
PHYSICAL REVIEW D, VOLUME 60, 114036
Renormalization group improved small-x equation
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We propose and analyze an improved small-x equation which incorporates exact leading and next-to-leading
Balitskiı̆-Fadin-Kuraev-Lipatov kernels on one hand and renormalization group constraints in the relevant
collinear limits on the other. We work out in detail the recently proposedv expansion of the solution, derive
the Green’s function factorization properties and discuss both the gluon anomalous dimension and the hard
Pomeron. The resummed results are stable, nearly renormalization-scheme independent, and join smoothly
with the fixed order perturbative regime. Two critical hard Pomeron exponentsvc(Q

2) and vs(Q
2) are

provided, which — for reasonable strong-coupling extrapolations — are argued to provide bounds on the
Pomeron interceptvP . @S0556-2821~99!06321-3#

PACS number~s!: 12.38.Cy, 12.38.Bx
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I. INTRODUCTION

Recent results on the next-to-leading logs corrections
@1,2# to the Balitskiı˘-Fadin-Kuraev-Lipatov~BFKL! equation
@3# and to the hard Pomeron show subleading effects wh
are so large as to question the very meaning of the h
energy expansion and thus raise the compelling questio
how to improve it.

Two facts suggest that an essential ingredient of any
provement of the BFKL approach should be the correct tre
ment of the collinear behavior, as predicted by the renorm
ization group~RG!: on the one hand the success of norm
QCD evolution@4# in explaining theQ2 dependence of the
small-x behavior of structure functions at HERA, and on t
other hand the observation that the large next-to-leading
rections to the BFKL equation come mostly from collinea
enhanced physical contributions.

A first attempt at introducing collinear improvements w
performed long ago, by the treatment of coherence effects@5#
in the collinear region. This leads to the Ciafaloni-Cata
Fiorani-Marchesini~CCFM! equation @5,6#, which differs
from the BFKL equation by subleading effects to all orde
even if a full inclusion of the Dokshitzer-Gribov-Lipotov
Altarelli-Parisi ~DGLAP! splitting functions in a consisten
CCFM framework has not yet been achieved. Other modi
BFKL approaches incorporating some DGLAP evolution a
being tried too@7#.

Very recently, it has been suggested@8# that such all-order
collinear effects can be incorporated as subleading kerne
a generalized equation, whose solution can be found by
method of the so calledv expansion, allowing in particular a
resummation of the energy-scale-dependent terms of the
nel @9#.

The purpose of the present paper is to insert such sug
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tions in a general scheme, which leads to the renormaliza
group improved small-x equation, and to study its solution
One of the outcomes will be to stabilize, in a nearly schem
independent way, the estimate of the anomalous dimens
and of theQ2-dependent hard Pomeron.

The first point to clear up is which Pomeron we are goi
to estimate. Previous work on RG factorization@10,11# in the
BFKL equation with running coupling@12–19# has shown
that thePomeronvP defined as theQ2-independent leading
singularity in thev-plane, is beyond the reach of a strict
perturbative approach. On the other hand, there appears
a boundary of validity of the RG, theQ2-dependenthard
PomeronvP(Q2), which is argued to beindependentof the
small-k2 strong coupling region and is thus hopefully calc
lable in perturbative QCD.

SincevP(Q2) signals a change of asymptotic regime, it
associated with anv-singularity of the anomalous dimen
sions, not necessarily of the full gluon distribution. Th
vP(Q2) may be related to a power-like behavior in an inte
mediate small-x, moderateQ2 region, and not to the very
small-x asymptotic behavior of the structure functions.
also follows thatvP(Q2) is a rather difficult quantity to de-
termine, because it is related to the position of
v-singularity, and is thus dependent on the full anomalo
dimension perturbative series. Possible definitions, leadin
a precise estimate, are thoroughly discussed in Sec. II an
Sec. V, where our results are provided.

A second point to realize is that, in order to incorpora
the collinear behavior correctly, a whole string of sublead
kernels, represented by a series in the running coup
as(Q

2), is to be taken into account. In fact, the leading los
calculations count one high-energy gluon exchange
power of as, with any transverse momentum ratios. In t
collinear limit, provided by the strong ordering in the tran
verse momenta, only the singular part;1/z of the DGLAP
splitting function is obtained. The remaining part contribut
to higher and higher order subleading kernels which ca
fewer powers of logs, but leading powers of logQ2. From a
quantitative point of view, such collinear contributions a
©1999 The American Physical Society36-1
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very important, and in fact account for most of the exa
next-to-leading~NL! kernel ~Sec. III!.

Let us stress that we are not aiming here at a full con
of subleading logs contributions, but only those that carry
leading collinear contribution from next-to-next-to-leadin
~NNL! level on. Therefore, we remain in a context in whi
only t-channel iteration is important, without mixing with th
s-channel one~see, e.g.,@12,20#!.

In this framework, we can define thek-dependent gluon
distribution by the NLk-factorization formula introduced by
one of us@21# in large k dijet production in parton-parton
scattering. In a general hard process involving probesA and
B we can write@2#

dsAB

dkdk0
5E dv

2p i S s

kk0
D v

hA~k!^ku~11asH !Gv

3~11asH
†!uk0&hB~k0!, ~1.1!

k5uku, k05uk0u

where the impact factorshA , hB may carry additional depen
dence on the hard scales of the probes and the gluon Gre
function is provided by

Gv~k,k0!5^ku@v2Kv#21uk0&, ~1.2!

apart from the multiplicative kernelsH, H† which may be
needed at subleading level@2,22#.

We notice immediately that the scale of the energys in
Eq. ~1.1! has been chosen to bekk0, i.e., factorized and
symmetrical in the ‘‘upper’’~u! scale k and ‘‘lower’’ ~l!
scalek0. This means thatGv and the kernelKv in Eq. ~1.2!
are both symmetrical operators. On the other hand, whek
@k0 (k0@k), the variablekk0 /s is not the correct scaling
variable, but ratherk2/s (k0

2/s) — i.e. the usual Bjorken
variable.

In order to switch to, say, the upper energy-scalek2, it is
apparent from Eq.~1.1! that one has to perform a similarit
transformationGv→(k/k0)vGv , which in turn implies the
relationship

K v
(u)~k,k8!S k8

k D v

5Kv~k,k8!5K v
( l )~k,k8!S k

k8
D v

~1.3!

between the symmetrical kernelKv and the kernelK (u)

(K ( l )). Although technical, this remark is important in ord
to classify the collinear logarithms, because if a wro
energy-scale is chosen, single logs~of k/k8) may turn into
double logs~cf. Sec. III!.

The main purpose of our study is to construct the R
improved kernelKv , and to provide the solution forGv in
Eq. ~1.2! in the RG regimek2@k0

2@L2. The starting point is
the observation@8# that the kernelKv„k,k8;m2;as(m

2)…, for
non-vanishing values ofk,k8, is RG invariant, and can thu
be expanded as a power series inas(k

2) with scale invariant
coefficients
11403
t

l

n’s

Kv~k,k8!5 (
n50

`

@ās~k2!#n11Kn
v~k,k8!,

ās5
Ncas

p
5

1

b log~k2/L2!
. ~1.4!

Since we want to take into account the leading collinear s
gularities to all-orders, the series~1.4! is necessarily infinite,
as noticed before.

Solving for the Green’s function with the general kern
~1.4! is a novel problem in the BFKL approach, which
addressed and solved in Sec. II. There we derive the m
properties of the solutions, namely~i! the factorization prop-
erty of Gv in the RG regime,~ii ! the v expansion of the
relevant eigenfunctions, and~iii ! the definitions of the
Pomeron singularityvP and of the hard Pomeron singularit
vP@as(k

2)#. In a first reading of this rather mathematic
section one could perhaps retain the basic results, and c
back to their derivations after Secs. III–V.

In Sec. III we explicitly construct the improved kernelKv

with the requirements of~i! reducing to the exact L1NL
terms in the relevant limit and~ii ! reproducing the known
collinear singularities at higher orders.

The corresponding solution forGv in the RG regime and
the explicit form of the solutionFv of the homogeneous
equation are studied in Sec. IV. The main result is that
NL truncation of the improvedv expansion takes into ac
count correctly all collinear singularities, at least for th
purely gluonic case. The inclusion of the~small! qq̄ contri-
butions is discussed also.

Finally, in Sec. V we present our results for the resumm
anomalous dimensions and for the hard Pomeron, and ex
their stability under scheme change and NNL corrections

In Sec. VI we discuss the present situation and fut
prospects, which include a solvable model@23#, based on the
collinear analysis of the present paper. A few mathemat
details are covered in the Appendix.

II. SMALL- x EQUATION FOR A GENERAL KERNEL

We consider here a general form of the small-x equation,
whoseas(t)-dependence is supposed to be consistent w
leading-twist anomalous dimensions and must contain, th
fore, an infinite series of subleading terms~cf. the Introduc-
tion!. Our final goal is to investigate the solution for th
gluon Green’s function~1.2!, i.e., the resolvent of the im
proved kernel

vGv~k,k0!5d2~k2k0!1E d2k8

p
Kv~k,k8!Gv~k8,k0!,

~2.1!

in order to derive its large-t behavior in the RG regime.

A. Form of the kernel

The improved kernelKv(k,k8) occurring in Eq.~2.1! is
assumed to have the asymptoticas(t)-expansion
6-2
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RENORMALIZATION GROUP IMPROVED SMALL-x EQUATION PHYSICAL REVIEW D 60 114036
Kv~k,k8!5 (
n50

`

@ās~ t !#n11Kn
v~k,k8!, t[ log

k2

L2

~2.2!

where the coefficient kernelsKn
v are scale-invariant and ma

bev-dependent. They are partly known in closed form fro
leading@3# and next-to-leading@1,2# calculations, and have
known @8# collinear properties to all orders.

