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Event-by-event fluctuations in heavy ion collisions and the QCD critical point
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The event-by-event fluctuations of suitably chosen observables in heavy ion collisions at CERN SPS, BNL
RHIC, and CERN LHC can tell us about the thermodynamic properties of the hadronic system at freeze-out.
By studying these fluctuations as a function of varying control parameters, it is possible to learn much about
the phase diagram of QCD. As a timely example, we stress the methods by which present experiments at the
CERN SPS can locate the second-order critical end point of the first-order transition between quark-gluon
plasma and hadron matter. Those event-by-event signatures which are characteristic of freeze-out in the
vicinity of the critical point will exhibit nonmonotonic dependence on control parameters. We focus on
observables constructed from the multiplicity and transverse momenta of charged pions. We first consider how
the event-by-event fluctuations of such observables are affected by Bose-Einstein correlations, by resonances
which decay after freeze-out, and by fluctuations in the transverse flow velocity. We compare our thermody-
namic predictions for such noncritical event-by-event fluctuations with NA49 data, finding broad agreement.
We then focus on effects due to thermal contact between the observed pions and a heat bath with a given
~possibly singular! specific heat, due to the direct coupling between the critical fluctuations of the sigma field
and the observed pions. We also discuss the effect of the pions produced in the decay of sigma particles just
above threshold after freeze-out on the inclusive pion spectrum and on multiplicity fluctuations. We estimate
the size of these nonmonotonic effects, which appear near the critical point, including restrictions imposed by
finite size and finite time, and conclude that they should be easily observable.@S0556-2821~99!04121-1#

PACS number~s!: 25.75.2q, 05.70.Jk, 12.38.Aw, 12.38.Mh
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I. INTRODUCTION AND OUTLINE

The goal of this paper is to motivate a program of hea
ion collision experiments aimed at discovering an import
qualitative feature of the QCD phase diagram, namely
critical end point at which a line of first-order phase tran
tions separating quark-gluon plasma from hadronic ma
comes to an end@1#. The possible existence of such an e
point, denoted E, in the temperature~T! vs. baryon chemica
potential (m) plane has recently been emphasized and
universal critical properties have been described@2,3#. The
point E can be thought of as a descendant of a tricrit
point in the phase diagram for two-flavor QCD withmassless
quarks. As pointed out in@1#, observation of the signature
of freeze-out near E would confirm that heavy ion collisio
are probing above the chiral transition region in the ph
diagram. Furthermore, we would learn much about the qu
tative landscape of the QCD phase diagram.

In a previous Letter@1#, we have laid out the basic idea
for observing the critical end point. The signatures propo
in @1# are based on the fact that such a point is a genu
thermodynamic singularity at which susceptibilities diver
and the order parameter fluctuates on long wavelengths.
resulting signatures all share one common property: they
nonmonotonicas a function of an experimentally varied p
rameter such as the collision energy, centrality, rapidity,
ion size. The goal of the present paper is to develop a se
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tools which will allow heavy ion collision experiments t
discover the critical end point through the analysis of t
variation of event-by-event fluctuations as control para
eters are varied.

Once experimentalists vary a control parameter wh
causes the freeze-out point in the (T,m) plane to move to-
ward, through, and then past the vicinity of the end point
they should see all the signatures we describe fi
strengthen, reach a maximum, and then decrease, as a
monotonic function of the control parameter. It is importa
to have a control parameter whose variation changes them at
which the system crosses the transition region and free
out. The collision energy is an obvious choice, since it
known experimentally that varying the collision energy ha
large effect onm at freeze-out. Other possibilities shou
also be explored.1

An example of nonmonotonic signatures in a different b
analogous context is the rise and fall in the number of la
fragments as a function of total observed multiplicity in mu
tifragmentation experiments@5# in low energy nuclear colli-

1If the system crosses the transition region near E, but o
freezes out at a much lower temperature, the event-by-event
tuations will not reflect the thermodynamics near E. In this ca
one can push freeze-out to earlier times and thus closer to E
using smaller ions@1,4#.
©1999 The American Physical Society28-1
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sions. These experiments allow us to confirm the existe
and study the properties of another critical point—the e
point of the first-order nuclear liquid-gas transition~boiling
of the nuclear matter liquid to yield a gas of nucleons! @6,5#.
This point occurs at a temperature of order 10 MeV, mu
lower than the one we are studying@1#.

The analogy which is perhaps most familiar is with t
phenomenon of critical opalescence observed in most
uids, including water. As the fluid cools down under con
tions such that it passes near the end point of the boi
transition, it goes from transparent to opalescent to trans
ent as the end point is approached and then passed.
nonmonotonic phenomenon is due to the scattering of l
on critical long wavelength density fluctuations, and thus s
nals the universal physics unique to the vicinity of the cr
cal point.

The universal property of systems in the vicinity of
second-order critical point is the anomalous increase of t
modynamic fluctuations of the order parameter and rela
observables. Here we consider a specific system, namely
hadronic matter created in a heavy ion collision at the ti
interactions freeze out. Our generic expectation is that
event-by-eventfluctuations of suitable observables increa
in the vicinity of a critical end point. In this paper we calc
late the magnitude of the resulting nontrivial effects, a
make predictions which, we hope, will allow experiments
find the end point E.

It is clear that before we can achieve this goal we m
develop sufficient understanding ofnoncritical event-by-
event fluctuations. Large acceptance detectors, such as N
and WA98 at CERN, have made it possible to measure
portant average quantities in single heavy ion collis
events. For example, instead of analyzing the distribution
charged particle transverse momenta obtained by avera
over particles from many events, we can now study
event-by-event variation of the mean transverse momen
of the charged pions in a single event. The event-by-ev
variation of particle abundance ratios and even of
Hanbury-Brown-Twiss~HBT! radii are also becoming avail
able. Although much of this data still has preliminary stat
with more statistics and more detailed analysis yet to co
some general features have already been demonstrate
particular, the event-by-event distributions of these obse
ables are as perfect Gaussians as the data statistics allow
the fluctuations—the width of the Gaussians—are small@7#.

This is very different from what one observes inpp col-
lisions, in which fluctuations are large. These large n
Gaussian fluctuations clearly reflect nontrivial quantum fl
tuations, all the way from the nucleon wave function to th
of the secondary hadrons, and are not yet sufficiently w
understood. As discussed in@8,9#, thermal equilibration in
AA collisions drives the variance of the event-by-event flu
tuations down, close to the value determined by the varia
of the inclusive one-particle distribution divided by th
square root of the multiplicity. Inpp physics one can hope t
extract quantum mechanical information about the ini
state from event-by-event fluctuations of the final state;
heavy ion collisions equilibration renders this an impossi
goal. InAA collisions, then, the new goal is to use the mu
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smaller, Gaussian event-by-event fluctuations of the fi
state to learn about thermodynamic properties at freeze-

What can we learn from the magnitude of these sm
fluctuations and their dependence on the parameters o
collision? Do they contain any more information than t
corresponding moments of one-particle inclusive distrib
tions? Some of these questions have been addresse
@10,11# where it was pointed out that, for example, tempe
ture fluctuations are related to heat capacity via

^~DT!2&
T2 5

1

CV~T!
, ~1!

and so can tell us aboutthermodynamicproperties of the
matter at freeze-out. Similar ideas in@11# relate fluctuations
in the occupation of certain momentum bins with]m/]N and
the average quantum density in phase space. Furtherm
Mrówczyński has discussed the study of the compressibi
of hadronic matter at freeze-out via the event-by-event fl
tuations of the particle number@12# and Gaz´dzicki @13# and
Mrówczyński @14# have considered event-by-event fluctu
tions of the kaon to pion ratio as measured by NA49@7#.

In this paper we focus on observables constructed fr
the multiplicity and the momenta of the charged particles
the final state, as measured by NA49. It should be possibl
use similar methods to analyze the event-by-event fluctua
of other classes of observables. For example, if it were p
sible to measure the baryon to pion ratio, analyses analog
to those we discuss would lead to the thermodynamic s
ceptibility ]2V/]m2. As the neutrons are not observed, th
analysis is not available. However, event-by-event fluct
tions of the kaon to pion ratio may yield similar informatio
Another example is the data obtained by WA98 on the eve
by-event fluctuation of the charged particle to photon ra
@15#. They find a Gaussian distribution, and therefore co
strain nonequilibrium processes in which long wavelen
disorientations of the chiral condensate are excited, as th
introduce non-Gaussianity. We leave the extension of
methods of this paper to the study of thermodynamic imp
cations of the NA49 Gaussian distribution of event-by-ev
K/p ratios and of the WA98 Gaussian distribution of eve
by-eventp0/p6 ratios for future work.

Thermodynamic relations like Eq.~1! suggest the follow-
ing strategy. Measure the mean transverse momentum o
charged pions in each event in an ensemble. Since the in
sive average of the transverse momentum of pions from
ensemble of events reflects~although does not equal! the
temperature of the ensemble, perhaps one can usepT , the
mean transverse momentum of the pions in a single eve2

as a proxy for the temperature of a single event, and so
Eq. ~1! to obtainCV . One of the lessons of the results w
present below is that this strategy is too naive. To see a
of this, consider another fundamental thermodynamic re

2We denote the mean transverse momentum of all the pions
single event bypT rather than̂ pT& because we choose to reser
^•••& for averaging over an ensemble of events.
8-2
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tion, namely that the event-by-event fluctuations of the
ergyE of a part of a finite system in thermal equilibrium a
given by

^~DE!2&5T2CV~T!. ~2!

For a system in equilibrium, the mean values ofT andE are
directly related by an equation of stateE(T); their fluctua-
tions, however, have quite different behavior as a function
CV , and therefore behave differently whenCV diverges at a
critical point. So, is theCV dependence of the event-by-eve
fluctuations ofpT like that of DT in Eq. ~1! or like that of
DE in ~2!? We will show thatpT fluctuations are not like
either, although theirCV dependence is more similar to th
of DE, in the sense that the fluctuations ofpT grow at the
critical point.

Most of our analysis is applied to the fluctuations of t
observables characterizing the multiplicity and momenta
the charged pions in the final state of a heavy ion collisi
There are several reasons why the pion observables are
sensitive to the critical fluctuations. First, the pions are
most numerous hadrons produced and observed in relativ
heavy ion collisions. A second, very important reason, is t
pions couple strongly to the fluctuations of the sigma fi
~the magnitude of the chiral condensate! which is the order
parameter of the phase transition. Indeed, the pions are
quantized oscillations of the phase of the chiral conden
and so it is not surprising that at the critical end point, wh
the magnitude of the condensate is fluctuating wildly, sig
tures are imprinted on the pions. By Sec. V, we will ha
built up the technology needed to analyze these signatu

Before we outline the structure of the paper, the followi
comment is in order. We assume throughout that freeze
occurs from an equilibrated hadronic system. If freeze-
occurs ‘‘to the left’’ ~lower m; higher collision energy! of the
critical end point E, it occurs after the matter has traver
the crossover region in the phase diagram. If it occurs
the right’’ of E, it occurs after the matter has traversed
first-order phase transition. This is the situation in which o
assumption of freeze-out from an equilibrated system is m
open to question. First, one may imagine hadronization
rectly from the mixed phase, without time for the hadrons
rescatter. Hadronic elastic scattering cross sections are
enough that this is unlikely. Second, one may worry that
matter is inhomogeneous after the first-order transition,
has not had time to re-equilibrate. Fortunately, our assu
tion is testable. If the matter were inhomogeneous at free
out, one can expect non-Gaussian fluctuations in various
servables@16# which would be seen in the same experime
that seek the signatures we describe. We focus on the Ga
ian thermal fluctuations of an equilibrated system, and st
the nonmonotonic changes in these fluctuations assoc
with moving the freeze-out point toward and then past
critical point, for example from left to right as the collisio
energy is reduced.

Although our central point is the analysis of the critic
fluctuations in the vicinity of the point E, we must firs
present an extensive analysis of the noncritical fluctuatio
which are the background on top of which critical effec
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must be sought. Thus, this paper is organized as follo
Sections II and III analyze the background noncritical flu
tuations; Sec. IV analyzes a particular~negative! contribu-
tion to the noncritical fluctuations which disappears near
critical point; Sec. V and VI analyze the critical fluctuation
themselves.

We begin in Sec. II by discussing the simplest case
can imagine, namely the fluctuations in an ideal Bose ga
pions. This allows us to establish some notation and to
plain several conceptual issues. In particular, we explore
relation in this simplest case between the ensemble~i.e.,
event-by-event! variance and the variance of the inclusiv
one-particle distribution obtained by averaging over partic
from many events. We also point out that the correlat
between the multiplicity and an intensive observable, like
mean transverse momentum, only receives contributi
from nontrivial effects such as Bose enhancement, ene
conservation, or interactions. This correlation is in gene
small, but we see in Secs. IV and V that it can increase b
large factor near the critical point. We derive results in S
II and throughout which are valid in the thermodynam
limit. In an Appendix, we explain the subtleties of constru
ing estimators for the relevant quantities using a fin
sample of events each with a finite number of pions.

Our goal in Sec. III is the inclusion of various effec
neglected in Sec. II, except that we continue to assume
freeze-out isnot occurring in the vicinity of the critical point.
We model the matter in a relativistic heavy ion collision
freeze-out as a resonance gas in thermal equilibrium,
begin by calculating the variance of the event-by-event fl
tuations of total multiplicity. Our result suggests that abo
75% of the fluctuations seen in the data are thermodyna
in origin. Our prediction is strongly dependent on the pre
ence of the resonances; had we not included them, our
diction would have been significantly lower, farther belo
the data.

