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Heavy quark expansion and preasymptotic corrections to decay widths in the ’t Hooft model
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We address nonperturbative power corrections to inclusive decay widths of heavy flavor hadrons in the
context of the ’t Hooft model~two-dimensional QCD atNc→`), with the emphasis on the ‘‘spectator-
dependent’’ effects, i.e., those sensitive to the flavor of the spectator. The summation of exclusive widths is
performed analytically using the ’t Hooft equation. We show that the 1/mQ expansion of both the weak
annihilation and Pauli interference widths coincides with the OPE predictions to the computed orders. Viola-
tion of local duality in the inclusive widths is quantified, and the new example is identified where the OPE
prediction and the actual effect are completely saturated by a single final state. The qualitative aspects of quark
hadronization emerging from the analysis in the ’t Hooft model are discussed. Certain aspects of the summa-
tion of spectator-independent hadronic weak decay widths are given in more detail, which were not spelled out
previously. We also give some useful details of the 1/mQ expansion in the ’t Hooft model.
@S0556-2821~99!02121-9#

PACS number~s!: 12.38.Aw, 12.39.Hg, 13.35.Dx, 23.70.1j
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I. INTRODUCTION

The decays of heavy flavor hadronsHQ are shaped by
nonperturbative strong interaction dynamics which, at fi
sight, completely obscures most of the properties of the
derlying weak interactions self-manifest at the quark lev
Suffice it to say that the actual hadrons, rather than qua
are observed in the final state. The actual dynamics of c
finement in QCD to a large extent remains mysterious. N
ertheless, significant progress has been achieved in des
ing heavy flavor decays applying the formalism based
Wilson’s operator product expansion~OPE! @1,2#. In particu-
lar, it became possible to quantify the effects of the confin
domain on the inclusive decay rates. This theory is in
mature stage now~see Refs.@3,4#, and references therein!.

Among the general statements derived for the he
quark decays, we mention the following.

The absence ofLQCD/mQ corrections to all types of fully
inclusive decay widths@5,6#.1

The leading nonperturbative corrections arise in or
1/mQ

2 and are given by the expectation valuesmp
2 ,mG

2 of the
two heavy quark operators, kinetic and chromomagne
While the first effect is universal amounting to the correcti
2mp

2 /2mQ
2 , the Wilson coefficient for the second one d

pends on the considered process. Both, however, are in
sitive to the flavor of the spectator~s! ~‘‘flavor-independent’’
corrections! @5,6#.

The widths are determined by the short-distance runn

1The OPE for the inclusive widths, actually, isa priori governed
by the energy release rather than literallymQ @7#. For simplicity, we
do not distinguish between them parametrically unless it beco
essential.
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quark massesmQ(m) @8#. These are shielded against unco
trollable corrections from the infrared domain which wou
otherwise bring in uncertaintydmQ /mQ;LQCD/mQ .

The effects sensing the spectator flavorper se, emerge at
the level 1/mQ

3 @9,10,5#. They are conventionally called wea
annihilation~WA! in mesons, weak scattering~WS! in bary-
ons, and Pauli interference~PI! in both systems. Their mag
nitudes are given by the expectation values of local fo
quark operators.2

For practical applications we should keep the following
mind ~for a recent dedicated discussion, see Refs.@11,12, 4#!:
Good control over the perturbative expansion must be es
lished to address power-suppressed effects; the consi
Wilsonian OPE requires introducing the separation
‘‘hard’’ and ‘‘soft’’ scales, with the borderlinem serving as
the normalization point in the effective theory; one has
allow, in principle, for short-distance~small-coupling re-
gime! effects that are not directly expandable in the pow
of the strong coupling; account must be taken of the fact t
the OPE power series are only asymptotic@13#, and recon-
structing from them the actual Minkowskian observab
generally speaking, potentially leaves out the oscillat
~sign-alternating! contributions suppressed, in a certain inte
val of energies, by only a power of the high momentu
scale. This is compounded by the fact that in practice o
can typically determine only the first few terms in the pow
expansion.

The last item in the list is behind the phenomenon

es

2In the context of the heavy quark expansion, local operators h
a more narrow meaning denoting the generic operator of the f

Q̄OQ, with O being a local operator involving only light degrees
freedom.
©1999 The American Physical Society34-1
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FIG. 1. ~a! Quark diagram de-
scribing the leading quasifree term
in the decay width.~b! Bare quark
diagram for WA.
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violation of local parton-hadron duality; in many cases it
among the primary factors potentially limiting the accura
of the theoretical expansion. In the actual QCD these tec
cal complications are often interrelated. Therefore, it is
structive to investigate the OPE in a simplified setting wh
these elements can be disentangled. As explained in
@11#, this is achieved in QCD formulated in 111 dimensions.
Additionally, employing the limitNc→` one arrives at the
exactly solvable ’t Hooft model where all the features can
traced explicitly. It is important that the ’t Hooft mode
maintains the crucial feature of QCD—quark confinemen
which is often believed to be tightly related to the violatio
of local duality. Yet in 111 dimensions confinement ap
pears already in the perturbative expansion.

The ’t Hooft model has often been used as a theoret
laboratory for exploring various field-theoretic approach
@14#. Most recently the OPE for the inclusive widths and t
related sum rules in the heavy flavor transitions@15# were
analytically studied in Ref.@11#, where a perfect match be
tween the OPE power expansion and the actual asympt
of the widths was found. The known high-energy asympt
ics of the spectrum in the model allowed us to determine
violation of local duality in the inclusive widths at largemQ .
As expected, it obeyed the general constraints imposed
the OPE. Moreover, at least in the framework of this simp
fied model, the main features of duality violation could
inferred from the parton-level analysis itself, the workin
tools of the OPE. The suppression of the duality-violati
component inGHQ

was found to be rather strong, with th

power of 1/mQ , however, depending essentially on the p
ticulars of the considered model and the process.

Reference@11# focused on flavor-independent effects. T
this end it was assumed that the spectator quarkqsp has a
flavor different from all quarks in the final state, thus rulin
out both WA and PI. The OPE analysis of these effects
also straightforward. Nevertheless, they may be of indep
dent interest for several reasons.

First, WA and PI represent power-suppressed and t
purely preasymptotic effect. In such a situation one may
pect a later onset of duality and more significant violations
local duality. Since the above effects are numerically
hanced for actual charm and beauty hadrons, studying
question has practical importance.

Another reason to look more closely at the specta
dependent effects is related to the color-flow considerati
usually employed in the context of the large-Nc perspective
on QCD, and interpreting the OPE predictions in terms
hadronic states. In the case of the quasifree quark de
width or the WA processes one finds a rather straightforw
correspondence between the OPE expressions and the
11403
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ronic contributions already in the simplest quark pictu
where quark allocation over the final state hadrons is un
biguous~such a description is expected to hold atNc→`).
Let us consider, for example, the free parton decay diag
Fig. 1~a!. Theūd pair is in a colorless state and typically ha
a large momentumq2;mb

2 flowing through it. It is then
naturally dual to the contributions from the hadronic res
nances in theV2A channel~in particular when integrated
over q2), much in the same way as ine1e2 annihilation or
hadronict decays. Thec quark together with the spectato
antiquark produces another string of hadronic excitati
Furthermore, the interaction between these two hadro
clusters can naturally be small at largemb . WA, Fig. 1~b!,
looks even simpler in this respect; we will discuss it in det
later on.

The hadronic picture of the processes underlying Pa
priori is less obvious, Fig. 2. Theū quark produced in the
decay must be slow to interfere with the valenceū. The large
momentum here flows through the diquark loop (cd) which
therefore represents the ‘‘hard core’’ of the process. T
practical OPE, effectively, prescribes to replace the propa
tion of this diquark by a nearly free di-fermion loop, whic
amounts to evaluating its absorptive part as if the produc
of the free quarks was considered. Basically, no distinct
emerges compared to the color-singletq̄q8 pairs in Fig. 1.
This may leave one with the feeling of discomfort, for n
colored states~in particular, with the diquark content! is
present in the physical spectrum. In other words, the diqu
configurationper secannot be dual to the mesonic states
any arbitrary large momentum transfer.

Alternatively, one can combine a ‘‘hard’’ quark from th
loop in Fig. 2 with the slow spectator antiquark to have
color-singlet meson-like configuration. However, such a p
naively is not ‘‘hard’’: at least in the perturbative parton
picture with psp;msp→0 its invariant mass vanishes irre
spective ofmb . While such reasoning is clearly of the han
waving variety, it illustrates nevertheless that interferen
effects are more subtle.

A more troublesome feature of the interference is a

FIG. 2. Quark diagram for PI inB meson decays. The wea
vertices are broken to show the color flow yielding the leading-Nc

contribution.
4-2
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HEAVY QUARK EXPANSION AND PREASYMPTOTIC . . . PHYSICAL REVIEW D60 114034
illustrated by the observation made in the early 1990s
Shifman @16#. He considered a more general scenario w
both charged- and neutral-current type interactions, as
scribed by the effective weak Lagrangian

L52
G

&
$a1@ c̄gm~12g5!b#@ d̄gm~12g5!u#

1a2@ d̄gm~12g5!b#@ c̄gm~12g5!u# !%1H.c. ~1!

The leading ~rather than the power-suppressed specta
dependent! width was addressed. The parton result depe
on the color factorsa1 , a2 in the following way:

GQ;NcS a1
21a2

21
2

Nc
a1a2D . ~2!

On the other hand, the usual counting rules yield the de
amplitudes into the two-meson final states in the form

M}ANcS a11
1

Nc
a2D for ‘ ‘ Dsp

2’ ’ states,

M}ANcS a21
1

Nc
a1D for ‘ ‘ DK ’ ’ states, ~3!

where, for illustrative purposes, we callqsp the strange quark
to simplify distinguishing between the two different ways
pair the quarks into mesons.~Since we discuss the leadin
free-parton amplitude, the flavor of the spectator is chose
be different from all other quarks in the process.! Adopting
the rules~3! one gets

GQ;NcS a1
21a2

21
4

Nc
a1a2D ~4!

more or less independently of the dynamics. While the
pendence for the terms;a1

2 and;a2
2 is reproduced, there is

a clear mismatch between Eqs.~2! and ~4! in the term de-
scribing the interference of the two different color amp
tudes@16#.

There is little doubt that the formal OPE asymptotics m
work at arbitraryNc . The arguments above might sugge
however, that the onset of duality is delayed for suppres
effects, for example, grow withNc .

In reality, we do not think that there is convincing ev
dence supporting such reservations about applying the O
to flavor-dependent corrections. To provide an additio
justification, we have explicitly analyzed both PI and WA
the ’t Hooft model. We have found complete consisten
with the OPE, with the onset of duality largely independe
of the details. As a matter of fact, the parton-deduced O
expression for PI appears to beexactin the chiral limit when
all involved quarks~but Q) are massless. The resolution
the above paradoxes emerges in a rather straightforw
manner as well; we will comment on them in subsequ
sections.

We note that we disagree with the claims of the rec
paper@17# which found a mismatch between the actual W
11403
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width and the OPE-based prediction, relying on numeri
computations. We have determined the leading effect a
lytically and showed it to coincide with the OPE result. W
comment on the apparent drawbacks in the analysis of R
@17# in Sec. VI.

The paper is organized as follows. After this introductio
in Sec. II we sketch the aspects of the ’t Hooft model imp
tant for addressing weak decays. In Sec. III we analyze
effects of WA atNc→` and analytically compute the large
mQ asymptotics of the corresponding heavy meson weak
cay width, with technical details given in Appendix A. Se
tion IV addresses PI; we analytically compute this width
to termsGHQ

/mQ
3 and find full agreement with the expres

sions obtained in the OPE. The effects of local duality v
lation at largemQ are quantified. The special case—wi
massless final-state quarks—is identified where duality v
lation is totally absent from the spectator-dependent par
the width. In Sec. V we present a more detailed derivation
the total decay width up to corrections 1/mQ

3 explicitly ac-
counting for nonzero light-quark masses, to demonstr
consistency with the OPE~a detailed description of this
analysis had been omitted from Ref.@11#!. Section VI com-
ments on the analyses which have claimed observing in
plicability of the OPE predictions based on numerical co
putations. Section VII comprises conclusions and overlo
and outlines our perspective on the problem of OPE a
duality violation in the decays of heavy flavor hadrons.

Most technicalities are relegated to Appendixes. App
dix B collects a number of relations useful in constructi
analytic 1/mQ expansion in the ’t Hooft model and summin
the exclusive widths. In particular, we give simple expre
sions for the leading terms in the transition amplitudes
Appendix B 2, perform the differential fixed-q2 semileptonic
decay width summation up to 1/mQ

2 corrections in Appendix
B 3, prove the OPE prescription for the domain of largeq2

and demonstrate the proper functional form of the transit
amplitudes in Appendix B 4. The expression for the IW fun
tions in terms of the ’t Hooft eigenfunctions is quoted
Appendix C. Appendix D reports a direct covariant comp
tation of the perturbative radiative corrections perform
while working on Ref.@11#; it shows that the result coincide
with what is obtained by summing exclusive decay chann

II. THE ’t HOOFT MODEL AND HEAVY QUARK
DECAYS

The ’t Hooft model, the 111 QCD withNc→` has been
described in many papers@18–21#. The first dedicated stud
ies of heavy quarks in the ’t Hooft model date back to t
early 1990s@22,23#. Recent paper@11# specifically addressed
heavy quark decays and the OPE in this model. Here we o
recapitulate some basic features.

The Lagrangian has the form

L11152
1

4gs
2 Gmn

a Gmn
a 1( c̄ i~ iD” 2mi !c i ,

iD m5 i ]m1Am
a Ta. ~5!
4-3
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The couplinggs has dimension of mass. With the abo
normalization of the gauge field,Am still has dimension of
mass as inD54. The fermion fieldsc(x), however, carry a
dimension ofm1/2.

The OPE analysis is carried out universally for arbitra
number of colors, and so farNc is kept finite. Anticipating
the largeNc limit for the final analysis, we define a param
eterb

b25
gs

2

2p S Nc2
1

Nc
D , ~6!

that remains finite atNc→`. It plays the role of the nonper
turbative scaleLQCD.

Following the actual standard model, we choose the w
decay interaction of the current-current form. Since inD
52 the axial current is related to the vector one,Jm

A

5emnJn
V , we simply consider theV3V interaction

Lweak52
G

&
~ q̄gmQ!~ c̄agmcb!1H.c., ~7!

where the dimensionlessG is an analogue of the Fermi con
stant. For semileptonic decaysca,b are colorless~leptonic!
fields. In what follows our main interest lies in nonlepton
decays withca,b being the quark fields. To make the not
tions more transparent, we adhere to the cases of intere
actual QCD and denote thec fields asu andd quarks, while
Q will be a synonym of theb quark, andq called c quark
~whether we chosemq@LQCD or considermq&LQCD). The
spectator quarkqsp can be eitheru or d ~for studying WA or
PI!, or different in flavor from both.

To address inclusive widths of a heavy flavor hadronHQ
one considers the forward transition amplitude appearing
the second order in the decay interaction@9#:

GHQ
52 Im E dDx

1

2MHQ

^HQu iT$Lweak~x!Lweak
† ~0!%uHQ&.

~8!

In the limit Nc→`, with HQ being the mesonic (Qq̄sp)
states, factorization of the amplitudes holds, which takes
following form for the transition operator:

E dDx^HQu iT$Lweak~x!Lweak
† ~0!%uHQ&

5
G2

2 E dDxTmn~x!Pmn~x!, ~9!

where we have introduced the ‘‘semileptonic’’Tmn and
‘‘hadronic’’ Pmn tensors:

Pmn~x!5^0u iT$d̄~x!gmu~x!ū~0!gnd~0!%u0&, ~10!