The leading coefficient kernelK0
v must reduce, forv

→0, to the historical one@3# having eigenvalue function

x0~g!52c~1!2c~g!2c~12g!, c[
G8

G
, ~2.3!

on test functions (k2)g21. The NL coefficient kernelK1
v is

related also, forv→0, to the one recently found@1,2# on the
basis of NL QCD vertices, except for the subtraction o
term already included in thev-dependence ofK0

v ~cf. Sec.
III !.

In general, the expansion~2.2! was justified in Ref.@8# as
follows. First Kv(k,k8), at energy-scales05kk0 @Eq. ~1.1!#
and nonvanishing virtualities, is a collinear finite distrib
tion, symmetrical in its arguments. By RG equations, fok
andk8 much larger thanL, Kv must have the form

Kv„k,k8;m2;as~m2!…5
ās~ t !

k2
K̂v„ās~ t !;t,t8…

5
ās~ t8!

k82
K̂v„ās~ t8!;t8,t… ~2.4!

which, by expanding inās(t), yields Eq.~2.2!.
In the limit of vanishing virtualities (k→0 or k8→0) Kv

acquires collinear singularities, which are dictated by
nonsingular part of the gluon anomalous dimension in
Q0-scheme which, by neglecting theqq̄ part, is

g̃~v!5ggg~v!2
ās

v
5āsA1~v!1ās

2A2~v!1•••,

~2.5!

A1~v!52
11

12
1O~v!, A2~v!501O~v!.

As a consequence, the eigenvalue functionsxn
v(g) acquire

the g-singularities

xn
v~g!.

1A1~A11b!•••@A11~n21!b#

S g1
1

2
v D n11 , ~g!1!

.
1~A12b!~A122b!•••~A12nb!

S 12g1
1

2
v D n11 , ~12g!1!,

~2.6!
11403
e
e

where b is the one-loop beta function coefficient~cf. Sec.
III !.

The g, v dependences are tied up together in Eq.~2.6!
because of the similarity relations~1.3!, which define the
kernelsK (u) (K ( l )) at energy-scalek2 (k0

2) having simple
collinear behavior fork@k8 (k8@k). As a consequence, th
g-singularities occur at shifted values ofg ~by 6v/2) and
the symmetry ofKv implies, by Eq.~2.2!, a slightly asym-
metricalb-dependence in Eq.~2.6!.

B. Factorization of non-perturbative effects

In order to actually solve Eq.~2.1! for Gv(k,k0), one
should extend the representation~2.2! in the region around
the Landau polek.L (t50), where it becomes unreliable
Whether such an extension can be somehow hinted a
perturbative grounds — as in the time-like evolution ca
@24# — is an open problem that we do not address he
However, for perturbation theory to be applicable, the no
perturbative effects of such region should be factorized o
as is predicted by the RG, and has been argued for at lea
and first subleading level@12,11#.

In the following, we consider the dependence ofGv on
various kinds of regularization ofKv in Eq. ~2.2! around the
Landau pole, and we argue that indeed the RG factoriza
property holds for sufficiently larget, in the form

Gv~k,k0!5Fv~k!F̃v~k0!1higher twist terms, ~ t2t0@1!.
~2.7!

Here Fv (F̃v) is the solution of the homogeneous smallx
equation

KvFv5vFv , ~2.8!

which is ‘‘regular’’ for t→1` (t→2`) in the sense that it
is asymptoticallyL 2 in the corresponding region~see Sec.
II C for a more precise discussion!.

Let us first try to understand how Eq.~2.7! can possibly
work. By inserting it in the defining equations

vGv~ t,t0!2E dt8Kv~ t,t8!Gv~ t8,t0!5d~ t2t0!,

Kv~ t,t8![kk8Kv~k,k8!, Gv~ t,t0![kk0Gv~k,k8!,
~2.9a!

and by using the symmetry ofGv , we obtain, fort2t0@1,

vFv~ t !2E
2`

1`

dt8Kv~ t,t8!Fv~ t8!

.E
2`

t0
dt8Kv~ t,t8!F F̃v~ t8!

Fv~ t0!

F̃v~ t0!
2Fv~ t8!G

2E
2`

1`

dt8Kv~ t,t8!
Dv~ t8,t0!

F̃v~ t0!
, ~2.9b!

Fv~ t ![kFv~k!, F̃v~ t ![kF̃v~k!,
6-3
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whereDv(t,t0) denotes the higher twist part ofGv in Eq.
~2.7!. Now, let us go to the large-t limit: the left-hand side
~LHS! is the homogeneous small-x equation forFv , and the
right-hand side~RHS! will be negligible, i.e., higher twist,
by the following mechanism. First, note thatt8&O(t0) in the
RHS, becauseDv , by definition, decreases rapidly forut8
2t0u@1. Furthermore, forut2t8u@1, Kv satisfies the col-
linear factorization of Sec. III~with higher twist corrections!,
so that thet0-dependence in the RHS is factored out and c
be made to vanish by a proper choice ofDv .

We thus conclude that, provided the regularization of
running coupling allows such properties of the kernel,
factorization in Eq.~2.7! of the large-t dependence actuall
holds. The decomposition of the kernel in a factorizable a
in a local part is certainly satisfied in the case of mod
leading to differential equations~cf. Ref. @11# and the collin-
ear model of Ref.@23# as soluble examples!, but is presum-
ably satisfied also in the case of kernels in anL 2 space
having reasonable spectral properties, as we shall argue

C. Form of the solution

We thus assume that, by a suitable regularization ofas(t)
around the Landau pole,Kv can be defined as a Hermitia
operator bounded from above in anL 2 Hilbert space, with a
continuum~or possibly discrete! spectrum2`,m,mP(v).
Typical regularizations of this kind may~a! cutoff as(t) be-
low some valuet5 t̄ .0, or ~b! freeze it in the formās(t)
5(bt)21Q(t2 t̄ )1(b t̄)21Q( t̄ 2t), possibly with some
smoothing out around the cusp. The spectrum ofKv is ex-
pected to be discrete in case~a! and continuum in case~b!
@11#. In the latter case, the expansion in Eq.~2.2!, extended
to the regiont, t̄ , defines a scale-invariant kernel with fro
zen coupling, where however the coefficient kernelsKn

v

should be evaluated, for consistency, in theb50 limit. This
limit introduces some ambiguity in the definition ofKn

v be-

low t̄ , which in our point of view is part of the regularizatio
procedure.

In such a framework, a formal solution for the Green
function Gv is given by the spectral representation

Gv~k,k0!5E
2`

mP(v)dm

p

F v
m~k!F v

m* ~k0!

v2m
~2.10!

in terms of the eigenfunctions

KvF v
m5mF v

m , ~2.11!

which satisfy anL 2 orthonormality condition

~F v
m ,F v

m8![E d2k

p
F v

m* ~k!F v
m8~k!

5E dtF v
m* ~ t !F v

m8~ t !5d~m2m8! ~2.12!

and can be chosen to be real, because so isKv(k,k8).
We shall normally consider the situation for whic

Re(v).mP(v), so thatv is not a point of the spectrum
11403
n

e
e

d
s

xt.

~2.11!, andFv (F̃v) in Eqs. ~2.7! and ~2.8! are not eigen-
functions, being well behaved fort→1` (t→2`) only.

We shall also refer, in most of this section, to the exam
of the frozen-as regularization, which allows a simple clas
sification of the eigenfunctionsF v

m(k) of Eq. ~2.11!, accord-
ing to their behavior fort→2`. In fact, since the test func
tions

~k2!2g(m)5~k2!21/2ein(m)t~12g51/21 in!, ~2.13!

are reproduced for large negativet by the kernel~2.2! with
eigenvalues

m5 (
n50

`

@ās~ t̄ !#n11xn
v@1/21 in~m!,b50# ~2.14!

the eigenfunctionsF v
m(k) must have the behavior

F m~k!5
1

2i
@Fn(m)~k!2F2n(m)~k!#

.
t→2` 1

2ik
@t~n!ein(m)t2t* ~n!e2 in(m)t# ~2.15!

for suitable functionsFn(k) having a plane-wave asymptoti
behavior for large and negativet ~the v index has been
dropped!. The two ‘‘frequencies’’n(m) and 2n(m) corre-
spond to the two solutions of Eq.~2.14! for realm, which are
real also, because of theg↔12g symmetry ofxn

v(g) in the
b50 limit, as better seen from their explicit form, similar t
the basic one in Eq.~2.3! ~Sec. III!. Note also that the spec
trum end point is provided by the maximum of the~real!
expression~2.14! whenn varies.

The precise superposition of left- and right-moving wav
occurring in Eq.~2.15! is determined by the condition tha
F m(k) be regular fort→1`, i.e., be vanishing at least a
rapidly as 1/k, so as to allow anL 2 ~continuum! normaliza-
tion. While the negative-t behavior~2.15! is oscillating form
in the spectrum~2.14!, it becomes a superposition of de
creasing and increasing exponentials whenm is continued
off the real axis with Re(in).0. This structure, similar to
that of potential scattering@11#, suggests that the Green
function can be asymptotically evaluated by the ‘‘on she
expression

Gv~k,k0!.F v
v~k!Fv

n(v)~k0!, t2t0@1, ~2.16!

thus identifyingF̃v(k0)5Fv
n(v)(k0) in Eq. ~2.7! as the solu-

tion of the homogeneous BFKL equation which is regular
t0→2`.

The argument goes as follows. By using Eq.~2.15! we
rewrite the spectral representation~2.10! as a contour inte-
gral

Gv~k,k0!5E
C(v)

dm

2p i

F v
m~k!Fv

n(m)~k0!

v2m
, ~2.17!
6-4
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whereFn(m) andF2n(m) are assumed to be boundary valu
of an imaginary analytic function ofm, whose branch cut lies
along the spectrum and is encircled by the contourC(v).
We then evaluate the behavior of~2.17! for t0→2`, by
distorting them-contour@becauseFn(m) is well behaved, for
Re(in).0] and by picking up the residue at them5v pole,
i.e., the RHS of Eq.~2.16!. This procedure can be carrie
through fort0.0 also, whereFn(v) becomes irregular, pro
vided t2t0 is large enough for the decrease ofF v to com-
pensate the increase ofFn(v).

