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We propose and analyze an improved smadlguation which incorporates exact leading and next-to-leading
Ballitskil-Fadin-Kuraev-Lipatov kernels on one hand and renormalization group constraints in the relevant
collinear limits on the other. We work out in detail the recently propaseskpansion of the solution, derive
the Green’s function factorization properties and discuss both the gluon anomalous dimension and the hard
Pomeron. The resummed results are stable, nearly renormalization-scheme independent, and join smoothly
with the fixed order perturbative regime. Two critical hard Pomeron exponeg(t®?) and w(Q?) are
provided, which — for reasonable strong-coupling extrapolations — are argued to provide bounds on the
Pomeron intercepby . [S0556-282(199)06321-3

PACS numbegps): 12.38.Cy, 12.38.Bx

[. INTRODUCTION tions in a general scheme, which leads to the renormalization
group improved smatk equation, and to study its solutions.

Recent results on the next-to-leading #ogorrections One of the outcomes will be to stabilize, in a nearly scheme-
[1,2] to the BalitskitFadin-Kuraev-LipatoBFKL) equation  independent way, the estimate of the anomalous dimensions
[3] and to the hard Pomeron show subleading effects whiclnd of theQ?-dependent hard Pomeron.
are so large as to question the very meaning of the high- The first point to clear up is which Pomeron we are going
energy expansion and thus raise the compelling question df estimate. Previous work on RG factorizat{d®,11] in the
how to improve it. BFKL equation with running coupling12—19 has shown

Two facts suggest that an essential ingredient of any imthat thePomeronw;, defined as th&@?-independent leading
provement of the BFKL approach should be the correct treatsingularity in thew-plane, is beyond the reach of a strictly
ment of the collinear behavior, as predicted by the renormalperturbative approach. On the other hand, there appears to be
ization group(RG): on the one hand the success of normala boundary of validity of the RG, th@2-dependentard
QCD evolution[4] in explaining theQ? dependence of the Pomeronw(Q?), which is argued to bendependenof the
smallx behavior of structure functions at HERA, and on the smallk? strong coupling region and is thus hopefully calcu-
other hand the observation that the large next-to-leading cotable in perturbative QCD.
rections to the BFKL equation come mostly from collinearly Sincewp(Q?) signals a change of asymptotic regime, it is
enhanced physical contributions. associated with amw-singularity of the anomalous dimen-

A first attempt at introducing collinear improvements wassions, not necessarily of the full gluon distribution. Thus
performed long ago, by the treatment of coherence efféfts w;(Q?) may be related to a power-like behavior in an inter-
in the collinear region. This leads to the Ciafaloni-Catani-mediate smalk, moderateQ? region, and not to the very
Fiorani-Marchesini(CCFM) equation[5,6], which differs  smallx asymptotic behavior of the structure functions. It
from the BFKL equation by subleading effects to all orders,also follows thatw;(Q?) is a rather difficult quantity to de-
even if a full inclusion of the Dokshitzer-Gribov-Lipotov- termine, because it is related to the position of an
Altarelli-Parisi (DGLAP) splitting functions in a consistent w-singularity, and is thus dependent on the full anomalous
CCFM framework has not yet been achieved. Other modifiedlimension perturbative series. Possible definitions, leading to
BFKL approaches incorporating some DGLAP evolution area precise estimate, are thoroughly discussed in Sec. Il and in
being tried tod7]. Sec. V, where our results are provided.

Very recently, it has been sugges{&dthat such all-order A second point to realize is that, in order to incorporate
collinear effects can be incorporated as subleading kernels dfie collinear behavior correctly, a whole string of subleading
a generalized equation, whose solution can be found by thkernels, represented by a series in the running coupling
method of the so calle@ expansion, allowing in particular a a(Q?), is to be taken into account. In fact, the leadingsog
resummation of the energy-scale-dependent terms of the kecalculations count one high-energy gluon exchange per
nel [9]. power of ag, with any transverse momentum ratios. In the

The purpose of the present paper is to insert such suggesellinear limit, provided by the strong ordering in the trans-

verse momenta, only the singular partl/z of the DGLAP
splitting function is obtained. The remaining part contributes

*Email address: ciafaloni@fi.infn.it to higher and higher order subleading kernels which carry
"Email address: colferai@fi.infn.it fewer powers of log, but leading powers of lo@?. From a
*Email address: gavin.salam@mi.infn.it quantitative point of view, such collinear contributions are
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very important, and in fact account for most of the exact ©

next-to-leadingNL) kernel(Sec. IlI). Ko (kk' )= [adkd)]" KE(k,K),
Let us stress that we are not aiming here at a full control n=0

of subleading log contributions, but only those that carry a

leading collinear contribution from next-to-next-to-leading — Neas 1 14
(NNL) level on. Therefore, we remain in a context in which "7 " blog(kY A% (1.4
only t-channel iteration is important, without mixing with the

s-channel ondsee, e.g.[12,20). Since we want to take into account the leading collinear sin-

In this framework, we can define thedependent gluon gularities to all-orders, the seri€$.4) is necessarily infinite,
distribution by the NLk-factorization formula introduced by as noticed before.
one of us[21] in large k dijet production in parton-parton Solving for the Green'’s function with the general kernel
scattering. In a general hard process involving probes\d  (1.4) is a novel problem in the BFKL approach, which is
B we can write[2] addressed and solved in Sec. Il. There we derive the main
properties of the solutions, namefly the factorization prop-

doag dow @ erty of G, in the RG regime(ii) the o expansion of the
dk—dl<0:f2_m(m> ha(k)(k|(1+aH)G, relevant eigenfunctions, andii) the definitions of the
Pomeron singularityw; and of the hard Pomeron singularity
X (1+ agH")[koyhg(ko), (1D wadk?]. In a first reading of this rather mathematical
section one could perhaps retain the basic results, and come
k=1k|, ko=|kol back to their derivations after Secs. IlI-V.

In Sec. Il we explicitly construct the improved kerri€),
where the impact factoits, , hg may carry additional depen- with the requirements ofi) reducing to the exact £NL
dence on the hard scales of the probes and the gluon Greerigyms in the relevant limit andi) reproducing the known

function is provided by collinear singularities at higher orders.
The corresponding solution f@f, in the RG regime and
Go(K.ko)=(K|[0—K,,] Y Ko), (1.2  the explicit form of the solutionF,, of the homogeneous

equation are studied in Sec. IV. The main result is that the
apart from the multiplicative kernels, H' which may be  NL truncation of the improved» expansion takes into ac-
needed at subleading levid,22. count correctly all collinear singularities, at least for the

We notice immediately that the scale of the enesgn  purely gluonic case. The inclusion of tiiemal) qq contri-

Eq. (1.2) has been chosen to Hek,, i.e., factorized and butions is discussed also.
symmetrical in the “upper”(u) scalek and “lower” (I) Finally, in Sec. V we present our results for the resummed
scaleky. This means tha§,, and the kernekC,, in Eq. (1.2 anomalous dimensions and for the hard Pomeron, and exhibit
are both symmetrical operators. On the other hand, when their stability under scheme change and NNL corrections.

>ky (ko>k), the variablekk,/s is notthe correct scaling In Sec. VI we discuss the present situation and future
variable, but rathek?/s (ké/s) — i.e. the usual Bjorken prospects, which include a solvable mof23], based on the
variable. collinear analysis of the present paper. A few mathematical

In order to switch to, say, the upper energy-sddlieit is  details are covered in the Appendix.
apparent from Eq(1.1) that one has to perform a similarity

transformationg,,— (k/ko) “G,,, which in turn implies the Il. SMALL- x EQUATION FOR A GENERAL KERNEL
relationship
We consider here a general form of the smaélquation,
K\ @ K\ whose a(t)-dependence is supposed to be consistent with
Kﬁ?’(k,k')(—) =K, (kk)=K g)(k,k')< —) leading-twist anomalous dimensions and must contain, there-
K k' fore, an infinite series of subleading terige$. the Introduc-

(1.3 tion). Our final goal is to investigate the solution for the

_ gluon Green’s function1.2), i.e., the resolvent of the im-
between the symmetrical kerndl, and the kernelC")  proved kernel

(k™). Although technical, this remark is important in order

to classify the collinear logarithms, because if a wrong d2k’
energy-scale is chosen, single logs k/k’) may turn into G, (KKo) = 6%(k—Ko) + T/Cw(k,k’)gw(k',ko),
double logs(cf. Sec. ). (2.1)

The main purpose of our study is to construct the RG
improved kernellC,,, and to provide the solution fay,, in
Eq.(1.2) in the RG regimeé?®>k3> A2, The starting point is
the observatiofi8] that the kernelC, (k,k’; u?; ag u?)), for
non-vanishing values d{,k’, is RG invariant, and can thus
be expanded as a power seriesrifik?) with scale invariant The improved kernelC,(k,k’) occurring in Eqg.(2.2) is
coefficients assumed to have the asymptatig(t)-expansion

in order to derive its largé-behavior in the RG regime.

A. Form of the kernel
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© 2 whereb is the one-loop beta function coefficie(df. Sec.
Ko(kk )= [agdt) " TKE(Kk,K'), t=log; > 1.
n=0

The y, » dependences are tied up together in Eg6)
because of the similarity relationd.3), which define the
kernelsk @ (K1) at energy-scal&® (k3) having simple
collinear behavior fok>k’ (k’>Kk). As a consequence, the
vy-singularities occur at shifted values ¢f(by * »/2) and
the symmetry ofKC,, implies, by Eq.(2.2), a slightly asym-
metricalb-dependence in Eq2.6).

