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Heavy quark expansion and preasymptotic corrections to decay widths in the 't Hooft model
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We address nonperturbative power corrections to inclusive decay widths of heavy flavor hadrons in the
context of the 't Hooft modeltwo-dimensional QCD alN.— =), with the emphasis on the “spectator-
dependent” effects, i.e., those sensitive to the flavor of the spectator. The summation of exclusive widths is
performed analytically using the 't Hooft equation. We show that thegléxpansion of both the weak
annihilation and Pauli interference widths coincides with the OPE predictions to the computed orders. Viola-
tion of local duality in the inclusive widths is quantified, and the new example is identified where the OPE
prediction and the actual effect are completely saturated by a single final state. The qualitative aspects of quark
hadronization emerging from the analysis in the 't Hooft model are discussed. Certain aspects of the summa-
tion of spectator-independent hadronic weak decay widths are given in more detail, which were not spelled out
previously. We also give some useful details of thend/expansion in the 't Hooft model.
[S0556-282(199)02121-9

PACS numbeps): 12.38.Aw, 12.39.Hg, 13.35.Dx, 23.70;

I. INTRODUCTION quark massemg(u) [8]. These are shielded against uncon-
trollable corrections from the infrared domain which would
The decays of heavy flavor hadrohi, are shaped by otherwise bring in uncertaintymg/mg~ A gep/Mg .

nonperturbative strong interaction dynamics which, at first The effects sensing the spectator flaper se emerge at
sight, completely obscures most of the properties of the unthe level 1y‘n% [9,10,5. They are conventionally called weak
derlying weak interactions self-manifest at the quark levelannihilation(WA) in mesons, weak scatterirfgvS) in bary-
Suffice it to say that the actual hadrons, rather than quarksns, and Pauli interferend®l) in both systems. Their mag-
are observed in the final state. The actual dynamics of comitudes are given by the expectation values of local four-
finement in QCD to a large extent remains mysterious. Nevguark operators.
ertheless, significant progress has been achieved in describ- For practical applications we should keep the following in
ing heavy flavor decays applying the formalism based ommind (for a recent dedicated discussion, see Réfs,12, 4):
Wilson’s operator product expansi¢@PE) [1,2]. In particu-  Good control over the perturbative expansion must be estab-
lar, it became possible to quantify the effects of the confinindished to address power-suppressed effects; the consistent
domain on the inclusive decay rates. This theory is in thewilsonian OPE requires introducing the separation of

mature stage nosee Refs[3,4], and references thergin  “hard” and “soft” scales, with the borderlinex serving as
Among the general statements derived for the heavyhe normalization point in the effective theory; one has to

quark decays, we mention the following. allow, in principle, for short-distancésmall-coupling re-
The absence ok ocp/Mg corrections to all types of fully  gime) effects that are not directly expandable in the powers

inclusive decay width§5,6].1 of the strong coupling; account must be taken of the fact that

The leading nonperturbative corrections arise in ordethe OPE power series are only asympt¢ti], and recon-
1/mé and are given by the expectation valyes, u2 of the  structing from them the actual Minkowskian observable,
two heavy quark operators, kinetic and chromomagneticgenerally speaking, potentially leaves out the oscillating
While the first effect is universal amounting to the correction(sign-alternatingcontributions suppressed, in a certain inter-
—p2/2mf, the Wilson coefficient for the second one de-Vval of energies, by only a power of the high momentum
pends on the considered process. Both, however, are insepcale. This is compounded by the fact that in practice one
sitive to the flavor of the spectatsy (“flavor-independent”  can typically determine only the first few terms in the power
correction$ [5,6]. expansion.

The widths are determined by the short-distance running The last item in the list is behind the phenomenon of

The OPE for the inclusive widths, actually, aspriori governed ?In the context of the heavy quark expansion, local operators have
by the energy release rather than literatfy [7]. For simplicity, we ~ & more narrow meaning denoting the generic operator of the form
do not distinguish between them parametrically unless it becomeQOQ, with O being a local operator involving only light degrees of
essential. freedom.
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violation of local parton-hadron duality; in many cases it isronic contributions already in the simplest quark picture
among the primary factors potentially limiting the accuracywhere quark allocation over the final state hadrons is unam-
of the theoretical expansion. In the actual QCD these technbiguous(such a description is expected to holdNgt— o).
cal complications are often interrelated. Therefore, it is in-Let us consider, for example, the free parton decay diagram
structive to investigate the OPE in a simplified setting whereFig. 1(a). Theud pair is in a colorless state and typically has
these elements can be disentangled. As explained in Rek large momentung®~mj flowing through it. It is then
[11], this is achieved in QCD formulated intIl dimensions. naturally dual to the contributions from the hadronic reso-
Additionally, employing the limitN,— one arrives at the nances in the/—A channel(in particular when integrated
exactly solvable 't Hooft model where all the features can beover g?), much in the same way as @ e~ annihilation or
traced explicitly. It is important that the 't Hooft model hadronicr decays. The quark together with the spectator
maintains the crucial feature of QCD—quark confinement—antiquark produces another string of hadronic excitation.
which is often believed to be tightly related to the violation Furthermore, the interaction between these two hadronic
of local duality. Yet in I+1 dimensions confinement ap- clusters can naturally be small at largg . WA, Fig. 1(b),
pears already in the perturbative expansion. looks even simpler in this respect; we will discuss it in detail
The 't Hooft model has often been used as a theoreticakter on.
laboratory for exploring various field-theoretic approaches The hadronic picture of the processes underlyingaPl
[14]. Most recently the OPE for the inclusive widths and thepriori is less obvious, Fig. 2. The quark produced in the
related sum rules in the heavy flavor transitigd$] were  decay must be slow to interfere with the valeniceThe large
analytically studied in Refl11], where a perfect match be- momentum here flows through the diquark loamif which
tween the OPE power expansion and the actual asymptoti¢herefore represents the “hard core” of the process. The
of the widths was found. The known high-energy asymptotpractical OPE, effectively, prescribes to replace the propaga-
ics of the SpeCtrUm in the model allowed us to determine th@ion of this diquark by a near|y free di-fermion |00p, which
violation of local duality in the inclusive widths at large&,.  amounts to evaluating its absorptive part as if the production
As expected, it obeyed the general constraints imposed hbyf the free quarks was considered. Basically, no distinction
the OPE. Moreover, at least in the framework of this Simpli-emerges Compared to the C(ﬂor-sin@’ pairs in F|g 1.
fied model, the main features of duality violation could beThis may leave one with the feeling of discomfort, for no
inferred from the parton-level analysis itself, the working colored stateqin particular, with the diquark contenis
tools of the OPE. The suppression of the duality-violatingpresent in the physical spectrum. In other words, the diquark
component inl’y , was found to be rather strong, with the configurationper secannot be dual to the mesonic states at
power of 1mq, however, depending essentially on the par-any arbitrary large momentum transfer.
ticulars of the considered model and the process. Alternatively, one can combine a “hard” quark from the
Referencd 11] focused on flavor-independent effects. Toloop in Fig. 2 with the slow spectator antiquark to have a
this end it was assumed that the spectator qupgkhas a  color-singlet meson-like configuration. However, such a pair
flavor different from all quarks in the final state, thus ruling naively is not “hard™”: at least in the perturbative partonic
out both WA and PI. The OPE analysis of these effects igicture with pg;~mg;—0 its invariant mass vanishes irre-
also straightforward. Nevertheless, they may be of indepenspective ofm,. While such reasoning is clearly of the hand-
dent interest for several reasons. waving variety, it illustrates nevertheless that interference
First, WA and PI represent power-suppressed and thusffects are more subtle.
purely preasymptotic effect. In such a situation one may ex- A more troublesome feature of the interference is also
pect a later onset of duality and more significant violations of

local duality. Since the above effects are numerically en- r

hanced for actual charm and beauty hadrons, studying this

guestion has practical importance. b Q &
Another reason to look more closely at the spectator-

dependent effects is related to the color-flow considerations _B v B

usually employed in the context of the larbe-perspective = : =

on QCD, and interpreting the OPE predictions in terms of
hadronic states. In the case of the quasifree quark decay FIG. 2. Quark diagram for Pl ifB meson decays. The weak
width or the WA processes one finds a rather straightforwardertices are broken to show the color flow yielding the leadifg-
correspondence between the OPE expressions and the hadntribution.
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illustrated by the observation made in the early 1990s bywidth and the OPE-based prediction, relying on numerical
Shifman[16]. He considered a more general scenario withcomputations. We have determined the leading effect ana-
both charged- and neutral-current type interactions, as ddytically and showed it to coincide with the OPE result. We

scribed by the effective weak Lagrangian comment on the apparent drawbacks in the analysis of Ref.
[17] in Sec. VI.
G — The paper is organized as follows. After this introduction,
L=-— ‘72{6‘1[?7#(1— ¥s)b][dy* (1= ys)u] in Sec. Il we sketch the aspects of the 't Hooft model impor-

tant for addressing weak decays. In Sec. Ill we analyze the
+ az[am(l— y5)b][€y*(1— ys)u])}+H.c. (1)  effects of WA atN.— o and analytically compute the large-
mq asymptotics of the corresponding heavy meson weak de-
The leading(rather than the power-suppressed spectatoreay width, with technical details given in Appendix A. Sec-
dependentwidth was addressed. The parton result dependgon IV addresses PI; we analytically compute this width up
on the color factors, a, in the following way: to termsFHQ/mf’3 and find full agreement with the expres-

sions obtained in the OPE. The effects of local duality vio-
_ 2) lation at largemg are quantified. The special case—with
massless final-state quarks—is identified where duality vio-

, i lation is totally absent from the spectator-dependent part of
On the other hand, the usual counting rules yield the decaje yigth. In Sec. VV we present a more detailed derivation of

amplitudes into the two-meson final states in the form the total decay width up to correctionsrrfﬁ explicitly ac-
counting for nonzero light-quark masses, to demonstrate

FQ"“ NC

2, .2, 2
ajtas;+ —a;a,
N¢

1 . . . S .
MaN | a;+ —a,| for “Dem " states, consistency with the OPEa detailed description of this
Nc analysis had been omitted from Rgf1]). Section VI com-
1 ments on the analyses which have claimed observing inap-
o . licability of the OPE predictions based on numerical com-
«+/N¢| ap+ —a for ** DK’ states, 3 plicak i ) :
Mo | 2 N, ? & putations. Section VII comprises conclusions and overlook

and outlines our perspective on the problem of OPE and
where, for illustrative purposes, we cgll, the strange quark duality violation in the decays of heavy flavor hadrons.
to simplify distinguishing between the two different ways to  Most technicalities are relegated to Appendixes. Appen-
pair the quarks into mesonéSince we discuss the leading dix B collects a number of relations useful in constructing
free-parton amplitude, the flavor of the spectator is chosen tgnalytic 1img expansion in the 't Hooft model and summing
be different from all other quarks in the proces&dopting  the exclusive widths. In particular, we give simple expres-

the rules(3) one gets sions for the leading terms in the transition amplitudes in
Appendix B 2, perform the differential fixeg? semileptonic
I'o~N, a§+ a§+ ialaz (4) decay width summation up.to.rmé corrections iq Appendix
Nc B 3, prove the OPE prescription for the domain of largfe

) i i and demonstrate the proper functional form of the transition
more or less lndepender12tly of th% dynamics. While the degmpjitudes in Appendix B 4. The expression for the IW func-
pendence for the termsaj and~a; is reproduced, there is  tions in terms of the 't Hooft eigenfunctions is quoted in
a clear mismatch between Ed) and (4) in the term de-  Appendix C. Appendix D reports a direct covariant compu-
scribing the interference of the two different color ampli- tation of the perturbative radiative corrections performed
tudes[16]. while working on Ref[11]; it shows that the result coincides

There is little doubt that the formal OPE asymptotics mustyjth what is obtained by summing exclusive decay channels.
work at arbitraryN.. The arguments above might suggest,
however, that the onset of duality is delayed for suppressed Il THE 't HOOFT MODEL AND HEAVY OUARK
effects, for example, grow withl. . ' t Q

In reality, we do not think that there is convincing evi- DECAYS

dence supporting such reservations about applying the OPE The 't Hooft model, the # 1 QCD withN,— has been
to flavor-dependent corrections. To provide an additionaljescribed in many papef48—21. The first dedicated stud-
justification, we have explicitly analyzed both Pl and WA in jes of heavy quarks in the 't Hooft model date back to the
the 't Hooft model. We have found complete consistencyearly 1990422,23. Recent papdil 1] specifically addressed

with the OPE, with the onset of duality largely independentheavy quark decays and the OPE in this model. Here we only
of the details. As a matter of fact, the parton-deduced OPEecapitulate some basic features.

expression for Pl appears to bractin the chiral limit when The Lagrangian has the form
all involved quarks(but Q) are massless. The resolution of

the above paradoxes emerges in a rather straightforward 1 _
manner as well; we will comment on them in subsequent Elﬂ:_FwaGzﬁz pi(iD —my) i,
sections. 9s
We note that we disagree with the claims of the recent
paper[17] which found a mismatch between the actual WA iD,=id,+A T )
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The couplinggs has dimension of mass. With the above , 1 5

normalization of the gauge field, still has dimension of I',=G M_f dox ImT#7(x)Im I, (x). (12

mass as D =4. The fermion fields/(x), however, carry a Ha

dimension ofm'2. . . .
The OPE analysis is carried out universally for arbitrary The factorized representation of the dec&y W'_dth holds

number of colors, and so fai, is kept finite. Anticipating ONly at Nc—c where the momenta of thé;,,-pair and

the largeN, limit for the final analysis, we define a param- (4Gsp become observables separately. In other words, in this

eter 8 limit there is a rigid quark allocation over the particular had-
ronic final state and factorization of the corresponding am-
92 1 plitudes, and there is no “cross talk”” between them. Yet, Eq.
’BZZE( c” N_) (6) (12) represents a certain observable at arbitidgyand, as
C

such, enjoys the full rights of being studied regardless of the

that remains finite all,— . It plays the role of the nonper- details of.the model. In particular, at large energy release itis
turbative scale\ ocp- a short-distance observable anq can be supjected to an OPE

Following the actual standard model, we choose the weaRnatomy. In what follows we will discuss this quantity and
decay interaction of the current-current form. SinceOn refer to it as the inclusive decay width as motivated by the
=2 the axial current is related to the vector onk, largeN limit.

