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Long-range forces of QCD
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We consider the scattering of two color dipol@gsg., heavy quarkonium stajest low energy—a QCD
analogue of van der Waals interaction. Even though the couplings of the dipoles to the gluon field can be
described in perturbation theory, which leads to a potential proportionaﬂﬁe 1)/R’, at large distanceR
the interaction becomes totally nonperturbative. Low-energy QCD theorems are used to evaluate the leading
long-distance contribution~(N?—1)/(11N.—2N;)? R %%exp(—2uR) (u is the Goldstone boson mass
which is shown to arise from the correlated two-boson exchange. The sum rule which relates the overall
strength of the interaction to the energy density of the QCD vacuum is derived. Surprisingly, we find that when
the size of the dipoles shrinks to zgthe heavy quark limit in the case of quarkonigne nonperturbative part
of the interaction vanishes more slowly than the perturbative part as a consequence of the scale anomaly. As
an application, we evaluate elastid/ s and wJ/y— iy’ cross sectiond.S0556-282(199)01123-9

PACS numbdis): 14.40.Gx, 12.38.Aw

[. INTRODUCTION vors N; should effectively replace the number of colors in
the coefficient of Eq(1) at large distances:

The interaction between small color dipdigsovides an
interesting theoretical laboratory for the study of QCD and
its applications in nuclear physics. Indeed, asymptotic free-
dom dictates that the coupling of strong interactions becomes
weak at short distances, and since the small size of the din the real world where the massgsof Goldstone bosons
poles introduces a natural infrared cutoff, one can hope thaire not equal to zero, instead of Ef) at large distances one
their interactions can be systematically treated in perturbaexpects to find the potential of Yukawa form
tion theory[1-6).

One could therefore expect that at low energy the interac-
tion between the dipoles in SN gauge theory would be of
van der Waals type

1
Veniral R)~ = (Nf=1) &5 @

—2uR

R

V(R)~—(Nf-1) )

[We will show that the actual form of the long—distance
potential is different from Eq(3)—see Eq(31).] How does
the transition between the behavior at short and long dis-
tances occur? Can one explicitly, from the first principles,
wheren=6 in the original van der Waals potential, agds evaluate the long-distance potential?
the gluon coupling evaluated at the scale of quarkonium size. |n this paper we address these questions, and argue that
Indeed, this behavior was established by Appelquist and Fighe interaction between small color dipoléseavy quarko-
chler[1], who studied the interactions of static color dipolesnjum states in our examplat large distances can be reliably
described by Wilson loops. These authors also explored thgvaluated. Our analysis is based on the following two prop-
breakdown of the perturbative expansion in the static potenerties of QCD:(1) the scale invariance which is present at
tial [2], and pointed to the possibility that retardation effectsthe tree level in QCD with massless quarks is broken by
can modify the 1R® dependence once the spatial motion ofinteractions; this is reflected in the nonzero divergence of
the quarks is considered. In this paper, we take this effecicale current, and hence non-vanishing trace of the energy-
into account and argue that, in the limit of the small size ofmomentum tensof8,9]; (2) the chiral symmetry is broken
the dipoles, the potenti@l) is actually of Casimir-Pold€i7]  spontaneously, which implies the existence of Goldstone
type, withn=7. On the other hand, gluons cannot propagatéyosons; being the lightest of all hadrons, they are the relevant
at large distances, where the dominant degrees of freedodegrees of freedom at large distances.
are the lightest hadronic states. In the chiral limit, the theory These two properties of QCD are beautifully linked by the
with spontaneously broken $(N¢) X SUg(N¢) symmetry |ow-energy theorem derived by Voloshin and Zakhaiba)],
contains (N?— 1) Goldstone bosons, and the number of fla-which we discuss below. The first of these properties was
previously exploited to derive the low-energy amplitude of
guarkonium-nucleon scatterih@1,12 (for recent work, see
*Present address: Institute of Physics, University of Tokyo, Ko-Refs. [13,14]). van der Waals interactions of quarkonium
maba, Meguro, Tokyo 153-8902. with nucleons and nuclei were discussed in Ref&—18§.
ISmall color dipoles can be realized in the real word as heavyFor applications to the low-energy quarkonium-pion scatter-
quarkonium states or as virtual quark-antiquark pairs in deep inelagng and the structure of quarkonium, see Rdfs9-22.
tic scattering. Quarkonium dissociation cross sections in interactions with

1
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light hadrons were evaluated in Ref§,23,24. Some of the assumed to be small compared to the binding energy of the
results of this study were previously reported in Reg]. quarkonium,ey. The factorization scale in this formula can

The picture which emerges from our approach is the fol-be chosen at,. At small energies, the leading operator in
lowing. The heavy “onia” couple perturbatively to the gluon Eg. (4) is the square of the chromo-electric field
field; at small distances, the entire interaction can be evalut1/2)g?E??(0) [4,5]—this is the leading twist-two operator
ated perturbatively. At larger distances, however, the interexpressible in terms of gluon fields. Other twist-two opera-
action becomes grossly modified by the coupling to piontors contain covariant derivatives leading to the powers of
fields, which is fixed by low-energy theorems. The domi-the ratio of the energy transfer to the binding energy and are
nance of the nonperturbative interaction at large distances itherefore suppressed at small energy; the series of these local
this case will be shown to be a consequence of the finit@perators can be summed up into a double dipole fidn
energy density of QCD vacuufVe also find that when the

size of the dipoles shrinks to zetwhich is what happens in 9’ < , ,

the heavy quark limit with quarkoniathe nonperturbative N 722 ¢ r'ﬁrl ¢

part of the interaction vanishes more slowly than the pertur- neseven (Hate)

bative part — in other words, the interaction between very Xt E;(0)(—iD%)" 2E;(0)]

small dipoles becomes totally nonperturbative. This surpris-

ing result will be shown to be a natural consequence of scale g? 0) 1 0) 5
i =—(trr-E(Q)—————r-E , 5

anomaly in QCD. N HotetiD®

In this paper, we limit ourselves to the interaction at small

energies; however we hope that some of our results may Be, . .« the Wilson coefficients are explicitly given by the ex-

extended to the case of dipole scattering at high energ'eﬁectation values over the singlet statér) with the binding

