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Matching the heavy particle approach to relativistic theory
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On the simple model of interacting massless and heavy scalar fields it is demonstrated that the technique of
heavy baryon chiral perturbation theory reproduces the results of relativistic theory. Explicit calculations are
performed for diagrams including two loops.@S0556-2821~99!06621-7#

PACS number~s!: 12.39.Fe, 03.70.1k
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I. INTRODUCTION

Heavy baryon chiral perturbation theory~HBCHPT!, sug-
gested in Ref.@1#, is an important and effective method o
calculating of different processes involving electromagne
and strong interactions.~For review and references see Re
@2,3#.! The authors of Ref.@1# used the ideas of heavy qua
effective field theory which allowed them to avoid seve
complications appearing in the problem of the relativis
treatment of baryons at low energies, encountered in Ref.@4#.
Jenkins and Manohar suggested taking the extremally n
relativistic limit of the fully relativistic theory and expand i
inverse powers of the baryon massM.

In the heavy baryon approach one integrates out he
degrees of freedom and expands the resulting nonlocal
erators in inverse powers of large mass. In terms of the r
tivistic perturbation theory of the original field theoretic
model ~Feynman diagrams! heavy baryon approach corre
sponds to the expansion of integrands in the loop integra
powers of 1/M with subsequent term by term integration
the resulting series@5#. The noncommutativity of the integra
tion over loop momenta and the expansion in 1/M generates
a problem of matching of heavy baryon approach to
original relativistic theory. According to Lepage’s@6# argu-
ment from the uncertainty principle, one should be able
compensate the difference between the results of ‘‘naiv
heavy baryon and relativistic approaches by including ad
tional terms into the Lagrangian of the heavy baryon
proach. While the problem of this matching has been a
lyzed at one loop level@5,7,8#, to the best of our knowledge
the matching procedure for higher order loops has not b
studied.

In the present paper we consider the matching problem
a two loop level on the example of the forward scatter
amplitude in a scalar theory. The consideration of the n
zero spin and the nonzero transferred momentum makes
culations more tedious and less transparent, bringing not
new and essential in the problem considered. In our calc
tions we use the technique of calculation of loop integrals
dimensional counting, developed in Ref.@9#.

We explicitly show that heavy baryon approach rep
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duces the results of the original relativistic theory at tw
loop level.

II. ONE-LOOP ANALYSIS

Let us consider a field theoretical model described by
Lagrangian

L52
1

2
F* ]m]mF2

1

2
M2F* F

2
1

2
f]m]mf2gF* Ff1L1 , ~1!

where F is a complex scalar field with massM, f is a
neutral massless scalar field,g is a coupling constant, andL1
contains all counterterms which are necessary to remove
vergences~one can include also interactions with the deriv
tives and/or a larger number of fields and correspond
counterterms!.

To avoid complications due to the infrared singulariti
we work in six-dimensional space-time. We use dimensio
regularization andn is a dimension of space-time.

Heavy baryon approach to the processes which invo
one heavy particle uses the following expansion of the he
scalar propagator (pm5Mvm1km , v251):

1

p22M2 5
1

2Mvk1k2 5
1

2M

1

vk1k2/2M

5
1

2M S 1

vk
2

1

2M

k2

~vk!21 D . ~2!

This expansion corresponds to the following Lagrangian:

L152Mc* S v]1
]2

2M Dc, ~3!

where the second term ofL1 is treated perturbatively. This
Lagrangian can be obtained from the free part ofL corre-
sponding to heavy scalar field, definingF5exp$ iM vx%c.

Let us start with the one loop self-energy correction to
scattering process in the original relativistic theory, depic
in Fig. 1~a! ~the solid line corresponds to the heavy sca
©1999 The American Physical Society38-1
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and dashed line corresponds to massless scalar!. The expres-
sion for this diagram is proportional to the following inte
gral:

J115E dnq

@q21 i e#@~p1q!22M21 i e#
. ~4!

