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Superconductivity from perturbative one-gluon exchange in high density quark matter
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We study color superconductivity in QCD at an asymptotically large chemical potential. In this limit, pairing
is dominated by perturbative one-gluon exchange. We derive the Eliashberg equation for the pairing gap and
solve this equation numerically. Taking into account both magnetic and electric gluon exchanges, e find
~ g~ Sexp(—c/g) with c= 372/ /2, verifying a recent result by Son. For chemical potentials that are of physical
interestu<1 GeV, the calculation ceases to be reliable quantitatively, but our results suggest that the gap can
be as large as 100 MeYS0556-282(99)08819-(

PACS numbe(s): 12.38.Aw, 12.38.Bx

The behavior of matter at very high baryon density butlation of the superconducting gap. This calculation was first
small temperature is of interest in connection with the physattempted by Bailin and Lovis]. They used a schematic IR
ics of neutron stars and heavy ion collisions in the baryorcutoff in the gluon propagator. In their treatment, the gap is
rich regime. Moreover, it has been realized that matter aof the form A~ u exp(—c/g?), wherec depends logarithmi-
very high density exhibits many non-perturbative phenom<ally on the infraredIR) cutoff. Recently, the problem was
ena, such as a mass gap and chiral symmetry breaking, infgVisited by Sor{6], who argued that the gap is dominated
regime where the coupling is weak and systematic calculaby magnetic gluon exchan_ges, and that the infrared_behavior
tions are possible. is regulated by dynamic screening. He obtainéd

At very high density the natural starting point is a Fermi ~ 49~ °exi —37/(;29)].

sphere of quarks. The corresponding low energy excitations OUr purpose in the present work is to rederive and
are quasiparticles and holes in the vicinity of the Fermi surStrengthen this result, and to determine the overall numerical

face. Since the Fermi momentum is large, asymptotic freeS€fficient.

dom implies that the interaction between quasiparticles i:?\I In order to derive a gap equation, we follow the standard
weak. However, as we know from the theory of supercon- ambu-Gorkgv formalism and introduce a two component
ductivity, the Fermi surface is unstable in the presence ofield W= (y,4T). The inverse quark propagator takes the
even an arbitrarily weak attractive interaction. In QCD, theform
attraction is provided by one-gluon exchange between quarks

. . . . L - g+4A—m A
in a color anti-symmetric Ftate. QCD at high density is S Xq)= '
therefore expected to be a color supercondulci¢]. A (4= pf+m)T
A particularly interesting case is QCD with three flavors. _
In this case the most favorable type of pairing involves thewhereA = y,ATy,. The gap is a matrix in color, isospin, and
coupling of color and flavor degrees of freedom, color-Dirac space. In the following we consider the case of two
flavor-locking[3]. This implies, among other things, that all massless flavors. We will assume that the gap is anti-
gluons acquire a mass and that chiral symmetry is brokersymmetric in both flavor and color, and has total angular
We have argued that in the color-flavor-locked phase nomomentum zero. In the case of short range interactions, this
only universal features, in particular the symmetry breakingassumption can be justified from our study of the renormal-
pattern, but also many non-universal properties, such as theation group equations for a general four-fermion interac-
spectrum of low-lying states, exactly match the expectationsion [7,8]. The one-gluon exchange interaction is long range,
for hadronic matter at low baryon densit#]. This means and other forms of pairing might take place. In particular,
that nuclear matter at low density might be continuously consince the interaction is dominated by almost collinear scat-
nected to quark matter at high density, without any phas¢ering, one might expect higher partial waves to play a role
transition. [6]. In the following, we will concentrate on the total angular
It also means that at very high density many interestingnomentum zero gap.
properties of hadronic matter, such as the magnitude of the We also assume that the gap has positive parity. One-
chiral condensate, can be calculated in weak coupling pertugluon exchange does not distinguish between pairs of posi-
bation theory. The first step in such a program is the calcutive or negative parity9]. This degeneracy is lifted by in-
stantons, which favor the positive parity chanfigd,11,7.
At large chemical potential instanton effects are exponen-
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In addition to that, we neglect quark mass effects andVe will study the importance of vertex corrections below.
chiral symmetry breakingt R condensates. As shown fjidi] ~ To leading order, we can also neglect the diagonal part of the
there is no BCS instability in the case of pairing between lefproper self energy, that is the fermion wave function renor-
and right handed quarks. The formationL.d® condensates is malization[6]. In this case, Eq3) reduces to an equation for
therefore suppressed Ioy/ . The form of the gap matrix is the gap matrix:

then[5,12]
1 Atk =ig? | d4q( A—éjl)Tszm)( A—a)D (a-K)
Aﬁb<q>=<x2>ab<rz>”c75(A1<qo>§<1+M) (2m* | T2 ] P R (’)
5
1 - A
+A2(q0)§(1— a-q)). (2 Here, S,1(q) is the 21-component of the fermion propagator

in the Gorkov representatiof,q(q) is determined from the

In the weak coupling limit, we can replace q by the unit " ¢ >¢ of Eq.(1). We have

matrix using the equations of motion. In this limit, only

survives. We will see this explicitly from the solution of the Sy(q)=— 1 A _ 1 _

gap equation presented below. We have neglected the depen- (q— )" (4+ L) +A[(4— )] A

dence of the gap on the magnitude of the momentum, but

kept the dependence on frequency. The dependence on M@rserting the ansat®) for the gap gives

mentum can be dropped because, in the weak coupling limit,

all momenta are close to the Fermi surface. For short range 1 Al(l_c;‘a)

interactions, the dependence on frequency can also be ne- 521(Q):—§(?\272C7’5)< 7 5 2 a2

glected. This is not the case here. Because long range inter- do—(lal—w)*— A7

actions are important, retardation effects cannot be ne- - -

glected. n Ax(1ta-q)
The self energy in the Nambu-Gorkov formalism obeys 03— (|a|+ )%~ A3

the Dyson-Schwinger equatidb]

. (7)

o Both the RHS and the LHS of the gap equation are propor-
: a tional to 7, so the flavor structure simply drops out. The
—_in2 a b~ab, 2, ply p

(k) '9 f (277)4F#S(q)FVD“V(q ). @ color coefficient is given by

Here,> (k)= —[S (k) —Sgl(k)] is the proper self energy, Nc+1
FZ is the quark-gluon vertex anﬁfﬁ(q—k) is the gluon 2N,
propagator. To leading order in the perturbative expansion,
we can use the free vertex where we have used the Fierz identity®};;(A%),=
a —2/N6jj 0+ 26, i and the factor 1/4 comes from the
Y N8I2 0 )

ra= 4) color generators®=\?/2. Projecting Eq(5) on A, , gives
H 0 —(y,\2)T

2
c=—(Ng) Aohg=— )\2=—§)\2(NC=3), 8

1
4

two coupled gap equations

2ig2 [ d*q |1 - . - - A41(9o)
Agofkg)= — | —1{ = 1-a- 1+a-k =
o= (2w>4[8””“( O w0
1 - A A A
+ gyt @@y (1Fa-k] o) D uu(k—0), ©

93— (|q]+ 1) 2= Ax(g)?

where the two signs of-k on the RHS correspond t4;  whereD andF are functions ofj, and|ﬁ| and the projectors

andA, on the LHS. P}, are defined by
We now must specify the gluon propagator. The gluon
propagator in a general covariant gauge is given by Pl =5 _aiaj ng: Pg-=0 (11)
’ I ’
P Pa 4.9 q,4
Du(d)=—" o (10 P =—0ut 5 —Pp,. (12)
M qz_ G qz_ = q4 M " q2 M
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It contains the gauge parameté&r which must not appear in physical results. In the weak coupling liggitis small as
compared tdcﬂ. In this case we can expand the projeclﬁtg: 8,,00,0 andq;q; /qzzai&j . The gap equation now becomes

A(k)__Zing d'q | Ay(do) ( L %+1R~a)
ne 3 J 2m*| ad—(|a|—1)?—Ay(qo)? )
A(qp) ( 1+ ik N 1 tkq L £ )}
93— (lal+ )2 Axqo)? | (k—=q)2-G  (k—q)?—F (q—-k)?/ )

(13

There is a similar equation fak, in which the two terms in  gator does not contribute follows directly from the equations
the round brackets are interchanged. Only the first term terrof motion for the quark fields.
in Eq. (13) has a singularity on the Fermi surface. In the For large chemical potential the integral oweis domi-

weak coupling limit, we can therefore drop the second term5ieq by momenta in the vicinity of the Fermi surfatfﬂ,
and we are left with an equation fax(pg)=A1(po). This
equation is independent of the gauge paramétérhe sec- N "
ond gap parameteX, is not suppressed in magnitude. How- whereqg is on the Fermi surface, arldis orthogonal to it.

