, for
example, to three choices ofk,@,r), three choices of
(n,e,s) and four values of, the correlation matrix has 1296

TABLE XIIl. Scalar glueball mass in lattice units found by
combined fits to sets af ands for the lattice 13x 24 at of 5.93.
The final set chosen is indicated by an arrow.

n s Mass x*/DOF
5,6,7 45,6 0.7520.020 2.35
5,6,7 4.5 0.756:0.019 1.75
5,6,7 5,6 0.74%0.020 0.98
5,6 45,6 0.7520.019 3.72
6,7 45,6 0.75%x0.020 3.67
5,6 4,5 0.7490.019 2.88
5,6 5,6 0.745:0.020 141
6,7 4,5 0.747%0.020 2.52
6,7 5,6 0.746:0.020 1.48
6 5,6 0.742-0.020 1.19
7 5,6 0.7480.020 1.24

P$65<t1—t2>=2i [(TI(t) TS(t2)) — (TPS(ty))

X(TP(t2))], (5.9

TABLE XV. Scalar glueball mass in lattice units found by com-
bined fits to sets ofi ands for the lattice 24X 36 atB of 6.17. The
final set chosen is indicated by an arrow.

n s Mass X?/DOF
7,8 7,8,9,10 0.5590.017 1.26 «—
7,8 7,8,9 0.5590.017 1.70
7,8 8,9,10 0.5530.017 1.46
7 7,8,9,10 0.5640.018 0.58
7 7,8,9 0.566:0.018 0.60
7 8,9,10 0.55%0.017 0.40
8 7,8,9,10 0.5550.017 0.63
8 7,8,9 0.556:0.017 0.91
8 8,9,10 0.5490.018 0.30
7,8 7,8 0.5590.017 2.79
7 7,8 0.566-0.018 1.18
8 7,8 0.556-0.017 1.80
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TABLE XVI. Scalar glueball mass in lattice units found by
combined fits to sets af ands for the lattice 3 32°x 40 atg of
6.40. The final set chosen is indicated by an arrow.

TABLE XVIII. Fitted tensor glueball mass in lattice units using
the bestt,;, andt,,,, for various choices oh ands for the lattice
122x 24 at3=5.93.

n s Mass X2/DOF n s tmin tmax Mass X%/ DOF
6,8 7,8,9,10,11 0.44160.0074 3.72 5 4 2 5 1.266:0.036 1.15
6,8 8,9,10,11 0.44160.0074 4.13 5 5 2 5 1.226:0.029 0.70
6,8 9,10,11 0.44130.0076 5.37 5 6 2 5 1.224-0.031 0.41
6 9,10,11 0.447%0.0082 9.90 6 4 2 5 1.25@¢0.034 1.00
8 9,10,11 0.43630.0078 2.55 6 5 2 5 1.2180.029 0.66
6,8 10,11 0.43210.0077 1.14 — 6 6 2 5 1.2130.029 0.42
6,8 10 0.4327%0.0076 0.37 7 4 2 5 1.2450.032 0.59
6,8 11 0.428%* 0.0096 211 7 5 2 5 1.209%0.029 0.45
6 10,11 0.4366:0.0087 0.91 7 6 2 5 1.206-0.028 0.31
8 10,11 0.4326:0.0077 2.53

for the four lattices withg of 5.93 and larger, for typical
where T, and T, are the tensor glueball operators of Eq. chojces of operator parameters. The solid line in each figure
(2.4), andP7°(t; - t,) is then averaged over reflections and ndicates the mass obtained from a fit over the time interval
time direction displacements of andt, to reduce statistical \hich the line spans. The dashed line in each figures extend
noise. the solid line to smallet to show the approach of effective

Tensor propagators were found for gauge configurationasses to the fitted value.