The straightforward integration yields (p85Mv, p5Mv
1 l , v251, l 250, p25M212Mv l )

J115
ipn/2

M
GS n

2
21DG~32n!~22v l !n23

2F1

3S n

2
21,n22;n22;2

2v l

M D
1 ipn/2~M2!n/222

G~22n/2!G~n23!

G~n22! 2F1

3S 1,22n/2;42n;2
2v l

M D , ~5!

where pFq(a1 , . . . ,ap ;b1 , . . . ,bq ;z) are the~generalized!
hypergeometric functions ofz @10#. Heavy baryon expansion
for J11 is realized by expanding@according to Eq.~2!# the
integrand in 1/M and integrating the resulting series term
term.

As it was observed in Ref.@9#, expanding integrand in
powers of some parameter and changing the order of inte
tion and summation one recovers that part of the value of
integral which can be expanded in powers of given para
eter with nonzero coefficients.

From the expression~5! we see that the first term can b
expanded in powers of 1/M with nonzero coefficients, while
the second one cannot—it contains (M2)n/222. Hence we
expect that heavy baryon approach reproduces the first
of the expression~5!.

Indeed,

J115E dnq

@q21 i e#@~p1q!22M21 i e#

5E dnq

@q21 i e#@~ l 1q!212Mv~ l 1q!1 i e#

5
1

2ME dnq

@q21 i e#@v~ l 1q!1~ l 1q!2/2M1 i e#

expanding the integrand and changing the order of inte
tion and summation we obtain

FIG. 1. One-loop corrections to the heavy scalar propagato
the heavy scalar-massless scalar scattering process.
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J11HB5
1

2M H E dnq

@q21 i e#@v~ l 1q!1 i e#

2
1

2ME dnq~q1 l !2

@q21 i e#@v~ l 1q!1 i e#2J 1•••

5
ipn/2

M
GS n

2
21DG~32n!~22v l !n231

ipn/2

2M2

3GS n

2
21DG~32n!~n22!~22v l !n221••• .

~6!

As was expected, Eq.~6! reproduces the expansion of th
first term of expression~5!.

The second term of Eq.~5! which cannot be expanded i
powers of 1/M is analytic in momentuml and hence can be
reproduced by introducing additional terms into the Lagra
ian of the heavy baryon approach. Free propagators of
heavy scalar particle appearing in the expression for the c
sidered diagram are apparently reproduced by heavy ba
approach. The same is true for all diagrams and we will
include the contributions of the free propagators in o
analysis below. Fig. 1~b! schematically represents the fir
term on the right-hand side of the Eq.~5! @or Eq. ~6!# and
Fig. 1~c! corresponds to the contributions of compensat
terms.

Next one-loop diagram we are considering here is dra
in Fig. 2~a! ~one-loop vortex correction to the light scala
heavy scalar vertex!. The result of this diagram is propor
tional to the following integral:

in

FIG. 2. One-loop corrections to the vertex in the heavy sca
massless scalar scattering process.

FIG. 3. Two-loop correction to the heavy scalar propagator
the heavy scalar-massless scalar scattering process.
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J125E dnq

@q21 i e#@q212p8q1 i e#@~p1q!22M21 i e#

52 i ~M2!n/223pn/2
G~n24!G~32n/2!

G~n23! 3F2S 1,1,32n/2;2,52n;
M22p2

M2 D2 i ~M2!n/223pn/2S M22p2

M2 D n24

3
G~42n!G~n/221!

n23 3F2S n/221,n23;n22;
M22p2

M2 D
5

ipn/2

M2
G~32n!G~n/221!~22v l !n242

ipn/2

2M3
G~42n!G~n/221!~22v l !n231•••2 i ~M2!n/223pn/2

3
G~n24!G~32n/2!

G~n23! 3F2S 1,1,32n/2;2,52n;
22v l

M D . ~7!
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On the other hand heavy baryon approach leads to

J12HB5
1

4M2E dnq

@q21 i e#@v~ l 1q!1 i e#@vq1 i e#

2
1

8M3E dnq~q1 l !2

@q21 i e#@v~ l 1q!1 i e#2@vq1 i e#
1•••

5
ipn/2

M2
GS n

2
21DG~32n!~22v l !n24

2
ipn/2

2M3
GS n

2
21DG~42n!~22v l !n231••• . ~8!