Fluctuations in extensive observables like the total mu
plicity N are sensitive to nonthermodynamic variation in t
initial size of the system which later thermalizes. Sources
such variation include~i! the distribution of impact param
eters,~ii ! fluctuation in the initial positions of the nucleon
~iii ! quantum fluctuations of theNN cross section@17# de-
scribed by the wave function of the nucleon, which can
thought of as fluctuations in the effective size of the nucleo
at the initial moment of the collision. All these effects lead
fluctuation in the number of spectator nucleons, and thu
the initial size of the interacting system which later therm
izes. We plan to evaluate the size of these contributions
fluctuations inN elsewhere. In this paper, we constrain t
magnitude of these nonthermodynamic effects by compa
thermodynamic predictions for the fluctuations inN to the
data.

We then turn to a calculation of the variance of the eve
by-event fluctuations of the mean transverse momentum,pT .
This is an intensive variable and should, therefore, be
sensitive to nonthermodynamic variations in the initial s
of the system. We calculate numerically the thermodynam
contribution from ‘‘direct pions,’’ already present at freez
out, and from the pions generated later by resonance de
8-3
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We include Bose effects and the effects of flow and find b
to be small. We compare our results to those found by NA
for central Pb-Pb collisions at 160 AGeV, and find bro
agreement. We do not attempt to include purely experime
effects, such as those due to two-track resolution, and s
not expect precise agreement. Our goal is to compare
served variance with thermodynamic expectations and to
whether they are consistent. Our results support the gen
idea that the small fluctuations observed inAA collisions,
relative to those inpp, are consistent with the hypothes
that the matter in theAA collisions achieves approximat
local thermal equilibrium in the form of a resonance g
Once data is available for other collision energies, centr
ties, or ion sizes, the present NA49 data and the calculat
of this section will provide an experimental and a theoreti
baseline for the study of variation as a function of cont
parameters.

In Secs. IV and V, we analyze how the proximity of th
critical end point to the freeze-out point is reflected in t
fluctuations. We begin in Sec. IV by making the idealizati
that the pions which one observes are an ideal Bose ga
thermal contact with a heat bath which includes the sig
field. The heat capacity of this heat bath is therefore infin
at the critical point. This treatment neglects thespp cou-
pling, which allows the critical fluctuations of the sigma fie
to influence the pion fluctuations directly, rather than just
thermal contact.

The dominant effects of the critical fluctuations on t
pions are the direct effects occurring via thespp coupling.
The idealization of Sec. IV is nevertheless useful, becaus
allows us to explain and illustrate an important point n
made clear in@1# related to the practical application of Eq
~1!. The fluctuations of the temperaturedependon what
‘‘mechanical’’ observable~such as the energy, for exampl!
is measured, and how the measured observable is conv
into a temperature. In particular, these fluctuations depen
what part of a system is used as a thermometer. Equation~1!
describes a particular case when the whole system of inte
is used as a thermometer. It requires us to use the equati
stateT(E) of the whole system of interest to translate t
energy, which is measured in this case, into the tempera
@18#. The fluctuations of ‘‘mechanical’’ variables, such
energy,increaseat the critical point, as in Eq.~2!. Because
T(E) is singular at the critical point, the fluctuations ofT
decrease, and vanish at the critical point whereCV→`. It is
a fact that what we measure are the mechanical observa
and since we in general only knowT(E) for simple systems
we call thermometers, we cannot apply Eq.~1! to the com-
plicated system of interest. We illustrate these points
evaluating the fluctuations of several observables in an id
gas of detected pions~the thermometer! which is in thermal
contact with an undetected nonideal, possibly singular, h
bath. The effect we find vanishes at the critical point, wh
the specific heat of the heat bath diverges due to the fluc
tions of the sigmas therein, and so provides a nonmonot
signature. The effect involves a reduction in the fluctuatio
of the mean transverse momentum of the pions. What ma
it distinctive is that it also involves an anticorrelation b
tween fluctuations of pion occupation numbers with differe
11402
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momenta. We show that this phenomenon follows direc
from energy conservation, and conclude that it is much m
robust than the idealizations we use to describe it. This
nature is present when the system freezes out far from
critical point, and is reduced near the critical point. It shou
be observable in present data on central PbPb collision
160 AGeV, even if freeze-out is not occurring near the cr
cal point in these collisions.

Section V describes what we believe to be the domin
event-by-event signatures directly related to the diverg
correlation length which characterizes the critical point. W
apply much of the technology built up over the precedi
sections in Sec. V to study the effect of the interaction of
pions with the almost classical sigma field. We find a lar
increase in the fluctuations of both the multiplicity and t
mean transverse momentum of the pions. This incre
would be divergent in the infinite volume limit precisely
the critical point. We apply finite size and finite time scalin
to estimate how close the system created in a heavy
collision can come to the critical singularity, and cons
quently how large an effect can be seen in the event-by-e
fluctuations of the pions. We conclude that the nonmo
tonic changes in the variance of the event-by-event fluct
tion of the pion multiplicity and momenta which are induce
by the universal physics characterizing the critical point c
easily be between one and two orders of magnitude gre
than the statistical errors in the present data.

Once we have analyzed the effects of the sigma field
the fluctuations of the pions, in Sec. VI we ask what becom
of the sigmas themselves. Assuming that freeze-out oc
near the critical point, they are numerous at freeze-out
they can only decay later, once the sigma mass has r
above twice the pion mass. This results in a nonmonoto
signature of the critical point which can be observed ev
without an event-by-event analysis. We calculate the m
mentum distribution of these low momentum pions produc
in the delayed decays of the sigmas. We close by analyz
the enhanced event-by-event fluctuations of the multiplic
of these low momentum pions.

We end the paper with a summary of the different con
butions to the event-by-event fluctuations which we ha
analyzed, and a more general look to the future. In striving
provide analyses which will assist experimentalists to use
universal properties of the critical point to learn its locatio
we hope that we have in addition provided a set of tools
event-by-event analyses of heavy ion collisions which w
prove useful in the study of the thermodynamics of QCD
a variety of contexts in the future.

II. THERMODYNAMIC FLUCTUATIONS IN AN IDEAL
BOSE GAS

A. The basics

We begin by recalling text-book facts about the therm
dynamics of an ideal Bose gas which are relevant to
event-by-event analysis. Little in this section is new, but it
nevertheless a very helpful exercise and will allow us
establish some notation. The basic fact is that every quan
state of a system of identical spinless Bose particles is c
8-4
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pletely characterized by a set of numbers,np—the occupa-
tion numbers for the one-particle states labeled by mome
p. All thermodynamic quantities are functions of these nu
bers and thus all we need to know is the fluctuations ofnp
from one member of the ensemble~one event! to another.
The first step toward a characterization of these fluctuati
is the ensemble average of the occupation number for
mode with momentump, namely

^np&5
1

eep /T21
, ~3!

where ep5vp2m and, as usual,vp5Ap21m2. Next, we
need the deviation,Dnp5np2^np&, whose mean square av
erage in the ensemble is given by

^~Dnp!2&5T
]np

]m
5

eep /T

~eep /T21!2
5^np&~11^np&![vp

2 .

~4!

We have introduced notationvp
2 for this quantity which will

be used frequently below. This expression is ‘‘microscopic
in the sense that it is written for a single mode in moment
space. However, it can be derived ‘‘macroscopically’’ as f
lows. The fluctuations in the total particle number

N5(
p

np ~5!

are given by@18#

^~DN!2&5TS ]N

]m D
T

. ~6!

Because the fluctuations of different modes are statistic
independent, we can elevate this relation to the microsco
form ~4!, and indeed to

^DnpDnk&5^~Dnp!2&dpk5vp
2dpk . ~7!

The correlator̂ DnpDnk& is the central quantity which we
will calculate repeatedly throughout this paper, as we p
ceed beyond the ideal Bose gas.

The correlator in Eq.~7! enters in the calculation of th
event-by-event mean square deviation of any generic t
modynamic variable of the form

Q5(
p

qpnp . ~8!

Indeed, sinceDQ[Q2^Q&5(pqpDnp , we find that

^~DQ!2&5(
pk

qpqk^DnpDnk&5(
p

qp
2vp

2 . ~9!

The quantityQ could be the total energy

E5(
p

npep , ^~DE!2&5(
p

ep
2vp

2 ; ~10!
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or it could be the total transverse momentum(p(pT)pnp ; or
simply the total particle number

N5(
p

np , ^~DN!2&5(
p

vp
2 . ~11!

For future reference we also give here an expression
the heat capacityCV of the Bose gas at constantV andm:

CV5TS ]S

]TD
m

52TS ]2V

]T2 D
m

. ~12!

Using the expression for the thermodynamic potential,

V5T(
p

ln~12e2ep /T!, ~13!

one finds

CV5
1

T2 (
p

ep
2vp

2 . ~14!

Comparing to Eq.~10! we find the well-known relation

^~DE!2&5T2CV , ~15!

which is valid for any system in equilibrium.

B. Energy per particle: Event-by-event average vs.
single-particle inclusive average

Let us now compute the fluctuation of anintensiveob-
servable, such as the mean energy per particlee5E/N,
where E and N are extensive, orpT , the mean transvers
momentum per particle in a single event. Analyzing t
member-of-the-ensemble-by-member-of-the-ensemble fl
tuations of the mean energy per particle in a single mem
of the ensemble is a good warmup. We henceforth begin
refer to members of the ensemble as events. For small fl
tuations~andDE/E;N21/2!1 is small! we can write

DS E

ND'
E

NS DE

E
2

DN

N D . ~16!

Now, we square:

S DS E

ND D 2

5
1

N2 F ~DE!21S E

ND 2

~DN!222S E

NDDEDNG .
~17!

Then we average. We already know^(DE)2& and ^(DN)2&,
but we also need

^DEDN&5(
p

epvp
2 , ~18!

which is obtained in the same way as before. Putting this
together, we find

^~De!2&5
1

^N&2(
p

~ep2^e&!2vp
2 . ~19!
8-5



-
hi

o
e
bl
io

t
e

e

ik
n
n
v

-
se

y
g

f
-b
n
e
n
he

W

en
o
te

ion;

no
all
t-
ve

mi-
due
her-
be
mi-

the
in

an
se
re
49

. In
rmal
ut
rom
xi-
The
st of
mic
ze

of
the
ion
rgy
the

ion
ilib-
it

rmal

liza-

ar-

ck-

M. STEPHANOV, K. RAJAGOPAL, AND E. SHURYAK PHYSICAL REVIEW D60 114028
Let us now compare Eq.~19! to the variance of the inclu
sive single particle average energy per particle. To do t
we introduce the notation

qp
inc[(

p
qp^np&/(

p
^np&5(

p
qp^np&/^N&. ~20!

Whereaŝ •••& denotes an average over events of some pr
erty of a single event,. . . pinc denotes an inclusive averag
of a property of a single pion over all pions in the ensem
of events, without reference to in which event each p
occurs. It is more convenient for theoretical purposes
work with occupation numbersnp , and the inclusive averag
is then donenp by np as defined in Eq.~20!. The subscriptp
on the left-hand side of Eq.~20! reminds us that the averag
is done momentum bin by momentum bin: it isqp which is
being averaged,not q5Q/N. However, the quantityqp

inc is
p independent. Were we only interested in a quantity l
^e&, there would be no need to take care with definitio
because averaging a single-particle quantity pion by pio
the same as first averaging it over an event, and then a
aging event by event:

^e&5^E/N&5ep
inc. ~21!

This is not true for fluctuations about the mean, as we see
using our definitions to rewrite Eq.~19! as

^~De!2&5
1

^N&
~ep2^e&!2~11^np&! inc. ~22!

The same formula holds ife5E/N is replaced by any quan
tity of the formq5Q/N, for example by the mean transver
momentum per event.

The lesson we learn from Eq.~22! is that up to the Bose
enhancement factor (11^np&), the ensemble~alias event-by-
event! fluctuations ofintensivequantities, such as the energ
per particle, are indeed given by the variance of the sin
particle distribution(ep2^e&)2inc and the central limit theo-
rem which dictates the factor 1/^N&. We see that the effect o
the Bose factor is to increase the variance of the event
event distribution relative to that of the inclusive distributio

When we apply formulas like those we have just deriv
which are valid in the thermodynamic limit to heavy io
collision data, we will need to construct estimators for t
relevant quantities using a finite ensemble of events,
which the number of particles in each event is also finite.
describe how this should be done in the Appendix.

Having discussed the fluctuations of extensive and int
sive quantities, we end this section by considering the cr
correlation between an intensive observable and the ex
sive observableN. For example, let us calculatêDeDN&.
Using ingredients we have spelled out above, we find

^DeDN&5
1

^N& (
p

vp
2~ep2^e&!5

1

^N& (
p

^np&
2~ep2^e&!.

~23!
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Note that the terms proportional to^np& have canceled, and
the remaining term, proportional tônp&

2, is obviously due
to the Bose effect. This result applies to any such correlat
for example, we could have usedpT instead ofe. The lesson
we learn is this: cross correlations betweenN and intensive
observables are generally small, because they receive
contribution if one takes the classical ideal gas limit. Rec
that in Eq.~21! we find a dominant contribution to the even
by-event variation coming from the variation of the inclusi
single particle distribution. In Eq.~23!, this effect cancels
and the remaining effects due to Bose enhancement do
nate. This means that the nontrivial effects on the pions
to their interactions and due to energy conservation and t
mal contact with other degrees of freedom only need to
larger than the effects of Bose enhancement in order to do
nate this cross correlation.