ensembles and operator parameters listed in Tables | and Il. Tgples XXII—=XXV list tensor masses found by combin-
A tensor glueball mass was extracted from propagators byg, as discussed in Sec. IV, the masses fitted to various sets
fitting the data to the tensor version of E@.3). We ob-  of operators and choices of time interval. Table XXII corre-
tained a satisfactory tensor glueball mass signal only for thgponds to the lattices 3% 24 atg of 5.93 with fits using the
lattices with g of 5.93, 6.17 and 6.40. We did not find an single time interval given in Table XXII. Table XXIV cor-
acceptable tensor signal gtof 5.70. Overall, the statistical responds to the lattice 34 36 atB of 6.17 with fits using
errors in the tensor data are larger than those in the scal@fie single time interval in Table XX. In Tables XXII and
data of Sec. IV and, as a result, the fitting process encountesgx|y, all combined fits with acceptablg? per degree of
complications not present in the scalar fits. freedom give masses consistent with each other to within

Tables XVIII-XXI list tensor masses for each gauge en-statistical uncertainties. In each case, the mass corresponding
semble withg of 5.93 and above, for each set of operator

parameters in Table Il, fitted on one or, in some cases, two TABLE XIX. Fitted t lueball in latt its f
choices of time interval. For all fits the high end of the fitting _ . v FITed tensor glueball mass in fathce uniis for
. . various choices of, s, ty;, andtyay for the lattice 18x 24 at 3
rangetay IS chosen to be the largest value at which a sta_ ¢ g,
tistically significant effective mass is found. The low end of __~"" "

the fitting ran.get[mn is then pr.og.ressively increased.. The s tin o Mass ¥2/DOF
smallestt,,;, yielding a mass within one standard deviation

of the masses for all larger,;, is selected as the lower 5 4 1 5 1.32%0.013 0.51
bound for an initial choice of the fitting range. For the lattice 5 4 2 5 1.284-0.043 0.34
16°x 24 atB of 5.93 and for the lattice 3X30x40 and3 5 5 1 5 1.2850.011 0.72
of 6.40, however, we found that for almost all choices ofs 5 2 5 1.276:0.039 1.02
operator parameters fg,;, one unit larger than the initial 5 6 1 5 1.284-0.011 1.54
choice yielded a noticeably lower mass. These second values 6 2 5 1.252-0.042 2.04
of t,hin and the corresponding masses are also listed in Tables 4 1 5 1.302-0.012 0.53
XIX and XXI. 6 4 2 5 1.282-0.043 0.70
Effective mass plots for tensors are shown in Figs. 14—17g 5 1 5 1.26720.011 0.83
. 6 5 2 5 1.264-0.037 1.24
TABLE XVII. Final scalar glueball mass values. 6 6 1 5 1.264 0.011 1.54
. 6 6 2 5 1.2430.037 2.18
A Lattice Mass 7 4 1 5 1.282-0.012 0.79
5.70 16x 24 0.955-0.015 7 4 2 5 1.2780.042 1.19
5.93 12x 24 0.7470.020 7 5 1 5 1.2520.011 0.95
16°x 24 0.7810.011 7 5 2 5 1.255-0.036 1.42
6.17 24x 36 0.559-0.017 7 6 1 5 1.2490.011 1.64
6.40 30x 322X 40 0.43210.0077 7 6 2 5 1.23%0.035 2.37
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TABLE XX. Fitted tensor glueball mass in lattice units using
the best ,;, andt,,a, for various choices of ands for the lattice
243X 36 at3=6.17.

n s tmin tmax Mass x%/DOF
7 7 3 7 0.8610.029 0.75
7 8 3 7 0.83@0.027 0.24
7 9 3 7 0.82@:0.028 0.07
7 10 3 7 0.8130.034 0.53
8 7 2 7 0.87&0.010 0.46
8 8 3 7 0.8190.026 0.49
8 9 2 7 0.83%0.009 0.27
8 10 3 7 0.8150.031 0.08

to the largest set with acceptah}é, marked with an arrow,
is chosen as the final value.