The comparison of Eqs.~7! and ~8! shows that heavy
baryon approach reproduces that part of relativistic ans
which can be expanded in inverse powers ofM. The second
11403
er

part is analytic inl and can be reproduced by adding app
priate terms into the Lagrangian of the heavy baryon
proach. Figure 2~b! and 2~c! correspond to Eq.~8! and the
contributions of compensating terms, respectively. T
analysis of the rest of one-loop diagrams lead to the sa
result: heavy baryon approach reproduces those parts of
grams which are nonanalytic in the momenta and the rem
ing parts, analytic in momenta can be reproduced by add
terms into the effective Lagrangian of the heavy baryon
proach.

III. TWO-LOOP ANALYSIS

Two-loop diagrams have more complicated structure.
us consider two-loop correction to the propagator of
heavy scalar in original relativistic theory depicted in Fi
3~a!. The result of this diagram is proportional to the follow
ing integral:
J215E dnq1dnq2

@q1
21 i e#@q2

21 i e#@~p1q1!22M21 i e#2@~p1q11q2!22M21 i e#
. ~9!
-
From the method of dimensional counting@9# it follows that

J215d2n27~p2!n25(
k50

`

f 1kd
k1dn24~p2!n25(

k50

`

f 2kd
k

1~p2!n25(
k50

`

f 3kd
k, ~10!

where

d5
M22p2

p2 5
22v l

M

1

112v l /M
~11!
and the coefficientsf ik are determined by the original inte
gral ~9! @9#. Substituting Eq.~11! into Eq. ~10! we obtain

J215~22v l !2n27M 23(
k50

`

D1kS 2v l

M D k

1~22v l !n24Mn26(
k50

`

D2kS 2v l

M D k

1M2n210(
k50

`

D3kS 2v l

M D k

, ~12!

whereDik do not depend onM, l, or v.
8-3
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Actual calculations ofJ21 can be performed using the methods of Ref.@9# as follows. Let us rewrite

J215E dnq1dnq2

@q1
21 i e#@q2

21 i e#@2Mv~ l 1q1!1~ l 1q1!21 i e#2@2Mv~ l 1q11q2!1~ l 1q11q2!21 i e#
. ~13!

First we expand the integrand in inverse powers ofM, change the order of integration and summation and obtain

J21
(1)5

1

4M3E dnq1dnq2

@q1
21 i e#@q2

21 i e#@v~ l 1q1!1 i e#2@v~ l 1q11q2!1 i e#

2
1

4M4 S E dnq1dnq2~q11 l !2

@q1
21 i e#@q2

21 i e#@v~ l 1q1!1 i e#3@v~ l 1q11q2!1 i e#

1
1

2E dnq1dnq2~q11q21 l !2

@q1
21 i e#@q2

21 i e#@v~ l 1q1!1 i e#2@v~ l 1q11q2!1 i e#2D 1••• . ~14!

Second we rescaleq2→q2M , extract a noninteger power of mass, expand the integrand in inverse powers and cha
order of integration and summation. The result is

J21
(2)5

Mn26

4 E dnq1dnq2

@q1
21 i e#@q2

21 i e#@v~ l 1q1!1 i e#2@q2
212vq21 i e#

2
Mn27

4 S E dnq1dnq2~q11 l !2

@q1
21 i e#@q2

21 i e#@v~ l 1q1!1 i e#3@q2
212vq21 i e#

1E dnq1dnq2$v~q11 l !22q2~q11 l !%

@q1
21 i e#@q2

21 i e#@v~ l 1q1!1 i e#2@q2
212vq21 i e#2D 1•••, ~15!

and third we rescaleq1→Mq1 , q2→Mq2, extract noninteger power of the mass, change the order of integration
summation and obtain

J21
(3)5M2n210E dnq1dnq2

@q1
21 i e#@q2

21 i e#@q1
212vq11 i e#2@~q11q2!212v~q11q2!1 i e#

2M2n211S E dnq1dnq2~4lq114v l !

