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Matching the heavy particle approach to relativistic theory
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On the simple model of interacting massless and heavy scalar fields it is demonstrated that the technique of
heavy baryon chiral perturbation theory reproduces the results of relativistic theory. Explicit calculations are
performed for diagrams including two lood$0556-282(99)06621-7

PACS numbes): 12.39.Fe, 03.76:k

[. INTRODUCTION duces the results of the original relativistic theory at two-
loop level.
Heavy baryon chiral perturbation theofigBCHPT), sug-
gested in Ref[1], is an important and effective method of Il. ONE-LOOP ANALYSIS
calculating of different processes involving electromagnetic . ! . .
and strong interactiongFor review and references see Refs, L€t us consider a field theoretical model described by the
[2,3].) The authors of Ref1] used the ideas of heavy quark -@grangian
effective field theory which allowed them to avoid severe 1 1
complications appearing in the problem of the relativistic L=——D*9 "D — —M2D*P
treatment of baryons at low energies, encountered in[REf. 2 a 2
Jenkins and Manohar suggested taking the extremally non- 1
relativistic limit of the fully relativistic theory and expand in — 5 $d,0"p—gP*DPp+Ly, (1)
inverse powers of the baryon mals 2
In the heavy baryon approach one integrates out heav_here(b is a complex scalar field with madd, ¢ is a

degrees of freedom and expands the resulting nonlocal o eutral massless scalar fiegis a coupling constant, arld,
erators in inverse powers of large mass. In terms of the reld’ ¢ piing ’

tivistic perturbation theory of the original field theoretical contains all counterterms whlch_are necessary to remove di-
model (Feynman diagramisheavy baryon approach corre- yergenceione can include also interactions with the deriva-
sponds to the expansion of integrands in the loop integrals iHvestar:d/or a larger number of fields and corresponding
powers of 1M with subsequent term by term integration of COL_jl_n er er_rg)s licati due to the infrared sinaulariti
the resulting seriels]. The noncommutativity of the integra- 0 avoid complications due to the inirared singulanties
tion over loop momenta and the expansion iMlgenerates we work in six-dimensional space-time. We use dimensional

a problem of matching of heavy baryon approach to theregﬁ(l;g'zatl;(;? i?]mals Zrioglcnr:e'?ogt%r:eOfrf)rc):aegz;atlsmeh'ch involve
original relativistic theory. According to Lepag€e6] argu- VY y pp P which involv

ment from the uncertainty principle, one should be able tone heavy particle uses the following expansion of the heavy

compensate the difference between the results of “naive’scalar propagatorp(, =Mv,, +k,, vi=1):
heavy baryon and relativistic approaches by including addi-
tional terms into the Lagrangian of the heavy baryon ap- 1 _ 1 =i 1
proach. While the problem of this matching has been ana- p?—M?  2Mvk+k* 2M yk+k2/2M
lyzed at one loop levdl5,7,8, to the best of our knowledge 5
the matching procedure for higher order loops has not been N i(i_ 1k N
studied. - 2M vk 2M (vk)? /)
In the present paper we consider the matching problem on
a two loop level on the example of the forward scatteringThis expansion corresponds to the following Lagrangian:
amplitude in a scalar theory. The consideration of the non-
zero spin and the nonzero transferred momentum makes cal-
culations more tedious and less transparent, bringing nothing
new and essential in the problem considered. In our calcula-
tions we use the technique of calculation of loop integrals bywhere the second term af; is treated perturbatively. This
dimensional counting, developed in RE9). Lagrangian can be obtained from the free partCotorre-
We explicitly show that heavy baryon approach repro-sponding to heavy scalar field, definidg=exp{iM vx} .
Let us start with the one loop self-energy correction to the
scattering process in the original relativistic theory, depicted
*Email address: gegelia@daria.ph.flinders.edu.au in Fig. 1(a) (the solid line corresponds to the heavy scalar
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FIG. 2. One-loop corrections to the vertex in the heavy scalar-

FIG. 1. One-loop corrections to the heavy scalar propagator if"aSsless scalar scattering process.
the heavy scalar-massless scalar scattering process.