The plausibility argument above is further supported
the explicit model of Ref.@23# for arbitrary values oft and
t0, and hints at the general validity of Eq.~2.16!. Therefore,
for k@k0, the Green’s function is asymptotically propo
tional to the ‘‘on shell’’ regular solution of the homogeneo
BFKL equationF v

v(k), which becomes the basic quantity
be found.

Furthermore, the above procedure allows us to define
the Pomeron singularityv5vP . In fact, the integral repre
sentation~2.17! is singular when its contour is pinched b
tween the branch-pointm5mP(v) and the polem5v, i.e.,
for n(mP5vP)50, or

vP5mP~vP!5 (
n50

`

@ās~ t̄ !#n11xn
vP~1/2,b50! ~2.18!

which is an implicit equation forvP in the present regular
ization procedure ofas-freezing at smallk. For a general
regularization, the definitionvP5mP(vP) is still valid, but
the explicit expression~2.18! is not.

It follows that vP is a singularity of the right-moving
waveFv

n(v) rather than the regular solution, and that it affe
the asymptotic behavior~2.16! in the t0-dependent coeffi-
cient only. Therefore, the regularization dependence ofvP
and of the spectrum is factorized away asymptotically. T
picture is confirmed by the explicit examples of Re
@11,23#.

D. Small-v expansion

We follow the philosophy of Ref.@8#, according to which
v!1 is the relevant expansion parameter of the soluti
rather thanas(t). Furthermore, we first consider the ‘‘off
shell’’ case mÞv, or more preciselym<mP(v),Re(v)
!1, and we take the generalized ansatz

f v
m~ t ![k2F v

m~k!

5E
1/22 i`

1/21 i` dg

2p i
expH gt2

1

bm
Xv~g,m!J ,

b5
p

Nc
S 11Nc22nf

12p D ~2.19!

whereXv(g,m) is to be found by solving Eq.~2.11!.
Once again, we are interested in the RG regimebt*1/m

@1, in which the regular solution in Eq.~2.19! turns out to
be dominated by the stable saddle pointg5ḡv(m,t) defined
by
11403
y

so

s

s
.

,

]gH gt2
1

bm
Xv~g,m!J

g5ḡ

50

⇔bmt5xv~ḡ,m![Xv8 ~ ḡ,m!,

2xv8 ~ ḡ,m!.0, ~#!8[
]

]g
~#!. ~2.20!

It has already been shown@8# that, around the saddle poin
the effective eigenvalue functionxv(g,m) is independent of
the regularization procedure and itsm-expansion has bee
evaluated form5v, by a treatment of the saddle point fluc
tuations~Appendix A 1!.

Here we prefer to find them-expansion, in the same re
gime, by using the replacementt→]g in g-space@10,12#, in
order to give an all-order evaluation. We thus write E
~2.11! for t. t̄ in the form

bmt f v
m5S K̂01

1

bmt
m K̂11

1

~bmt !2 m2 K̂21••• D f v
m

~2.21!

and by repeated partial integrations we prove theg-space
identity

bm t̂ @g~g! f v
m~g!#5$@xv~g,m!2bm]g#g~g!% f v

m~g!.
~2.22!

Strictly speaking, the validity of Eq.~2.22! is limited by
the fact that thebm t̂ operator has to be regularized arou
t50 ~e.g., by freezing it fort, t̄ ). However, the large-t be-
havior of Eq.~2.19! can be safely evaluated by~2.22! pro-
vided

bmt.xv~ḡ,m!@bm t̄ , ~2.23!

by the saddle point condition~2.20!.
By replacing~2.22! into ~2.21! we obtain the equation

xv~g,m!5x0
v~g!1~xv2bm]g!21mx1

v~g!

1~xv2bm]g!22m2x2
v~g!1••• ~2.24!

which, at a given subleading order inxn
v provides a nonlin-

ear differential equation forxv(g,m), and thus a formal so-
lution of Eq. ~2.21!.

However, since we are looking at the large-t and small-m
limits, we prefer to expand Eq.~2.24! in the denominators as
well, thus obtaining the following asymptotic expansion:

xv~g,m!5x0
v~g!1mh1

v~g!1m2h2
v~g!1•••,

~2.25!
6-5
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where~Appendix A 2!

h1
v5

x1
v

x0
v

,

h2
v5

1

x0
v Fx2

v

x0
v

1bS x1
v

x0
vD 8

2S x1
v

x0
vD 2G , ~2.26!

h3
v5

1

x0
v F x3

v

~x0
v!2

1
b

x0
v S x2

v

x0
vD 8

2
x1

vx2
v

~x0
v!3

1bh2
v822h1

vh2
vG ,

and so on. This expansion is supposed to yield safely
large-t behavior of Eq.~2.19!, whenever Eq.~2.23! is satis-
fied. The cumbersome saddle point fluctuation method
Appendix A.1 checks with the result in Eq.~2.26!.

The m-expansion of the regular solution in Eq
~2.25!,~2.26! is the basic result of this section and will b
applied in the following ones to actual NL calculations.

E. Anomalous dimension and hard Pomeron

Due to the validity of RG factorization in the large-t limit
of Eq. ~2.7!, we can state that the gluon densitygv

A(t) in the
probeA has a universalt-dependence

ġv
A~ t !5

]

]t
gv

A~ t !;k2Gv~k,k0!;k2Fv~k!Cv
A , ~2.27!

where the A-dependent coefficient is in general no
perturbative. By Eq.~2.19!, this yields the proportionality
relation

gv
A~ t !5gv~ t !Cv

A ,

gv~ t !5E dg

2p i

1

g
expH gt2

1

bv
Xv

(u)~g,v!J , ~2.28!

where we have specified theX(u)
v function at the ‘‘upper’’

energy-scales05k2 (g→g2 1
2 v), which is relevant in the

largek2 limit.
The asymptotic behavior of Eq.~2.28! in the RG regime

can be found from the saddle point~2.20!, which yields the
result

gv~ t !.S 1

ḡ~v,t !A2x (u)8~ ḡ,v!
1••• D expE t

ḡ~v,t!dt,

~2.29!

whereḡ(v,t)[ḡv(v,t) satisfies the identity

ḡt2Xv
(u)~ ḡ,v!5E t

ḡ~v,t!dt1const ~2.30!

and the coefficient in front, coming from the saddle po
fluctuations, has been evaluated at NL level only.

If we work at NL level, the saddle point approximatio
~2.29! is enough, and provides the effective anomalous
mension@25#
11403
e

f

t

i-

geff~v,t !5ḡ~v,t !2
bv

x (u)8~ ḡ,v!
S 1

ḡ
1

1

2

x (u)9~ ḡ,v!

x (u)8~ ḡ,v!
D 1•••

~2.31!

whose subleading expansion has however a wildly oscil
ing behavior@26,27#. The hard Pomeronsingularity comes
in this case from the failure of the saddle point expansion
the pointv5vs(t), such that

x8„ḡ~vs ,t !,vs…50 ~saddle point estimate!,
~2.32!

thus implying infinite fluctuations in Eq.~2.31!.
On the other hand, in our RG improved approach, we

not rely on a subleading hierarchy. Therefore, the estim
~2.32! may be not realistic. For instance, it has been s
gested@28# that Eq.~2.31! yields higher-order singularities
of oscillating type which may perhaps resum to a sc
change. Here we just notice that Eq.~2.28!, with the solution
~2.25! can simply be evaluated beyond the saddle point
proximation forv<vs , and yields a generalized definitio
of the effective anomalous dimension

geff~v,t !5
ġv

A~ t !

gv
A~ t !

5
k2Fv~k!

gv~ t !
. ~2.33!

The analysis of thev-singularities of Eq.~2.33! has been
done in some toy models in which the BFKL equation r
duces to a differential one@11,23#. In such cases the singu
larity comes just from a zero of the denominator atv
5vc(t), so that

gvc(t)~ t !50 ~gluon-density-zero estimate!. ~2.34!

The two definitions~2.32! and~2.34! yield in a sense two
extreme estimates of the hard Pomeron singularity@vc(t)
&vP(t)&vs(t)# of the full anomalous dimension serie
Both will be discussed here on the basis of our improv
BFKL kernel.

III. IMPROVED SUBLEADING KERNELS

The general form~2.2! of the kernel of the RG improved
small-x equation is strongly constrained by~i! the exact lead-
ing and next-to-leading logs calculations@1–3# and ~ii ! the
collinear singularity structure of Eq.~2.6!. This leads to a
natural identification of the coefficient kernelsK0

v andK1
v —

up to some NNL ambiguity — following the procedure o
Refs.@9,8# which is described in detail here.

A. Form of the collinear singularities

Let us first recall the argument leading to Eq.~2.6!. The
RG invariant kernel in Eq.~2.4! acquires collinear singulari
ties in the limit k8/k→0 (k/k8→0), which corresponds to
strong ordering of the transverse momenta in the direction
the ‘‘upper’’ scalek2 ~‘‘lower’’ scale k0

2). Therefore, such
singularities are easily expressed for the kernelK (u) (K ( l ))
6-6
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corresponding to energy-scalek2 (k0
2) in the NL

k-factorization formula~1.1!. For k@k8, K (u) acquires the
form

K v
(u)~k,k8!.

ās~ t !

k2
expE

t8

t

g̃„v,as~t!…dt ~ t@t8!

5
ās~ t !

k2 S 12bās~ t !log
k2

k82D 2A1(v)/b

, ~3.1!

where g̃ is the non-singular part of the gluon anomalo
dimension of Eq.~2.5!, the singular one being accounted f
by the BFKL iteration itself.