@q1
21 i e#@q2

21 i e#@q1
212vq11 i e#3@~q11q2!212v~q11q2!1 i e#

1E dnq1dnq2$2l ~q11q2!12v l %

@q1
21 i e#@q2

21 i e#@q1
212vq11 i e#2@~q11q2!212v~q11q2!1 i e#2D 1••• . ~16!
by
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IntegralJ21 is nothing but a sum ofJ21
(1) , J21

(2) , andJ21
(3) @9#.

Evidently,J21
(1) is expandable in inverse powers ofM and

hence heavy baryon approach reproduces this part ofJ21.
J21

(3) cannot be reproduced~because it containsM2n210) but
it is analytic in l and hence it can be taken into account
adding compensating terms into the Lagrangian of the he
baryon approach. It isJ21

(2) , corresponding to the second ter
in Eq. ~12! which is nontrivial and might cause problem
terms which are not expandable in powers ofM and have
nonanalytic dependence onl can appear.

This feature does not appear on a one loop level. Le
consider this problem in details.

The above given representation forJ21 can be obtained
also as follows: One loop subintegral overq2 can be repre-
11403
vy

s

sented as a sum of two parts: the first part is a result
expanding integrand of this subintegral in inverse powers
M and changing the order of integration and summation. T
second part is obtained by rescalingq2→q2M , extracting
noninteger factor ofM, expanding the integrand in powers o
1/M and changing the order of integration and summatio

J215E dnq1

@q1
21 i e#@2Mv~ l 1q1!1~ l 1q1!21 i e#2

3$F1~M ,l 1q1!1Mn24F2~M ,l 1q1!%, ~17!

whereF1 andF2 represent series in 1/M . As we concluded
from one-loop analysis heavy baryon approach reprodu
8-4
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F1 at one loop level andMn24F2 is reproduced by adding
compensating terms into the Lagrangian of the heavy bar
approach.

Now, expanding the denominator appearing in Eq.~17!

1

@q1
21 i e#@2Mv~ l 1q1!1~ l 1q1!21 i e#2

in inverse powers ofM and changing the order of integratio
and summation in Eq.~17! we get the result which is equal t
J21

(1)1J21
(2) . This makes clear that heavy baryon approach

producesJ21
(2) which was addressed as a possible source
o
m

11403
n

-
of

the trouble. As forJ21
(3) it is analytic in l and can be repro-

duced by compensating terms. Note thatJ21
(3) is obtained

from Eq. ~17! by rescalingq1→q1M : one extracts noninte
ger power ofM, expands the integrand in powers of 1/M and
changes the order of integration and summation. Doing
one getsMn26f 11M2n210f 2, where M2n210f 2 is equal to
J21

(3) and f 1 turns out to be a sum of trivial terms~zeros!.
Figures 3~b!, 3~c!, and 3~d! correspond toJ21

(1) , J21
(2) , and

J21
(3) , respectively.

Next we consider two-loop correction to the heavy sca
propagator in original relativistic theory depicted in Fig.
The result of this diagram is proportional to the followin
integral:
the

d

J225E dnq1dnq2

@q1
21 i e#@q2

21 i e#@~p1q1!22M21 i e#@~p1q11q2!22M21 i e#@~p1q2!22M21 i e#
. ~18!