ever,A, does not lead to a gap on the Fermi surface, and it%\symptotically, |f|<|aF| and the integration measure be-

value is gauge dependent. 2 T ]~
We should note that the fact that the gap is gauge inde(—:omequo’“ dl dcoséds. We also havelg k|_\/§’u(1

pendent in the present weak-coupling approximation is ?— 9056). The.integra! ove¢ is performed trivially. We ana-
consequence of the fact that the gap is determined by thtically continue to imaginany, and perform the integral
scattering of quarks that are almost on shell. For on-shelbver| by picking up the pole in the diquark propagator. We

guarks, the fact that the gauge dependent part of the propéind

=pu andgy<u. We can expand all momenta éy ci,fl— F,

Ao g2 f . f . ( 3 — LcosH 3 + 3c0s6 A(dp)
po = qO COSH + .
1272 1-cos0+[G+(po—0o)?1/(21?)  1—c0os6+[F+(po—do)21/(21?) | a3+ A(qo)?

(14)

The integral over cog8is dominated by smaWl, correspond- by analyzing the gap equation taking into account the mag-
ing to almost collinear scattering. It is therefore important tonetic part of the interaction only. We will also approximate
take medium modifications of the gluon propagator at smaltosé=1 in the denominator and drom{— po)? in the de-
momenta into account. qub<a—>0 and to |eading order in nominator. All of these terms will be reinstated later. The

perturbation theory we have integration over co8 is now straightforward. We have
F=2m?, G= gmz%, CLTN f daiog| 14 4T A(do)
0= 0 :
a 182 Ng°lPo—dol / Va5 +A(do)?
with m?>=Ng?u?/(47?). In the longitudinal part,m3 (16)

=2m? is the familiar Debye screening mass. In the trans-

verse part, there is no screening of static modes, but norif we are only interested in the leading exponential behavior
static modes are dynamically screened due to Landau dampf the gap we can drop the numerical factors and the powers
ing. In our case, typical frequencies are on the order of thef g in the logarithm. We then arrive at

gap,go=A. This means that the electric part of the interac-

tion is screened aq,zzm%,/2 whereas the magnetic interaction

2
is screened afjy = (7/4-m3A)*~. A(po)=g—j dqolog( K ) A(9o) '
Asymptotically, qy<<ge, and magnetic gluon exchange 1872 [Po—dol/ o2+ A(qo)?
dominates over electric gluon exchange. We therefore begin a7
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FIG. 2. Dependence of the gap on the chemical potential for the
solution of the Eliashberg equatiéh?7). Here,g(u) is taken to run
according to the one-loop beta function. The dotted curves show the
functions g~ *exy — (379)/(v2g) ] for k=0 (top), ... ,5scaled to
the value of the gap at the maximum chemical potential.

;

with Ay=pu exgd—37%(yJ2g)]. The approximations in-
volved are expected to reproduce the correct coefficient in
the exponent, but do not fix the prefactor.

We have therefore solved the Eliashberg equatibn
numerically for different chemical potentials. We have used
the one-loop running coupling constant evaluated at the
Fermi momentunpg= w. This is an average over the mo-
menta of the exchanged gluons, which are in the range
[am.2u]. Without a higher order calculation one cannot fix
the scale in the running coupling. We will see that the pre-
exponential factor in the final result behavesgs. This
LN factor is almost optimal to give a remarkably weak scale
o%omo.om 001 01 1 10 100 1000 10¢ 10° 10° 107 10° 10° 10 dependence.

9 [MeV] The result for the functiom\(py) for w=400 MeV and
w=10'" MeV is shown in Fig. 1. The solid line is the nu-
merical result while the dashed line shows the approximate

Mao) [Mev]

FIG. 1. Solution of the Eliashberg equati¢i¥) as a function of
imaginary frequencyy,. The upper and lower panels show the so- .
lution for =400 MeV andu=10° MeV, respectively. The solid Solution (18), rescaled Ey an overall factoc, é(DO)
lines show the numerical solution and the dashed lines shows thg CAapp(Po/C). At p=10 MeV, g=0.67 and Son’s solu-
approximate solutioi18), scaled to the same value of the gap.  tion is in excellent agreement with the exact result, up to an

overall factorc=2. At =400 MeV the coupling is signifi-

cantly bigger than 1g=3.43, but the approximate solution is
Sstill qualitatively correct.