III. NONCRITICAL THERMODYNAMIC FLUCTUATIONS
IN HEAVY ION COLLISIONS

In this section we proceed to quantitative estimates of
magnitude of noncritical event-by-event fluctuations
heavy ion collisions. As an example of anextensivequantity
we use the total charged pion multiplicity of an event; as
example of anintensivequantity we use the mean transver
momentumpT of the charged pions in an event. We compa
some of our estimates to preliminary data from the NA
experiment at CERN Super Proton Synchrotron~SPS! on
PbPb collisions at 160 AGeV, and find broad agreement
this section, and throughout this paper, we assume the
equilibrium at freeze-out. In this section, but not througho
this paper, we assume that the system freezes out far f
the critical point in the phase diagram, and can be appro
mated as an ideal resonance gas when it freezes out.
results obtained seem to support the hypotheses that mo
the fluctuation observed in the data is indeed thermodyna
in origin and that PbPb collisions at 160 AGeV do not free
out near the critical point.

A. Pion gas at thermal freeze-out and Bose enhancement

The observed spectrum of pions reflects the distribution
pion momenta at the time of thermal freeze-out, namely
time at which the interaction rates fall behind the expans
rate. After this time, one can approximately neglect ene
and/or momentum exchange interactions and consider
momenta of particles as frozen. Freeze-out is by definit
the time at which the system ceases to be in thermal equ
rium. However, if the system has thermalized before
freezes out, then even after freeze-out one has a the
distribution of pion momenta,3 approximately with a single
temperature over the whole system. This standard idea
tion at this point seems sufficient to describe the data.~Par-
ticles which interact more weakly than pions freeze out e

3As is very accurately the case for the cosmic microwave ba
ground radiation, 103107 years after its freeze-out.
8-6
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EVENT-BY-EVENT FLUCTUATIONS IN HEAVY ION . . . PHYSICAL REVIEW D60 114028
lier, at a higher temperature. We leave such partic
together with details of the dynamics of the freeze-out of
pions, to future work.!

We start with the simplest model for the pions at free
out — the ideal Bose gas. This allows us to use the result
the previous section. Later in this section, we add pions p
duced by the decay of resonances as well. The isospin
generacy of the pions requires a small modification to
formulas of the previous section. Since only the momenta
charged pions are observed, we must only countp1 andp2.
Becausep1 andp2 are distinct, the Bose enhancement fa
tor is reduced from 11np to 11(np/2), wherenp counts the
total number of charged pions. This is the consequence o
fact that only identical pions can interfere.4

We begin by showing that the effect of the Bose enhan
ment is very sensitive to a nonzero pion chemical poten
mp ~not to be confused with the baryon number chemi
potentialm). Let us first remind the reader why a nonze
mp may be needed. The pion chemical potential is no
thermodynamic conjugate to any fundamentally conser
quantity, and is the same for pions of all charges. It is s
posed to represent the overpopulation of pion phase spac
allows for the possibility that even though the momenta
the pions are in equilibrium at freeze-out, their number d
sity is not. This arises because all reactions which
change the number of particles, and thus keep this quanti
equilibrium, have small cross sections at the relevant
energies. In contrast, elastic rescattering is strongly enha
by resonances~such asD,N* for pN, s,r for pp, etc!.
As a result, thermal equilibrium of momenta is maintained
a lower freeze-out temperature, whereas chemical freeze
~below which particle numbers do not change! occurs some-
what earlier. There is therefore a window of time betwe
chemical and thermal freeze-out during which the syst
evolves with fixed pion number; during this time a pio
chemical potential naturally develops. At chemical free
out, mp50. As the temperature then continues to drop wh
the pion number remains fixed,mp increases. For an over
view of pion kinetics and references see@19#. Practical cal-
culations of the magnitude of the effect for heavy ion co
sions at CERN SPS can be found in@20#. The conclusion
inferred from this analysis is that the pions in central Pb
collisions at SPS energies freeze out at a temperaturTf
'120 MeV with mp'60 MeV.

Now we return to the calculation of the Bose enhan
ment of fluctuations of some generic single-particle intens
observableq5Q/N. If we use the notationvebefor the event-
by-event variance andv inc for the variance of the inclusive
distribution:

vebe
2 ~q!5^~Dq!2& and v inc

2 ~q!5~qp2^q&!2inc, ~24!

and define the ratio

4It is easy to see that̂Dnp
i Dnk

j &5^np
i &(11^np

i &)d i j dpk , where
i , j 51,2. On the other hand, fromnp5( inp

i it follows that ^np
i &

5^np&/2 and^DnpDnk&5^np&(11^np&/2)dpk .
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F[
^N&vebe

2 ~q!

v inc
2 ~q!

~25!

then we can write the result~22! for the ideal Bose gas as

F5FB[11
1

2

E d3p~qp2^q&!2^np&
2

E d3p~qp2^q&!2^np&

. ~26!

The factor of 1/2 appears because, as discussed above,
are two charged pions. As we consider effects not presen
an ideal gas, we will find that the ratioF is not given simply
by the Bose enhancement factorFB . It is a product ofFB
and other factors which we estimate later in this section
in subsequent sections.

The dependence ofFB on mp is shown in Fig. 1 forq
5pT5Apx

21py
2. ~Note that v inc

2 does depend on the pio
chemical potential as well.! We have also shownFB for
pions withpT,300 MeV to demonstrate that restricting th
acceptance to low-energy pions results in a larger Bose
hancement effect. It is worth noting that for more cent
collisions the thermal freeze-out temperatureTf is lower be-
cause the system is larger and freezes out later@4#. There-
fore, mp should be somewhat larger and the Bose enhan
ment effect should somewhat increase event-by-ev
fluctuations for more central collisions. To conclude, t
Bose enhancement effect is sensitive tomp , and leads to an
increase invebeby a factor ofAFB, which typically results in
an increase of the order of a few percent.

The effects of Bose enhancement on the variance of
fluctuations ofpT in an ideal Bose gas have been conside
previously @21,7#: our results are in quantitative agreeme
with theirs. These authors use the quantity

FpT
5^N&1/2vebe~pT!2v inc~pT! ~27!

FIG. 1. Bose enhancement factorFB5^N&vebe
2 (pT)/v inc

2 (pT) de-
scribing the contribution of the Bose effects to the fluctuations
the mean transverse momentum in an ideal Bose gas of pions.FB is
plotted as a function of the pion chemical potentialmp , in MeV.
The dashed line shows the Bose enhancement factor if only p
with low momentumpT,300 MeV are included.
8-7
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introduced in Ref.@8# as a measure of the Bose enhancem
effect. As we discuss in the Appendix and below, when^N&
is finite one must take care in definingFpT

to use an appro-

priate estimator forvebe(pT). To compare our results with
theirs, note that what we describe asAFB51.01 corresponds
to FpT

5(0.01)v inc(pT). This already hints at what we wil

see below, namely that whereasFpT
depends on the flow

velocity throughv inc(pT), ratios likeFB are much less sen
sitive to the effects of flow and are therefore more easy
calculate.

B. Contribution of resonances

The hadronic matter produced in a heavy ion collision
not simply an ideal gas of pions. A number of approaches
heavy ion collisions have successfully treated the matte
freeze-out as a resonance gas in thermal equilibrium.
analysis of the fluctuations observed in present data le
support to this idea.

Even the global properties of hadronic matter are stron
affected by resonances. Although at temperatures of inte
(T,Tc) the Boltzmann factor exp(2M/T) for each reso-
nance is small, it is partially compensated by the p
exponential factor due to the large number of states involv
One may recall here the Hagedorn conjecture, that at a
tain temperature the contribution to the energy density du
the resonances would diverge because of the expone
growth of the density of states. Although this does not h
pen in practice, because the chiral phase transition occu
a much lower temperature than any putative Hagedorn t
sition, one nevertheless finds@22# that when relevant reso
nances are included, the energy density and pressure inc
rapidly with T, and can be fitted by a power law

«~T!;P~T!;Tk ~28!

with the powerk'6 at zero baryon density.5 One also finds
that the heat capacity, normalized to the number of pi
~which means that we have ‘‘decayed’’ all resonanc
counting eachr meson as 2 pions, eachv as 3, etc.! is

~CV /Np!resonance gas'23, ~29!

at Tf5120 MeV, while for the ideal Bose gas of pions on
has only

~CV /Np!pions '14 ~30!

at the same temperature. This general observation@11# al-
ready suggests that the resonances may affect the fluctua
considerably.

The resonances play another role in the problem. Th
which are present at freeze-out decay after freeze-out, an
definition this means that the pions they produce cannot

5For nonzero baryon density this effective power is even larg
but we will ignore this since it is only important at much high
baryon densities~and lower collision energies! than achieved at the
CERN SPS.
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catter. The pions observed in the data are therefore a su
~i! ‘‘direct pions’’ which were pions at freeze-out and~ii !
pions produced from the decay of resonances after fre
out. Note that the direct pions also originate from res
nances, in the sense that most of the low energy rescatte
which occurs before freeze-out occur via resonances. As
have discussed above, inelastic reactions which change
number of participants freeze out earlier than elastic sca
ing. What this means is that the multiplicities of the pio
and resonances, although thermal, should be fixed not a
thermal freeze-out (Tf;120 MeV in PbPb! but earlier, at
chemical freeze-out. Fits of SPS data on ratios of part
yields to thermal models yieldTch;160–170 MeV@23#.6

In the remainder of this subsection, we investigate th
effects of the resonances on the event-by-event fluctuat
of the extensive observableN, the number of charged pion
per event, and the intensive observablepT , the mean trans-
verse momentum per event. We first describe all three eff
briefly, and then describe the simulation which we have u
in order to investigate them. The first~and largest! effect is a
direct contribution to the fluctuations ofN, and indeed to any
extensive observable. The multiplicity fluctuations in a cla
sical ideal gas are characterized by^(DN)2&/^N&51 and for
an ideal pion gas this ratio is 11(1/2)^np&

inc due to Bose
effects and is therefore a few percent larger than 1. This r
is significantly larger for a resonance gas. Each resona
decays into several pions~for example,r→2p,v,h→3p,
etc.!, and this means that when the resonances decay
freeze-out, they significantly modify the statistics of pio
number fluctuations. If the resonances themselves are
duced randomly,7 with a Poisson multiplicity distribution,
their decay products are not. For example, if there were
direct pions and only one species of resonance which alw
decayed intod charged pions, the pions produced in th
ensemble would havê(DN)2&/^N&5d.

Resonances also affect the fluctuations of intensive
servables, like the energy per pion or mean transverse
mentumpT . The second effect we analyze arises beca
pions produced in resonance decays have a single-par
momentum spectrum which is similar but not identical to t
thermal spectrum for the direct pions. The products of re
nance decay populate the lowpT region of the spectrum
somewhat more.8 In order to estimatevebe(pT), we must
therefore include the change inv inc(pT) introduced by the
pions produced by the decay of resonances after freeze-

The third effect of resonance decays is that they cont
ute additional kinematic correlations between their dec
products, which then have no chance to rethermalize. N
terms arise in the correlator~7! which describes the fluctua

r,

6Note that this number is close to the critical temperature obtai
in lattice simulations with zero baryon density@24#.

7All resonances are heavy enough that Bose enhancemen
them can be neglected.

8This effect is qualitatively similar to the effect of a nonzero pio
chemical potential. A clear distinction between these effects in d
analysis is still lacking.
8-8
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tions microscopically. For example, two-body decay~such as
r→p1p2 at rest! generates a term in the correlation fun
tion:

^Dnp
1Dnk

2&5dp,2kC~p!, ~31!

whereC(p) is proportional to the square of the pion fractio
originating fromr0 decays. The result of all such terms w
be a change invebe(pT) which can be parametrized as a ne
contributionF res to the ratioF of Eq. ~25!. ~That is, we now
haveF5FBF res.) Instead of attempting to study all contr
butions like Eq.~31! one by one, we address this effect a
the first two by doing a simulation. We will see that th
second and third effects we have described are both sm

We have simulated a gas of pions, nucleons, and re
nances in thermal equilibrium at freeze-out, including thep,
K, h, r, v, h8, N, D, L, S, andJ, and then simulated the
subsequent decay of the resonances. That is, we have g
ated an ensemble of pions in three steps:~i! Thermal ratios of
hadron multiplicities were calculated assuming equilibriu
ratios at chemical freeze-out. Following@23#, the values
Tch5170 MeV andmbaryon5200 MeV were used.~ii ! Then,
a program generates hadrons with multiplicities determi
at chemical freeze-out, but with thermal momenta as app
priate at the thermal freeze-out temperature, which we t
to beTf5120 MeV, with mp560 MeV. The last step~iii !
is to decay all the resonances, using the appropriate sub
tine from RQMD.9 Under these conditions, more than half
the observed pions come from resonance decays.

We evaluate the variance of the fluctuations of the mu
plicity of the pions obtained from the resonance gas as
lows. For each species in the resonance gas, we labe
different decay modes by an indexi, and refer to the branch
ing ratios for the speciesr asbr

i . For each decay we defin
dr

i , the number of charged pions produced. From the sim
lation, we obtain the multiplicity of each resonance,Nr . The
total multiplicity of pions isNp5( r ,idr

i br
i Nr and the multi-

plicity fluctuations are described by

^~DNp!2&

^Np&
5

(
r ,i

~dr
i !2br

i Nr

(
r

dr
i br

i Nr

'1.4. ~32!

Bose enhancement increases this to^(DNp)2&/^Np&'1.5.10

We see that the resonances increase the multiplicity fluc

9We treat particles which decay by weak interactions as sta
which raises an additional issue. Experimentally, some weak de
happen so quickly that they feed up into the observed pion spe
We treat these particles as stable here; we hope that experime
ists make the appropriate corrections to the data.