(2.2

where the coefficient kernel§;, are scale-invariant and may
be w-dependent. They are partly known in closed form from
leading[3] and next-to-leading|1,2] calculations, and have
known[8] collinear properties to all orders.

The leading coefficient kerndkg must reduce, forw

—0, to the historical ong3] having eigenvalue function o )
B. Factorization of non-perturbative effects

!

_ _ In order to actually solve Eq(2.1) for G,(k,kg), one
Xo N =2V =¢(N=¢(1=y). =7 23 154 extend the representati¢h?) in the region around
the Landau pol&k=A (t=0), where it becomes unreliable.
on test functions K?)?~1. The NL coefficient kerneK{ is ~ Whether such an extension can be somehow hinted at on
related also, fow— 0, to the one recently found,2] on the  perturbative grounds — as in the time-like evolution case
basis of NL QCD vertices, except for the subtraction of a[24] — is an open problem that we do not address here.
term already included in the-dependence oK (cf. Sec. However, for perturbation theory to be applicable, the non-
). perturbative effects of such region should be factorized out,
In general, the expansid@.2) was justified in Ref[8] as  as is predicted by the RG, and has been argued for at leading
follows. FirstK,(k,k'), at energy-scals,=kk, [Eq. (1.1)]  and first subleading levgll2,11].
and nonvanishing virtualities, is a collinear finite distribu- In the following, we consider the dependencedf on
tion, symmetrical in its arguments. By RG equations, Kor Vvarious kinds of regularization d€,, in Eq. (2.2) around the
andk’ much larger tham\, K, must have the form Landau pole, and we argue that indeed the RG factorization
property holds for sufficiently largg in the form

_St )
KoKk ;MZ; as(ﬂz)): ak(z )

G.(K.Ko) = F.,(K) F.,(Ko) + higher twist terms, (t—to>1).
2.7

:ﬂtz)fc (Zs(t’);t’,t) (2.4) HereJ_-'a, (}w) is the solution of the homogeneous small-
k’ equation

which, by expanding inx(t), yields Eq.(2.2). KoFo=oF,, (2.8
In the limit of vanishing virtualities Kk—0 ork’—0) K, which is “regular” for t— +o0 (t— — o) in the sense that it

acquires collinear singularities, which are dictated by theS asymptoticallyZ2 in the corresponding regiofsee Sec.
nonsingular part of the gluon anomalous dimension in thqI C for a more precise discussipn

Qo-scheme which, by neglecting tig part, is Let us first try to understand how E(R.7) can possibly
work. By inserting it in the defining equations

H)= Ygql @) = == ay(0)+ aiAg(w)+ -,

2.5 G, (t,tg) — f dt'IC,(t,t") G, (1" o) = 8(t—tg),

11 Kot 1) =kk' K, (kKk"),  G,(t,to)=kkeG,(k,Kk'),
Al(w)=—75+0(w), Axw)=0+0(w). (2.9a

and by using the symmetry &f,, we obtain, fort —ty;>1,
As a consequence, the eigenvalue functigf{éy) acquire y g y y @ 0

the y-singularities +oo
w}‘w(t)—f dt'fC,(t,t") F, (")

1A (A1+Db)---[A;+(n—1)b]

Xn(y)= 1 AFT . (y<=1) Foto)
7+2w f dtiC(tt)]-"(t) - F, (")
w tO
1(A;—b)(A;—2b)- - -(A;—nb)
== - T (1-y<1), J i, (1.4 ettt (2.9b
(l—y-l— Ea) Fo(to)
(2.6) Fo)=KF,(K),  F()=KF,(K),
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where A ,(t,tp) denotes the higher twist part &, in EQ. (2.1, and F,, (%,) in Egs.(2.7) and (2.8) are not eigen-
(2.7). Now, let us go to the largedimit: the left-hand side  fnctions, being well behaved for +% (t— —=) only.
(LHS) is the homogeneous smallequation forZ,,, and the We shall also refer, in most of this section, to the example
right-hand side(RHS) will be negligible, i.e., higher twist, ¢ the frozenes regularization, which allows a simple clas-
by the following mechanism. First, note that O(ty) in the sification of the eigenfunctiong”(k) of Eq. (2.11), accord-

RHS, becausd,,, by definitioln, decreases rapidly for ing to their behavior fot— —<. In fact, since the test func-
—to/>1. Furthermore, foft—t'|>1, K, satisfies the col- .o

linear factorization of Sec. lliwith higher twist corrections
so that they-dependence in the RHS is factored out and can K2)~ () = (K2)~ Y20 V(Y1 — = 1/2+i 21
be made to vanish by a proper choice/of. () (9 (1= V), (213

We thus co'nclude that, provided th? regularization of theare reproduced for large negativéy the kernel(2.2) with
running coupling allows such properties of the kernel, theeigenvalues
factorization in Eq.2.7) of the larget dependence actually
holds. The decomposition of the kernel in a factorizable and o
in a local part is certainly satisfied in the case of models = ad O e[ 12+iv(w),b=0] (2.14
leading to differential equatior(gf. Ref.[11] and the collin- H nZO[ Ol (1) ]
ear model of Ref[23] as soluble examplgsbut is presum-
ably satisfied also in the case of kernels in AR space the eigenfunctions=*(k) must have the behavior
having reasonable spectral properties, as we shall argue next.

1 _
C. Form of the solution FHk) = E[FVW(k)_F (k)]

We thus assume that, by a suitable regularizatioa £ff)
around the Landau polé;, can be defined as a Hermitian t——o ' ,
operator bounded from above in &rf Hilbert space, with a = S l(ve Wt —gx (p)e” M (2,15
continuum(or possibly discrefespectrum— oo < u< up(w).

Typical regularizati_ons of this kind mafig) cutoff aS(t)_be' for suitable functions="(k) having a plane-wave asymptotic

low some valuet=t>0, or (b) freeze it in the formay(t)  pehavior for large and negativee (the w index has been
=(bt) 'O (t—t)+(bt) '@(t—t), possibly with some dropped. The two “frequencies’v(u) and — v(w) corre-
smoothing out around the cusp. The spectrunkgfis ex-  spond to the two solutions of E€R.14) for real ., which are
pected to be discrete in cag@ and continuum in casé)  real also, because of the—1— y symmetry ofy?(1y) in the
[11]. In the latter case, the expansion in ER.2), extended h=0 limit, as better seen from their explicit form, similar to
to the regiont<t, defines a scale-invariant kernel with fro- the basic one in Eq2.3) (Sec. Il)). Note also that the spec-
zen coupling, where however the coefficient kerngl$  trum end point is provided by the maximum of thesa)
should be evaluated, for consistency, in b0 limit. This ~ expression2.14 whenv varies.
limit introduces some ambiguity in the definition K be- The precise superposition of left- and right-moving waves
low t, which in our point of view is part of the regularization occurring in Eq.(2.19 is dete_rmmed by t.he'condmon that
procedure. }““_(k) be regular fort— + oo, |.e.é be va_mlshlng at Iea_lst as
In such a framework, a formal solution for the Green's@Pidly as 1K, so as to allow arC* (continuum normaliza-

; e A ; tion. While the negativeé-behavior(2.15 is oscillating foru
function G, is given by the spectral representation . : I
9o 159 y P P in the spectrum(2.14), it becomes a superposition of de-

pp(@)dp FHK) FA* (ko) creasing and increasing exponentials whers continued
————— (210 off the real axis with Rei(*)>0. This structure, similar to
that of potential scatteringl1], suggests that the Green'’s
function can be asymptotically evaluated by the “on shell”
expression

Gu(K,ko) = f

e T w— U
in terms of the eigenfunctions

K, Fh=nFh, (2.10)
Go(k ko) =Fo(KFX)(ky), t—tp>1, (2.16

which satisfy anC? orthonormality condition
&K thus identifyingZ,, (ko) = F(“)(ko) in Eq.(2.7) as the solu-
(FH ']:M,)Ef Ry (k)]—""(k) tion of the homogeneous BFKL equation which is regular for
w w T w w to_) — 0 i
The argument goes as follows. By using E8.15 we
:f dtF“* (1) F4 (1)=8(u—p') (2.12  rewrite the spectral representatiGh 10 as a contour inte-
gral

and can be chosen to be real, because 40,i(%,k’).
We shall normally consider the situation for which G. (kK ):J'
Re(w)> up(w), so thatw is not a point of the spectrum oo c(

du FAK)FLM) (ko)
w2m  wo-p

(217
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whereF”(®) andF ") are assumed to be boundary values

of an imaginary analytic function @i, whose branch cut lies 5’7[ Y= b_Xw( %M)] =0
along the spectrum and is encircled by the contG(w). H Y=y
We then evaluate the behavior @2.17) for to— —o0, by
distorting theu-contour[becausd="* is well behaved, for
Re(i»)>0] and by picking up the residue at the= » pole,
i.e., the RHS of Eq(2.16. This procedure can be carried
through fort,>0 also, where="(“) becomes irregular, pro- , —
videdt—tg is large enough for the decrease®f to com- ~Xo(7,)>0,
pensate the increase Bf(“).