The scaling of the maximum gap with the chemi-
| potential is shown in Fig. 2. The solid line is the

which is the equation discussed in the Appendix of Son’
paper [6]. This equation was derived from the on-shell
quark-quark scattering amplitude. What we have shown her&l
is that one can indeed derive this equation from the Dysonﬁumerical result and the dashed lines correspond to
Schwinger equation in the weak coupling limit, and that thec_g‘k,u ex] —372/(y/2g)] with k=0, . . . 5. Weobserve that

;ﬁ/seuslt;r‘:’ ;ndigiir:g :tr;t soczIlg?i%ng?ou?rﬁspiigmrztlee:. L?:tinor?'lso dﬁwe k=0 curve provides an excellent fit to the data even for
PP 9 q ' small chemical potentials. Again, the overall coefficient is

c=2.
Let us make a few observations at this point. First,
ﬁ) ., Po>A,, (18 Wwe note that the use of perturbation theory to determ-
Po ine the dynamic screening is self consistent. Since

Aapp.( po) = AOSirl

3\/577
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o1z FIG. 4. Same as Fig. 2 for the solution of the Eliashberg equa-

tion with magnetic gluon exchange only.

then A’(pg) =CA 4pp(Po/C) with c=64x/(N;g?) is an ap-
proximate solution to Eq(16). This can also be seen from
Figs. 3 and 4 where we show the numerical solution to the
Eliashberg equatioil6) for the superconducting gap from
magnetic gluon exchanges. Asymptotically, the solution is
well described by the functioA’ (py) with c=175g 2.

We now come to the role of electric gluon exchanges. We
include the second term in E¢L4) with F=m2D. We again
use the approximation c@s=1 in the numerator and drop the
(do— Po)? term in the denominator. Let us note that in the
forward direction, electric and magnetic gluon exchanges

A(q,) [MeV]

002 - ] have the same overall factor. Performing the integral over
cosé, we find
0 :...I connd vl covod vl vewd el verned vod vromed 3ol @cm 2 64
. 104 108 10¢ 107 108 100 10w T
01 1 10 100 1000 o A(po)= g ZJ dqo[ log| 1+ - M
187 N1g*|Po—dol
FIG. 3. Same as Fig. 1 for the solution of the Eliashberg equa- 3 872 A(qo)
tion with magnetic gluon exchange only, see ELf). + —log| 1+ J > 0 , (19
2 N:9®/ | Vag+A(do)?

A~y exp(-consty), the gap grows asu—o and qy where the factor 3/2 in front of the second term comes from
>Aqcp. Second, we note that it is essential to keep th

€ ; i ; ~11/3
frequency dependence of the gap. For small frequencie@e _d|fferenc§ betweef‘ dynamic screenlqgl,flq| ) ,.and
A(po) varies over scales on the order pf~A, itself.  Static screeningge~|ql. In the weak coupling limit we
Therefore A(py) cannot be replaced by a constant. Were we2dain expect the solution to be of the fooh (o /c) with
to approximateA (pg)=A,, as in[13], we would obtain a 52 P s
gap equation for\, that has the correct double logarithmic c=1024/27*N; %%y~ 5=256m4g~5~2.5x 10'g
structure and givea = u exp(—constf), but the constant
in the exponent would not be correct. (Ni=2). (20)

Finally, we note that it is easy to see what taking into

account the numerical coefficients and the fagbrin Eq.  We can compare this prediction to our numerical results,
(16) will do. Any numerical factor inside the logarithm can obtained from solving Eq14). In this equation, we take into
be absorbed by rescaling the frequencies. Therefore, #iccount both electric and magnetic gluon exchanges. We
Aapp(Po) in EQ. (18) is an approximate solution to E(L7), also keep the co8 dependence in the numerator, and the
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terms @o— Po)? in the denominator. Finally, we use the ex- T TR
act form of G andF in the hard dense loop approximation:

G iqo _ {ido 1 (X-I— 1) 100 -
= 2" —_——_— — =5 o1 [
F=2m 62|:1 |(-i| QO( |a| ):|1 QO(X) 2'09 x—1)/' L
(21) I