10Event-by-event fluctuation in the resonance multiplicitiesNr , as
may be computed, for example, in dynamical models in which
resonances themselves are produced by decays of ‘‘clusters,’’
result in a small further increase in this ratio.
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tions by a large factor, relative to the fluctuations of t
direct pions alone. We compare this result to what is see
NA49 data below.

We now turn to the resonance-induced contribution to
fluctuations of the intensive observablepT , which is much
smaller. We begin with the effect onv inc . Table I describes
the single-particle inclusive distribution obtained from t
simulation, assuming uncorrelated particles in an equilibri
resonance gas at freeze-out. We see that the resona
changev inc(pT)/^pT& only by a few percent. The contribu
tions of correlations induced by resonance decay and of B
enhancement toF are not included. The effects of flow ar
not included. We now discuss each in turn, and find that
yield small contributions tô N&1/2vebe(pT)/^pT& relative to
v inc(pT)/^pT& which we have evaluated in the table.

We have estimatedF resby slicing up the pions from Table
I into varying numbers~up to 2500! of events, and evaluating
F. Since Bose enhancement is not included in the simulat
the F so obtained is justF res. We find no statistically sig-
nificant contribution to F, and conclude thatuF res21u
,0.01.

We now use the results of Sec. III A to incorporate Bo
enhancement effects, after noting the connection betw
Bose enhancement and resonance decay pions. There c
quantum interference between direct pions and resonance
cay pions, or among resonance decay pions. It is well kno
that all resonances can be approximately separated into
groups: those which are short-lived and those which
long-lived. The former~e.g.,r andD) have lifetimes much
shorter than the duration of pion radiation from the fireb
~i.e., the time over which freeze-out occurs!. Therefore, their
decay products interfere with other pions. The decay pr
ucts of long-lived particles~e.g.,v andh) can only interfere
with other pions if one selects pions with a very small ene
differenceuv12v2u!G, whereG is the width of the reso-
nance. This is essentially impossible, and pions produce
the decay of long-lived particles therefore do not contrib
to the Bose enhancement factor. This means thatFB21
should be multiplied by a factor (f direct1 f r1 f D1•••)2

where thef ’s are the fractions of allp mesons coming from
short-lived sources. This same fraction enters the HBT c
relation function, and is about 0.5@25#. So, we takeFB21

e,
ys
ra.
tal-

e
ay

TABLE I. Results of a numerical simulation of a resonance g
The results include the effects of the the correlations induced
resonance decays on the inclusivepT spectrum. The simulation it-
self does not include Bose enhancement effects, and so ca
thought of as the simulation of a single event with 1.2543106 pions
with a meanpT of 276 MeV, or can be sliced up into smalle
events.

No. of
pions ^pT& v inc(pT)
(103) ~MeV! ~MeV! v inc(pT)/^pT&

‘‘direct pions’’ only 541 283 189 0.67
pions from
resonances only

713 271 177 0.65

all pions 1254 276 183 0.66
8-9
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50.073 for mp560 MeV from Fig. 1 and reduce it by a
factor of 0.5 yielding

FB51.037, ~33!

and therefore conclude that the effect of Bose enhancem
is a small increase invebe(pT) by a factor ofAFB51.018.

C. The effects of radial flow

To this point, we have calculated the fluctuations inpT as
if the matter in a heavy ion collision were at rest at free
out. This is not the case: by that stage the hadronic matt
undergoing a collective hydrodynamic expansion in
transverse direction, and this must be taken into accoun
order to compare our results with the data. A very import
point here is that the fluctuations in pion multiplicity are n
affected by flow, and our prediction for them is therefo
unmodified. Fluctuations in multiplicity ratios~e.g., K/p)
would also be unaffected. However the event-by-event fl
tuations of meanpT are certainly affected by flow. The fluc
tuations we have calculated pertain to the rest frame of
matter at freeze-out, and we must now boost them. A
tailed account of the resulting effects would require a co
plicated analysis. Here we shall use the simple approxi
tion @26# that the effects of flow on the pion momenta can
treated as a Doppler blueshift of the spectrum:n(pT)
→n(pTA12b/A11b). This blueshift increaseŝpT&, and
increasesv inc(pT), but leaves the ratiov inc(pT)/^pT& @and
therefore the ratiovebe(pT)/^pT&# unaffected. This ratio~the
fourth column in Table I! is therefore a good quantity t
compare to experimental data, since our goal here is to
tract information about thermodynamics and not about flo

However, event-by-event fluctuations in the flow veloc
b must still be taken into account. This issue was discus
qualitatively already in@11#, where it was argued that thi
effect must be relatively weak. Here we provide the fi
rough estimate of its magnitude. The magnitude of the fl
velocity is proportional to the integral of the pressure gra
ent over the expansion time. Thus the fluctuations of the fl
velocity are determined by the pressure fluctuations. The
of the pressure fluctuations is related to the adiabatic c
pressibility by the standard thermodynamic relation@18#

^~DP!2&52TS ]P

]VD
S

. ~34!

For the resonance gas equation of state this gives

^~DP!2&
P2 5

k

k21

T

PV
5

k2

k21

1

S
. ~35!

The entropy per pion in the ideal gas is around 2.4, an
larger for the resonance gas. We shall takeS'3Np for our
estimate.

Using the ‘‘blueshift’’ approximation we can write

pT'pT
restA11b

12b
, ~36!
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wherepT
rest is the corresponding momentum in the rest fram

of the matter. The fluctuations of the observed moment
are then related to the fluctuations in the rest frame~calcu-
lated above! and the flow velocity fluctuations through

^~DpT!2&
pT

2 5
^~DpT

rest!2&

~pT
rest!2

1^~Db!2&, ~37!

where we have neglected corrections which are suppre
by O(b) relative to ^(Db)2&. The fluctuations in the flow
velocity are given by

^~Db!2&5b2 ^~DP!2&
P2 S tmicro

tflow
D . ~38!

The last factor on the right-hand side appears because
final velocity is proportional to the timeintegral of the pres-
sure gradient over the entire evolution prior to freeze-o
and this integral is a sum over uncorrelated fluctuations
time. In a resonance gas one can discuss the typical dura
of a collision ~the lifetime of a typical resonance!, and the
time between collisions~the inverse of the scattering rate!.
Both are close to the ‘‘microscopic’’ time scaletmicro
;1 fm/c. The expansion duration relevant for radial flow
actually much longer,tflow'10–20 fm/c for central Pb-Pb
collisions. This means that for each microscopic volume
ement one first does the time integral and obtains a ‘‘rand
walk’’ factor (tmicro/tflow)1/2;1/4 in Db. Then, the sum
over uncorrelated volume elements leads to a 1/AV or 1/AN,
which we have already seen in the expression~35! for ^DP&.

The flow velocity can be estimated for our purposes fro
the ratio of^pT

rest&'276 MeV given in Table I and the ex
perimental ^pT&'376 MeV observed by NA49. Thus,b
'0.3. Finally, putting all the estimates into Eq.~38! we find

N^~Db!2&'~0.1!2. ~39!

Note that although our estimate is uncertain at vario
points, the result is very small. Even if we have undere
mated the size of̂(Db)2& by a factor of 4, the contribution
to v inc(pT)/^pT& would only be 0.02. It is quite clear that th
great bulk ofv inc /^pT& is thermodynamic, with the contribu
tions of the fluctuations in the flow velocity being negligib
in comparison.

The largest uncertainty in our estimate forv inc(pT)/^pT&
is not due to the fluctuations in the flow velocity, which ca
clearly be neglected, but is due to the velocity itself. T
blueshift approximation which we have used applies qua
tatively only to pions with momenta greater than their ma
@26#. Because of the nonzero pion mass, boosting the p
does not actually scale the momentum spectrum by a
mentum independent factor. Furthermore, in a real heavy
collision there will be a position dependent profile of veloc
ties, rather than a single velocityb. A more complete calcu-
lation of v inc(pT)/^pT& would require a better treatment o
these effects in a hydrodynamic model; we leave this for
future.

We obtain our final estimate of the magnitude of t
event-by-event fluctuations of the intensive quantitypT far
8-10
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from the critical point as follows. Using the estimate
v inc(pT)rest/^pT& rest from Table I and Eqs.~37!,~39!, we esti-
mate that fluctuations in the flow velocity increa
v inc(pT)/^pT& from 0.66 to 0.67. Multiplication byAFB then
yields

^N&1/2vebe~pT!

^pT&
'0.68, ~40!

subject to the uncertainties introduced by the blueshift
proximation.

D. Comparison with NA49 data and outlook

In this section we compare our results with the NA49 d
from central Pb-Pb collisions@7# summarized in Table II. As
a first qualitative check of the predictions of our resonan
gas model, we can look at the multiplicity fluctuations. It
clear that with no cut on centrality, one would see a ve
wide non-Gaussian distribution of multiplicity determined
the geometric probability of different impact parametersb.
Gaussian thermodynamic fluctuations can only be seen
tight enough cut in centrality is applied. The event-by-ev
N-distribution found by NA49 when they use only the 5
most central of all events, with centrality measured usin
zero degree calorimeter, is Gaussian to within about 5
This cut corresponds to keeping collisions with impact p
rametersb,3.5 fm @7#. The non-Gaussianity could be fu
ther reduced by tightening the centrality cut further. We n
ask how well our resonance gas describes the width of
~almost! Gaussian distribution. From the data, we have

vebe
2 ~N!

^N&
52.00860.009, ~41!

which we should compare to our resonance gas predictio

TABLE II. Preliminary NA49 data@7#. The charged particles
are taken from the kinematic region 0.005,pT,2 GeV and 4
,y,5.5 ~assumingp mass!. The events used are the 5% mo
central of all events, with centrality measured using a zero de
calorimeter. The products from weak decays such asL ’s andK0’s
were only partially rejected with approximately 60% rejection e
ciency. The errors are statistical only.

Number of events 98 426
Total number of charged particles 26 587 685
^N& 270.1360.07
vebe(N) 23.2960.05
^pT& 376.7560.06 MeV
v inc(pT) 282.1660.04 MeV
vebe(pT) 17.2760.03 MeV
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1.5.11 We therefore conclude that about 75% of the obser
fluctuation is thermodynamic in origin. The contaminatio
introduced into the data by fluctuations in centrality could
reduced by analyzing data samples with more or less res
tive cuts but the samêN&, and extrapolating to a limit in
which the cut is extremely restrictive. This could be do
using cuts centered at any centrality. In addition to fluctu
tions in centrality, there is another experimental~as opposed
to thermodynamic! factor which could affect the agreeme
between resonance gas predictions and the observed flu
tions. The increase in the fluctuations due to resonances
only be detected provided the detector acceptance is l
enough to ensure the detection of all~or most! of the decay
products. NA49 seem to have coverage wide enough to
isfy this criterion and a quantitative estimate of losses on
boundaries can easily be made. Our resonance gas m
predicts that as the centrality cut is tightened, the ra
vebe

2 (N)/^N& should decrease toward a limit near 1.5.
Although further work is certainly required, it is alread

apparent that the bulk of the multiplicity fluctuations o
served in the data are thermodynamic in origin. Because
multiplicity fluctuations are sensitive to impact parame
fluctuations, it may prove difficult to explain their magnitud
with greater precision even in future. However, the fact t
they are largely thermodynamic in origin suggests that
effects present near the critical point, which we study
Secs. V and VI, could result in a significant nonmonoton
enhancement of the multiplicity fluctuations. This would
of interest whether or not the noncritical fluctuations on t
of which the nonmonotonic variation occurs are understo
with precision.

Now we proceed topT fluctuations. As we explain in the
Appendix, in order to be sure thatF51 when there are no
correlations between pions, care must be taken in constr
ing an estimator forvebe(pT) using a finite sample of events
each of which has finite multiplicity. The appropriate pr
scription ~A16! is to weight events in the event-by-eve
average by their multiplicity. This has not been done
Table II. However, we show in Eq.~A18! that we can use
^N& and vebe(N) to changevebe(pT) as required, and the
result is

vebe~pT!5~17.2760.03 MeV!S 12
1

2

vebe
2 ~N!

^N&2 D
5~17.2160.03 MeV!. ~42!

11In the NA49 data of Table II, all charged particles are coun
whereas we have done our calculations assuming that only
charged pions are observed. In our resonance gas model and
data @7#, about 80% of the charged particles in the final state
pions. If we redo the calculation~32!, but this time definedr

i as the
number of charged particles~pions, kaons, protons! produced in the
i th decay of ther th resonance, we find that thatvebe

2 (N)/^N& in-
creases, but only by a few percent. NA49 has demonstrated th
can study particle identification event-by-event and it may theref
be possible to analyze data on chargedpion multiplicity in future.

e
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We use this henceforth. We must now compare

^N&1/2vebe~pT!

^pT&
50.75160.001 ~43!

to our prediction~40! of 0.68.
We see that the major part of the observed fluctuation

pT is accounted for by the thermodynamic fluctuations
have considered. A large part of the discrepancy is in
prediction for the variance of the inclusive single-partic
distributionv inc(pT). Our v inc(pT)/^pT&50.67 is about 10%
lower than that in the data.12 First, this suggests that ther
may be a small nonthermodynamic contribution to thepT
fluctuations, for example from fluctuations in the impa
parameter.13 The other source of this discrepancy is the blu
shift approximation. We have applied a blueshift factor su
that ^pT& increases from 281 MeV in Table I to 377 MeV a
in the data, and in so doing have obtained a value
v inc(pT) which is low by 10%. This may be a reasonab
estimate for the error which we have introduced by using
blueshift approximation rather than a more sophistica
treatment of the effects of flow on the spectrum, which
leave to future work. Such a treatment is necessary before
can estimate how much of the 10% discrepancy is introdu
by the blueshift approximation. Future work on the expe
mental side~varying the centrality cut! could lead to an es
timate of how much of the discrepancy is due to imp
parameter fluctuations.