[26], where the broken chiral symmetry can also play a sub: ) ! . 7 -
: ) ; energye; H,(r) is the effective Hamiltonian describing the

stanna_l role, as discussed by Anselm and GF'W]- The i terr%wiediatg( S)U‘@) color-adjoint quark-antiquark statg0
paper is organized as follows. In Sec. I, we give the generallg the covariént derivative acting dhand the trace over,the
expression for the scattering amplitude of two color dipoles S 9 ;
in the framework of the operator product expans{@PB f:olor.|nd|ces of gluon operators ensures that ®gis gauge
introduce the spectral representation method for the evaluz'irjva”ant' In the heavy quark I|m|t_¢(r) can be approxi-
mated by the Coulomb wave function.

tion of this amplitude, and use this method to rederive the Using this multipole representation, one can write down
perturbative expressidi] for the low-energy scattering am- the amplitude of the scattering of two small color dipoles at

plitude (or potential. In Sec. lll, we discuss the scattering low energies(in the Born approximationin the following
amplitude of color dipoles beyond the perturbation theory,form [5];

derive the leading long-distance behavior of the potential,
and discuss the relative strength of perturbative and nonper- w
turbative contributions. In Sec. IV, we evaluate the potential V(R)= —if dt< OT(
acting between twd/¢’s. In Sec. V we use the low energy -
theorems[10,29-31 to derive the sum rule relating the (6)
strength of the potential to the energy density of QCD
vacuum. In Sec. VI, we evaluate the cross sectiond/gf
interactions with pions, relevant for the problemJéf sup-
pression in heavy ion collisiori82,33. The final Sec. VIl is

> c&(x))(? c,-oj(o>>o>.

Keeping only the leading operators, we can rewrite (Bfjin
a simple form

2 o)
devoted to summary and discussion. V(R)= _i(gzﬁ) f dt<0‘T;nga, E3(t,R)
€p —
[Il. INTERACTION OF COLOR DIPOLES 1
IN PERTURBATION THEORY ngzEb. Eb(0)0>, 7

The small size of the heavy quarkoniuin allows us to

expand the amplitude of its interaction with hadrohsh()  whered, is the corresponding Wilson coefficient defined by

at low energy in the form of multipole, or operator product,

expansior4,5]: _a: 1 _
e

ri

zéozw

H,te ¢>' ®)

M=2 ¢(h'|0;(0)[h), (@) | -
' from which we have explicitly factored out the dependence

i i on the quarkonium Bohr radius, and the Rydberg energy
where O;(x) are the gauge-invariant local operators and €o. The factorsay and 1k, represent the characteristic di-

are the Wilson coefficientgolarizabilitieg which reflect the | \sion and fluctuation time of the color dipole, respec-
structure of the quarkonium; the energy of the hadrons igy e\ The approximation used in deriving E@) is justified
when the gluon fields change slowly compared te,1The
Wilson coefficients(8) were computed fo& [5] and P [19]
2This picture was foreseen by Bjork¢ns]. states of quarkonium in the lard¢ limit.
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In physical terms, the structure of E@) is transparent: it
describes elastic scattering of two dipoles which act on each
other by chromoelectric dipole fields; color neutrality per-
mits only the square of dipole interaction. The amplitude
was evaluated beforgs] in perturbative QCD using func-
tional methods. For our purposes, however, it is convenient
to use a spectral representation approab.a first applica-
tion of this approach, we will reproduce the resul{8f by a
different, and perhaps more simple, method.

First, it is convenient to express’E?? in terms of the

gluon field strength tensgg9]: FIG. 1. Contributions to the potential between quarkonia from
(a) two-gluon exchange an() correlated two-pion exchange.

(@) ®

2

2

g g
2ca2_ Y a2 pa2y. 2 a2y pa?
Q°E¥ =7 (E¥—B¥)+ o (E¥+B%) .

. . iAF(x;02)=if G )35(k2—az)a(k0)[e—ikX0(x°)
= - J0°G3,G "+ 07 —G3,G3"+ 7 00gG 1,6 o
4 4 +ekxg(—x0)] (13)
2
= STWgz+ 9298(3) , (9) is the Feynman propagator of a scalar field in the coordinate

space. Substituting the representatidd) in Eq. (7), the
potential can be expressed as a superposition of Yukawa po-

where tentials corresponding to the exchange of scalar quanta of
masso:
B(9) bg®

0,= 29 Gaaﬁeiﬁz_32 2GaaﬁGiﬁ' (= ag\?[4m?\? (= 2 2 .2

T Vy(R)=—i d26_0 - | dt | dopy(o9)Ae(X;07)