For later use before analyzing Eq.~18! let us considerJv—an off-mass shell integral of the one loop correction to
vertex:

Jv5E dnq

@q21 i e#@~p1q!22M21 i e#@~k81q!22M21 i e#
, ~19!

wherep5Mv1 l andk85Mv1 l 8:

Jv5E dnq

@2Mv~ l 1q!1~ l 1q!21 i e#@2Mv~ l 81q!1~ l 81q!21 i e#
5Jv

1~ l ,l 8!1Jv
2~ l ,l 8!, ~20!

whereJv
1 is obtained by expanding the integrand of Eq.~20! in inverse powers ofM and changing the order of integration an

summation:

Jv
1~ l ,l 8!5

1

4M2E dnq

@q21 i e#@v l 1vq1 i e#@v l 81vq1 i e#

2
1

8M3 S E dnq

@q21 i e#@v l 1vq1 i e#2@v l 81vq1 i e#
1E dnq

@q21 i e#@v l 1vq1 i e#@v l 81vq1 i e#2D 1••• . ~21!
ting
.

in
Jv
2 is obtained by rescalingq→qM, extracting noninteger

power ofM, expanding the integrand in negative powers
the mass and changing the order of integration and sum
tion:

Jv
2~ l ,l 8!5Mn26E dnq

@q21 i e#@2vq1q21 i e#2

2Mn27S E dnq2~v l 1 lq !

@q21 i e#@2vq1q21 i e#3

1E dnq2~v l 81 l 8q!

@q21 i e#@2vq1q21 i e#3D 1••• . ~22!

The heavy baryon approach reproducesJv
1 . Jv

2 is analytic in
f
a-

l and l 8 and can be reproduced by adding compensa
terms into the Lagrangian of the heavy baryon approach

Applying the method of dimensional counting@9# to J22
we obtain the following expression:

FIG. 4. Two-loop correction to the heavy scalar propagator
the heavy scalar-massless scalar scattering process.
8-5
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J225~22v l !2n27M 23(
k50

`

A1kS 2v l

M D k

1~22v l !n23Mn27(
k50

`

A2kS 2v l

M D k

1~22v l !n23Mn27(
k50

`

A3kS 2v l

M D k

1M2n210(
k50

`

A4kS 2v l

M D k

5J22
(1)1J22

(2)1J22
(3)1J22

(4) , ~23!

whereAik do not depend onM, l, or v. In Eq. ~23! J22
(1) is the

result of expanding integrand in inverse powers ofM and
integrating the series,J22

(2) andJ22
(3) are obtained by rescalin
s
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11403
q1→q1M and q2→q2M correspondingly with subsequen
expansion of the integrand and change of the order of in
gration and summation, andJ22

(4) is the result of the simulta-
neous rescalingq1→q1M and q2→q2M and integration of
the resulting expansion.

The heavy baryon approach reproduces straightforwa
J22

(1) ; J22
(4) is analytic in momenta and hence can be rep

duced by compensating terms in the Lagrangian of the he
baryon approach. The termsJ22

(2) andJ22
(3) are not expandable

in 1/M and they are not analytic in momenta. In a full ana
ogy with the previous analysis forJ21

2 these terms are repro
duced by taking into account the contributions of the co
pensating terms which have to be introduced into
Lagrangian of the heavy baryon approach in order to rep
duce the expression for the one loop subdiagrams of
two-loop diagram.

To see that this is actually the case let us representJ22 in
the following way:
J225E dnq1

@q1
21 i e#@~p1q1!22M21 i e#

E dnq2

@q2
21 i e#@~p1q11q2!22M21 i e#@~p1q2!22M21 i e#

5E dnq1

@q1
21 i e#@2Mv~ l 1q1!1~ l 1q1!21 i e#

$Jv
1~ l 1q1 ,l !1Jv

2~ l 1q1 ,l !%. ~24!
n of
ub-
ion.
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Note that Jv
2( l 1q1 ,l ) corresponds to compensating term

included into the Lagrangian of the heavy baryon approa
Expanding denominator

1

@q1
21 i e#@2Mv~ l 1q1!1~ l 1q1!21 i e#

~25!

in 1/M and changing the order of integration and summat
we reproduceJ22

(1)1J22
(2) . So, heavy baryon approach repr

duces these two terms~here J22
(2) occurred because we in

cluded contributions of compensating terms correspondin
one-loop subdiagrams!. J22

(3) andJ22
(4) are reproduced by res

calingq1→q1M , extracting noninteger factors ofM, expand-
ing integrand in 1/M , and changing the order of integratio
and summation.