Tmn~x!5^HQu iT$q̄~x!gmQ~x!Q̄~0!gnq~0!%uHQ&.
~11!

The Cutkosky rules then yield
11403
k
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in

e

GHQ
5G2

1

MHQ

E dDx Im Tmn~x!Im Pmn~x!. ~12!

The factorized representation of the decay width ho
only at Nc→` where the momenta of thecac̄b-pair and
(qq̄sp) become observables separately. In other words, in
limit there is a rigid quark allocation over the particular ha
ronic final state and factorization of the corresponding a
plitudes, and there is no ‘‘cross talk’’ between them. Yet, E
~12! represents a certain observable at arbitraryNc and, as
such, enjoys the full rights of being studied regardless of
details of the model. In particular, at large energy release
a short-distance observable and can be subjected to an
anatomy. In what follows we will discuss this quantity an
refer to it as the inclusive decay width as motivated by
large-Nc limit.

It is worth noting at this point that the qualitative diffe
ence between nonleptonic and semileptonic inclusive wid
disappears forNc→`. The nonleptonic width is given di-
rectly in terms of the differential semileptonic distribution
dGsl/dq2 ~though, in D52 one may have to consider th
decays with massive leptons as well!. Indeed, withmu5md
as an example, one has~in the momentum representation!

Pmn~q2!5
1

p
P~q2!~q2dmn2qmqn!,

r~q2![2
1

p
Im P~q2! ~13!

and

GHQ

nl 5E dq2r~q2!Gsl~q2! with

Gsl~q2!5
1

r lept~q2!

dGHQ

sl

dq2 . ~14!

In D52 the correlator of vector currents formassless
quarks is known exactly and is very simple:

P~q2!5
Nc

q2 , r~q2!5Ncd~q2!. ~15!

With nonzero quark masses the spectral density shifts
ward, to the mass scale;bm or m2. A high-energy tail inr
also appears;Nc(mu

21md
2)/q4. This will be quantified in

Sec. III.
More specific for heavy quark decays is the ‘‘semile

tonic’’ part Tmn(x), Eq. ~11!. The general color counting
rules determine itsNc behavior:

Tmn~x!;Nc
1 . ~16!

Such a leading contribution, however, can arise only with
vacuum as intermediate state; all other contributions scal
Nc

0 , or even are further suppressed. The vacuum interm
4-4
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ate state is possible only when the decay quarkq has the
same flavor asqsp. This is the effect belonging to WA
Therefore, one has

Gnl
WA;Nc

2 , Gsl
WA;Nc

1, ~17!

Gnl;Nc
1 , Gsl;Nc

0, at qÞqsp. ~18!

Since WA is a leading-Nc effect, vacuum factorization satu
ratesTmn

WA at Nc→`, and the effect takes the simplest form
This is the subject of the next section.

On the other hand, the ‘‘usual’’ nonspectator widths a
formally subleading inNc ~even though they may yield th
dominant contribution to the decay width for a particu
type of the heavy meson!. For such amplitudes the naiv
factorization does not hold, and the explicit expressions t
a far less trivial form. In the context of the OPE, this emerg
as ‘‘color-disfavored’’ structure of the resulting local oper
tors, so thata priori the factorization cannot be applied
evaluate their expectation values@11#.

In the limit Nc→` the spectrum of 111 QCD consists of
mesonic quark-antiquark bound states which are stable u
strong interactions. The meson masses are given by ei
values of the ’t Hooft equation

Mn
2wn~x!5Fm1

22b2

x
1

m2
22b2

12x Gwn~x!2b2E
0

1

dy
wn~y!

~y2x!2 ,

~19!

wherem1,2 are the bare quark masses of the constituents,
the integral is understood in the principal value prescripti
The solutions to the equation are the light-cone wave fu
tionsw(x), with xP@0,1# having the meaning of the portio
of momentum carried by the~first! quark. They are singula
at x50 andx51 where their behavior is given byxg0 and
(12x)g1, respectively, withg0,1 defined by the following
conditions:

pg0

tanpg0
52

m1
22b2

b2 ,
pg1

tanpg1
52

m2
22b2

b2 . ~20!

In full analogy with nonrelativistic quantum mechanics, t
eigenfunctionswn form a basis~complete in the physica
space!:

E
0

1

dx wn~x!wk~x!5dnk , (
n

wn~x!wn~y!5d~x2y!.

~21!

The weak decay constant of a particular meson is gi
by

f n5ANc

p E
0

1

dx wn~x! ~22!

and the polarization tensor of vector currents~at mu5md)
takes the form
11403
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P~q2!5p(
n

f n
2

q22Mn
2 , r~q2!5p(

n
f n

2d~q22Mn
2!.

~23!

As mentioned above, atmu5md50 one hasM050 and f 0

5ANc /p, but for all excitationsf n50.
The transition form factors between two mesonic sta

that define the nonannihilation widths for largeNc , are of
orderNc

0 . Since the weak quark currentsQ̄q are formally of
orderNc

1 , these form factors are ‘‘subleading’’ in the sam
sense as was discussed previously and, in general ha
more complicated form corresponding to the first order c
rection in the 1/Nc expansion@20,21#.

III. WEAK ANNIHILATION AT Nc˜`

WA in the decays of heavy mesons becomes poss
when one of the quarks produced in the weak vertex has
same flavor as the spectator antiquark. We assumeq5qsp,
in our notations. As detailed in the preceding section, in t
case there is a single contribution to the transition tensorTmn

proportional toNc and leading toGHQ
;Nc

2 . This is associ-
ated with the vacuum intermediate state, and is given by3

Tmn~x!5 ie2 iPxq~x0!^HQuQ̄gnqu0&^0uq̄gmQuHQ&
~24!

~with Pa denoting the momentum of the decaying hea
flavor hadronHQ), so that, in the momentum representati

Im Tmn~q!5
1

2
~2p!DdD~P2q!^HQuQ̄gnqu0&

3^0uq̄gmQuHQ&. ~25!

This expression is valid in arbitrary dimension for any cho
of the weak current—in general, one only must repla
Q̄gmq by the appropriate quark bilinear. Therefore, atNc
→` one has

GHQ

WA5G2
1

2MHQ

^HQuQ̄gmqu0&

3^0uq̄gnQuHQ&Im Pmn~MHQ

2 !, ~26!

which is illustrated in Fig. 3. It can be traced that the OP

3We neglect the contribution of another, two-particle sta
uHQ(P)HQ(P)&, also corresponding to vacuum factorization, b
yielding theu-channel discontinuity.

FIG. 3. WA correction to the inclusive decay width in the larg
Nc limit. The shaded loop depicts the exact polarization operato
4-5
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corresponds to the same expression if the expectation va
of all the higher-dimension four-quark operators reduce
their vacuum factorized values~for earlier discussion of WA
in a similar context, see Ref.@24#!. The latter formally holds,
in turn, atNc→`.

In D52 for pseudoscalarHQ one has^0uq̄gmQuHQ&
5 i f HQ

emnPn . For simplicity, we will further limit ourselves

by the casemu5md . Then

GHQ

WA5
G2

2
f HQ

2 MHQ

3 r~MHQ

2 !. ~27!

Strictly speaking, in practical applications of the OP
Pmn itself is usually likewise expanded in 1/mQ

2 . Also, the
deviation of MHQ

2 from mQ
2 and/or the values off HQ

are

expanded around their asymptotic values atmQ→`. There-
fore, the sensible check of duality for practical OPE in W
in the framework of the large-Nc approximation is only com-
parison of the actual behavior of ImP(q2) at largeq2 with its
OPE expansion obtained from the deep Euclidean doma

For masslessu and d quarks, the exact polarization op
erator of the vector currents is given by Eq.~15!; the WA
width, therefore, vanishes. A nonzero result is obtained
one considers a scalar~pseudoscalar! polarization operator,
or if mu or md do not vanish. The absorptive partr(q2) is
saturated by the comb of narrow resonances with heig
;Nc and widths;1/Nc . Therefore, the formal limitNc
→` requires an alternative to point-to-point comparison
the actual hadronic probabilities with the parton-calculat
or OPE-improved short-distance expansion, even at arbit
large energies. This implies a certain smearing procedure
the actual hadronic probabilities.

Note that, according to Eq.~26! the width—however sin-
gular it is—always remains integrable around the resonan
@see also the discussion below, Eqs.~28!, ~29!–~33!#. By
virtue of the dispersion relations the integral of the dec
width is expressed via the transition amplitude in the co
plex plane. This amplitude is regular even in the formal lim
Nc→` when the resonances become infinitely narrow.

Smearing enters naturally when one considers
‘‘imaginary’’ part 1/2i @P(s)2P(s* )# at complexs, some-
what away from the physical cut ats.0. According to a
dispersion relation it amounts to averaging the physical cr
sectionR(s) with a specific weight,

1

2i
@P~s!2P~s* !#5

1

p E ds̃
D

~ s̃2s0!21D2 R~ s̃!,

s5s01 iD. ~28!

One can also use different choices of the smearing func
having singularities away from the physical cut.

A similar procedure, in principle, is required for the in
clusive decays of heavy flavors. Strictly speaking, one m
introduce the complex variablev to study the analytic prop
erties of the transition amplitude in question@24,12,11#:
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A~v!5E dDxe2 iv(vx)^HQu iT$Lweak~x!Lweak
† ~0!%uHQ&.

~29!

It can be visualized as the transition amplitude governing
total ~weak! cross section of the scattering of a fictitiou
spurion particleS on the heavy quark

S~q!1HQ~p!→ light hadrons, ~30!

or the weak decay width in the process

Q→quarks ~leptons!1S. ~31!

Such processes would appear if the weak decay Lagran
is modified from, say the conventional four-fermion form
the ‘‘four-fermion1spurion’’ interaction

Lweak~x!→S~x!Lweak~x!. ~32!

For simplicity, it is convenient to assume, as in Eq.~29! that
the spurion field does not carry spacelike momentum.

The amplitudeA~v! has the usual analytic properties, an
the discontinuity across the physical cut at which the po
v50 is located, describes the total decay width we are
terested in. The OPE for the inclusive widths relies on
fact that the short-distance expansion ofA~v! runs in 1/(v
2Er) and can be applied near the physical pointv50 ex-
actly as in e1e2 annihilation near a positive value ofs
@LQCD

2 . (Er denotes energy release.! To the same extent, in
principle, a certain smearing can be required if the hadro
probabilities still exhibit the resonance structure.

Thus, there is no theoretical peculiarity in the asympto
applications of the OPE for nonleptonic widths. It does n
create a conceptual difference to perform a short-dista
expansion of a single quark Green function~semileptonic
widths or deep inelastic scattering!, the product of two Green
functions (e1e2 annihilation! or the product of three quark
Green functions~the nonleptonic widths!.

Alternatively, smearing inv can be phrased as smearin
over the interval ofmQ . Indeed, in the heavy quark limit th
amplitudes depend on just the combinationmb2v,

A~v,mQ!.A~0,mQ2v! ~33!

~there are power corrections to this relation associated w
explicit mass effects in the initial state!. Therefore, in prac-
tical terms one can phrase the smearing as an averaging
the interval of the heavy quark mass, which may look mo
transparent.

After this general digression, we now return to spec
cally WA in two-dimensional QCD. It is commonly accepte
that, for the two-point current correlators, both atNc→` or
finite Nc , the properly averaged absorptive hadronic pa
asymptotically coincide with the leading OPE express
given by the free quark diagram. As was mentioned abo
for massless quarks this property holdsidentically for vector
and axial currents. For the scalar current the asymptotic
respondence in the ’t Hooft model has been illustrated
ready in Ref.@19# ~for a recent discussion and earlier refe
ences, see Ref.@25#!. For the WA width, however, we nee
4-6
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the mu,d-suppressed effects. The OPE inD52 yields, at
mu5md5m ~for arbitraryNc),

P~q2!5NcF 1

q2 1
2m2

q4A124m2/q2
ln

A124m2/q211

A124m2/q221
G

2
2p^0umuūu1mdd̄du0&

q4 1OS m2 ln q2

q6 D ,

r~q2!5Nc

2m2

q4

1

A124m2/q2
12p^0umuūu1mdd̄du0&

3d8~q2!1OS m2

q6 D , ~34!

where the first term in both equations is just the free qu
loop. There is little reason to doubt the OPE for the suble
ing terms either. Nevertheless, it is instructive to give h
the direct derivation of the next-to-leading term;(mu

2

1md
2)/q4 in r(q2) directly from the ’t Hooft equation.

We follow here the approach of Ref.@11# based on sum
rules. In the context of the Euclidean polarization opera
similar considerations ascend to the earliest papers on
model, Refs.@19,20#. To simplify the expressions, we wil
suppress the explicit powers ofNc which enter in a trivial
way, and usually will also omit the mass scale factorb,
assuming that all energies are measured in units ofb. Then
Eqs.~22!, ~23! take the form

P~q2!5(
n

cn
2

q22Mn
2 , r~q2!5(

n
cn

2d~q22Mn
2!

~35!

with

cn5E
0

1

dx wn~x!. ~36!

The completeness of eigenstates yields

(
n

cn
25(

n
E

0

1

dx dywn~x!wn~y!51. ~37!

On the other hand, integrating the ’t Hooft equation from
to 1 we get

cn5E
0

1

dx wn~x!5
1

Mn
2 E

0

1

dxS md
2

x
1

mu
2

12xDwn~x!.

~38!

Therefore, we get the second sum rule

(
n

Mn
2cn

25(
n
E

0

1

dx wn~x!E
0

1

dyS md
2

y
1

mu
2

12yDwn~y!

5E
0

1

dxS md
2

x
1

mu
2

12xD . ~39!
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The integral logarithmically diverges atx→0 and x→1,
which corresponds to the behavior

P~q2! .
q2→` 1

q2 2
mu

21md
2

q4 ln
q2

m2 1OS 1

q4D ~40!

given by the free quark diagram, Eq.~34!. The divergence of
the sum in Eq.~39! is associated with the high excitationsn.
Therefore, quantifying the divergence allows one to det
mine the asymptotic behavior ofcn

2 .
To render the sum in Eq.~39! finite we must introduce an

ultraviolet regularization. For the logarithmic divergence t
exact way is not essential—one is to add a hard cutoff fac
q(L22Mn

2). For analytic computations the Borel-type reg

larization by the factore2Mn
2/L2

is usually convenient.
For the regularized sums~we mark them with the super

script L! the completeness condition is modified,

(
n

Lwn~x!wn~y!5G~x,y;L!, ~41!

and the Green functionG becomes a ‘‘finite-width’’d-like
distribution with the width

D;
1

L2 . ~42!

This regularizes the sum in Eq.~39!:

(
Mn

2
,L2

Mn
2cn

25E
0

L2

q2dq2 r~q2!

5E
0

1

dx dyS md
2

x
1

mu
2

12xDG~x,y;L!

5~mu
21md

2!~ ln L21const!. ~43!

One has, for instance, for the sum over an interval of hig
excited states

E
L1

2

L2
2

q2dq2 r~q2!5 (
L1

2
,Mn

2
,L2

2
Mn

2cn
2

5~mu
21md

2!ln
L2

2

L1
2 1OS 1

L2D . ~44!