1 _aj\?(4m?\? 1

(C)=_a aa — a aaB _ 0 ™ 2 2 ~—oR
0y =GBy "+ 70,,64pC™" (10 __(d2€_o B de pol0) e 7 (14)

Note that#” is the trace of the energy-momentum tensor of ~Our analysis so far has been completely general; the dy-
QCD in the chiral limit, and as a consequence of decouplinglamics enters through the spectral dengitf). Let us first
theorem[35] the B function in Eq.(10) does not contain the €valuate this quantity in perturbation theory, where it is
contribution of heavy quarki.e. b=3(1IN—2N;)=9]. given by the contributions of two-gluon stafee Fig. 1a)]

Let us now write down the spectral representation for thedefined by
correlator of the trace of the energy-momentum tensor

B2 = (2m)35%(patpa- p2¢2b] 04]0)]2,
(0| T0%(x)6%(0)]0) Py(a%) > (2m)28*(pi+p; a)[(p1e1a,p2¢2b| 6} 0)|

(15
4
:f d’k po(kD) B(ko)[e K*a(x0) + ek*g( —x9)] where the phase-space integral is understood, as well as the
(2m)3 summations over the polarizatiorz(,) and color indices
(a,b) of the two gluons. The calculation for SN} color
:f da2p,(o?)Ap(x:0?), (12) (see Appendix Agives
. . pt( 2)_ bgz )ZNZ_l 4. (16)
where the spectral density is defined by Ppld 30m2]  am? q-

pe(kz)ﬂ(ko)=z (2m)38%(p,—K)|(n|6#0Y2, (12) the appearance aj* dependence in Eq16) is of course
n " natural from dimensional arguments. Performing the integra-
tion in Eq. (14) over the invariant mass? from zero to

the phase-space integral should be understood in(E), infinity, we get the following result = 3):
and
2\ 2
) 15 1
MRY= — o4 d. 2| == —
SR

3The use of dispersion theory in electrodynamics for the interac- . . _
tion between neutral atoms was pioneered by Feinberg and Such&his result can also be derived by the functional method of
[34]. Bhanot and Peskifb] (see Appendix B
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Several remarks are in order here: ThR™’ dependence An important theoreni31] for this correlator states that as a
of the potential(17) is a classical result known from atomic consequence of the broken scale invariance of QCD,
physics[7]; as is apparent in our derivation, the exRa’ as
compared to the van der Waals potenti&® 8 is the conse- I1(0)=—4(0/64(0)|0). (20
guence of the fact that the dipoles fluctuate in time, and the
characteristic time of fluctuation~ e, * (e, is quarkonium  Note that the right-hand side of E€O0) is divergent even in
binding energy is small compared to the spatial separationperturbation theory, and should therefore be regularized by
of the “onia:” t<R—note an explicit integration over time subtracting the perturbative part. The vacuum expectation
in Eq. (14). This illustrates, in a somewhat different way, the value of thed”, operator then measures the energy density of
original argument of Voloshi4] that the physical picture non-perturbative fluctuations in QCD vacuum, and the low-
behind the operator product expansi@PE is orthogonal energy theoreni20) implies a sum rule for the spectral den-
to the potential model—the latter is based on the assumptiosity:
of instantaneous interaction, whereas the former is based on
the assumption that the internal frequency of heavy quarko-
nium 1/ey is much higher than the frequency of external soft J
fields. Retardation effects make questionable the possibility
to describe the interactions of quarks inside a heavy quarko- — —16e.. #0 (21)
nium by a local potential. In our case, applying the OPE vaer =

method, we f|rst_ave_r age the Interactions with soft gluon?/vhere the estimate for the vacuum energy density extracted
over the quarkonium internal state, which corresponds to th

infinite retardation. With the resulting coupling between theﬁ(.)m the sum ru_Ie analysis YIVEJac™ @5(0'24 GeVy [36].
guarkonium and the gluons, the potential description otsmce the ph_y5|cal sg)tectral_ den?'b}; ! ShOUId. approach
onium-onium scattering is adequate since at low energies tHg€ Perturbative ongyy, at higho”, the integral in Eq(21)
relative motion of heavy quarkonia is slow. The retardation €N accumulate its valuezreqwred_ by the RHS only in the
effects manifest themselves in the modification of the shapfeg'on of relatively smallr”. In addition, another sum rule
of the potential. 36-38,

We note that although the matrix element of the operator
0l can in general be nonper_turbative, in per_turbation theory j da_nghys(O_Z):J do2p™(o?) (22)
¢, is of orderg?, and accordingly the potentiél7) has the
prefactorg®. Then the second terg? 65S) in Eq. (9), which
describes the tensor'2 state of two gluons, gives the con-
tribution in the same order ig. Adding this contribution to
V, in Eq. (17), we recover the complete result of RE3) B. Matching onto the chiral theory

d0'2 phy. 2 ptr 2
7[% 0% —plh(a®)]=—4(0]6,,(0)|0)

is implied by the quark-hadron duality.

a2\2923 1 At small invariant masses, the physical spectral density of
VP(R) = _94(52_0 = (18) the correlator(19) should be saturated by the lightest state
€/ 87 R’ allowed in the scalar channel—two pions:

Note that ourd, is related to thed, in Ref.[5] by d,age, 2 3 )
— = 27)35M(prtpa— 6410)|°,
=d,g?. This perturbative expression is valid whap, 1/e, Py () E (2m) 5 (Prtp= @) (m(py) (P “| )