Expanding Eq.~3.1! in ās(t) and comparing with the gen
eral definition~2.2!, leads to the identification of the kerne
Kn

(u)v in the collinear limit, whose eigenvalue functions tu
out to have the singularities

xn
(u)v~g!.

1A1~A11b!•••@A11~n21!b#

gn11
, ~g!1!

~3.2!

which correspond to single logarithmic scaling violations
k@k0. A similar reasoning yields the collinear behavior
K ( l )v in the opposite strong ordering regionk8@k

Kv
( l )~k,k8!.

ās~ t8!

k82
expS E

t

t8
g̃„v,as~t!…dt D ~ t8@t !

5
ās~ t !

k82 S 12bās~ t !log
k82

k2 D A1(v)/b21

~3.3!

and to the singularities

xn
( l )v~g!.

1~A12b!•••~A12nb!

~12g!n11
, ~12g!1!.

~3.4!

However, the similarity relation~1.3! connects the kernel
K (u) and K ( l ). ThereforeK (u) has the singularities~3.4!
shifted atg511v also, and similarlyK ( l ) has the singulari-
ties ~3.2! shifted atg52v. As a consequence, the sym
metrical kernelKv — for the energy-scales05kk0 — has
both kinds of singularities shifted by6v/2, as anticipated in
Eq. ~2.6!. In particular the leading and NL coefficient kerne
have singularities

x0
v~g!;

1

g1
1

2
v

1
1

12g1
1

2
v

~3.5!

x1
v~g!;

A1~v!

S g1
1

2
v D 2 1

A1~v!2b

S 12g1
1

2
v D 2 . ~3.6!
11403
r

Note theb-dependent asymmetry of the singularities
Eq. ~2.6! under theg↔12g transformation. It is due to the
fact that the expansion~2.2! involvesās(t) @and notās(t8)].
Of course, the kernelKv itself must be symmetrical unde
t↔t8 exchange, so that expressingās(t8) in terms ofās(t)

ās~ t8!5
ās~ t !

11bās~ t !log~k82/k2!
~3.7!

leads to the symmetry constraints

xn
v~g!5 (

m<n
S n
mD ~2b]g!n2mxm

v~12g!, ~3.8!

where ]g denotes theg-derivative. It is straightforward to
check by the binomial identity

S r 1n
n D5 (

m50

n S r
mD S n

mD ~3.9!

that the symmetry constraints~3.8! are indeed satisfied by
Eq. ~2.6!. In particular we must have

x0
v~12g!5x0

v~g!, x1
v~12g!5x1

v~g!1bx0
v8~g!,

~3.10!

showing that the antisymmetric part ofx1
v(g) is

2(b/2)x0
v8(g).

B. Form of the leading coefficient kernel

Given the fact that thev-dependence is tied up with th
g-dependence in the singularities~2.6!, it follows that the
leading~L! logs hierarchy, corresponding to a purev expan-
sion at fixedg, is poorly convergent close tog50 andg
51. This observation follows from the trivial expansion

1

g1
1

2
v

5
1

g F12
v

2g
1S v

2g D 2

1•••G ~3.11!

and was used in Ref.@9# to suggest a resummed form of th
leading kernel eigenvalue function

x0
v~g!5@c~1!2c~g1 1

2 v!#1@c~1!2c~12g1 1
2 v!#

~3.12!

5x0~g!2
1

2
v

p2

sin2pg
1•••.

The kernelK0
v , corresponding to Eq.~3.12! is that occurring

in the Lund model@29# and is given by

K0
v~k,k8!5K0~k,k8!S k,

k.
D v

, ~3.13!

where k.[Max (k,k8) and k,[Min (k,k8). It is thus re-
lated to the customary leading kernelK0 by the ‘‘threshold
6-7
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factor’’ (k, /k.)v. This means that thes-dependence pro
vided by its inverse Mellin transform is

K0~s;k,k8![E dv

2p i S s

kk8
D v

K0
v~k,k8!

5K0~k,k8!Q~s2k.
2 !. ~3.14!

Can one justify the form of the kernel~3.13! a priori?
From the point of view of the RG improved equation, a
kernel which~i! reduces toK0 in thev→0 limit and ~ii ! has
the leading simple poles of Eq.~2.6! for n50, is an accept-
able starting point. An alternative choice of this kind w
differ from K0

v by a NL kernelwithoutg50 or g51 singu-
larities. The resulting ambiguity can thus be reabsorbed b
proper subtraction in the NL coefficient kernel.

Nevertheless, the threshold interpretation of Eqs.~3.13!
and ~3.14! is appealing. For instance, the first iteration
such a kernel provides the expression

K0
2~s;k1 ,k2!5E dv

2p i S s

k1k2
D vS 1

v
K0

vD 2

5E d2k

p
K0~k1 ,k!

3S log
s

k1k2
2h~k1 ,k!2h~k2 ,k! DK0~k,k2!

~3.15!

where

coshh~ki ,k![
k21ki

2

2kki
. ~3.16!

The threshold condition implied by Eq.~3.15!

s

2k1k2
5coshh.cosh@h~k1 ,k!1h~k,k2!# ~3.17!

is reminiscent@30# of phase space in Toller variables@31#
and may be regarded as an alternative way of stating co
ence effects@5,6#, as implied in the original version of th
Lund model itself@29#.

Whether or not such hints will eventually provide a mo
direct justification ofK0

v , the fact remains that Eq.~3.12!
resums thev-dependence of theg-singularities, and thus
provides the correct singularities of the scale-depend
terms of the NL kernel. Therefore, it is a good starting poi
yielding NL contributions which are smoother than those
the as(t)-expansion, as we now discuss.

C. Form of the next-to-leading contribution

The NL contributionK1
v is constructed by requiring tha

~i! the Green’s functionGv reproduce the known NL calcu
lations and~ii ! the collinear singularities be as in Eq.~2.6!
with n51.
11403
a

er-

nt
,

In order to implement condition~i! we have first to relate
the v-dependent formulation ofGv in Eq. ~1.2! to the cus-
tomary expression of the BFKL kernel at NL level

1

v
K5

1

v
~āsK01ās

2K11••• !. ~3.18!

The v-dependent formulation of Eq.~2.2! yields instead the
NL expansion

1

v
K v5

1

v
~āsK0

(0)1āsvK0
(1)1ās

2K1
(0)1••• !, ~3.19!

Ki
v[Ki

(0)1vKi
(1)1•••,

which is actually more general than Eq.~3.18! because the
āsv term, coming from thev expansion ofK0

v , is a possible
NL contribution too.

Now it turns out that, at NL level, the formulation~3.19!
reduces to the one in~3.18!, provided the impact-factor ker
nels H, H† of Eq. ~1.1! are taken into account. In fact, b
using the expansion~3.19! and simple operator identities, w
can write

S 12
1

v
K vD 21

5~12āsK0
(1)!21/2

3S 12
1

v
~āsK01ās

2K11••• ! D 21

3~12āsK0
(1)!21/2 ~3.20!

provided we set

K05K0
(0) , K15K1

(0)1
1

2
~K0

(1)K01K0K0
(1)!.

~3.21!

Equations~3.20! and ~1.1! show that the two formulations
above differ by just a redefinition of the impact-factor ke
nels, while Eq.~3.21! means thatK1

(0) is given byK1, after
subtraction of the term already accounted for in t
v-dependence ofK0

v . Using Eq. ~3.12! this yields thev
50 limit of the eigenvalue function

x1
v50~g!5x1~g!1

1

2
x0~g!

p2

sin2pg
. ~3.22!

The subtraction term so obtained is important becaus
has cubic poles atg50,1 which cancel the correspondin
ones occurring in the energy-scale dependent part (2 1

4 x09) of
x1(g) found by Camici and one of us@2#, as noticed by
another one of us@9# and seen explicitly in Eq.~3.23!. Fur-
thermore, the impact-factor kernels of Eq.~3.20! have qua-
dratic poles which similarly account for the ones occurring
H and H† @2,22#. This means that the remaining contrib
tions are, in both cases, much smoother in thev-dependent
formulation.
6-8
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In order to implement condition~ii ! on x1
v , we note that

thev50 limit ~3.22! still contains double and single poles
g50,1, which should be shifted according to Eq.~2.6!. By
neglecting the~small! qq̄ contributions, the explicit form of
Eq. ~3.22!, following from Refs.@1,2# for the energy-scale
s05kk0, is

x1
v50~g!52

1

2 S 11

12
@x0

2~g!1x08~g!# D
1F2

1

4
x09~g!1

1

2
x0~g!

p2

sin2pgG
2

1

4 H S p

sinpg D 2 cospg

3~122g! S 11

1
g~12g!

~112g!~322g! D J 1S 67

36
2

p2

12Dx0~g!

1
3

2
z~3!1

p3

4 sinpg
2F~g!, ~3.23!

F~g![ (
n50

`

~2 !nFc~n111g!2c~1!

~n1g!2

1
c~n122g!2c~1!

~n112g!2 G .
Here we have singled out some singular terms which hav
natural physical interpretation, namely the running coupl
terms~in round brackets!, the energy-scale-dependent term
~in square brackets! and the collinear terms~in curly brack-
ets!.

The running coupling terms have a double pole atg51
only, and account for the asymmetric part ofx1 @given by
2(b/2)x08] which provides theb-dependent double pole o
x1

v in Eq. ~2.6!. The collinear terms have symmetrical doub
poles with residueA1(v50), in accordance with Eq.~2.6!
also. Both types of singularities can be shifted by addin
NNL term, vanishing in thev50 limit, which we take to be

A1~v!c8S g1
v

2 D2A1~0!c8~g!

1@A1~v!2b#c8S 12g1
v

2 D2@A1~0!2b#c8~12g!.

~3.24!

This term incorporates thev-dependence of the one-loo
anomalous dimension~2.5! too.
11403
a
g

a

The energy-scale-dependent term in square brackets
tains the subtraction~3.22! and has, therefore, simple pole
at g50,1 only, which we can shift by adding th
contribution1

p2

6
@x0

v~g!2x0~g!#. ~3.25!