We have gone as far as we will go in this paper in o
quest to understand the thermodynamic origins of the w
of the inclusive single particle distribution. Another very im
portant feature in the data is the value of the ratio of
scaled event-by-event variation to the variance of the inc
sive distribution:

AF5
^N&1/2vebe~pT!

v inc~pT!
51.00260.002. ~44!

The difference between the scaled event-by-event varia
and the variance of the inclusive distribution is less tha

12As we have already noted, all charged particles are include
the data whereas we have calculated the fluctuations for the cha
pions alone. We have checked that including the protons
charged kaons from the resonance gas increases our predictio
v inc(pT)/^pT& in the rest frame by only a few percent. This sm
increase in the ratio is likely further reduced once the flow-indu
increase in̂ pT& for the kaons and protons is taken into accou
Although it would be good to remove this uncertainty complet
by analyzing a data sample of pions alone, it is already clear
this is not the explanation for the present 10% discrepancy.

13We expect that the fluctuations of an intensive quantity likepT

are less sensitive to impact parameter fluctuations than are tho
the multiplicity, and this seems to be borne out by the data.
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percent.14 This is a remarkable fact, since the contribution
the Bose enhancement~see Sec. III A! to this difference is
almost an order of magnitude bigger (AFB21 is a few per-
cent!. Therefore, there must be some mechanism at w
which compensates for the Bose enhancement. One pos
mechanism is the effect of the two-track resolution, dim
ishing the observed number of pions with very similar m
menta@7#. This reduces the ratioF, and NA49 estimates tha
it is of comparable magnitude to the Bose enhancement
fect but with the opposite sign. We do not attempt to inclu
either this effect or the effect of final state Coulomb intera
tions between charged pions in our analysis, leaving tha
the experimentalists. However, we point out that in the n
section we find another possible origin of this effect. W
shall see that anticorrelations due to energy conservation
thermal contact between the observed pions and the re
the system reduceF, as long as the system does not free
out near the critical point.

In summary, we have shown in this section that the
sumption that the system is a thermal resonance ga
freeze-out is in reasonable agreement with the magnitud
the observed event-by-event fluctuations in the pion mu
plicity and meanpT . We will see in Sec. IV that the effect
of energy conservation bring our prediction forAF into even
better agreement with the data. Of course, a number of is
we have touched upon need further study: it cannot be
erwise for the first quantitative study of a new set of ph
nomena. The situation is, however, very encouraging. F
BNL Relativistic Heavy Ion Collider~RHIC! detectors are
very well suited to measurements of the fluctuations we h
analyzed. Second, although some of the interesting eff
are small (FB , for example! with 106 of recorded events al
Gaussian widths can be measured to much better statis
accuracy than even the smallest of the systematic effects
have discussed, and will discuss in later sections. Third,
interesting systematic effects can be studied by varying
cuts made on the data. For example, considering only l
momentum pions one should find the effect of both the re
nances and the Bose enhancement@see Fig.~1!# to be several
times higher. Also,mp and therefore the Bose enhanceme
factorFB may be somewhat larger in central events. Detai
study~varying centrality; varying cuts inpT) may allow ex-
perimentalists to separate the effects of Bose enhancem
from other effects we have described, and will describe la
in this paper. Fourth, one can significantly widen the types
fluctuations which are analyzed. For example, one can st
new correlators like the event-by-event cross correlation
tween multiplicity and meanpT , ^DpTDN&. We saw in Sec.
II that such cross correlation results only from nontrivial e
fects. Finally, it is important to note that we do not expe
any of the effects we have analyzed in this section to cha

in
ed
d
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d
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at

of

14As noted above, becausev inc(pT) is scaled by the blueshift in-
troduced by the expansion velocity, so isFpT

. This makesFpT

harder to predict thanF. However, for convenience, we note that
one uses the experimental value ofv inc(pT), a valueAF51.01 cor-
responds toFpT

52.82 MeV, and theAF in the data Eq.~44! cor-
responds toFpT

50.660.6 MeV.
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significantly near the critical point.
Our analysis demonstrates that the observed fluctuat

are broadly consistent with thermodynamic expectations,
therefore raises the possibility of large effects when con
parameters are changed in such a way that thermodyn
properties are changed significantly, as at a critical po
The smallness of the statistical errors in the data also h
lights the possibility that many of the interesting systema
effects we analyze in this paper will be accessible to deta
study as control parameters are varied.

IV. USING AN IDEAL GAS OF PIONS AS A
THERMOMETER

To this point, we have assumed that the system does
freeze out close to the critical point, and can be appro
mated at freeze-out as a noninteracting ideal resonance
In this section, we take a first step towards understand
how the physics characteristic of the vicinity of the critic
point affects the event-by-event fluctuations. Along the w
we quantify the effects of energy conservation on thepT

fluctuations. This leads to a small reduction inAF far from
the critical point, which may be required by the data~44!. In
this section, we consider only the ‘‘direct pions,’’ and
before we treat them as an ideal Bose gas at freeze-out
further imagine that the pions are in thermal contact with
‘‘rest of the system,’’ which is not directly observed an
which need not be ideal. The rest of the system includes
neutral pions, the resonances, the pions not in the experim
tal acceptance and, most important, the order paramete
sigma field. If freeze-out occurs in the vicinity of the critic
point, the thermodynamic properties of the sigma field~and
therefore of ‘‘the rest of the system’’! are singular. In the
analysis of this section, we imagine that the observed pi
are an ideal gas even for freeze-out in the vicinity of t
critical point, while the equation of state and susceptibilit
of the rest of the system become singular there. Some o
universal critical indices characterizing this singularity a
discussed in@1#. The question we ask here is how the flu
tuations of the pions are affected by being in thermal con
with the rest of the system, particularly when the susce
bilities characterizing the sigma field diverge.

A reader who is used to thinking about theO(4) second
order transition may be concerned that we are treating
pions and the sigma field so differently. The point is th
near the critical end point which we wish to analyze~and
which may occur in nature! the pions and sigmaare differ-
ent. The pions remain massive, while the sigma mass v
ishes and the long wavelength modes of the sigma field
dergo critical fluctuations and are almost classical. T
divergence of the specific heat of the system as a whol
primarily due to the fluctuations of the sigma field. Th
analysis of this section is therefore a reasonable first s
What it leaves out, of course, is the fact that the pions,
though not massless, do interact strongly with the sigma fi
and are therefore not an ideal gas. We are neglecting
direct effects of the pion-sigma coupling. Once these
included, it is not possible to make a clean separation
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tween ideal pions and singular rest of the system. We a
lyze the consequences of the pion-sigma coupling in Sec

A. Thermometers, temperature fluctuations and heat capacity

Let us step back and recall the text-book formalism d
scribing the measurement of temperature. A thermom
should be a simple system which has been already calibra
in the sense that we can relate its total energyE to its tem-
peratureT via a functionT(E) which we already know. In-
stead ofE, we could also use any other mechanical obse
able, like for example the volume of the liquid in a liqui
thermometer. An ideal pion gas makes a very good th
mometer because it is a simple system with a known eq
tion of state. Having the equation of state, we read offT by
measuring a mechanical observable, such asE.

If the mechanical observable fluctuates, so will the m
sured temperature. In particular, if we measure the total
ergy, which fluctuates aŝ(DE)2&5T2CV in the canonical
ensemble the temperatureT(E) will also fluctuate, with
^(DT)2& given by Eq.~1!. Note that given that we measure
mechanical observableE rather thanT, in order to find the
result ~1! we must knowT(E). This is possible for a ther-
mometer such as an ideal pion gas, but may not be poss
for the system one wishes to study using the thermome
One of the questions we address in this section is when
measure the energy of the thermometer only~instead of mea-
suring the energy of the whole system! in which CV is rel-
evant: that of the thermometer, that of the rest of the syst
or a combination.

Suppose now we use our thermometerB to measure the
temperature of another systemA. The measurement consis
of bringing the two systems in thermal contact. If the resu
ing systemA1B is closed, thermal equilibrium will result
By ergodicity, the thermodynamic ensemble will consist
all the states with the same energy,EA1B , taken with equal
probability weight. Although the total energy does not flu
tuate, the energies of the subsystemsEA andEB do, subject
to a constraintEA1EB5EA1B . The probability that the sub
systemB has energyEB is proportional to the number o
states,G, of the systemB with energyEB times the number
of states ofA with energyEA5EA1B2EB :

GA1B~EA1B!5(
EB

GA~EA1B2EB!GB~EB!. ~45!

Both GA,B are exponentially growing functions of their argu
ments~and also the size of the system! and their product on
the right-hand side of Eq.~45! has a sharp maximum at som
value ofEB . Introducing the entropySasS(E)5 ln G(E), we
can write for the value ofEB at the maximum:

05
d

dEB
@SA~EA1B2EB!1SB~EB!#

52
dSA

dEA
1

dSB

dEB
52

1

TA
1

1

TB
, ~46!
8-13
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since the temperature is, by definition, 1/T5dS/dE. We re-
cover the textbook result that the temperatures of two s
tems in equilibrium are equal. MeasuringEB , and using the
known functionTB(EB), we find this~common! temperature.

Of course, it is not necessary that the systemA1B is
rigorously closed. In practice it is sufficient that the rate
the thermal equilibration betweenA andB is faster than the
rate of thermal equilibration ofA1B with the environment.

So far we have only discussed the mean value ofEB and,
consequently, the mean temperature. The size of the fluc
tions of EB is given by the width of the maximum in
GA(EA1B2EB)GB(EB). We need the second derivative

d2

dEB
2 @SA~EA1B2EB!1SB~EB!#

5
d2SA

dEA
2 1

d2SB

dEB
2

52
1

T2 S 1

CA
1

1

CB
D , ~47!

whereCA,B are the heat capacities of the systemsA and B.
Thus we find forDE5DEB52DEA :

^~DE!2&5T2S 1

CA
1

1

CB
D 21

. ~48!

The importance of the result~48! is that the thermometerB
allows us not only to measure the temperature of the sys
A, but also the heat capacity of the systemA.15 In order to
make such a measurement, we must watch the fluctuation
EB in addition to^EB&.

Another consequence of Eq.~48! is that whenCA@CB we
recover the result for the canonical ensemble~1!. What is
important is that the heat capacityCV appearing in Eq.~1! in
this case is that of the thermometer itself,CB , and not that of
the measured system,CA .

Now, suppose that the systemA has a thermodynamic
singularity at some temperature, as a result of whichCA
→`. This is precisely the situation which arises near
critical point in the idealization of this section: the ideal pio
thermometerB is in thermal contact with a systemA with
divergent susceptibilities. Equation~48! tells us that the fluc-
tuations of the energy, which are equal inA andB due to the
conservation of energy inA1B, will increaseas we ap-
proach the critical point whereCA diverges. What happens t
the temperature fluctuations? Remember that we do not m
sure the temperature directly, but use the equation of s
T(E) to read it off from the value ofE. If we used the
equation of state of the systemA,TA(EA), the fluctuations of
TA would decreaseand vanish at the critical point as dis
cussed in@1#, becauseCA5dEA /dTA5`. However, the
equation of state of the systemA is not known to us. Indeed
we are trying to learn about it doing our measurements. If

15One example of such a measurement in a simple lattice sys
can be found in@27#.
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instead use the equation of state of the thermometerTB(EB)
which is nonsingular, the fluctuations ofTB will increase
because the fluctuations ofE do, and will approach the value
determined by Eq.~1! with CV5CB .

Note that the temperatures of the systemsA andB deter-
mined through their respective equations of state are dif
ent on the event-by-event basis. This is not in contradict
with thermodynamics which only requires themeanvalues
to agree as in Eq.~46!.

Returning to our idealized system at freeze-out we w
to use pions we observe as a thermometer,B. The rest of the
system, which includes all the other particles, includi
pions not ending up in our detectors, we consider as sys
A. The singularity of the heat capacity occurs inCA , while
CB is the heat capacity of the ideal gas and is regular. N
ertheless this singularity affects the fluctuations of the pio
through Eq.~48!. The effect of the singularity inCA is an
increase in the fluctuation̂(DE)2&. If one were able to use
TA(E) to defineT, one would find that fluctuations inTA
would decrease at the critical point. UsingTB(E), or any
practical definition of a temperature, leads to fluctuations
T which, like those inE, increase. Since what we measure
always a mechanical thermodynamic observable, like the
tal energyE, or the energy per particle, or the transver
momentum per particle, etc., it is not in fact necessary to
a translation to the temperature variable to detect a singu
ity. It is easier to look directly at the fluctuations of obser
able quantities. To this we now turn.

B. The microscopic correlator

As discussed in Sec. II A, the mean square variations
thermodynamic observables in the pion gas are determ
by the microscopic correlator̂DnpDnk&. Once we find this
correlator we can then use it to calculate any fluctuations
interest.

For the case of the canonical ensemble this correlato
given by Eq.~7! which leads to

^~DE!2&5(
p

ep
2vp

25T2CB , ~49!

as in Eqs.~10! and ~14!. This corresponds to the caseCA
5`, whereB is a ~grand! canonical ensemble. In the cas
when CA is finite Eq. ~48! tells us that the correlato
^DnpDnk& should change. A simple derivation of this co
relator given below yields the result

^DnpDnk&5vp
2dpk2

vp
2epvk

2ek

T2CA1(
p

vp
2ep

2
. ~50!

