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Long-range forces of QCD
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~Received 26 March 1999; published 12 November 1999!

We consider the scattering of two color dipoles~e.g., heavy quarkonium states! at low energy—a QCD
analogue of van der Waals interaction. Even though the couplings of the dipoles to the gluon field can be
described in perturbation theory, which leads to a potential proportional to (Nc

221)/R7, at large distancesR
the interaction becomes totally nonperturbative. Low-energy QCD theorems are used to evaluate the leading
long-distance contribution;(Nf

221)/(11Nc22Nf)
2 R25/2exp(22mR) (m is the Goldstone boson mass!,

which is shown to arise from the correlated two-boson exchange. The sum rule which relates the overall
strength of the interaction to the energy density of the QCD vacuum is derived. Surprisingly, we find that when
the size of the dipoles shrinks to zero~the heavy quark limit in the case of quarkonia!, the nonperturbative part
of the interaction vanishes more slowly than the perturbative part as a consequence of the scale anomaly. As
an application, we evaluate elasticpJ/c andpJ/c→pc8 cross sections.@S0556-2821~99!01123-6#

PACS number~s!: 14.40.Gx, 12.38.Aw
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I. INTRODUCTION

The interaction between small color dipoles1 provides an
interesting theoretical laboratory for the study of QCD a
its applications in nuclear physics. Indeed, asymptotic fr
dom dictates that the coupling of strong interactions beco
weak at short distances, and since the small size of the
poles introduces a natural infrared cutoff, one can hope
their interactions can be systematically treated in pertur
tion theory@1–6#.

One could therefore expect that at low energy the inter
tion between the dipoles in SU(N) gauge theory would be o
van der Waals type

Vpert~R!;2g4~N221!
1

Rn , ~1!

wheren56 in the original van der Waals potential, andg is
the gluon coupling evaluated at the scale of quarkonium s
Indeed, this behavior was established by Appelquist and
chler @1#, who studied the interactions of static color dipol
described by Wilson loops. These authors also explored
breakdown of the perturbative expansion in the static po
tial @2#, and pointed to the possibility that retardation effe
can modify the 1/R6 dependence once the spatial motion
the quarks is considered. In this paper, we take this ef
into account and argue that, in the limit of the small size
the dipoles, the potential~1! is actually of Casimir-Polder@7#
type, withn57. On the other hand, gluons cannot propag
at large distances, where the dominant degrees of free
are the lightest hadronic states. In the chiral limit, the the
with spontaneously broken SUL(Nf)3SUR(Nf) symmetry
contains (Nf

221) Goldstone bosons, and the number of fl

*Present address: Institute of Physics, University of Tokyo, K
maba, Meguro, Tokyo 153-8902.

1Small color dipoles can be realized in the real word as he
quarkonium states or as virtual quark-antiquark pairs in deep ine
tic scattering.
0556-2821/99/60~11!/114039~12!/$15.00 60 1140
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vors Nf should effectively replace the number of colors
the coefficient of Eq.~1! at large distances:

Vchiral~R!;2~Nf
221!

1

Rn . ~2!

In the real world where the massesm of Goldstone bosons
are not equal to zero, instead of Eq.~2! at large distances on
expects to find the potential of Yukawa form

V~R!;2~Nf
221!

e22mR

R
. ~3!

@We will show that the actual form of the long–distan
potential is different from Eq.~3!—see Eq.~31!.# How does
the transition between the behavior at short and long
tances occur? Can one explicitly, from the first principle
evaluate the long-distance potential?

In this paper we address these questions, and argue
the interaction between small color dipoles~heavy quarko-
nium states in our example! at large distances can be reliab
evaluated. Our analysis is based on the following two pr
erties of QCD:~1! the scale invariance which is present
the tree level in QCD with massless quarks is broken
interactions; this is reflected in the nonzero divergence
scale current, and hence non-vanishing trace of the ene
momentum tensor@8,9#; ~2! the chiral symmetry is broken
spontaneously, which implies the existence of Goldsto
bosons; being the lightest of all hadrons, they are the relev
degrees of freedom at large distances.

These two properties of QCD are beautifully linked by t
low-energy theorem derived by Voloshin and Zakharov@10#,
which we discuss below. The first of these properties w
previously exploited to derive the low-energy amplitude
quarkonium-nucleon scattering@11,12# ~for recent work, see
Refs. @13,14#!. van der Waals interactions of quarkoniu
with nucleons and nuclei were discussed in Refs.@15–18#.
For applications to the low-energy quarkonium-pion scatt
ing and the structure of quarkonium, see Refs.@19–22#.
Quarkonium dissociation cross sections in interactions w
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H. FUJII AND D. KHARZEEV PHYSICAL REVIEW D 60 114039
light hadrons were evaluated in Refs.@5,23,24#. Some of the
results of this study were previously reported in Ref.@25#.

The picture which emerges from our approach is the
lowing. The heavy ‘‘onia’’ couple perturbatively to the gluo
field; at small distances, the entire interaction can be ev
ated perturbatively. At larger distances, however, the in
action becomes grossly modified by the coupling to p
fields, which is fixed by low-energy theorems. The dom
nance of the nonperturbative interaction at large distance
this case will be shown to be a consequence of the fi
energy density of QCD vacuum.2 We also find that when the
size of the dipoles shrinks to zero~which is what happens in
the heavy quark limit with quarkonia!, the nonperturbative
part of the interaction vanishes more slowly than the per
bative part — in other words, the interaction between v
small dipoles becomes totally nonperturbative. This surp
ing result will be shown to be a natural consequence of s
anomaly in QCD.