By then collecting Eqs.~3.22!, ~3.24! and ~3.25! we obtain
the final eigenvalue function

x1
v~g![x̃1~g!1A1~v!c8~g1 1

2 v!1@A1~v!2b#c8

3~12g1 1
2 v!1

p2

6
x0

v~g!, ~3.26!

where

x̃1~g![x1~g!1
1

2
x0~g!

p2

sin2pg
2

p2

6
x0~g!

2A1~0!c8~g!2@A1~0!2b#c8~12g!

~3.27!

is a symmetrical function withoutg50 or g51 singularities
at all. The expression~3.26! satisfies in addition the symme
try constraints ~3.10!, having antisymmetric par

2(b/2)x0
v8 .

Of course, there is some ambiguity involved in the cho
of the subtraction terms~3.24!, ~3.25!, which boils down to
the possibility of adding to~3.27! a term, vanishing in the
v50 limit, and having only higher twistg-singularities,
around g521,22, . . . andg52,3, . . . . This ambiguity
leads to an error which is of the same order as that mad
the NL truncation of thev expansion of the solution in Sec
II D, as we shall see next~Secs. IV C and V B!.

D. Numerical importance of collinear effects at NLO
Above we have given the general form for the colline

singularities of the kernel at all orders. It is of interest
consider at NL level just how much of the full correction
come from these collinearly enhanced terms. Accordin
we look at the part of the NL level corrections which co
tains just double and triple poles,x1,c :

x1,c5
A1

g2
1

A12b

~12g!2
2

1

2g3
2

1

2~12g!3
. ~3.28!

This is compared with the fullx1 in Fig. 1, where we have
plotted their ratios tox0. The remarkable observation is th
over a range ofg, the collinear approximation reproduces th

1Of course, such simple poles, which are dependent on the ch
~3.12! of x0

v , do not occur — by construction — in the NL eigen
value functionx1(g). They are just part of the NNL ambiguity o
our resummation scheme, whose size is evaluated in Sec. V B
6-9



to
th
iv
-

l

he

its

he
ith

lue

M. CIAFALONI, D. COLFERAI, AND G. P. SALAM PHYSICAL REVIEW D60 114036
true corrections to within 7%. It is obviously impossible
say whether this is true at higher orders as well. However
fact that the study of collinear terms has such predict
power at NLO is a non-trivial point in favor of our resum
mation approach.

IV. IMPROVED NEXT-TO-LEADING SOLUTION

Having constructed the coefficient kernelsK0
v and K1

v

with consistent collinear behavior@cf. Eqs.~3.12! and~3.26!#
we would like to know the large-t behavior of the solutions
of the improved small-x equation, whose kernel~2.2! is trun-
cated at NL level. This problem has been solved in genera
Sec. II, and we describe here the NL features.

A. v expansion of the gluon distribution

According to Sec. II D, the eigenfunctionsF v
m(k) @2`

,m,mP(v)# can be found in the small-m, large-t regime

bt*
1

m
*

1

v
@1 ~4.1!

by theg-representation~2.19!, i.e.,

FIG. 1. A comparison of the collinearly-enhanced~double and
triple poles only! part of the NLO corrections with the full NLO
corrections;nf50.
11403
e
e

in

k2F v
m~k!5E

1/22 i`

1/21 i` dg

2p i
expH gt2

1

bm
Xv~g,m!J ,

~4.2a!

where the exponent functionXv is provided by the small-m
expansion

]gXv~g,m![xv~g,m!5x0
v~g!1m

x1
v~g!

x0
v~g!

1m2h2
v~g!

1m3h3
v~g!1••• ~4.2b!

andh2
v , h3

v , . . . are given in Eq.~2.26!.
Furthermore, by the factorization property~2.7!, valid for

ut2t0u@1, the gluon Green’s function~2.1! is itself propor-
tional to Fv(k)[F v

m5v(k), which is obtained by settingm
5v in Eqs.~4.2!, i.e.,

]gXv~g,v![x~g,v!5x0
v~g!1v

x1
v~g!

x0
v~g!

1NNL,

~4.3!

where we have now truncated the expansion to NL level. T
ensuing error is argued to be small~Sec. IV C!. The RG
regime holds if there is a stable saddle point

bvt5x~g,v!.x0
v~g!1v

x1
v~g!

x0
v~g!

1NNL, x8~g,v!,0,

~4.4!

which dominates the large-t behavior of Eq.~4.2a!, provid-
ing the anomalous dimension representation~2.29!. The ef-
fective anomalous dimension can be continued past
saddle point value by means of Eqs.~2.33! and~2.28!, which
use theg-representation~4.2a! for m5v.

B. Properties of the kernel and its solutions

In this section we illustrate some of the features of t
resummed kernel and of the regular solution as obtained w
the g-representation.

It can be instructive to examine the resummed eigenva
functionx(g,v) in Eq. ~4.3! in two different ways. Firstly as
a function ofg for various values ofv, as shown in Fig. 2.
FIG. 2. x(g,v) as a function ofg for various
values ofv, for the symmetric energy-scales0

5kk8 on the left and fors05k2 on the right.
Herenf50.
6-10
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In the symmetric energy-scale case, we can see how
original g-poles atg50,1 are displaced in a symmetric wa
for vÞ0. The slight asymmetry ofx(g,v) is due to Eq.
~3.10!, which in turn comes from the perturbative expansi
in ās(t), as discussed in Sec. III A. Even for sizeable valu
of v the eigenvalue function preserves its shape, with
stable minimum@x9(gm ,v).0# aroundg51/2. This stabil-
ity is a necessary condition to avoid the oscillating behav
noticed in Ref.@27#.

With the ‘‘upper’’ scale choices05k2, the pole atg50 is
v-independent as it should, while the pole atg51 is shifted
for vÞ0. In this case we also have a stable minimum, i
slightly different position with respect to the previous ca
(gm→gm1 1

2 v).
A second way of looking at the resummed kernel is

examine a quantity which we callxeff
(u)(g,ās), defined by

xeff
(u)~g,ās!5x (u)~g,v5āsxeff

(u)!. ~4.5!

This is closely related to the saddle-point approximation
evaluating theg-representation,~2.28!, since the value of the
saddle-point,ḡ satisfiesv5āsxeff

(u)(ḡ,ās); ḡ in such a case
is itself closely related to the effective anomalous dimensi
~2.31!. In Fig. 3 we showxeff

(u)(g,ās) for different values of

ās. The marked asymmetry is due to the energy-scale ch
s05k2. We note the rather different structure from th
x(g,v) shown in Fig. 2. In particular there are no longer a
divergences. That on the right is shifted by an amountv: as
a result rather than a pole one hasxeff

(u);g/ās, as discussed

in @9#. That on the left instead becomesxeff
(u);āse

2g/ās for
negativeg as a result of the inclusion of the dependence
the DGLAP splitting function@in particular the 1/(12z)
part, which givesA1(v).2 logv for v→1`]. Another
feature ofxeff

(u) worth noting~though not immediately visible

from Fig. 3! is that for nf50, āsxeff
(u)(0,ās)51, indepen-

dently of ās. This is so because close tog50

v5āsxeff
(u)5ās

11vA1~v!

g
1O~ ās!. ~4.6!

FIG. 3. xeff
(u)(g,ās) as a function ofg for various values ofās,

for energy-scales05k2 andnf50.
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For g50, we have that 11vA1(v)50. Since A1(1)5
21, v51 atg50. This point is of significance insofar as
relates to the problem of ensuring conservation of the m
mentum sum-rule for the gluon distribution~its v51 mo-
ment!.

Next we examine the properties of the regular solution
the small-x equation for the integrated gluon distribution
Eq. ~2.28!. In order to concentrate on the region most r
evant for a consideration of the small-x properties of the
anomalous dimension, in Fig. 4 we actually showgv(t)e2t/2,
as a function oft5 ln k2/L2. There are two critical points on
the curve. Firstly the point labeledx8(ḡ)50, namely where
the saddle-point solutionbvt5x(ḡ,v) sits at the minimum
of x for that v. Let us refer to that point asts . The second
point of interest, which we calltc , is the rightmost zero of
gv . This is the point where the effective anomalous dime
sion has a divergence. Since the solution in this region
roughly the form@13#

gv~ t !;AiXS 2

xm9 b2v2D 1/3

~bvt2xm!C. ~4.7!

One can estimate the difference betweentc and ts as being

ts2tc5j0S xm9

2bv D 1/3

1O~1!, ~4.8!

where2j0.22.3381 is the position of the rightmost zer
of the Airy function. For fixedas, this translates to a differ-
ence between the estimates forvs andvc which, for ās!1,
has the following form:

vs2vc5j0S b2xm
2 xm9

2 D 1/3

ās
5/31O~ ās

2!.11.16ās
5/3.

~4.9!

Suchas
5/3 contributions tov have already been observed

other contexts where there is some form of cutoff on tra
verse momenta, such as a running coupling which is z
below a certain value oft, or non-forward elastic scatterin

FIG. 4. gv(t)e2t/2 for v50.15, with energy-scales05k2. The
normalization is arbitrary.
6-11
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~where the exchanged transverse momentum places an e
tive cutoff on transverse momenta in the evolution! @14,35#.
Numerical estimates~based on theg-representation! for the
difference betweenvs and vc coincide with ~4.9! but only
for very smallās.

For typical values of ās, we note that vs2vc

.11.16ās
5/3 is of the same order as the NLL corrections.

too, as pointed out in@14,35#, is the first term of a poorly
convergent series. The resummation procedure that we
ommend~and adopt! is to definevc not through the power
series inās, but by looking for the rightmost zero of th
regular solution.