The sum rule~43! proves that the asymptotics of the smear
Im P(q2) coincides with the free quark loop result throug
termsm2/q4. It is easy to see that the nontrivial correctio
in the OPE also emerge only with higher-order terms in 1/q2.
Note that Eqs.~43!, ~44! hold both for light (m!b) and
heavy (m@b) quarks. However, for the asymptotics to sta
the conditionL@mu,d must be observed.

Since Jm
5 5emnJn and using equation of motion]mJm

5

5(mu1md)ūig5d, by the same token we showed th
leading-order duality between the hadronic saturation and
4-7
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partonic expression for the absorptive part of the pseu
scalar current. A direct derivation in the same approach
described in Appendix A.

As expected, for largeMn one finds the residuescn
;mu,d . Let us note that for light quarkscn are only linear in
mq : since for light quarkswn(x);xmu at x→0 ~and likewise
at x→1), the end points of integration in Eq.~38! bring in
the 1/mq enhancement. Combining the sum rule Eq.~43!
with the asymptotics of the ’t Hooft eigenvalues

Mn
2.b2p2n,

we obtain

cn
2.p2b2

mu
21md

2

Mn
4 .

mu
21md

2

p2b2n2 . ~45!

Again, these asymptotics are valid if ‘‘averaged’’ over
interval of n.

It must be noted that the explicit constant in Eq.~42! is
not important. A more detailed derivation of the large-L as-
ymptotics uses the semiclassical expansion of the ’t Ho
wave functions. We show in Appendix A that the domain
integration wherex,1/L2 or y,1/L2 yields only a finite
contribution to the integral in Eq.~43! ~and likewise in the
vicinity of x51 or y51). At the same time, in the domai
x,y@1/L2 the approximationG(x,y;L)5d(x2y) is appli-
cable.

With the relation for the WA width Eq.~26!, the compari-
son of Eq.~44! and the OPE asymptotics Eq.~34! demon-
strates that the smeared width in the ’t Hooft model co
cides with the OPE width at least through termsmu,d

2 /mQ
2 .

IV. PAULI INTERFERENCE

In this section we address the effect of interference in
weak decay width of the heavy mesons. As explained in
Introduction, it has an independent interest. Similar to
partonic free-quark decay width, PI is a ‘‘subleading’’ 1/Nc

effect, with GPI;Nc rather thanNc
2 . Therefore, the expres

sions for the amplitudes are not as trivial as for WA. Nev
theless, it is not difficult to demonstrate that, again,
quark-based OPE predictions coincide with the actual h
ronic widths.

To incorporate PI we must have the flavor of the an
quark produced in the decay of virtualW coinciding with the
flavor of the spectator; we shall call itu. Moreover, the weak
decay Lagrangian must contain two different color structu
to have PI at the same order inNc as the free partonic width
So, we adopt, for simplicity,

Lweak52
G

&
@a1~ c̄gmb!~ d̄gmu!1a2~ d̄gmb!~ c̄gmu!#1H.c.,

~46!

where, again for notational transparency, we identifiedQ
with b and calledq by c.

In this case the decay width has three terms
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GHQ
5

G2

2
Nc~a1

2G11a2
2G212a1a2G12!, ~47!

whereG1 and G2 are O(Nc
0). Clearly, G1(mb ,mc ,mu ,md)

5G2(mb ,md ,mu ,mc) holds.
The asymptotics of the noninterference widthG1 (G2) for

the ’t Hooft model was calculated in Ref.@11# and shown to
be given by the OPE one. Now we address the analog
question forG12.

The leading~in mQ) contribution to the decay width de
scribed by the free parton diagram in Fig. 1~a! suggests that
G12;1/Nc . For example, for usualV2A interaction inD
54 one would have

G12
parton5

1

Nc
G1

parton5
1

Nc
G2

parton ~48!

~the explicit factor depends on the Lorentz structure
Lweak). SuchNc-subleading effects are rather complicate
This suppression, however, is not always present@26#. As
discussed earlier, invoking the spectator quark through
spectator-dependent effects such as WA or PI can bring in
Nc enhancement by effectively eliminating the generic 1/Nc
suppression of the free quark width. As a result, at the p
of a power suppression inmQ one can have the
Nc-unsuppressed manifestation of the interference of the
color amplitudes inLweak,

G12
(PI);O~Nc

0!. ~49!

Thus, on the one hand, studying PI allows one to address
interference of the color amplitudes in a straightforward w
relying on the 1/Nc expansion. On the other hand, conside
ing the term;a1a2 in the decay width in the limitNc→`
automatically singles out the power-suppressed effect of
This goes in contrast with the usual situation where isolat
PI formally requires subtracting the decay width of the sim
lar heavy flavor hadron with the spectator~s! having the same
mass but with the flavor which is sterile in weak interaction

The simple quark diagram describing PI is shown in F
2. To leading order it generates the operator

ĜPI522a1a2

G2

2K H S 12
mc

21md
2

mQ
2 D ~ b̄gmg5u!~ ūgmg5b!

2
2mcmd

mQ
2 @~ b̄u!~ ūb!1~ b̄ig5u!~ ūig5b!#J , ~50!

with 2mQK having the meaning of the quark spacelike m
mentum in the final state:

K5F S 12
~mc1md!2

mQ
2 D S 12

~mc2md!2

mQ
2 D G1/2

.

It is worth noting that this contribution is not chirally sup
pressed. Therefore, it is meaningful and convenient to c
sider it in the limitmc5md50.
4-8
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For B2 mesons havingū spectator, the operators in E
~50! have theNc-favorable color structure and, therefor
their expectation values are given by vacuum factorizatio

1

2MB
^B2u~ b̄gmg5u!~ ūgmg5b!uB2&5

1

2
f B

2MB ,

1

2MB
^B2u~ b̄u!~ ūb!1~ b̄ig5u!~ ūig5b!uB2&

5
f B

2MB
3

2~mb1mu!2 . ~51!

In particular, atmc5md50 one gets

GPI522a1a2

G2

4
f B

2MB . ~52!

We note thatGPI asymptotically approaches a constant wh
mQ→`.

It is interesting that there are no 1/mQ corrections~at
small mc,d) to the above result. This is a peculiarity of tw
dimensions where the absorptive part of the~di!quark loop in
Fig. 2 scales as the momentum to the zeroth power and, t
does not depend on whether one usespb or PB as the mo-
mentum flowing into it. The corrections to the Wilson coe
ficient as well as other higher-order operators can ind
only terms suppressed by at least two powers of inve
mass.

Let us now consider the decays in terms of hadrons. In
absence of WA, the leading-Nc final states are pairs of me
sons. The partial decay widthB→Dk

0pn
2 takes the genera

form

Gkn5
G2

8MB
2 upW u

@a1
2uAkBnu21a2

2uAnBku2

12a1a2 ReAkAn* Bk* Bn#, ~53!

whereA andB schematically denote the ‘‘multiperipheral
B→k transition amplitudes and the ‘‘pointlike’’ meson cre
ation amplitudes, respectively:

Ak;^kuJmuB&, Bn;^nuJmu0&. ~54!

We denote bypW the rest-frame momentum of the final sta
mesons. The PI term is then given by the sum

GPI52a1a2

G2

8MB
2 (

k,n

1

upW u
AkAn* Bk* Bn . ~55!

Both G1 and G2 are saturated by the final states of t
type Dk

0pn
2 with various excitation indicesk and n. How-

ever, the production mechanism differs: while the ‘‘charg
current’’ interaction;a1 producespn

2 by the weak current
‘‘pointlike’’ and Dk

0 in a ‘‘multiperipheral’’ way @see Fig.
4~a!#, the situation reverses for the ‘‘neutral-current’’ amp
tudes proportional toa2 , Fig. 4~b!. These two sources of th
final state mesons have distinct features for heavy enoughQ:
11403
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the multiperipherally produced mesons have the m
squared distributed in the interval from 0 to;LQCDmQ . The
bulk of the pointlike produced mesons have the m
squared4 &mqLQCD or mq

2 . Reference@11# demonstrated
these OPE-suggested facts explicitly in the ’t Hooft mode

As a result, interference becomes possible only at a sm
;1/mQ slice of the principal decay channels. This qualit
tively explains the 1/mQ power suppression of PI which i
automatic in the OPE.

We will now demonstrate the quantitative matching b
tween the OPE-based calculation and the hadronic satura
of the interference width. To make the proof most transp
ent, we start with the simplest possible case when all fi
state quarksu,d,c are massless. While not affecting the OP
analysis, this limit significantly simplifies the expressions f
the individual hadronic amplitudes, as explained in Ref.@11#.
In the case at hand, for example, onlyn50 survives for the
decay amplitude;a1 @Fig. 4~a!# andk50 for the amplitude
;a2 @Fig. 4~b!#. The interference then resides in the sing
final state containing the lowest lying masslessD0 andp2.
Moreover, the corresponding transition amplitudesA be-
tween two mesons take particularly simple form atq250 in
terms of their ’t Hooft wave functions@11#:

qm

1

2MB
^kuemnJnuB&52qzE

0

1

dx wk~x!wB~x!, ~56!

where we have recalled thatB0; i emn f 0Pn
(0) , and therefore

considered only the relevant light-cone component of
amplitude. Then we have

GPI522a1a2

G2MBNc

4p U E
0

1

dx wB~x!U2

522a1a2

G2

4
f B

2MB

~57!

@we have used the fact thatw0(x)51, f 05ANc /p for mass-
less quarks#. The minus sign emerges since the direction
the vector playing the role ofqW is opposite for the two inter-
fering amplitudes.

Thus, the OPE asymptotics Eq.~52! is exactly repro-
duced. Apparently, there is no violation of local dualityat all
for PI in the casemu5md5mc50. This is not surprising—in
this limit the only threshold inGPI occurs at zero mass, an

4For the vectorlike current; it would be evenly spread from ab
m2 to mQ

2 if the weak vertex were scalar.

FIG. 4. Large-Nc decay amplitudes induced by charge-curre
~a! and neutral-current~b! terms in the weak decay Lagrangian.
4-9
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the OPE series can have the same convergent properti
Minkowskian as in Euclidean space.

With mu,d,cÞ0 the interference effects are saturated
several final state pairs of mesons, even if the masses
small compared tomQ . It is still not difficult, though, to
check that the leading OPE term Eq.~52! is reproduced. We
keep in mind that at nonzero masses the width exhibits
threshold singularities due to the singular two-body ph
space 1/upW u in D52. Since it is integrable, the thresho
spikes do not affect the width smeared over the interva
massDmQ;1/mQ .

The idea of the proof is suggested by the detailed ki
matic duality between the partonic and hadronic probab
ties. The bulk of pointlike-produced mesons have mas
squaredMn

2 not exceedingb2 or mq
2 , while for multiperiph-

erally created mesonsk this scale is;bmQ or mspmQ . More
precisely@11#, for the decay rates;a1

2 @Fig. 4~a!#,

1

G tot
(

k
(

Mn.constmQ

Gkn}
mu,d

2

mQ
2 , ~58!

1

G tot
(

Mn!mQ
(

Mk.constmQ

Gkn}
1

mQ
5 . ~59!

Then, calculating the width we can expand around the f
quark kinematicsMn5Mk50. In particular, we set

1

upW u
5

2

MB
S 11

Mk
21Mn

2

MB
2 1¯ D . ~60!

Additionally, we can expand the transition form factors
amplitudesAk in q2:

Ak~Mn
2!.Ak~0!1

Mn
2

mQ
2 mQ

2 dAk

dq2 U
q250

, ~61!

and likewise forAn(Mk
2). In factoring out 1/mQ

2 in the slope
of the amplitude we accounted for the fact that it scales
1/mQ

2 in this kinematics. Indeed, thet-channel resonance
have masses exceedingmQ , and the kinematics~the frac-
tions of the light-cone momenta entering computation of
transition amplitudes, see the next section and Appendix!
likewise depend onq2 only asq2/mQ

2 .
To obtainGPI with an accuracy 1/mQ

2 of the free quark
width, we actually expand the particular two-body decay a
plitude only inq2, that is, do not neglectMk

2 dependence for
the amplitude;a1 or Mn

2 dependence for the amplitud
which is proportional toa2 . The expressions for the deca
amplitudes atq250 are very simple@11#:

Mkn5GANc

2p
~a1Mkn

(1)1a2Mkn
(2)!, ~62!

Mkn
(1)5~MB

22Mk
2!E

0

1

dx wB~x!wk~x!E
0

1

dy wn~y! ,
11403
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(2)52~MB

22Mn
2!E

0

1

dx wB~x!wn~x!E
0

1

dy wk~y!,

2upW uMB.MB
22Mk

22Mn
2 .

Then we have

(
k,n

Gkn
PI .22a1a2

G2MBNc

4p (
k,n

E
0

1

dx wB~x!wk~x!

3E
0

1

dy wB~y!wn~y!E
0

1

dzwn~z!E
0

1

dt wk~ t !

522a1a2

G2MBNc

4pMB
2 U E

0

1

dx wB~x!U2

, ~63!

or

GPI522a1a2

G2

4
f B

2MB . ~64!

We extended summation overk and l in Eq. ~63! to include
all states, since the contribution of additional, kinematica
forbidden meson pairs is suppressed by high powers
1/mQ .

This expression is valid up to the relative 1/mQ
2 correc-

tions. Indeed, the leftover effect of the slope of the transit
form factorFBk is quadratic inmq /mQ . For example, using
representation Eq.~38! we obtain a sum rule which allow
one to cast it in the form

(
n

dMkn
(1)Mkn

(2)5(
n

]

]q2 FBkMn
2cnE

0

1

dy wB~y!wn~y!ck

5ck

]

]q2 FBkE
0

1

dy wB~y!S md
2

y
1

mu
2

12yD
~65!

~and likewise fordMkn
(2)). The convergence of the integra

over y shows that this effect is saturated at smalln and is of
ordermq

2/mQ
2 or mqb/mQ

2 , whichever is larger.
A more accurate consideration reveals that the two am

tudes in Eqs.~62! have the factors (21)n and (21)k, re-
spectively, and their product, additionally, the fact
(21)(PHQ

1n1k). @The latter is related to the opposite dire
tion of qW in the two amplitudes and is readily understo
since this is a parity-conserving decayHQ→k1n with the
meson parities PHQ

, (21)n and (21)k.# Therefore, the sign

of GPI is given by the parity ofHQ , which is manifest for the
OPE result inD52, cf. Eq. ~51!. Thus, we see thatGPI

agrees with the expression given by the free quark loop
to the accuracy suggested by the OPE.

It is not difficult to estimate the effects of violation o
local duality in PI related to the thresholds, for small b
nonvanishingmq . Since the two-body phase space is sing
lar, different ways to gauge its strength will yield differe
power of its asymptotic suppression. Full information is ju
given by the nature of the threshold singularity, the scal
of the corresponding residues, and the asymptotic dista
between the principal thresholds. This would show the c
4-10
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tribution to PI of any new decay channel, close to the m
where it opens, where the corresponding width is not litera
given by the OPE.

It turns out that the magnitude of local duality violation
PI essentially depends on the relation between the final s
masses. The strongest effect comes from the kinema
where one of the mesons belongs to low excitations w
another has the large mass close tomb .

The case whenmu5md50 ~but mc.0) is somewhat spe
cial. Here one of the interfering decay amplitudes vanishe
the thresholds, andGPI simply experiences a finite jump:

udGk0
PI u.

G2

2
2a1a23constf Bmc

b9/2

MHQ

9/2 q~MHQ
2Mk!,

Mk112Mk.
p2b2

2MHQ

. ~66!

Here we used the semiclassical calculations of the transit
to highly excites states given in Sec. III, Eq.~45! and in Ref.
@11#, Eq. ~79!. The latter estimate for theHQ→Dk transition
amplitude is valid up to a factor of order one; accepting it
face value would yieldA3p for the constant in Eq.~66!.