In this paper, we limit ourselves to the interaction at sm
energies; however we hope that some of our results ma
extended to the case of dipole scattering at high ener
@26#, where the broken chiral symmetry can also play a s
stantial role, as discussed by Anselm and Gribov@27#. The
paper is organized as follows. In Sec. II, we give the gene
expression for the scattering amplitude of two color dipo
in the framework of the operator product expansion~OPE!,
introduce the spectral representation method for the eva
tion of this amplitude, and use this method to rederive
perturbative expression@5# for the low-energy scattering am
plitude ~or potential!. In Sec. III, we discuss the scatterin
amplitude of color dipoles beyond the perturbation theo
derive the leading long-distance behavior of the potent
and discuss the relative strength of perturbative and non
turbative contributions. In Sec. IV, we evaluate the poten
acting between twoJ/c ’s. In Sec. V we use the low energ
theorems@10,29–31# to derive the sum rule relating th
strength of the potential to the energy density of QC
vacuum. In Sec. VI, we evaluate the cross sections ofJ/c
interactions with pions, relevant for the problem ofJ/c sup-
pression in heavy ion collisions@32,33#. The final Sec. VII is
devoted to summary and discussion.

II. INTERACTION OF COLOR DIPOLES
IN PERTURBATION THEORY

The small size of the heavy quarkoniumF allows us to
expand the amplitude of its interaction with hadrons (h,h8)
at low energy in the form of multipole, or operator produ
expansion@4,5#:

M5(
i

ci^h8uOi~0!uh&, ~4!

whereOi(x) are the gauge-invariant local operators andci
are the Wilson coefficients~polarizabilities! which reflect the
structure of the quarkonium; the energy of the hadrons

2This picture was foreseen by Bjorken@28#.
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assumed to be small compared to the binding energy of
quarkonium,e0. The factorization scale in this formula ca
be chosen ate0. At small energies, the leading operator
Eq. ~4! is the square of the chromo-electric fie
(1/2)g2Ea2(0) @4,5#—this is the leading twist-two operato
expressible in terms of gluon fields. Other twist-two ope
tors contain covariant derivatives leading to the powers
the ratio of the energy transfer to the binding energy and
therefore suppressed at small energy; the series of these
operators can be summed up into a double dipole form@5#:

g2

N (
n52,even

` K fUr i
1

~Ha1e!n21
r jUfL

3tr@Ei~0!~2 iD 0!n22Ej~0!#

5
g2

N K trF r•E~0!
1

Ha1e1 iD 0
r•E~0!G L , ~5!

where the Wilson coefficients are explicitly given by the e
pectation values over the singlet statef(r ) with the binding
energye; Ha(r ) is the effective Hamiltonian describing th
intermediate, SU(N) color-adjoint quark-antiquark state;D0

is the covariant derivative acting onE and the trace over the
color indices of gluon operators ensures that Eq.~5! is gauge
invariant. In the heavy quark limit,f(r ) can be approxi-
mated by the Coulomb wave function.

Using this multipole representation, one can write do
the amplitude of the scattering of two small color dipoles
low energies~in the Born approximation! in the following
form @5#:

V~R!52 i E
2`

`

dtK 0UTS (
i

ciOi~x! D S (
j

cjOj~0! DU0L .

~6!

Keeping only the leading operators, we can rewrite Eq.~6! in
a simple form

V~R!52 i S d̄2

a0
2

e0
D 2E

2`

`

dtK 0UT1

2
g2Ea

•Ea~ t,R!

3
1

2
g2Eb

•Eb~0!U0L , ~7!

whered̄2 is the corresponding Wilson coefficient defined

d̄2

a0
2

e0
5

1

3N K fUr i
1

Ha1e
r iUf L , ~8!

from which we have explicitly factored out the dependen
on the quarkonium Bohr radiusa0 and the Rydberg energ
e0. The factorsa0 and 1/e0 represent the characteristic d
mension and fluctuation time of the color dipole, respe
tively. The approximation used in deriving Eq.~7! is justified
when the gluon fields change slowly compared to 1/e0. The
Wilson coefficients~8! were computed forS @5# andP @19#
states of quarkonium in the largeN limit.
9-2
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LONG-RANGE FORCES OF QCD PHYSICAL REVIEW D60 114039
In physical terms, the structure of Eq.~7! is transparent: it
describes elastic scattering of two dipoles which act on e
other by chromoelectric dipole fields; color neutrality pe
mits only the square of dipole interaction. The amplitude~7!
was evaluated before@5# in perturbative QCD using func
tional methods. For our purposes, however, it is conven
to use a spectral representation approach.3 As a first applica-
tion of this approach, we will reproduce the result of@5# by a
different, and perhaps more simple, method.

First, it is convenient to expressg2Ea2 in terms of the
gluon field strength tensor@29#:

g2Ea25
g2

2
~Ea22Ba2!1

g2

2
~Ea21Ba2!

52
1

4
g2Gab

a Gaab1g2S 2G0a
a G0

aa1
1

4
g00Gab

a GaabD
5

8p2

b
um

m1g2u00
(G) , ~9!

where

um
m[

b~g!

2g
GaabGab

a 52
bg2

32p2
GaabGab

a ,

umn
(G)[2Gma

a Gn
aa1

1

4
gmnGab

a Gaab. ~10!

Note thatum
m is the trace of the energy-momentum tensor

QCD in the chiral limit, and as a consequence of decoup
theorem@35# theb function in Eq.~10! does not contain the
contribution of heavy quarks@i.e. b5 1

3 (11N22Nf)59#.
Let us now write down the spectral representation for

correlator of the trace of the energy-momentum tensor

^0uTum
m~x!un

n~0!u0&

5E d4k

~2p!3
ru~k2!u~k0!@e2 ikxu~x0!1eikxu~2x0!#

5E ds2ru~s2!DF~x;s2!, ~11!

where the spectral density is defined by

ru~k2!u~k0!5(
n

~2p!3d4~pn2k!u^nuum
mu0&u2, ~12!

the phase-space integral should be understood in Eq.~12!,
and

3The use of dispersion theory in electrodynamics for the inter
tion between neutral atoms was pioneered by Feinberg and Su
@34#.
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iDF~x;s2!5 i E d4k

~2p!3
d~k22s2!u~k0!@e2 ikxu~x0!