—¢,3V, we simply consider th&'x V/ interaction It is worth noting at this point that the qualitative differ-
prmye ence between nonleptonic and semileptonic inclusive widths

G - disappears folN.—c. The nonleptonic width is given di-

—(@Y,Q) (Yay" i) +H.C., (7)  rectly in terms of the differential semileptonic distributions

V2 dI'sVdg? (though, inD=2 one may have to consider the
decays with massive leptons as welhdeed, withm,=mg

where the dimensionles3 is an analogue of the Fermi con- 54 5 example, one héis the momentum representation
stant. For semileptonic decayss, ,, are colorlesqleptonig ’

fields. In what follows our main interest lies in nonleptonic 1

decays withi, , being the quark fields. To make the nota- I1,,(9%)= ;H(qz)(qzéﬂy—qﬂqy),

tions more transparent, we adhere to the cases of interest in

actual QCD and denote thefields asu andd quarks, while 1

Q will be a synonym of théb quark, andq called ¢ quark p(g?)=— —ImTI(qg?) (13)
(whether we choseng> A ocp Or considemg=<Acp). The T

spectator quarkls, can be eithen or d (for studying WA or

Lyea= —

PI), or different in flavor from both. and
To address inclusive widths of a heavy flavor hadkbg
one considers the forward transition amplitude appearing in o :f de?p(q?)T(g?)  with
the second order in the decay interactjo Ho s
Ty =21m [ dOx ———(HofiT{L Ll el 0)}H drﬂq
Ho™ m XZMH < Q|| { weal(x) weak( )}| Q>- Fsl(q2)=—2v- (14
Q ®) Plept(q ) dq

In D=2 the correlator of vector currents fonassless

In the limit Nc—e, with Hq being the mesonic Qds) guarks is known exactly and is very simple:

states, factorization of the amplitudes holds, which takes th
following form for the transition operator:

N¢
H(q2)=q7. p(9*)=N5(q?). (15

fdDX<HQ|iT{Lweal{X)ﬁ\I/eak(o)}|HQ>
With nonzero quark masses the spectral density shifts up-

G’ o . ward, to the mass scate Bm or m?. A high-energy tail inp
=5 f dEXTOOIT (X)), )  also appears-N,(m2+mZ)/q*. This will be quantified in
Sec. lll.
where we have introduced the "semileptonicT,, and More specific for heavy quark decays is the “semilep-
“hadronic” II ,, tensors: tonic” part T,,,(x), Eqg. (11). The general color counting

. rules determine itdN. behavior:
I1,.,(x) =(0liT{d(x) y,u(x)u(0) y,d(0)}/0), ~ (10)

TH(x)=(HgliT{q(x) ¥*Q(x)Q(0) y"q(0)}| Hinl)

1
T,(X)~Ng. (16
Such a leading contribution, however, can arise only with the
vacuum as intermediate state; all other contributions scale as
The Cutkosky rules then yield NS, or even are further suppressed. The vacuum intermedi-
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ate state is possible only when the decay quarkas the L
same flavor agys,. This is the effect belonging to WA.
Therefore, one has H H)
W a
TaA~NE,  TgA~Ng, (17)

FIG. 3. WA correction to the inclusive decay width in the large-

1 0 N, limit. The shaded loop depicts the exact polarization operator.

I'y~Ng, Tg~Ng at q#qsp. (19

2

Since WA is a leadindN,. effect, vacuum factorization satu-  I1(q2)=m_, 2#2 p(qD) =72, £25(q2—M?).
ratesT,'' at N;—c, and the effect takes the simplest form. m 9" =My n

This is the subject of the next section. (23

On the other hanq, the “usual” nonspectator widths aréps mentioned above, ah,=m,=0 one hasVl,=0 andf,
formally subleading irN. (even though they may yield the _ N/, but for all excitationsf, =0
dominant contribution to the decay W'dth for a part|c_ular Thia tr:amsition form factors brzatween two mesonic states
type of the heavy mesgnFor such amplitudes the naive that define the nonannihilation widths for lare, are of

factorization does not hold, and the explicit expressions take 0 o —

a far less trivial form. In the context of the OPE, this emergesorderNti' Since the weak quark currer@ are formally of

as “color-disfavored” structure of the resulting local opera- °'derNg, these form factors are “subleading” in the same

tors, so thata priori the factorization cannot be applied to S€nse as was discussed previously and, in general have a

evaluate their expectation valufkd]. more complicated form corresponding to the first order cor-
In the limit N.— < the spectrum of 1 QCD consists of rection in the 1N, expansior{20,21].

mesonic quark-antiquark bound states which are stable under

strong interactions. The meson masses are given by eigen- . WEAK ANNIHILATION AT  Nc.— o

values of the 't Hooft equation WA in the decays of heavy mesons becomes possible

when one of the quarks produced in the weak vertex has the

n(y) same flavor as the spectator antiquark. We assgmgs,

(y=x)°’ in our notations. As detailed in the preceding section, in this
(19 case there is a single contribution to the transition tefigQr

] proportional toN. and leading td“HQ~N§. This is associ-
whe'remllz are the bare qua}rk mass'es'of the constltuen'ts,' anzgted with the vacuum intermediate state, and is giveh by
the integral is understood in the principal value prescription.
The solutions to the equation are the light-cone wave func- _ia—iPx A, =

tions o(x), with x e [O,lc]I having the mea?\ing of the portion To(X) =ie”0(x0)(Hol Q7,al0)(0[ay,.QlHo)

of momentum carried by théirst) quark. They are singular

atx=0 andx=1 where their behavior is given by’ and  (with P, denoting the momentum of the decaying heavy
(1—dX) 71, respectively, withyo defined by the following  flavor hadronHg), so that, in the momentum representation
conditions:

2 52 2 2
mi—pB° m;—p
_l’_

X 1-x

Mﬁ‘Pn(X) =

1
<Pn(X)—,32JO dy

1 _
v me— 2 T m2— B2 0 |mTMV(Q):E(ZW)D5D(P—Q)<HQ|Q%CI|0>
tanmy, g% ' tanmy, B x(0[q,Q|Ho)- (25)

In full analogy with nonrelativistic quantum mechanics, the This expression is valid in arbitrary dimension for any choice

space: Qv,a by the appropriate quark bilinear. Therefore, Nat
— one has

1
JO dX @n(X) @i(X) = Snk, ; en(X)@n(y)=6(X—y). 1 B
(21) FWQIGZZMHQWQIQV,LQW

The weak decay constant of a particular meson is given X(0[qy,Q|Hg)Im H,W(Mﬁ.Q), (26)

N¢ (1
fa=\— | dXxen(x) (22)
7 Jo
SWe neglect the contribution of another, two-particle state

and the polarization tensor of vector currefas m,=my) |[Ho(P)Ho(P)), also corresponding to vacuum factorization, but
takes the form yielding theu-channel discontinuity.

by
which is illustrated in Fig. 3. It can be traced that the OPE
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corresponds to the same expression if the expectation values o i ) ‘
of all the higher-dimension four-quark operators reduce to A(w)=J d®xe " (H ol i T{ Lyeal X) Livea 0)}Ho)-

their vacuum factorized valug#or earlier discussion of WA (29)
in a similar context, see Rdf24]). The latter formally holds,
in turn, atN;— 0. It can be visualized as the transition amplitude governing the

In D=2 for pseudoscalaHy one has(0[qy,Q|Hg)  total (weak cross section of the scattering of a fictitious
= ifHQ'EWPV- For simplicity, we will further limit ourselves spurion particleS on the heavy quark

by the casen,=my. Then S(q)+Ho(p)—light hadrons, (30)

WA G? 5 3 ) or the weak decay width in the process
WA= —f2 M3 p(M2 ). (27)
Ho 2 "Ho "Ho™ T Hq
Q—quarks (leptong+S. (31

Strictly speaking, in practical applications of the OPE,Such processes would appear if the weak decay Lagrangian
11, itself is usually likewise expanded inrﬁlé. Also, the IS modified from, say the conventional four-fermion form to

deviation ofMﬁQ from mj and/or the values of , are the “four-fermior+spurion” interaction

expanded around their asymptotic valuesngt— . There- Leal X) — S(X) Loyear X). (32
fore, the sensible check of duality for practical OPE in WA
in the framework of the larg®k, approximation is only com-  For simplicity, it is convenient to assume, as in E2f) that
parison of the actual behavior of (g at largeq? with its ~ the spurion field does not carry spacelike momentum.
OPE expansion obtained from the deep Euclidean domain. The amplituded(w) has the usual analytic properties, and
For masslessi andd quarks, the exact polarization op- the discontinuity across the physical cut at which the point
erator of the vector currents is given by H45); the WA =0 is located, describes the total decay width we are in-
width, therefore, vanishes. A nonzero result is obtained iterested in. The OPE for the inclusive widths relies on the
one considers a scalé@pseudoscalarpolarization operator, fact that the short-distance expansionAfw) runs in 1/
or if m, or myq do not vanish. The absorptive partq®) is ~ —E;) and can be applied near the physical paint0 ex-
saturated by the comb of narrow resonances with heightsctly as ine*e™ annihilation near a positive value of
~N. and widths~1/N.. Therefore, the formal limitN, >AéCD. (E, denotes energy releagdo the same extent, in
—oo0 requires an alternative to point-to-point comparison ofprinciple, a certain smearing can be required if the hadronic
the actual hadronic probabilities with the parton-calculatedprobabilities still exhibit the resonance structure.
or OPE-improved short-distance expansion, even at arbitrary Thus, there is no theoretical peculiarity in the asymptotic
large energies. This implies a certain smearing procedure fapplications of the OPE for nonleptonic widths. It does not
the actual hadronic probabilities. create a conceptual difference to perform a short-distance
Note that, according to Eq26) the width—however sin- expansion of a single quark Green functiemileptonic
gular it is—always remains integrable around the resonancesidths or deep inelastic scatteringhe product of two Green
[see also the discussion below, E@88), (29—(33)]. By  functions @™ e~ annihilation or the product of three quark
virtue of the dispersion relations the integral of the decayGreen functiongthe nonleptonic widths
width is expressed via the transition amplitude in the com- Alternatively, smearing ino can be phrased as smearing
plex plane. This amplitude is regular even in the formal limitover the interval ofng . Indeed, in the heavy quark limit the

N.— when the resonances become infinitely narrow. amplitudes depend on just the combinatiop— w,
Smearing enters naturally when one considers the
“imaginary” part 1/2[11(s)—1II(s*)] at complexs, some- A(w,mg)=A(0,mq—w) (33

what away from the physical cut &>0. According to a
dispersion relation it amounts to averaging the physical cros
sectionR(s) with a specific weight,

gthere are power corrections to this relation associated with
explicit mass effects in the initial stateTherefore, in prac-

tical terms one can phrase the smearing as an averaging over
the interval of the heavy quark mass, which may look more

1 [I(s)—TI(s*)]— 1 " A R(S transparent.
2i[ (s) (s*)]= ar S(‘g- So)2+ A2 (®), After this general digression, we now return to specifi-
cally WA in two-dimensional QCD. It is commonly accepted
) that, for the two-point current correlators, both o or
s=5p+iA. (28 P Nt

finite N., the properly averaged absorptive hadronic parts
asymptotically coincide with the leading OPE expression
One can also use different choices of the smearing functiogiven by the free quark diagram. As was mentioned above,
having singularities away from the physical cut. for massless quarks this property holdsntically for vector

A similar procedure, in principle, is required for the in- and axial currents. For the scalar current the asymptotic cor-
clusive decays of heavy flavors. Strictly speaking, one mustespondence in the 't Hooft model has been illustrated al-
introduce the complex variable to study the analytic prop- ready in Ref[19] (for a recent discussion and earlier refer-
erties of the transition amplitude in questi@®,12,11: ences, see Ref25]). For the WA width, however, we need
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the m, 4-suppressed effects. The OPE =2 yields, at The integral logarithmically diverges at—0 and x—1,
m,=mg=m (for arbitraryN), which corresponds to the behavior

2m? \/1—4m2/q7+1 a?-= 1 m2+m2 g2 1
T(g%)=Ne 4 2 22 (g% = _2_—d|nq2+0 (40
q*V1-4m?/qg® \/1—4m /9?—1 q q* q*
2m(0|myuu+ mdad|0> m?In g2 given by the free quark diagram, E®4). The divergence of
N q* +0 q® ) the sum in Eq(39) is associated with the high excitations
Therefore, quantifying the divergence allows one to deter-
2m?2 1 . mine the asymptotic behavior of .
p(9°) + 2(0|myuu-+mydd|0) To render the sum in E¢39) finite we must introduce an
9" J1-4m?/qg® ultraviolet regularization. For the logarithmic divergence the
m2 exact way is not essential—one is to add a hard cutoff factor
5" (P +0 —6> (34  9(A2—M?2). For analytic computations the Borel-type regu-
q o _M2IA2 .
larization by the factoe™“'n'* " is usually convenient.

where the first term in both equations is just the free quark For the regularized sumsve mark them with the super-
loop. There is little reason to doubt the OPE for the subleadscript A) the completeness condition is modified,

ing terms either. Nevertheless, it is instructive to give here
the direct derivation of the next-to-leading term(mﬁ
+mZ)/q* in p(g?) directly from the 't Hooft equation.

We follow here the approach of RdflL1] based on sum
rules. In the context of the Euclidean polarization operatomand the Green functios becomes a “finite-width” &-like
similar considerations ascend to the earliest papers on thdistribution with the width
model, Refs[19,20. To simplify the expressions, we will
suppress the explicit powers df, which enter in a trivial 1
way, and usually will also omit the mass scale facBr A~17 (42
assuming that all energies are measured in unit8. dfhen
Egs.(22), (23) take the form

;A¢n<x>%<y>=e(x,y;m, (41)

This regularizes the sum in E(9):
2

M@)=3 oz p(@=3 cloe- M) S - [t otad
(35) MZ<A? 0
with dxdy(—+—) G(x.y:A)
Cn= foldX‘Pn(X)- (36) =(mZ+m3)(In A%+ cons). (43
The completeness of eigenstates yields One has, for instance, for the sum over an interval of highly

excited states

1
2 CﬁZE J dx dyen(X)en(y)=1. (37) A2

v f Jordd’p(g)= > Mic
. : _ A A2<m2<n?

On the other hand, integrating the 't Hooft equation from O

to 1 we get 2

A
—(M2+md)In—5+0
Al

i) (44)
2 2 AZ .

1 1 m
c=f dx<,o(x)=—f dx(— )(,D(X).
" Jo " Mﬁ 0 x  1-x/7" The sum rulg43) proves that the asymptotics of the smeared

(38 ImII(g?) coincides with the free quark loop result through

termsm?/g”. It is easy to see that the nontrivial corrections
in the OPE also emerge only with higher-order terms it 1/
Note that Eqs.(43), (44) hold both for light (m<B) and

) @n(y) heavy (m> B) quarks. However, for the asymptotics to start,
the conditionA>m, 4 must be observed.