This result is easy to understand intuitively and it pas
many nontrivial checks. WhenCA@CB5(pep

2vp
2/T2 the

second term in Eq.~50! is negligible and we recover Eq.~7!.
On the other hand, whenCA50, the systemB is closed and
the total energyE5(pepnp cannot fluctuate. Accordingly
(pep^DnpDnk&50 in this case. Note that the correlation
negative as it should be, since finiteness ofCA suppresses
fluctuations ofE, which means that if onenp increases, oth-
m
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EVENT-BY-EVENT FLUCTUATIONS IN HEAVY ION . . . PHYSICAL REVIEW D60 114028
ers are more likely to decrease. This negative correlatio
therefore a direct consequence of energy conservation,
should persist even in systems which are less ideal than
one we are analyzing in this section.

The microscopic correlator~50! determines the fluctua
tions of many observables. For example, by convolving
with epek as in Eq.~9! one can derive the result~48!. This is
yet another check of Eq.~50!. Note also that the correlatio
term in Eq. ~50! is down by a factor of 1/V ~since CA,B
;V), whereV is the volume of the system. This is also ea
to understand: the restriction on some linear combination
np’s imposed by energy conservation affects each individ
np little if the number ofnp’s ~i.e., the size of the system! is
large. However, the contribution of this term to fluctuatio
of extensive or cumulative quantities is not small, as Eq.~48!
shows. This is due to the absence of the Kronecker delt
the second term.
or
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We now turn to the derivation of the result~50!. The
uncorrelated fluctuations given by formula~7! follow from
the factorizable probability distribution16

dP~np!5)
p

dnp expH 2
1

2vp
2 ~Dnp!2J . ~51!

The energyE5(pepnp in such an ensemble fluctuates a

cording to^(DE)2&5(pvp
2ep

25T2CB .
Now, if we bring this system into thermal contact with th

system A, according to~45!, ~46!, and ~47! the probability
receives an additional factor: exp@2(DE)2/(2T2CA)#. For ex-
ample, if CA50 it becomes a delta function, meaning th
the systemB is closed itself, and the energy cannot fluctua
So, we write
dP~np!5S)
p

dnpDexpH 2(
p

1

2vp
2 ~Dnp!2J

3expH 2
1

2T2CA
S (

p
epDnpD 2J

5S)
p

dnpD E dl expH 2(
p

1

vp
2 ~Dnp!21l(

p
epDnpJ expH T2CA

l2

2 J , ~52!
ion
ad,

ke
-

t
ill
where we have introduced a Lagrange multiplierl. The in-
tegration overl should be done along the imaginary axis f
convergence.

Completing the squares we find

dP~np ,l!5dlS)
p

dnpDexpH 2(
p

1

2vp
2 ~Dnp2lvp

2ep!2J
3expH S T2CA1(

p
vp

2ep
2D l2

2 J . ~53!

Now we see that

^~Dnp2lvp
2ep!~Dnk2lvk

2ek!&5vp
2dpk , ~54!

^l2&52S T2CA1(
p

vp
2ep

2D 21

5
21

T2~CA1CB!
, ~55!

and

^l~Dnk2lvk
2ek!&50, ~56!
from which we find

^DnpDnk&5vp
2dpk1^lDnp&vk

2ek1^lDnk&vp
2ep

2^l2&vp
2epvk

2ek

5vp
2dpk1^l2&vp

2epvk
2ek

5vp
2dpk2

1

T2

vp
2epvk

2ek

CA1CB
. ~57!

16A careful reader may note that Eq.~4! literally implies that
Dnp;V0, as far as the thermodynamic limit 1/V power counting is
concerned.np is also of orderV0. If it were the case thatDnp

;np /AV, our assumption that the fluctuations of the occupat
numbersnp are Gaussian would be immediately justified. Inste
the fluctuations of the occupation numbersnp are not necessarily
Gaussian. This can be cured by considering, in place ofnp , the sum
of occupation numbers of a set of modes in a cell (Dp)3 centered at
p in momentum space, whereDp is fixed asV→`. Since the num-
ber of modes in such a set is (Dp)3V5O(V) and the modes fluc-
tuate independently, the central limit theorem will apply and ma
fluctuations of such ‘‘smeared’’np Gaussian. Practically, we al
ways convolvenp with a smooth function ofp. Instead of display-
ing the smearing ofnp explicitly in our notation, we can instead jus
treat the fluctuations ofnp as if they are Gaussian, because this w
not affect any of the quantities calculated by convolvingnp with a
smooth function ofp.
8-15
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Q.E.D.
Now, armed with Eq.~50!, we can calculate all othe

fluctuations in our ideal Bose gasB in contact with the sys-
tem A.

C. Application: Fluctuations of mean pT

As an example of the application of the formula for t
microscopic correlator~50! we analyze the fluctuations of a
intensive variable in the ideal Bose gas of pions which
denoteq,q5Q/N. We wish to see how the fluctuations ofq
are influenced by the fact that the pions are in thermal c
tact with a system with~possibly singular! heat capacityCA .
We shall be interested in a particular case whereq is the
mean transverse momentumpT , but shall use the more gen
eral notation both for later convenience and to make con
with Sec. II in which we discussede5E/N, another possible
q.

Starting from an equation similar to Eq.~17!, averaging,
and using the correlator~50! instead of Eq.~7! we obtain:

^~Dq!2&5 K S DS Q

ND D 2L
5

1

^N&2 H(
p

vp
2~qp2^q&!22

1

T2~CA1CB!

3F(
p

vp
2ep~qp2^q&!G2J . ~58!

The first term on the right-hand side is the same as in
~22! with q5ep . This is the main contribution tô(Dq)2&.
We have seen that these thermodynamic fluctuations ca
described using the variance of the inclusive single-part
distribution and the Bose enhancement factor. The sec
negative, term in Eq.~58! is the effect of the anticorrelation
@second term in Eq.~50!# induced by energy conservatio
and thermal contact with the systemA. This term would be
nonzero even ifCA were zero. In this case, it would describ
the effects of energy conservation on the fluctuations ofq in
the systemB. Thermal contact with the systemA reduces this
term, but it remains important as long asCA is comparable to
CB . It vanishes at the point whereCA diverges.

In a heavy ion collision, the heat capacity of the pion g
CB is a sizable fraction of the total heat capacityCA1CB .
The effect~58! can therefore decrease the fluctuations ofpT ,
countering the Bose enhancement. This effect will be
duced as we approach the critical point whereCA diverges.
This will lead to an increase in the event-by-event fluctu
tions of pT as compared to the variance of the inclusi
single-particle spectrum.

To make the comparison with the Bose enhancement
fect estimated in Sec. III A easier, we shall express
strength of the effect of the thermal contact in terms of
ratio, FT of the whole expression in curly brackets in E
~58! to the first term in this expression. For the fluctuation
mean transverse momentum per event, i.e., forq5pT we
find
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FT'12
0.12

CA /CB11
, ~59!

for T5120 MeV andmp50. We see that the effects o
energy conservation and thermal contact on the fluctuat
of an intensive quantity likepT are smaller than the effect
on the fluctuations of the energy in Eq.~48!. Several ob-
stacles make it difficult to use~59! quantitatively. First, some
dilution of the effect is to be expected because less than
of the pions which are observed are direct. Second, it i
little bit difficult to know how to estimateCA /CB , because
we have analyzed such an idealized situation. The systeA
should certainly include the neutral pions in the same reg
of rapidity as the observed charged pions; however, sho
the pions at different rapidities be included? The total nu
ber of pions, neutral and charged, in a central event at
SPS at 160 AGeV is about ten times larger than the num
of charged pions per event used in NA49’s present analy
This suggests thatCA /CB is at the very most 10. If we take
CA /CB;3 for orientation, which can be justified if one a
sumes thatCA includes the heat capacity of the resonanc
and that of the neutral pions in the same region of ph
space as the observed pions, we findFT21 of the order of
23%, before taking into account the dilution by nondire
pions. The effect is comparable in magnitude to the Bo
enhancement, acts in the opposite direction, and should
reduced near the critical point at whichCA diverges.

A divergent specific heat is only possible in an infini
system. In Sec. V we will estimate that in a realistic hea
ion collision, finite size effects suggest that near the criti
point the sigma contribution toCA could be as much as
factor of ;62 larger than the contribution of a typical ligh
degree of freedom. This suggests thatCA could easily in-
crease by as much as an order of magnitude at the cri
point, reducing the anticorrelation in̂DnpDnk& and the
negative contribution toFT by the same factor.

The effects of thermal contact can be distinguished fr
other effects, like those of finite two-track resolution, whi
also counter the Bose enhancement effect because of the
cific form of the microscopic correlator~50!. The effect of
energy conservation and thermal contact introduces anoff-
diagonal ~in p k space! anticorrelation. Although our esti
mate of the magnitude of the effect suffers from a variety
uncertainties introduced by the idealizations used through
this section, the existence of this off-diagonal anticorrelat
is robust. It arises simply due to energy conservation: wh
onenp fluctuates up others must fluctuate downward, an
is therefore more likely thatnk fluctuates downward. IfCA is
increased, then the systemA can more easily supply the en
ergy needed for the upward fluctuation innp , and the anti-
correlation betweennp andnk is reduced. Preliminary analy
sis by NA49 suggests that some amount of su
anticorrelation is observed in the data@28#. It will be inter-
esting to compare the magnitude of any effect observed
the data with our estimates. We leave this to future work
8-16



u
t o
o

-

th

u

th
e

is

-
de

l
ga
or

-

a-

e

tion
nd

re

e

the

t at
n-
-

ces

EVENT-BY-EVENT FLUCTUATIONS IN HEAVY ION . . . PHYSICAL REVIEW D60 114028
it is possible to separate this effect from other effects beca
it is an off-diagonal anticorrelation, then a measuremen
this effect would yield an estimate for the effective value
the ratioCA /CB at freeze-out.

Note thatFT increases near the critical point, but it in
creases towards a finite value~namely 1.! In contrast, in Sec.
V we will explore effects which result in thedivergenceof
an analogously defined ratioFs at the critical point.

D. Another application: T̃

In this subsection we introduce another measure of
temperature of the pion gas,T̃. Our new variableT̃ is well
defined on a single event, and has the property that^T̃& is
related to the slope parameter. We have found that altho
^pT& is related toT, the fluctuationŝ (DpT)2& are not at all
like the fluctuationŝ (DT)2& in Eq. ~1!. We now show that

^(DT̃)2& also does not behave quite like^(DT)2&. The reader
should expect this, since we argued on general grounds
Eq. ~1! can only be obtained from a mechanical observabl
the equation of state of the systemA is known. Still, it is nice
to confirm this using an example of an observable which
less straightforward intensive quantity than juste5E/N or
pT .

We define for each member of the ensemble~i.e., for each
event! independently:

x2~T!5
1

2 (
p

@np2np
0~T!#2

1

sp
2

, ~60!

where

np
0~T!5

1

eep /T21
, ~61!

andsp
2 is some function ofp which we can choose for con

venience later. Then for each event individually we can
fine a temperature,T̃, which is found by minimizingx2(T)
for this event,

Fdx2~T!

dT G
T5T̃

50. ~62!

It is clear that mean value ofT̃ over all events for the idea
Bose gas will coincide with the actual temperature of the
T. But, sinceT̃ is defined for a single event, rather then f
the whole ensemble, it fluctuates.

As before, the fluctuations inT̃ are determined by fluc
tuations ofnp . For small fluctuationDT̃ we can write

05DFdx2~T!

dT G
T5T̃

5DF(
p

„np
0~T!2np…

]np
0

]T

1

sp
2G

5(
p

S DT
]np

0

]T
2DnpD ]np

0

]T

1

sp
2

, ~63!
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where we omit the tilde onT. Note that even ifsp
2 contains

dependence onT, it will be always multiplied by (np2np
0)

which is zero to the relevant order in the size of the fluctu
tion. Now we need

]np
0~T!

]T
5

1

T2 epnp
0~11np

0!5
1

T2 epvp
2 , ~64!

according to Eq.~4!. We rewrite Eq.~63! as

DT

T2 (
p

ep
2vp

4 1

sp
2

5(
p

Dnpepvp
2 1

sp
2

. ~65!

We can carry on with an arbitrarysp
2 , but let us make the

following choice:sp
25vp

2 . This choice makes a lot of sens
if one recalls that in the standard definition ofx2 one divides
each square deviation term by its normal square devia
~which is usually obtained from experimental error, a
which here we know to bevp

2 from the fluctuations ofnp).
This choice simplifies formulas.

Now we square Eq.~65!, average over events, and resto
the tilde onT:

^~DT̃!2&

T̃4 F(
p

ep
2vp

2G2

5(
p

(
k

epek^DnpDnk&, ~66!

which, according to Eq.~50! means

^~DT̃!2&

T̃2
5

1

CB

CA

CA1CB
. ~67!

We see that fluctuations ofT̃, like those ofpT , increase
towards the critical point of the systemA, whereCA→`,
approaching a finite constant. WhenCA is infinite, the sys-
tem B ~the Bose gas! is in the canonical ensemble, and th
fluctuations ofT̃ are given precisely by Eq.~1!, with the
specific heatCB in the denominator.17

Different definitions of the temperatureT̃ can be devised
~using different choices ofsp

2). They will lead to different
temperatures for a given event, which are the same in
mean ~and equal toT), but different in the size of their
fluctuations. All these fluctuations will increase somewha
the critical point, but will not diverge there as they are co
trolled there byCB ~or some other property of the thermom
eterB) which is nonsingular.