The plausibility argument above is further supported by,
the explicit model of Ref[23] for arbitrary values ot and
to, and hints at the general validity of E@.16. Therefore,
for k>kg, the Green’s function is asymptotically propor-
tional to the “on shell” regular solution of the homogeneous
BFKL equationF(k), which becomes the basic quantity to
be found.

Furthermore, the above procedure allows us to define als
the Pomeron singularity = wp. In fact, the integral repre-
sentation(2.17) is singular when its contour is pinched be-
tween the branch-point = up(w) and the poleu=w, i.e.,

Sbut=x,(v.0)=X,(y.1),

1%
(#)'= 5(#)- (2.20

It has already been show8] that, around the saddle point,
the effective eigenvalue functiop,(y, ) is independent of
the regularization procedure and jtsexpansion has been
evaluated foru= w, by a treatment of the saddle point fluc-
tuations(Appendix A 1.

Here we prefer to find thec-expansion, in the same re-
ime, by using the replacement- 4., in y-space10,12, in
rder to give an all-order evaluation. We thus write Eq.

(2.11) for t>t in the form

fOF V(M[szln)zo, or w_| ¢ ~ 1 22 w
TN wp 22
wp=pr(wp)= 3, [ad0]" X, (U2b=0) (2.18 (223
and by repeated partial integrations we prove thepace
which is an implicit equation fowp in the present regular- identitz P P d P fnep
ization procedure ofxgfreezing at smalk. For a general
regularization, the definitiomp= up(wyp) is still valid, but R
the explicit expressiofi2.18 is not. but[g(V LV I={[Xxu(v,) —bud, Jg(y) i y).
It follows that wp is a singularity of the right-moving (2.22

waveF () rather than the regular solution, and that it affects

the asymptotic behaviof2.16 in the to-dependent coeffi- Strictly speaking, the validity of E¢2.22 is limited by
cient only. Therefore, the regularization dependenc@pf o tact that thebut operator has to be regularized around
and of the spectrum is factorized away asymptotically. Th|s.t:0 (e.q.. by freezing it fot < ). However, the largé-be-

Fllituzr?(; is confirmed by the explicit examples of Refs'havior of Eq.(2.19 can be safely evaluated Hg.22) pro-
e vided

D. Small-w expansion

We follow the philosophy of Ref.8], according to which but=x,(y,u)>bput, (2.23
w<1 is the relevant expansion parameter of the solution,
rather thanag(t). Furthermore, we first consider the “off- by the saddle point conditio(2.20).
shell” case u+# w, or more preciselyu< up(w)<Re(w) By replacing(2.22) into (2.21) we obtain the equation
<1, and we take the generalized ansatz

£1(t)=k2FH(K) Xo( V) =X5(V)+ (X —bud,) " tuxi(y)
v2+i= gy 1 +(x—bud,) Puixs(y)+--- (2.24
= L/Z_im meXD{ Y- b—Xw(%M)] :

which, at a given subleading order y¥ provides a nonlin-
ear differential equation fog,(y,«), and thus a formal so-
(219  lution of Eq.(2.21).

However, since we are looking at the largand smallx
whereX,,(y, ) is to be found by solving Eq2.11). limits, we prefer to expand Ecj_2.24) in the denominators as
Once again, we are interested in the RG regme 1/, Well, thus obtaining the following asymptotic expansion:

>1, in which the regular solution in E¢2.19 turns out to

be dominated by the stable saddle pO}-ﬁ:t;w(/.L,t) defined Xo( V1) = x5( ’y)+,u7]lf(‘y)+/.l,27]§)( vyt
by (2.29

b T 1IN 2n
TN\ 127
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where (Appendix A 2

X1

M=
Xo
1xg (xg\ [xg)?

® 2 1 1

=" —w+b(—w> —<—w> , (2.26
Xo LXo Xo Xo
1l x8 b (x| xoxy ,

1= ez T ol Ta| T s T R72Y T2705 |,
Xol(x0) X0\ Xxo (x0)

Yet(@,1) = y(w,1)—

PHYSICAL REVIEW D60 114036

bw

XY (y,0)

|

1

Y

1 XY (y,0)

2 X' (y,w)

J+

(2.31)

whose subleading expansion has however a wildly oscillat-
ing behavior[26,27]. The hard Pomeronsingularity comes

in this case from the failure of the saddle point expansion at
the pointw= w(t), such that

(saddle point estimate

(2.32

X/(;(ws-t)yws)zo

and so on. This expansion is supposed to yield safely théhus implying infinite fluctuations in Eq2.31).

larget behavior of Eq.(2.19, whenever Eq(2.23 is satis-

On the other hand, in our RG improved approach, we do

fied. The cumbersome saddle point fluctuation method ofiot rely on a subleading hierarchy. Therefore, the estimate

Appendix A.1 checks with the result in E(R.26).

The pu-expansion of the regular solution in Egs.
(2.25,(2.26 is the basic result of this section and will be
applied in the following ones to actual NL calculations.

E. Anomalous dimension and hard Pomeron

Due to the validity of RG factorization in the largdimit
of Eq. (2.7), we can state that the gluon densgi@r(t) in the
probeA has a universatdependence

0A0)= 205D~k (ko) ~KEF,(KCE, (227

where the A-dependent coefficient is in general non-
perturbative. By Eq(2.19, this yields the proportionality
relation

gh(t)=g,(1)Ch,

dy 1 1 W
gw(t)zfﬁ;ex N o Ko (y,0)p, (2.28

where we have specified th&(;, function at the “upper”
energy-scales,=k? (y—y—3w), which is relevant in the
large k? limit.

The asymptotic behavior of E¢2.28) in the RG regime
can be found from the saddle poit%.20, which yields the
result

Y(w,t)

1 t
———+-- |exp| y(w,7)dr7,
V=x(y,0) ) f

(2.29

%(UZ(

where y(w,t)=1v,(w,t) satisfies the identity

_ _ t__
yt—xfy(y,w):f y(w,7)dr+const  (2.30

(2.32 may be not realistic. For instance, it has been sug-
gested[28] that Eq.(2.31) yields higher-order singularities
of oscillating type which may perhaps resum to a scale
change. Here we just notice that Eg.28, with the solution
(2.25 can simply be evaluated beyond the saddle point ap-
proximation forow<wg, and yields a generalized definition
of the effective anomalous dimension

gh(t) K2F,(K)
gh(t)  Yu(t)

'}’eﬁ(w:t): (233)

The analysis of thev-singularities of Eq(2.33 has been
done in some toy models in which the BFKL equation re-
duces to a differential ongl1,23. In such cases the singu-
larity comes just from a zero of the denominator at
= w¢(t), so that

gwc(t)(t)zo (gluon-density-zero estimate (2.34

The two definitiong2.32 and(2.34) yield in a sense two
extreme estimates of the hard Pomeron singuldréty(t)
=wp(t)<w(t)] of the full anomalous dimension series.

Both will be discussed here on the basis of our improved
BFKL kernel.

Ill. IMPROVED SUBLEADING KERNELS

The general form?2.2) of the kernel of the RG improved
smallx equation is strongly constrained Gy the exact lead-
ing and next-to-leading logcalculations[1—3] and (ii) the
collinear singularity structure of Eq2.6). This leads to a
natural identification of the coefficient kernédg andK7 —
up to some NNL ambiguity — following the procedure of
Refs.[9,8] which is described in detail here.

A. Form of the collinear singularities

Let us first recall the argument leading to Eg8.6). The

and the coefficient in front, coming from the saddle pointRG invariant kernel in Eq(2.4) acquires collinear singulari-

fluctuations, has been evaluated at NL level only.
If we work at NL level, the saddle point approximation

ties in the limitk’/k—0 (k/k’—0), which corresponds to
strong ordering of the transverse momenta in the direction of

(2.29 is enough, and provides the effective anomalous dithe “upper” scalek? (“lower” scale kg). Therefore, such

mension[25]

singularities are easily expressed for the kerGé& (K@)
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corresponding to energy-scale? (ké) in the NL
k-factorization formula(1.1). For k>k’, K acquires the
form

ad

t t_
(2 ) expft,'y(w,as(r))dr (t>t")

n

KW (kK )=

k2

at)[  —
1- bas(t)logp

_k2

. (3D

) —Aq(w)/b

where’y is the non-singular part of the gluon anomalous

dimension of Eq(2.5), the singular one being accounted for
by the BFKL iteration itself.