22 Since J%=e¢,,J, and using equation of motiod,J,

_d, ) (39) =(my+my)uiysd, by the same token we showed the

X 1-x leading-order duality between the hadronic saturation and the

Therefore, we get the second sum rule

S M-S [Caxen0 [ dy(

1
fdx

2
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partonic expression for the absorptive part of the pseudo- G2

scalar current. A direct derivation in the same approach is

described in Appendix A.

As expected, for largeM, one finds the residues,
~m, 4. Let us note that for light quarks, are only linear in
My, since for light quarksp,(x) ~x™ atx— 0 (and likewise
atx—1), the end points of integration in E¢B8) bring in
the 1M, enhancement. Combining the sum rule E43)
with the asymptotics of the 't Hooft eigenvalues

M§2,82772n,
we obtain
2, 2 2, 2
mi+mg  mg+mj
Co= 232 = 2,77 (45)
M, 76N

Again, these asymptotics are valid if “averaged” over an

interval of n.
It must be noted that the explicit constant in E42) is
not important. A more detailed derivation of the laryeas-

ymptotics uses the semiclassical expansion of the 't Hoof
wave functions. We show in Appendix A that the domain of

integration wherex<<1/A2 or y<1/A? yields only a finite

contribution to the integral in Eq43) (and likewise in the
vicinity of x=1 ory=1). At the same time, in the domain

x,y>1/A2 the approximatiorG(x,y;A)= 8(x—Yy) is appli-
cable.

With the relation for the WA width Eq.26), the compari-

son of Eq.(44) and the OPE asymptotics E4) demon-

Thy= 5 Ne(ail'1+aslo+ 225850 1)),

(47)
wherel'; andT', are O(NS). Clearly, I'{(my,m¢,my ,my)
=I"5(my,my,m,,m;) holds.

The asymptotics of the noninterference widith (T",) for
the 't Hooft model was calculated in R¢fl1] and shown to
be given by the OPE one. Now we address the analogous
question forl" 5.

The leading(in mg) contribution to the decay width de-
scribed by the free parton diagram in Figa)lsuggests that
I'1,~1/N.. For example, for usuaV—A interaction inD
=4 one would have

1 1
I‘E;rton:N_charton: N_crgarton (48)
(the explicit factor depends on the Lorentz structure of
Luwea . SuchN¢-subleading effects are rather complicated.
This suppression, however, is not always preg@ei. As

iscussed earlier, invoking the spectator quark through the

pectator-dependent effects such as WA or Pl can bring in an
N, enhancement by effectively eliminating the generid 1/
suppression of the free quark width. As a result, at the price
of a power suppression inmg one can have the
N.-unsuppressed manifestation of the interference of the two
color amplitudes inCyeax,

r{H~0(ND). (49)

strates that the smeared width in the 't Hooft model coin-

cides with the OPE width at least through term§ ,/my,.

IV. PAULI INTERFERENCE

In this section we address the effect of interference in t
weak decay width of the heavy mesons. As explained in t
Introduction, it has an independent interest. Similar to th

partonic free-quark decay width, Pl is a “subleading’NL/

effect, with '™'~N, rather thanN2. Therefore, the expres-

sions for the amplitudes are not as trivial as for WA. Never-
theless, it is not difficult to demonstrate that, again, th
qguark-based OPE predictions coincide with the actual had-

ronic widths.

To incorporate Pl we must have the flavor of the anti-

guark produced in the decay of virtual coinciding with the

flavor of the spectator; we shall callit Moreover, the weak

e

Thus, on the one hand, studying PI allows one to address the
interference of the color amplitudes in a straightforward way
relying on the 1IN, expansion. On the other hand, consider-
ing the term~aja, in the decay width in the limitN,—o°

h utomatically singles out the power-suppressed effect of PI.
h his goes in contrast with the usual situation where isolating

| formally requires subtracting the decay width of the simi-
ar heavy flavor hadron with the spectagtaving the same
mass but with the flavor which is sterile in weak interactions.
The simple quark diagram describing Pl is shown in Fig.
2. To leading order it generates the operator

. G*[ [, mi+mi) —
r :_Zalazi 1_m—é (b’y’u'}/SU)(U'y’u'}/5b)

2mcmd T —. —
- [(bu)(UbH(bWsU)(UlVsb)]], (50)

decay Lagrangian must contain two different color structures mg

to have PI at the same orderl\ as the free partonic width.

So, we adopt, for simplicity,

G — —
Lyear= — E[al(?')’p.b)(d'yﬂu) +ap(dy,b)(cy*u)]+H.c,
(46)

where, again for notational transparency, we identifigd

with b and calledq by c.
In this case the decay width has three terms

with 2mgK having the meaning of the quark spacelike mo-
mentum in the final state:

(1_ <mc+md>2) ( . <mc—md>2> }/

2 2
Q Mg

It is worth noting that this contribution is not chirally sup-
pressed. Therefore, it is meaningful and convenient to con-
sider it in the limitm.=my=0.
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For B~ mesons having spectator, the operators in Eq. d-r . c D°
(50) have theN.-favorable color structure and, therefore, b Aﬂ: b A
their expectation values are given by vacuum factorization: u u

1 — o 3 1 0
o (B 1By, 7s0) (G, vsb)|B7) = 5 FEMe, D T

1 — — — _
o= (B [(bu)(Ub) + (bi ysu) (Ui ysb)[B™) , ,
B FIG. 4. LargeN. decay amplitudes induced by charge-current

£2M3 (a) and neutral-currentb) terms in the weak decay Lagrangian.
B"™'B
=—. (51
2(mp+my)* the multiperipherally produced mesons have the mass
. o squared distributed in the interval from 0-toA gcpmg . The
In particular, atm;=my=0 one gets bulk of the pointlike produced mesons have the mass
G2 squared =myAqcp Of mg. Reference[11] demonstrated
Pl— _ —f2 h - df licitly in the ’ f del
r 2a,a, 7 fEMpg. (52) these OPE-suggested facts explicitly in the 't Hooft model.

As a result, interference becomes possible only at a small,

. ~1/mg slice of the principal decay channels. This qualita-
Pl Q
We note thal™™' asymptotically approaches a constant Whentively explains the Thg power suppression of PI which is
Mg— .

It is interesting that there are no corrections(at automatic in the OPE,
9 . _rﬂé . We will now demonstrate the quantitative matching be-
smallm, 4) to the above result. This is a peculiarity of two

dimensions where the absorptive part of figquark loop in tween the OPE-based calculation and the hadronic saturation

Fig. I th fum 1o th h d. th of the interference width. To make the proof most transpar-
9. £ scales as the momentum to the zeroth power and, u«E‘nt, we start with the simplest possible case when all final
does not depend on whether one upgsr Py as the mo-

mentum flowing into it. The corrections to the Wilson coef- state quarksl,d,c are massless. While not affecting the OPE
nentu wing Into It. The ! ! ) analysis, this limit significantly simplifies the expressions for
ficient as well as other higher-order operators can induc

vt 4 by at least t £i fhe individual hadronic amplitudes, as explained in R&1).
%na)s/s erms suppressed by at least two powers Of INVEISE, 1he case at hand, for example, omly=0 survives for the

Let us now consider the decays in terms of hadrons. In thgecay amplitude-a, [Fig. 4&)] andk=0 for the amplitude

absence of WA, the leading; final states are pairs of me- 2 [Fig. 4b)] _The interference t_hen resides in the §|ngle
. ) o - final state containing the lowest lying massl&Sand 7.
sons. The partial decay widtB— D, takes the general

¢ Moreover, the corresponding transition amplituddsbe-
orm tween two mesons take particularly simple formga& 0 in
2 terms of their 't Hooft wave functiongl1]:

Iﬂkn [ai|Aan|2+a§|~Aan|2

~8mlp] 1 )
qﬂm<k|eﬂuJV|B>=_qZJ dXQDk(X)QDB(X)r (56)
+2a,a, ReAA* B B], (53 : 0

. . ~j (0)
where A and B schematically denote the “multiperipheral” Where we have recalled th&~ie,,foP,”, and therefore
B—k transition amplitudes and the “pointlike” meson cre- considered only the relevant light-cone component of the

ation amplitudes, respectively: amplitude. Then we have
2 GZ

2
Ac~(K|3,]B),  Ba~(n|3,]0). (54 Pl _pa,a,0 el ~2ay, 1M
o

1
f dx @p(Xx)
0

We denote byp the rest-frame momentum of the final state (57)
mesons. The Pl term is then given by the sum

[we have used the fact that(x) =1, fo= VN, /7 for mass-

G? 1 less quarkk The minus sign emerges since the direction of
Pl_ T * 1%
e gy B % P AwAn BicBn- 59 the vector playing the role af is opposite for the two inter-

fering amplitudes.

Both I'; and I, are saturated by the final states of the Thus, the OPE asymptotics E¢52) is exactly repro-
type DPr, with various excitation indicek andn. How-  duced. Apparently, there is no violation of local duattyall
ever, the production mechanism differs: while the “charge-for Pl in the casen,=my=m.=0. This is not surprising—in
current” interaction~a, produces,, by the weak current this limit the only threshold if"™ occurs at zero mass, and
“pointlike” and DE in a “multiperipheral” way [see Fig.

4(a)], the situation reverses for the “neutral-current” ampli-
tudes proportional ta,, Fig. 4b). These two sources of the  4For the vectorlike current; it would be evenly spread from about
final state mesons have distinct features for heavy enQugh m? to sz if the weak vertex were scalar.

114034-9



IKAROS BIGI AND NIKOLAI URALTSEV PHYSICAL REVIEW D 60 114034

the OPE series can have the same convergent properties in 1 1

Minkowskian as in Euclidean space. MQ= —(Mé—Mﬁ)J dx (PB(X)(Pn(X)f dy ex(y),
With m, 4 .#0 the interference effects are saturated by 0 0

several final state pairs of mesons, even if the masses are 2|pIMg=MZ~MZ—M?2.

small compared tang. It is still not difficult, though, to

check that the leading OPE term H§2) is reproduced. We Then we have

keep in mind that at nonzero masses the width exhibits the G2MaN 1
threshold singularities due to the singular two-body phase 2 FE,']z—Zala2$2 J dX @g(X) @(X)
space 1f| in D=2. Since it is integrable, the threshold kn 4m i Jo
spikes do not affect the width smeared over the interval of 1 1 1
massAmg~1/mg. _ o XJ dy <pB(Y)<pn(Y)J dZson(Z)f dtei(t)
The idea of the proof is suggested by the detailed kine- 0 0 0
matic duality between the partonic and hadronic probabili- G2M-N L 2
ties. The bulk of pointlike-produced mesons have masses — —2a,8,—— f dx ¢a(x)| (63)
squaredMl; not exceedings? or m;, while for multiperiph- 47Mg |Jo
erally created mesonsthis scale is~ Smg or mggng . More or
precisely[11], for the decay rates-a? [Fig. 4(a)], ,
G
1 m2, FP'=—2a1aZTf§MB. (64)
T T —5-, (59
tot k  Mp>consimg Mg We extended summation ovkrand! in Eq. (63) to include

all states, since the contribution of additional, kinematically
1 1 forbidden meson pairs is suppressed by high powers of
ﬁ M é:m M >§15tm FknOC ﬁ ' (59) 1/mQ )
otMn=MMe M Q Q This expression is valid up to the relativemQ correc-

Then, calculating the width we can expand around the fre«%'ons' Indeed, the leftover effect of the slope of the transition

! . R . orm factorFgy is quadratic inmg/mq . For example, using
quark kinematicsM,=M,=0. In particular, we set representation Eq.38) we obtain a sum rule which allows

one to cast it in the form

1 2 MZ+M2
W:'\"_B(H M3 +) S -3 oo FaZcn | ayesyenyic
Addit_ionally, we cgn expand the transition form factors in J 1 m:  m?
amplitudesA, in g :Ckﬁ_qukao dy eg(y) 7+ 1—y)
A(MA)=A(0)+ m—fmé% : (61) - -(65)
Q q2=0 (and likewise forsM2). The convergence of the integral

overy shows that this effect is saturated at snma#ind is of
and likewise forAn(Mﬁ). In factoring out 1|iné in the slope ordermﬁ/mé or quB/m(Zga whichever is larger.
of the amplitude we accounted for the fact that it scales as A more accurate consideration reveals that the two ampli-
1/mé in this kinematics. Indeed, thechannel resonances tudes in Eqs(62) have the factors£1)" and (_1)k, re-
have masses exceedimg,, and the kinematicgthe frac-  spectively, and their product, additionally, the factor
tions of the light-cone momenta entering computation of the — 1)(PHQ+“+'<), [The latter is related to the opposite direc-
transition amplitudes, see the next section and Appendlix Btion of § in the two amplitudes and is readily understood
likewise depend om? only asqzlmé. since this is a parity-conserving deckyy—k+n with the
To obtainI"™' with an accuracy Iﬁé of the free quark meson parities ,%, (—1)" and (—1)X.] Therefore, the sign
width, we actually expand the particular two-body decay amof '™ is given by the parity oHq, which is manifest for the
plitude only ing?, that is, do not negledvl; dependence for OPE result inD=2, cf. Eq. (51). Thus, we see thaf®
the amplitude~a, or M2 dependence for the amplitude agrees with the expression given by the free quark loop just
which is proportional taa,. The expressions for the decay to the accuracy suggested by the OPE.
amplitudes ag?=0 are very simplé11]: It is not difficult to estimate the effects of violation of
local duality in PI related to the thresholds, for small but
N @) ) nonvanishingm, . Since the two-body phase space is singu-
Min=G\ 5~ (@M + a My )s (62 Iar, different ways to gauge its strength will yield different
power of its asymptotic suppression. Full information is just
given by the nature of the threshold singularity, the scaling