<R<Agdp- (23

Ill. BEYOND THE PERTURBATION THEORY: where, just as in Eq15), the phase-space integral is under-

THE ROLE OF GOLDSTONE BOSONS stood. , , ,
Since, according to Eq10), ¢/, is a gluonic operator, the

At large distances, the perturbative description breakgvaluation of Eq.(23) requires the knowledge of the cou-
down, because the potential becomes determined by thgling of gluons to pions. This is a purely nonperturbative
spectral density at smatj?, where the transverse momenta problem. Nevertheless it can be rigorously solved, as it was

of the gluons become small. shown in Ref[10] (see also Refl29]). The idea is the fol-
lowing: at small pion momenta, the energy-momentum ten-
A. Broken scale invariance sor can be accurately computed using the low-energy chiral

To see the importance of nonperturbative effects explic-adrangian,

itly, let us consider the correlator @f,, 2 1
, L=Ztrg,UaUT+  mifir(U+Uh, (24
H(qz)zif d*xe¥(0|T6%(x) 6,(0)|0)

5 whereU =exp(d#/f,,), w=7?T? andT? are the SU(2) gen-
:f do? polo”) (19  erators normalized by TT°=145%°. The trace of the

az—qz—ie' energy-momentum tensor for this Lagrangian is

114039-4
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2

f
—_o.7 t_m2+2 t
0),= 24 trg, Uo*U'—m2fotr(U+U").

(25)
Expanding this expressiof25) in powers of the pion field,
one obtains, to the lowest order,

Oh=—3d,m T+ 2me i+ - (26)
and this leads to an elegant redul0] in the chiral limit of
vanishing pion mass:

(m* 7 |6410)=0? (27)
This result for the coupling of the operatéf; to two pions
can be immediately generalized for afgvern) number of
pions using Eq(25).

Now that we know the coupling of gluons to the two-pion

state, the pion-pair contribution to the spectral den&()

PHYSICAL REVIEW B0 114039

2\ 2 2\ 2 1/2

T _ _@ i = 4m—77 -2m,R
V™(R)— (dzeo) ( b ) 2(2m77) (477R)5’2e .
(31

Note that this potential isot of Yukawa form. The sam®&
dependence ofrr exchange at large distances was found a
long time ago by Ley [39] and Klein[40]. It has been given
previously also by Bhanot and PesKis|, but up to an un-
known constant. In our approach, the strength of the poten-
tial, as well as its dependence on the numbers of cdlbrs
and fIavorst—~(Nf2—1)/(11Nc—2Nf)2, is fixed by the
low-energy QCD theorems.

Note also that, unlike the perturbative requl¥) which is
manifestly O(g*) [in addition to a factor @,a3/€g)?], the

amplitude(31) is O(g°)—this “anomalously” strong inter-
action is the consequence of scale anorfialy.

can be easily computed by performing the simple phase

space integration with the result

3
p5T(g%) = a% (28)

3272

in the general case ®f; light flavors, the coefficient 3 in Eq.
(28) should be replaced byl\(f—l). Again, theq* depen-

C. Dynamical enhancements in the spectral density

The low-energy theorem&ET’s) [31,10 not only allow
us to evaluate explicitly the contribution of uncorrelated
exchange; they also tell us that this contribution alone is not
the complete answer yet. Indeed, the numerical analysis
shows that therm spectral density30) alone cannot saturate
the sum rulg21)—at largeo?, the physical spectral density

dence comes only from dimensionality. Multipion contribu- approaches the spectral density of perturbation theory, so the

tions can be evaluated using E&5); we have found that at

integral in Eqg.(21) does not get any contribution; at small

small invariant masses their influence is small. The dominang2, the 77 spectral density30), according to the chiral and

contribution at small invariant masses in which we are
primarily interested here, therefore comes from the state.

scale symmetries is suppressed by*. The low energy
theorems thusequire the presence of resonant enhance-

Recalling that to the leading order in OPE the scatteringnens) [30] in the 0" * 77, and perhaps multipiokK and

amplitude is dominated by the operatg®E??, we need to

evaluate also the matrix element of the second term in E

nn channels as well. Here we will leave the complete mul-

Gichannel problem for future investigations, and study only

G . .
(9, (0|g®66g’|mm) to complete our derivation of the scat- the influence of these resonances in the channel on the
tering amplltude. As we mentioned in the previous Sect|0npotentia| between the color dipo|es_

this tensor operator contributes a substantial fraction, 8/23, To do this, we define the pion scalar form factor by

to the full perturbative result. However, unlike the scalar
operator, the tensor term is not coupled to the anomaly. Th

G)

contribution (0|g?6{3| ) therefore is ofO(g?), and is

subleading in the heavy quark limit. In this limit, we thus

come to the following low-energy expressipto]:
_92Ea2 (29)

1 0 4m?

2 b

The matrix element in question is therefore known uprto
andm? corrections.

g%+ O(arg,m2).

(m*77|64]0)=q*F(g?) (in the chiral limit and write down
the spectral density as

3 [s—4m3\1?
32772( S )SZ|F(S)|2'

psr(s)= (32

It may be illustrative to consider first the idealized case of
a sharpo resonance. For simplicity, let us assume that the
difference between the physical and perturbative spectral
densities is due to thigr resonance alone, and write the

The most important correction due to the finite pion massspectral density aph™s) — pb(s)=cé(s—m2). The LET
is the phase space threshold; to take it into account, wé1) then fixes the contribution of the narrawstate of mass

modify the spectral density in the following wayqq
=4m?):

(30

1/2
3 [g*-4m?
piT(q%)= (—) q*.