E. Two further applications: Š„DN…

2
‹ and ŠDNDpT‹

Once we understand how some physical effect influen
the microscopic correlator̂DnpDnk&, we can calculate the

17The heat capacityCV in this case is that at fixedm. It is remark-

able that if we defineT̃ by simultaneously fittingtwo variables in

Eq. ~60!, T̃ andm̃, the resultingT̃ will again fluctuate according to
Eq. ~1!, but with heat capacity at constantN. We leave this as an
instructive exercise for our reader.
8-17
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fluctuations of many different observables. The task the
to look for observables in which the effect of interest is larg
and which are of practically utility in the sense that they a
easily accessible to experimental analysis. We give two
ther simple examples here.

In Sec. IV C, we analyzed the fluctuations of an intens
quantity,pT , and obtained the expression~58! for ^(DpT)2&.
Similarly, we can use the microscopic correlator~50! to ana-
lyze the fluctuations of the extensive quantityN, and obtain

^~DN!2&5(
p

vp
22

1

T2~CA1CB!F(p
vp

2epG2

. ~68!

The first term is the ideal Bose gas result, and the sec
term is the correction due to thermal contact and energy c
servation. ForT5120 MeV,mp50, the effect of the second
term is to multiply ^(DN)2& by a factor of @120.20/(1
1CA /CB)#. Note, however, that the multiplicity fluctuation
of the pions obtain from the resonance gas which we a
lyzed in Sec. III are dominated by the pions from those re
nances which decay into more than one pion. Doubling
contribution of the direct pions tô(DN)2& in the calculation
~32! only increaseŝ(DN)2& by 10%. The effect of therma
contact and energy conservation on the direct pions see
Eq. ~68! is therefore a very small contribution to the tot
^(DN)2& of Eq. ~32!.

We saw at the end of Sec. II that cross correlations
tween intensive observables andN are of interest, becaus
they vanish in a classical ideal gas. We therefore use
microscopic correlator~50! to calculate

^DNDq&5
1

^N& H(p
np

2~qp2^q&!2
1

T2~CA1CB!F(k
vk

2ekG
3F(

p
vp

2ep~qp2^q&!G J . ~69!

For q5pT ,T5120 MeV,mp50 we find

^DNDpT&

^pT&
520.021S 11

10.

CA /CB11D . ~70!

As we saw in Sec. II, correlations like this arise only due
nontrivial effects, and are generally small. In this case,
see that~for CA;3CB) the effect of energy conservation an
thermal contact is;2.5 times as large as that due to Bo
enhancement. This suggests that this correlation would
very interesting quantity to use to look for the critical poin
It is small in magnitude, but even after the dilution of th
direct pions by those produced in resonance decays are t
into account, it may change by a large factor near the crit
point whereCA→0.

In conclusion, the effects of thermal contact and ene
conservation on the pions could either be found directly,
detecting the anticorrelation in the microscopic correla

^DnpDnk&. Or, the resulting effects on̂(DpT)2&, ^(DT̃)2&,
^(DN)2&, or ^DpTDN& which we have estimated may b
discovered, likely by seeing them change as control par
eters are varied.
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V. PIONS NEAR THE CRITICAL POINT:
INTERACTION WITH THE SIGMA FIELD

In the previous section, we made the assumption that
‘‘direct pions’’ at freeze-out could be described as an id
Bose gas. We do not expect this to be a good approxima
if the freeze-out point is near the critical point. The sigm
field is the order parameter for the transition and near
critical point it therefore develops large critical long wav
length fluctuations. These fluctuations are responsible
singularities in thermodynamic quantities. In the previo
section, we analyzed this situation by pretending that
only effect on the pions was due to thermal contact with
heat bath with divergent susceptibilities. In this section
take the next logical step, and consider the effect of the c
sical critical fluctuations on the pions through thespp cou-
pling. It would be strange if, as in the previous section, t
properties of the pions remained regular in the thermo
namic limit in the presence of the nonanalytic behavior
the sigma field. We will see that the fluctuations of both t
multiplicity and the mean transverse momentum of the pio
do in fact diverge at the critical point.

We then estimate the size of the effects in a heavy
collision. This requires first estimating the strength of t
coupling constantG, and then taking into account the finit
size of the system and the finite time during which the lo
wavelength fluctuations can develop. The pion fluctuatio
induced by theGspp interaction are divergent and ar
therefore the dominant fluctuations in an infinite system.
the finite system of interest, we find that the momentum fl
tuations are large enough to be easily detectable, but no
large as to seriously jeopardize our treatment, which con
ers the effects of the interaction only to lowest order. It is
this reason that we have first analyzed all effects other t
those introduced by theGspp interaction, and now add
these effects in. The multiplicity fluctuations are larg
enough that in this case a treatment which goes beyond
est order inG seems called for. We leave this to the futur

A. Microscopic correlator

As before, we shall derive the expression for the mic
scopic ‘‘master’’ correlator̂ DnpDnk&, which can then be
used to calculate fluctuations of various observables. We
glect the effects considered in the previous section, as t
can be added to the effects of this section at the end.
concentrate on the fluctuations of the sigma field, the fl
tuations of the pion occupation numbers, and thespp cou-
pling. The long wavelength fluctuations of the sigma fie
which are responsible for the singular effects of interest
classical.

The effective potentialV determines the probability dis
tribution of the classical fields through

dP~s!5ds expH 2
V~s!

T J . ~71!

This equation can actually be thought of as the definition
V(s). The effective potential is extensive, but for conv
nience we set the volumeV51 in the calculations to follow,
8-18
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although we will restore it explicitly in our results.@Note that
throughout previous sections, we had setV51 implicitly.
The momentum sum(p should always be read a
V*d3p/(2p)3.# Let us consider small fluctuations of th
field s around the minimum ofV(s). We can then expand
the effective potentialV(s) arounds50. The first terms
will be

V~s!5
ms

2s2

2
1Gs:p2:1O~s3!, ~72!

where we have temporarily omitted terms independent os
~such asmp

2 p2/2).18 The second term is the interaction b
tween sigmas and pions. The couplingG has the dimensions
of mass, and its magnitude near the critical point will
estimated below. The notation :: signifies tadpole subtr
tion: :p2:5p22^p2&, which makes sure that the minimum
of s is not shifted as we shall see below.@The notationp2

itself is itself somewhat symbolic, as it represen
*d3xp(x)p(x).# Thus we have

dP~s!5ds expH 2
ms

2s2

2T
2

G

T
s:p2:J . ~73!

Now, the field p also fluctuates. Let us determine th
corresponding~joint! probability distribution. In the previous
section we used the probability distribution for the occup
tion numbers, and we begin by translating the fluctuations
the fieldp into fluctuations of the occupation numbers. W
write, doing the usual Fourier transform:

p25(
p

uppu2. ~74!

We can relate the Fourier componentspp to the occupation
numbersnp . It is clear thatnp;uppu2. The coefficients can
be determined, for example, by using

Z5E Dp expH 2E
0

1/T

dtE dVF1

2
~]mp!21

1

2
mp

2 p2G J
5ZT50)

p
~12e2vp /T!. ~75!

Differentiating lnZ with respect tomp
2 we find

^p2&5(
p

1

vp
^np&, ~76!

18Clearly, the fluctuations ofs are not small. We shall procee
with the assumption that the higher-order terms inV(s) yield sub-
leading contributions to the singular effect we seek. We shall re
to this point in Sec. VI D. Also note that we consider only the ze
momentum mode of the fields. This can be justified in a diagram
matic approach, which can also handle nonzero momentum m
of s.
11402
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up to the temperature independent vacuum contribu
~equal to(pvp/2) from lnZT50. So we have

p25(
p

1

vp
np . ~77!

Note now that̂ p2&5(p^np&/vpÞ0. So, unless we subtrac
^p2& the minimum ofs will be shifted from the origin~this
subtraction will also take care of the vacuum fluctuation!.
We have

p22^p2&5(
p

Dnp

vp
. ~78!

Now, putting everything together, we find the joint probab
ity distribution for the sigma field and for the pion occup
tion numbers:

dP~s,np!5dsS)
p

dnpDexpH 2(
p

1

2vp
2 ~Dnp!2

2
Gs

T (
p

Dnp

vp
2

ms
2

2T
s2J . ~79!

This is a very important formula which will allow us to
calculate the fluctuations.

The measuredP(s,np) is Gaussian, which is very help
ful. Completing the squares, we find

dP~s,np!5dsS)
p

dnpD
3expH 2(

p

1

2vp
2 S Dnp1

Gs

T

vp
2

vp
D 2J

3expH 2S ms
2

2T
2

G2

T2 (
p

vp
2

2vp
2D s2J . ~80!

Before we make the final and the simplest step, let us m
two side notes.

Equation ~80! shows that the interaction withs shifts
mean occupation numbers by

d^np&52
Gs

T

vp
2

vp
. ~81!

As the reader might have guessed already, this must be
to the shift of the mass of the pions linear ins, which can be
seen from Eq.~72!,

dmp
2

2
5Gs. ~82!

It is trivial to evaluate the change in̂np& induced by the
change of the mass. Sinceep5Ap21mp

2 2m we find

d^np&52^np&~11^np&!
dep

T
52vp

2 1

T

dmp
2

2vp
, ~83!
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which is the same as Eq.~81! with Eq. ~82!. The fluctuations
of the sigma field will have further affects on the pion occ
pation numbers, but these are higher order inG and we ne-
glect them here.

The second side note is more important. We see from
~80! that the mass of thes field is corrected by the fluctua
tions of the pions:

m̃s
25ms

22
G2

T2 (
p

vp
2

vp
2

. ~84!

Diagrammatically, this corresponds to the thermal one-lo
diagrams→pp→s. The physical mass of the sigma ism̃s ,
to the order in which we are working. This is the mass wh
vanishes at the critical point. We shall omit the tilde in t
following.

Finally, we can read off the following expectation valu
from the probability distribution~80!:

K S Dnp1
Gs

T

vp
2

vp
D S Dnk1

Gs

T

vk
2

vk
D L 5vp

2dpk ; ~85!

^s2&5
T

ms
2 ; ~86!

^sDnp&52^s2&
G

T

vp
2

vp
. ~87!

This gives

^DnpDnk&5vp
2dpk1

1

ms
2

G2

T

vp
2vk

2

vpvk
. ~88!

We see that the coupling of the pions to the sigma field le
to a singular contribution to the correlator of the pion fluc
tuations as we approach the critical point at whichms50.
The first term on the right-hand side describes the varianc
the inclusive distribution and the Bose enhancement effec
we saw in Sec. III. The additional terms which we disco
ered in Sec. IV could now be added to the right-hand side
is of course the new, divergent term on which we shall foc
our attention.

One can represent both terms in this equation diagr
matically as in Fig. 2. The singular term is due to the e
change of the sigma in the process of forward pion-p
scattering. This results in a characteristic 1/ms

2 singularity. A
different way of deriving the formula for the correlato
would be to do a straightforward diagrammatic expansion
^DnpDnk&. This will also allow one to include the effects o
the nonzero momentum modes of the sigma field. The s

FIG. 2. Diagrammatic representation of the right-hand side
the correlator~88!. The crosses represent the insertions ofDnp

5:pppp* :. The solid and dashed lines are the pion and sigma fi
thermal propagators.
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ond term in Eq.~88! is the most singular one in this cor
relator asms→0 because it involves the exchange of t
sigma field with zero momentum. We defer an analysis
less singular terms using the diagrammatic approach to
ture work.

B. Application: Fluctuations of mean pT

Using Eq.~88!, we can determine the fluctuations of an
thermodynamic observable which can be expressed in te
of the pion occupation numbers. For a generic intensive
servableq5Q/N we find

^~Dq!2&5 K FDS Q

ND G2L
5

1

^N&2 H(
p

vp
2~qp2^q&!2

1
1

Vms
2

G2

T F(
p

vp
2

vp
~qp2^q&!G2J . ~89!

where we have displayed the factor ofV explicitly to show
that both terms are of the same order inV. @Recall that(p
→V*d3p/(2p)3.# As before, the intensive observable of pr
mary interest will be the mean transverse momentum in
event,q5pT . It is clear from Eq.~89! that the fluctuations of
pT increase near the critical point and diverge at the criti
point, wherems vanishes. We will give a quantitative est
mate of the effect in Sec. V E. We must first estimate the s
of the couplingG and the value ofms near the critical
point.19

C. The size of the couplingG

The strength of the singular contribution to the pion co
relator near the critical point depends on the size of the c
pling G between thes andp:

LI5Gsp ip i ~90!

where the isospin indexi 51,2,3 is summed. We first make
phenomenological estimate of the magnitude ofG in
vacuum, and then estimate by how muchG is reduced near
the critical point E.

The value of this coupling in the vacuum can be inferr
independently from two considerations:~i! from the relation-
ship between the sigma and pion masses andf p ; ~ii ! more
directly, from the width of the sigma. We shall use both a
compare.

One way of estimating the vacuum value ofG is to use
the Gell-Mann–Le´vy linear sigma model@29#, in which the
Lagrangian describing the dynamics of the four compon
field fa5(f0 ,p) is given by

19Similarly, one can also calculate the fluctuations ofT̃ defined in
Sec. IV D and show that these fluctuations also increase nea
critical point and diverge at the critical point.

f
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L5E d4xH 1

2
]mfa]mfa2

l

4
~fafa2v2!21Hf0J ,

~91!

where theO(4)-breaking fieldH is proportional to the quark
mass:H5m^c̄c&/ f p . The vacuum expectation value^f0&
is nonzero and should be set equal tof p . Thes field is then
defined by s5f02^f0&. Setting f p593 MeV, mp

5135 MeV, andms5600 MeV fixes all three parameter
in the potential, and in particular yieldsl520.0. If we re-
write Eq. ~91! in terms ofs, we find a terml f psp2, from
which we conclude that

G5l f p;1900 MeV. ~92!