C. Estimate of error

The question now arises: what is theerror that we make
in the NL truncation of the RG improved equation? O
claim is that, in the improved formulation, based on thev
expansion~4.3!, this error is smaller than in the formal N
expansion inas(t). Let us in fact estimate the remainin
terms in Eq.~4.2b!. According to Eq.~2.6! further sublead-
ing eigenvalue functions contain at least higher order col
ear poles which contribute toh2

v , h3
v and so on. A first

observation is that, even ifxn
v has (n11)th order poles, the

hn
v’s have at mostsimplepoles, due to the powers ofx0

v in

the denominator, roughly due to the replacementās(t)
;v/x0

v . Therefore, their contribution cannot be too larg
even for small values ofg5O(v).

Furthermore, one can check that, ifqq̄ contributions~Sec.
IV D ! are neglected, the leading collinear poles actuallycan-
cel outin the expansions~2.26! of h2

v , h3
v , . . . around both

g50 andg51. The mechanism of this cancellation can
cleared up as follows.

From the mathematical point of view, it is possible
have the truncated NL solution to be anexactsolution of Eq.
~2.8!, provided the following recurrence relations hold~Ap-
pendix A 2!

x2
v

x0
v

5S x1
v

x0
v

2b]gD x1
v

x0
v

,
x3

v

x0
v

5S x1
v

x0
v

2b]gD x2
v

x0
v

, •••.

~4.10!

It is now really simple to check that such relations build
the collinear singularities~2.6!, which therefore must cance
out in the subleading correctionsh2

v , h3
v , . . . . The recur-

rence relations~4.10! can also be interpreted as DGLA
equations ing-space, for the anomalous dimensiong̃ in Eq.
~2.5!.

From a more physical point of view, it is not possible f
simple poles to survive inh2

v , h3
v , . . . because, when re

placed in the saddle point condition~4.4!, they would pro-
vide v2, v3, . . . corrections to theone-loopanomalous di-
mensions which cannot possibly be there. In fact, the
anomalous dimension is accounted for by Eqs.~4.3!,~4.4! as
follows:
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ec-
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bvt.
1

ḡ
1

A1~v!

ḡ
⇒ḡ5āsS 1

v
1A1~v! D , ~4.11!

where we have taken the small-g limit of the collinear safe
eigenvalue functionx (u)(g,v).

We therefore conclude that, in the purely gluonic case,
NL v expansion~4.4! takes into account the collinear beha
ior to all-orders, and that no further resummation is need
This point is perhaps more easily seen by replacing the
truncation of Eq.~4.2b! in the saddle point condition~2.20!
to yield the equation

bmt5x0
v1m

x1
v

x0
v

⇒m5
āsx0

v

12ās

x1
v

x0
v

. ~4.12!

It is apparent from the last version of Eq.~4.12! that we are
dealing with an effective eigenvalue function which resu
the collinear behavior as a geometric series.

We are finally able to state that the error in the NL tru
cation ~4.2b! is uniformly O(v2), the neglected coefficien
having no g50 nor g51 singularitiesat all. This error is
therefore of the same size as the ambiguity in the definit
of x1

v that we have pointed out before. The correspond
error in the saddle point condition~4.4! is a roughly
g-independent change of scaleD(bt)5O(v), or D(as)
5O(v)as

2 .

D. Extension toqq̄ contributions

The coefficient kernelsKn
v take up collinear singularities

not only from the nonsingular part of the gluon anomalo
dimensiong̃gg , but also fromqq̄ states which are coupled t
it in the one-loop gluon/quark-sea anomalous dimension
trix

g̃ab~v!5āsAab~v![gab~v!2dag

āsCb

Ncv
, ~4.13!

wherea5(q,g) andCa5(CF ,CA)[Nc(r ,1) denote the par-
tonic channels and color charges.

Although the numerical effect of quark-sea contributio
to the gluon anomalous dimensions is pretty small@25#, in-
cluding the two-channel evolution~4.13! changes the collin-
ear problem conceptually. While the small-x equation stays
of one-channel type, due to the high-energy gluon exchan
the two-channel collinear behavior yields two anomalous
mension eigenvalues

g65
ggg1gqq

2
6AS ggg2gqq

2 D 2

1gqgggq, ~4.14!

with the approximate NL expansions (@ggq /ggg# leading5r )

g1.ggg1rgqg , g2.gqq2rgqg , S r[
CF

CA
D .

~4.15!
6-12
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Recovering in the BFKL framework the full collinear be
havior ~4.14! is not trivial, becauseg2.2rgqg

(1)5O(as)
starts at NL level and forg5O(as) the leading logs hierar-
chy breaks down in theas-expansion@25#. What do things
look like in thev expansion?

Note first that the derivation of the collinear behavior o
-

y

ea

e

ift
L

11403
Kn
v in Sec. III can be repeated, by replacingA1(v) with the

matrix A(v) in Eq. ~4.13!, and by projecting the final result
onto the gluon channel, which corresponds to a bracket
tween initial state (1

0) and final state (r1), because the quar
couples to the high-energy gluon with relative strengthr
5CF /CA . Therefore, Eq.~2.6! should be replaced by
xn
v~g!.

1

S g1
1

2
v D n11 K ~r1!U1•A•~A1b!•••@A1~n21!b#US 0

1D L , g!1,

~4.16!

.
1

S 12g1
1

2
v D n11 K ~r1!U1•~A2b!•••~A2nb!US 0

1D L , 12g!1.
me
e

al-

-
s.

c-
-

r

al
r,
ot
In particular

x1
v.

^A&

S g1
1

2
v D 2 1

^A&2b

S 12g1
1

2
v D 2 , ~4.17!

x2
v.

^A~A1b!&

S g1
1

2
v D 3 1

^~A2b!~A22b!&

S 12g1
1

2
v D 3 ,

where^A&5Agg1rAqg , ^A2&, . . . denote the brackets de
fined before in Eq.~4.16!.

Secondly, the kernel~3.23! should be supplemented b
the (qq̄) contribution@32#, which completes theb-factor in
front of the running coupling terms and adds up a collin
contribution, as follows:

x1
qq̄~g!52

1

2 S 22nf

12Nc
@x0

2~g!1x08~g!# D2
nf

6Nc

3H 5

3
x0~g!1

3

Nc
2

p2

sin2pg

cospg

122g

3

11
3

2
g~12g!

~112g!~322g!
J . ~4.18!

Correspondingly, the subtraction term~3.24! changes by the
replacement2

2Since there is a~small! two-loop anomalous dimension in th

Q0-scheme, induced byqq̄ contributions, one could envisage a sh
of this simple pole in Eq.~4.18! also, by a further change of the N
subtraction term.
r

Agg5A1→^A&5Agg1rAqg , ~4.19!

while x0
v and the subtractions~3.22! and ~3.25! are left un-

changed.
The main differences with the purely gluonic case co

out in thev expansion of the solution, and specifically in th
role of the higher-order terms. In fact, if we repeat the c
culation ~4.11! with the new entries~4.17!, we find

g1
(1)5āsS 1

v
1^A& D5āsS 1

v
1Agg~v!1rAqg~v! D ,

~4.20!

which is consistent with the NL expansion~4.15! for g1 ,
but is not the full one-loop anomalous dimension~4.14!.

Further terms in thev expansion must therefore contrib
ute 1/g and 1/12g poles, and they indeed do. From Eq
~2.31! and ~4.17! we find

Dg1
(1)5~^A2&2^A&2!āsv1^~A2^A&!3&āsv

21•••

~4.21!

which checks with the explicit expansion of Eq.~4.14! up to
the relevant order. The explicit matrix form of the corre
tions in Eq.~4.21! makes it clear why the two-channel prob
lem allows the survival of the simpleg-poles at higher sub-
leading orders.

Nevertheless, the smallv expansion remains smoothe
than theas expansion. In fact, theO(v2) NNL terms being
neglected show simple poles only~aroundg50,1), the gen-
eral trend remains the same as in Fig. 2, providedv is not
too large. Ifv increases,g1 decreases, and at some critic
value ofv, for which g1 andg2 become of the same orde
thev expansion will break down, eventually. Whether or n
the low-energy eigenvalueg2 can still be described by an
all-order resummation inv remains an open question.
6-13
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V. ANOMALOUS DIMENSION AND HARD POMERON

Here we present our main numerical results, for both
improved gluon anomalous dimension and the h
Pomeron, and we show their stability.

A. Results
Figure 5 shows the purely gluonic anomalous dimens

as a function ofv for ās50.2. The L anomalous dimensio
is just gLL5x0

21(v/ās) and has the familiar branch-cut a

v54 ln 2ās. The NL anomalous dimension is taken as

gNLL5gLL2ās

x1~gLL!

x08~gLL!
, ~5.1!

and has the feature that it is always negative, with a div
gent structure around the same point asgLL . The resummed
result, defined in Eqs.~2.28! and~2.33!, shows a divergence
at a much lowerv, defined byvc(t) in Eq. ~2.34!. What is
particularly remarkable is the similarity to the DGLAP resu
until very close to the divergence. The momentum sum r
is automatically conserved: forv51 we havegeff50 @this is
closely connected with the fact thatāsxeff

(u)(0)51] — in past
approaches the need to impose this property in some a
trary way was a major source of uncertainty@36,37,26#.

Another interesting feature of the resummed anomal
dimension is that, for smallās, the divergence atvc is pro-
portional toās

2 and not toās:

geff52
1

v2vc

dvc

dt
1O~1! ~5.2a!

.Fxm2
5

3 S b2xm
2 xm9

2 D 1/3

j0ās
2/3G bās

2

v2vc
,

v2vc!1, ~5.2b!

which follows from the linear behavior of the regular sol
tion close to the zero, e.g., in the Airy representation of E
~4.7!. The singularity ~5.2! causes the effective splittin

FIG. 5. The anomalous dimension in various approximation
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function to be power behaved forx→0, i.e., Peff(x,t)
;x2vc(t). Note however that, sincevc(t) comes from a zero
of gv(t), the singularity~5.2! does not necessarily transfer
gv(t) itself which, according to Eq.~2.28!, is expected to
have an essential singularity atv50 only, even if a com-
plete analysis of possible singularities in the comp
v-plane is still needed.