Expanding Eq(3.1) in agt) and comparing with the gen-
eral definition(2.2), leads to the identification of the kernels
K" in the collinear limit, whose eigenvalue functions turn
out to have the singularities

1A (A;+Db)---[A;+(n—1)b]

n+1 ’

(y<1)
3

X0 (y)=
2)

which correspond to single logarithmic scaling violations for

k>k,. A similar reasoning yields the collinear behavior of
KM in the opposite strong ordering regi@h=k

t’ e
Kg)(k,k’)za;(,z)exy{ J‘ y(a),as(T))d7'> (t'>1)
t
Zs(t) . 12\ Ar(w)/b—1
=2 1—bas(t)logF (3.3
and to the singularities
1(A;—b)---(A;—nb)
Doy~ — oy
Xn “(y)= (1— it o (I—-y<1).
(3.9

However, the similarity relatiofil.3) connects the kernels
KM and KO, ThereforeX () has the singularitie$3.4)
shifted aty=1+ w also, and similarlyC (") has the singulari-
ties (3.2) shifted aty=—w. As a consequence, the sym-
metrical kernellC,, — for the energy-scalg,=kk, — has
both kinds of singularities shifted by /2, as anticipated in
Eq.(2.6). In particular the leading and NL coefficient kernels
have singularities

1

Xo(¥)~ + (3.5
y—}—Ew 1—7+§w
A A —-b

X3 ()~ 1(w)2+ 1(w)1 .. (36
y+§w) (1—’)/4‘5(1)

PHYSICAL REVIEW D 60 114036

Note the b-dependent asymmetry of the singularities in
Eq. (2.6) under they« 1— y transformation. It is due to the

fact that the expansiof2.2) involves ag(t) [and noteg(t’)].
Of course, the kernel’, itself must be symmetrical under

t—t’ exchange, so that expressing(t’) in terms ofa(t)

agt’)= ) 37
° 1+bagt)log(k’2/k?) '
leads to the symmetry constraints
n
Xe(y)= 2> (m (=ba)" ™xm(l=v), (3.8
m=n

where 7,, denotes they-derivative. It is straightforward to
check by the binomial identity

|

that the symmetry constraint8.8) are indeed satisfied by
Eqg. (2.6). In particular we must have

r+n
n

r
m

n
m

m=0

(3.9

XT(1—=y)=x7(y)+bxs (y),
(3.10

is

Xo(I=y)=x0(7),

showing that the antisymmetric part of7(y)
= (b2)xg" (7).

B. Form of the leading coefficient kernel

Given the fact that the-dependence is tied up with the
v-dependence in the singulariti€2.6), it follows that the
leading(L) logs hierarchy, corresponding to a puseexpan-
sion at fixedy, is poorly convergent close tg=0 andy
=1. This observation follows from the trivial expansion

L1 e (), 31
1 ylm 2y 2y @13
y+§w

and was used in Ref9] to suggest a resummed form of the
leading kernel eigenvalue function

XoN =[P D)= dp(y+30)]+ (1) = (1= y+;0)]
(3.12
B 1 w2
—Xo(Y)—Emer e

The kernelK{ , corresponding to Eq3.12) is that occurring
in the Lund mode[29] and is given by

ko\®
Kg’(k,k’)zKO(k,k’)(E) , (3.13

where k. =Max (k,k") and k_=Min (k,k’). It is thus re-
lated to the customary leading kerr€} by the “threshold

114036-7
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factor” (k- /k-)®. This means that the-dependence pro- In order to implement c_onditio(i_) we have first to relate
tomary expression of the BFKL kernel at NL level
K 'kk’)—J 15 kekk 101
o(SkK)= | o | KotkkD ~jo= = (@Kot alKyt o). (3.189
=Ko(k,k')O(s—k2). (3.14

The w-dependent formulation of E¢2.2) yields instead the

Can one justify the form of the kerné€B.13 a priori? NL expansion

From the point of view of the RG improved equation, any 1 1 _ - -

kernel which(i) reduces td<, in the w—0 limit and (ii) has “KO=—(aKP+ awKM+alKO+. .., (3.19

the leading simple poles of E(.6) for n=0, is an accept- w w

able starting point. An alternative choice of this kind will

differ from Kg by a NL kernelwithout y=0 or y=1 singu-

larities. The resulting ambiguity can thus be reabsorbed by a =

proper subtraction in the NL coefficient kernel. ﬂhlch is actually more general than E®.18 because the
Nevertheless, the threshold interpretation of E@s13  aqw term, coming from thew expansion oKy, is a possible

and (3.19 is appealing. For instance, the first iteration of NL contribution too.

Ke=KO+ KM+ ..

such a kernel provides the expression Now it turns out that, at NL level, the formulatigq.19
reduces to the one i(8.18, provided the impact-factor ker-
) do [ s \“(1 2 nelsH, H' of Eq. (1.1) are taken into account. In fact, by
Ko(sika k)= f 2 @ ZKO using the expansio(8.19 and simple operator identities, we
can write

fdsz (Ky ,K)
= | —— RolKg, 1 -1 o
g (1_5Kw) :(1_CYSK§)1))71/2

s
X | logr——— n(kq,k) = n(kz,K) | Ko(K,Kz) 1 o -1
k1k2 2
X|1— = (akot alKy+---)
(3.15 w
K2+ K2 provided we set
_ i
coshy(k; k)= okk (3.19 L
Ko=K, K=K+ = (KPKy+KeKE).
The threshold condition implied by E¢8.15 2 329
=coshy>cosh n(ky k) + 7(k,k,)]  (3.17) Equations(3.20 and (1.1) show that the two formulations
2kikz above differ by just a redefinition of the impact-factor ker-

. - _ _ nels, while Eq.(3.21) means thak{® is given byK, after
is reminiscen(30] of phase space in Toller varlabl_ésl] subtraction of the term already accounted for in the
and may be regarded as an alternative way of stating coher-

ence effectd5,6], as implied in the original version of the ci-éi?.pe.ndence O.KO' Using Eq..(3.12) this yields the
Lund model itself29]. =0 limit of the eigenvalue function
Whether or not such hints will eventually provide a more 1
direct justification ofKy, the fact re_mains_t.hat Ed3.12 Xélvzo( ) =x1(y)+ EXO( )
resums thew-dependence of the-singularities, and thus
provides the correct singularities of the scale-dependent . , o .
terms of the NL kernel. Therefore, it is a good starting point, 1 h€ subtraction term so obtained is important because it
yielding NL contributions which are smoother than those inas cubic poles ay=0,1 which cancel the correseondmg
the aq(t)-expansion, as we now discuss. ones occurring in the energy-scale dependent pafty(g) of
x1(y) found by Camici and one of ug2], as noticed by
another one of ug9] and seen explicitly in Eq(3.23. Fur-
thermore, the impact-factor kernels of .20 have qua-
The NL contributionK? is constructed by requiring that dratic poles which similarly account for the ones occurring in
(i) the Green’s functiory,, reproduce the known NL calcu- H andH' [2,22]. This means that the remaining contribu-
lations and(ii) the collinear singularities be as in E@.6) tions are, in both cases, much smoother in ¢hdependent
with n=1. formulation.

2

C. Form of the next-to-leading contribution

114036-8
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In order to implement conditiofii) on x{’, we note that

PHYSICAL REVIEW D 60 114036

The energy-scale-dependent term in square brackets con-

the w=0 limit (3.22 still contains double and single poles at tains the subtractio3.22 and has, therefore, simple poles

v=0,1, which should be shifted according to Eg.6). By

neglecting theg'small) qacontributions, the explicit form of
Eqg. (3.22, following from Refs.[1,2] for the energy-scale
So=kKp, is

w=0 1/11 2 ’
X1 (7)=—§ 1_2[X0(7)+X0(7)]

+

1, 1 m?
ZXo(7)+ EXO( V)W/

1 ( T )2 cosmy (
4| \sinmy] 3(1-2y)

y(1—1y) (67 772)
(1+27>(3—2y>) “l3e " 12/ XY

3

3
F5U3)+ (), (323

T
4 sinmy

©

d(y)=2 (-)"

n=0

P(n+1+y)— (1)
(n+7y)?

P(n+2—y)— (1)
(n+1-— "y)z

Here we have singled out some singular terms which have around y=—-1,—-2, ...

at y=0,1 only, which we can shift by adding the
contributiort

’iT2 ©

5 Xo (= xo(¥)]. (3.29

By then collecting Egs(3.22), (3.24 and (3.25 we obtain
the final eigenvalue function

XL (V=x1(V+AL0) Y (y+30)+[A(0)—bly’

2

X(1=y+ 1)+ x5, (3.26

where

- B 1 w? w2
x1(Y)=x1(y)+ 5)(0(7)% - gXo( Y)

—A1(0) ¢ () —[A1(0) = b]¢' (1-y)
(3.29

is a symmetrical function withouy=0 or y=1 singularities
at all. The expressio(8.26) satisfies in addition the symme-
try constraints (3.10, having antisymmetric part
—(b/2)x§".

Of course, there is some ambiguity involved in the choice
of the subtraction termé3.24), (3.25, which boils down to
the possibility of adding tg3.27) a term, vanishing in the
o=0 limit, and having only higher twisty-singularities,
and y=2,3,... . This ambiguity

natural physical interpretation, namely the running coupling€@ds to an error which is of the same order as that made in
terms(in round bracke% the energy_sca|e_dependent termsthe NL truncation of thew eXpanS|0n of the solution in Sec.

(in square bracketsand the collinear termén curly brack-
ets.

The running coupling terms have a double poleyatl
only, and account for the asymmetric part yf [given by

II D, as we shall see nexBecs. IVC and V B

D. Numerical importance of collinear effects at NLO
Above we have given the general form for the collinear

— (b/2)x$] which provides theb-dependent double pole on singularities of the kernel at all orders. It is of interest to

X7 in Eq.(2.6). The collinear terms have symmetrical double consider at NL level just how much of the full corrections

poles with residued;(w=0), in accordance with E(2.6) come from these collinearly enhanced terms. Accordingly
also. Both types of singularities can be shifted by adding ave look at the part of the NL level corrections which con-

NNL term, vanishing in theo=0 limit, which we take to be tains just double and triple poleg; :

Al_b 1

273

A

X1c=— T
Y (1-y)?

m. (3.28

w

As(0)¥'| v+ 5 | =AY ()
This is compared with the full; in Fig. 1, where we have

plotted their ratios tgyg. The remarkable observation is that

) over a range of, the collinear approximation reproduces the

+[A1(w)—b]¢'<1— v+ 5| ~[A(0)=b]y' (1= ).