The referred asymptotics determined the absolute ma
tude of the decay amplitudes relevant for usual decay p
abilities, but not their sign which plays a role in interferen
which can be both constructive and destructive. A more ca
ful analysis suggests that the relative sign of the two am
tudes alternates for successive thresholds. Therefore, amu
.md!b andmc!mQ we have the following ansatz:

dGosc
PI .

G2

2
2a1a2 constA3p f Bmc

b9/2

MHQ

9/2

3(
k

~21!kq~MHQ
2pbAk!. ~67!

The amplitude of oscillations in PI scales down at least
1/mQ

5 . At large mQ the threshold widths are much small
than even the individual principal widths saturatingGPI at
mc,u,dÞ0.

Whenmu,d are nonzero, the picture changes essentially
two respects. First, neither decay amplitude vanishes at
threshold, since the two-momentum of the lighter mes
does not vanish:q0.M1 instead ofq05uqW u.MHQ

2M thr if

q250. Second, the phase space factor 1/upW u becomes now
@2M1(MHQ

2M thr)#21/2 vs 1/(MHQ
2M thr) for M150. (M1

is the mass of the lighter meson and its momentum is ca
q here. We assume thatM1 is much larger than the reso
nance spacing;b2/mQ .) Otherwise, the scaling of the tran
sition amplitudes remains the same. Therefore, in this c
we have

dGosc
PI }

G2

2
2a1a2mcmp

1/2 b5

MHQ

5 (
k

~21!k
q~MHQ

2M thr
(k)!

AMHQ
2M thr

(k)
,

M thr
(k).mp1pbAk. ~68!
11403
s
y

te
cs
e

at

ns

t

i-
b-

e-
i-

s

n
he
n

d

se

Strictly speaking, atmu,d*b additional light meson state
contribute, and the pattern of the threshold spikes inGPI

becomes less even reflecting the superposition of a num
of similar structures. Additionally, atmu;mc the individual
sign-alternating behavior becomes more complicated.

In principle, with all final-state masses not vanishin
there are thresholds corresponding to decays where
final-state mesons have masses constituting a finite frac
of mQ . The threshold amplitudes for such decays, howev
are too strongly suppressed, since both interfering am
tudes have the chiral and the form factor suppression:

uMknuPI
2 }

mq
2b9

mQ
7 at k,n;

mQ
2

b2 .

The phase space for such decays is also smaller sinceupW u
;AmQ(MHQ

2M thr)
1/2. Additionally, these thresholds ar

spaced very closely, at distances scaling asb4/mQ
3 . There-

fore, they are subdominant for duality violation. They a
related to the subseries of the OPE terms which appear
beyond the tree-level perturbative computations.

To conclude this section, let us describe the physical p
ture which emerges from the analysis. In particular, we c
see how the interpretation problem mentioned in the Int
duction is resolved. As expected, the explicit analy
yielded nothing about colored diquark correlator, direct
Instead, we observe the duality of differently combin
quark-antiquark pairs to the hadronic states: one energ
quark (c or d) is to be combined with the ‘‘wee’’ spectato
antiquark or slowū produced in the weak vertex. It is th
pair of quarks picked up from the different final state meso
that corresponds to the large invariant mass in the qu
diagram. The completeness of the hadronic states—or
other words, the duality between the parton-level and m
sonic states—is achieved already for a single fast mov
decay quark when it picks up a slow spectator. In particu
the ‘‘hardness’’ of these processes determining the appl
bility of the quasifree approximation, is governed by the e
ergy of the fast quark rather than by the invariant mass of
pair.

There is nothing wrong with considering the colored d
quark loop as nearly free. Since the overall color is co
served in the perturbative diagrams, in the full graph for
meson decay which would include explicitly propagation
the spectator, there is always a color mate for any quar
the ‘‘partonic’’ part of the diagram. Moreover, if the leading
Nc contribution is considered, such a color pairing~i.e.,
which pair must be embodied into a meson! is unambiguous.

Of course, the invariantmassof a single, even fast on
shell quark vanishes. However, this does not make the in
sive probability for it to hadronize by picking up spectat
and forming a meson, a ‘‘soft’’ quantity. For it is not th
invariant mass but the~rest frame! momentum that deter
mines the hardness. Indeed, the color of the initial sta
heavy quarkQ is compensated by the slow spectator. Th
initial distribution of the color field marks the rest frame an
makes the hardness parameter for the total probability
4-11
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look noninvariant if the final state is considered perturb
tively as a pair of free partons.

V. TOTAL „SPECTATOR-FREE… WIDTH THROUGH 1/ mQ
2

The inclusive decay widths of heavy hadrons in t
’t Hooft model in the absence of the flavor-dependent sp
tator effects were considered in detail in Ref.@11#. It was
demonstrated that the analytic summation of the widths
the accessible two-body modes reproduces the 1/mQ expan-
sion of the widths in the OPE, at least through the terms h
enough in 1/mQ . In particular, the hadronic width does n
have any 1/mQ correction which would not be present in th
OPE.

The analysis was performed for arbitrarymc andmsp, but
simplified significantly whenmu5md50 was set~in the no-
tations of the present paper!. Since there is little doubt tha
the dependence of the hadronic width onmu andmd is sup-
pressed by at least two powers of 1/mQ , this simplification
cannot affect the conclusion regarding possible non-O
1/mQ terms in the width. Nevertheless, we find it instructi
to describe the direct computation of the terms;mu,d

2 /mQ
2 in

the width based on the ’t Hooft eigenstate problem, follo
ing the approach of Ref.@11# and the analysis of the previou
sections.5 In particular, it illustrates that the case of nonze
masses is not any different frommu5md50.

As before, we assume for simplicity thatmu5md , so that
the ūgmd current is strictly conserved, and represent
large-Nc nonleptonic decay width as an integral of the d
ferential semileptonic widthGsl(q

2) over q2 weighted with
the spectral densityr(q2), Eq. ~14!. The upper limit of inte-
grationqmax

2 comes from vanishing ofGsl(q
2) at q2.(MHQ

2M0
D)2.

Gsl(0) was analytically calculated in Ref.@11#:

Gsl~0!5
G2

4p

mQ
2 2mq

2

mQ
F mQ

MHQ

E
0

1 dx

x
wHQ

2 ~x!1OS 1

mQ
5 D G

5
G2

4p

mQ
2 2mq

2

mQ
F ^HQuxQ

† ~mQ / i ]2!xQuHQ&
2MHQ

1OS 1

mQ
5 D G , ~69!

which coincides with its OPE expansion.
On the other hand,r(q2) does not vanish atq2.0 only

due to nonzeromu,d . Therefore, following the approach o
the previous section, we expandr(q2) in mq

2/q2 at largeq2

and, simultaneously,Gsl(q
2) in q2/mQ

2 at q250. To this end
we write the width as

5The consideration below was elaborated while working on R
@11#, but was not included in the final version for the sake
brevity.
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GHQ
5E

0

qmax
2

dq2 r~q2!Gsl~q2!5Gsl~0!E
0

`

dq2 r~q2!

1E
0

`

dq2 r~q2!@Gsl~q2!2Gsl~0!#. ~70!

Since atq2;mQ
2 the spectral densityr(q2) is explicitly pro-

portional tomq
2/mQ

2 , in the second integral we can use f
Gsl(q

2)2Gsl(0) its leading-order approximation. With
*dq2r(q2)5Nc , the first termexactlyreproduces the corre
sponding term in the OPE, Eq.~69!.

All transition form factors are expandable inq2/mQ
2 ~ex-

cept, possibly, the pointq2→mQ
2 ). Therefore, the smeare

width Gsl(q
2) is likewise expandable inq2/mQ

2 , and so is

GHQ
—at least up to small corrections;1/mQ

3 associated

with the domain ofq2 close tomQ
2 . Thus, the second term

scales only asmu,d
2 /mQ

2 .
In order to calculate this term, we can use the followi

facts regarding the smeared width.
The exact ‘‘semileptonic’’ widthGsl(q

2) coincides with
the free widthGsl

tree(q2) to the leading order in 1/mQ when
mQ2Aq2@b.

The smearedGsl(q
2) is an analytic function ofq2 and is

expandable in 1/(mQ2Aq2).
The smearedGsl(q

2) does not blow up atq2→mQ
2 .

We shall comment on them below. Accepting these th
facts for now, and neglectingmq

2 compared tomQ
2 we find

Gsl
tree~q2!5

G2

4p
mQq~mQ

2 2q2!, ~71!

and

E
0

`

dq2 r~q2!@Gsl~q2!2Gsl~0!#

5E
0

`

dq2@Gsl~q2!2Gsl~0!#
1

q4

d

d ln q2 E
0

q2

dt tr~ t !

52
G2mQNc

4p E
mQ

2

` dq2

q4 ~mu
21md

2!

52Nc

mu
21md

2

mQ
2 Gsl~0!. ~72!

Here we have used the sum rules Eqs.~43!, ~44!.
Thus, we get through order 1/mQ

2

GHQ
52

G2

4p
Nc

mQ
2 2mc

22mu
22md

2

mQ
S 11

b2

mQ
2 2

mp
2

2mQ
2 D

1OS b3,mq
3

mQ
2 D , ~73!

where the kinetic expectation value

f.
f

4-12
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FIG. 5. Diagrams responsible for the linear
mu,d corrections toGHQ
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mp
2 5mQ

2 F E
0

1

dx x2wHQ

2 ~x!2S E
0

1

dx xwHQ

2 ~x! D 2G ~74!

represents the low-momentum part of the 1/mQ expansion of

the integral in Eq.~69!, whereas the termb2/mQ
2 accounts

for its ‘‘hard’’ part @11#. The OPE result is thus reproduce
explicitly.

Neglectingmc compared tomQ was essential in the abov
computation. For, atmcÞ0 the uniquelinear in mu,d effect
appears which was calculated in Ref.@11#, Sec. VI A:

DGHQ

GHQ

52
4p

Nc
^0umuūu1mdd̄du0&

mQmc

~mQ
2 2mc

2!2 . ~75!

Of course, it has the direct OPE counterpart, see Fig. 5
mc;b it scales asb2(umuu1umdu)/mQ

3 .
It is straightforward to obtain the 1/mQ

3 term in GHQ
as

well. The least trivial corrections not related tomu ,md are all
incorporated in Eq.~69!. The only remaining part is the 1/mQ

term in the explicit (mu
21md

2)/mQ
2 correction. It is associated

with the domain of maximalq2, i.e., mQ2Aq2;mc ,b. It
has a logarithmic enhancement, @(mu

21md
2)mc /

mQ
3 # ln @mQ /mc# coming from the domainmc!mQ2Aq2

!mQ ~and, therefore, this log conforms with the one in t
free quark phase space!. On the other hand, at nonequalmu
and md and light c and qsp the smeared width contains th
chiral log of the form @(mu2md)2b/mQ

3 # ln@b/(mc1msp)#,

from the domainAb(mc1msp),mQ2Aq2,b. These con-
tributions are given by the corresponding four-quark exp
tation valueŝ HQuQ̄Gmcc̄GnQuHQ&, in agreement with the
general proof of Ref.@24#.6 However, these operators bein

6At mu5md these expectation values are multiplied bydmn

2vmvn with v5PHQ
/MHQ

, containing only the spacelike compo
nent, and then the contribution of the lowest pseudoscalar, ‘‘pio
intermediate state comes proportional to its momentum. From
point of view of hadronic decay modes, the pion threshold de
amplitude likewise vanishes atmu5md since, for the conserved
vector current, only the current-meson couplings;ema survive, and
the decay amplitudes into the mesons with the same parity asHQ

vanish at the threshold. These suppressions are eliminated w
muÞmd , and the chiral log appears both in the four-quark exp
tation value due to the pion contribution in the timelike compone
and in the smeared width due to the pion phase space;1/(MHQ

2M thr).
11403
t
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Nc subleading~the expectation values scaling asNc rather
than Nc

2 , unless WA is possible!, their values are anyway
expressed in a rather ugly way in terms of various ’t Ho
eigenfunctions both in thes and t channel. Calculating this
maximal-q2 effect requires straightforward 1/mQ expansion
of the form factors and wave functions, which is not to
instructive. This is briefly outlined in Appendix B.

Now it is time to comment on the assumptions used
deriving the correction2(mu

21md
2)/mQ

2 . The first one was
related to the semileptonic width at nonzeroq2. Of course,
even the stronger statement holds:Gsl(q

2) coincides with
Gsl

tree(q2) up to the terms;b2/(mQ2Aq2)2. Proving this
goes along the same explicit 1/mQ expansion of the wave
functions and the form factors@11#. Namely, to order 1/mQ
one still has the transition form factors determined only
the overlap of the initialwHQ

and the finalwk wave func-

tions. The only difference is thatq2Þ0 at q2Þ0 and, as a
result, the arguments of the wave functions change. T
purely kinematic modification accounts for all changes
order 1/mQ . Some technicalities are given in Appendix B

The situation changes at order 1/mQ
2 . The peculiarity of

the point q250 is that the vertices do not renormalize
q250. More precisely, in the light-cone gauge the vert
corrections in Fig. 6~a! are proportional toq2 and thus van-
ish, to all orders, atq250 @11#. The only surviving contri-
bution is the effect of renormalization of the external qua
legs, Fig. 6~b! which is readily summed up to all orders. I

’’
e
y

en
-

t,
FIG. 6. Vertex~a! and external quark leg~b! renormalizations of

weak decay amplitudes, and their hadronic counterparts.
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the light-cone formalism it consists in overall~IR divergent!
shift in the reference point for the light-cone energyp1 , and
the dispersion term2b2/(2p2) formally coinciding with the
replacementm2→m22b2 for all quark flavors.

This perturbative computation has an exact analogy
the actual meson form factors. The absence of the ve
corrections means the absence of thet-channel resonanc
contributions atq250. This fact is directly seen in the ex
plicit expressions for the form factors in the kinemati
where the fraction of the total light-cone momentumv cor-
responding to the momentum transferq, goes to zero. All the
strong interaction effects occur in the initial and the fin
states and are described by using the exact eigenfunc
instead of the plane waves.

At q2Þ0 the vertex corrections appear to ordergs
2 , and

already the firstgs
2 correction in the coefficient function o

the operatorQ̄Q becomes different from (12b2/mQ
2 )21/2.

The vertex corrections are dual to thet-channel resonanc
contribution in the exact amplitude, and they also app
explicitly with the factorsq2 andb2. Additionally, the origi-
nal tree-level overlap is modified both kinematically and d
to the additional terms in the expansion of theQ̄gmq current
in terms of the light-cone spinors. All this is directly ob
served in the explicit expressions for the meson transi
form factors.

Regarding the two other assumptions, the fact that
transition form factors are regular functions ofq2 can be
seen, of course, from their most general analytic expressi
Another way to visualize this is to use the approximate sc
ing behavior

1

A2mQ

^kuJm~q!uHQ~mQ!&.
1

A2mQ8
^kuJm~q8!uHQ~mQ8 !&,

~76!

where q8 is adjusted in respect tomQ8 to have the same
rest-frame momentum of the final-state mesonk:

q825
MHQ

~mQ!

MHQ
~mQ8 !

q21MHQ
~mQ8 !@MHQ

~mQ8 !2MHQ
~mQ!#

1Mk
2S 12

MHQ
~mQ!

MHQ
~mQ8 !D . ~77!