1 1 . . . .
MB=(M2—M2 f dX on(X X f d ' of the corresponding residues, and the asymptotic distance
i = (M J 0 #a(X)e(x) 0 Y en(y) between the principal thresholds. This would show the con-
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tribution to PI of any new decay channel, close to the mass Strictly speaking, ain, 4= 3 additional light meson states
where it opens, where the corresponding width is not literallycontribute, and the pattern of the threshold spiked i
given by the OPE. becomes less even reflecting the superposition of a number
It turns out that the magnitude of local duality violation in of similar structures. Additionally, ah,~m, the individual
Pl essentially depends on the relation between the final statign-alternating behavior becomes more complicated.
masses. The strongest effect comes from the kinematics In principle, with all final-state masses not vanishing,
where one of the mesons belongs to low excitations whilehere are thresholds corresponding to decays where both
another has the large mass closerp. final-state mesons have masses constituting a finite fraction
The case whem,=my=0 (butm:>0) is somewhat spe- of mg. The threshold amplitudes for such decays, however,
cial. Here one of the interfering decay amplitudes vanishes aire too strongly suppressed, since both interfering ampli-

the thresholds, anl" simply experiences a finite jump: tudes have the chiral and the form factor suppression:
G2 9/2
| 6T 1) :72a1a2><consthmCM—a,§ﬁ(MHQ—Mk), o m2° ) md
Q «——— at k,n~—.
knlPI m(7? BZ
772,82
Mis1= M= 59— (66) _ _
Ho The phase space for such decays is also smaller $pjce

. . . ~Jmp(My _—M) Y2 Additionally, these thresholds are
Here we used the semiclassical calculations of the transitions ol Ho tho) y

- - 3
to highly excites states given in Sec. Ill, E45) and in Ref. ~ SPaced very closely, at distances SC?"'”Q%BT_‘Q- There-
[11], Eq.(79). The latter estimate for thHQ_)Dk transition  fore, they are subdqmmant for duality V|olat|_on. They are
amplitude is valid up to a factor of order one; accepting it at'¢!atéd to the subseries of the OPE terms which appear only

; ; beyond the tree-level perturbative computations.
face value would yield/3# for the constant in Eq(66). ; i . . .
The referred asymptotics determined the absolute magni- To conclude this section, let us describe the physical pic-

tude of the decay amplitudes relevant for usual decay probt_ure which emerges from the analysis. In particular, we can

abilities, but not their sign which plays a role in interferenceS®¢ .hOW.the interpretation problem ment|oned.|r.1 the Intrp-
duction is resolved. As expected, the explicit analysis

which can be both constructive and destructive. A more care-. . ) .
ful analysis suggests that the relative sign of the two amp"ylelded nothing about colored _d|quark_correlator, dlre_ctly.
tudes alternates for successive thresholds. Therefom,, at :qnuS;?I?i’nt\iléia(r)IES;i\g ttcr)]ethgur?gfj{o(r)]]icc dslft];et:aesr?ﬂgngog:grr]giczic
=my<<B andm.<mg we have the following ansatz: ] . . . '

<P e g quark ( or d) is to be combined with the “wee” spectator

G2 B2 antiquark or slowu produced in the weak vertex. It is the
ST b~ —2a,a, consty37fgMe—g pair of quarks picked up from the different final state mesons
2 M . ; ;
Ho that corresponds to the large invariant mass in the quark
diagram. The completeness of the hadronic states—or, in
X > (_1)k19(MHQ—7Tﬂ\/E). (67)  other words, the duality between the parton-level and me-
k sonic states—is achieved already for a single fast moving

. _ . decay quark when it picks up a slow spectator. In particular,

Thesamplltude of oscillations in Pl_scales down at least 8%he “hardness” of these processes determining the applica-

1img . At large mg the threshold widths are much slmaller bility of the quasifree approximation, is governed by the en-

tmhan i\’gn the individual principal widths saturatifi§' at ergy of the fast quark rather than by the invariant mass of the
c,u,d . air.

Whenm, 4 are nonzero, the picture changes essentially i There is nothing wrong with considering the colored di-
two respects. First, neither decay amplitude v_anishes at thq:’uark loop as nearly free. Since the overall color is con-
threshold, since the two-momentum of the lighter mesonseryed in the perturbative diagrams, in the full graph for the
does not vanishgo=M; instead ofqo=[G|=My,~Mu if  meson decay which would include explicitly propagation of
g®=0. Second, the phase space factdp[Lbecomes now the spectator, there is always a color mate for any quark in
[2M (M}~ M) 1™ Y2 vs 1/(M o~ M) for My=0. (M;  the “partonic” part of the diagram. Moreover, if the leading-

is the mass of the lighter meson and its momentum is calledlc_contribution is considered, such a color pairifige.,
q here. We assume thad; is much larger than the reso- Which pair must be embodied into a meg@unambiguous.
nance spacing- 3%/mg.) Otherwise, the scaling of the tran-  Of course, the invarianinassof a single, even fast on-

sition amplitudes remains the same. Therefore, in this casghell quark vanishes. However, this does not make the inclu-
we have sive probability for it to hadronize by picking up spectator

and forming a meson, a “soft” quantity. For it is not the

G2 B° ﬂ(MHQ_Mgﬁg) inyariant mass but thérest framé momentum th_at_ _deter- _
ST b —-2agaMemy 2 e— >, (= 1)k e, mines the hardness. Indeed, the color of the initial static
2 MHQ k \/MHQ_ Mt:hr heavy quarkQ is compensated by the slow spectator. This

" initial distribution of the color field marks the rest frame and
MEd=m_+ 7B k. (68)  makes the hardness parameter for the total probability to
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look noninvariant if the final state is considered perturba- P s ) s,
tively as a pair of free partons. Iy= fo ™dg” p(q9)s(q )ZFSKO)L dg“p(q°)
V. TOTAL (SPECTATOR-FREE) WIDTH THROUGH 1/ m3 -%J;dqu(Q5[FgUf)—I}K0H- (70

The inclusive decay widths of heavy hadrons in the
't Hooft model in the ab_sence (_)f the fl_ayor—dependent specSince atqz~mé the spectral density(qg?) is explicitly pro-
tator effects were considered in detail in REEL]. It was  portional tom2/m3, in the second integral we can use for
demonstrated that the analytic summation of the widths fof- (42)—r(0) its leading-order approximation. With

the accessible two-body modes reproduces thg,¥xpan-  rqq2p(g2)=N,, the first termexactlyreproduces the corre-
sion of the widths in the OPE, at least through the terms h'gf},ponding term in the OPE, E¢69).

enough in lihg . In particular, the hadronic width does not A transition form factors are expandable a3/m3 (ex-
have any Irhg correction which would not be present in the cept, possibly, the pOirm2—>mé). Therefore, the smeared

OPE. ; N . PP .
The analysis was performed for arbitrary andmg,, but width T's(q7) is likewise expandable i“/my, and so is

simplified significantly whemm,=my=0 was setin the no- FHQ—at least up to small corrections 1/m% associated
tations of the present papeSince there is little doubt that with the domain ofg? close tomé. Thus, the second term
the dependence of the hadronic widthmop andmgy is sup-  scales only asnﬁyd/mé.
pressed by at least two powers ofrly, this simplification In order to calculate this term, we can use the following
cannot affect the conclusion regarding possible non-OPHEacts regarding the smeared width.
1/mq terms in the width. Nevertheless, we find it instructive  The exact “semileptonic” widthI'¢(g®) coincides with
to describe the direct computation of the termmﬁ,d/mé in  the free widthI'Y*%(qg?) to the leading order in ity when
the width based on the 't Hooft eigenstate problem, foIIow-mQ— Jg?s .
ing the approach of Ref11] and the analysis of the previous  The smeared’(q?) is an analytic function o> and is
sections, In particular, it illustrates that the case of nonzeroexpandable in 1ffio— \/az).
masses is not any different from,=my=0. The smeared’'¢(g?) does not blow up aq2—>mé.

As before, we assume for simplicity tha,=mq, so that \ye shall comment on them below. Accepting these three

the uy,d current is strictly conserved, and represent thegscts for now, and neglectinlgng compared tan? we find
largeN; nonleptonic decay width as an integral of the dif-

ferential semileptonic width"g(g?) over g% weighted with G2

the spectral density(g?), Eq.(14). The upper limit of inte- I'ieSq?) = —me}(mé—qz), (7
gration g2, comes from vanishing df 4(g?) at q2>(MHQ 4m

~Mo)®. and

I'¢(0) was analytically calculated in Rgfl1]:

f:dqzp(q2>[rs.<q2>—rs|<0>]

2m3-mi[ mg (ldx 1
Q q Q 2
o= 1 el
0= 27 Tmg Mu, Jo x o0 g Fd 2T (D)~ T o(0)] qudtt (t)
| = | dals(a9) - Ts(0)] 57 g g2 P
6 i o o ° v
47 m ZMH sz N » 4 i
Q Q =—%J 2_‘?‘(m5+m§)
. . ) o T mg, d
+ -5 ’
m% ( a+mg
=—Ne———T(0). (72)
Q

which coincides with its OPE expansion.

On the other handy(g?) does not vanish aj?>>0 only
due to nonzeran, 4. Therefore, following the approach of
the previous section, we expapdq?) in mg/g? at largeq?

Here we have used the sum rules E@), (44).
Thus, we get through orderri,

- . ; 2 2_ 2 2 2 2 2
and, simultaneouslyl;5(g?) in g%mj atq?=0. To this end [ o—— G—N Mg — Mg — My — My 14 B wE
we write the width as Moo 4ngc Mg mgy  2mg
BEm;
+0| —, (73
The consideration below was elaborated while working on Ref. Mq
[11], but was not included in the final version for the sake of
brevity. where the kinetic expectation value
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q my,q corrections tdy .
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2 N, subleading(the expectation values scaling Bs rather

(74 thanN?, unless WA is possibje their values are anyway
expressed in a rather ugly way in terms of various 't Hooft

represents the low-momentum part of thed/expansion of elgenfunc'gons both m.the and.t channel. Calculating .th's
maximalg“ effect requires straightforward by expansion

the integral in Eq(69), whereas the tern?/mg accounts ot the form factors and wave functions, which is not too
for its “hard” part [11]. The OPE result is thus reproduced jnstryctive. This is briefly outlined in Appendix B.
explicitly. o Now it is time to comment on the assumptions used in
Neglectingm, compared tong was essential in the above qeyjying the correction- (m?+mZ)/m3. The first one was
computation. For, am#0 the umquehnear inmygq effect  rojateqd to the semileptonic width at nonzera Of course,
appears which was calculated in REf1], Sec. VIA: even the stronger statement holdg;(g?) coincides with
AT I'i*9q? up to the terms~B%/(mg—/g?)2. Proving this
Ho _ _ 4_7T<0|m U+ mydd|0) MoMe (75  90es along the same explicitnl$ expansion of the wave-
N¢ N d (mé— m3)?’ functions and the form factofd1]. Namely, to order Ihg
one still has the transition form factors determined only by
Of course, it has the direct OPE counterpart, see Fig. 5. Athe overlap of the initiakp,, and the finalp, wave func-
me~ B it scales agB?(|my|+|mgl)/mg. tions. The only difference is that_#0 atq?#0 and, as a
It is straightforward to obtain the li% term inT'y_as  result, the arguments of the wave functions change. This
well. The least trivial corrections not relatedrty,,m, are all  Purely kinematic modification accounts for all changes to

incorporated in Eq(69). The only remaining part is theriy, order 1fmg. Some technicalities are given in Appendix B.

term in the explicit (n;+m3)/m, correction. It is associated The.snu?tlon changes at ordem@. The peculiarity of

with the domain of maximat2, i.e., mo— Vq2~m..B. It the pointg“=0 is that the vertices do not renormalize at
, L€, Q_ ~ M, o.

o 2, S5 g“=0. More precisely, in the light-cone gauge the vertex
has ~a logarithmic ~ enhancement, [(m,+mg)m./ corrections in Fig. @) are proportional tay_ and thus van-

3 . .
mg] In[mg/mc] coming from the domainm.<mq— \/az ish, to all orders, at>=0 [11]. The only surviving contri-
<mq (and, therefore, this log conforms with the one in thepytion is the effect of renormalization of the external quark

free quark phase spaceOn the other hand, at nonequal,  |egs, Fig. 6b) which is readily summed up to all orders. In
andmy and lightc andqg, the smeared width contains the

chiral log of the form[(mu—md)zﬁlmg]ln[ﬂl(nptrrgp)], , ,
from the domainy8(m.+mg) <mg—g?< . These con-
tributions are given by the corresponding four-quark expec- Q J Q it

tation values(Ho|QT ,ccl",Q|Hg), in agreement with the
general proof of Refl24].5 However, these operators being

2 _ A2
lu‘ﬂ'_mQ

! 22 ! 2
jodx ‘PHQ(X)_ JOdXXQDHQ(X)

Ty

5At m,=m, these expectation values are multiplied by,
—v,v, with v= PHQ/MHQ, containing only the spacelike compo-
nent, and then the contribution of the lowest pseudoscalar, “pion”
intermediate state comes proportional to its momentum. From the
point of view of hadronic decay modes, the pion threshold decay
amplitude likewise vanishes ah,=my since, for the conserved
vector current, only the current-meson couplings,,, survive, and
the decay amplitudes into the mesons with the same parity as
vanish at the threshold. These suppressions are eliminated whe

m,# my, and the chiral log appears both in the four-quark expec- a b

tation value due to the pion contribution in the timelike component,

and in the smeared width due to the pion phase spatgMy FIG. 6. Vertex(a) and external quark lep) renormalizations of
—Min)- weak decay amplitudes, and their hadronic counterparts.
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the light-cone formalism it consists in overélR divergen}  tive corrections and by the subleadingny/ terms in the
shift in the reference point for the light-cone enemy, and  expansion of the currenl,, which are both power sup-
the dispersion term- 32/(2p_) formally coinciding with the  pressed here. It can be derived directly from the explicit

replacementm?—m?— B2 for all quark flavors. solution of the model, see Secs. 2 and 4 of Appendix B.
This perturbative computation has an exact analogy for
the actual meson form factors. The absence of the vertex VI. COMMENTS ON THE LITERATURE

corrections means the absence of thehannel resonance ] ]
contributions aty_ =0. This fact is directly seen in the ex- _ 1WO recent paper§27,17) claimed to have established
plicit expressions for the form factors in the kinematicsinapplicability of the OPE for the heavy flavor widths con-
where the fraction of the total light-cone momentancor-  Sidering the solvable 't Hooft model. Referenf27] ad-
responding to the momentum transégrgoes to zero. All the dressed the conventional spectator-independent decay chan-
strong interaction effects occur in the initial and the finalN€ls. Numerically evaluating the possible two-body decay

states and are described by using the exact eigenfunctiofidtes for the values aig up to mg=14, it found a small
instead of the plane waves. systematic excess of the decay width over the free quark

At q_#0 the vertex corrections appear to orgdr, and ~ diagram which was fitted as

already the firsgg correction in the coefficient function of Iy —Tq B
the operatorQQ becomes different from (% %/mg) 2. %—~0.15m—. (79
The vertex corrections are dual to the&hannel resonance Q Q

contribution in the exact amplitude, and they also appeafnis was regarded as the demonstration(afpriori pro-
explicitly with the factorsy_ andB2. Additionally, the origi- claimed nonexistence of the OPE for the nonleptonic
nal tree-level overlap is modified both kinematically and dueigths. Since in the largs, limit the difference between the

to the additional terms in the expansion of Qe ,q current  nonleptonic and semileptonic widths disappears, this, if true,
in terms of the light-cone spinors. All this is directly ob- would mandate the same absence of the OPE for the semi-
served in the explicit expressions for the meson transitioneptonic widths as well, an obvious fact ignored by the au-
form factors. thors.