32m? q?
This expression should be valid at smgdl Substituting this

spectral density into the general expresdib4), we get the
potential due to ther# exchange; at largR

m, as

ds c
f RGO

o

= —166,.. (33

40f course, in the heavy quark limit the amplitu¢gd) will nev-
ertheless vanish, sin@—0 andeg— .
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00001 5 0.5 1 15 2
0 Vs [GeV]
0 02 04 06 08 1 12 14
Js [GeV] FIG. 3. Spectral density of the correlatd@]|T6%(x) 6,(0)|0) at
low energy(solid line). The uncorrelated two-pion contribution is
ay p
FIG. 2. Scalar-isoscalar form factor of the pi(86). shown in dotted line, and the perturbative one with one-loop run-

ning coupling constantXocp=200 MeV) in dashed line.

The corresponding potential is of Yukawa type, D. The analysis of the sum rule

—ag\?
V(R)=—|d,—
€0

472\2 1 R Let us consider the sum ru(@1) within our simple model
T) ¢ ™ (3% for the spectral density. When the mod®@6) for p2™s) is

used, the upper limit of the integral in E(R1) can be re-
In this idealized situation, the strength of the potential isplaced bys,. In Fig. 3 we show the physical and perturbative
directly related to the energy density of nonperturbativeparts of the integrand in the sum ru{@l) with solid and
QCD vacuum. Note, however, that this simplified model ofdashed lines, respectively. Since for the spectral density in
the sharpo resonance is inconsistent with the asymptoticsthe perturbation theory there is no scale other teathe
derived from the broken chiral symmetr€f. Eq. (31)]. coupling constant should be taken running with this scale:

The form factor(s) is directly related to the experimen-
tal w7 phase shifts by the OmaeMuskhelishvili equation 9113(3))2332 37
8w 27

- . Plis)=
[41,42. Within the single-channel treatmeR{s) has a so- Po -
, (35 py" (30), which is shown in dotted line in Fig. 3, has the

lution
S (s 8%(s")
F(s)=ex —f ' ds’o—_
mJam?  s'(s'—s—ie) : i .
same functional form as the), up to the logarithm and the
where 58(5) is the phase shift of ther scattering in the threshold factor. As a consequence of this, we find that the
scalar-isoscalar channel, and formadly—. With this for- ~ Uncorrelatedrar spectral density30) cannot obey both the
mula we can make a full use of the experimental informatiorsUm rule(21) and the duality constrairi22). On the other
on the war correlations. hand, the spectral density obtained with the Osine
In our calculation we use a simple analytic fof#8] for Muskhelishvili solution has a nontrivial structufeee Fig.
the phase shifsd(s) which has been shown to fit the experi- 5 One can clearly see a narrow peak at figeresonance
mental data up t®,. ~1 Ge\2 Beyond this energy, one '€9ion with a shoulder coming from the broad* around
should take into account the contributions of other channels(,)'6 GeV.

— . . . We plot the integral in the LET for the physicédolid)
such axK. We performzed the |ntegral'|n E35) numeri- and perturbativgdashed parts separately as a function of
cally up tos;=(5 GeV) by extrapolating the low-energy

. . the upper limit,sy. One can see that the value of the integral
f'LOf the'phase shift. Wh\(;nlwe (;hangpto (20 Ge\()z, the for the physical spectral density is mainly accumulated in 1
change inF(s) at 1 GeV is a few percent. In Fig. 2 We gy region, and the & contributes to it about 20%see
show the resulting scalar formfactor of the pidt(s). The

X Fig. 4). The perturbative part behaves stsup to the loga-
structure ofF(s) may be interpreted as due to a braa@nd i, “\weighting the higher energy region. The LET tells us

narrow f, resonances. For a more realistic evaluation of thp ¢ the difference of these two contributions should be equal
formfactor, the multi-channel calculation has to be done; thg, he energy density of the QCD vacuum. In our model for
results will be reported elsewhere. In this paper, as a simplg, o spectral density, the LET21) is satisfied when we

whereay(s)=4m/[bIn(§Adcp) ] With Agcp=200 MeV.
We note that the spectral density for uncorrelated pions

h .
model for thep}™®, we will take the form chooses,=(2~2.5 GeV}. As for the duality relatior{22),
o 2 the equality of the integrals of the physical and perturbative
pphys(s): Py (S) (4mM<s<so), (36) spectral densities is achieved when we choosg
o p‘;‘(s) (sp<s), ~(2 GeVy (Fig. 5—this value of the matching scale
therefore provides a consistent solution to both the LET and
wheres, is a matching scale. the duality relation.
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FIG. 4. Physical(solid) and perturbativeddashed parts of the
integral(21) as a function of the upper limg,. The LET states that

FIG. 6. Potential14) between twal/ 's (solid line). Contribu-

tions of the spectral densities af>s, and s<s, with /sq

the difference of the two should be equal to the QCD vacuum=2 GeV, respectively, are plotted in dotted and dashed lines. The
energy density, 1&,,J=0.053 GeV. perturbative resulf17) is shown in dashed-dotted line, for refer-

ence.