N .
1—('0'70) }Qo(i(’)ﬁq%’]. (22)
|ql lal/ |d

This takes into account that there is no dynamic screenin

for |ﬁ|<q0. The numerical results are shown in Figs. 5 and
6. Asymptotically, the gap is well described by ,o{po/c)
with c=1.4x 10*g~°. We notice that foru=10 MeV the
solution has a “knee” ap,=10° MeV. This comes from
the fact that for frequencieg,> \N;/(87)gu the retarda- or
tion terms~ (py— 0o)> dominate over screening. In this re-
gime, the solution is of the same form, but the scale factor i Finnd sl s vl st 0

. 1000 10# 108 108 107 108 10° 1010 101t 1012
different. 4MeV]

Overall, the scaling witly ~%exd —37%/(1/29)] is clearly

visible, though not quite as impressively as in the case with FIG. 6. Same as Fig. 2 for the solution of the Eliashberg equa-
tion with magnetic and electric gluon exchanges.

LELRELIL B A1 B L L B A B IR LLLL B R L
\

szziq—O‘
[¢]

A[MeV]

100 |- . magnetic gluon exchange only. For chemical potentials that
I ] are of physical interestx<<1000 MeV, the gap reaches
[ Ay=100 MeV. We should caution, however, that in this
8 1 regimeg=(2-4), and higher order corrections are probably
I ] important. Nevertheless, it is gratifying to see that the order
of magnitude of the result agrees with previous calculations

g ] [10,11] based on more phenomenological effective interac-
§ tions, which were normalized to the strength of chiral sym-
b wh 1 metry breaking at zero density, rather than the calculable
asymptotics of the running coupling.
There are a number of questions that will need to be ad-
ol i dressed in a more complete calculation. First, we have con-

centrated on the cas¢;=2. ForN;=3, there are two order

] parameters, corresponding to the color antisymmetric and
L N color symmetric components of the color-flavor locked state.
This is only a minor complication, since there is only one
N B e A B B I I combination that survives in the weak coupling limit.

] A more complicated issue is the role of the Meissner ef-
fect. ForN¢{=2, the dominant order parameter only breaks
color SU(3)—SU(2), and allgluons that contribute to pair-
ing, except for one, live in the unbroken part of the gauge
group. In the case dfl;= 3, the Higgs mechanism is com-
plete and all gluons acquire a mass. At zero momentum and
frequency, the screening mass is on the ordendf g%u?,
much larger than the dynamic screening sagle At finite
momentum transfer, on the other hand, the screening mass is

m?~g2u?A/|q| [14], which is of the same form as the dy-
namic screening effect. The Meissner effect will therefore
not affect the dependence of the gap on the coupling con-
stant, but it will affect the numerical coefficient.
] Finally, one has to address higher order corrections to the
110 100 1000 100 100 00 om0t ot gov perturbative result. In particular, one would like to know
q, [MeV] . . .
what the functional form of the corrections is, and whether
FIG. 5. Same as Fig. 1 for the solution of the Eliashberg equathe applicability of perturbation theory requirgs<l1, or

tion with magnetic and electric gluon exchanges, see(E4). some weaker condition likg<w. We have already men-

A(q,) [MeV]
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tioned wave function renormalization as one source of higherections have ag/q,) enhancement in the backward direc-
order correctiorj6]. Another issue is vertex corrections. The tion cosf=—1, but the integral over cakis finite asqq

vertex correction generated by hard dense loopd5$
: @ KurK
4T (py-K)(p2-K)

a

A
Fi(pl,pz)=97(vﬂ—m

whereK = (i,k) is a light like vector andn?=g?u?/ (672).
We can insert this correction into the gap equati®n We

—0. Vertex corrections in the magnetic part therefore do not
modify the asymptotic form of the gap. The same is true for
vertex corrections in the electric part of the interaction.

In summary, we have performed a perturbative calcula-
tion of the superconducting gap in two flavor QCD at very
high density. We find that the gap scales ag
=~ 2567* g~ %exd —37%(1/29)], where the overall coeffi-

find that the coefficient of the magnetic gluon exchange igient is correct up to a factor of order one. In the physically

modified as
3.1 3 1 m; 1 L )
> Ecosa -3 Ecosa +;+§( cosf)ms
dQ 1

== . (24)
47 (p-K)(g-K)

interesting regime.<1 GeV, the gap is on the order of 100
MeV, in agreement with earlier calculations based on instan-
tons or schematic interactions adjusted to the size of the chi-
ral condensate at zero density.
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