Regarding the two other assumptions, the fact that the In contrast, Ref[11] accomplished the analytic summa-
transition form factors are regular functions @f can be tion of the largemqg width in the 't Hooft model, and no
seen, of course, from their most general analytic expressiongeviation from the OPE was found to the high enough orders
Another way to visualize this is to use the approximate scalin 1/m, (the exact power addressed depended on the values
ing behavior of the final state massedn particular, the absence of the

1/mq corrections to the parton result fam, 4~ 8<mg was
1 1 , , very transparent. Additionally, the correspondence was es-
\/2:mQ<k|‘]u(Q)|HQ(mQ)>ZWMJ#(Q )Ho(mg)), tablished between the step-by-step quark-gluon based OPE
Q (76) computations and the matching contributions in the integrals
determining the meson form factors in terms of the 't Hooft
where q' is adjusted in respect tmj, to have the same Wwave functions. This allows one to compare the OPE com-

rest-frame momentum of the final-state mekon putations to the hadronic saturation at the intermediate stages
rather than only for the final result.

My (Mg) What could go wrong with the numerical analysis of Ref.

q’2=MQ—,q2+MHQ(m(’Q)[MHQ(mé)—MHQ(mQ)] [27]? We note that the apparent “effect” was really small
HQ(mQ) numerically and, in the fiducial range ofg/3~8 to 10

M, (M) constituted only about 1%. Moreover, a closer look at the

o[, Hot' @ plots of Ref.[27] shows that the reported discrepancy some-

+ME 1 —— . (77) .

MHQ(mQ) what increased toward the upper valuesngf. As a result, a

better fit of the numerical points of Ref27] would be

This freedom can be used, say, to make momentum transfé@chieved assuming smai?(1/mg) (not power suppressgd
q lightlike, corrections to the width, with the numerical coefficient

~O(10 ?). Unfortunately, a priori targeting the )
mg—Mg+0? \/ mo—Mi—a?\*  q’M; terms, the authors did not explore the possibility of alterna-
2mq 2mq " mg

Mo=Mq— tive interpretations.
Incidentally, the scale of the claimed discrepancy lies just
(78 in the magnitude range of therﬂ% effects from the OPE
and then use the exact representation of the amplituides Which could bea priori expected amg~10. It turns out that
the simple wave functions overlaps. This trick allows onethe numerical points fol’(mg) in Ref. [27] can be well
for example, to see the strong suppression of the transitiofitted by the leadingny expression and adjustabléz/sz
amplitudes to highly excited statM§~mé>,8mQ at non- terms with the coefficien®(1). Adding arbitrary corrections
zeroq? as well, without going into details described in Ap- ~,83/m3Q with the larger coefficient up to 6—8 allows really
pendix B. The relation Eq.76) is violated by the8?" radia-  perfect fits. Since the actual rﬂlg corrections include the
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expectation values of the four-quark operators which are not m[])

given by factorization, they are uncertain. Their estimateshn—l—['(rg)a

showed that they are typically significantly enhanced com- T T T T [ T T T T
pared to the naive dimensional estimat¢.

Thus, the question would remain open before the actual
OPE corrections are computed. This was accomplished ir
Ref.[11]. While the radiative correction enhances the width
by the factor &+ 5%/(2mj) to order 1mg, the kinetic term
— u2/(2mg) tends to suppress itTherefore, if, as stated in
Ref. [27], the plotted values refer to the bare masg, it 0
seems that the numerical calculation reported by Grinsteir™
and Lebed yielded the result exceeding the asymptotic widtr
by an amount ranging from a fraction to a per cent.

The most apparent resolution, in our opinion, is that the 0.5
analysis of Ref[27] simply does not control the accuracy of
the numerical computations of the amplitudes at the requirec Ly o o o o
level of a few per mill. This is not surprising and roots to the \/g
well-known problems of numerical computations. The width 5 10 15
at largemg, is saturated by highly excited states whose wave

) . . . FIG. 7. The actual-to-partonic ratio of the absorptive part of the
functions oscillate fast. This standard problem of the numeric . " oo oolator an,=my=0.568, according to Ref17],

cal computations of the semiclassical transition overlaps ig,, N,= 10 (solid line) andN,= 20 (dashed ling Energy scale is in

addi_tionally P'agued by the general cqmplexity of the NU-ynits of B. Smearing procedure has been applied for the hadronic
merical solutions of the 't Hooft equation and the encoun-¢,qss section.

tered singular integrals. These problems were alluded to in
Ref. [27]. 2
The general lesson one draws from this comparison is not M
new: it is not easy to correctly evaluate the actual asymptotic Im Hﬁe(qz)
width in too straightforward numerical summations of many
exclusive widths, were it a computer-simulated approximateyccording to Ref[17]. The variance from unity, in general,
solution for a theoretical model with—theoretically goes seem to be present.
speaking—potentially unlimited accuracy, or the actual ex- e do not think that this warrants one to become cautious
perimental data. The approximations made in practical applim applying the OPE to the polarization operator. There are
cations usually go across preserving the subtle interplay ofertain drawbacks in the computations of Réf7]. For un-
different effects which underlies delicate cancellations shapknown reasons the authors presumed that the width{(Zg.
ing the size and scaling of the power suppressed nonpertugecomes nonintegrable for the larye-theory and, there-
bative effects. fore, cannot be sensibly smeafeds a result, instead of
The recent paper Ref17] announced even more drastic considering the current correlator in the 't Hooft model itself,
numerical mismatCh of the aCtUa.I hadroniC W|dth VS the OP% ratherad hocansatz was adopted which was intended to
Considering WA, even in the |eading Order at Wh|Ch the ef'mimic nonvanishing W|dths Of the resonances at fnhi@

fect appears. In Secs. lll and IV, on the contrary, we analyti-The simple resonant representation Fb¢g?),
cally computed the asymptotics of the spectator-dependent

125

75—

widths and found exact correspondence with the OPE. As a 2
matter of fact, Ref[17] contains self-contradicting asser- (g?)=N 2 Cn :
tions: It was stated that tHemearegcurrent-current vacuum T 9°- I\/ln2+le

correlator [of the type determining, say,o(e‘e”

—hadrons] is known to obey the OPE. Simultaneously, the

difference was claimed established for the effect of WA in —ImTII(g?)=7N.Y, c28(q?—M?2) (80)

the context relying on the factorization expression &7). n

The starting expression—whether correct or not for a par-

ticular model—thus equates the validity of the OPE for thewas replaced by a complicated model wherell(g?) was
WA nonleptonic width to its applicability for the vacuum due to the two-meson states, with their production amplitude
current correlator. Figure 7 shows the ratio of temearedl  containing the resonance terms

values of the absorptive parts of the correlator

81t is obvious that for any regularization consistent with unitarity,
"The value ofui for quark masses used in R¢R7] has been the width remains integrable, with the integral around the spike
recently evaluated by Lebed to be aboutg¥.§private communi-  independent of the regularization. This is ensured by the dispersion
cation. relation; see Sec. lll.

114034-15



IKAROS BIGI AND NIKOLAI URALTSEV PHYSICAL REVIEW D 60 114034

\/N_ch It is worth reiterating that the computational difficulties—
. quite significant in the analysis of RgfL7]—to a large ex-
QP>—M2+iM, T, tent were a handmade problem. Bathand M, are readily

computed without cumbersome triple overlaps involving sin-
At large N, the residues/Nc,~ N; while the resonance gular integrals, and in any case had been determined to con-
decay amplitudes\t,~ 1/YN; the widthsT',~1/N,. struct the authors’ model. Computing the smeared width di-
As soon ad’,, are small enough, such a prescription doesrectly from Eq.(80) would be then quite straightforward.
not differ from the proper spectral density E§O) being a

concrete functional choice of th&distributions,
VII. CONCLUSIONS

2
do? Cn = 72 ! We have examined the inclusive decay widths of heavy
2 2 TZ=m2Z+im, 2~ "M, T, - the ’ :
[a“=Mp|>MpTy, q ntiM I nln flavor mesons in the 't Hooft model in the context of the
(81 heavy quark expansion, paying attention to the spectator-
] ] ] dependent effects sensitive to the flavor of the spectator
provided eacH,, is saturated by the included decay modes:quark_ To the order the high-energy asymptotics are calcu-
lated, there is no deviation from the OPE predictions, either
E IM(n—=KD)|?®y=2M,T,. (82 for semileptonic, nonleptonic decays or for thee”
k.l —hadrons-type processes—as anticipated.
We confirm that there is no difference for the OPE
Here @, denote the two-body decay phase space. Undepnether a semileptonic or nonleptonic width is considered.
these constraints such a model—if not true—is at least legitiyynat matters is only whether the particular observable can
mate. However, two conditions must be observ_e_d: First, thge represented as tioempletediscontinuity of the properly
resonances do not overla, <|Mn.,—My|. Additionally,  constryucted correlation function over the cut in a suitable
the Pa”"’?" decay amplltud.es. and the pha_se space fagtors MU$lyrd” variable. This variablew is the same for both semi-
bg practically constant within thé@otal) width of the indi- leptonic and nonleptonic decays, EB9). After that the only
vidual meson. o _ difference is the number of the quark Green functions to be
Both constraints are satisfied in the formal liMig—. 4 jtiplied and to perform the expansion of the product in the
However, in practice the width grows with the mass of thecomplex plane. The validity of the OPE, of course, cannot
resonance, while the spacing between the successive ONgSpend on these technicalities.
decreases. Therefore, for finik; adopted in Ref[17] (let This does not mean, however, that for all types of decays
alone the considered cablg=1) the first condition was not e predictions of practical OPE truncated after the first few
well respected. Regarding the second constraint, the problega,ms work with equal accuracy at a fixed mags. On the
gets additionally aggravated by the singular two-body phasggnrary, considerations of Re28] suggest that the effec-
space inD=2. Therefore, it seems quite probable that theje “hardness” scale can be smaller than literally the en-
reported disagreement is rooted to the inconsistencies of “’@rgy release. Accordingly, higher onset of duality and larger

model for.ImH(qz) adopted in Ref{17]. o deviations for nonleptonic widths were obtained in Rég]
A detailed look at the plots displayed there incidentallyjn the instanton-based model.
provides support for this conjecture. The plots fthe Therefore, in our opinion, attempts to cheéét alone to

smearegl Im H(qz) show a rather unphysical shoulder at gisprove the OPE itself in the concrete model are hardly
Mg~ 10 which coincides with the mass of the resonance havmeaningful beyond illustrative purposes. What has a poten-
ing abnormally large widtliFig. 9 of Ref.[17]). On the other {ja| of providing useful insights, is studying the behavior of
hand, the agreement between the hadronic and quark widthge contributions violating local duality, so far the least un-
is surprisingly good just alower masses where the reso- gerstood theoretically subject.
nances are more narrow. The point where the curves start 10 The “practical” OPE vyields the width in the power ex-
diverge, apparently shifts upward with increasig. pansion

Finally, a simpler question remains open about the accu-
racy of numerical computations employed in RgL7].

Taken at face value, even adopted samplingmef when FHQ_A Ar A 83
only 2 to 3 points fall inside a separate sharp resonance peak, Ty ot mo + m_é SR (83

seems insufficient to evaluate the smeared width reliably.

Whether these effects can explain the observed discrepanc%/ o )
~20% atmo~10 to 15, remains to be clarifi€d. If the series in Ithy were convergentto the actual ratip
FHQ would have been an analytic function of, above a

certain massm, pointing to the onset of thexact local
%Since the effect in question by itself isqf/in the polarization parton-hadron duality. The actuEhQ is definitely nonana-

operator, it could be priori conceivable to have subleadingyd/  Iytic at any thresholdwhether or not the amplitude vanishes
corrections as large as 20%. However, the OPE ensures that ti@d the threshold Thus, the “radius of convergence” cannot
corrections are suppressed by at least two powers, aind thus ~ correspond to the mass smaller than the threshold mass.
must be small; they are readily calculated. Since in the actual QCD the thresholds exist at arbitrary high
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energy, the power expansion in E¢83) can be only early, after only a couple of the principal thresholds, and the
asymptotic, with formally zero radius of convergence inlocal duality works much better in the heavy quark widths,
1/mg. nonleptonic and semileptonic than n(e*e™ —hadrons).

