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Superconductivity from perturbative one-gluon exchange in high density quark matter

Thomas Scha¨fer* and Frank Wilczek†

School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540
~Received 8 July 1999; published 12 November 1999!

We study color superconductivity in QCD at an asymptotically large chemical potential. In this limit, pairing
is dominated by perturbative one-gluon exchange. We derive the Eliashberg equation for the pairing gap and
solve this equation numerically. Taking into account both magnetic and electric gluon exchanges, we findD
;g25exp(2c/g) with c53p2/A2, verifying a recent result by Son. For chemical potentials that are of physical
interest,m,1 GeV, the calculation ceases to be reliable quantitatively, but our results suggest that the gap can
be as large as 100 MeV.@S0556-2821~99!08819-0#

PACS number~s!: 12.38.Aw, 12.38.Bx
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The behavior of matter at very high baryon density b
small temperature is of interest in connection with the ph
ics of neutron stars and heavy ion collisions in the bary
rich regime. Moreover, it has been realized that matte
very high density exhibits many non-perturbative pheno
ena, such as a mass gap and chiral symmetry breaking,
regime where the coupling is weak and systematic calc
tions are possible.

At very high density the natural starting point is a Fer
sphere of quarks. The corresponding low energy excitati
are quasiparticles and holes in the vicinity of the Fermi s
face. Since the Fermi momentum is large, asymptotic fr
dom implies that the interaction between quasiparticles
weak. However, as we know from the theory of superc
ductivity, the Fermi surface is unstable in the presence
even an arbitrarily weak attractive interaction. In QCD, t
attraction is provided by one-gluon exchange between qu

in a color anti-symmetric 3̄state. QCD at high density i
therefore expected to be a color superconductor@1,2#.

A particularly interesting case is QCD with three flavo
In this case the most favorable type of pairing involves
coupling of color and flavor degrees of freedom, colo
flavor-locking@3#. This implies, among other things, that a
gluons acquire a mass and that chiral symmetry is brok
We have argued that in the color-flavor-locked phase
only universal features, in particular the symmetry break
pattern, but also many non-universal properties, such as
spectrum of low-lying states, exactly match the expectati
for hadronic matter at low baryon density@4#. This means
that nuclear matter at low density might be continuously c
nected to quark matter at high density, without any ph
transition.

It also means that at very high density many interest
properties of hadronic matter, such as the magnitude of
chiral condensate, can be calculated in weak coupling pe
bation theory. The first step in such a program is the ca
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lation of the superconducting gap. This calculation was fi
attempted by Bailin and Love@5#. They used a schematic IR
cutoff in the gluon propagator. In their treatment, the gap
of the form D;m exp(2c/g2), wherec depends logarithmi-
cally on the infrared~IR! cutoff. Recently, the problem wa
revisited by Son@6#, who argued that the gap is dominate
by magnetic gluon exchanges, and that the infrared beha
is regulated by dynamic screening. He obtainedD
;mg25exp@23p2/(A2g)#.

Our purpose in the present work is to rederive a
strengthen this result, and to determine the overall numer
coefficient.

In order to derive a gap equation, we follow the standa
Nambu-Gorkov formalism and introduce a two compone

field C5(c,c̄T). The inverse quark propagator takes t
form

S21~q!5S q”1m” 2m D̄

D ~q”2m” 1m!TD , ~1!

whereD̄5g0D†g0. The gap is a matrix in color, isospin, an
Dirac space. In the following we consider the case of t
massless flavors. We will assume that the gap is a
symmetric in both flavor and color, and has total angu
momentum zero. In the case of short range interactions,
assumption can be justified from our study of the renorm
ization group equations for a general four-fermion intera
tion @7,8#. The one-gluon exchange interaction is long ran
and other forms of pairing might take place. In particul
since the interaction is dominated by almost collinear sc
tering, one might expect higher partial waves to play a r
@6#. In the following, we will concentrate on the total angul
momentum zero gap.

We also assume that the gap has positive parity. O
gluon exchange does not distinguish between pairs of p
tive or negative parity@9#. This degeneracy is lifted by in
stantons, which favor the positive parity channel@10,11,7#.
At large chemical potential instanton effects are expon
tially suppressed. In the following, we will therefore assum
that the only instanton effect is to determine the parity of
gap.

r,
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THOMAS SCHÄFER AND FRANK WILCZEK PHYSICAL REVIEW D 60 114033
In addition to that, we neglect quark mass effects a
chiral symmetry breakingLR condensates. As shown in@7#
there is no BCS instability in the case of pairing between
and right handed quarks. The formation ofLR condensates is
therefore suppressed bym/m. The form of the gap matrix is
then @5,12#

D i j
ab~q!5~l2!ab~t2! i j Cg5S D1~q0!