1eikxu~2x0!# ~13!

is the Feynman propagator of a scalar field in the coordin
space. Substituting the representation~11! in Eq. ~7!, the
potential can be expressed as a superposition of Yukawa
tentials corresponding to the exchange of scalar quant
masss:

Vu~R!52 i S d̄2

a0
2

e0
D 2S 4p2

b D 2E
2`

`

dtE ds2ru~s2!DF~x;s2!

52S d̄2

a0
2

e0
D 2S 4p2

b D 2E ds2ru~s2!
1

4pR
e2sR. ~14!

Our analysis so far has been completely general; the
namics enters through the spectral density~12!. Let us first
evaluate this quantity in perturbation theory, where it
given by the contributions of two-gluon states@see Fig. 1~a!#
defined by

ru
pt~q2![( ~2p!3d4~p11p22q!u^p1«1a,p2«2buum

mu0&u2,

~15!

where the phase-space integral is understood, as well a
summations over the polarization («1,2) and color indices
(a,b) of the two gluons. The calculation for SU(N) color
~see Appendix A! gives

ru
pt~q2!5S bg2

32p2D 2
N221

4p2
q4; ~16!

the appearance ofq4 dependence in Eq.~16! is of course
natural from dimensional arguments. Performing the integ
tion in Eq. ~14! over the invariant masss2 from zero to
infinity, we get the following result (N53):

Vu
pt~R!52g4S d̄2

a0
2

e0
D 2 15

8p3

1

R7
. ~17!

This result can also be derived by the functional method
Bhanot and Peskin@5# ~see Appendix B!.

-
her

FIG. 1. Contributions to the potential between quarkonia fro
~a! two-gluon exchange and~b! correlated two-pion exchange.
9-3
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H. FUJII AND D. KHARZEEV PHYSICAL REVIEW D 60 114039
Several remarks are in order here: The}R27 dependence
of the potential~17! is a classical result known from atom
physics@7#; as is apparent in our derivation, the extraR21 as
compared to the van der Waals potential}R26 is the conse-
quence of the fact that the dipoles fluctuate in time, and
characteristic time of fluctuationt;e0

21 (e0 is quarkonium
binding energy! is small compared to the spatial separati
of the ‘‘onia:’’ t!R—note an explicit integration over tim
in Eq. ~14!. This illustrates, in a somewhat different way, th
original argument of Voloshin@4# that the physical picture
behind the operator product expansion~OPE! is orthogonal
to the potential model—the latter is based on the assump
of instantaneous interaction, whereas the former is base
the assumption that the internal frequency of heavy qua
nium 1/e0 is much higher than the frequency of external s
fields. Retardation effects make questionable the possib
to describe the interactions of quarks inside a heavy qua
nium by a local potential. In our case, applying the O
method, we first average the interactions with soft gluo
over the quarkonium internal state, which corresponds to
infinite retardation. With the resulting coupling between t
quarkonium and the gluons, the potential description
onium-onium scattering is adequate since at low energies
relative motion of heavy quarkonia is slow. The retardati
effects manifest themselves in the modification of the sh
of the potential.

We note that although the matrix element of the opera
um

m can in general be nonperturbative, in perturbation the
um

m is of orderg2, and accordingly the potential~17! has the
prefactorg4. Then the second termg2u00

(G) in Eq. ~9!, which
describes the tensor 211 state of two gluons, gives the con
tribution in the same order ing. Adding this contribution to
Vu in Eq. ~17!, we recover the complete result of Ref.@5#

Vpt~R!52g4S d̄2

a0
2

e0
D 2 23

8p3

1

R7
. ~18!

Note that ourd̄2 is related to thed2 in Ref. @5# by d2a0e0

5d̄2g2. This perturbative expression is valid whena0 ,1/e0

!R!LQCD
21 .

III. BEYOND THE PERTURBATION THEORY:
THE ROLE OF GOLDSTONE BOSONS

At large distances, the perturbative description bre
down, because the potential becomes determined by
spectral density at smallq2, where the transverse momen
of the gluons become small.

A. Broken scale invariance

To see the importance of nonperturbative effects exp
itly, let us consider the correlator ofum

m ,

P~q2!5 i E d4xeiqx^0uTum
m~x!un

n~0!u0&

5E ds2
ru~s2!

s22q22 i e
. ~19!
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An important theorem@31# for this correlator states that as
consequence of the broken scale invariance of QCD,

P~0!524^0uum
m~0!u0&. ~20!

Note that the right-hand side of Eq.~20! is divergent even in
perturbation theory, and should therefore be regularized
subtracting the perturbative part. The vacuum expecta
value of theum

m operator then measures the energy density
non-perturbative fluctuations in QCD vacuum, and the lo
energy theorem~20! implies a sum rule for the spectral den
sity:

E ds2

s2
@ru

phys~s2!2ru
pt~s2!#524^0uum

m~0!u0&

5216evacÞ0, ~21!

where the estimate for the vacuum energy density extra
from the sum rule analysis givesevac.2(0.24 GeV)4 @36#.
Since the physical spectral density,ru

phys, should approach
the perturbative one,ru

pt , at highs2, the integral in Eq.~21!
can accumulate its value required by the RHS only in
region of relatively smalls2. In addition, another sum rule
@36–38#,

E ds2ru
phys~s2!5E ds2ru

pt~s2! ~22!

is implied by the quark-hadron duality.