In practice, the true threshold singularities are expected tThis applies to both the qualitative behavi@enerally, a
be strongly suppressed at large energies, and the correspongrger density of resonances implying a more narrow mini-
ing uncertainties in the OPE series quite small. In actuaha] interval of smearingand to the strength of the threshold
QCD they are expected to be exponentially suppressed evegmgularities as well as the threshold residues. The qualitative
tually, though, possibly, starting at larger energies. In thejiscussion of the underlying reason can be found in Ref.
intermediate_domain they can decrease as a certain POWBSg], Sec. 3.5.3.
and mustscillate Can these lessons be transferred to actual QCD? Unfortu-

As was |Ilustrat9d in Re{11], the power expansions I|ke_ nately, there are some essential differences between it and
Eq. (83 are meaningful even beyond the power SUPPTessio, explored 't Hooft model, which must be important for the
where the duality-violating oscillations show up. In the case duality violation '

of the heavy quark widths where masg, cannot be varied The singular 16| two-body phase space D=2

in experiment, the size of the duality-violating component : -
may set the practical bound for calculating the widths. ThusSTOngly enhances the threshold singularities, compared to
136| in D=4. In the actual QCD enhancement of the nons-

it is important to have an idea about its size. We emphasiz : ;
that one should always include the leading QCD effects tgnooth behavpr can rather be expect_ed _on_ly_ from single
the partonic expressions, rather than compare the actual ofgsonances with masses closeMg . While infinitely nar-
servable with the bare quark result. In the model consideretPW atN.—c, they acquire significant width fan; /N =1
in Ref. [11], incorporating the power corrections from the which leads to drastic flattening of the resonance-related
practical OPE suppressed the apparent deviations by mo@@mbs when the width becomes comparable to the distance
than an order of magnitude. between the successive resonances. Additionally, one ex-
It is worth noting that we identified the case where thepects a denser resonance structure, at least asymptotically, in
exact quark-hadron duality in the interference width is satuthe actual QCD in four dimensiorisven atN.— ) than the
rated on asinglefinal state. It is realized in the chiral limit equal inM? spacing inD = 2. All this would lead to suppres-
for the final state quarks. It seems to be just an opposite casgon of the duality violation.
to the classical small velocity limit for semileptonic decays  Finally, similar types of the condensate corrections lead to
noted by Shifman and Voloshin in 194@]. While appli-  a weaker suppression B=2 due to the smaller dimension
cable only for largeN; and in D=2, the present case is of the corresponding operators. This provides a larger room
peculiar in that the dua“ty is not affected by Subleadingfor various possib|e nonperturbative effects.
power corrections. Both cases serve as a Counter-example t0 These obvious differences would optimistically suggest
the lore often purportingly equating the accuracy of localthat the 't Hooft model represents, in a sense, an upper bound
duality to the pro_liferation of the final state channels in thefor violations of local duality in QCD. While this is not
process In question. excluded, such implications must be regarded with caution.
The performed analysis elucidates how the general duality |n fact, the largest duality violating effects in the nonlep-
between the partonic and hadronic widths works out its WaYonic heavy flavor decays can bhe expected from the reso-
at large energies. It can be traced that, to the leading order iRance structures in the combineghjgg) channel in the final
1/mg, the duality is simply the completeness of eigenstatestate, embedding the quarks belonging to both the “semilep-
of the hadronic Hamiltonian. It is not even required to eX-tonic” and “hadronic” subprocesses which do not decoup|e
plicitly solve the 't Hooft equation to establish the leading completely. Such states are lost in the 't Hooft model. More-
free quark result for the width, but just to know that the gyer, the limitN.— simply erases the difference between
solutions form a complete basiThe absence of the non- the nonleptonic and semileptonic decays in this respect.
OPE terms already at the next to leading ordendfis a Another peculiarity of QCD in two dimensions is absence
dynamical fact requiring, for example, a proper solution ofof the real gluonic degrees of freedom and of the perturbative
the bound-state equations. This enteiesthe average of the |ogarithmic short-distance corrections typical =4 (in
moments of the invariant hadronic mass in the final state. contrast to the powerlike ones in the super-renormalizable
The ’t Hooft model gives an explicit example of the p=2 QCD). So far we have no clues if the onset of duality
duality-violating effects, at least of the “minimal,” for excitation of the gluonic degrees of freedom is the same
resonance-related nature. As a general feature, we obsenyg noticeably larger than for the processes describing the
that the duality between the appropriately averageelimi-  eyolution of the “valence” quarks. Correspondingly, while
nate the threshold singularitiediadronic widths and the opserving a good qualitative duality between the bare quark
truncated OPE predictions sets in numerically well ratherzomputations and the actual hadronic probabilities already at
energies~1 GeV, one may have to ascend to higher ener-
gies in the Minkowski domain to reach quantitative agree-
10The Multhopp technique employed in R§R7] does not auto- Ment at the level of the perturbative corrections. Let us note
matically respect orthogonality of solutions with truncation and,in this respect that the “real gluons” in jet physics are reli-
therefore, in principle can lead to overestimating even the leadingably observed in experiment only at rather high energies.
mg coefficient. Unfortunately, two-dimensional theories do not allow one to
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use oversimplified prescription such as E8) (a possible

resolution was conjectured already in Rgf6]). APPENDIX A: 't HOOFT WAVE FUNCTIONS IN THE
A closer look reveals that the problem originates just on SEMICLASSICAL REGIME AND THE
the quark configurations where all four quarks in the inter- UV DIVERGENCES

mediate state have the same color. This configuratiorNs 1/
suppressed and can be simply discarded for the leading-
probabilities. Within this color combination, there is an am-

Here we outline a more accurate determination of the
scaling with A of the smearing parametér in Egs. (41)—
(44). At M > B, m, 4 the solutions of the 't Hooft equations

% ly f d h th | Wiiek
which is absent otherwise. It is not difficult to see that the re nearly free and approach the massless solull®31]

naive computations based on the amplitude prescription Eq. en(X)=v2 cosmnx, M2~x23%n. (A1)

(3) amount to counting the two possibilities independently,

which is not justifieda priori. Moreover, it is a clear double The first expression holds outside the end-point domains

counting at least in the simple quark picture. To phrase it—=0 andx— 1 bounded by the “classical turning points”

differently, the bases of the final states used in the naive S

color rules such as Eq3), are nonorthogonal beyond the X 1—x= m f

leading order inN,. ’ M3y
With the complicated confinement dynamics, we cannot o o

know beforehand what are the actual decay amplitudes to th&/€ @gain imply the simplified case of equal quark masses

particular hadronic states in this case—and, additionally, thdu=Ma=m. The semiclassical wave functioité1) deter-
mine the ultraviolet-singular part of the Green functions.

simple two-meson picture of the final state must be, in gen- We shall adopt the exponential regularization of the sums
eral, extended when going beyond the leading ordeddn Then the Green functio(x,y:A) in Eq. (41) has a mean-

However, It seems ObVIQUS that the naive pres_cr_|pt|c_>n haV'leng of the Euclidean Green function for the 't Hooft light-
little chance to be true in a complete theory if it violates

| . ; i the simplest £ al i f cone Hamiltonian, with {2 corresponding to the Euclidean
gggstri?uéﬁctqsuwemen s even in the simplest case of almos re{ﬁnaginary light-cone “time” ix , , andx,y being “coordi-

o . . ) nates” in the space of the light-cone momentum fractions.
This, incidentally, is an illustration of the fact that the Formally, the problem is equivalent to usual one-

naive factorization of decay amplitudesustbe violated at  §imensional quantum mechanics on the intefi@al] with
some point at the N, level—either in the corrections to the Hamiltonian given by the right-hand sidRHS) of Eq. (19).
color-allowed amplitudes, or at the leading level for color-The first(local) terms play a role of the potential whereas the
suppressed amplitudes, or in both. A dedicated study of thitegral term includes the counterpart of the kinetic energy
above inconsistency was undertaken in the framework of the/hich is now approximatelyr|k| for the “momentum” k

nonrelativistic quark model in Ref30]. It was found that much larger tharg.
the problem is indeed resolved there in this way, with the The regularized summation is straightforward and yields
concrete dynamical mechanism dominating the modificatiotiterally for G(x,y;A)
of the 1N -suppressed amplitudes depending on details of .
the model. 1 sinhe
In Sec. IV, considering the spectator-dependent preas- 4 sinkP(e/2) + sirf(m/2)(x—y)
ymptotic correction we formulated the problem of calculat-

(A2)

: . o : 1 sinhe w32

ing the interference width in the way that allowed us to avoid + - : , e=—y.
the complications associated with the analysis of the 4 sintf(el2) +sint(m/2)(x+y) A
N¢-subleading transition amplitudes, and to study it in the (A3)

theoretically clean environment. Incorporating the spectator

quark via Pl made interference an effect appearing in theSince the smalf eigenfunctions can be quite different from
same order inN; as the noninterference widths. Then the Eq. (Al), there can bea priori, additional regular(e-
hadron-based computation could be performed consistentlyndependentterms in Eq.(A3). However, since at— 0 the
and the OPE prediction was readily reproduced. limit of G must yield é function, they are absent.
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The first term in EqQ.(A3) clearly yields §(x—y) at e
—0:

1 sinhe €
4 sint(e/2) +sid(m2)(x—y) €2+ w2(x—y)?’
(A4)
with the width A at finite e amounting to
e mp?
A= ; = F (A5)

The second term in EGA3) seems to appear when both
andy are small,x,y<e or 1—-x,1-y=<e. In this domain,
however, wave functions,(x) with n<A? are different

(suppressed and in reality this term must be discarded. In
practice the domain of such smallmust be treated sepa-

rately, which is illustrated below. Therefore, we adopt

sinhe

1
G(X y,A) 4 S|nh2(e/2)+s|n2(77/2)(x y)

at

=X,ys1l- (AB)

A? AZ
To address the end-point doma®r (1—x)~1/A% we
need to account for the corresponding behaviopgx) in

the “classically forbidden” domain, using the language o
ordinary quantum mechanics. In these domains the wave

functions are suppressed:

&

X=X;<1,

mZ'BZ
QDn(X)"’COI']S 1—x\ 72 XtN—Az—.
1-xs=1—x<1,
1_XI
(A7)

Now we consider the regularized sum rule E4Q):

1(A?)= fo a?da?e "V p(q?)

2

1 m?
= ded 7+1_X)G(x,y,A). (A8)

Using G(x,y;A) in the form Eq.(A6) we get

2

A
I(A%)=2m? In—>5 e +consﬁ (A9)

where the factor 2 reflects the contributions of bath: 0

andx—1. The logarithm is saturated at
2 2

%, %<x<1

x—y|= (AL0)

(and likewise withx—1—x, y—1—y). In this domain the
expression foiG(x,y;A) is legitimate.

PHYSICAL REVIEW D60 114034

Now we show directly that the domain< 8%/ A? yields
only a constant, that is, a nonsingular contribution Aat
—oo, First, we note that Eq38) ensures an upper bound on
Cn, constMﬁ. More precisely,

i — 11
< — o —, A
|Cn| cons Tn ( )

This, of course, follows also from Eqetd), (45).1! Then we
can bound from above the smalleontribution as

m? m?
fxsl/AZdX dy(7+ 1—x) G(x,y;A)

_ . 2p2 2
m2 = e mBMAT o2 ,
<const— >, ———— dX—(7°nx)”
Y n=1 n X
mt = eﬂ-zﬁanAz( n )7 mt
<const— —| =const5—5.
V2 = n A2 NFL

(A12)

Here we assumed the cutoff in the integral oxet ~1/A2,
up to an arbitrary constant. The dimensionful factor can be
either 82 or m?, whichever is larger and determines the po-
sition of the “classical turning” point. The key property is
the convergence of both the integral over smaknd the
sum overn due to the suppression gf,(x) in the “classi-
¢ cally forbidden” domain. Thus, the translation rule for the
utoff energy into the regularization E@2) in the integral
overx,y is obtained directly from the 't Hooft equation.
Using the similar technique, it is easy to establish the
asymptotic duality directly for the pseudoscalar current cor-
relator

dn
I(q%) =N W=
IMTI_(g?) =N dis(M3—q?) (A13)
where
my
o=\ 0l 5010)= 5 [ T T 0

m3 2
— 4+
X 1-

1 1
_! morm fo dx )gpn(x) (even n),

0 (odd n).
(A14)

(The first form is a direct representation, whereas the second
expresses the pseudoscalar density as the divergence of the
axial current. A certain parity relatiohl9] ascending to

't Hooft ensures they both holdTo find the asymptotics of

d,, we consider the logarithmically divergent sum

while the exact coefficient in Eq$43)—(45) is a subtle thing
addressed here, the powerroftself is simple enough.
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p.(a%) d2
f da’ qu O(;M_g

n

=> : fld (md+ m”)
T4 2(myrmgMZ Jo X T 1=

1 o(mi o omg
X@n(x)fo dy _+1Ty

) enly).

(A15)

Equation(38) allows one to rewrite it as

SO s [ e I
0 X 1-

n M_§:2(mu+md) n X

1
X @n(X) fo dy en(y), (A16)

which returns us to Eq39).

APPENDIX B: 1/mg EXPANSION OF THE HEAVY
QUARK WEAK DECAY AMPLITUDES

PHYSICAL REVIEW D 60 114034

scaling withmg) excitation number. The final stakecan be
arbitrary. We will show that the explicit expressions for the
transition amplitudes in the 't Hooft model exhibit this
parton-deduced property.

Let us consider, for example, the representation used in
Ref. [27], although we put it in a slightly modified form
similar to that of Refs[32,22. One introduces the kinematic
variable w which depends om? and the final state meson
mass:

o%+Mj
2
M2,

1 a*-M§
w—z[l'f' M

Ha
(B1)
which, in the light-cone formalism has a meaning of the
fraction of the momentum seen in the infinite-momentum
frame carried by the particle with mas§? in the two body
decay ofB meson, if another particle has malsk,. This
fraction has two possible values corresponding to the two
possible directions of mesdnin the rest frame. We chose
the above branch to hawe —0 asq®—0, as in Ref[11].
The light-cone fractionw has a very simple meaning in the
rest frame as well:

As discussed in Sec. V, the perturbative _corrections tothe (1- )My = (1B +Edem, oMy =(—|al*do)em.
weak decay vertex appear to orgg. In the light-front for- Q (B2)
malism they vanish at the kinematic poipt=0 [11], since
it can be realized as the configuration with= 0, for which
no physical states in thiechannel is possible. The loop cor-
rections proportional to the dimensionful couplifd can be, Colw)=— 1__“’ ld (y) [1-(1-w)(1-y)]
therefore, inversely proportional tm3 or Efy~(mg—m, k o Y O PHg Y
—\/9?)2. Since atmg—my— /g?>~ g the process is “soft,”
we do not consider here this domain, and do not distinguish 1 glly) PH LI (1= @) (1-y)]
between the scales ofip and E. It is important that no D(w)= _‘*’f dy —(1— —

. . 0 y 1-(1-w)(1-y)
dynamic gluon degrees of freedom existOr=2. Therefore, (B3)
in the 't Hooft model vertex corrections separately are per-
turbatively infrared finite in physical gauges. This was ex-which correspond to the effects unrelated to vertex correc-
plicitly illustrated in Ref.[11]. tions.