This freedom can be used, say, to make momentum tran
q lightlike,

mQ8 .mQ2FmQ
2 2Mk

21q2

2mQ
2AS mQ

2 2Mk
22q2

2mQ
D 2

1
q2Mk

2

mQ
2 G
~78!

and then use the exact representation of the amplitudesvia
the simple wave functions overlaps. This trick allows on
for example, to see the strong suppression of the trans
amplitudes to highly excited statesMk

2;mQ
2 @bmQ at non-

zeroq2 as well, without going into details described in Ap
pendix B. The relation Eq.~76! is violated by theb2n radia-
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tive corrections and by the subleading 1/mQ terms in the
expansion of the currentJm , which are both power sup
pressed here. It can be derived directly from the expl
solution of the model, see Secs. 2 and 4 of Appendix B.

VI. COMMENTS ON THE LITERATURE

Two recent papers@27,17# claimed to have establishe
inapplicability of the OPE for the heavy flavor widths co
sidering the solvable ’t Hooft model. Reference@27# ad-
dressed the conventional spectator-independent decay c
nels. Numerically evaluating the possible two-body dec
rates for the values ofmQ up to mQ514, it found a small
systematic excess of the decay width over the free qu
diagram which was fitted as

GHQ
2GQ

GQ
;0.15

b

mQ
. ~79!

This was regarded as the demonstration of~a priori pro-
claimed! nonexistence of the OPE for the nonlepton
widths. Since in the large-Nc limit the difference between the
nonleptonic and semileptonic widths disappears, this, if tr
would mandate the same absence of the OPE for the s
leptonic widths as well, an obvious fact ignored by the a
thors.

In contrast, Ref.@11# accomplished the analytic summa
tion of the large-mQ width in the ’t Hooft model, and no
deviation from the OPE was found to the high enough ord
in 1/mQ ~the exact power addressed depended on the va
of the final state masses!. In particular, the absence of th
1/mQ corrections to the parton result formu,d;b!mQ was
very transparent. Additionally, the correspondence was
tablished between the step-by-step quark-gluon based
computations and the matching contributions in the integ
determining the meson form factors in terms of the ’t Ho
wave functions. This allows one to compare the OPE co
putations to the hadronic saturation at the intermediate sta
rather than only for the final result.

What could go wrong with the numerical analysis of Re
@27#? We note that the apparent ‘‘effect’’ was really sma
numerically and, in the fiducial range ofmQ /b;8 to 10
constituted only about 1%. Moreover, a closer look at
plots of Ref.@27# shows that the reported discrepancy som
what increased toward the upper values ofmQ . As a result, a
better fit of the numerical points of Ref.@27# would be
achieved assuming smallO(1/mQ

0 ) ~not power suppressed!
corrections to the width, with the numerical coefficie
;O(1022). Unfortunately, a priori targeting the 1/mQ
terms, the authors did not explore the possibility of altern
tive interpretations.

Incidentally, the scale of the claimed discrepancy lies j
in the magnitude range of the 1/mQ

2 effects from the OPE
which could bea priori expected atmQ'10. It turns out that
the numerical points forG(mQ) in Ref. @27# can be well
fitted by the leading-mQ expression and adjustableb2/mQ

2

terms with the coefficientO~1!. Adding arbitrary corrections
;b3/mQ

3 with the larger coefficient up to 6–8 allows real
perfect fits. Since the actual 1/mQ

3 corrections include the
4-14
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expectation values of the four-quark operators which are
given by factorization, they are uncertain. Their estima
showed that they are typically significantly enhanced co
pared to the naive dimensional estimate;b.

Thus, the question would remain open before the ac
OPE corrections are computed. This was accomplishe
Ref. @11#. While the radiative correction enhances the wid
by the factor 11b2/(2mQ

2 ) to order 1/mQ
2 , the kinetic term

2mp
2 /(2mQ

2 ) tends to suppress it.7 Therefore, if, as stated in
Ref. @27#, the plotted values refer to the bare massmQ , it
seems that the numerical calculation reported by Grins
and Lebed yielded the result exceeding the asymptotic w
by an amount ranging from a fraction to a per cent.

The most apparent resolution, in our opinion, is that
analysis of Ref.@27# simply does not control the accuracy
the numerical computations of the amplitudes at the requ
level of a few per mill. This is not surprising and roots to t
well-known problems of numerical computations. The wid
at largemQ is saturated by highly excited states whose wa
functions oscillate fast. This standard problem of the num
cal computations of the semiclassical transition overlap
additionally plagued by the general complexity of the n
merical solutions of the ’t Hooft equation and the encou
tered singular integrals. These problems were alluded t
Ref. @27#.

The general lesson one draws from this comparison is
new: it is not easy to correctly evaluate the actual asympt
width in too straightforward numerical summations of ma
exclusive widths, were it a computer-simulated approxim
solution for a theoretical model with—theoretical
speaking—potentially unlimited accuracy, or the actual
perimental data. The approximations made in practical ap
cations usually go across preserving the subtle interpla
different effects which underlies delicate cancellations sh
ing the size and scaling of the power suppressed nonpe
bative effects.

The recent paper Ref.@17# announced even more drast
numerical mismatch of the actual hadronic width vs the O
considering WA, even in the leading order at which the
fect appears. In Secs. III and IV, on the contrary, we anal
cally computed the asymptotics of the spectator-depen
widths and found exact correspondence with the OPE. A
matter of fact, Ref.@17# contains self-contradicting asse
tions: It was stated that the~smeared! current-current vacuum
correlator @of the type determining, say,s(e1e2

→hadrons)# is known to obey the OPE. Simultaneously, t
difference was claimed established for the effect of WA
the context relying on the factorization expression Eq.~27!.
The starting expression—whether correct or not for a p
ticular model—thus equates the validity of the OPE for t
WA nonleptonic width to its applicability for the vacuum
current correlator. Figure 7 shows the ratio of the~smeared!
values of the absorptive parts of the correlator

7The value ofmp
2 for quark masses used in Ref.@27# has been

recently evaluated by Lebed to be about 0.8b2 ~private communi-
cation!.
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Im Pmm~q2!

Im Pmm
tree~q2!

according to Ref.@17#. The variance from unity, in genera
does seem to be present.

We do not think that this warrants one to become cauti
in applying the OPE to the polarization operator. There
certain drawbacks in the computations of Ref.@17#. For un-
known reasons the authors presumed that the width Eq.~27!
becomes nonintegrable for the large-Nc theory and, there-
fore, cannot be sensibly smeared.8 As a result, instead of
considering the current correlator in the ’t Hooft model itse
a ratherad hocansatz was adopted which was intended
mimic nonvanishing widths of the resonances at finiteNc .
The simple resonant representation forP(q2),

P~q2!5Nc(
n

cn
2

q22Mn
21 i e

,

2Im P~q2!5pNc(
n

cn
2d~q22Mn

2! ~80!

was replaced by a complicated model where ImP(q2) was
due to the two-meson states, with their production amplitu
containing the resonance terms

8It is obvious that for any regularization consistent with unitari
the width remains integrable, with the integral around the sp
independent of the regularization. This is ensured by the disper
relation; see Sec. III.

FIG. 7. The actual-to-partonic ratio of the absorptive part of
vector current correlator atmu5md50.56b, according to Ref.@17#,
for Nc510 ~solid line! andNc520 ~dashed line!. Energy scale is in
units of b. Smearing procedure has been applied for the hadro
cross section.
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ANccn

q22Mn
21 iM nGn

.

At large Nc the residuesANccn;ANc while the resonance
decay amplitudesMnkl;1/ANc; the widthsGn;1/Nc .

As soon asGn are small enough, such a prescription do
not differ from the proper spectral density Eq.~80! being a
concrete functional choice of thed distributions,

E
uq22Mn

2u@MnGn

dq2
cn

2

uq22Mn
21 iM nGnu2

5pcn
2 1

MnGn
,

~81!

provided eachGn is saturated by the included decay mod

(
k,l

uM~n→kl !u2Fkl52MnGn . ~82!

Here Fkl denote the two-body decay phase space. Un
these constraints such a model—if not true—is at least le
mate. However, two conditions must be observed: First,
resonances do not overlap,Gn!uMn612Mnu. Additionally,
the partial decay amplitudes and the phase space factors
be practically constant within the~total! width of the indi-
vidual meson.

Both constraints are satisfied in the formal limitNc→`.
However, in practice the width grows with the mass of t
resonance, while the spacing between the successive
decreases. Therefore, for finiteNc adopted in Ref.@17# ~let
alone the considered caseNc51) the first condition was no
well respected. Regarding the second constraint, the prob
gets additionally aggravated by the singular two-body ph
space inD52. Therefore, it seems quite probable that t
reported disagreement is rooted to the inconsistencies o
model for ImP(q2) adopted in Ref.@17#.

A detailed look at the plots displayed there incidenta
provides support for this conjecture. The plots for~the
smeared! Im P(q2) show a rather unphysical shoulder
mQ'10 which coincides with the mass of the resonance h
ing abnormally large width~Fig. 9 of Ref.@17#!. On the other
hand, the agreement between the hadronic and quark w
is surprisingly good just atlower masses where the reso
nances are more narrow. The point where the curves sta
diverge, apparently shifts upward with increasingNc .

Finally, a simpler question remains open about the ac
racy of numerical computations employed in Ref.@17#.
Taken at face value, even adopted sampling ofmQ when
only 2 to 3 points fall inside a separate sharp resonance p
seems insufficient to evaluate the smeared width relia
Whether these effects can explain the observed discrep
;20% atmQ;10 to 15, remains to be clarified.9

9Since the effect in question by itself is 1/q2 in the polarization
operator, it could bea priori conceivable to have subleading 1/q3

corrections as large as 20%. However, the OPE ensures tha
corrections are suppressed by at least two powers ofq, and thus
must be small; they are readily calculated.
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It is worth reiterating that the computational difficulties—
quite significant in the analysis of Ref.@17#—to a large ex-
tent were a handmade problem. Bothcn andMn are readily
computed without cumbersome triple overlaps involving s
gular integrals, and in any case had been determined to
struct the authors’ model. Computing the smeared width
rectly from Eq.~80! would be then quite straightforward.

VII. CONCLUSIONS

We have examined the inclusive decay widths of hea
flavor mesons in the ’t Hooft model in the context of th
heavy quark expansion, paying attention to the specta
dependent effects sensitive to the flavor of the spect
quark. To the order the high-energy asymptotics are ca
lated, there is no deviation from the OPE predictions, eit
for semileptonic, nonleptonic decays or for thee1e2

→hadrons-type processes—as anticipated.
We confirm that there is no difference for the OP

whether a semileptonic or nonleptonic width is consider
What matters is only whether the particular observable
be represented as thecompletediscontinuity of the properly
constructed correlation function over the cut in a suita
‘‘hard’’ variable. This variablev is the same for both semi
leptonic and nonleptonic decays, Eq.~29!. After that the only
difference is the number of the quark Green functions to
multiplied and to perform the expansion of the product in t
complex plane. The validity of the OPE, of course, cann
depend on these technicalities.

This does not mean, however, that for all types of dec
the predictions of practical OPE truncated after the first f
terms, work with equal accuracy at a fixed massmQ . On the
contrary, considerations of Ref.@28# suggest that the effec
tive ‘‘hardness’’ scale can be smaller than literally the e
ergy release. Accordingly, higher onset of duality and lar
deviations for nonleptonic widths were obtained in Ref.@12#
in the instanton-based model.

Therefore, in our opinion, attempts to check~let alone to
disprove! the OPE itself in the concrete model are hard
meaningful beyond illustrative purposes. What has a pot
tial of providing useful insights, is studying the behavior
the contributions violating local duality, so far the least u
derstood theoretically subject.

The ‘‘practical’’ OPE yields the width in the power ex
pansion

GHQ

G0
5A01

A1

mQ
1

A2

mQ
2 1¯ . ~83!

If the series in 1/mQ were convergent~to the actual ratio!,
GHQ

would have been an analytic function ofmQ above a

certain massm0 pointing to the onset of theexact local
parton-hadron duality. The actualGHQ

is definitely nonana-
lytic at any threshold~whether or not the amplitude vanishe
at the threshold!. Thus, the ‘‘radius of convergence’’ canno
correspond to the mass smaller than the threshold m
Since in the actual QCD the thresholds exist at arbitrary h

the
4-16
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energy, the power expansion in Eq.~83! can be only
asymptotic, with formally zero radius of convergence
1/mQ .

In practice, the true threshold singularities are expecte
be strongly suppressed at large energies, and the corresp
ing uncertainties in the OPE series quite small. In act
QCD they are expected to be exponentially suppressed e
tually, though, possibly, starting at larger energies. In
intermediate domain they can decrease as a certain p
and mustoscillate.

As was illustrated in Ref.@11#, the power expansions like
Eq. ~83! are meaningful even beyond the power suppress
where the duality-violating oscillations show up. In the ca
of the heavy quark widths where massmQ cannot be varied
in experiment, the size of the duality-violating compone
may set the practical bound for calculating the widths. Th
it is important to have an idea about its size. We empha
that one should always include the leading QCD effects
the partonic expressions, rather than compare the actua
servable with the bare quark result. In the model conside
in Ref. @11#, incorporating the power corrections from th
practical OPE suppressed the apparent deviations by m
than an order of magnitude.

It is worth noting that we identified the case where t
exact quark-hadron duality in the interference width is sa
rated on asinglefinal state. It is realized in the chiral limi
for the final state quarks. It seems to be just an opposite
to the classical small velocity limit for semileptonic deca
noted by Shifman and Voloshin in 1986@7#. While appli-
cable only for largeNc and in D52, the present case i
peculiar in that the duality is not affected by subleadi
power corrections. Both cases serve as a counter-examp
the lore often purportingly equating the accuracy of lo
duality to the proliferation of the final state channels in t
process in question.

The performed analysis elucidates how the general dua
between the partonic and hadronic widths works out its w
at large energies. It can be traced that, to the leading ord
1/mQ , the duality is simply the completeness of eigensta
of the hadronic Hamiltonian. It is not even required to e
plicitly solve the ’t Hooft equation to establish the leadin
free quark result for the width, but just to know that th
solutions form a complete basis.10 The absence of the non
OPE terms already at the next to leading order 1/mQ is a
dynamical fact requiring, for example, a proper solution
the bound-state equations. This entersvia the average of the
moments of the invariant hadronic mass in the final state

The ’t Hooft model gives an explicit example of th
duality-violating effects, at least of the ‘‘minimal,’
resonance-related nature. As a general feature, we obs
that the duality between the appropriately averaged~to elimi-
nate the threshold singularities! hadronic widths and the
truncated OPE predictions sets in numerically well rat

10The Multhopp technique employed in Ref.@27# does not auto-
matically respect orthogonality of solutions with truncation an
therefore, in principle can lead to overestimating even the lead
mQ coefficient.
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early, after only a couple of the principal thresholds, and
local duality works much better in the heavy quark width
nonleptonic and semileptonic than ins(e1e2→hadrons).
This applies to both the qualitative behavior~generally, a
larger density of resonances implying a more narrow m
mal interval of smearing! and to the strength of the thresho
singularities as well as the threshold residues. The qualita
discussion of the underlying reason can be found in R
@29#, Sec. 3.5.3.

Can these lessons be transferred to actual QCD? Unfo
nately, there are some essential differences between it
the explored ’t Hooft model, which must be important for th
local duality violation.