B. Matching onto the chiral theory

At small invariant masses, the physical spectral density
the correlator~19! should be saturated by the lightest sta
allowed in the scalar channel—two pions:

ru
pp~q2!5( ~2p!3d4~p11p22q!u^p~p1!p~p2!uum

mu0&u2,

~23!

where, just as in Eq.~15!, the phase-space integral is unde
stood.

Since, according to Eq.~10!, um
m is a gluonic operator, the

evaluation of Eq.~23! requires the knowledge of the cou
pling of gluons to pions. This is a purely nonperturbati
problem. Nevertheless it can be rigorously solved, as it w
shown in Ref.@10# ~see also Ref.@29#!. The idea is the fol-
lowing: at small pion momenta, the energy-momentum t
sor can be accurately computed using the low-energy ch
Lagrangian,

L5
f p

2

4
tr ]mU]mU†1

1

4
mp

2 f p
2 tr~U1U†!, ~24!

whereU5exp(2ip/fp), p[paTa andTa are the SU(2) gen-
erators normalized by trTaTb5 1

2 dab. The trace of the
energy-momentum tensor for this Lagrangian is
9-4
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LONG-RANGE FORCES OF QCD PHYSICAL REVIEW D60 114039
um
m522

f p
2

4
tr ]mU]mU†2mp

2 f p
2 tr~U1U†!. ~25!

Expanding this expression~25! in powers of the pion field,
one obtains, to the lowest order,

um
m52]mpa]mpa12mp

2 papa1•••, ~26!

and this leads to an elegant result@10# in the chiral limit of
vanishing pion mass:

^p1p2uum
mu0&5q2. ~27!

This result for the coupling of the operatorum
m to two pions

can be immediately generalized for any~even! number of
pions using Eq.~25!.

Now that we know the coupling of gluons to the two-pio
state, the pion-pair contribution to the spectral density~23!
can be easily computed by performing the simple ph
space integration with the result

ru
pp~q2!5

3

32p2
q4; ~28!

in the general case ofNf light flavors, the coefficient 3 in Eq
~28! should be replaced by (Nf

221). Again, theq4 depen-
dence comes only from dimensionality. Multipion contrib
tions can be evaluated using Eq.~25!; we have found that a
small invariant masses their influence is small. The domin
contribution at small invariant massess, in which we are
primarily interested here, therefore comes from thepp state.

Recalling that to the leading order in OPE the scatter
amplitude is dominated by the operator1

2 g2Ea2, we need to
evaluate also the matrix element of the second term in
~9!, ^0ug2u00

(G)upp& to complete our derivation of the sca
tering amplitude. As we mentioned in the previous secti
this tensor operator contributes a substantial fraction, 8
to the full perturbative result. However, unlike the sca
operator, the tensor term is not coupled to the anomaly.
contribution ^0ug2u00

(G)upp& therefore is ofO(g2), and is
subleading in the heavy quark limit. In this limit, we thu
come to the following low-energy expression@10#:

K ppU 1

2
g2Ea2U0L 5S 4p2

b Dq21O~as ,mp
2 !. ~29!

The matrix element in question is therefore known up toas

andmp
2 corrections.

The most important correction due to the finite pion ma
is the phase space threshold; to take it into account,
modify the spectral density in the following way (q2

>4mp
2 ):

ru
pp~q2!5

3

32p2 S q224mp
2

q2 D 1/2

q4. ~30!

This expression should be valid at smallq2. Substituting this
spectral density into the general expression~14!, we get the
potential due to thepp exchange; at largeR
11403
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Vpp~R!→2S d̄2

a0
2

e0
D 2S 4p2

b D 23

2
~2mp!4

mp
1/2

~4pR!5/2
e22mpR.

~31!

Note that this potential isnot of Yukawa form. The sameR
dependence ofpp exchange at large distances was found
long time ago by Le´vy @39# and Klein@40#. It has been given
previously also by Bhanot and Peskin@5#, but up to an un-
known constant. In our approach, the strength of the po
tial, as well as its dependence on the numbers of colorN
and flavorsNf –;(Nf

221)/(11Nc22Nf)
2, is fixed by the

low-energy QCD theorems.
Note also that, unlike the perturbative result~17! which is

manifestly O(g4) @in addition to a factor (d̄2a0
2/e0)2#, the

amplitude~31! is O(g0)—this ‘‘anomalously’’ strong inter-
action is the consequence of scale anomaly.4

C. Dynamical enhancements in the spectral density

The low-energy theorems~LET’s! @31,10# not only allow
us to evaluate explicitly the contribution of uncorrelatedpp
exchange; they also tell us that this contribution alone is
the complete answer yet. Indeed, the numerical anal
shows that thepp spectral density~30! alone cannot saturat
the sum rule~21!—at larges2, the physical spectral densit
approaches the spectral density of perturbation theory, so
integral in Eq.~21! does not get any contribution; at sma
s2, thepp spectral density~30!, according to the chiral and
scale symmetries is suppressed by;s4. The low energy
theorems thusrequire the presence of resonant enhanc
ment~s! @30# in the 011 pp, and perhaps multipionK̄K and
hh channels as well. Here we will leave the complete m
tichannel problem for future investigations, and study on
the influence of these resonances in thepp channel on the
potential between the color dipoles.

To do this, we define the pion scalar form factor b
^p1p2uum

mu0&5q2F(q2) ~in the chiral limit! and write down
the spectral density as

ru
pp~s!5

3

32p2 S s24mp
2

s D 1/2

s2uF~s!u2. ~32!