As a result, the actual transition amplitudés$J|Hq) up Additionally, in thet channel of the decay process one
to terms,BZ/mé must be given by only some overlaps of the can have various bound states Bf mesons; we reserve
initial and final state wave functions, at arbitrdtijough not index| for them, and their masses will be denoted. For
too close to (nQ—mq)Z] values ofg?. We assume that the eacht-channel resonance there is andependent triple-
initial stateH,, is either a ground state or has a finitot ~ meson(*“ HoB{’D™M" ) overlap

Two w-dependent oD overlaps are then considered

- Lot o) ek(y)

With these notations one has for the transition amplitudes

_ Vr o @3+ (-D)'wf
€0, (KT, QlHo(P) = 2 mj > qz_mz“' ! F k(@) = GGl ) + MMy Di( o), (B5)

_ BN (= D'uf
qﬂ<k|quQ|HQ(P>>=J—E . '

N | q f|F|k(w)+q2Ck(w)+QOqu(w). (BG)
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Here, for convenience, we wrote the invariant combinationsup. Further terms can be obtained using the explicit large-
of the amplitudes instead of the two Lorentz components oasymptotics in Eq.(B10) and the end-point behavior of

the current separately. For example, the decay ampliBide W (t) att—mq. For example, the improved nonrelativistic
—D®+ 7 in the considered case of vectorlike interac- equation takes the form

tions takes the form

G —Pag?+(—1)'uf +—Eﬁ 1)\? (t) M~ V(1) + ! 1 ! )t
n — — —
Mkn:—mcn El P2 CiFi(w) €n 2mg | " 2t " 2 m3
t2 t3
+1- t
+ anZCk(w)+QOqu(w) , (B7) mQ) Mg mQ W
1 (= 1
whereP,, is the parity (1)""! of the 7=(" state. Here and -5 | dsWy(s)7—=z. (Bl
2J)o (t—s)

below throughout this appendix we suppressed the fabtprs
and put dimensionfuB=1. It is easy to see that @=0
(w—0) only the term~Cy survives and this expression in- Equation(B11) can be viewed as a usual variational problem
deed reduces to Eq&6), (62). for the nonlocal Hamiltonian defined as

We shall show that the first term in this relation associated
with the dynamics in thé channel, is ng-suppressed com-

2 _
pared to the terms given by overla@sand D. This imple- (W|H|W )= J dt\If(t)[m 1 . 1 - iz)t
ments the approximate “on-shell” condition for the heavy 2 Mg
quarkQ; in this case it can be accomplished employing the 1\ 2 3
1/mg expansion of the initial-state wave functign, . ,
Q +|1- —
° ! W) 2mg " 2mg) " (Y
Q Q Q
1. Nonrelativistic expansion in the 't Hooft equation W)W (s)
To analyze the heavy quark system, it is advantageous to f f (s— t)2 (B12)
introduce the nonrelativistic variablé$:
M,=mg+e,, t=(1—-Xx)mg, and For example, the analogue of the nonrelativistic expansion

for the heavy hadron mass takes the form

1 t
W (t (1— ) B8
n(t)= \/m—QQDn mo (B8) T :<t>_ 1 . 3<t2>—<t>2
. _ ' Ho 70 2mg 2mq
in terms of which the equation takes the form
, ) L AD-3OEH? (© O( 1 )
+1 m —1 t1-1/m 2 m3 |
et Ty ()= 2 Qlyp (1) 2mg 2mg mg
"2mg ) " 2t 21-t/mg) " (B13)
1 (m V(s
——J *dsontS) B9 o
2J)o (t—>s) with the average(---) defined in the standard way as the
integral overt with the weight W (t)|. Here all averages are
The asymptotics o ,(t) at 1<t<mg is given by calculated with the finiteng W (t). To exclude the Coulomb
. interaction term we used certain relations which are derived
o o _[M in the way analogous to the virial theorem in quantum me-
Vn(t)= t3 ith Fn= f _f dt¥a(t). chanics. Namely, for any eigenfunctioh, (t) we can con-

(B10) sider the average 6 over the trial function/A ¥ ,(\t), and
require a minimum ak =1 (a similar trick was used in Ref.
One can extend the bound-state problem E&9) from  [23] for the case of infiniteng). In this way one obtains
[0,mg] to the whole mterva[O ) if the exact linear poten-
tial term t/2[ (1— 1/mQ)/(1 t/mQ)] is replaced by its for-

2 3
mal expansmn m/mQ This is justified literally only up to (mgp_ 1)<£> —(V)— ( 1— _12)“) zﬂ_gﬁg
1/mQ terms (1m in the wave function when the ultravio- t Mg Mg Mg
let divergences of the static heavy quark expansion first show 1
= (9( ) (B14)
Q

12This standard for the infinite momentum frame procedure in the
context of the 't Hooft model was first considered in R¢23, 22. while
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eatl 1( L 1
€n+m—§ (M= D7) =)

1(t%) 1%
2mg 2 mj

1 Hamiltonian, Eq.(B12) with mg=9. This fact can be used
1- HZ) (t) to obtain the variation oft) when including perturbations, in
Q the analogy to the case of QQRef.[15], Sec. I):

L
2

+0 (B15) Xty=—I(H,)

] ] for the perturbations™, which is a homogeneous ramhk-
where())) denotes the expectation value of the integral termynctional oft. This follows from the usual operator rela-
in the equation. _ _ tions such agiT{[*,A],B})=([A,B]). For instance, to or-

The bound-state—mde_pendent terni/2mq in Eq. (B13) der 1mq one has(t>=(t>w—(t2>/mQ, so that in Eq(B13)
deserves a special note: it represents the short-distance rengf- mQ:<t>x+<t2—t_2>/(2mQ), as it should be.

malization of the bare mass we used, originating from mo-" "o
menta~mq. There is no infrared part of the mass: it enters o _ _
at the scale much larger thahgcp. The effect of smaller 2. Nonrelativistic expansion of the decay amplitude

momenta is described by the nonperturbative 't Hooft wave | the g expansion of theHQ—>D(") amplitude we

function rather than infrared-divergent perturbative diagrampass from QDHQ(X) to the nonrelativistic wave functions

Let us note that the operatdf2 is associated with the . . . .
breaking of scale invariance of the static 't Hooft equationq,“o(t) and in the case of theBtane verticesy, rewrite

[i.e., W(\t) is the solution of the equation with the linear ¢, °(X) via the corresponding¥ “(u). The nonrelativistic
term A?t/2]. In other words, the commutation relation holds approximation forc quark is not employed here, however.
[t(d/dt),H.]=t—H., where H, is the static 't Hooft Then

1
=,
My

Cu(w) = — — J(lw)modtxp (t) (1 ) (B16)
LT omg Jo R RN CEATINA
B 1) (1-w)mg  dt er(1—t/(1— w)mg)
Dm(w)__(l_w)\/m_Qfo 1—t/mQWHQ(t) 1-t/(1-w)mg ' (B17)
and, for the triple vertex,
W) ely)

mo 1
F|k(w)=w(1—w)f0 dufO dy[(l—w)y-l—wu/m

Yot (- oimol—Fuf(1-e)(1-y)mol}. (819

At arbitrary g? we havew~ 1; nevertheless, at large enough Eq. (B2). In reality, this property of the leadingy, transi-

energy release (2 w)mg>1 still holds. This parameter de- tion amplitudes is more general and is not related to the

fines the “hardness” and is used in therly expansion. smallness of the perturbative corrections. It holds at small
The nonrelativistic expansion amounts to assuming thagnergy release as well, where the vertex corrections are not

the support of the¥” functions is limited to a finite interval of POwer suppressed; this is addressed below at the end of Ap-

the argument of order 1, and extending the integration bver Pe€ndix B.

and u to infinity. With the fiducial domain of integration

t,u~1, it is readily seen thaf, and Dy scale as'mél/2 and 3. “Semileptonic” width I'g(g?) at arbitrary g2 with 1/mq

lead to the properlyng-behaved transition amplitudes. On accuracy

the other handr, ~1/m, and are accompanied by the fac-  ore we illustrate how the parton expression Fay(?)

tors c;~mg 2. The sum ovet is effectively cut off above g reproduced at nonzem?. We assume that the width av-
I~mq whereu, exceedsng . Altogether, the terms with . eraged over an interval @i, or g2 is considered, so that the
yield corrections to the decay amplitudes suppressed by @fireshold factors become nonsingular. The analysis differs
least lv‘né. from the case of>=0 anatomized in Ref11] only in tech-
The leading heavy-quark transition amplitudes governedical details. In particular, the width is still saturated by the
by the overlap factor€ and D, Egs.(B16), (B17), exhibit  states withMﬁs(l—qzlmé)mQ, and the summation over
explicitly the proper functional dependence on the combinathe final states can be extended to infinity. The decay ampli-
tion of mg and g°: the inner product of wave functions de- tudes are given by the wave function overlaps to this accu-
pends only on (+ w)mg whose value just fixes the energy racy. Let us assume for simplicity that.<mq . Then only
(or momentum of the final state hadron in the rest frame, the term~C, survives:
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N S S f(l_wk)detJ(l_wk)de Wy (O (1 S ) (1 . )
(q )_E 7 ZMHQ|p>k| (,()ka 0 0 S HQ( ) HQ(S)QDK (l_wk)mQ Pk (1_wk)mQ .
(B19)

The leading term in the expansion of the width emerges if we nelgatompared to (+ w)mg. Then wkzqleﬁQ and
2| P =(1—wk)MHQ arek independent, and we get up to the power corrections

2

G- 1 *
r(g®=-—-—| dtds¥, ()T, (S)5<
A7 l—w Jo Q Q

t-s | G’mq 1o 1
(1-w)mg - Ax m_Q

Account for the Ithy, effects requires expandif@,| and oy in Mﬁ/(mé—qz), and leads to the “second” sum rule for the
average 01M§ [11]. Here is how it works.
The partial widthl",(g?) to 1/mg accuracy takes the form

. (B20)

FZ—GZ M 1 M ! fddqf v 1 t 1 >
k(Q)—Em ( _wO)mQer_é 1wy tdsWy (D)W, (S) ¢k T Imwgmg) AT T wgmg
L 2w fddtqf' v 1 t 1 > B21
1wy tds 'y (OWh,(S) ek 1-womg Pk T—wgme) || (B21)
wherewo=0q%/M3 .
Using the relation
m2—1 mi—1
2 _ C sp _ _
Ek Mk¢k(x)¢k(y)_( X + 1—X )5()( y) (X_y)Z (822)
and Eq.(B11) to the leading order in iy, we obtain
> sz dsW, (s) PR Py PR =(1—wp)?m3(2e—t) Wy (1) (B23)
- k Ho\ =) Pk (1— wo)Mg Pk (1— wo)Mg o) Mg Ho
(e= MHQ—mQ). Hence, we arrive at
N 11fd 2¢) W2 Zwofdz W, ()W o 2 B24
(0°)= g Mug| 1 g | | -2V E(O+ = | dtt2e- WO Wu (0|0 o)) (824
To evaluate the last integral we note that for dift)
V(D)W f—1 d\lfzf A f’—lf’
f dtw, (DWh (DT (=5 f dtl (WA (OF(D]=WE (OF (1) |= = 5(f" (1) (B25)
Therefore, Eq(B24) takes the form
G*My 2e—(t)  dwy (t)—¢ 1 G%m 1
2y _ Q. 0 _ Q
g9 yp [1 Mo +1_wo Mg +O(m7Q>] yp 1+0 mTQ)} (B26)
|
where we recalled that—(t)=O(1/mg). 4. Decays at maximalg?

2 .

Thg rlext, g corrchogls, 02n the pther hand, are not  a¢ g2 close to the energy releasem(g—mq)z—qz
Only I|m|ted to the term—,u,T/ZmQ, but |nC|Ude alSO those SBmQ [Or at (mQ_mq)sB] the decay processes are not
coming from the perturbative vertex renormalization andhard but proceed over the time intervatd/3. As such, they
from the sensitivity of the decay widtR—q+ ¢ with m3  in general are sensitive to thechannel evolution as well.

#0 to the short-distance quark mass renormalizatith OPE does not allow to compute these widths in the short-
—m?— 32, distance expansion directly even to the leading order in
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1/mg. However, it relates the overall width associated with ~ With the smoothp(g?), we can neglecp, compared to
this domain ofg? (i.e., integrated oveg?) to the expectation MHQ in Eq. (B29) and have, up to iy corrections,

value of the local four-fermion operator: )

G
i _ 2— 2
rend ponke GZp(mg) (PP, — 5,WME.Q) J do? ['(q%) = ZMHqup(mQMvaV— Ouv)
1 _ 45
X5 —(Ho(P)|Q7,4G7,Q|Ho(P))  (B27) fi Oy alk:
oMy PR Q % | gag; (Ho(P)IQv.alks)
(this fact was proven in Ref24] although was used to cal- X(ks[qy,QIHq(P)). (B30)

culate certain preasymptotic corrections to the heavy quar
widths since the original papef8]). Complicated strong in- _
teraction dynamics shows up here as a nontrivial expectatioflence ©f p(d
value of this operatoffor light q; it is perturbatively calcu- SUPPressed. _
lable whenq is heavy. In the 't Hooft model it essentially If we formally summed over the final statiesthe RHS of

depends on the details of the lowésthannel states. As has the above equation would become

lfhe corrections to this expression appear due to the depen-
2) on g? near g>=mg and are power-

been already discussed a few times, a smeared decay widthis g2 d

assumed here, which is reflected in H827): it incorporates Wméﬁ(mé}(vﬂvy— 5M)2 f 57 JE

the spectral density—(mé) averaged over an interval. With a Ho k K

continuousp(qg?) there would be no resonance structure in — —

Py ) X (HolP)|Qy,a(0) [ks) (KT, Q(0) Ho(P))
Referring to papef24] for the formal derivation of Eq. G2 .

(B27), here we illustrate it schematically in a transparent = 7me(mQ)(VMVV— 5,W)W

way. Let us consider a particular meskrin the final state. Ho

The corresponding partial decay probabilitin the rest

frame is given by X(Ho(P)|(Qy,a)(@¥,Q)(0)[Ho(P)),  (B3D)

which shows the representation of the matrix element as a

2
Fk(qz):G_ 2 ip(qz)(q q,- 8,97 sum over intermediate states. The integration oyerre-
2 BMﬁQ|ﬁk(q2)| T pAv ey pIacesqu/(ZwMHQ|ﬁk|) in the partial decay width by
_ R dp./(272E,) which is just the quantum mechanical sum-
X(Ho(P)|Qv,a(0)[k(By)) mation over the intermediate states.
R Of course, this correspondence is not accidental Bor
X<k(pk)|me(o)|HQ(P)>' (B29) =2. Indeed, the general two-body phase space is given by
Integr?tmg over some interval of we can pass to the vari- Do(M2_,g2,M2)
able|p,| according to Q

dPI dQ;d|p|°d
Mg a*~ Mi - | p<|2p|>'3 = 2m’
Qo=—5— ddo=—dE, EdE=|p/d|p m T
2MHQ 2 2 2 2 D oD
X6, (1°=9%) 6, (p*=Mj)(2m)" 6" (P—p—1).
and have (B32)
5 ) 5 d|pyl s To obtain the decay width we multiply it by the transition
| 0@ =67 St A BDI(PPO.  ampiiudes  (Ho{Gnalld,  (KEvQHo) by
5 (Ym)ImIl,,(g) and by (2zr)D/(2MHQ). Integrating over
X(P_pk)v_ 5,w(P_pk) ] qz, we get
X5 (Ho(P)|Q,a(0)K(B) S
Y4 Px 2 2y~ 2 2 2 \2
ZMHQ Q M J dq 1—‘Ik(q ) 2 2MHQqu (I)Z(MHqu ’Mk)

The factor of 2 above corresponds to two possible directions d°-1p,
= sz

1
—Im H/.LV(P_pk)

of Py and is the unit “sphere” surface area in one space m p

dimension. If the smeared width is considered, the corre-

sponding smeared spectral dengg?) replacesp(g?) in 1 _ o

the above equation, since both the decay amplitudes and XM (HolQv,.alks)(ks[q7,Q[Hqg).
. . . H

phase space depend on the combinatigy- /g2 (for sim- Q

plicity we imply thatg?>m?). (B33
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9 o9 Q | 3 .
: 0_#4q
H | H, H
Q ] Q Q |
: — : Hq
qB‘P qu qsp qSP
a b

FIG. 8. "'s channel” withng=0 (a) and “u channel” withngy=2 (b) intermediate states saturating the four-quark expectation values in
full QCD. Both types are described by “soft” transition amplitudes and contribute simultaneously to the fo@QQﬁ) transition
amplitude near maximai®. Only the targeted §-channel” states appear in the nonrelativistic effective theory. The two points with weak
currents are shown separated in space Q) for clarity.