Table XXIII for the lattice 16x24 atB of 5.93 shows
combined fits using both choices gf;, of Table XIX. The
combined fits using the smalléy,;, have unacceptably high
x? per degree of freedom. For the fits using the larggr,

PHYSICAL REVIEW D60 114501
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FIG. 14. Tensor mass fit and tensor effective mass as a function
of t for the lattice 18X 24 atB of 5.93 using the smeared operator
with n of 6, e of 1.0 ands of 6.

with the smallert,,;,, however, and all have significantly
bettery? than the fits with the smalldg,;,. The mass found
from the largest set of operators for the larggr, is there-
fore chosen as the final result.

the x? is acceptable, and the fitted masses are all consistent The collection of final tensor masses is listed in Table
with each other within statistical uncertainties. The mass folXXVI.

the largest set of operators with the lardgr, is chosen as
the final number. Table XXV for the lattice 3% 30X 40 at
B of 6.40 also gives combined fits for both,;, in Table
XXI. Most fits for botht,,;, have acceptablg? per degree of
freedom. The masses obtained from the latggrall lie one

VI. VOLUME DEPENDENCE

We now consider an estimate of the difference between
the scalar and tensor glueball masses in Table XVII and

standard deviation or a bit more below the masses foundXV! for finite lattice periodL and the infinite volume limits

TABLE XXI. Fitted tensor glueball mass in lattice units for
various choices of, s, ty,;, andt,., for the lattice 32x30x 40 at
B=6.4.

n s tmin tmax Mass x*/DOF
6 6 4 9 0.68@0.043 0.71
6 6 5 9 0.642-0.073 0.84
6 7 4 9 0.660:0.034 0.65
6 7 5 9 0.6430.063 0.84
6 8 4 9 0.652-0.029 0.33
6 8 5 9 0.638:-0.059 0.41
6 9 3 9 0.688:0.016 0.58
6 9 4 9 0.657-0.030 0.38
6 10 3 9 0.675:0.016 0.56
6 10 4 9 0.676:0.032 0.69
6 11 3 9 0.666:0.017 0.31
6 11 4 9 0.665-0.033 0.38
8 6 4 9 0.658-0.038 0.46
8 6 5 9 0.6510.068 0.60
8 7 4 9 0.636:-0.030 0.50
8 8 4 9 0.634-0.027 0.19
8 9 4 9 0.637-0.026 0.25
8 10 3 9 0.666-0.014 0.35
8 10 4 9 0.6530.027 0.42
8 11 3 9 0.646-0.015 0.15
8 11 4 9 0.6530.026 0.17

of these quantities.

For large values ol, scalarmy(L) and tensom,(L)
glueball masses deviate from their infinite volume limits,
andm,, respectively, by 18]

exp(— /3mgL/2)
-0
mpL

my(L)=my 1-gq exp(_m"””

mpL

(6.9

wheresis 0 or 2. In Ref[19] for B8 near 6.0, data fomg(L)
is shown to fit the two leading terms in E@.1) reasonably
well at 4 values ot ranging from 6y to 12/my. This result

1.5 | 1 ] !
*
..... .~--%
T
4 ]
10| 1 -
E
0.5 -
0.0 ] ] ] |

0.0 2.0

t

4.0 6.0

FIG. 15. Tensor mass fit and tensor effective mass as a function
of t for the lattice 18X 24 at8 of 5.93 using the smeared operator
with n of 6, e of 1.0 ands of 5.
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TABLE XXII. Tensor glueball mass in lattice units found by
combined fits to sets af ands for the lattice 13x 24 at of 5.93.
The final set chosen is indicated by an arrow.

n s Mass x?/DOF
5,6,7 45,6 1.1880.025 2.13 «—
5,6,7 4.5 1.20Z0.028 1.73
5,6,7 5,6 1.1950.025 1.33
5,6 4.5 1.206:0.029 1.97
5,6 5,6 1.1990.026 1.29
6,7 4.5 1.205:0.029 1.90
6,7 5,6 1.20%#0.027 0.88

FIG. 16. Tensor mass fit and tensor effective mass as a function
of t for the lattice 24X 36 atB of 6.17 using the smeared operator -

with n of 7, € of 1.0 ands of 9.
is plausible since fok ranging from 6, to 12/m,, the third

ing from O(0.4) toO(0.2). For our data g8 of 5.93, Table
XVII shows thatmg is above 0.75 so that of 12 and 16 are
larger than 8hy and 12, respectively. Thus we believe
that for the data aB of 5.93, the leading two terms of Eq.
(6.1) likely provide a fairly reliable estimate of tHe depen-
dence ofmg(L) andmy(L).