1 d"q
and dashed line corresponds to massless 3cdlae expres- JllHB:—r f > -
sion for this diagram is proportional to the following inte- 2M [a+iellv(I+a)+ie]
gral: 1 d"q(q+1)?
i d"g , ‘mf [Fiev(+a+ie?
U ) [g?+iel[(p+q)2—M2+ie] “ P2 i 2
= F(——l)F(S—n)(—ZvI)”?’Jr 5
The straightforward integration yieldsp(=Mv, p=Mv M 2 2M
+1, v2=1,12=0, p’=M?+2Mvl) 0
w2 xT E—l)l‘(3—n)(n—2)(—2vl)”2+-~- .
[ — P _ _ n—-3
\]11— M F(Z 1>F(3 n)( 2V|) 2F1 (6)
n 2vl
X|z=1h—-2;n—2;— —
2 M As was expected, Eq6) reproduces the expansion of the

I'(2—n/2)T(n—3) first term of expressiolb5).
oF The second term of Ed5) which cannot be expanded in
T'(n=2) powers of 1M is analytic in momentunh and hence can be
2v| reproduced by introducing additional terms into the Lagrang-
1,2-n/2;4—n;— V) (5 ian of the heavy baryon approach. Free propagators of the
heavy scalar particle appearing in the expression for the con-
where ,Fo(ay, ... ay;by, ... by;2) are the(generalizey ~ Sidered diagram are apparently reproduced by heavy baryon
hypergeometric functions af[10]. Heavy baryon expansion approach. The same is true for all diagrams and we will not
for J,, is realized by expandinfaccording to Eq(2)] the include the contributions of the free propagators in our
integrand in 1M and integrating the resulting series term by analysis below. Fig. (b) schematically represents the first
term. term on the right-hand side of the E() [or Eqg. (6)] and
As it was observed in Ref9], expanding integrand in Fig. 1(c) corresponds to the contributions of compensating
powers of some parameter and changing the order of integréerms.
tion and summation one recovers that part of the value of the Next one-loop diagram we are considering here is drawn
integral which can be expanded in powers of given paramin Fig. 2(a) (one-loop vortex correction to the light scalar-
eter with nonzero coefficients. heavy scalar vertgx The result of this diagram is propor-
From the expressiotb) we see that the first term can be tional to the following integral:
expanded in powers of W with nonzero coefficients, while
the second one cannot—it contains!)"?~2. Hence we |
expect that heavy baryon approach reproduces the first terr

4 71_n/2( MZ)h/Z*Z

X

i AN
of the expressiolts). \\ =~ // \\ =~ //
Indeed, N/ AN - N/ N7
dnq p' ) p' p' b) p'
= a
0™ | (7 Tell(p+ 92— M2+ ie] . |
_f ok |\\ 4 \\ //
~ ) [Priel[(1+q)2+2Mv(l+q) +ie] N U ,/ N /
+ > + >
= 1f d'a P’ P P P
2MJ [q?+iel[v(I+a)+(I+a)%/2M +i€] o) d)

expanding the integrand and changing the order of integra- FIG. 3. Two-loop correction to the heavy scalar propagator in
tion and summation we obtain the heavy scalar-massless scalar scattering process.
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J —f dq
) [ +iel[q?+2p qtiell(p+a)2—M2+ie]