The values of the exponentsvc andvs as a function ofas

~andQ2), are shown in Fig. 6 and compared with the L a
pure NL results. It is apparent that the improved equat
provides sensible predictions even for sizeable values ofas.
A significant difference between the two resummed ex
nentsvc andvs persists even to low values ofas, largely as
a consequence of their differing by a slowly convergent
ries of non-integer powers ofas, as discussed in Sec. IV B

The above difference should not be too confusing. T
exponentvs(t) signals the breakdown of the formal small-x
expansion of the anomalous dimension of Eq.~2.31!, due to
infinite saddle-point fluctuations, whilevc(t) tells us the po-
sition of the singularity of the resummed anomalous dim
sion. Their difference arises from their different definition
not from some instability of our approach~cf. Sec. V B!.

What is the relation that such quantities bear to
Pomeron singularityvP , the leadingv-plane singularity of
the gluon Green’s function? Though the latter is depend
on the strong coupling region, we expect thatvP
*Maxt vc(t) for a positive definiteas(t), due to the very
definition ofvc(t) as a zero of the integrated regular soluti
gv(t), to whichFv(k) is closely related~Sec. IV B!. In fact
vP is defined as the value ofv being itself equal to the end
point of the spectrum:vP5mP(vP) ~Sec. II C!, and thus
corresponds to a nodelessFv(k), regular for t→2` also.
Therefore, if the interaction does not change sign@as(t)
.0#, Fv(k) can have a node forv,vP only, so that
vc(t),vP .

The above remark implies that the small-x behavior of the
gluon Green’s function, dominated by the singularity atv

5vP in F̃v(k0), is not sensitive to the regionv.vc(t)

FIG. 6. vc andvs as a function ofas for the BFKL kernel with
nf50.
6-14
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whereFv(k) changes sign. This fact is consistent with t
positivity constraint on the total cross section.

Furthermore, we can state that the frozenas regulariza-
tion of Sec. II C maximizes the interaction strength in t
strong coupling regiont& t̄ , compared to various cutoff pro
cedures. Therefore we also expectvP,vs( t̄ ), the value
quoted in Eq.~2.18! at the freezing point. It follows that

Maxt vc~ t !&vP&Maxt vs~ t !

or, in other words, that the two exponents of Fig. 6 provi
in the strong coupling region, lower and upper bounds on
Pomeron interceptvP . Of course, the precise value of th
latter will be dependent on the size and shape of the effec
coupling in the small-k region.

B. Stability

The original L1NL formalism suffered from consider
able instabilities under renormalization group scale a
scheme changes.

An important characteristic of any resummed approac
that it should be relatively insensitive to such changes,
generally stable. In the approach advocated here, it ha
ready been shown in the previous sections that the for
truncation error is small. It still remains to demonstrate
stability in practice.

Renormalization scale and scheme.Note first that in our
approach the renormalization scale only enters through
RG invariantL parameter@Eqs.~2.2! and ~2.28!#. It is then
easy to see that the physical results areL-independent. A
redefinition ofL is essentially a shift int, say by an amoun
Dt. There is a corresponding modification ofx1

v , x2
v , . . . by

the amounts

x1
v→x1

v1bDtx0
v , x2

v→x2
v12bDtx1

v1b2~Dt !2x0
v , . . . .

~5.3!

In the off-shellg-representation~4.2!, this corresponds to a
modification ofXv by an amountbmgDt. In fact the trans-
formation ~5.3! changes the coefficienth1 only, the remain-
ing onesh2 , h3, . . . being left invariant. This change exactly
cancels the modification oft itself:

expH gt2
1

bm
Xv~g,m!J

→expH g~ t1Dt !2
1

bm
@Xv~g,m!1bmgDt#J , ~5.4!

thus implying that the physical results are independent of
L-parameter choice. This automatic resummation of
renormalization scale alleviates the need for techniques s
as Brodsky-Lepage-Mackenzie resummation@33#, advocated
for example in@34#, which show a strong renormalizatio
scheme dependence.

The issue of renormalization scheme dependence is in
closely related. Consider a schemeS related to the modified
minimal subtraction (MS) scheme by
11403
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as
(S)5as

~MS!1Tas
2, ~5.5!

with an appropriate modification ofx1
v . Except for terms of

O(as
3) and higher, this is identical to a renormalization sca

change. Indeed if one defines the scheme change by a m
fication of L then renormalization scheme changes beh
exactly as renormalization scale changes, and so have
effect on the answer. Using instead~5.5! there is some re-
sidual dependence on the scheme atO(as

3), but as one can
see in Fig. 7 for theY scheme, which hasT.1.17 ~for nf
50), the effect of the change of scheme is small.

Resummation scheme. In resumming the double trans
verse logarithms~energy-scale terms!, there is some freedom
in one’s choice of how to shift the poles aroundg50 and
g51. In a similar manner to what was done in@9# we con-
sider two choices. The one explicitly discussed in this pa
~and the one used for all the figures elsewhere in this pa!
can be summarized as

c (n21)~g!→c (n21)~g1 1
2 v!, ~5.6!

with an equivalent procedure aroundg51. We refer to this
as resummation type~a!. An alternative possibility is

1

gn
→ 1

~g1 1
2 v!n

. ~5.7!

Thus we have

x0
v~g!5x0~g!2

1

g
2

1

12g
1

1

g1 1
2 v

1
1

12g1 1
2 v

,

~5.8a!

x1
v~g!5x̃1~g!1

A1~v!

~g1 1
2 v!2

1
A1~v!2b

~12g1 1
2 v!2

1
1

2 S 1

g1 1
2 v

1
1

12g1 1
2 v D , ~5.8b!

FIG. 7. Renormalization scheme uncertainty of the two ex
nents;MS scheme andY scheme;as is always shown in theMS
scheme, and is connected to theY scheme value ofas via ~5.5!.
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x̃1~g!5x1~g!1
x0~g!

2 S 1

g2
1

1

~12g!2D 2
1

2 S 1

g
1

1

12g D
2

A1~0!

g2
2

A1~0!2b

~12g!2
. ~5.8c!

A comparison of these two resummation schemes is give
Fig. 8 and the difference between them is again reason
small.

Aside from the explicit renormalization-scale indepe
dence, the stability of our approach is connected with
resummation of the collinear poles, for both the double-l
energy-scale dependent terms@the 1/g3 and 1/(12g)3 poles
at NLO# and for the single-log ones of Eqs.~4.11! and
~4.12!. Stability has been noted elsewhere, in the study o
rapidity veto ~initially examined in@38#! combined with a
resummation of the energy-scale terms@39#.

VI. CONCLUSIONS

In this paper, we have improved the small-x equation in
several ways. Firstly, we have taken into account the col
ear limits, and their scale dependence. This implies
v-shifts of theg-singularities in Eq.~2.6!, which yield a
double-log resummation of parameters such asv/g
.as/g2 or v/12g, and implies also the effective characte
istic function in Eq.~4.12!, which yields a single-log resum
mation in the parameterasx1 /x0.as/g or as/12g.

Both kinds of resummation require an infinite number
subleading terms in the original BFKL formalism, in whic
both v and the running coupling play the role of expansi
parameters. The RG improved kernel@Eq. ~2.2!# is actually
an infinite series inas(t) of v-dependent kernels, so that th
corresponding Eq.~2.8! is no longer an evolution equation i
log 1/x with a simple dependence on the conjugate varia
v, but a much more generalv-dependent integral equation

The second important improvement concerns the tr
ment of this generalized equation. In the limit in which t
Green’s function is factorized@Eq. ~2.7!# we have singled ou
the solutions of the homogeneous equationFv(k) @F̃v(k0)#
which are regular fort→1` (t→2`), and we have pro-

FIG. 8. Resummation scheme uncertainty of the two expone
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vided a general method for the construction ofFv(k) in Eq.
~2.19!. The latter exploitsv as expansion parameter@or the
eigenvaluemÞv if referred to the eigenfunctions~2.11!#,
and thus we call itv expansion. It allows the construction, i
terms of the improved kernels, of the characteristic funct
x(g,v) of Eqs. ~4.2! and ~4.4!, which shows no sign of
instability whenv increases~Fig. 2!, even if the improved
kernel is truncated at NL accuracy.

The key advantages of the improved equation concern
calculation of thet-dependence, or of the resummed anom
lous dimensions, which can be given in terms ofFv(k) only.
Let us list some of them:

The resummation involves not only all powers ofas/v,
but also an infinite number of subleading terms and extra
lates quite smoothly the fixed order perturbative result~Fig.
5!.

Although we resum only a fraction of such subleadi
terms, we have characterized the error that we make a
constant scale changeDt5O(v), or Das/as5O(asv).
Therefore, the neglected terms are subleading, order by
der, in bothas/v andas expansions.

Although we are limited in principle to smallv ’s, we
incorporate exact one-loop~and partly two-loop! anomalous
dimensions in thev-dependent kernels. In particular, w
have exact energy-momentum conservation, i.e., the gl
anomalous dimension vanishes forv51.

We have provided two critical exponentsvs(t) andvc(t)
that signal the breakdown of the above resummation. T
first one@vs(t)# is roughly related to the breakdown of th
as/v resummation, or better of the saddle point~‘‘semiclas-
sical’’! approximation, valid for largebvt ~or as/v!1),
and was the only one considered in previous L1NL esti-
mates. The latter exponent@vc(t)# comes from a zero of the
gluon density and signals a singularity of the resumm
anomalous dimension series. Their difference involves n
integer powers ofas (as

5/3 and higher! which are related to a
‘‘quantum’’ wavelength in thet-dependence.