The singular 1/upW u two-body phase space inD52
strongly enhances the threshold singularities, compare
upW u in D54. In the actual QCD enhancement of the non
mooth behavior can rather be expected only from sin
resonances with masses close toMB . While infinitely nar-
row at Nc→`, they acquire significant width fornf /Nc51
which leads to drastic flattening of the resonance-rela
combs when the width becomes comparable to the dista
between the successive resonances. Additionally, one
pects a denser resonance structure, at least asymptotical
the actual QCD in four dimensions~even atNc→`) than the
equal inM2 spacing inD52. All this would lead to suppres
sion of the duality violation.

Finally, similar types of the condensate corrections lead
a weaker suppression inD52 due to the smaller dimensio
of the corresponding operators. This provides a larger ro
for various possible nonperturbative effects.

These obvious differences would optimistically sugg
that the ’t Hooft model represents, in a sense, an upper bo
for violations of local duality in QCD. While this is no
excluded, such implications must be regarded with cautio

In fact, the largest duality violating effects in the nonle
tonic heavy flavor decays can be expected from the re
nance structures in the combined (q̄qq̄q) channel in the final
state, embedding the quarks belonging to both the ‘‘semil
tonic’’ and ‘‘hadronic’’ subprocesses which do not decoup
completely. Such states are lost in the ’t Hooft model. Mo
over, the limitNc→` simply erases the difference betwee
the nonleptonic and semileptonic decays in this respect.

Another peculiarity of QCD in two dimensions is absen
of the real gluonic degrees of freedom and of the perturba
logarithmic short-distance corrections typical forD54 ~in
contrast to the powerlike ones in the super-renormaliza
D52 QCD!. So far we have no clues if the onset of duali
for excitation of the gluonic degrees of freedom is the sa
or noticeably larger than for the processes describing
evolution of the ‘‘valence’’ quarks. Correspondingly, whi
observing a good qualitative duality between the bare qu
computations and the actual hadronic probabilities alread
energies;1 GeV, one may have to ascend to higher en
gies in the Minkowski domain to reach quantitative agre
ment at the level of the perturbative corrections. Let us n
in this respect that the ‘‘real gluons’’ in jet physics are re
ably observed in experiment only at rather high energ
Unfortunately, two-dimensional theories do not allow one

,
g-
4-17
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study this interesting aspect of local gluon-hadron dua
even in the accessible model settings.

As emphasized above, we found that the OPE predicti
universally hold for the inclusive widths. In this respect, t
origin of the paradox in mismatch between the size of
interference term on the quark and meson languages, Eqs~2!
and ~4!, is quite transparent. The mismatch emerges in
Nc-suppressed term. Addressing such effects requires a m
accurate control of decay amplitudes beyond the leadingNc

counting rules. In particular, it is necessary to account
1/Nc corrections in the color-allowed amplitudes rather th
use oversimplified prescription such as Eq.~3! ~a possible
resolution was conjectured already in Ref.@16#!.

A closer look reveals that the problem originates just
the quark configurations where all four quarks in the int
mediate state have the same color. This configuration is 1Nc

suppressed and can be simply discarded for the leadingNc

probabilities. Within this color combination, there is an a
biguity of allocating the quarks over the colorless meso
which is absent otherwise. It is not difficult to see that t
naive computations based on the amplitude prescription
~3! amount to counting the two possibilities independen
which is not justifieda priori. Moreover, it is a clear double
counting at least in the simple quark picture. To phras
differently, the bases of the final states used in the na
color rules such as Eq.~3!, are nonorthogonal beyond th
leading order inNc .

With the complicated confinement dynamics, we can
know beforehand what are the actual decay amplitudes to
particular hadronic states in this case—and, additionally,
simple two-meson picture of the final state must be, in g
eral, extended when going beyond the leading order inNc .
However, it seems obvious that the naive prescription h
little chance to be true in a complete theory if it violat
general requirements even in the simplest case of almost
constituents.

This, incidentally, is an illustration of the fact that th
naive factorization of decay amplitudesmustbe violated at
some point at the 1/Nc level—either in the corrections to th
color-allowed amplitudes, or at the leading level for colo
suppressed amplitudes, or in both. A dedicated study of
above inconsistency was undertaken in the framework of
nonrelativistic quark model in Ref.@30#. It was found that
the problem is indeed resolved there in this way, with
concrete dynamical mechanism dominating the modifica
of the 1/Nc-suppressed amplitudes depending on details
the model.

In Sec. IV, considering the spectator-dependent pre
ymptotic correction we formulated the problem of calcul
ing the interference width in the way that allowed us to av
the complications associated with the analysis of
Nc-subleading transition amplitudes, and to study it in t
theoretically clean environment. Incorporating the specta
quark via PI made interference an effect appearing in
same order inNc as the noninterference widths. Then t
hadron-based computation could be performed consiste
and the OPE prediction was readily reproduced.
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APPENDIX A: ’t HOOFT WAVE FUNCTIONS IN THE
SEMICLASSICAL REGIME AND THE

UV DIVERGENCES

Here we outline a more accurate determination of
scaling withL of the smearing parameterD in Eqs. ~41!–
~44!. At Mn@b, mu,d the solutions of the ’t Hooft equation
are nearly free and approach the massless solutions@18,31#

wn~x!.& cospnx, Mn
2'p2b2n. ~A1!

The first expression holds outside the end-point domainx
→0 andx→1 bounded by the ‘‘classical turning points’’

x,12x.
m2,b2

Mn
2 . ~A2!

We again imply the simplified case of equal quark mas
mu5md5m. The semiclassical wave functions~A1! deter-
mine the ultraviolet-singular part of the Green functions.

We shall adopt the exponential regularization of the sum
Then the Green functionG(x,y;L) in Eq. ~41! has a mean-
ing of the Euclidean Green function for the ’t Hooft ligh
cone Hamiltonian, with 1/L2 corresponding to the Euclidea
~imaginary! light-cone ‘‘time’’ ix1 , andx,y being ‘‘coordi-
nates’’ in the space of the light-cone momentum fractio
Formally, the problem is equivalent to usual on
dimensional quantum mechanics on the interval@0,1# with
Hamiltonian given by the right-hand side~RHS! of Eq. ~19!.
The first~local! terms play a role of the potential whereas t
integral term includes the counterpart of the kinetic ene
which is now approximatelypuku for the ‘‘momentum’’ k
much larger thanb.

The regularized summation is straightforward and yie
literally for G(x,y;L)

1

4

sinhe

sinh2~e/2!1sin2~p/2!~x2y!

1
1

4

sinhe

sinh2~e/2!1sin2~p/2!~x1y!
, e[

p2b2

L2 .

~A3!

Since the small-n eigenfunctions can be quite different from
Eq. ~A1!, there can be,a priori, additional regular~e-
independent! terms in Eq.~A3!. However, since ate→0 the
limit of G must yieldd function, they are absent.
4-18
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The first term in Eq.~A3! clearly yieldsd(x2y) at e
→0:

1

4

sinhe

sinh2~e/2!1sin2~p/2!~x2y!
'

e

e21p2~x2y!2 ,

~A4!

with the widthD at finite e amounting to

D5
e

p
5

pb2

L2 . ~A5!

The second term in Eq.~A3! seems to appear when bothx
and y are small,x,y&e or 12x,12y&e. In this domain,
however, wave functionswn(x) with n&L2 are different
~suppressed!, and in reality this term must be discarded.
practice the domain of such smallx must be treated sepa
rately, which is illustrated below. Therefore, we adopt

G~x,y;L!.
1

4

sinhe

sinh2~e/2!1sin2~p/2!~x2y!
at

1

L2 &x,y&12
1

L2 . ~A6!

To address the end-point domainsx or (12x);1/L2 we
need to account for the corresponding behavior ofwn(x) in
the ‘‘classically forbidden’’ domain, using the language
ordinary quantum mechanics. In these domains the w
functions are suppressed:

wn~x!;constH S x

xt
D g1

x&xt!1,

S 12x

12xt
D g2

12x&12xt!1,

xt'
m2,b2

L2 .

~A7!

Now we consider the regularized sum rule Eq.~43!:

I 1~L2!5E
0

`

q2dq2e2q2/L2
r~q2!

5E
0

1

dx dyS m2

x
1

m2

12xDG~x,y;L!. ~A8!

Using G(x,y;L) in the form Eq.~A6! we get

I 1~L2!52m2F ln
L2

pb2 1constG , ~A9!

where the factor 2 reflects the contributions of bothx→0
andx→1. The logarithm is saturated at

ux2yu&
b2

L2 ,
b2

L2 !x!1 ~A10!

~and likewise withx→12x, y→12y). In this domain the
expression forG(x,y;L) is legitimate.
11403
ve

Now we show directly that the domainx&b2/L2 yields
only a constant, that is, a nonsingular contribution atL
→`. First, we note that Eq.~38! ensures an upper bound o
cn , const/Mn

2 . More precisely,

ucnu<const
m2

g

1

Mn
2 }

1

n
. ~A11!

This, of course, follows also from Eqs.~44!, ~45!.11 Then we
can bound from above the small-x contribution as

U E
x&1/L2

dx dyS m2

x
1

m2

12xDG~x,y;L!U
<const

m2

g (
n51

`
e2p2b2n/L2

n E
0

L22

dx
m2

x
~p2nx!g

<const
m4

g2 (
n51

`
e2p2b2n/L2

n S n

L2D g

.const
m4

g3b2 .

~A12!

Here we assumed the cutoff in the integral overx at ;1/L2,
up to an arbitrary constant. The dimensionful factor can
eitherb2 or m2, whichever is larger and determines the p
sition of the ‘‘classical turning’’ point. The key property i
the convergence of both the integral over smallx and the
sum overn due to the suppression ofwn(x) in the ‘‘classi-
cally forbidden’’ domain. Thus, the translation rule for th
cutoff energy into the regularization Eq.~42! in the integral
over x,y is obtained directly from the ’t Hooft equation.

Using the similar technique, it is easy to establish t
asymptotic duality directly for the pseudoscalar current c
relator

P
P
~q2!5Nc(

n

dn
2

Mn
22q2 ,

1

p
Im P

P
~q2!5Nc(

n
dn

2d~Mn
22q2!, ~A13!

where

dn5Ap

Nc
^nud̄ig5uu0&5

1

2 E0

1

dxS md

x
1

mu

12xDwn~x!

5H 1

mu1md
E

0

1

dxS md
2

x
1

mu
2

12xDwn~x! ~even n!,

0 ~odd n!.

~A14!

~The first form is a direct representation, whereas the sec
expresses the pseudoscalar density as the divergence o
axial current. A certain parity relation@19# ascending to
’t Hooft ensures they both hold.! To find the asymptotics of
dn we consider the logarithmically divergent sum

11While the exact coefficient in Eqs.~43!–~45! is a subtle thing
addressed here, the power ofn itself is simple enough.
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E dq2
r

P
~q2!

q2 }(
n

dn
2

Mn
2

5(
n

1

2~mu1md!Mn
2 E

0

1

dxS md

x
1

mu

12xD
3wn~x!E

0

1

dyS md
2

y
1

mu
2

12yDwn~y!.

~A15!

Equation~38! allows one to rewrite it as

(
n

dn
2

Mn
2 5

1

2~mu1md! (n
E

0

1

dxS md

x
1

mu

12xD
3wn~x!E

0

1

dy wn~y!, ~A16!

which returns us to Eq.~39!.

APPENDIX B: 1/mQ EXPANSION OF THE HEAVY
QUARK WEAK DECAY AMPLITUDES

As discussed in Sec. V, the perturbative corrections to
weak decay vertex appear to orderb2. In the light-front for-
malism they vanish at the kinematic pointq250 @11#, since
it can be realized as the configuration withq250, for which
no physical states in thet channel is possible. The loop co
rections proportional to the dimensionful couplingb2 can be,
therefore, inversely proportional tomQ

2 or Erel
2 ;(mQ2mq

2Aq2)2. Since atmQ2mq2Aq2;b the process is ‘‘soft,’’
we do not consider here this domain, and do not distingu
between the scales ofmQ and Erel . It is important that no
dynamic gluon degrees of freedom exist inD52. Therefore,
in the ’t Hooft model vertex corrections separately are p
turbatively infrared finite in physical gauges. This was e
plicitly illustrated in Ref.@11#.

As a result, the actual transition amplitudes^kuJuHQ& up
to termsb2/mQ

2 must be given by only some overlaps of th
initial and final state wave functions, at arbitrary@though not
too close to (mQ2mq)2# values ofq2. We assume that the
initial stateHQ is either a ground state or has a finite~not
11403
e

h

-
-

scaling withmQ) excitation number. The final statek can be
arbitrary. We will show that the explicit expressions for th
transition amplitudes in the ’t Hooft model exhibit th
parton-deduced property.

Let us consider, for example, the representation use
Ref. @27#, although we put it in a slightly modified form
similar to that of Refs.@32,22#. One introduces the kinemati
variablev which depends onq2 and the final state meso
mass:

v5
1

2 F11
q22Mk

2

MHQ

2 2A122
q21Mk

2

MHQ

2 1S q22Mk
2

MHQ

2 D 2G ,

~B1!

which, in the light-cone formalism has a meaning of t
fraction of the momentum seen in the infinite-momentu
frame carried by the particle with massAq2 in the two body
decay ofB meson, if another particle has massMk . This
fraction has two possible values corresponding to the
possible directions of mesonk in the rest frame. We chos
the above branch to haveq2→0 asq2→0, as in Ref.@11#.
The light-cone fractionv has a very simple meaning in th
rest frame as well:

~12v!MHQ
5~ upW ku1Ek!c.m., vMHQ

5~2uqW u1q0!c.m..
~B2!

Two v-dependentHQD (k) overlaps are then considered

Ck~v!52
12v

v E
0

1

dy wk~y!wHQ
@12~12v!~12y!#,

Dk~v!52vE
0

1

dy
wk~y!

y

wHQ
@12~12v!~12y!#

12~12v!~12y!
~B3!

which correspond to the effects unrelated to vertex corr
tions.

Additionally, in the t channel of the decay process on
can have various bound states ofBc mesons; we reserve
index l for them, and their masses will be denotedm l . For
each t-channel resonance there is anv-dependent triple-
meson~‘‘ HQBc

( l )D (k)’’ ! overlap
Flk~v!5v~12v!E
0

1

dxE
0

1

dy
w l

Bc~x!wk~y!

@v~12x!1~12v!y#2 $wHQ
~vx!2wHQ

@12~12v!~12y!#%. ~B4!

With these notations one has for the transition amplitudes

emnqm^kuq̄gnQuHQ~P!&5
b2Ap

ANc
(

l

q21~21! lm l
2

q22m l
2 f lFlk~v!2q2Ck~v!1mQmqDk~v!, ~B5!

qm^kuq̄gmQuHQ~P!&5
b2Ap

ANc
(

l

2q21~21! lm l
2

q22m l
2 f lFlk~v!1q2Ck~v!1mQmqDk~v!. ~B6!
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Here, for convenience, we wrote the invariant combinatio
of the amplitudes instead of the two Lorentz components
the current separately. For example, the decay amplitudB
→D (k)1p (n) in the considered case of vectorlike intera
tions takes the form

Mkn5
G

A2p
cnF(

l

2Pnq21~21! lm l
2

q22m l
2 clFlk~v!

1Pnq2Ck~v!1mQmqDk~v!G , ~B7!

wherePn is the parity (21)n11 of the p (n) state. Here and
below throughout this appendix we suppressed the factorNc
and put dimensionfulb51. It is easy to see that atq250
(v→0) only the term;Ck survives and this expression in
deed reduces to Eqs.~56!, ~62!.