Even though our spectral density cannot be taken seri-
(as=g?/47). We haveay(J/¢)=0.87 anday=0.20 fm for

ously in the high mass region beyordl GeV, our calcu-
lation nevertheless shows the following: Nonperturbative dythe J/¢ with the phenomenological inputseg=2Mp

namics of QCD generates enhancements in the intermediateM (J/¢) =642 MeV and m=1.5 GeV. These values
mass region in the form of hadronic resonances, which makshow the application td/« will be qualitative at most, be-
the physical spectral density consistent with the LET).  cause of the large; value and becaus® > s, 12- the latter

The narrowf(980) is more important for the LET than the means that nonperturbative effects penetrate inside the radius

low mass, broadr resonance. Therefore, to discuss the in-of J/ .
fluence of heavier resonancflke fy(1500)] we_need to In Fig. 6 the resulting potentidll4) between twal/ /'s is
shown as a solid line. In our model for the spectral density,

perform a coupled-channel analysis including K and : ! :
other states. In the rest of this paper we put the matchinghe potential consists of two components, high (dotted

scale\s,=2 GeV. and low g? (dashedl separated bys,, which we set
(2 GeVY. (As in the heavy quark limit, we omit the con-
IV. THE POTENTIAL BETWEEN COLOR DIPOLES tribution from the tensor exchanggg’.) .
First, we see that the potential at large distances is natu-
As a concrete example, let us consider the potential berally determined by the spectral density of the lqfvregion.
tween twoJ/y’s at rest. Although the charm quark is per- Moreover the total strength of the potential at large distances
haps not heavy enough to justify the heavy quark limit, weis enhanced by the nonperturbative spectrum of QCD, com-
try to extrapolate our result td/ and discuss its implica- pared to the formal perturbative resqlt7) denoted by the
tions. dashed-dotted line. The region where the two components
For the pure Coulombic bound sta,=7/36, and the COMpete iSR=0.5~0.6 fm, which is much larger than the

—12 i -
Bohr radius and Rydberg energy are given lay ~0.1 fm. This is in contrast with

scale determined by,
=4/(3agm) and ey=(3a/4)2m=1/(a2m), respectively naive expectation that beyond the scajé’?, the potential

should be dominated by the nonperturbative spectral density.
The reason for this lies in the large value{J/ ), reflect-

0.2

L4
]
]
!
]
!
1
!
]

015

00 05 1 1.5 2 25 3

‘/50 [GeV ]

FIG. 5. Integral of the duality relation.
same as in Fig. 4.

ing the fact that charmonium is still far from the heavy quark
limit.
In the discussion of the LET21), we used the running
coupling constant, while the coupling constant used here is
frozen at thel/y scale. This is because in the heavy quark
limit, it is natural to renormalize the coupling constant at the
scale of quarkoniung(e) with €,>s5?Agcp. The matrix
element ofG? should then contain the effects of quantum
fluctuations below this energy scale. Within the perturbative
approach the renormalization group ensures independence of
the final result on the choice of renormalization point, at least
in the leading-log approximation, which we used in Ej).

In the case ofl/ ¢, the renormalization scakehosen at the

The notations are thebinding energye,) is still lower than sy, and the spectral

density (16) with fixed ag(J/) is significantly larger than
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the one with the running coupling constdBf). Again, this M
reflects the fact that nonperturbative effects penetrate “in-
side” the J/¢. The most important feature seen in Fig. 6 is 0.01
the dominance of lovg® enhancements in the spectral den- —_
sity in the behavior of potential at large distances. £
— 0.001
>
V. THE SUM RULE FOR THE POTENTIAL ;‘;5
We can derive an interesting sum rule for the strength of 0.0001 ¥
the potential. According to Eq$14) and(17), we have
o 16-05 . v s .
L [Vo(R)=V5(R)] pens 1GeVic]
—ag\?/4n7?\2 [ do? . FIG. 7. wJ/y elastic cross sectiofsolid) as a function of the
=— dze— e f —Z[p'; o) —pPl(a?)] c.m. momentum. Dashed line is the casd~¢f)=1.
0 g
XT'(2,00) (38  The matrix element 7X|g?E?2(0)| ') can be found from

(m*7'|g?E?2(0)|0), Eq.(29), by crossing; the LET29) tells
wherea should be chosen to be of the order of the oniumus that up toas andm?, corrections
radius, andl'(z, p)=f;°dttz‘1e‘t. As we discussed previ-
ously, the physical spectral densjt§®Y o?) differs from the <Trk(p,)
perturbative onegp¥(o?), in the regions?<s,. In the heavy
quark limit, ac1/(agm) anday/s,<1. Therefore we can re-

1
T A2Ea2
5 9°E%(0)

| 4 ket |
m(p) :T<Tf (p")]64(0)]7'(p))

2
write the sum rulg38) in a more suggestive form: = 5k'4T7TtF(t), (42)
f d*R(V4(R)—V(R)) wheret=(p—p’)?, and we have introduced, as before, the
a . . .
pion scalar form factorf-(t). Taking into account the non-
_a2\2/472\2 [ do? relativistic normalization of the state, we have the expres-
=— d2—0 T) f —Z[p';hys(az)—p';t(gz)] sion for the total elastic cross section in the c.m. frame.
€0 o
2\ 2 2\ 2 1 d3p’ dap;
—a 4 _ 2 4
= dz_o ——| 16l€ad, (39 U(S)_z V. f 2 3] 21)32p! | MI%(2m)
€o b PoVrield (27) (27)°2pq

which relates the overall strength of the interaction between X 8" (P +p'~P—p)

small color dipoles to the energy density of the nonperturba- 2 2\ 2 2\ 2
. 1 Me[—ag\“4nm 4p? 5 5
tive QCD vacuum. =———|d,—| [ — d(—t)t?|F(1)|?,
16ms p2 €o b 0
VI. QUARKONIUM INTERACTIONS WITH PIONS (42