1

2
~11aW •q̂!

1D2~q0!
1

2
~12aW •q̂! D . ~2!

In the weak coupling limit, we can replaceaW •q̂ by the unit
matrix using the equations of motion. In this limit, onlyD1
survives. We will see this explicitly from the solution of th
gap equation presented below. We have neglected the de
dence of the gap on the magnitude of the momentum,
kept the dependence on frequency. The dependence on
mentum can be dropped because, in the weak coupling li
all momenta are close to the Fermi surface. For short ra
interactions, the dependence on frequency can also be
glected. This is not the case here. Because long range i
actions are important, retardation effects cannot be
glected.

The self energy in the Nambu-Gorkov formalism obe
the Dyson-Schwinger equation@5#

S~k!52 ig2E d4q

~2p!4
Gm

a S~q!Gn
bDmn

ab~q2k!. ~3!

Here,S(k)52@S21(k)2S0
21(k)# is the proper self energy

Gm
a is the quark-gluon vertex andDmn

ab(q2k) is the gluon
propagator. To leading order in the perturbative expans
we can use the free vertex

Gm
a 5S gmla/2 0

0 2~gmla/2!TD . ~4!
o

11403
d

ft

en-
ut
o-

it,
ge
e-

er-
e-

n,

We will study the importance of vertex corrections belo
To leading order, we can also neglect the diagonal part of
proper self energy, that is the fermion wave function ren
malization@6#. In this case, Eq.~3! reduces to an equation fo
the gap matrix:

D~k!5 ig2E d4q

~2p!4 S gm

la

2 D T

S21~q!S gn

la

2 DDmn~q2k!.

~5!

Here,S21(q) is the 21-component of the fermion propagat
in the Gorkov representation.S21(q) is determined from the
inverse of Eq.~1!. We have

S21~q!52
1

~q”2m” !T
D

1

~q”1m” !1D̄@~q”2m” !T#21D
. ~6!

Inserting the ansatz~2! for the gap gives

S21~q!52
1

2
~l2t2Cg5!S D1~12aW •qW !

q0
22~ uqW u2m!22D1

2

1
D2~11aW •qW !

q0
22~ uqW u1m!22D2

2D . ~7!

Both the RHS and the LHS of the gap equation are prop
tional to t2, so the flavor structure simply drops out. Th
color coefficient is given by

c5
1

4
~la!Tl2la52

Nc11

2Nc
l252

2

3
l2~Nc53!, ~8!

where we have used the Fierz identity (la) i j (l
a)kl5

22/Ncd i j dkl12d i l d jk and the factor 1/4 comes from th
color generatorsta5la/2. Projecting Eq.~5! on D1,2 gives
two coupled gap equations
D1,2~k0!5
2ig2

3 E d4q

~2p!4 H 1

8
tr@gm~12aW •q̂!gn~16aW • k̂!#

D1~q0!

q0
22~ uqW u2m!22D1~q0!2

1
1

8
tr@gm~11aW •q̂!gn~17aW • k̂!#

D2~q0!

q0
22~ uqW u1m!22D2~q0!2J Dmn~k2q!, ~9!
where the two signs ofaW • k̂ on the RHS correspond toD1
andD2 on the LHS.

We now must specify the gluon propagator. The glu
propagator in a general covariant gauge is given by

Dmn~q!5
Pmn

T

q22G
1

Pmn
L

q22F
2j

qmqn

q4
~10!
n

whereD andF are functions ofq0 anduqW u and the projectors
Pmn

T,L are defined by

Pi j
T 5d i j 2q̂i q̂ j , P00

T 5P0i
T 50, ~11!

Pmn
L 52gmn1

qmqn

q2
2Pmn

T . ~12!
3-2
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It contains the gauge parameterj, which must not appear in physical results. In the weak coupling limit,q0 is small as
compared touqW u. In this case we can expand the projectorsPmn

L .dm0dn0 andqiqj /q2.q̂i q̂ j . The gap equation now become

D1~k0!52
2ig2

3 E d4q

~2p!4 H D1~q0!

q0
22~ uqW u2m!22D1~q0!2 S 3

2 2 1
2 k̂•q̂

~k2q!22G
1

1
2 1 1

2 k̂•q̂

~k2q!22F
D

1
D2~q0!

q0
22~ uqW u1m!22D2~q0!2 S 1

2 1 1
2 k̂•q̂

~k2q!22G
1

1
2 2 1

2 k̂•q̂

~k2q!22F
1

j

~q2k!2D J . ~13!
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There is a similar equation forD2 in which the two terms in
the round brackets are interchanged. Only the first term t
in Eq. ~13! has a singularity on the Fermi surface. In t
weak coupling limit, we can therefore drop the second te
and we are left with an equation forD(p0)[D1(p0). This
equation is independent of the gauge parameterj. The sec-
ond gap parameterD2 is not suppressed in magnitude. How
ever,D2 does not lead to a gap on the Fermi surface, and
value is gauge dependent.