It may be illustrative to consider first the idealized case
a sharps resonance. For simplicity, let us assume that
difference between the physical and perturbative spec
densities is due to thiss resonance alone, and write th
spectral density asru

phys(s)2ru
pt(s)5cd(s2ms

2). The LET
~21! then fixes the contribution of the narrows state of mass
ms as

E ds

s
@ru

phys~s!2ru
pt~s!#5

c

ms
2

5216evac. ~33!

4Of course, in the heavy quark limit the amplitude~31! will nev-
ertheless vanish, sincea0→0 ande0→`.
9-5
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H. FUJII AND D. KHARZEEV PHYSICAL REVIEW D 60 114039
The corresponding potential is of Yukawa type,

V~R!52S d̄2

a0
2

e0
D 2S 4p2

b D 2

c
1

4pR
e2msR. ~34!

In this idealized situation, the strength of the potential
directly related to the energy density of nonperturbat
QCD vacuum. Note, however, that this simplified model
the sharps resonance is inconsistent with the asymptot
derived from the broken chiral symmetry@Cf. Eq. ~31!#.

The form factorF(s) is directly related to the experimen
tal pp phase shifts by the Omne`s-Muskhelishvili equation
@41,42#. Within the single-channel treatmentF(s) has a so-
lution

F~s!5expF s

pE4mp
2

s1
ds8

d0
0~s8!

s8~s82s2 i e!
G , ~35!

whered0
0(s) is the phase shift of thepp scattering in the

scalar-isoscalar channel, and formallys1→`. With this for-
mula we can make a full use of the experimental informat
on thepp correlations.

In our calculation we use a simple analytic form@43# for
the phase shiftd0

0(s) which has been shown to fit the expe
mental data up tospp.1 GeV2. Beyond this energy, one
should take into account the contributions of other chann
such asK̄K. We performed the integral in Eq.~35! numeri-
cally up to s15(5 GeV)2 by extrapolating the low-energ
fit of the phase shift. When we changes1 to (20 GeV)2, the
change inF(s) at 1 GeV2 is a few percent. In Fig. 2 we
show the resulting scalar formfactor of the pion,F(s). The
structure ofF(s) may be interpreted as due to a broads and
narrow f 0 resonances. For a more realistic evaluation of
formfactor, the multi-channel calculation has to be done;
results will be reported elsewhere. In this paper, as a sim
model for theru

phys, we will take the form

ru
phys~s!5H ru

pp~s! ~4mp
2 ,s,s0!,

ru
pt~s! ~s0,s!,

~36!

wheres0 is a matching scale.

FIG. 2. Scalar-isoscalar form factor of the pion~35!.
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D. The analysis of the sum rule

Let us consider the sum rule~21! within our simple model
for the spectral density. When the model~36! for ru

phys(s) is
used, the upper limit of the integral in Eq.~21! can be re-
placed bys0. In Fig. 3 we show the physical and perturbati
parts of the integrand in the sum rule~21! with solid and
dashed lines, respectively. Since for the spectral densit
the perturbation theory there is no scale other thans, the
coupling constant should be taken running with this scale

ru
pt~s!5S 9as~s!

8p D 2 2

p2
s2, ~37!

whereas(s)54p/@b ln(s/LQCD
2 )# with LQCD5200 MeV.

We note that the spectral density for uncorrelated pio
ru

pp ~30!, which is shown in dotted line in Fig. 3, has th
same functional form as theru

pt , up to the logarithm and the
threshold factor. As a consequence of this, we find that
uncorrelatedpp spectral density~30! cannot obey both the
sum rule~21! and the duality constraint~22!. On the other
hand, the spectral density obtained with the Omn`s-
Muskhelishvili solution has a nontrivial structure~see Fig.
3!; one can clearly see a narrow peak at thef 0 resonance
region with a shoulder coming from the broad ‘‘s ’’ around
0.6 GeV.

We plot the integral in the LET for the physical~solid!
and perturbative~dashed! parts separately as a function o
the upper limit,s0. One can see that the value of the integ
for the physical spectral density is mainly accumulated in
GeV region, and the ‘‘s ’’ contributes to it about 20%~see
Fig. 4!. The perturbative part behaves ass2 up to the loga-
rithm, weighting the higher energy region. The LET tells
that the difference of these two contributions should be eq
to the energy density of the QCD vacuum. In our model
the spectral density, the LET~21! is satisfied when we
chooses05(2;2.5 GeV)2. As for the duality relation~22!,
the equality of the integrals of the physical and perturbat
spectral densities is achieved when we chooses0
;(2 GeV)2 ~Fig. 5!—this value of the matching scal
therefore provides a consistent solution to both the LET a
the duality relation.

FIG. 3. Spectral density of the correlator^0uTum
m(x)un

n(0)u0& at
low energy~solid line!. The uncorrelated two-pion contribution i
shown in dotted line, and the perturbative one with one-loop r
ning coupling constant (LQCD5200 MeV) in dashed line.
9-6
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LONG-RANGE FORCES OF QCD PHYSICAL REVIEW D60 114039
Even though our spectral density cannot be taken s
ously in the high mass region beyond;1 GeV, our calcu-
lation nevertheless shows the following: Nonperturbative
namics of QCD generates enhancements in the interme
mass region in the form of hadronic resonances, which m
the physical spectral density consistent with the LET~21!.
The narrowf 0(980) is more important for the LET than th
low mass, broads resonance. Therefore, to discuss the
fluence of heavier resonances@like f 0(1500)] we need to
perform a coupled-channel analysis including theK̄K and
other states. In the rest of this paper we put the match
scaleAs052 GeV.

IV. THE POTENTIAL BETWEEN COLOR DIPOLES

As a concrete example, let us consider the potential
tween twoJ/c ’s at rest. Although the charm quark is pe
haps not heavy enough to justify the heavy quark limit,
try to extrapolate our result toJ/c and discuss its implica
tions.