(3.29

10f course, such simple poles, which are dependent on the choice
(3.12 of x5, do not occur — by construction — in the NL eigen-
This term incorporates the-dependence of the one-loop value functiony,(7y). They are just part of the NNL ambiguity of
anomalous dimensio(2.5) too. our resummation scheme, whose size is evaluated in Sec. V B.
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0 == L Ty - | ye— T L i T 1/2+ i d;y 1
erit= [ T e - X,
K1c— %0 %g - 12-ice £ K
5l X1/ %o (4.23
X1,c/X0 -T=- . . .
where the exponent functioX,, is provided by the smalle
expansion
-10 ¢
w 1 ’)’) 2, w
D Xo( Vi) =X (Vi) = X0 (V) + o ———+ n53(y)
-15 + Xo(7y)
+ulps(y)+ - (4.2b
-20 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ and %4, n5, ... are given in Eq(2.26).
1 02 0. 4 0. . 7 0. 9 A 20 73 o :
01 02 03 04 05 06 07 08 09 Furthermore, by the factorization propef8.7), valid for

0 01 o0
Y
|t—to|>1, the gluon Green'’s functio(®.1) is itself propor-

FIG. 1. A comparison of the collinearly-enhanc@tbuble and tional to , (k)=F"=“(k), which is obtained by setting
triple poles only part of the NLO corrections with the full NLO = in Egs. (4.2 i_“é_
” x1(7y)
ayxw(va)EX(wa):X0(7)+w > +NNL,
Xo()

corrections;n;=0.

true corrections to within 7%. It is obviously impossible to
4.3

say whether this is true at higher orders as well. However the
fact that the study of collinear terms has such predictive

power at NLO is a non-trivial point in favor of our resum- where we have now truncated the expansion to NL level. The
ensuing error is argued to be sméBec. IVQ. The RG

mation approach.
regime holds if there is a stable saddle point

IV. IMPROVED NEXT-TO-LEADING SOLUTION o)
x1(y
bot=x(y,0)=x5(7)+® i +NNL,  x'(y,0)<0,
Xo(Y
(4.9

Having constructed the coefficient kerndfg and K¢

with consistent collinear behavifef. Egs.(3.12 and(3.26)]

we would like to know the largé-behavior of the solutions

of the improved smalk equation, whose kern€2.2) is trun-  which dominates the largebehavior of Eq.(4.2a, provid-

cated at NL level. This problem has been solved in general ifhg the anomalous dimension representati@r29. The ef-
fective anomalous dimension can be continued past its

saddle point value by means of E¢®.33 and(2.28), which

Sec. I, and we describe here the NL features.
use they-representatiort4.2g for u= .

A. w expansion of the gluon distribution
B. Properties of the kernel and its solutions

According to Sec. IID, the eigenfunctiong’ (k) [ —«
<u< can be found in the small, larget regime . . )
p=pr(0)] 3t 9 g In this section we illustrate some of the features of the
resummed kernel and of the regular solution as obtained with

(4.1)  the y-representation.
It can be instructive to examine the resummed eigenvalue
function y(y,) in Eq. (4.3) in two different ways. Firstly as

1
bt=—=—>1
w
a function ofy for various values ofv, as shown in Fig. 2.

by the y-representatiori2.19), i.e.,

so=kk
T T T
10 — w=0 0} P
— w01 {1} | I
8 — w=02 gl & o
' Voo 1
H . i ] H . .
p : P FIG. 2. x(y,w) as a function ofy for various
e N 6 ; I,' {d values ofw, for the symmetric energy-scaky
E ;] =kk’ on the left and fors,=k? on the right.
4 4 /
; / Heren;=0.
' /I
2 2 S
0 02 04 06 08 1 0 02 04 06 08 1 12
Y

Y
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gm(t) e-t/2

0.5 0 05 1 15 "o 5 10 15 20 25
¥ t
FIG. 4. g, (t)e" "2 for =0.15, with energy-scals,=k2. The

FIG. 3. y(y,aJ) as a function ofy for various values ofr, - Yol ]
Xeit (7,09 Y s’ normalization is arbitrary.

for energy-scales,=k? andn;=0.

In the symmetric energy-scale case, we can see how tHeor y=0, we have that +wA;(w)=0. Since A;(1)=
original y-poles aty=0,1 are displaced in a symmetric way —1, @=1 aty=0. This point is of significance insofar as it
for w#0. The slight asymmetry of(y,) is due to Eq. relates to the problem of ensuring conservation of the mo-
(3.10, which in turn comes from the perturbative expansionmentum sum-rule for the gluon distributidits =1 mo-
in as(t) as discussed in Sec. Il A. Even for sizeable valueé“em)
of w the eigenvalue function preserves its shape, with a Next we examine the properties of the regular solution of
stable minimung x" (., ) >0] aroundy= 1/2. This stabil- the smallx equation for the integrated gluon distribution in
m7 .

ity is a necessary condition to avoid the oscillating behawoivaigf fzosr) ;ncgai?(;;fatfg:C;n:[]a;esg]r;lfh?Oreegrjél?s rgfo?;[] erel-
noticed in Ref[27]. prop 12

With the “upper” scale choices,= k2, the pole aty=0 is anomalous dimension, in Fig. 4 we actually shgy(t)e ",
w-independent as it should, while the poleqat 1is shifteq @S @ function ot=In KZ/A2. There are two critical points on
for @#0. In this case we also have a stable minimum, in &he curve. Firstly the point labelegf (y)=0, namely where

slightly different position with respect to the previous casethe saddle-point solutiohwt= y(y,) sits at the minimum

(Ym— Ym™+ 3 0). of x for that w. Let us refer to that point a. The second
A second way of looking at the resummed kernel is topoint of interest, which we call;, is the rightmost zero of
examine a quantity which we C@U‘”)(% ag), defined by g, - This is the point where the effective anomalous dimen-
sion has a divergence. Since the solution in this region has
Xu(aLf]f)(‘yaas) Yy, 0= asX(U)) (4.5  roughly the form[13]

This is closely related to the saddle-point approximation for )
evaluating they-representatior(2.28), since the value of the go(t)~Ai

saddle-point,y satisfieso=agy(y,aJ; y in such a case

is itself closely related to the effective anomalous dimensionone can estimate the difference betwégandt, as being
(231 In Fig. 3 we showyYW(y,aq) for different values of

as. The marked asymmetry is due to the energy-scale choice —t,=¢ (ﬂ
so=k2. We note the rather different structure from the % 2bw
x(y,w) shown in Fig. 2. In particular there are no longer any ) N _
divergences. That on the right is shifted by an amaunas ~ Where — §,=—2.3381 is the position of the rightmost zero

a result rather than a pole one "I’?gf)~7/;s, as discussed of the Airy function. For fixedag, this translates to a differ-

in [9]. That on the left instead becomggif~;e‘ Yas for ~ ENCE between the estimates foy and w. which, for a5<1

negativey as a result of the inclusion of the dependence onhas the following form:

the DGLAP splitting function[in particular the 1/(%z)

2 1/3
X,,bzwz) (bwt—xm>). @7
m

1/3
+0(1), 4.9

2 m\ 1/3
part, which givesA;(w)=—logw for w— +«]. Another Ws— W= fo( m) aPt O(ad)=11.16223.
feature ofy") worth noting(though not immediately visible 2 9
from Fig. 3 is that for n;=0, agy¥W(0,a9=1, indepen- '
dently of as. This is so because close 4=0 Such a2 contributions tow have already been observed in
other contexts where there is some form of cutoff on trans-
(wy_— 1+ wAy(w) — verse momenta, such as a running coupling which is zero

=qq— + . . . : .
= aSXeﬁ s v Olas) 4.6 below a certain value of or non-forward elastic scattering
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(where the exchanged transverse momentum places an effec- 1 Ajw) — —(1
tive cutoff on transverse momenta in the evolujiph4,35. bot==+ ——=y=qay —+A1(w)), (4.1
Numerical estimatethased on they-representationfor the Y Y @
difference betweem; and . coincide with(4.9) but only  \yhere we have taken the smallfimit of the collinear safe
for very smallas. B eigenvalue functiony(y, w).