I'(n—4)'(3—n/2) 2—p? M2—p?\n=4
— 2\n/2—-3,_.n/2 . . . i 2\n/2—-3,__.n/2
=—i(M?) T T(n=-3) sF»| 1,1,3—n/2;2,5-n; i i(M?) T i
I'(4—n)T'(n/2—1) M?2—p?
X — 3F2(n/2—1,n—3;n—2;T
" 4 72 3 2\n/2-3_n/2
= r@3—-nrn/2-1)(-2vh" *— Fr4-nr(nf2—1)(=2vh)" °+ ... —i(M5)Me" 37"
Lz T e VERL G )(—2vl) (M?)
I'(n=4)I'(3—n/2) F 113225 —2vl .
F(n_S) 32 1Ly — N 14 n1 M . ( )
|
On the other hand heavy baryon approach leads to part is analytic in and can be reproduced by adding appro-
priate terms into the Lagrangian of the heavy baryon ap-
3o 1 d"q proach. Figure @) and 2c) correspond to Eq(8) and the
1HBAM? ) [g+ie][v(I+q)+ie][vg+ie] contributions of compensating terms, respectively. The
N 5 analysis of the rest of one-loop diagrams lead to the same
1 J d"a(q+1) L result: heavy baryon approach reproduces those parts of dia-
8M3) [g®+iel[v(l+q)+iel va+ie] grams which are nonanalytic in the momenta and the remain-
. ing parts, analytic in momenta can be reproduced by adding
ia" n terms into the effective Lagrangian of the heavy baryon ap-
— _ _ _ -4
YT F(E 1T (3—n)(=2vhH)" proach.
i 2 Ill. TWO-LOOP ANALYSIS
— —_—— —_ —_— n73 ...
2M3 F( 2 1>F(4 m(=2vh™=+ - ® Two-loop diagrams have more complicated structure. Let

us consider two-loop correction to the propagator of the
The comparison of Eq9.7) and (8) shows that heavy heavy scalar in original relativistic theory depicted in Fig.
baryon approach reproduces that part of relativistic answeB(a). The result of this diagram is proportional to the follow-
which can be expanded in inverse powerdvbfThe second ing integral:

d"q,d"q;
217 f

[a2+iel[a+iell(p+0dy)2—M2+i€e]l[(p+a1+0)2—M3+ie] ©

From the method of dimensional countif@ it follows that  and the coefficients;, are determined by the original inte-
gral (9) [9]. Substituting Eq(11) into Eq. (10) we obtain

Ipn=8"T(pA)"N0 Y f M HPA)NTE Y iy
k=0 k=0

” 2vl\ ¥
In=(—2v)>"" M2 le(—)
B k=0 M

+(pA)" ik, (10) - 2vl\¥

k=0 +(—2vh)"Amne Y ng(—)

k=0 M

where ” 2vl\K
M2 Do 31 - (12
k=0

M?—p?  —2vl 1

0= =42 M 1+2vI/M

(A whereD;, do not depend oM, I, orv.
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Actual calculations ofl,; can be performed using the methods of R6}.as follows. Let us rewrite

(13

_f d"q,d"q;
) (@ rieladriell2Mv(I+ay) + (1+ a2 +i el 2Mv (I +ay+0p) + (1 + 0+ ap) 2 +ie]

First we expand the integrand in inverse powerd/pfchange the order of integration and summation and obtain

J(l): 1 f dnqldan
2AM) (2 tiel[qd+iellvl+ay) +iel2v(l+a+ap) +iel
B 1 j d"g,d"g,(q,+1)?
M ) (g2 +iel[ad+iellv(l+ap) +ielP[v(l+ay+ay) el
1 d"q,d"g,(q,+ 0, +1)?
= 14
+Zf[q%+ie][q§+ie][v<l+ql>+ie]2[v<l+ql+qz>+ie]2 1

Second we rescalg,— q,M, extract a noninteger power of mass, expand the integrand in inverse powers and change the
order of integration and summation. The result is