We should note that the fact that the gap is gauge in
pendent in the present weak-coupling approximation i
consequence of the fact that the gap is determined by
scattering of quarks that are almost on shell. For on-s
quarks, the fact that the gauge dependent part of the pr
to
a
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o
m
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c
n

e
g
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gator does not contribute follows directly from the equatio
of motion for the quark fields.

For large chemical potential the integral overq is domi-

nated by momenta in the vicinity of the Fermi surface,uqW u
.m andq0!m. We can expand all momenta asqW 5qW F1 lW,

whereqW F is on the Fermi surface, andlW is orthogonal to it.

Asymptotically, u lWu!uqW Fu and the integration measure b

comesdq0m2dl dcosu df. We also haveuqW 2kW u.A2m(1
2cosu). The integral overf is performed trivially. We ana-
lytically continue to imaginaryq0, and perform the integra

over lW by picking up the pole in the diquark propagator. W
find
D~p0!5
g2

12p2E dq0E d cosuS 3
2 2 1

2 cosu

12cosu1@G1~p02q0!2#/~2m2!
1

1
2 1 1

2 cosu

12cosu1@F1~p02q0!2#/~2m2!
D D~q0!

Aq0
21D~q0!2

.

~14!
ag-
te

he

ior
ers
The integral over cosu is dominated by smallu, correspond-
ing to almost collinear scattering. It is therefore important
take medium modifications of the gluon propagator at sm
momenta into account. Forq0!qW→0 and to leading order in
perturbation theory we have

F52m2, G5
p

2
m2

q0

uqW u
, ~15!

with m25Nfg
2m2/(4p2). In the longitudinal part,mD

2

52m2 is the familiar Debye screening mass. In the tra
verse part, there is no screening of static modes, but n
static modes are dynamically screened due to Landau da
ing. In our case, typical frequencies are on the order of
gap,q0.D. This means that the electric part of the intera
tion is screened atqE.mD

1/2 whereas the magnetic interactio
is screened atqM.(p/4•mD

2 D)1/3.
Asymptotically, qM!qE , and magnetic gluon exchang

dominates over electric gluon exchange. We therefore be
ll

-
n-
p-
e
-

in

by analyzing the gap equation taking into account the m
netic part of the interaction only. We will also approxima
cosu.1 in the denominator and drop (q02p0)2 in the de-
nominator. All of these terms will be reinstated later. T
integration over cosu is now straightforward. We have

D~p0!5
g2

18p2E dq0logS 11
64pm

Nfg
2up02q0u

D D~q0!

Aq0
21D~q0!2

.

~16!

If we are only interested in the leading exponential behav
of the gap we can drop the numerical factors and the pow
of g in the logarithm. We then arrive at

D~p0!5
g2

18p2E dq0logS m

up02q0u D D~q0!

Aq0
21D~q0!2

,

~17!
3-3
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THOMAS SCHÄFER AND FRANK WILCZEK PHYSICAL REVIEW D 60 114033
which is the equation discussed in the Appendix of So
paper @6#. This equation was derived from the on-sh
quark-quark scattering amplitude. What we have shown h
is that one can indeed derive this equation from the Dys
Schwinger equation in the weak coupling limit, and that t
result is independent of the gauge parameter. Son also
rives an approximate solution to this integral equation:

Dapp.~p0![D0sinF g

3A2p
logS m

p0
D G , p0.D0 , ~18!

FIG. 1. Solution of the Eliashberg equation~17! as a function of
imaginary frequencyq0. The upper and lower panels show the s
lution for m5400 MeV andm51010 MeV, respectively. The solid
lines show the numerical solution and the dashed lines shows
approximate solution~18!, scaled to the same value of the gap.
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with D05m exp@23p2/(A2g)#. The approximations in-
volved are expected to reproduce the correct coefficien
the exponent, but do not fix the prefactor.