For typical values of ag, we note that ws—w. We therefore conclude that, in the purely gluonic case, the

~11.162 7 is of the same order as the NLL corrections. It NL @ expansion(4.4) takes into account the collinear behav-
too, as pointed out ifi14,35, is the first term of a poorly ior to all-orders, and that no further resummation is needed.

convergent series. The resummation procedure that we redhis point is perhaps more easily seen by replacing the NL
ommend(and adoptis to definew, not through the power truncation of Eq.4.2b in the saddle point conditiof2.20

series inzs, but by looking for the rightmost zero of the to yield the equation

regular solution. © —
© X1 ¥sXo
b,LLtZXO-i-,u,—wﬁ,LL:—w. (4.12
Xo — X1
1— as—w
C. Estimate of error X0

The question now arises: what is teeror that we make |t js apparent from the last version of E@.12 that we are
in the NL truncation of the RG improved equation? Ourdealing with an effective eigenvalue function which resums
claim is that, in the improved formulation, based on the the collinear behavior as a geometric series.
expansion(4.3), this error is smaller than in the formal NL e are finally able to state that the error in the NL trun-
expansion inag(t). Let us in fact estimate the remaining cation (4.2b) is uniformly O(w?), the neglected coefficient
terms in Eq.(4.2D. According to Eq.(2.6) further sublead- havingno y=0 nor y=1 singularitiesat all. This error is
ing eigenvalue functions contain at least higher order collintherefore of the same size as the ambiguity in the definition
ear poles which contribute tg;, 75 and so on. A first of y% that we have pointed out before. The corresponding
observation is that, even jf;’ has @1+ 1)th order poles, the error in the saddle point conditiori4.4) is a roughly
7n's have at mossimplepoles, due to the powers qf; in v-independent change of scale(bt)=0O(w), or A(ay)
the denominator, roughly due to the replacemenft) =O(w)a?.
~wlxg . Therefore, their contribution cannot be too large,
even for small values of=0O(w).

Furthermore, one can check thatgif contributions(Sec. D. Extension toqq contributions
IVD) are neglected, the leading coc))llmiar poles actuzdiy- The coefficient kernel& ¢ take up collinear singularities
cel outin the expansiong2.26 of 75, 73, ... around both ot o1y from the nonsingular part of the gluon anomalous

y=0 andy=1. The mechanism of this cancellation can bedimension}gg, but also fronqastates which are coupled to

cleared up as follows. it in the one-loop gluon/quark-sea anomalous dimension ma-
From the mathematical point of view, it is possible to Pg q

have the truncated NL solution to be exactsolution of Eq. trix
(2.8), provided the following recurrence relations hakip- ;Cb
; ~ — S
pendix A2 Yan(@) = aPan(@)=yap(©) = Fag - (413
Cc
Xa (X1 bay) X_1' X3 _ ( X1 _ bay) X_Z' . wherea=(q,g) andC,=(Cg,C,)=N(r,1) denote the par-
X6 \ X0 X0  Xo \xo X0 tonic channels and color charges.
(4.10 Although the numerical effect of quark-sea contributions

to the gluon anomalous dimensions is pretty srf2d], in-
cluding the two-channel evolutioi.13 changes the collin-
ear problem conceptually. While the smgllequation stays

of one-channel type, due to the high-energy gluon exchange,
the two-channel collinear behavior yields two anomalous di-
mension eigenvalues

It is now really simple to check that such relations build up
the collinear singularitie§2.6), which therefore must cancel
out in the subleading correctiong, , 73, ... . The recur-
rence relationg4.10 can also be interpreted as DGLAP

equations iny-space, for the anomalous dimensigrin Eq.

(2.9 ) . L ) _Ygg" Yaq , Y99~ Yqq 2+ 41
From a more physical point of view, it is not possible for Y==T 5 — 2 YagYew (414
simple poles to survive im3, 53, ... because, when re-

placed in the saddle point conditiq#.4), they would pro-  with the approximate NL expansiongyyq/ vgglieading=")

vide w?, w3, ... corrections to thene-loopanomalous di-

mensions which cannot possibly be there. In fact, the full — oy — .t r=&
anomalous dimension is accounted for by E¢s3),(4.4) as Y+= Yo" Yagr Y- Yqq™ " Yag: N
follows: (4.19
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Recovering in the BFKL framework the full collinear be- K in Sec. Il can be repeated, by replaciAg(w) with the
havior (4.14) is not trivial, becausey,:—ryglg):(’)(as) matrix A(w) in Eg. (4.13), and by projecting the final results
starts at NL level and foy=O(ay) the leading log hierar-  onto the gluon channel, which corresponds to a bracket be-
chy breaks down in thexqexpansion25]. What do things tween initial statei) and final stater(1), because the quark
look like in the w expansion? couples to the high-energy gluon with relative strength

Note first that the derivation of the collinear behavior of =C./C,. Therefore, Eq(2.6) should be replaced by

1 0
Xn (V)= 7———azz{ (rD|1-A-(A+b)---[A+(n—1)b] v y<l,
1 1
Y+ Ew
(4.19
1 0
= Tl (FD|1-(A=b)- - (A=nb)|| , | ), 1-y<l.
( 1- ’y+ EO)
|
In particular Agg=A1—(A)=Aggt+TAyq, (4.19
XY= <A1> 5+ (A)—b 5, (4.17) while xg and the subtraction3.22 and (3.25 are left un-
tte vt = changed.
YT2 Y732 The main differences with the purely gluonic case come
out in thew expansion of the solution, and specifically in the
(A(A+Db)) ((A—b)(A—2b)) role of the higher-order terms. In fact, if we repeat the cal-
X2= 1 \3 3 culation(4.11) with the new entrie$4.17), we find
y+ Ew ( 1—vy+ Ew)
Y= a, E+<A> ey (LN (0)+TAgy(®)
where(A)=Ayq+1Aqq, (A%, ... denote the brackets de- A Sl 799 agt =
fined before in Eq(4.16). (4.20

Secondly, the kerne(3.23 should be supplemented by

the (qq) contribution[32], which completes thé-factor in  which is consistent with the NL expansiq#.15 for vy,

front of the running coupling terms and adds up a collineaibut is notthe full one-loop anomalous dimensi¢f.14).

contribution, as follows: Further terms in thev expansion must therefore contrib-
ute 1/ and 1/% vy poles, and they indeed do. From Egs.

— 1[-2n; Ny (2.3) and(4.17 we find
q —— | ——T1r,2 ! _

c

AYD=((A?) —(AY) aso+((A—(A))%)asw®+ - - -

« 5 ()+ 3 7% coswy 4.2
XNt sz -7 5
8 Ng sirmy 1-2y which checks with the explicit expansion of Eg.14) up to
3 the relevant order. The explicit matrix form of the correc-
1+ 57’(1— Y) tions in Eq.(4.21) makes it clear why the two-channel prob-
X— | (4.19 lem allows the survival of the simplg-poles at higher sub-
(1+2y)(3=2y) leading orders.

) . Nevertheless, the smalb expansion remains smoother
Correspondingly, the subtraction teii®.24 changes by the nan thea, expansion. In fact, thé(w?) NNL terms being
replacemerit neglected show simple poles or{groundy=0,1), the gen-

eral trend remains the same as in Fig. 2, provided not
too large. Ifw increasesy, decreases, and at some critical
2Since there is gsmall two-loop anomalous dimension in the value ofw, for which y, andy_ become of the same order,
Qo-scheme, induced hyq contributions, one could envisage a shift the » expansion will break down, eventually. Whether or not
of this simple pole in Eq(4.18) also, by a further change of the NL the low-energy eigenvalug_ can still be described by an
subtraction term. all-order resummation im remains an open question.
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FIG. 5. The anomalous dimension in various approximations. . .
FIG. 6. w. andwg as a function ofx for the BFKL kernel with

V. ANOMALOUS DIMENSION AND HARD POMERON ny=0.

Here we present our main numerical results, for both th

improved gluon anomalous dimension and the har(?unction to be power behaved fx—0, i.e. Per(X,t)

Pomeron, and we show their stability. ~x~ <. Note however that, since.(t) comes from a zero
of g,(t), the singularity(5.2) does not necessarily transfer to
A. Results g,(t) itself which, according to Eq(2.28), is expected to

Figure 5 shows the purely gluonic anomalous dimensior’@veé an essential singularity at=0 only, even if a com-
as a function ofw for ag=0.2. The L anomalous dimension plete analysis of possible singularities in the complex

. 1, . w-plane is still needed.
IS just y.L=xo (@/ag and has the familiar branch-cut at o yaj4es of the exponenis, andw, as a function ofrg

w=41In2as. The NL anomalous dimension is taken as  (andQ?), are shown in Fig. 6 and compared with the L and
pure NL results. It is apparent that the improved equation
YNLL= 'yLL_;SX:L(’YLL) , (5.1) provides sensible predictions even for sizeable values;of
xo(vL) A significant difference between the two resummed expo-
nentsw. andwg persists even to low values of;, largely as
and has the feature that it is always negative, with a divera consequence of their differing by a slowly convergent se-
gent structure around the same pointygs. The resummed ries of non-integer powers af, as discussed in Sec. IV B.
result, defined in Eq42.28 and(2.33), shows a divergence  The apove difference should not be too confusing. The
at a much lower, defined bywc(t) in Eq.(2.34. Whatis  gyponentw(t) signals the breakdown of the formal small-
particularly remarkable is the similarity to the DGLAP result expansion of the anomalous dimension of E2j31), due to

until very close to the divergence. The momentum sum r'“'IE?nfinite saddle-point fluctuations, while.(t) tells us the po-

is automatically conserved: fos= 1_w?u)haveyeﬁ=0 [th|s 'S"sition of the singularity of the resummed anomalous dimen-
closely connected with the fact thaly. (0)=1] —in past  gjon. Their difference arises from their different definitions,
approaches the need to impose this property in some arbjjot from some instability of our approachf. Sec. V B.

trary way was a major source of uncertaifi8,37,2@. What is the relation that such quantities bear to the