Fitting the 3=5.93 data in Table XVII to the two leading
terms of Eq.(6.1) yields my of 0.783+0.012 andg, of
1500+ 1100. In addition a bootstrap calculation yields with
95% probability,

Mo —Mo(16)

=<0.0037. (6.2

0

At B=5.93, Table XXVI combined with the leading two
terms of Eq.(6.1) gives m, of 1.236+0.037 andg, is
1300+ 1200. A bootstrap calculation yields, with 95% prob-
ability,

m,—m,(16
2—2()s0.0048 (6.3

2

15 .

1.0

0.5

0.0 l I l l l l
00 20 40 60 80 100

Overall, it appears to us safe to conclude thas aif 5.93
the difference between scalar and tensor massels &drl6
and their infinite volume limits are of the order of 0.5% or
term in Eq.(6.1) is smaller than the second by a factor rang-l€ss. In Sec. VIl we show that the scalar and tensor glueball
masses in Tables XVII and XXVI witl8 of 5.93 and greater
andmgL fixed at about 13 are not far from asymptotic scal-
ing. We therefore expect the fractional volume dependent
errors found in these masses to be about the same as the
errors atB of 5.93. Thus the finite volume errors in all
masses in Tables XVII and XXVI witl8 of 5.93 and greater
andmgL of about 13 should be 0.5% or less.

VII. CONTINUUM LIMIT

The nonzero lattice spacing scalar and tensor glueball
masses in lattice units given in Tables XVII and XXVI, re-
spectively, we now convert to physical units and extrapolate

to zero lattice spacing.

To convert masses in lattice units to physical units, we
divide by a known mass measured in lattice units. One natu-

ral choice for this conversion factor is the rho m

a)a.

Values ofm,(a)a for three of the fouis in Tables XVII and
XXVI are given in Ref[7]. For the largesB in Tables XVII
and XXVI, Ref.[7] does not reponin,(a)a. For the threes
considered in Ref.7], however, the rati@A%a]/[mp(a)a]
is found to be independent ¢f to within statistical errors.

TABLE XXIIl. Tensor glueball mass in lattice units found by
combined fits to sets af ands for the lattice 18x 24 at of 5.93.
The final set chosen is indicated by an arrow.

FIG. 17. Tensor mass fit and tensor effective mass as a functiof,7

of t for the lattice 32x30x40 at 8 of 6.40 using the smeared
operator withn of 8, € of 1.0 ands of 10.

n s tnin  tmax Mass x%/DOF
5,6,7 4,5 1 5 1.2560.011 ‘31.87
5,6 4,5 1 5 1.266:0.011 44 .45
5,6,7 4,5,6 2 5 1.2340.034 0.60 «—
5,6,7 4,5 2 5 1.2520.036 0.48
5,6,7 5,6 2 5 1.2360.036 0.86
5,6 4,5 2 5 1.254 0.036 0.59
5,6 5,6 2 5 1.23%0.035 1.01
4,5 2 5 1.256:0.037 0.60
6,7 5,6 2 5 1.2320.034 1.13
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TABLE XXIV. Tensor glueball mass in lattice units found by TABLE XXVI. Final tensor glueball mass values.