We have therefore solved the Eliashberg equation~17!
numerically for different chemical potentials. We have us
the one-loop running coupling constant evaluated at
Fermi momentumpF5m. This is an average over the mo
menta of the exchanged gluons, which are in the ra
@qM,2m#. Without a higher order calculation one cannot fi
the scale in the running coupling. We will see that the p
exponential factor in the final result behaves asg25. This
factor is almost optimal to give a remarkably weak sc
dependence.

The result for the functionD(p0) for m5400 MeV and
m51010 MeV is shown in Fig. 1. The solid line is the nu
merical result while the dashed line shows the approxim
solution ~18!, rescaled by an overall factorc, D(p0)
5cDapp.(p0 /c). At m51010 MeV, g.0.67 and Son’s solu-
tion is in excellent agreement with the exact result, up to
overall factorc.2. At m5400 MeV the coupling is signifi-
cantly bigger than 1,g.3.43, but the approximate solution
still qualitatively correct.

The scaling of the maximum gap with the chem
cal potential is shown in Fig. 2. The solid line is th
numerical result and the dashed lines correspond
cg2km exp@23p2/(A2g)# with k50, . . . ,5. Weobserve that
the k50 curve provides an excellent fit to the data even
small chemical potentials. Again, the overall coefficient
c.2.

Let us make a few observations at this point. Fir
we note that the use of perturbation theory to deter
ine the dynamic screening is self consistent. Sin

he

FIG. 2. Dependence of the gap on the chemical potential for
solution of the Eliashberg equation~17!. Here,g(m) is taken to run
according to the one-loop beta function. The dotted curves show
functionsg2kexp@2(3p2)/(A2g)# for k50 ~top!, . . . ,5 scaled to
the value of the gap at the maximum chemical potential.
3-4
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SUPERCONDUCTIVITY FROM PERTURBATIVE ONE- . . . PHYSICAL REVIEW D60 114033
D;m exp(2const/g), the gap grows asm→` and qM
@LQCD . Second, we note that it is essential to keep
frequency dependence of the gap. For small frequen
D(p0) varies over scales on the order ofp0;D0 itself.
Therefore,D(p0) cannot be replaced by a constant. Were
to approximateD(p0).D0, as in @13#, we would obtain a
gap equation forD0 that has the correct double logarithm
structure and givesD0.m exp(2const/g), but the constant
in the exponent would not be correct.

Finally, we note that it is easy to see what taking in
account the numerical coefficients and the factorg2 in Eq.
~16! will do. Any numerical factor inside the logarithm ca
be absorbed by rescaling the frequencies. Therefore
Dapp.(p0) in Eq. ~18! is an approximate solution to Eq.~17!,

FIG. 3. Same as Fig. 1 for the solution of the Eliashberg eq
tion with magnetic gluon exchange only, see Eq.~16!.
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then D8(p0)5cDapp.(p0 /c) with c564p/(Nfg
2) is an ap-

proximate solution to Eq.~16!. This can also be seen from
Figs. 3 and 4 where we show the numerical solution to
Eliashberg equation~16! for the superconducting gap from
magnetic gluon exchanges. Asymptotically, the solution
well described by the functionD8(p0) with c.175g22.

We now come to the role of electric gluon exchanges. W
include the second term in Eq.~14! with F5mD

2 . We again
use the approximation cosu.1 in the numerator and drop th
(q02p0)2 term in the denominator. Let us note that in th
forward direction, electric and magnetic gluon exchang
have the same overall factor. Performing the integral o
cosu, we find

D~p0!5
g2

18p2E dq0H logS 11
64pm

Nfg
2up02q0u

D
1

3

2
logS 11

8p2

Nfg
2D J D~q0!

Aq0
21D~q0!2

, ~19!

where the factor 3/2 in front of the second term comes fr
the difference between dynamic screening,qM;uqW u1/3, and
static screening,qE;uqW u. In the weak coupling limit we
again expect the solution to be of the formcDapp(p0 /c) with

c51024A2p4Nf
25/2g255256p4g25.2.53104g25

~Nf52!. ~20!

We can compare this prediction to our numerical resu
obtained from solving Eq.~14!. In this equation, we take into
account both electric and magnetic gluon exchanges.
also keep the cosu dependence in the numerator, and t

-

FIG. 4. Same as Fig. 2 for the solution of the Eliashberg eq
tion with magnetic gluon exchange only.
3-5
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THOMAS SCHÄFER AND FRANK WILCZEK PHYSICAL REVIEW D 60 114033
terms (q02p0)2 in the denominator. Finally, we use the e
act form ofG andF in the hard dense loop approximation

F52m2
q2

qW 2 F12
iq0

uqW u
Q0S iq0

uqW u D G , Q0~x!5
1

2
logS x11

x21D ,

~21!