~ Another interesting feature of the resummed anomaloug,meron singularityo;., the leadingw-plane singularity of
dimension is that, for smals, the divergence ab is pro-  the gluon Green'’s function? Though the latter is dependent

portional toag? and not toa: on the strong coupling region, we expect thatp
=Max; w.(t) for a positive definitea(t), due to the very
__ 1 % o(1) (5.23 definition of w.(t) as a zero of the integrated regular solution
Yeft w—w, dt ' g, (1), to which F,(k) is closely relatedSec. IV B. In fact

- wyp is defined as the value @f being itself equal to the end
bad point of the spectrumwp= up(wp) (Sec. 11Q, and thus
corresponds to a nodelegs,(k), regular fort— —o also.
Therefore, if the interaction does not change sjgn(t)

w—w<1, (525 >0], F,(k) can have a node fow<wp only, so that
(l)c(t)<(1)]p.
which follows from the linear behavior of the regular solu-  The above remark implies that the smalbehavior of the
tion close to the zero, e.g., in the Airy representation of Eq9luon Green's function, dominated by the singularityat
(4.7). The singularity (5.2 causes the effective splitting =wp in F (kg), is not sensitive to the regiom=w(t)

m\ 1/
|, 5 % P —
=1 Xm 3 2 0Qs

1
w— W,
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where F,(k) changes sign. This fact is consistent with the 03 ; ; ; § ;
positivity constraint on the total cross section. 03 | I S RN S e
Furthermore, we can state that the frozepregulariza- ' § § § ! s
tion of Sec. Il C maximizes the interaction strength in the 0.5 Lo R S A Lo
strong coupling region=<t, compared to various cutoff pro- : : § §
cedures. Therefore we also expest<w(t), the value | 02 e N
quoted in Eq(2.18 at the freezing point. It follows that 015 L g R T
Max, (1)< wp=Max wt) R — Lo SRS - ]

or, in other words, that the two exponents of Fig. 6 provide, 0.05 --- A~ -- T MSba} scheme:
in the strong coupling region, lower and upper bounds on the § : : Y scheme - - - -

. . 0 1 1 1 L L
Pomeron intercept;,. Of course, the precise value of the 0 0.05 01 015 0.2 0.25 03
latter will be dependent on the size and shape of the effective o (MSbar)

coupling in the smalk region.
FIG. 7. Renormalization scheme uncertainty of the two expo-
B. Stability nents;MS scheme and& scheme;ag is always shown in thé1S

o ) ) scheme, and is connected to fliescheme value of; via (5.5).
The original L+ NL formalism suffered from consider-

able instabilities under renormalization group scale and
scheme changes.

An important characteristic of any resummed approach is . h . dificati ® f f
that it should be relatively insensitive to such changes, and/ith @n appropriate modification gf;'. Except for terms o

generally stable. In the approach advocated here, it has a@(ag) and higher, this is identical to a renormalization scale

ready been shown in the previous sections that the formahange. Indeed if one defines the scheme change by a modi-
truncation error is small. It still remains to demonstrate itsfication of A then renormalization scheme changes behave

stability in practice. exactly as renormalization scale changes, and so have no
Renormalization scale and schendote first that in our ~ €ffect on the answer. Using inste@8l5) there is some re-

approach the renormalization scale only enters through théidual dependence on the schemedétr?), but as one can

RG invariantA parametefEgs.(2.2) and(2.28)]. It is then ~ see in Fig. 7 for théX' scheme, which ha$=1.17 (for n;

easy to see that the physical results Aréndependent. A =0), the effect of the change of scheme is small.

redefinition ofA is essentially a shift in, say by an amount Resummation schemén resumming the double trans-

agS): a(sm)-l- Tag, (5.5

At. There is a corresponding modificationygf, x%, ... by ~ Vverse logarithmsenergy-scale termsthere is some freedom

the amounts in one’s choice of how to shift the poles aroupe-0 and
v=1. In a similar manner to what was done[B] we con-

XY= xP+bAtYY,  xy—x5+2bAtxy+b2(At)2xg, ... .  sider two choices. The one explicitly discussed in this paper

(5.3  (and the one used for all the figures elsewhere in this paper
can be summarized as
In the off-shell y-representatiori4.2), this corresponds to a

modification ofX,, by an amounbu yAt. In fact the trans- SO =MD (y+ L), (5.6
formation (5.3) changes the coefficient; only, the remain- _ _ _
ing onesy,, 73, ... being left invariant This change exactly With an equivalent procedure around-1. We refer to this

cancels the modification dfitself: as resummation typ&). An alternative possibility is
p{ t ! Xl )] : ! (5.7
ex - —X, (v, —_—— .
7 bu e Y (ytio)

1 Thus we have
—exp y(t+At) - M[Xw(%MHbMVN] , (5.4
1 1 1 1

O(y)= —-—- + +
thus implying that the physical results are independent of the Xo(7)=xo(7) y 1—vy y+io 1-y+iw '

A-parameter choice. This automatic resummation of the (5.83
renormalization scale alleviates the need for techniques such
as Brodsky-Lepage-Mackenzie resummafidg], advocated Ay o) Aw)—b
for example in[34], which show a strong renormalization X2(y)=x1(y)+ ! !
scheme dependence. (y+30)? (1-y+30)?

The issue of renormalization scheme dependence is in fact 1 1 1
closely related. Consider a schei@eelated to the modified += + , (5.8
minimal subtraction IS) scheme by 2\ y+in 1-y+ie
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04 "scheme (a) ; ! ; vided a general method for the constructionf(k) in Eq.
0.35 | ———- scheme (b) i SR S (2.19. The latter exploitsv as expansion parametgr the
j 3 ! s eigenvaluep # w if referred to the eigenfunction€.11)],
08 proomee P T O oo and thus we call itv expansion. It allows the construction, in
0.25 f--ooonoe T —— I E R oo terms of the improved kernels, of the characteristic function
o § P § x(v,w) of Egs. (4.2) and (4.4), which shows no sign of
g 0zp B~ 0 S B instability whenw increasegFig. 2), even if the improved
0.15 [----eoeee R R R T e AEEEEERLES P kernel is truncated at NL accuracy.
04 b A i R A The key advantages of the improved equation concern the
1 1 3 3 3 calculation of thet-dependence, or of the resummed anoma-
0.05 [+ £~ e AR R R preee lous dimensions, which can be given in terms/f(k) only.
0 3, ; i, ; Let us list some of them:
0 0.05 0.1 0.15 0.2 0.25 0.3 The resummation involves not only all powers @f/ v,
o (MSbar) but also an infinite number of subleading terms and extrapo-

lates quite smoothly the fixed order perturbative regkily.
FIG. 8. Resummation scheme uncertainty of the two exponentss)

Although we resum only a fraction of such subleading
terms, we have characterized the error that we make as a
constant scale changAt=0O(w), or Aag/a=0(aw).
Therefore, the neglected terms are subleading, order by or-
der, in bothag/w and a4 expansions.

Although we are limited in principle to smath’s, we
incorporate exact one-logjand partly two-loop anomalous
dimensions in thew-dependent kernels. In particular, we
ﬂave exact energy-momentum conservation, i.e., the gluon
dnomalous dimension vanishes for=1.

Xo(7)[ 1 1

1
2\?+u—wJ_5
CA0) A 0)-b

v (1-y?

A comparison of these two resummation schemes is given i
Fig. 8 and the difference between them is again reasonab

small. . "
: - o . We have provided two critical exponentg(t) and w(t
Aside from th_e explicit renormahz_atlon-scale md_epen-that signal tE\e breakdown of the gbovgtfés)ummat?(()r?. The
dence, th? stability of our approach is connected with th(?irst onel wg(t)] is roughly related to the breakdown of the
resummation of the collinear poles, for both the double—log,a /& resummation, or better of the saddle paifgemiclas
- 3 — 3 S ’ -
energy-scale dependen'g terptise 1/y” and 1/(1- )" poles sical”) approximation, valid for largdbwt (or as/w<1),
at NLO] and for the single-log ones of Eq#$4.11) and

(4.12. Stability has been noted elsewhere, in the study of é”md was the only one considered in previousNL esti-

rapidity veto (initially examined in[38]) combined with a mates. The latter exponefib(t)] comes from a zero of the

resummation of the energy-scale terf8s]. gluon density and signals a singularity of the resummed

anomalous dimension series. Their difference involves non-
integer powers ofg (a§/3 and higher which are related to a

“quantum” wavelength in the-dependence.

In this paper, we have improved the smealequation in The estimates obg(t) andw(t) (Fig. 6) in the improved
several ways. Firstly, we have taken into account the collinformulation are now quite stablgigs. 7 and 8 — despite
ear limits, and their scale dependence. This implies théhe large size of NL corrections and nearly
w-shifts of the y-singu|arities in Eq(26), which y|e|d a renormalization-scheme independent. The reason for that
double-log resummation of parameters such asy  Stems from both the collinear improvement of the kernel, and
= a/y? or w/1—y, and implies also the effective character- from the RG invariant formulation of the solution. Both ex-

istic function in Eq.(4.12), which yields a single-log resum- Ponents are actually useful for a full understanding of the
mation in the parametetgy;/xo=as/y Or adl—1y. solution F,,(ky), carrying the (non-perturbative Pomeron

Both kinds of resummation require an infinite number ofsingularity w;. Indeed we have argued that — for reason-
subleading terms in the original BFKL formalism, in which able strong coupling extrapolationgpositive definite
both w and the running coupling play the role of expansionag(t)] — the Pomeron intercept is bounded between
parameters. The RG improved kerfiglg. (2.2)] is actually  Max; w(t) and Max w¢(t). Present estimates of the latter
an infinite series inx(t) of w-dependent kernels, so that the (Fig. 6) are consistent with the smallexponent=0.2 seen
corresponding Eq2.8) is no longer an evolution equation in for moderateQ? at HERA[40]. But a detailed analysis, in-
log 1 with a simple dependence on the conjugate variableluding two-scale processé41,42, is required to obtain a
w, but a much more general-dependent integral equation. clearcut picture.