With Im1I1,,(P—p,) approximated by it¢smeareglvalue at  tuality) in the full theory—while generating an effective low-
q=mqV, this is the contribution of the given stakewith energy theory—would not yield relevant operators, at least in
massM . (whether meson, baryon, or a multiparticle state  this context.

the expectation value of the local four-quark operator The extra contributions of Fig.(B) are counterpart of the
<HQ(p)|(6,qu)(a,yVQ)|HQ(p)> [24]. intermediate states in the transition operator which are nearly

Of course, in reality we do not want to extend the sum-On shell for the reverse ordered product of currents
mation to all states with arbitrary large energies, which (qy,Q)(Qv,q) in their time-ordered product
would correspond to integrating ovgf down to %= —oc.
The largeq? domain is cut at some?<(mg—A)?=mg 3 :f dPxe i T{ay O(0)Ov d(x)' (B35
—2mgA, with A= Agcp. This means that the heavy quark w9 {G%.Q(0Q7,40)} (B39
expectation value in EqB27) corresponds to the normaliza- .
tion pointu=A. We note that the normalization point enters ﬁt Xo<0. They arefrespogsmle f_o_r thecha}_nns_l cu_t of the
as the cutoff over thenergyof the intermediate states, the -Oréntz-covariant forward transition amplitudg,, in Eg.
common case for the heavy flavor systefsse Refs[4,29,  (11- In the kinematicgy®—mg, do—mq the transitions to
and references thergin both's channel states witho=ng=0 andu channel states

It is worth reiterating an important point regarding the With ng=ng=1 are equally “soft” and nonperturbative,
end-point domain: the matrix elements in Eq27), (B31),  and cannot be disentangled in the single amplitligg(q).
(B33) are those in the effective theory rather than in full On the contrary, only the necessary light intermediate
QCD—even if there were no high-momentum gluons in theStates are present when the proper nonrelativistic effective

latter. The representation of the four-fermion expectatiorfn€ory of heavy quarks is considered, wh€¢x) do not
values include antiquark operators, either creation or annihilation.

The expectation values determining the corrections to the
widths must be understood only in this sense.

(Ho(P)|(Qy,.9)(@7,Q)[Ho(P)) We conclude this appendix by noting that the leadimg-
d°1p, o transition amplitudesdo—k obey the stated scaling in re-
:Ek: fm(Hde(ﬂk5><kﬁ|a%Q|HQ> spect tomg andg?, i.e., for the particular final state de-

pend on one combinationn$+Mg—g?)/mg having the
(B34) meaning of the rest-frame energy:

in the full theory includes not only the intermediate states 1 1 ,

W|thou't heavy quirlQ,. Fig. 8a), but also those containing m<k|ﬁrQ|HQ>q2va \/WQ,“(WFQ IHq )q 2,mg,
the pair ofQ andQ, Fig. 8b). The latter are not related to (B36)
the (perturbative heavy quark loops and appear even in the
free theory—for example, the staitk,(P) +(Q+q) with Q if
andqg having small spacelike momentaA totaling topy. It

can be simplyHq(P) + HQ(ﬁ). These states appear since the
Lorentz-covariant current®QI'q, together with operators
creatingQ contain also operators annihilating antiqu&@k  This functional dependence ensures, for example, that the
which is not the case in the nonrelativistic field theory. Suchfour-quark expectation values discussed above have a finite
amplitudes are shaped by the time scale’/A and are as Mg-independent limit asng— .

nonperturbative as transitions into the usual light hadrons. In terms of the light-cone parameters EB36) says that
Imposing the cut on the virtuality itself does not help to the form factors, up to certain powersqﬁl‘n_Q must be func-
eliminate such spurious states with “valenc@: In particu-  tions of (1-w)mg, see relationB2). The explicit expres-

lar, integrating out the high-momentum modes of quark andions(B3)—(B7) do exhibit this property, although in slightly
gluon fields, or imposing a cut on the gluon momentwin- different ways in different kinematic domains. To locate it,

mg+Mg—q? B Mo 2+ME—q'?
Mg Mg
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we once again can be guided by the duality between théhatF, in Eq. (B18) are universally suppressed by the mass

various pieces in the hadronic expressions based on thecaleE,~(1—w)mg whetherm, is small or large. There-

't Hooft equation, and the contributions coming from the fore, the functional relation EqB36) holds in the 't Hooft

corresponding Feynman diagrams. This duality exists in thenodel for any decay kinematics.

physical gauge and is transparent when the light-cone for-

malism is used. Additionally, the scaling behavior of various AppENDIX C: THE IW FUNCTION AND THE HEAVY

perturbative effects can be anticipated beforehand if general QUARK DISTRIBUTION FUNCTIONS

OPE facts are considered. For example, the high infrared

stability of the inclusive widths, together with the fact that no  The IW function¢ is most simply defined as the flavor-

gluon degrees of freedortand, therefore, no bremsstrah- diagonal vector form factor

lung) exist in D=2, leads to the finiteness of the vertex

corrections and allows us to estimate their magnitude. (pp")
It has been mentioned already that E§36) holds at (Ho(p")[QY,QIHo(p)= f( (P+pP)u

large energyE, > B: then the amplitudes are given only by

the simple overlaps), andD,.. The integrals in Eqs(B16)

and (B17) manifestly depend only on (Zw)mg if Wy (t) in the largemg limit. The expression for it quoted below can
are nonzero only fot< g Q be obtained using the b, expansion of the amplitudes in

. A . the previ ection, if we employ the nonrelativistic expan-
A different situation takes place at maximgd, for ex- € previous section, € emp oy 0 ¢ exp

! . . sion of the final state as well. Alternatively, we can use di-
ample, for light final state quarks. The triple-overlap terms Y

. rectly the simple universal expressions HE6) at g>=0
proportional toF, are then of the same order. However, in : : : ~ S
this kinematics F;, show the same dependence on (1relylng on the scaling relation&’6)—(78) by adjusting the

—w)Mg. Indeed, in this case— 1, and they take the form final-state quark mass:

) I Y My =zMy  with we(wv')= T2
F|k(w)=—mQ(1—w)fO duj0 dy[mQ(l—w)y+u]2 Q Q 27
XWy [mo(l-w)(1-y)]. (B37) z=w+w?-1. (C))

The position of the excited states in thechannel is also The perturbative corrections are finite and vanishngg
driven by the nonrelativistic expressigm=mq+% with ~ —* In two dimensions. In this way we obtain
Mq-independen, . Therefore, the pole factors in front of

Fx are simply proportional to irg :
W)= ———— J dtWy (OW([w=yw = 1]t)
2 2 1+w+yw
q%m Mq 2 2 i
= =~ for g°=(mg—A)= with
Tour —2AtE) dtqf U, (V2 c2
1+Z HQ\/E HQ(Z)- (C2

A<mg. (B39
The last expression was used to make representation more

On the other handA differs from (1-w)mg by just @ gymmetric. Herel , (t) is the solution of the static 't Hooft

(M -dependentconstant,

equation
EkzMHQ_mQ‘*’A:GO‘I‘A,
Bt
Et VEZ-MZ=(1-w)my. W(t)= ( o wt)—— j ds¥(s) =572 S)z

—12 (C3

Thus, together with the factorgecmg = this term possesses
the required dependence on {lo)mQ and overall power

o Expression(C?2) is easily generalized for the case of inelastic
scaling inmg .

. . . . transitions:
This reasoning may seem inapplicable when i@thndq
are heavy quarks, in particular, at smafl,—m,. The
( -
t-channelB;’ wave functions are then nonrelativistic in re kn (w -1 f dt\If“"( )q,(n)(\/—t) (C4H
spect to both quarks, and must be treated accordingly. This, z

however, is a transition between two heavy quarks, and even

the classic case of the small velocify]. As mentioned This agrees with the expression obtained in R22]. We
above, inD=2 the amplitudes are finite even a0 and found a direct proofit will be presented elsewheréhat the
the perturbative corrections are inversely proportional to theight-hand side of Eq(C4) does not changeup to a sign if
heavy quark masgut not to powers of 1? which blows up  z— 1/z. This ensures the same result for both solutionszfor
at the safe zero recoil pointAnd indeed, it is easy to find in terms ofw, the last of Eqs(C1).
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It is interesting to note that the absolute maximum for the The smallx behavior of the heavy-quark distribution
(elastig IW function which would correspond to the struc- function for decays into light quarks has, in general, a non-
tureless pointlike heavy flavor hadron, is given by just theinteger power depending on the spectator mass
factor'®

2 2\/2 S mg_ﬁz
€l W)= N Ty~ 132 €9 Fogoex?re, — 20— B (cg

tanmys, B°

It would be saturated by the light cone wave functi®it)
~c/+/t. Indeed, one has

2

1+z

Just such a behavior was conjectured for the QCD light-cone
distribution function in the model suggested in R&4]. In

D =4, however, the distribution function itself and the expo-
nent 2y, in particular depend on the renormalization point.

2+2a

&(2)= for W(t)=t%e ~. (Co)

Of course, such a situation is not realized for any actual

hadronic state in the 't Hooft model. Constructing such a APPENDIX D: PERTURBATIVE CORRECTIONS
hard-core wave function requires a coherent superposition of AND IR REGULARIZATION

all the excited eigenstates.

Studying the decay distribution for the weak transitions
into light quarks,mZ< MoA gcp allows one to determine the
light-cone distribution function. In particular, it emerges di-
rectly in the decays aj?=0 as the differential decay prob-
ability vs qo or M2, [33:

The perturbative corrections to the weak decay vertex ex-
plicitly depend not only on the gauge but also on the em-
ployed infrared regularization, even gt=0 (see, e.g., Ref.
[11], Sec. lll B). This subtlety is aggravated by severe infra-
red divergences in the individual diagramsDn=2, which
appear when unphysical degrees of freedom are introduced
(say, in the covariant gaugesVhile OPE—applicable for
1 dlg(0)me inclusive widths—ensures that the widths are rather insensi-
I'4(0) dMZ. . = mQ(MHQ_mQ) tive to the infrared contributions, in practical computations it

sl hadr requires carrying out one and the same regularization proce-
dure consistently through all stages of computations. A par-
ticular infrared regularization, on the one hand, is built into
the 't Hooft equation in the form of the principal value pre-
scription of the Coulomb exchange integral and the self-
energy terms. On the other hand, the same infrared regular-
(C7) ization was employed in establishing the short-distance
nonrenormalization theorem for the weak vertex.
Therefore, it is instructive to obtain the same perturbative
whereI'(0) as a function oM2, . is correction ,82/(2mé) to the decay width starting with the
usual Feynman graphs in the covariant gauge routinely used
in four dimensions. To this end we independently calculated
z F(k)(o). the one-loop perturbative corrections to the quark decay
sl width Q—q+ ¢ at mfﬁ=0, with the decay interaction

2
M hadr

1_— 1
mQ(MHQ_mQ)

XF

2 2
M HQ_ M hadr

— 2_
do= 2MHQ at q 01

2502
M <Mhagr

Using the leading term in the i, expansion of the decay
amplitudes, one can check tHaft) coincides with\IfﬁQ(t).

To obtain the distribution ove¥lZ, it is again convenient to Luear= ~ ﬂquﬂ' H.c.
use the explicit cutoff dependence of the ultraviolet-
regularized Green functioB(x,y;A), as it was done in Sec.
I1l. Earlier discussion for the 't Hooft model can be found in |n D=2 this is a full analogue of the four-fermicsemilep-
Refs.[20,23. tonic) decay with massless leptons for vectorlike weak cur-
rents.
Since all the individual diagrams are too infrared diver-

13This function is not analytic and rather has a branch point nea@€nt, the computations are simple only in dimensional regu-
w=—1 (or g=4m3). This is just a reflection of the Fermi statis- larization. All corrections are nontrivial, including virtual
tics of heavy quarks confined in the bosonic state. This means thiertex corrections, mass, and wave function renormalization
it is impossible to construct a heavy pointlike meson from fermionicand the “real” gluon emission width. The sum of all contri-
constituents, with the radius much smaller than the mass. For lighputions takes the following fornfat my=0) in arbitrary di-
constituents this is possible as exemplified by the chiral pion. mension:

(D1)

114034-27



IKAROS BIGI AND NIKOLAI URALTSEV PHYSICAL REVIEW D 60 114034

5r1"°°p_c 9 o r[,_P)[,B=3, (B-1)(D-4) I'*(D/2) 3D*-28D°+109D*— 208D +160
rree — “F(45)prMe “2]|°D-4 D-3 Iip-2  (D-1)(D-3)(D—4)?
(D2)
|
It is easy to see that the polest=2 andD =3 all cancel We note that here one has an instructive example: the

out (at D=3 heavy quark masses acquire infrared logarith-perturbative calculation of the decay width is IR safe by
mic divergence as well The remaining pole ab=4 is itself, and the first-order correction is meant to describe the
given by the ultraviolet renormalization of the Yukawa cou- actual decay width with the fdé accuracy. Higher orders of

pling. At D=2 the above expression reduces to the perturbative expansion yielddd and smaller terms, and
2 the uncertainties in summing the perturbative series are ex-
ST loor— 9s > tee (D3) ponentially small inmg. However, this is not the complete
4mmg answer already to the orderniy. This illustrates incom-

which coincides exactly with the result obtained in the light-Pléteness of the purely perturbative expansion, even in that

front formalism and by the summation of the exclusive had-t€ actual nonperturbative effects are not signaled here by
ronic widths in the 't Hooft model. generic intrinsic divergences of the perturbative series.
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