The estimates ofvs(t) andvc(t) ~Fig. 6! in the improved
formulation are now quite stable~Figs. 7 and 8! — despite
the large size of NL corrections — and near
renormalization-scheme independent. The reason for
stems from both the collinear improvement of the kernel, a
from the RG invariant formulation of the solution. Both e
ponents are actually useful for a full understanding of
solution F̃v(k0), carrying the ~non-perturbative! Pomeron
singularity vP . Indeed we have argued that — for reaso
able strong coupling extrapolations@positive definite
as(t)] — the Pomeron intercept is bounded betwe
Maxt vc(t) and Maxt vs(t). Present estimates of the latte
~Fig. 6! are consistent with the small-x exponent.0.2 seen
for moderateQ2 at HERA @40#. But a detailed analysis, in
cluding two-scale processes@41,42#, is required to obtain a
clearcut picture.

Having no problems with stability, we are now more co
fident of future progress. We have already mentioned
need for evaluatingF̃v(k), the regular solution fort→2`,
which is much more dependent on the strong coupling
gion. But also the full Green’s functionGv(k,k0) for k/k0

s.
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5O(1) — i.e., outside the the factorization regime —
interesting for the description of two-scale processes~double
DIS @41#, forward jet @42#, etc.!. We hope to have a bette
understanding of both quantities from a simple model w
collinear resummation@23#.

Of course, a complete understanding involves a variety
other questions, like a realistic evaluation ofvP , a full in-
clusion of quarks~Sec. IV D! and impact factors@22,43#, the
relation to the CCFM equation@5,6# and other two-channe
formulations@7#, and so on. But we think that, despite som
residual uncertainties, we are on the right track.
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APPENDIX A: µ-EXPANSION

1. Saddle-point method

In this appendix we want to show the saddle point pro
dure for deriving the dependence of the coefficientsh j

v : j
50,1, . . . of thesmall-m expansion forxv(g,m):

xv~g,m!5h0
v~g!1mh1

v~g!1m2h2
v~g!1•••, ~A1!

in terms of the eigenvalue functionsx j
v : j 50,1, . . . of the

coefficient kernels in Eq.~1.4!.
The action of the improved kernel on its eigenfunctions

05@Kv2m#F v
m~k!

5
ās~ t !

k2 E dg

2p i
egt2(1/bm)Xv(g,m)F (

n50

`

ās~ t !nxn
v~g!2bmtG .

~A2!

Now we assume the above integral to be dominated b
saddle point atg5ḡv(m,t) wherebmt5xv(g,m), xv being
theg-derivative ofXv @see Eq.~2.20!#. By adoptingḡ andm
as independent variables, we replace

ās~ t !5
1

bt
5

m

xv~ḡ,m!
. ~A3!

Introducing the ‘‘mean value’’

^A~g!&[
E A~g!e2Vv(g,m)dg

E e2Vv(g,m)dg

, ~A4!
11403
f

r
rt
n

-

s

a

2Vv~g,m![Fgt2
1

bm
Xv~g,m!G2@g→ḡ #

52
1

bm (
m52

`
1

m!
xv

(m21)~ ḡ,m!Dm, ~A5!

wherexv
(m)[]g

mxv andD[g2ḡ, we write Eq.~A2! in the
form

xv~ḡ,m!5bmt5 (
n50

` F m

x~ḡ,m!
G n

^xn~g!&, ~A6!

having dropped thev dependence. We observe that

05~ lim
g→1 i`

2 lim
g→2 i`

!e2V

5E dg]g~e2V!}^]gV&5
1

bm
@^x~g,m!&2bmt#.

~A7!

Collecting Eqs.~A2!, ~A6! and ~A7! we obtain the basic
equation

^x~g,m!&5(
j 50

`

m j^h j~g!&5 (
n50

` F m

x~ḡ,m!
G n

^xn~g!&.

~A8!

At lowest order@O(m0)# we have

^h0~g!&5^x0~g!&. ~A9!

One can easily check that3 ^Dn&5O(m [(n11)/2]). Since

^A~g!&5^A~ ḡ !&1^A8~ ḡ !D&1•••5A~ ḡ !1O~m!
~A10!

it follows that, for all ḡ, h0(ḡ)5x0(ḡ) and henceh05x0.
Taking into account Eq.~A9!, we can simplify Eq.~A8! as

(
j 51

`

m j 21^h j~g!&5 (
n51

`
mn21

@x~ḡ,m!#n
^xn~g!&. ~A11!

The lowest order of this new relation yields

^h1~g!&5
^x1~g!&

x~ḡ,m!
5

x1~ ḡ !

h0~ ḡ !
1O~m!5

x1~ ḡ !

x0~ ḡ !
1O~m!

~A12!

and henceh15x1 /x0. The next order reads

^h1~g!&1m^h2~g!&5
^x1~g!&

x~ḡ,m!
1m

^x2~g!&

@x~ḡ,m!#2
.

~A13!

3We denote as@x# the integer part ofx.
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By expanding with respect tog aroundḡ yields

h1~ ḡ !1h18~ ḡ !^D&1
1

2
h19~ ḡ !^D2&1mh2~ ḡ !

5
1

x~ḡ,m!
Fx1~ ḡ !1x18~ ḡ !^D&1

1

2
x19~ ḡ !^D2&G

1m
x2~ ḡ !

@x~ḡ,m!#2
. ~A14!

To the relevant order inm, we have

^D&52
bm

2

x09~ ḡ !

@x08~ ḡ !#2
,

^D2&5
bm

x08~ ḡ !
,

1

x~g,m!
5

1

x0~ ḡ !
S 12m

h1~ ḡ !

x0~ ḡ !
D ,

~A15!

and substituting in Eq.~A14! we get

S h22
x2

x0
2 1

h1
2

x0
D 52

x08x1

x0
2

bm

2

x09

@x08#2
1

bm

2x08

3S x09x1

x0
2

12
x08x1

x0
2

22
@x08#2x1

x0
3 D

5
b

x0
h18 ,

i.e.,

h25
1

x0
Fx2

x0
2~h12b]g!h1G . ~A16!

Going further requires taking into account higher order ter
both in the fluctuationŝDm& and in them expansion of Eq.
~A11!.

The advantage of this method is that it is clearly local it

~because the saddle pointḡv is a function of t) and in g
~because of the finite fluctuations!. Therefore, if t is large
enough for a stable saddle point to exist, then the proced
and the result are independent of the regularization proce
in the strong coupling regiont.0.

The disadvantage, though, is that the order of fluctuati
required increases rapidly with them-exponent. It turns out
in fact that, in order to determineh j : j .2 — i.e., to evaluate
Eq. ~A11! to order m j 21 — the most involved calculation
concernŝ D& which requires the computation of the fluctu
tions in *De2Vdg up to order 6j 28.

2. g-derivative method

By comparison, theg-derivative method is formally much
simpler. We start rewriting the basic equation~2.24! by in-
troducing the notation
11403
s

re
re

s

xv~g,m!2x0~g![mhv~g,m!,

hv~g,m!5h1
v~g!1mh2

v~g!1m2h3
v~g!1•••,

D[~hv2b]g! ~A17!

in the form

hv~g,m!5@x0
v1mD#21x1

v1@x0
v1mD#22mx2

v1•••

5S 11
m

xv
D D 21Xx1

v

x0
v 1x0

v21S 11
m

xv
D D 21

3m
x2

v

x0
v 1•••C. ~A18!

We then expand inm both thexn
v series and the operato

denominators, which depend onhv in a non-linear way, and
we derive them expansion~2.25!.

For instance, if we wanth3
v , we can rewrite Eq.~A18! up

to orderm2 in the form

h5@12mx0
21D1m2~x0

21D !2#
x1

x0

1
1

x0
@12m~Dx0

211x0
21D !#m

x2

x0
1m2

x3

x0

D5D11mh21•••, D1[h12b]g , ~A19!

where thev index has been dropped.
We then identify theh i coefficients in Eq.~A19! term by

term:

h15
x1

x0
, h25

1

x0
S x2

x0
2D1

x1

x0
D , ~A20!

h35
x3

x0
2

1

x0
S D1

1

x0
1

1

x0
D1D x2

x0
1S 1

x0
D1D 2 x1

x0

2
1

x0
h2

x1

x0
,

Eq. ~A20! proves Eq.~2.26! of the text.
We notice the curious fact that if

x2

x0
5D1

x1

x0
,

x3

x0
5D1

2 x1

x0
, ~A21!

bothh2 andh3 vanish identically. This is a particular case
Eq. ~4.10!, which states thath15x1 /x0 is an exact solution
of Eq. ~A18! if

xn11

x0
5D1

n x1

x0
, n>1. ~A22!

In fact we have the chain of identities
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x1

x0
5 (

n50

`

@~x01mD1!2n~mD1!n

2~x01mD1!2(n11)~mD1!n11#
x1

x0
~A23!

5 (
n50

`

~x01mD1!2(n11)x0~mD1!n
x1

x0

5 (
n50

`

~x01mD1!2(n11)xn11 , ~A24!

which prove Eq.~A18! if Eq. ~A22! is satisfied.
It is straightforward to check that the ansatz~A22! builds

up the correct collinear singularities to all orders. We st
from

x1

x0
.

A1

g
,

A12b

12g
~g→0,1! ~A25!
l.

. B

11403
rt

and, by applying theD1 operator of Eq.~A22! in the relevant
limits we obtain the result

xn11

x0
.S A1

g
2b]gD nA1

g
, S A12b

12g
2b]gD nA12b

12g
,

~A26!

which checks with Eq.~2.6!. It follows that the leading col-
linear singularities must cancel out inh j : j >2, as stated in
Sec. IV C.

We should keep in mind that the two methods just illu
trated are equivalent when both make sense, i.e., fort large
enough for the stable saddle point to exist. This assump
is implicitly present in theg-derivative method when we
expand the operators in Eq.~A18!. This means that we sta
away from the zero modes of the full operator and we c
sider theD operator as a small perturbation with respect
x0. Expanding inD is analogous to the fluctuation expa
sion.
s.

hys.
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