We shall show that the first term in this relation associa
with the dynamics in thet channel, is 1/mQ

2 -suppressed com
pared to the terms given by overlapsC and D. This imple-
ments the approximate ‘‘on-shell’’ condition for the hea
quarkQ; in this case it can be accomplished employing
1/mQ expansion of the initial-state wave functionwHQ

.

1. Nonrelativistic expansion in the ’t Hooft equation

To analyze the heavy quark system, it is advantageou
introduce the nonrelativistic variables:12

Mn5mQ1en , t5~12x!mQ , and

Cn~ t !5
1

AmQ

wnS 12
t

mQ
D , ~B8!

in terms of which the equation takes the form

S en1
en

211

2mQ
DCn~ t !5S msp

2 21

2t
1

t

2

121/mQ
2

12t/mQ
DCn~ t !

2
1

2 E0

mQ
ds

Cn~s!

~ t2s!2 . ~B9!

The asymptotics ofCn(t) at 1!t!mQ is given by

Cn~ t !.
Fn

t3 with Fn5ApmQf n5E
0

mQ
dt Cn~ t !.

~B10!

One can extend the bound-state problem Eq.~B9! from
@0,mQ# to the whole interval@0,̀ ! if the exact linear poten-
tial term t/2@(121/mQ

2 )/(12t/mQ)# is replaced by its for-
mal expansion int/mQ . This is justified literally only up to
1/mQ

4 terms (1/mQ
3 in the wave function!, when the ultravio-

let divergences of the static heavy quark expansion first s

12This standard for the infinite momentum frame procedure in
context of the ’t Hooft model was first considered in Refs.@23, 22#.
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up. Further terms can be obtained using the explicit largt
asymptotics in Eq.~B10! and the end-point behavior o
Cn(t) at t→mQ . For example, the improved nonrelativist
equation takes the form

S en1
en

211

2mQ
DCn~ t !5

msp
2 21

2t
Cn~ t !1

1

2 F S 12
1

mQ
2 D t

1S 12
1

mQ
2 D t2

mQ
1

t3

mQ
2 GCn~ t !

2
1

2 E0

`

dsCn~s!
1

~ t2s!2 . ~B11!

Equation~B11! can be viewed as a usual variational proble
for the nonlocal Hamiltonian defined as

^CuHuC8&5E
0

`

dt C~ t !Fmsp
2 21

2t
1

1

2 S 12
1

mQ
2 D t

1S 12
1

mQ
2 D t2

2mQ
1

t3

2mQ
2 GC8~ t !

2
1

2 E0

`

dtE
0

`

ds
C~ t !C8~s!

~s2t !2 . ~B12!

For example, the analogue of the nonrelativistic expans
for the heavy hadron mass takes the form

MHQ
2mQ5^t&2

1

2mQ
1

3^t2&2^t&2

2mQ

1
4^t3&23^t&^t2&1^t&3

2mQ
2 2

^t&
2mQ

2 1OS 1

mQ
3 D ,

~B13!

with the averagê¯& defined in the standard way as th
integral overt with the weightuC(t)u2. Here all averages are
calculated with the finite-mQ C(t). To exclude the Coulomb
interaction term we used certain relations which are deri
in the way analogous to the virial theorem in quantum m
chanics. Namely, for any eigenfunctionCn(t) we can con-
sider the average ofH over the trial functionAlCn(lt), and
require a minimum atl51 ~a similar trick was used in Ref
@23# for the case of infinitemQ). In this way one obtains

~msp
2 21!K 1

t L 2^V&2S 12
1

mQ
2 D ^t&22

^t2&
mQ

23
^t3&
mQ

2

5OS 1

mQ
3 D ~B14!

while
e
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en1
en

211

2mQ
5

1

2 S ~msp
2 21!K 1

t L 2^V& D1
1

2 S 12
1

mQ
2 D ^t&

1
1

2

^t2&
mQ

1
1

2

^t3&
mQ

2 1OS 1

mQ
3 D , ~B15!

where^V& denotes the expectation value of the integral te
in the equation.

The bound-state–independent term21/2mQ in Eq. ~B13!
deserves a special note: it represents the short-distance r
malization of the bare mass we used, originating from m
menta;mQ . There is no infrared part of the mass: it ente
at the scale much larger thanLQCD. The effect of smaller
momenta is described by the nonperturbative ’t Hooft wa
function rather than infrared-divergent perturbative diagra

Let us note that the operatort/2 is associated with the
breaking of scale invariance of the static ’t Hooft equati
@i.e., C(lt) is the solution of the equation with the linea
term l2t/2#. In other words, the commutation relation hol
@ t(d/dt),H`#5t2H` , where H` is the static ’t Hooft
h
-

th
f
er

n
c-

y

e

na
-
y
e,
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Hamiltonian, Eq.~B12! with mQ5`. This fact can be used
to obtain the variation of̂t& when including perturbations, in
the analogy to the case of QCD~Ref. @15#, Sec. II!:

d^t&52 l ^dHl&

for the perturbationdHl which is a homogeneous rank-l
functional of t. This follows from the usual operator rela
tions such aŝiT$@H,A#,B%&5^@A,B#&. For instance, to or-
der 1/mQ one haŝ t&5^t&`2^t2&/mQ , so that in Eq.~B13!

MHQ
2mQ.^t&`1^t22 t̄ 2&/(2mQ), as it should be.

2. Nonrelativistic expansion of the decay amplitude

In the 1/mQ expansion of theHQ→D (k) amplitude we
pass from wHQ

(x) to the nonrelativistic wave function

CHQ
(t) and, in the case of the triple verticesFlk , rewrite

w l
Bc(x) via the correspondingC l

Bc(u). The nonrelativistic
approximation forc quark is not employed here, howeve
Then
Ck~v!52
1

vAmQ
E

0

(12v)mQ
dt CHQ

~ t !wkS 12
t

~12v!mQ
D , ~B16!

Dm~v!52
v

~12v!AmQ
E

0

(12v)mQ dt

12t/mQ
CHQ

~ t !
wk„12t/(12v…mQ)

12t/~12v!mQ
, ~B17!

and, for the triple vertex,

Flk~v!5v~12v!E
0

mQ
duE

0

1

dy
C l

Bc~u!wk~y!

@ ~12v!y1vu/mQ#2 $CHQ
@vu1~12v!mQ#2CHQ

@~12v!~12y!mQ#%. ~B18!
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At arbitraryq2 we havev;1; nevertheless, at large enoug
energy release (12v)mQ@1 still holds. This parameter de
fines the ‘‘hardness’’ and is used in the 1/mQ expansion.

The nonrelativistic expansion amounts to assuming
the support of theC functions is limited to a finite interval o
the argument of order 1, and extending the integration ovt
and u to infinity. With the fiducial domain of integration
t,u;1, it is readily seen thatCk andDk scale asmQ

21/2 and
lead to the properlymQ-behaved transition amplitudes. O
the other hand,Flk;1/mQ and are accompanied by the fa
tors cl;mQ

21/2. The sum overl is effectively cut off above
l;mQ wherem l exceedsmQ . Altogether, the terms withFlk

yield corrections to the decay amplitudes suppressed b
least 1/mQ

2 .
The leading heavy-quark transition amplitudes govern

by the overlap factorsC and D, Eqs. ~B16!, ~B17!, exhibit
explicitly the proper functional dependence on the combi
tion of mQ andq2: the inner product of wave functions de
pends only on (12v)mQ whose value just fixes the energ
~or momentum! of the final state hadron in the rest fram
at

at

d

-

Eq. ~B2!. In reality, this property of the leading-mQ transi-
tion amplitudes is more general and is not related to
smallness of the perturbative corrections. It holds at sm
energy release as well, where the vertex corrections are
power suppressed; this is addressed below at the end of
pendix B.

3. ‘‘Semileptonic’’ width Gsl„q
2
… at arbitrary q2 with 1/mQ

accuracy

Here we illustrate how the parton expression forGsl(q
2)

is reproduced at nonzeroq2. We assume that the width av
eraged over an interval ofmQ or q2 is considered, so that th
threshold factors become nonsingular. The analysis dif
from the case ofq250 anatomized in Ref.@11# only in tech-
nical details. In particular, the width is still saturated by t
states withMk

2&(12q2/mQ
2 )mQ , and the summation ove

the final states can be extended to infinity. The decay am
tudes are given by the wave function overlaps to this ac
racy. Let us assume for simplicity thatmc!mQ . Then only
the term;Ck survives:
4-22



G~q2!5
G2

(
1

2

q4

2 E (12vk)mQ
dtE (12vk)mQ

dsCH ~ t !CH ~s!wkS 12
t DwkS 12

s D .

e
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4p k 2MHQ
upW ku vkmQ 0 0 Q Q ~12vk!mQ ~12vk!mQ

~B19!

The leading term in the expansion of the width emerges if we neglectMk compared to (12v)mQ . Thenvk5q2/MHQ

2 and

2upW ku5(12vk)MHQ
arek independent, and we get up to the power corrections

G~q2!5
G2

4p

1

12v E
0

`

dt dsCHQ
~ t !CHQ

~s!dS t2s

~12v!mQ
D5

G2mQ

4p F11OS 1

mQ
D G . ~B20!

Account for the 1/mQ effects requires expandingupW ku andvk in Mk
2/(mQ

2 2q2), and leads to the ‘‘second’’ sum rule for th
average ofMk

2 @11#. Here is how it works.
The partial widthGk(q

2) to 1/mQ accuracy takes the form

Gk~q2!5
G2

4p

MHQ

2

mQ~12v0! H ~12v0!mQ1
Mk

2

mQ
2 F2

1

~12v0!
E dt dsCHQ

~ t !CHQ
~s!wkS 12

t

~12v0!mQ
DwkS 12

s

~12v0!mQ
D

1
2v0

~12v0!2 E dt ds tCHQ
8 ~ t !CHQ

~s!wkS 12
t

~12v0!mQ
DwkS 12

s

~12v0!mQ
D G J , ~B21!

wherev05q2/MHQ

2 .

Using the relation

(
k

Mk
2wk~x!wk~y!5S mc

221

x
1

msp
2 21

12x D d~x2y!2
1

~x2y!2 ~B22!

and Eq.~B11! to the leading order in 1/mQ , we obtain

(
k

Mk
2E dsCHQ

~s!wkS 12
t

~12v0!mQ
DwkS 12

s

~12v0!mQ
D5~12v0!2mQ

2 ~2e2t !CHQ
~ t ! ~B23!

(e5MHQ
2mQ). Hence, we arrive at

G~q2!5
G2

4p
MHQH 11

1

mQ
F E dt~ t22e!CHQ

2 ~ t !1
2v0

12v0
E dt t~2e2t !CHQ

8 ~ t !CHQ
~ t !G1OS 1

mQ
2 D J . ~B24!

To evaluate the last integral we note that for anyf (t)

E dt CHQ
8 ~ t !CHQ

~ t ! f ~ t !5
1

2 E dtF d

dt
@CHQ

2 ~ t ! f ~ t !#2CHQ

2 ~ t ! f 8~ t !G52
1

2
^ f 8~ t !&. ~B25!

Therefore, Eq.~B24! takes the form

G~q2!5
G2MHQ

4p H 12
2e2^t&

mQ
1

4v0

12v0

^t&2e

mQ
1OS 1

mQ
2 D J 5

G2mQ

4p H 11OS 1

mQ
2 D J , ~B26!
o

nd
ot

.
ort-

in
where we recalled thate2^t&5O(1/mQ).
The next, 1/mQ

2 corrections, on the other hand, are n
only limited to the term2mp

2 /2mQ
2 , but include also those

coming from the perturbative vertex renormalization a
from the sensitivity of the decay widthQ→q1f with mf

2

Þ0 to the short-distance quark mass renormalizationm2

→m22b2.
11403
t
4. Decays at maximalq2

At q2 close to the energy release, (mQ2mq)22q2

&bmQ @or at (mQ2mq)&b# the decay processes are n
hard but proceed over the time intervals*1/b. As such, they
in general are sensitive to thet-channel evolution as well
OPE does not allow to compute these widths in the sh
distance expansion directly even to the leading order
4-23
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1/mQ . However, it relates the overall width associated w
this domain ofq2 ~i.e., integrated overq2) to the expectation
value of the local four-fermion operator:

Gend point.G2r̄~mQ
2 !~PmPn2dmnMHQ

2 !

3
1

2MHQ

^HQ~P!uQ̄gmqq̄gnQuHQ~P!& ~B27!

~this fact was proven in Ref.@24# although was used to ca
culate certain preasymptotic corrections to the heavy qu
widths since the original papers@9#!. Complicated strong in-
teraction dynamics shows up here as a nontrivial expecta
value of this operator~for light q; it is perturbatively calcu-
lable whenq is heavy!. In the ’t Hooft model it essentially
depends on the details of the lowestt-channel states. As ha
been already discussed a few times, a smeared decay wid
assumed here, which is reflected in Eq.~B27!: it incorporates
the spectral densityr̄(mQ

2 ) averaged over an interval. With
continuousr(q2) there would be no resonance structure
G(mQ).

Referring to paper@24# for the formal derivation of Eq.
~B27!, here we illustrate it schematically in a transpare
way. Let us consider a particular mesonk in the final state.
The corresponding partial decay probability~in the rest
frame! is given by

Gk~q2!5
G2

2

2

8MHQ

2 upW k~q2!u
1

p
r~q2!~qmqn2dmnq2!

3^HQ~P!uQ̄gmq~0!uk~pW k!&

3^k~pW k!uq̄gnQ~0!uHQ~P!&. ~B28!

Integrating over some interval ofq2 we can pass to the vari
able upW ku according to

q05
MHQ

2 1q22Mk
2

2MHQ

, dq052dEk EkdEk5upW kudupW ku

and have

E dq2 Gk~q2!5G2E 2dupW ku
2p 2Ek

r@q2~ upW ku!#@~P2pk!m

3~P2pk!n2dmn~P2pk!
2#

3
1

2MHQ

^HQ~P!uQ̄gmq~0!uk~pW k!&

3^k~pW k!uq̄gnQ~0!uHQ~P!&. ~B29!

The factor of 2 above corresponds to two possible directi
of pW k and is the unit ‘‘sphere’’ surface area in one spa
dimension. If the smeared width is considered, the co
sponding smeared spectral densityr̄(q2) replacesr(q2) in
the above equation, since both the decay amplitudes
phase space depend on the combinationmQ2Aq2 ~for sim-
plicity we imply thatq2@mq

2).
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With the smoothr̄(q2), we can neglectpk compared to
MHQ

in Eq. ~B29! and have, up to 1/mQ corrections,

E dq2 Gk~q2!5
G2

2MHQ

mQ
2 r̄~mQ

2 !~vmvn2dmn!

3E dpW k

2p 2Ek
^HQ~P!uQ̄gmqukpW&

3^kpW uq̄gnQuHQ~P!&. ~B30!

The corrections to this expression appear due to the de
dence of r̄(q2) on q2 near q2.mQ

2 and are power-
suppressed.

If we formally summed over the final statesk, the RHS of
the above equation would become

G2

2MHQ

mQ
2 r̄~mQ

2 !~vmvn2dmn!(
k
E dpW k

2p 2Ek

3^HQ~P!uQ̄gmq~0!ukpW&^kpW uq̄gnQ~0!uHQ~P!&

5
G2

2
mQ

2 r̄~mQ
2 !~vmvn2dmn!

1

2MHQ

3^HQ~P!u~Q̄gmq!~ q̄gnQ!~0!uHQ~P!&, ~B31!

which shows the representation of the matrix element a
sum over intermediate states. The integration overq2 re-
places dq2/(2pMHQ

upW ku) in the partial decay width by

dpW k /(2p2Ek) which is just the quantum mechanical sum
mation over the intermediate states.