J(Z)_Mnfﬁ nqldnqz
217y [q5+iel[aa+iel[v(I+qy) +ie][g5+2va,+ie]
1 2 1 2 2
3 Mn=7 d"g,d"g,(q;+1)?
4 [a2+iel[as+iellv(l+ay) +iel*[a5+2va,+ie]
f d"g,d"g.{v(q;+1)—20x(q,+1)} o (15)
[a2+i€l[az+iellv(l+ay) +iel[g5+2va,+ie]? ’

and third we rescale;;—Mq;, q,—Mq,, extract noninteger power of the mass, change the order of integration and
summation and obtain

‘](231): M2n—10f d"q,d"q,
[a2+i€el[a3+iella2+2vas+iel?[(dy+0p)2+2v(a;+qy) +ie]

_|\/|2n—11( j d"q,d"qy(4lq,+4vl)
[ai+iella5+iellai+2va;+iel*[(a1+02)2+2v(a,+0y) +i€]

(16)

f d"q,d"gp{21(q; +qp) +2vI}
[ai+iella5+iellai+2va;+iel?[(ay+0)?+2v(gs+y) +i€l?

IntegralJ,; is nothing but a sum of$}), 382, andJ$P [9].  sented as a sum of two parts: the first part is a result of
Evidently, J$Y) is expandable in inverse powersifand ~ expanding integrand of this subintegral in inverse powers of

hence heavy baryon approach reproduces this padbof M and changing the order of integration and summation. The

J$) cannot be reproducefecause it contains12"~ 1% but  second part is obtained by rescaling—q,M, extracting

it is analytic inl and hence it can be taken into account bynoninteger factor oM, expanding the integrand in powers of

adding compensating terms into the Lagrangian of the heav§/M and changing the order of integration and summation:

baryon approach. It iS(zzl), corresponding to the second term

in Eq. (12) which is nontrivial and might cause problems: B d"g,
terms which are not expandable in powershfand have J21= [qi+iel[2Mv(l+qy)+ (1 +q1)%+i€]?
nonanalytic dependence drtan appear.

This feature does not appear on a one loop level. Let us X{F1(M,1+q;)+M" 4Fx(M,l+q,)}, a7

consider this problem in details.
The above given representation fd; can be obtained whereF; andF, represent series in I¥/. As we concluded
also as follows: One loop subintegral owgr can be repre- from one-loop analysis heavy baryon approach reproduces
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F, at one loop level andi" *F, is reproduced by adding the trouble. As forJ(fi) it is analytic inl and can be repro-
compensating terms into the Lagrangian of the heavy baryoduced by compensating terms. Note tid4} is obtained
approach. from Eq. (17) by rescalingq;—q;M: one extracts noninte-
Now, expanding the denominator appearing in &g) ger power ofM, expands the integrand in powers oMLANd
changes the order of integration and summation. Doing so
one getsM" ¢f,+M2"" 1%, where M?"~ 1%, is equal to
1 J83) and f; turns out to be a sum of trivial termeros.
[q2+iel[2Mv(l+qq) + (1+q.)%+iel? Figures 3b), 3(c), and 3d) correspond tal$y, J52, and
I8 | respectively.
in inverse powers oM and changing the order of integration  Next we consider two-loop correction to the heavy scalar
and summation in Eq17) we get the result which is equal to propagator in original relativistic theory depicted in Fig. 4.
J§)+389) . This makes clear that heavy baryon approach reThe result of this diagram is proportional to the following
producesJ(z) which was addressed as a possible source oitegral:

:f d"q,d"qy
) [q2+iellad+iell(p+ay)?—M2+iel[(p+ai+ay)?—M2+iel[(p+d)2—M2+ie]

For later use before analyzing E@.8) let us consided,—an off-mass shell integral of the one loop correction to the
vertex:

(18

d"q
= 9
I f[q2+ie][(p+q)2—M2+ie][(k’+q)2—M2+ie]’ (19

wherep=Mv+| andk’'=Mv+1":

d"g ) ,
N =301’ i), 20
" f[ZMV(l+Q)+(|+Q)2+i6][2MV(|’+q)+(I’+q)2+ie] ARSI (20

whereJ\% is obtained by expanding the integrand of E20) in inverse powers o and changing the order of integration and
summation:

1 d"q
(1= 2f
AM“J [g?+ie][vl+va+ie][vl’ +vq+ie]

1
BEIVE

f dnq +f dnq + ... (21)
[q®+ie][vl+va+iel’[vl’+vg+ie] [q2+ie][vl+vag+ie][vl'+vq+ie]? '

J2 is obtained by rescaling— M, extracting noninteger | and |’ and can be reproduced by adding compensating
power of M, expanding the integrand in negative powers ofterms into the Lagrangian of the heavy baryon approach.
the mass and changing the order of integration and summa- Applying the method of dimensional countifg] to Jz,

tion: we obtain the following expression:
! I I I
d”q N / N /
2 'y—pqn—6 \ \
JL)=M J[q2+ie][2vq+q2+ie]2 N7 s N s
' ~o -7 p' f ~o -7 p'
M7 f d"g2(vl+1q) ’ D) ’ b)
B [q°+ie][2vaq+g’+ie]® '\ /{ '\ JE )
n \\\ / \\\ T / \\\ //
d"g2(vl’+1' + + N
+ q2( R . (22 ' S-- P P 3 o
2 2,: .13 P
[a°+iel[2vq+q +ie] <) 9) e

FIG. 4. Two-loop correction to the heavy scalar propagator in
The heavy baryon approach reprodudgs J2 is analytic in  the heavy scalar-massless scalar scattering process.
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q;—q;M and q,—q,M correspondingly with subsequent

expansion of the integrand and change of the order of inte-

gration and summation, ant§y is the result of the simulta-
) neous rescaling;—q;M andqg,—q,M and integration of

2v|
Joo=(— 2V|)2n ™M~ 32 Al w7

the resulting expansion.

The heavy baryon approach reproduces straightforwardly
I 38 is analytic in momenta and hence can be repro-
duced by compensating terms in the Lagrangian of the heavy
baryon approach. The terrﬂézz) andJ(232) are not expandable
. in 1/M and they are not analytic in momenta. In a full anal-
N MZ”*OE (Zvl ) k ogy with the previous analysis fd%l these terms are repro-

+H(—2uD)"TEMTTT Y Ay (
k=0

Z|

v

+(=2vh)"3mn- 72 A3k(

KM duced by taking into account the contributions of the com-
pensating terms which have to be introduced into the
=J+ 32+ 33+ 38, (23)  Lagrangian of the heavy baryon approach in order to repro-
duce the expression for the one loop subdiagrams of this
whereA;, do not depend oM, |, orv. In Eq.(23) 3% is the  two-loop diagram.
result of expanding integrand in inverse powershbfand To see that this is actually the case let us repredgnn
integrating the seriegl$? andJ$3 are obtained by rescaling the following way:

d"g J d"g,
[ai+iell(p+a)?—M2+iel) [a5+i€ell(p+0as+02)’—M2+iel[(p+0y)2—M>+i€]
:f d"g;
[aZ+iel[2Mv(I+a;)+(1+0;)%+

v+ auD + 35+ Az} (24

Note thatJﬁ(I +q,,l) corresponds to compensating terms The heavy baryon approach corresponds to the expansion of
included into the Lagrangian of the heavy baryon approachthe integrand in inverse powers of the large mass with sub-
Expanding denominator sequent change of the order of integration and summation.