G5m2
iq0

uqW u H F12S iq0

uqW u D
2GQ0S iq0

uqW u D 1
iq0

uqW u J . ~22!

This takes into account that there is no dynamic screen
for uqW u,q0. The numerical results are shown in Figs. 5 a
6. Asymptotically, the gap is well described bycDapp(p0 /c)
with c.1.43104g25. We notice that form51010 MeV the
solution has a ‘‘knee’’ atp0.109 MeV. This comes from
the fact that for frequenciesp0.ANf /(8p)gm the retarda-
tion terms;(p02q0)2 dominate over screening. In this re
gime, the solution is of the same form, but the scale facto
different.

Overall, the scaling withg25exp@23p2/(A2g)# is clearly
visible, though not quite as impressively as in the case w

FIG. 5. Same as Fig. 1 for the solution of the Eliashberg eq
tion with magnetic and electric gluon exchanges, see Eq.~14!.
11403
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h

magnetic gluon exchange only. For chemical potentials t
are of physical interest,m,1000 MeV, the gap reache
D0.100 MeV. We should caution, however, that in th
regimeg.(2 –4), and higher order corrections are probab
important. Nevertheless, it is gratifying to see that the or
of magnitude of the result agrees with previous calculatio
@10,11# based on more phenomenological effective inter
tions, which were normalized to the strength of chiral sy
metry breaking at zero density, rather than the calcula
asymptotics of the running coupling.

There are a number of questions that will need to be
dressed in a more complete calculation. First, we have c
centrated on the caseNf52. ForNf53, there are two order
parameters, corresponding to the color antisymmetric
color symmetric components of the color-flavor locked sta
This is only a minor complication, since there is only o
combination that survives in the weak coupling limit.

A more complicated issue is the role of the Meissner
fect. For Nf52, the dominant order parameter only brea
color SU(3)→SU(2), and allgluons that contribute to pair
ing, except for one, live in the unbroken part of the gau
group. In the case ofNf53, the Higgs mechanism is com
plete and all gluons acquire a mass. At zero momentum
frequency, the screening mass is on the order ofm2;g2m2,
much larger than the dynamic screening scaleqM. At finite
momentum transfer, on the other hand, the screening ma
m2;g2m2D/uqW u @14#, which is of the same form as the dy
namic screening effect. The Meissner effect will therefo
not affect the dependence of the gap on the coupling c
stant, but it will affect the numerical coefficient.

Finally, one has to address higher order corrections to
perturbative result. In particular, one would like to kno
what the functional form of the corrections is, and wheth
the applicability of perturbation theory requiresg,1, or
some weaker condition likeg,p. We have already men
-

FIG. 6. Same as Fig. 2 for the solution of the Eliashberg eq
tion with magnetic and electric gluon exchanges.
3-6
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SUPERCONDUCTIVITY FROM PERTURBATIVE ONE- . . . PHYSICAL REVIEW D60 114033
tioned wave function renormalization as one source of hig
order correction@6#. Another issue is vertex corrections. Th
vertex correction generated by hard dense loops is@15#

Gm
a ~p1 ,p2!5g

la

2 S gm2mf
2E dV

4p

K̂mg•K̂

~p1•K̂ !~p2•K̂ !
D ,

~23!

whereK̂5( i ,k̂) is a light like vector andmf
25g2m2/(6p2).

We can insert this correction into the gap equation~9!. We
find that the coefficient of the magnetic gluon exchange
modified as

S 3

2
2

1

2
cosu D→S 3

2
2

1

2
cosu D1

mf
2

m2
1

1

2
~12cosu!mf

2

3E dV

4p

1

~p•K̂ !~q•K̂ !
. ~24!

In the forward direction cosu.1, which dominates the ga
equations, this is just a higher order correction. Vertex c
n
ed

11403
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rections have a (m/q0) enhancement in the backward dire
tion cosu.21, but the integral over cosu is finite asq0

→0. Vertex corrections in the magnetic part therefore do
modify the asymptotic form of the gap. The same is true
vertex corrections in the electric part of the interaction.

In summary, we have performed a perturbative calcu
tion of the superconducting gap in two flavor QCD at ve
high density. We find that the gap scales asD0

.256p4mg25exp@23p2/(A2g)#, where the overall coeffi-
cient is correct up to a factor of order one. In the physica
interesting regimem,1 GeV, the gap is on the order of 10
MeV, in agreement with earlier calculations based on inst
tons or schematic interactions adjusted to the size of the
ral condensate at zero density.

We would like to thank D. Son and K. Rajagopal fo
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