For the pure Coulombic bound state,d̄257/36, and the
Bohr radius and Rydberg energy are given bya0

54/(3asm) and e05(3as/4)2m51/(a0
2m), respectively

FIG. 4. Physical~solid! and perturbative~dashed! parts of the
integral~21! as a function of the upper limits0. The LET states that
the difference of the two should be equal to the QCD vacu
energy density, 16uevacu.0.053 GeV4.

FIG. 5. Integral of the duality relation. The notations are t
same as in Fig. 4.
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(as5g2/4p). We haveas(J/c)50.87 anda050.20 fm for
the J/c with the phenomenological inputs,e052MD
2M (J/c)5642 MeV and m51.5 GeV. These values
show the application toJ/c will be qualitative at most, be-
cause of the largeas value and becausea0.s0

21/2; the latter
means that nonperturbative effects penetrate inside the ra
of J/c.

In Fig. 6 the resulting potential~14! between twoJ/c ’s is
shown as a solid line. In our model for the spectral dens
the potential consists of two components, highq2 ~dotted!
and low q2 ~dashed!, separated bys0, which we set
(2 GeV)2. ~As in the heavy quark limit, we omit the con
tribution from the tensor exchangeu00

(G) .!
First, we see that the potential at large distances is n

rally determined by the spectral density of the lowq2 region.
Moreover the total strength of the potential at large distan
is enhanced by the nonperturbative spectrum of QCD, co
pared to the formal perturbative result~17! denoted by the
dashed-dotted line. The region where the two compone
compete isR.0.5;0.6 fm, which is much larger than th
scale determined bys0

21/2;0.1 fm. This is in contrast with
naive expectation that beyond the scales0

21/2, the potential
should be dominated by the nonperturbative spectral den
The reason for this lies in the large value ofas(J/c), reflect-
ing the fact that charmonium is still far from the heavy qua
limit.

In the discussion of the LET~21!, we used the running
coupling constant, while the coupling constant used her
frozen at theJ/c scale. This is because in the heavy qua
limit, it is natural to renormalize the coupling constant at t
scale of quarkoniumg(e0) with e0@s0

1/2LQCD. The matrix
element ofG2 should then contain the effects of quantu
fluctuations below this energy scale. Within the perturbat
approach the renormalization group ensures independen
the final result on the choice of renormalization point, at le
in the leading-log approximation, which we used in Eq.~37!.
In the case ofJ/c, the renormalization scale~chosen at the
binding energye0) is still lower than s0, and the spectra
density ~16! with fixed as(J/c) is significantly larger than

FIG. 6. Potential~14! between twoJ/c ’s ~solid line!. Contribu-
tions of the spectral densities ofs.s0 and s,s0 with As0

52 GeV, respectively, are plotted in dotted and dashed lines.
perturbative result~17! is shown in dashed-dotted line, for refe
ence.
9-7



‘in
is
n

o

m
-

-

ee
ba

h

i-
re
in

-
te

er

he
-
-

t the
e,

tor
-

is

-
on-

o-

H. FUJII AND D. KHARZEEV PHYSICAL REVIEW D 60 114039
the one with the running coupling constant~37!. Again, this
reflects the fact that nonperturbative effects penetrate ‘
side’’ the J/c. The most important feature seen in Fig. 6
the dominance of low-q2 enhancements in the spectral de
sity in the behavior of potential at large distances.

V. THE SUM RULE FOR THE POTENTIAL

We can derive an interesting sum rule for the strength
the potential. According to Eqs.~14! and ~17!, we have

E
a

`

d3R@Vu~R!2Vu
pt~R!#

52S d̄2

a0
2

e0
D 2S 4p2

b D 2E ds2

s2
@ru

phys~s2!2ru
pt~s2!#

3G~2,sa!, ~38!

wherea should be chosen to be of the order of the oniu
radius, andG(z,p)5*p

`dttz21e2t. As we discussed previ
ously, the physical spectral densityru

phys(s2) differs from the
perturbative one,ru

pt(s2), in the regions2&s0. In the heavy
quark limit, a}1/(asm) andaAs0!1. Therefore we can re
write the sum rule~38! in a more suggestive form:

E
a

`

d3R~Vu~R!2Vu
pt~R!!

52S d̄2

a0
2

e0
D 2S 4p2

b D 2E ds2

s2
@ru

phys~s2!2ru
pt~s2!#

52S d̄2

a0
2

e0
D 2S 4p2

b D 2

16uevacu, ~39!

which relates the overall strength of the interaction betw
small color dipoles to the energy density of the nonpertur
tive QCD vacuum.

VI. QUARKONIUM INTERACTIONS WITH PIONS

As another application of our formalism, we evaluate t
cross sections of elastic scatteringpF→pF and of excita-
tion processpF→pF8; the latter cross section was prev
ously computed in Refs.@20,21#. These cross sections a
important for the analyses of quarkonium production
heavy ion collisions@32,33#. The fact that soft pions effec
tively decouple from heavy quarkonia was previously no
in Ref. @19#.

A. Elastic pF scattering

Within the OPE formalism~4!, it is straightforward to
write down the amplitude of pion-quarkonium elastic scatt
ing at small energies: to the leading order in OPE,

M kl~P8,p8;P,p!52d̄2

a0
2

e0
K pk~p8!U 1

2
g2Ea2~0!Up l~p!L .