Of course, this correspondence is not accidental forD
52. Indeed, the general two-body phase space is given

F2~MHQ

2 ,q2,Mk
2!

5E dDl

~2p!D E dVpWdupW uD21dp0

~2p!D ~2p!2

3d1~ l 22q2!d1~p22Mk
2!~2p!DdD~P2p2 l !.

~B32!

To obtain the decay width we multiply it by the transitio
amplitudes ^HQuQ̄gmquk&, ^kuq̄gnQuHQ&, by
(1/p)Im Pmn(q) and by (2p)D/(2MHQ

). Integrating over

q2, we get

E dq2 Gk~q2!5
G2

2

1

2MHQ

E dq2 F2~MHQ

2 ,q2,Mk
2!

3^HQuQ̄gmqukpW&^kpW uq̄gnQuHQ&

5G2E dD21pW k

~2p!D212Ek

1

p
Im Pmn~P2pk!

3
1

2MHQ

^HQuQ̄gmqukpW&^kpW uq̄gnQuHQ&.

~B33!
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FIG. 8. ‘‘s channel’’ withnQ50 ~a! and ‘‘u channel’’ withnQ52 ~b! intermediate states saturating the four-quark expectation value
full QCD. Both types are described by ‘‘soft’’ transition amplitudes and contribute simultaneously to the forwardO(GF

2) transition
amplitude near maximalq2. Only the targeted ‘‘s-channel’’ states appear in the nonrelativistic effective theory. The two points with w
currents are shown separated in space (xWÞ0) for clarity.
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With Im Pmn(P2pk) approximated by its~smeared! value at
q5mQv, this is the contribution of the given statek with
massMk ~whether meson, baryon, or a multiparticle state! to
the expectation value of the local four-quark opera

^HQ(P)u(Q̄gmq)(q̄gnQ)uHQ(P)& @24#.
Of course, in reality we do not want to extend the su

mation to all states with arbitrary large energies, whic
would correspond to integrating overq2 down toq252`.
The large-q2 domain is cut at someq2&(mQ2D)2.mQ

2

22mQD, with D*LQCD. This means that the heavy qua
expectation value in Eq.~B27! corresponds to the normaliza
tion pointm5D. We note that the normalization point ente
as the cutoff over theenergyof the intermediate states, th
common case for the heavy flavor systems~see Refs.@4,29#,
and references therein!.

It is worth reiterating an important point regarding th
end-point domain: the matrix elements in Eqs.~B27!, ~B31!,
~B33! are those in the effective theory rather than in f
QCD—even if there were no high-momentum gluons in
latter. The representation of the four-fermion expectat
values

^HQ~P!u~Q̄gmq!~ q̄gnQ!uHQ~P!&

5(
k
E dD21pW k

~2p!D212Ek
^HQuQ̄gmqukpW&^kpW uq̄gnQuHQ&

~B34!

in the full theory includes not only the intermediate sta
without heavy quarkQ, Fig. 8~a!, but also those containing
the pair ofQ and Q̄, Fig. 8~b!. The latter are not related t
the ~perturbative! heavy quark loops and appear even in t
free theory—for example, the stateHQ(P)1(Q̄1q) with Q̄
andq having small spacelike momenta&D totaling topW k . It
can be simplyHQ(P)1H̃Q(pW ). These states appear since t
Lorentz-covariant currentsQ̄Gq, together with operators
creatingQ contain also operators annihilating antiquarkQ̄,
which is not the case in the nonrelativistic field theory. Su
amplitudes are shaped by the time scales;1/D and are as
nonperturbative as transitions into the usual light hadro
Imposing the cut on the virtuality itself does not help
eliminate such spurious states with ‘‘valence’’Q. In particu-
lar, integrating out the high-momentum modes of quark a
gluon fields, or imposing a cut on the gluon momentum~vir-
11403
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tuality! in the full theory—while generating an effective low
energy theory—would not yield relevant operators, at leas
this context.

The extra contributions of Fig. 8~b! are counterpart of the
intermediate states in the transition operator which are ne
on shell for the reverse ordered product of curre
(q̄gnQ)(Q̄gmq) in their time-ordered product

T̂mn~q!5E dDxe2 iqxiT$q̄gnQ~0!Q̄gmq~x!% ~B35!

at x0,0. They are responsible for theu-channel cut of the
Lorentz-covariant forward transition amplitudeTmn in Eq.
~11!. In the kinematicsq2→mQ

2 , q0→mQ the transitions to
both s channel states withnQ5nQ̄50 andu channel states
with nQ5nQ̄51 are equally ‘‘soft’’ and nonperturbative
and cannot be disentangled in the single amplitudeTmn(q).

On the contrary, only the necessary light intermedi
states are present when the proper nonrelativistic effec
theory of heavy quarks is considered, whereQ(x) do not
include antiquark operators, either creation or annihilati
The expectation values determining the corrections to
widths must be understood only in this sense.

We conclude this appendix by noting that the leading-mQ
transition amplitudesHQ→k obey the stated scaling in re
spect tomQ and q2, i.e., for the particular final statek de-
pend on one combination (mQ

2 1Mk
22q2)/mQ having the

meaning of the rest-frame energyEk :

1

A2mQ

^kuq̄GQuHQ&q2,mQ
.

1

A2mQ8

^kuq̄GQ8uHQ8&q82,m
Q8

~B36!

if

mQ
2 1Mk

22q2

mQ
5

mQ8
21Mk

22q82

mQ8
.

This functional dependence ensures, for example, that
four-quark expectation values discussed above have a fi
mQ-independent limit asmQ→`.

In terms of the light-cone parameters Eq.~B36! says that
the form factors, up to certain powers ofAmQ must be func-
tions of (12v)mQ , see relation~B2!. The explicit expres-
sions~B3!–~B7! do exhibit this property, although in slightly
different ways in different kinematic domains. To locate
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we once again can be guided by the duality between
various pieces in the hadronic expressions based on
’t Hooft equation, and the contributions coming from th
corresponding Feynman diagrams. This duality exists in
physical gauge and is transparent when the light-cone
malism is used. Additionally, the scaling behavior of vario
perturbative effects can be anticipated beforehand if gen
OPE facts are considered. For example, the high infra
stability of the inclusive widths, together with the fact that
gluon degrees of freedom~and, therefore, no bremsstra
lung! exist in D52, leads to the finiteness of the verte
corrections and allows us to estimate their magnitude.

It has been mentioned already that Eq.~B36! holds at
large energyEk@b: then the amplitudes are given only b
the simple overlapsCk andDk . The integrals in Eqs.~B16!
and ~B17! manifestly depend only on (12v)mQ if CHQ

(t)

are nonzero only fort&b.
A different situation takes place at maximalq2, for ex-

ample, for light final state quarks. The triple-overlap ter
proportional toFlk are then of the same order. However,
this kinematics Flk show the same dependence on
2v)mQ . Indeed, in this casev→1, and they take the form

Flk~v!.2mQ
2 ~12v!E

0

`

duE
0

1

dy
C l

Bc~u!wk~y!

@mQ~12v!y1u#2

3CHQ
@mQ~12v!~12y!#. ~B37!

The position of the excited states in thet channel is also
driven by the nonrelativistic expressionm l.mQ1 ẽ l with
mQ-independentẽ l . Therefore, the pole factors in front o
Flk are simply proportional to 1/mQ :

q2,m l
2

q22m l
2 .

mQ

22~D1 ẽ l !
for q25~mQ2D!2 with

D!mQ . ~B38!

On the other hand,D differs from (12v)mQ by just a
(Mk-dependent! constant,

Ek.MHQ
2mQ1D5e01D,

Ek1AEk
22Mk

25~12v!mQ .

Thus, together with the factorscl}mQ
21/2 this term possesse

the required dependence on (12v)mQ and overall power
scaling inmQ .

This reasoning may seem inapplicable when bothQ andq
are heavy quarks, in particular, at smallmQ2mq . The
t-channelBc

( l ) wave functions are then nonrelativistic in r
spect to both quarks, and must be treated accordingly. T
however, is a transition between two heavy quarks, and e
the classic case of the small velocity@7#. As mentioned
above, inD52 the amplitudes are finite even atvW Þ0 and
the perturbative corrections are inversely proportional to
heavy quark mass~but not to powers of 1/q2 which blows up
at the safe zero recoil point!. And indeed, it is easy to find
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thatFlk in Eq. ~B18! are universally suppressed by the ma
scaleEk;(12v)mQ whethermq is small or large. There-
fore, the functional relation Eq.~B36! holds in the ’t Hooft
model for any decay kinematics.

APPENDIX C: THE IW FUNCTION AND THE HEAVY
QUARK DISTRIBUTION FUNCTIONS

The IW functionj is most simply defined as the flavo
diagonal vector form factor

^HQ~p8!uQ̄gmQuHQ~p!&5jS ~pp8!

MHQ

2 D ~p1p8!m

in the large-mQ limit. The expression for it quoted below ca
be obtained using the 1/mQ expansion of the amplitudes i
the previous section, if we employ the nonrelativistic expa
sion of the final state as well. Alternatively, we can use
rectly the simple universal expressions Eq.~56! at q250
relying on the scaling relations~76!–~78! by adjusting the
final-state quark mass:

MHQ8
5zMHQ

with w[~vv8!5
11z2

2z
,

z5w6Aw221. ~C1!

The perturbative corrections are finite and vanish atmQ
→` in two dimensions. In this way we obtain

j~w!5
2

11w1Aw221
E

0

`

dt CHQ
~ t !CHQ

~@w2Aw221#t !

5
2Az

11z E0

`

dt CHQS t

Az
D CHQ

~Azt!. ~C2!

The last expression was used to make representation m
symmetric. HereCHQ

(t) is the solution of the static ’t Hooft
equation

eC~ t !5S msp
2 2b2

2t
1

t

2DC~ t !2
b2

2 E
0

`

dsC~s!
1

~ t2s!2 .

~C3!

Expression~C2! is easily generalized for the case of inelas
transitions:

j inel
kn ~w!5

2Az

11z E0

`

dt CHQ

(k) S t

Az
D CHQ

(n) ~Azt!. ~C4!

This agrees with the expression obtained in Ref.@22#. We
found a direct proof~it will be presented elsewhere! that the
right-hand side of Eq.~C4! does not change~up to a sign! if
z→1/z. This ensures the same result for both solutions foz
in terms ofw, the last of Eqs.~C1!.
4-26
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It is interesting to note that the absolute maximum for
~elastic! IW function which would correspond to the stru
tureless pointlike heavy flavor hadron, is given by just t
factor13

jmax~w!5A 2

11w
5

2Az

11z
. ~C5!

It would be saturated by the light cone wave functionC(t)
;c/At. Indeed, one has

j~z!5S 2Az

11zD
212a

for C~ t !5tae2mt. ~C6!

Of course, such a situation is not realized for any act
hadronic state in the ’t Hooft model. Constructing such
hard-core wave function requires a coherent superpositio
all the excited eigenstates.

Studying the decay distribution for the weak transitio
into light quarks,mc

2!mQLQCD allows one to determine th
light-cone distribution function. In particular, it emerges d
rectly in the decays atq250 as the differential decay prob
ability vs q0 or Mhadr

2 @33#:

1

Gsl~0!

dGsl~0!

dMhadr
2 5

mQ→`

mQ~MHQ
2mQ!

3FS 12
Mhadr

2

mQ~MHQ
2mQ!D ,

q05
MHQ

2 2Mhadr
2

2MHQ

at q250, ~C7!

whereGsl(0) as a function ofMhadr
2 is

(
Mk

2
,Mhadr

2
Gsl

(k)~0!.

Using the leading term in the 1/mQ expansion of the deca
amplitudes, one can check thatF(t) coincides withCHQ

2 (t).

To obtain the distribution overMk
2 , it is again convenient to

use the explicit cutoff dependence of the ultraviol
regularized Green functionG(x,y;L), as it was done in Sec
III. Earlier discussion for the ’t Hooft model can be found
Refs.@20,23#.

13This function is not analytic and rather has a branch point n
w521 ~or q254mQ

2 ). This is just a reflection of the Fermi statis
tics of heavy quarks confined in the bosonic state. This means
it is impossible to construct a heavy pointlike meson from fermio
constituents, with the radius much smaller than the mass. For
constituents this is possible as exemplified by the chiral pion.
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The small-x behavior of the heavy-quark distributio
function for decays into light quarks has, in general, a n
integer power depending on the spectator mass

F~x!}x2gsp,
pgsp

tanpgsp
52

msp
2 2b2

b2 . ~C8!

Just such a behavior was conjectured for the QCD light-c
distribution function in the model suggested in Ref.@34#. In
D54, however, the distribution function itself and the exp
nent 2g, in particular depend on the renormalization poin

APPENDIX D: PERTURBATIVE CORRECTIONS
AND IR REGULARIZATION

The perturbative corrections to the weak decay vertex
plicitly depend not only on the gauge but also on the e
ployed infrared regularization, even atq250 ~see, e.g., Ref.
@11#, Sec. III B!. This subtlety is aggravated by severe infr
red divergences in the individual diagrams inD52, which
appear when unphysical degrees of freedom are introdu
~say, in the covariant gauges!. While OPE—applicable for
inclusive widths—ensures that the widths are rather inse
tive to the infrared contributions, in practical computations
requires carrying out one and the same regularization pro
dure consistently through all stages of computations. A p
ticular infrared regularization, on the one hand, is built in
the ’t Hooft equation in the form of the principal value pr
scription of the Coulomb exchange integral and the s
energy terms. On the other hand, the same infrared regu
ization was employed in establishing the short-distan
nonrenormalization theorem for the weak vertex.

Therefore, it is instructive to obtain the same perturbat
correctionb2/(2mQ

2 ) to the decay width starting with the
usual Feynman graphs in the covariant gauge routinely u
in four dimensions. To this end we independently calcula
the one-loop perturbative corrections to the quark de
width Q→q1f at mf

2 50, with the decay interaction

Lweak52
G

2p
q̄Qf1H.c. ~D1!

In D52 this is a full analogue of the four-fermion~semilep-
tonic! decay with massless leptons for vectorlike weak c
rents.

Since all the individual diagrams are too infrared dive
gent, the computations are simple only in dimensional re
larization. All corrections are nontrivial, including virtua
vertex corrections, mass, and wave function renormaliza
and the ‘‘real’’ gluon emission width. The sum of all contr
butions takes the following form~at mq50) in arbitrary di-
mension:

r

at
c
ht
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It is easy to see that the poles atD52 andD53 all cancel
out ~at D53 heavy quark masses acquire infrared logar
mic divergence as well!. The remaining pole atD54 is
given by the ultraviolet renormalization of the Yukawa co
pling. At D52 the above expression reduces to

dG1-loop5CF

gs
2

4pmQ
2 G tree, ~D3!

which coincides exactly with the result obtained in the lig
front formalism and by the summation of the exclusive ha
ronic widths in the ’t Hooft model.
er
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We note that here one has an instructive example:
perturbative calculation of the decay width is IR safe
itself, and the first-order correction is meant to describe
actual decay width with the 1/mQ

2 accuracy. Higher orders o
the perturbative expansion yield 1/mQ

4 and smaller terms, and
the uncertainties in summing the perturbative series are
ponentially small inmQ . However, this is not the complet
answer already to the order 1/mQ

2 . This illustrates incom-
pleteness of the purely perturbative expansion, even in
the actual nonperturbative effects are not signaled here
generic intrinsic divergences of the perturbative series.
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