combined fits to sets af ands for the lattice 24x 36 at3=6.17

The final set chosen is indicated by an arrow. B Lattice Mass

n s Mass +2/DOF 5.93 12x24 1.188-0.025
163x 24 1.234-0.034

7,8 7,8,9,10 0.8560.010 2.84 6.17 28% 36 0.838-0.012

7.8 7,89 0.856:0.010 3.83 6.40 30< 32X 40 0.631+0.022

7.8 8,9,10 0.8380.012 1.24 «—

7.8 7,8 0.865:0.011 4.19

7,8 8,9 0.8380.012 1.72 a linearO(a). This in turn would contradict our claim that

7.8 9,10 0.846:0.012 0.21 extrapolation using eithen,(a)a or A%a will give nearly

equal results. An answer to this objection is that the approxi-
o . ) ) mate constancy d]‘AlM%a]/[mp(a)a] implies that theO(a)
HereAlM—%als obtained by the 2-loop Callan-Symanzik equa-jr elevant contribution tam,(a)a is quite small. The con-
tion from ay g found Er)om its mean-field improvef®0] re- stancy of[Af\%a]/[mp(a)a] as a function ofa or equiva-
lation to 8. Since[A(M—Sa]/[mp(a)a] is constant within er-  |gnty a5 a function of3 cannot be explained by a cancella-
rors, converting to physical units usingvisa then  tion of anO(a) term in AoLa with anO(a) term inm,(a)a
extrapolating to zero lattice spacing should give resultg;j, e A Oy js defined to fulfill the true continuum two-loop
nearly _equwalent fo those found u3|_ngp(a)a. _Tab"? Callan—g;namzik equation and itself has @©da) correc-
XXVII lists, for each B, the corresponding mean-field im- . . (0)
tions. The leading correction to the dependence ok, &

(0)
proved aysand A sa. _ L ), .
The B dependence of valence approximation glueballS Py @ multiplicative factor of 1+ 0(B7)]. If Aygaris re-

masses is determined entirely by the pure gauge part of thlaced bym,(a)a, any significanta dependence which ap-
QCD action. The leading irrelevant operator in the purePears will come from th@(a?) term inmg(a)a. Thus Eq.
gauge plaquette action has lattice spacing dependence 0f.1) even withm,(a)a substituted forA%a will remain
O(a?). Thus for scalar and tensor glueball massgsand  correct.

m,, respectively, we extrapolate to the continuum limit by The scalar data of Tables XVII combined Wiﬂ‘f\%a of

Table XXVII fitted to Eg. (7.1 at the three largesB is

ms(a)a Mg ) 2 shown in Fig. 18. The predicted continuum limif /A °Lis
(0) = ) +C[AMSq] y (71) - . 2 MS
Aysd Ays 7.016+0.167. The fit in Fig. 18 has g2 of 0.6 over a range

in which the terrr][/\t%a]2 varies by more than a factor of

wheresis 0 or 2. 3.4. The variation of[ms(a)a]/[A%a] over the fitting

If A%ain Eq.(7.1) were replaced byn,(a)a, then since range, however, is only slight. Each of the three nonzero
the leading irrelevant operator in the quark action has latticéattice spacing values o[fms(a)a]/[A%a] is within 1.6
spacing dependence Of(a) it might be argued that the qua- standard deviations of the extrapolated zero lattice spacing
draticO(a?) term in the equation’s right hand side should beresult. Thus we believe the extrapolation to zero lattice spac-

ing is quite reliable and would expect the predicted con-

TABLE XXV. Tensor glueball mass in lattice units found by tinuum mass to be not very different from what would be
combined fits to sets afi ands for the lattice 32x30x40 atB  obtained by any other reasonable, smooth extrapolation of
=6.4 The final set chosen is indicated by an arrow. the data.