J22
(4) is analytic in momenta and hence can be reprodu

by compensating terms included into the Lagrangian of
heavy baryon approach. As forJ22

(3) it is equal toJ22
(2) and

comes from one-loop compensating terms as well. This
should be clear from Fig. 4 where Figs. 4~b!, 4~c!, 4~d!, and
4~e! correspond toJ22

(1) , J22
(2) , J22

(3) , andJ22
(4) , respectively.

Analogous results are obtained for all the remaining tw
loop diagrams. From the above analysis it follows that he
baryon approach reproduces the results of the original r
tivistic theory at a two-loop order.

IV. CONCLUSIONS

In this work we have addressed the problem of match
of heavy baryon approach to the original relativistic theo
h.

n

to

d
e

ct

-
y
a-

g
.

The heavy baryon approach corresponds to the expansio
the integrand in inverse powers of the large mass with s
sequent change of the order of integration and summat
As this two procedures are not commutative, the differen
has to be compensated by adding terms into the Lagran
of the heavy baryon approach. As the addressed prob
does not actually depend on the details of the given mo
we considered a simple example of heavy and massles
teracting scalar fields. Using the method of calculation
loop integrals by dimensional counting outlined in Ref.@9#
we analyzed one and two loop diagrams and demonstr
how the difference between relativistic and heavy bary
calculations is compensated by adding terms to the Lagra
ian of the heavy baryon approach. At two-loop level t
difference can be compensated only after one includes
contributions of compensating terms for one loop subd
grams. While we included only selected diagrams in t
paper, the very same conclusions are valid for one and
loop diagrams which were not included in here. We belie
that the iterative procedure of considering contributions
compensating terms for one-loop diagrams in two-loop c
culations which is crucial to resolve the matching proble
leads to analogous results for higher loops.

While we considered a simple model of scalar fields
problems of interchange of integration and expansion in
verse powers of heavy particle mass are the same for m
realistic models with included fermionic and vector fields.
heavy baryon chiral perturbation theory the compensa
terms with similar structure are actually summed up and
8-6
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cluded as redefinitions of already existing coupling co
stants. This redefinition is crucial, it actually leads to t
consistent power counting of the heavy baryon chiral per
bation theory. In heavy baryon approach the coupling c
stants which correspond to redefined relativistic coupl
constants are introduced as initially free parameters wh
are to be fixed from experimental data. Working up to so
given order in heavy baryon approach one actually resu
low order contributions of an infinite number of relativist
high order loop diagrams.

It was shown in Ref.@2# that, within HBCHPT, an infinite
number of internal line insertions must be summed to
scribe the scalar form-factor of the nucleon near thresh
As we demonstrated above the heavy baryon expansion
produces the expansion of the relativistic result. This conc
sion is formally still correct for the scalar form-factor of th
nucleon, but the problem is that the expansion of the rela
istic result is not convergent near threshold. This probl
has been successfully resolved recently by Becher
Leutwyler using ‘‘infrared regularization’’@11#.

As was demonstrated above relativistic diagrams con
parts which can not be altered by adding local terms into
Lagrangian. These parts are directly reproduced by he
s

ys
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baryon approach and they respect power counting. O
parts which are responsible for violation of the power cou
ing in relativistic theory can be changed by adding count
terms. Hence it should be more or less clear that the pr
lems of the relativistic approach, in particular that multiloo
diagrams contribute into low order calculations encounte
in Ref. @4#, can be solved within relativistic approach usin
appropriately chosen normalization condition. Hence o
could from the very beginning work within original relativ
istic approach and never encounter the problems of n
threshold behavior of the scalar form factor of the nucle
These problems will be addressed in a future paper.
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