The second important improvement concerns the treat- Having no problems with stability, we are now more con-
ment of this generalized equation. In the limit in which thefident of future progress. We have already mentioned the
Green’s function is factorizeldq. (2.7)] we have singled out need for evaluating, (k), the regular solution fot— —oo,
the solutions of the homogeneous equatiyik) [F,(Ko)] which is much more dependent on the strong coupling re-
which are regular fot— +% (t— —=), and we have pro- gion. But also the full Green’s functiog,(k,ko) for k/kg

_+_
y 1-v

Xa(v)=x1(y)+

T

(5.80

VI. CONCLUSIONS

114036-16



RENORMALIZATION GROUP IMPROVED SMALLx EQUATION PHYSICAL REVIEW D 60 114036

=0(1) — i.e., outside the the factorization regime — is 1 _
interesting for the description of two-scale procegsiesible —Vw(%M)E[ﬁ— o ol 7-/1«)} —[y—7]

DIS [41], forward jet[42], etc). We hope to have a better H

understanding of both quantities from a simple model with 1 = _

collinear resummatiofi23]. == Xy, w)A™, (A5)

= |
Of course, a complete understanding involves a variety of bu m=2 m!

other questions, like a realistic evaluation of, a full in- (M _ .m = _ :
clusion of quarkgSec. IV D and impact factori22,43, the ~ Wherex, =dyx, andA=y—y, we write Eq.(A2) in the
relation to the CCFM equatiof6,6] and other two-channel fOrm
formulations[ 7], and so on. But we think that, despite some

residual uncertainties, we are on the right track. Xw(;,u —but= 2 <Xn( ), (A6)

%M)
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APPENDIX A: p-EXPANSION

) Collecting Egs.(A2), (A6) and (A7) we obtain the basic
1. Saddle-point method

equation
In this appendix we want to show the saddle point proce- . . .
dure for deriving the dependence of the coefficienfs:] _ .
=0,1, ... of thesmall-u expansion fory,(y,u): <X(%M)>—JZO w () 2 >, (Xn(7))-
w w w A8
Xol V) =15+ unf (V) + pn3(y)+---, (A1) (A8)

At lowest orderd O(u°)] we have
in terms of the eigenvalue functiong’:j=0,1, ... of the _
coefficient kernels in Eq(1.4). {70(¥))=(x0(7))- (A9)
The action of the improved kernel on its eigenfunctions iSOne can easily check tﬁﬁKtA“FO(M[(””)/z])- Since

0=[K,~ u]F4(k) (A =(A)+H(A (NA)+ - =A(7) + O(u)

) (A10)

as(t) et (1) X, (7. ) 2 -~ —
K2 zm ¢ “ —but|. it follows that, for all y, 79(y)= xo(y) and henceny= xo.
Taking into account EqA9), we can simplify Eq(A8) as

(A2)
*© n—l
J 1

Now we assume the above integral to be dominated by a ,Zl ()= 2 ]n<X“ V). (ALY

saddle point aty= vy,,(u,t) wherebut= x (v, 1), X. being _ _ _
the y-derivative ofX,, [see Eq(2.20]. By adoptingy andx The lowest order of this new relation yields
as independent variables, we replace

) ) )
(72(7) = <X£7 Y xa(y) L O()= xa(y O
1 " X)) mo() Xo(7)
agt)= —_—. (A3) (A12)
bt (7m0
and hencenp;= x1/xo- The next order reads
Introducing the “mean value” {xa( y)> (x2(9))

+ = = .
(m(y)+u(may))= (WL) ST

A( 7)efvw(“/'“)dy (A13)

f e Volridy

(Aly)= (Ad) ——r

SWe denote a$x] the integer part ok.
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By expanding with respect tg around;yields

_ _ 1 _ _
1Y)+ 01 (YA)+ S 7 (¥)(A%) + ()
_ _ 1 _
= ———| (M + XA +5x1()(A%)
xX(v, )

. Xi(;)
[x(y,)]%

To the relevant order i, we have

(A14)

by x3(y)
2 [xo(»1?

(1_

b
5 oty

[ xo] 2X0
xox1 _xox1 [xolx1
; t2—5 2 3
X0 Xo Xo

(4)

M 771(2)
Xo( )

bu 1 1

B Xnw ()

(A%)=

’

(A15)

and substituting in EqA14) we get

! "
~ Xoxibu  Xo
)

Xo

2
X2+ﬂ>

= X2
(2 X6 Xo

b li
=—7;,
X0 !

X2

ny=—|——(m—bd,)n

. Al6
olXo ( )

Going further requires taking into account higher order terms

both in the fluctuationgA™) and in thex expansion of Eq.
(Al1).

The advantage of this method is that it is clearly local in
(because the saddle point, is a function oft) and in vy
(because of the finite fluctuationsTherefore, ift is large

PHYSICAL REVIEW D60 114036

Xo( Vi) = Xo(Y)=pun,(y, 1),

No( V)= 05V + 05 (y)+ puPns(y)+ -,

D=(#n,—bd,) (A17)
in the form
Nu( Vo) =[ X6+ uD] x5+ xg+uD] 2uxs+- -
-1 [ -1
X _
= 1+ﬁD) (—iwg’ l(1+ﬁD
Xw XO 0]
XMX—i-F'--). (A18)
Xo

We then expand inu both the y; series and the operator
denominators, which depend oy, in a non-linear way, and
we derive theu expansion(2.25.

For instance, if we wangs , we can rewrite Eq(A18) up
to orderu? in the form

_ _ X1
n=[1—uxo "D+ 1(xo lD)Z]E

1 _ _ X2 X3

+—{1-u(Dxo +xo D) Iu ==+ u2=

Xo[ #(Dxo "+ X0 )]MXO M Yo
D:D1+/1/772+, D]_Enl—bﬁy, (A19)

where thew index has been dropped.
We then identify they; coefficients in Eq(A19) term by
term:

enough for a stable saddle point to exist, then the procedurgq. (A20) proves Eq(2.26) of the text.
and the result are independent of the regularization procedure \we notice the curious fact that if

in the strong coupling regiot=0.

The disadvantage, though, is that the order of fluctuations

required increases rapidly with the-exponent. It turns out
in fact that, in order to determing; :j>2 — i.e., to evaluate
Eq. (A11) to order u) = — the most involved calculation
concerng A) which requires the computation of the fluctua-
tions in fAe Vdy up to order §—8.

2. y-derivative method

By comparison, the/-derivative method is formally much
simpler. We start rewriting the basic equatith24 by in-
troducing the notation

X1 1 (Xz Xl)
=—, =—|—-D{—/, A20
e Xo 2 Xo\ Xo 1Xo ( )
1 1 1 1 2
ﬂsz&__(Dl_‘F_Dl)&"‘(_Dl) 4
Xo Xo Xo Xo Xo X0 Xo
ERp
Xo ZXo,
&: 1&: E=D§E, (A21)
X0 X0 X0 Xo

both 7, and 73 vanish identically. This is a particular case of
Eq. (4.10, which states that); = x1/xo IS an exact solution
of Eq. (A18) if

Xn+1
Xo

X1
Xo'

=

=

1.

=D n (A22)

In fact we have the chain of identities

114036-18



RENORMALIZATION GROUP IMPROVED SMALLx EQUATION

X1 - _
X—o=n20[<xO+uDl> "(uDy)"
—(xO+MDlrm*”an”*ﬂf (A23)
0
- _ X1
:2 (xo+uD1) M Dyo(uD)"==
n=0 X0
=n§O (xot#D1) " ypiq, (A24)

which prove Eq(A18) if Eq. (A22) is satisfied.
It is straightforward to check that the ansé&#22) builds

PHYSICAL REVIEW D 60 114036

and, by applying th®, operator of Eq(A22) in the relevant
limits we obtain the result

An+1 ﬁ—ba nﬁ Al_b—ba "Ai—b
Xo \v 7 Coll-y T -y
(A26)

which checks with Eq(2.6). It follows that the leading col-
linear singularities must cancel out i :j=2, as stated in
Sec. IV C.

We should keep in mind that the two methods just illus-
trated are equivalent when both make sense, i.et farge
enough for the stable saddle point to exist. This assumption
is implicitly present in they-derivative method when we

up the correct collinear singularities to all orders. We starexpand the operators in EGA18). This means that we stay

from

a_A A
Xo v oo1-

(y—0,1 (A25)

away from the zero modes of the full operator and we con-
sider theD operator as a small perturbation with respect to
Xxo- Expanding inD is analogous to the fluctuation expan-
sion.
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