The tensor data of Tables XXVI combined wi O)S of

2
n S Mass _tmin fmax XTDOF  Table XXVII fitted to Eq.(7.1) at the three largesg. the
6,8 6,7,89,10,11 34 9 0.659.012 1.81 only B for which tensor masses were found, is shown in Fig.
68 678910 34 9 06390014 204 19. The predicted continuum limin,/ A°L-s 9.65+0.36.
6.8 7,8,9,10,11 3,4 9 0.633.012 2.06 The fit in Fig. 19 has &? of 0.8, while, as before, the term
6,8 6,7,8,9 3.4 9 0.6760.015 1.52
6,8 7,8,9,10 3,4 9 0.6590.013 2.41 TABLE XXVII. For each B, mean-field improvedeys and
6,8 8,9,10,11 34 9 0.6550.012 2.22 A%a obtained from the 2-loop Callan-Synamzik equation.
6,8 6,7,8,9,10,11 4,5 9 0.6310.022 0.56 — - (0)
6,8 6,7,8,9,10 4,5 9 0.6350.024 0.65 i s Kus?
6,8 7,8,9,10,11 4,5 9 0.6320.021 0.60 5.700 0.14557 0.16612
6,8 6,7,8,9 4.5 9 0.6270.024 0.56 5.930 0.13180 0.11444
6,8 7,8,9,10 4.5 9 0.6350.025 0.73 6.170 0.12183 0.08265
6,8 8,9,10,11 4,5 9 0.6300.022 0.65 6.400 0.11407 0.06177
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97 T TABLE XXVIII. Continuum limit scalar and tensor glueball
masses and their conversion to MeV.
sl _
mo / AL 7.016+0.167
g7t W . mzlA% 9.65+0.36
= m, /mg 1.375+0.066
6 o ~Cm, 0.305+0.008
m, 770 MeV
5 7 A0 234.956.2 MeV
| | | | My 1648+ 58 MeV
0.00 0.01 0.02 0.03 m, 2267+ 104 MeV

(A% a)?

FIG. 18. The scalar glueball mass in unitS/b%,%extrapolated

to zero lattice spacing linearly i (’\2212. VIlIl. COMPARISON WITH OTHER RESULTS

(©0) <2 . An independent calculation of the infinite volume, con-
[ Aysal®in Eq.(7.1) varies by more than a factor of 3.4 over tinyum limit of the valence approximation to several glueball
the fitting range. masses is reported in R¢fL0]. A second, more recent, cal-

To obtain scalar and tensor glueball masses in units ofulation appears in Reff11]. A comparison of Ref.10] with
MeV, we combine the continuum Iimil\(Mi)sfmp of 0.305 the original analysi$1] of our results appears in RdR].
+0.008 [7] with m, of 770 MeV to giveA%of 2349 The calculation of Ref[l_O] uses the same plaquette ac-
+6.2 MeV. The scalar glueball mass becomes 1688 tion we use but takes a different set of glueball operators.

continuum limit results are summarized in Table XXVIIl. 3000 configurations. For the scalar and tensor masses Ref.

For A(ML)S,me we take the value given in Ref7] for a [;0] reports 155& 50 MeV and 227&_100 MeV, respec-
lattice with period of about 2.4 Fermi. For the rho mass'uvely. The predicted zero lattice spacing masses are not ac-
obtained at3 of 5.7 from a combination of propagators for tually four_1d by extrapolation to_ zero lattice spacing, but are
rho operators with smearing parameters 0, 1 and 2, the z_gbtalned_ mst_ead from calculations ,atof_ 6.40 of_ glueball
Fermi result differs from the result for period 3.6 Fermi by amasses in units of the square root of string tensian, then
bit over one standard deviation. This difference appears to beonverted to MeV using an assumed of 440 MeV with
largely a consequence of a slightly poorer separtion of th&€ero uncertainty. The uncertainties given in the masses are
rho component of the propagator from excited state Compoentil'e|y the uncertainties in thﬁ of 6.40 calculations of
nents in the 2.4 Fermi rho mass calculation than in the 3.6nasses in units of/o and are thus missing at least a contri-
Fermi calculation21]. For the rho operator with smearing bution from the uncertainty in/o. A graph shown in Ref.
parameter 4, which couples more weakly to excited state$10] suggests that the 8 of 6.40 value of
the difference ap of 5.7 between 2.4 Fermi and 3.6 Fermi [my(a)a]/[ Vo(a)a] is about 50 MeV below the data’s zero
predictions is much less than one standard deviation. Thusattice spacing limit. An additional error of 50 MeV in the
overall it appears to us reasonable to take the 2.4 Ferndcalar mass is therefore proposed in Réf] as a conse-
calculations as the infinite volume limit, within statistical quence of the absence of extrapolation to zero lattice spac-
errors. The continuum limit values oi%fmp for the the ing. Since[my(a)a]/[ Vo(a)a] of Ref.[10] is clearly rising
data combining smearings 0, 1 and 2 and for the data froras lattice spacing falls, it does not appear to us that a sym-