As another application of our formalism, we evaluate the — 0.0 - . )
cross sections of elastic scatteringd— w® and of excita-  WNeréVrer= V(P p)“—M*m7/P"p"is t2he relative Ve|002'ty of
tion processm®— wd'; the latter cross section was previ- € incoming J/4 and pion, andp“=[s—(M—-m.)°][s
ously computed in Refg20,21. These cross sections are — (M +mz)°]/4s is the c.m. momentum. _
important for the analyses of quarkonium production in _ The result.for the elastierd/ ¢ cross2 section is shown in
heavy ion collisiond32,33. The fact that soft pions effec- Fig- 7. The pion scalar form factdf(q“) and other param-

tively decouple from heavy quarkonia was previously noteoete_rs are the same as in the previous section. Note that the
in Ref.[19]. chiral symmetry requires a strong momentum dependefce,

in Eq. (42); therefore at low energies tlé interaction with
pions is very weak. Extrapolation of the scalar form factor
F(t) to the scattering regiort<0, induces additional sup-
Within the OPE formalism(4), it is straightforward to pression of therJd/y interaction. At small energiesee Fig.
write down the amplitude of pion-quarkonium elastic scatter-7) the cross section is on the order of 0.01 mb, which is

A. Elastic w® scattering

ing at small energies: to the leading order in OPE, much smaller than the geometrical cross section oflilye
5 1 For quarkonium production in heavy ion collisions, this im-
_ a . . B . .
Kl'or e __ 320 k| T a2Fa2 | plies that the interactions with secondary pions do not con-
ME(PT,p":P.p) d2 €0<7r (P 29 E¥(0)) = (p)>. tribute to the broadening of the quarkonium transverse mo-

(40 mentum spectra.
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1 T T T T T T T P
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0.6 0.65 0.7 0.75 0.8 0.85 0.9 095 1 FIG. 9. Schematic picture of the potential between heavy onia.
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section, evaluated assuming the dnd Z Coulomb wave
efunctions, andA = (3/4)e,. It shows that the cross section is
on the order of 0.01-0.1 mb.
We also evaluated the partial width of tigé¢ due to ¢’
— ¢ decay within the same formalism, and obtairéd
Our next example is the transition proces® —7®'. In =260 (70) keV with(without) using the form factoF(s).
this case, however, the transferred momentum is on the ordehis should be compared with the experimental value 135
of the binding energyA=M’'—M=0(¢;), which may in-  +20 keV [44]. We conclude that our calculations, due to
validate our assumption on the factorization between thehe assumption of the heavy quark limit, hold to within a
short and long distances. Fortunately, since the size ofactor of 2 only. Additional confirmation of thedependence
quarkonium ao~1/(g°m)<1/ep~1/(g*m) in the heavy of the matrix element comes from the dipion invariant mass

FIG. 8. wJ/y— ¢’ cross section. The notations are the sam
as in Fig. 7.

B. w®— 7w ®’ transition amplitude

quark limit, the double-dipole form distribution in they’ — ymm decay[45].
M={ ¢'m|tr|r-E ! El|l¢ (43
= mltr| r-E————r- T
H,+e+iD° VIl. SUMMARY AND DISCUSSION

We have shown that at large distances the interaction of
is still valid [5]. The structure of this formula is transparent: small color dipoles becomes totally nonperturbative. This re-
the initial quarkonium® absorbs or emits a gluon, then sult has a deep physical origin: indeed, one can trace it back
propagates with the internal energy,e+Q, and emits or to the sum rule(21) for the correlator of the energy-
absorbs another gluon to form a color-singlet, excitedmomentum tensor, which reflects the fact that the non-
guarkonium state@’; these gluons originate from pions. perturbative vacuum of QCD is characterized by nonzero

To apply our formalism, let us approximateiD® in Eq.  energy density.
(43) by the typical value of the gluon momentuh, Within For QCD practitioners, “nonperturbative” is often a sub-
this (rather crudg approximation, the quarkonium part and stitute for “incalculable.” Nonetheless, in our case, we were
the pion part can be factorized in the matrix elem@® and  able to evaluate explicitly this, nonperturbative, scattering

the relevant Wilson coefficient, which for this process readggmplitude in a model-independent way. The key ingredients
in our approach weré) the use of spectral representation in

- ag 1 _ 1 _ the t-channel andii) the low-energy theorem arising from
d,—= ﬁ< ¢’ r'mr' ¢>> (44)  the (broken scale and chiral invariances of QCD.
€0 aT€ What are the implications of our results? First, we find

» ) that the long-distance interactions of small color dipoles are
The transition matrlx element then reduces to the same forgominated by pion clouds; the qualitative picture of this in-
as in the elastic case: teraction is illustrated in Fig. 9. The size occupied by the
5 ) heavy quark-antiquark pair in the quarkonidsee Fig. 9is
M= (a, ﬁ) (i)tF(t) (45) ag~1/(g?m); the gluon cloud spreads up to the distances on
1 ?¢/\ b ’ the order of the inverse binding energyg+ 1/(g*m), since
the typical momenturK of gluons isK ~ €. (This picture of
and the total transition cross section can be written as ~ quarkonium structure emerges also from the NRQCD ap-
proach of Bodwin, Braaten, and Lepa{#6].) The pion
472\2 1 cloud begins to dominate at the distances,*?, and
_) fmaxd(—t)t2|F(t)|2. spreads up to the distancesu(2 1, where u is the pion
b tmin mass §; is the mass scale at which the nonperturbative ef-
(46)  fects begin to dominate in the spectral density, see Sec. lI
This pion cloud may as well be important in high-energy
In Fig. 8 we show the result for theJ/¢y— 7wy’ cross scattering. One may even speculésee Bjorken 28]) that