~40!
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The matrix element̂ pkug2Ea2(0)up l& can be found from
^pkp l ug2Ea2(0)u0&, Eq.~29!, by crossing; the LET~29! tells
us that up toas andmp

2 corrections

K pk~p8!U 1

2
g2Ea2~0!Up l~p!L 5

4p2

b
^pk~p8!uum

m~0!up l~p!&

5dkl
4p2

b
tF~ t !, ~41!

wheret5(p2p8)2, and we have introduced, as before, t
pion scalar form factor,F(t). Taking into account the non
relativistic normalization of theF state, we have the expres
sion for the total elastic cross section in the c.m. frame.

s~s!5
1

2p0v̄ rel
E d3P8

~2p!3E d3p8

~2p!32p08
uMu2~2p!4

3d4~P81p82P2p!

5
1

16ps

M2

p2 S d̄2

a0
2

e0
D 2S 4p2

b D 2E
0

4p2

d~2t !t2uF~ t !u2,

~42!

wherev̄ rel5A(Pp)22M2m2/P0p0 is the relative velocity of
the incoming J/c and pion, andp25@s2(M2mp)2#@s
2(M1mp)2#/4s is the c.m. momentum.

The result for the elasticpJ/c cross section is shown in
Fig. 7. The pion scalar form factorF(q2) and other param-
eters are the same as in the previous section. Note tha
chiral symmetry requires a strong momentum dependenct2

in Eq. ~42!; therefore at low energies theJ/c interaction with
pions is very weak. Extrapolation of the scalar form fac
F(t) to the scattering region,t,0, induces additional sup
pression of thepJ/c interaction. At small energies~see Fig.
7! the cross section is on the order of 0.01 mb, which
much smaller than the geometrical cross section of theJ/c.
For quarkonium production in heavy ion collisions, this im
plies that the interactions with secondary pions do not c
tribute to the broadening of the quarkonium transverse m
mentum spectra.

FIG. 7. pJ/c elastic cross section~solid! as a function of the
c.m. momentum. Dashed line is the case ofF(t)51.
9-8
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B. pF˜pF8 transition amplitude

Our next example is the transition processpF→pF8. In
this case, however, the transferred momentum is on the o
of the binding energy,D5M 82M5O(e0), which may in-
validate our assumption on the factorization between
short and long distances. Fortunately, since the size
quarkonium a0;1/(g2m)!1/e0;1/(g4m) in the heavy
quark limit, the double-dipole form

M5K f8pU trF r•E
1

Ha1e1 iD 0
r•EGUfpL ~43!

is still valid @5#. The structure of this formula is transparen
the initial quarkoniumF absorbs or emits a gluon, the
propagates with the internal energy,2e1Q, and emits or
absorbs another gluon to form a color-singlet, exci
quarkonium stateF8; these gluons originate from pions.

To apply our formalism, let us approximate2 iD 0 in Eq.
~43! by the typical value of the gluon momentum,D. Within
this ~rather crude! approximation, the quarkonium part an
the pion part can be factorized in the matrix element~43! and
the relevant Wilson coefficient, which for this process rea

d̄28
a0

2

e0
5

1

3N K f8Ur i
1

Ha1e2D
r iUf L . ~44!

The transition matrix element then reduces to the same f
as in the elastic case:

M5S d̄28
a0

2

e0
D S 4p2

b D tF~ t !, ~45!

and the total transition cross section can be written as

s~s!5
1

16ps

MM 8

p2 S d̄28
a0

2

e0
D 2S 4p2

b D 2E
tmin

tmax
d~2t !t2uF~ t !u2.

~46!

In Fig. 8 we show the result for thepJ/c→pc8 cross

FIG. 8. pJ/c→pc8 cross section. The notations are the sa
as in Fig. 7.
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section, evaluated assuming the 1s and 2s Coulomb wave
functions, andD5(3/4)e0. It shows that the cross section
on the order of 0.01–0.1 mb.

We also evaluated the partial width of thec8 due toc8
→cpp decay within the same formalism, and obtainedG
5260 (70) keV with~without! using the form factorF(s).
This should be compared with the experimental value 1
620 keV @44#. We conclude that our calculations, due
the assumption of the heavy quark limit, hold to within
factor of 2 only. Additional confirmation of thes dependence
of the matrix element comes from the dipion invariant ma
distribution in thec8→cpp decay@45#.

VII. SUMMARY AND DISCUSSION

We have shown that at large distances the interaction
small color dipoles becomes totally nonperturbative. This
sult has a deep physical origin: indeed, one can trace it b
to the sum rule~21! for the correlator of the energy
momentum tensor, which reflects the fact that the n
perturbative vacuum of QCD is characterized by nonz
energy density.

For QCD practitioners, ‘‘nonperturbative’’ is often a sub
stitute for ‘‘incalculable.’’ Nonetheless, in our case, we we
able to evaluate explicitly this, nonperturbative, scatter
amplitude in a model-independent way. The key ingredie
in our approach were~i! the use of spectral representation
the t-channel and~ii ! the low-energy theorem arising from
the ~broken! scale and chiral invariances of QCD.

What are the implications of our results? First, we fi
that the long-distance interactions of small color dipoles
dominated by pion clouds; the qualitative picture of this
teraction is illustrated in Fig. 9. The size occupied by t
heavy quark-antiquark pair in the quarkonium~see Fig. 9! is
a0;1/(g2m); the gluon cloud spreads up to the distances
the order of the inverse binding energy 1/e0;1/(g4m), since
the typical momentumK of gluons isK;e0. ~This picture of
quarkonium structure emerges also from the NRQCD
proach of Bodwin, Braaten, and Lepage@46#.! The pion
cloud begins to dominate at the distances;s0