smearing 4 are nearly identical. metric error of+50 MeV an accurate representation of the
effect of the absence of extrapolation. If the statistical error
14 — : - , , and extrapolation error in the scalar mass are, nonetheless,
taken at face value and combined the result is a prediction of
12l ] 1550t 71 MeV. No estimate is given for the extrapolation

error in the tensor mass, which is found to be only weakly

8I% dependent on lattice spacing if measured in units/ef A
= 101 1 scalar mass of 155071 MeV is a bit over one standard
E deviations below the result 164%8 MeV in Table XXVIII,
sl ] while the tensor mass of 227000 MeV is in close agree-

ment with our value of 226% 104 MeV.
If the continuum limit of the Ref[10] data is found by

0.00 0.005 001 0.015 0.02 extrapolation to zero lattice spacing p’no(a)a]/[A%a],
(8O of following Sec. VII, the result fon’nolA%is 6.67+0.33.
FIG. 19. The tensor glueball mass in unitsm‘ht%extrapolated Converted to MeV using\%of 234.9+6.2 MeV, m, be-

to zero lattice spacing linearly o412, comes 156788 MeV. This value is less than a standard
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deviation below the prediction 164868 MeV in Table +0.04, in good agreement with the value 1.3@066 in

XXVIIL. Table XXVIII. Thus the difference between Table XXVIII
The calculation of Refl11] uses an improved action with and Ref[11] is almost entirely a discrepancy in overall mass

time direction lattice spacing chosen smaller than the spacecale.

direction. The gauge field ensembles range in size from 4000 Combining our extrapolation of 6.670.33 for the data in

to 10000 configurations. Masses measured in units of thRef. [10] with 7.016+0.167 in Table XXVIII gives 6.95

parameterra1 [22] are extrapolated to zero lattice spacing, +0.15 for my/A ©)  thus 163155 MeV. Combining

; 1 MS?
then converted to MeV using a value of * found by ex- 631, 55 Mev with 1730-94 MeV of Ref.[L1] gives a
trapolation ofr, */m,, to zero lattice spacing. As a result of

ki t relativelv | | f latti . world average valence approximation scalar mass of 1656
working at relatively 1argeé vaiues of 1atlicé Spacing, Some., 42\ o\, This number is consistent with the unmixed sca-

ambiguity is encountered in matching the scalar mass’s Ia£ar mass of 1622 29 MeV found in Ref[5] taking the ob-

tice spacing dependence to the small lattice spacin .
asymptotic behavior expected for the improved action. Tak= erved statefy(1710), fo(1500) andf,(1400) as the mixed

ing this uncertainty into account, the scalar mass is predictelfesions of the scalar glueball and the two isoscalar spin zero
to be 1736-94 MeV. The tensor mass, for which the ex- quarkonium states, respectively. The sté€1710) in this
trapolation to zero lattice spacing encounters no problem, i§alculation is assigned a glueball component of ZB& %.
predicted to be 2408122 MeV. Both numbers are a bit Combining 227G-100 MeV, 2267-104 MeV and 2400
under one standard deviation above the predictions in Tabl& 122 MeV gives a world average valence approximation
XXVIIl. For the ratio m,/m, Ref. [11] predicts 1.39 tensor mass of 230262 MeV.
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