_aj

2
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pions are responsible for the so-called “soft Pomeron,” even ,

though it is not yet clear how to extend our calculations to iMB(Q):f d*x€9X(Tige(x)ige(0))

high-energy scattering—this would require evaluation of

higher orders in the multipole expansion. Nevertheless the

possibility that the diffusion of partons toward sméd

makes pionic degrees of freedom important looks very plau-

sible to us. Second, the fact that piof@nd therefore light which may be related to an interaction potentialibyi(q)

quark$ dominate the long-distance interactions of heavy=—iV(q). Going to Euclidean space, whesg= 72+ x?

quark systems is important for lattice QCD simulations.=72+R2 we can show that

Even though naively one may think that light quarks are

relatively unimportant for the studies of heavy quarkonia on S .. )

the lattice, our findings show that the opposite is true. This V(R)=-g Jlmdt'AF(X?U )

suggests that to extract the properties of heavy quarkonia

from the lattice QCD one has to use “unquenched” theory ®
_g? f

gZ

=ing d*x€I% Ap(x; 0?), (A2)

with light quarks. The importance of pionic degrees of free- =
dom in determination of the mass splittings of heavy quarko-
nia was investigated in Reff22].

Third, we find that both inelastic and elastic)/ s scat- =—_— @ R (A3)
tering cross sections are very small, less than 0.1 mb. The 4mR
smallness of inelastic cross section suggests that pions are
very ineffective in dissociating/#’s, lending support to the
idea to use quarkonia as a signal of deconfinerfi@2it The

1 a?
dr— ==K (\x20?)
47? \/XZEO'Z 1V

To the leading in the OPE, the potential between color
dipoles(14) is a superposition of this Yukawa potential with

smallness of the elastic cross section explains why the tranéhe spec_tral funct|orp(,(2<r ). In the perturbative calculation,
the matrix element oG- between the vacuum and the two-

verse momentum distributions af ¢'s seem to be unaf- | )

fected by the final state interactions with secondary pions‘»,:l uon state is
whereas much biggef'’s, to which our multipole expansion aBcC
analysis does not apply, can show significantly larger mean (P1818,P22,b[ GG 4]0)

transverse momenta. =4(—py-Poet el +p1-eipy-eF) 8P+ 0(g?),
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> [(p1g1a,p2e,b|G2|0)|2=4%(N2—1)2(p; - py)?
APPENDIX A: DERIVATION OF EQS. (14) AND (16) pol,col

The Feynman propagator of a scalar figldf masso is =8(N*~1)q*, (A5)

defined b
y which depends only om?=(p;+p,)2. With the phase

iAr(X 02 =1(Te(X)(0)) space factor of two identical particles,

oAk 1 d°py d°p, 5
- - - 27m)3 5% =,
If 2m)? S(ke—09) 6(kop) ZJ (277)32le (277)32(02( m) 6 (p1+p2—0q) 3272

: . (AB)
X [eflkx0(X0) + elkx0( _ XO)]

4 i we find Eq.(16) as the spectral density of the correlator of
:J dk e 6“=— (bg?/327%)G?, to the leading ing.
(2m)* o?—K’>—ie Similarly the spectral density of the two-pion statés)
, can be calculated, but withr*='| ¢4/0) = g?5*' in the chiral
i

- T — limit (k,1=1,2,3).
4 riger VO

(A1) APPENDIX B: ALTERNATIVE DERIVATION OF EQ. (17)

To confirm our result, we derive here E{.7) applying
whereK is the modified Bessel function. The Born ampli- the functional method of Ref5] to the scalar part of the
tude of one-boson exchange with coupliggs interaction(7) (in Euclidean spage
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f:d7<o

2\2 .4
__[g g—f dr(0|G2,4(x)G", .,(0)|0)2
260 32 —oo apB al B! '

2

—a§ 2
Vy(R)=—{d—
€0

g
8

209 o
G?(x) 5 G*(0)|0

(B1)

where all indices are summed over. Using the expression for

the two-point function of the gluon in Feynman gauge,

<‘ ‘“(X)‘ ‘1/(y)> I 2 2 é/.LVga (BZ)
7 (X y) ,

2 &%
b
(G3.(X)G,,,(0)) = F{éw(éw,xz_uﬂxﬂ/)

2
+ 6,0 (8, X" — AX X,1)

PHYSICAL REVIEW B0 114039
2
= 0y (8, XE= 44X, X,0)
— 8,,(8,, X2 = 4%, X,,1)} +0(g?),
(B3)

and

24 1
<sz<x>62,v,(0)>2=<N2—1>;;+O(gz>. (B4)

Substituting Eq.(B4) into Eq. (B1), we obtain the leading
expression(17) for the potential of the scalar park{= 72
+R?),

_a3\%g* (= , 241
Vg(R)Z— dzé_o 3—2 70€d7‘(N _1)¥g,
2\ 2
—a 15 1
— g0
g ’e.) 83 RT (B5)
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