21/2, and
spreads up to the distances (2m)21, where m is the pion
mass (s0 is the mass scale at which the nonperturbative
fects begin to dominate in the spectral density, see Sec.!.
This pion cloud may as well be important in high-ener
scattering. One may even speculate~see Bjorken@28#! that

e

FIG. 9. Schematic picture of the potential between heavy oni
9-9
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H. FUJII AND D. KHARZEEV PHYSICAL REVIEW D 60 114039
pions are responsible for the so-called ‘‘soft Pomeron,’’ ev
though it is not yet clear how to extend our calculations
high-energy scattering—this would require evaluation
higher orders in the multipole expansion. Nevertheless
possibility that the diffusion of partons toward smallkt
makes pionic degrees of freedom important looks very pl
sible to us. Second, the fact that pions~and therefore light
quarks! dominate the long-distance interactions of hea
quark systems is important for lattice QCD simulation
Even though naively one may think that light quarks a
relatively unimportant for the studies of heavy quarkonia
the lattice, our findings show that the opposite is true. T
suggests that to extract the properties of heavy quark
from the lattice QCD one has to use ‘‘unquenched’’ theo
with light quarks. The importance of pionic degrees of fre
dom in determination of the mass splittings of heavy quar
nia was investigated in Ref.@22#.

Third, we find that both inelastic and elasticpJ/c scat-
tering cross sections are very small, less than 0.1 mb.
smallness of inelastic cross section suggests that pions
very ineffective in dissociatingJ/c ’s, lending support to the
idea to use quarkonia as a signal of deconfinement@32#. The
smallness of the elastic cross section explains why the tr
verse momentum distributions ofJ/c ’s seem to be unaf-
fected by the final state interactions with secondary pio
whereas much biggerc8’s, to which our multipole expansion
analysis does not apply, can show significantly larger m
transverse momenta.
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APPENDIX A: DERIVATION OF EQS. „14… AND „16…

The Feynman propagator of a scalar fieldw of masss is
defined by

iDF~x;s2!5 i ^Tw~x!w~0!&

5 i E d4k

~2p!3
d~k22s2!u~k0!

3@e2 ikxu~x0!1eikxu~2x0!#

5E d4k

~2p!4

e2 ikx

s22k22 i e

5
i

4p2

s2

A~2x21 i e!s2
K1@A~2x21 i e!s2#,

~A1!

whereK1 is the modified Bessel function. The Born amp
tude of one-boson exchange with couplingg is
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iMB~q!5E d4xeiq•x^Tigw~x!igw~0!&

5 ig2E d4xeiq–xiDF~x;s2!, ~A2!

which may be related to an interaction potential byiM(q)
52 iV(q). Going to Euclidean space, wherexE

25t21x2

5t21R2, we can show that

V~R!52g2E
2`

`

dtiDF~x;s2!

52g2E
2`

`

dt
1

4p2

s2

AxE
2s2

K1~AxE
2s2!

52
g2

4pR
e2sR. ~A3!

To the leading in the OPE, the potential between co
dipoles~14! is a superposition of this Yukawa potential wit
the spectral function,ru(s2). In the perturbative calculation
the matrix element ofG2 between the vacuum and the two
gluon state is

^p1«1a,p2«2buGabcGab
c u0&

54~2p1•p2«1* •«2* 1p1•«2* p2•«1* !dab1O~g2!,

~A4!

where pi , « i and a are the momentum, polarization an
SU(N) color index of the gluon, respectively. Noting that th
sum over physical polarizations yields the projectio
(pol«m«n* 5d i j 2pipj /p2, we have a compact expression,

(
pol,col

u^p1«1a,p2«2buG2u0&u2542~N221!2~p1•p2!2

58~N221!q4, ~A5!

which depends only onq25(p11p2)2. With the phase
space factor of two identical particles,

1

2E d3p1

~2p!32v1
E d3p2

~2p!32v2

~2p!3d4~p11p22q!5
1

32p2
,

~A6!

we find Eq.~16! as the spectral density of the correlator
um

m52(bg2/32p2)G2, to the leading ing.
Similarly the spectral density of the two-pion states~28!

can be calculated, but witĥpkp l uum
mu0&5q2dkl in the chiral

limit ( k,l 51,2,3).

APPENDIX B: ALTERNATIVE DERIVATION OF EQ. „17…

To confirm our result, we derive here Eq.~17! applying
the functional method of Ref.@5# to the scalar part of the
interaction~7! ~in Euclidean space!:
9-10



f

LONG-RANGE FORCES OF QCD PHYSICAL REVIEW D60 114039
Vu~R!52S d̄2

a0
2

e0
D 2E

2`

`

dt K 0Ug2

8
G2~x!

g2

8
G2~0!U0L

52S d̄2

a0
2

e0
D 2g4

32E2`

`

dt^0uGab
a ~x!Ga8b8

b
~0!u0&2,

~B1!

where all indices are summed over. Using the expression
the two-point function of the gluon in Feynman gauge,

^Am
a ~x!An

b~y!&5
1

4p2

1

~x2y!2
dmndab, ~B2!

we have

^Gmn
a ~x!Gm8n8

b
~0!&5

2

4p2

dab

x6
$dnn8~dmm8x

224xmxm8!

1dmm8~dnn8x
224xnxn8!
.

e

,

11403
or

2dnm8~dmn8x
224xmxn8!

2dmn8~dnm8x
224xnxm8!%1O~g2!,

~B3!

and

^Gmn
a ~x!Gm8n8

b
~0!&25~N221!

24

p4

1

x8
1O~g2!. ~B4!

Substituting Eq.~B4! into Eq. ~B1!, we obtain the leading
expression~17! for the potential of the scalar part (x25t2

1R2),

Vu~R!52S d̄2

a0
2

e0
D 2g4

32E2`

`

dt~N221!
24

p4

1

x8
,

52g4S d̄2

a0
2

e0
D 2 15

8p3

1

R7
. ~B5!
on
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