1 As this two procedures are not commutative, the difference

— — (25) has to be compensated by adding terms into the Lagrangian
[ai+ie]l[2Mv(l+qy)+(1+qy) +ie] of the heavy baryon approach. As the addressed problem
in 1/M and changing the order of integration and summatlondoes not actually depend on the details of the given model
we considered a simple example of heavy and massless in-

we reproducely+J$2) . So, heavy baryon approach repro-
P ) y bary PP b teracting scalar fields. Using the method of calculation of
duces these two tern(shereJ occurred because we in-
loop integrals by dimensional counting outlined in Rjef]

cluded contributions of compensatmg terms corresponding to
one-loop subd|agran)13](3) andJ(“) are reproduced by res- we analyzed one and two loop diagrams and demonstrated
how the difference between relativistic and heavy baryon

calingq;—q¢M, extracting nomntegerfactors bf, expand-
ing integrand in M, and changing the order of integration * calculations is compensated by adding terms to the Lagrang-
ian of the heavy baryon approach. At two-loop level the

and summation. :
3% is analytic in momenta and hence can be reproduceg'fference can be compensated only after one includes the
ontributions of compensating terms for one loop subdia-

by compensating terms included into the Lagrangian of the ) . . . .
hgavy tl)oaryon agproach. As fakd) it is equalgtoJ(zg%) and drams. While we included only selected_dlagrams in this
comes from one-loop compensating terms as well. This fa aper, the very same conclusions are valid for one and two

; ' oop diagrams which were not included in here. We believe
should be clear from Fig. 4 where Figgb# 4(c), 4(d), and g . T Lo
4(e) correspond ta%y), J@, 19 andJ%y), respectively. that the iterative procedure of considering contributions of

compensating terms for one-loop diagrams in two-loop cal-
Analogous results are obtained for all the remaining two- P 9 b c1ag b

“culations which is crucial to resolve the matching problem
loop diagrams. From the above analysis it follows that heav¥eads to analogous results for higher loops.

baryon approach reproduces the results of the original rela- While we considered a simple model of scalar fields the

tivistic theory at a two-loop order. problems of interchange of integration and expansion in in-
verse powers of heavy particle mass are the same for more
realistic models with included fermionic and vector fields. In
In this work we have addressed the problem of matchindieavy baryon chiral perturbation theory the compensating
of heavy baryon approach to the original relativistic theory.terms with similar structure are actually summed up and in-

IV. CONCLUSIONS
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cluded as redefinitions of already existing coupling con-baryon approach and they respect power counting. Other
stants. This redefinition is crucial, it actually leads to theparts which are responsible for violation of the power count-
consistent power counting of the heavy baryon chiral perturing in relativistic theory can be changed by adding counter-
bation theory. In heavy baryon approach the coupling conterms. Hence it should be more or less clear that the prob-
stants which correspond to redefined relativistic couplingems of the relativistic approach, in particular that multiloop
constants are introduced as initially free parameters whiclliggrams contribute into low order calculations encountered
are to be fixed from experimental data. Working up to somen Ref.[4], can be solved within relativistic approach using
given order in heavy baryon approach one actually resumgppropriately chosen normalization condition. Hence one
low order contributions of an infinite number of relativistic could from the very beginning work within origina| relativ-
high order loop diagrams. istic approach and never encounter the problems of near

It was shown in Ref| 2] that, within HBCHPT, an infinite  threshold behavior of the scalar form factor of the nucleon.
number of internal line insertions must be summed to de’rhese problems will be addressed in a future paper.

scribe the scalar form-factor of the nucleon near threshold.
As we demonstrated above the heavy baryon expansion re-
produces the expansion of the relativistic result. This conclu-
sion is formally still correct for the scalar form-factor of the
nucleon, but the problem is that the expansion of the relativ- This work was carried out whilst one of the auth@isG)
istic result is not convergent near threshold. This problenwas supported by the Overseas Postgraduate Research pro-
has been successfully resolved recently by Becher andgram and Flinders University of South Australia. This work
Leutwyler using “infrared regularizationT11]. was supported in part by National Science Foundation under
As was demonstrated above relativistic diagrams contaiGrant No. HRD9450386, Air Force Office of Scientific Re-
parts which can not be altered by adding local terms into thsearch under Grant No. F4962-96-1-0211 and Army Re-
Lagrangian. These parts are directly reproduced by heavsearch Office under Grant No. DAAH04-95-1-0651.
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