This value forG seems large at first sight, but such a lar
coupling is in fact required by experiment. In order to s
this, we evaluate the width of the sigma due to its tree-le
decay into two pions, and find

G5
3G2

8p

p

ms
2

5
3G2

8pms
2
AS ms

2 D 2

2mp
2 ;300 MeV,

~93!

where we have usedms5600 MeV as above. The width o
the sigma is known experimentally to be so large that t
‘‘particle’’ is only seen as a broad bump in thes-wavep-p
scattering cross section. An estimate of 300 MeV for t
width is therefore reasonable. We conclude that the vacu
spp coupling must be at least as large asG;1900 MeV,
since the sigma would otherwise be too narrow.

Our estimate makes it clear that the vacuum value oG
would not change much if one were to take the chiral lim
m→0. The situation is different at the critical point. Takin
the quark mass to zero while following the critical end po
leads one to the tricritical point P in the phase diagram
QCD with two massless quarks. At this point,G vanishes as
we discuss below. This suggests that at E, the couplingG is
less than in vacuum. Our goal in the remainder of this s
section is to use what we know about physics near the
ritical point P to make an estimate of how much the coupl
G is reduced at the critical end point E~with the quark mass
m having its physical value!, relative to the vacuum value
G;1900 MeV estimated above.

We begin by recalling some known results.~For details,
see Refs.@2,3,1#.! In QCD with two massless quarks, a spo
taneously broken chiral symmetry is restored at finite te
perature. This transition is likely second order and belong
the universality class ofO(4) magnets in three dimension
At zero T, various models suggest that the chiral symme
restoration transition at finitem is first order. Assuming tha
this is the case, one can easily argue that there must
tricritical point P in theTm phase diagram, where the tra
sition changes from first order~at higherm than P! to second
order~at lowerm), and such a tricritical point has been foun
in a variety of models@2,3,30#. The nature of this point can
be understood by considering the Landau-Ginzburg effec
potential forfa , order parameter of chiral symmetry brea
ing:
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V~fa!5
a

2
fafa1

b

4
~fafa!21

c

6
~fafa!3. ~94!

The coefficientsa, b, andc.0 are functions ofm andT. The
second-order phase transition line described bya50 at b
.0 becomes first order whenb changes sign, and the tric
ritical point P is therefore the point at whicha5b50. The
critical properties of this point can be inferred from unive
sality @2,3#, and the exponents are as in the mean field the
~94!. We will use this below. Most important in the prese
context is the fact that because^f&50 at P, there is nospp
coupling, andG50 there.

In real QCD with nonzero quark masses, the second-o
phase transition becomes a smooth crossover and the tri
cal point P becomes E, the second-order critical end poin
a first-order phase transition line. Whereas at P there are
massless scalar fields undergoing critical long wavelen
fluctuations, thes is the only field which becomes massle
at the point E, and the point E is therefore in the Ising u
versality class@2,3#. The pions remain massive at E becau
of the explicit chiral symmetry breaking introduced by th
quark massm. Thus, when we discuss physics near E a
function of m and T, but at fixedm, we will use universal
scaling relations with exponents from the three dimensio
Ising model. Our present purpose, however, is to imag
varying m while changingT andm in such a way as to stay
at the critical point E, and ask how largeG ~andmp) become
oncem is increased from zero~the tricritical point P at which
G5mp50) to its physical value. For this task, we use e
ponents describing universal physics near P. Applying t
ritical scaling relations all the way up to a quark mass wh
is large enough thatmp is not small compared toTc may
introduce some uncertainty into our estimate.

In order to determine the trajectory of the critical line
Ising critical points E as a function of quark massm,20 it is
sufficient to consider the effective potential only as a fun
tion of the single componentf0[f of the four-component
order parameter. When the quark mass is nonzero we
add terms containing odd powers off:f3 andf5, in addi-
tion to justf. We shall assume that the linear term provid
the leading effect, and check this assumption for se
consistencya posteriori. So, we have at nonzerom

V~f!52mf1
a

2
f21

b

4
f41

c

6
f6. ~95!

We assume that the units of mass are chosen in such a
that the coefficient of the linear term in Eq.~95! assumes this
simple form. That is, instead of writing it asH5mM2, we
are using units withM51. Stable or metastable thermod
namic phases are described by minima ofV, at which V8

20See Ref.@31# for a derivation of the analogous line of Isin
points emerging from the tricritical point in the QCD phase diagr
at zerom as a function ofm and the strange quark massms . This
tricritical point can be related to the one we are discussing by va
ing ms @1#.
8-21
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50. At the critical point E,V850 and in addition bothV9
andV- vanish. This is because three roots of the polynom
V8(f) coalesce~two minima of V and one maximum in
between!. So, we have three conditions:

V852m1a^f&1b^f&31c^f&550; ~96!

V95a13b^f&215c^f&450; ~97!

V-516b^f&120c^f&350. ~98!

These conditions allow us to expressa, b, and^f& ~the value
of f at the minimum!, as functions ofm andc. We neglect
any change inc; it is the vanishing ofm at P which is of
interest to us. Solving these equations by working up fr
the last to the first and keeping only the exponents~neglect-
ing prefactors! we find

a;m4/5; 2b;m2/5; ^f&;m1/5. ~99!

The power 1/5 is easy to understand: it is 1/d, whered55
for the f6 potential.

At m50, the tricritical point P ata5b50 has^f&50;
the expressions~99! describe how the location of the critica
point E in theab plane, and the value of^f& at E, change as
m is increased from zero. From these, we will determine h
mp andG at E vary withm, after two asides. First, note tha
from these universal arguments we learn nothing about
location of the tricritical pointa5b50 in theTm plane. One
can only make rather crude estimates of the position of
point, as we have done in Ref.@1#. Our main purpose here
and in @1# is to tell experimentalistshow to find P, so that
they can find it and tell uswhere it is. Second, we mus
estimate the size of thef3 andf5 terms we have neglected
Assuming that both terms come with coefficients which
at least linear inm ~higher odd powers ofm are possible, but
will make the size of these terms even smaller! and using the
m power counting of Eq.~99!, we see that while all the term
in Eq. ~95! areO(m6/5), the f3 and f5 terms contribute at
mostO(m8/5) andO(m2), respectively.

To follow mp andG, we need the full dependence ofV
on thef0 andp fields:

V~f,p!52mf1
a

2
~f21p2!1

b

4
~f21p2!2

1
c

6
~f21p2!3. ~100!

For the pion mass, we need to expand aroundf5^f& and
p50 and collect orderp2 terms:

V5
p2

2
~a1b^f&21c^f&4!1•••. ~101!

We can now read off the pion mass

mp
2 5a1b^f&21c^f&4, ~102!

which, according to Eq.~96!, meansmp
2 5m/^f&. Using Eq.

~99! we find

mp
2 ;m4/5. ~103!
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Assuming that the dimensionful factor in this formula is
the same order of magnitude as the one in the zeroT andm
formula mp

2 ;m we conclude that the pion mass does n
change much from its vacuum value, and is likely to be ve
slightly bigger@by a factor of order (LQCD/m)1/10#. This is
similar to what is known to happen nearTc for m50. @See
Ref. @31# for a review.#

To determine the constantG, we need to collect thesp2

terms in Eq.~100! where, as before,s5f2^f&. Only the
last two terms contribute and we find

V5sp2~b^f&12c^f&3!1•••. ~104!

This meansG5b^f&12c^f&3 which, according to Eq.
~98!, gives G52b^f&/5524c^f&3/3. Using them power
counting~99! we find

G;m3/5. ~105!

Thus the couplingG is suppressed compared to its ‘‘natura
vacuum valueGvac by a factor of order (m/LQCD)3/5. Taking
LQCD;200 MeV,m;10 MeV we obtain our estimate

GE;
Gvac

6
;300 MeV. ~106!

The main source of uncertainty in this estimate is our ina
ity to compute the various nonuniversal masses which e
the estimate as prefactors in front of them dependence which
we have followed. In other words, we do not know the co
rect value to use forLQCD in the suppression factor whic
we write as (m/LQCD)3/5.

D. Finite size and finite time effects

The final ingredient needed for the estimate of the size
the effect described in Secs. V A and V B is an estimate
ms . We found that̂ DnpDnk& is infinite at E whenms50.
This singularity occurs because the correlation lengthj of
the sigma field is infinite. In practice, however, there a
important restrictions on how largej can become. The fire
ball created in a heavy ion collision has a finite size and liv
for a finite time; both restrictj. Similar considerations affec
the estimate of the size of the effect described in Sec. IV
There we found an anticorrelation in^DnpDnk& which van-
ishes as the specific heat of the system diverges. The lim
j introduced by finite size and finite time effects also lim
how large the heat capacityCV becomes.

We discuss finite size scaling first. If the system is in
nite, a singular thermodynamic quantity such asCV diverges
at the critical point. If the system is large relative to micr
scopic scales (;1 fm in our case! but finite, thenCV exhib-
its a peak at the critical point which becomes narrower a
higher as larger and larger systems are considered. Finite
scaling analysis tells us how the magnitude of the pe
scales with the system size. The scaling postulate tells us
the singular parts of all observables are due to the diverg
correlation lengthj and can be characterized by an approp
ate critical index:Qsing;jDQ, whereQ could beCV or some
other quantity which diverges at E. In a finite system t
growth of the correlation length is limited by the size of th
8-22
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system:jmax;R. Therefore, the magnitude of the singulari
in a given thermodynamic quantity~the height of the peak!
depends on the size of the system as

Qmax;RDQ. ~107!

Similarly, if the system is not allowed enough time
equilibrate, the singularity is also smeared. The magnitud
the singularity in this case can be estimated using finite ti
or dynamic, scaling@32#. In this case the scaling postula
tells us that the typical equilibration time diverges at t
critical point ~critical slowing down!, with this divergence
related to that of the correlation length byt;jD t. Reversing
this relation, we conclude that if the typical time allowed f
the system to equilibrate is limited tot, the correlation
length can only grow up tojmax;t1/D t. Thus, in this case

Qmax;tDQ /D t. ~108!

The calculation of the numerical prefactors in Eqs.~107!
and~108! requires precise knowledge of the QCD dynam
and is not feasible at this time. The exponents, however,
universal and can be understood by relating them to suit
exponents in the three-dimensional Ising model. For
ample, the exponent for the specific heatCV at the end point
E was determined in@1#:

DCV
5S g

n D
3D-Ising

'2. ~109!

DCV
is not given by the~smaller! exponent (a/n)3D-Ising be-

cause of the obliqueness of the first-order phase trans
line relative to theT axis on the phase diagram as explain
in @1#. The idea is that at the critical point,CV5]2V/]T2 is
related to some linear combination of the Ising model s
ceptibilities ]2V/]t2, ]2V/]t]h, and ]2V/]h2 where the
Ising model temperature axist and magnetic field axish are
oblique relative to theT andm axes.CV is controlled by the
most divergent of the three Ising model susceptibiliti
which is ]2V/]h2, and Eq.~109! results.

The dynamic scaling exponentD t , which is often called
z, is also universal. The dynamic universality class of a s
tem is sensitive to details of the dynamics such as whe
the order parameter is or is not conserved and whether
system has other conserved quantities. The determinatio
D t is a rather involved problem in some cases@32#. If we
assume that QCD at the critical point E falls into the d
namic universality class of the gas-liquid phase transit
~model H in the classification of Hohenberg and Halpe
@32#! the exponentD t can be estimated asD t'3. It may
therefore turn out that becauseD t.1 the finite time scaling
restriction ~108! may be somewhat more restrictive in
heavy ion collision than the finite size scaling restricti
~107!.

Let us estimate some typical numbers for central Pb
collisions at the SPS. We start with an estimate for the
evant size in the longitudinal and transverse directions
yond whichj cannot grow. The longitudinal expansion e
tends the longitudinal size of the fireball considerably, b
regions with different rapidities freeze out at different time
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and a homogeneous freeze-out at a single freeze-out tim
all rapidities is not a good approximation. A similar~al-
though not identical! problem has already been faced in tw
pion interferometry, which provides sizes~and durations! not
of the whole system, but of a ‘‘patch’’ large enough th
particles emitted from it can still interfere. The size of su
patches depends somewhat on the direction and magn
of the total momentum of the pion pair used in the interfe
metric measurement, but is an approximate measure of
size of the system over which freeze-out is homogeneo
The longitudinal size of such a patch for central PbPb co
sions at 160 AGeV is estimated to be@25# 2RL'12
214 fm. At its ends, the rapidity difference is already abo
1. We therefore estimate that sigma field correlation lengt
limited by finite size effects to be less than 2RL .

The sizeDT in the transverse direction beyond whichj
cannot grow can be estimated in two ways. The initial size
that of the diameter of the nuclei,DPb;14 fm. The trans-
verse~radial! flow makes the physical size of the freeze-o
surface larger than the nuclear radius, by 30–50 % at free
out. Therefore, it must be the case thatDT,20 fm. This is,
however, an overestimate. Because of the relativistic tra
verse expansion, regions with different positions in the tra
verse directions cross the transition region and then free
out at different times. Therefore, as forRL above we can use
the size of ‘‘patches’’ observed via two particle interferom
etry as a guide, the sigma field correlation length in the tra
verse directions to be less thanDT52RT'10–12 fm@25#. It
therefore seems that the relevant longitudinal and transv
length scales at freeze-out are about the same, and we
clude that based on finite size restrictions alone

j

l
,12, ~110!

wherel is the ‘‘microscopic length’’ of order 1 fm.
We now turn to the restriction on the correlation leng

which arises from the fact that the matter created in a he
ion system does not enjoy an infinite period of time in whi
to equilibrate. The expansion time can be defined through
corresponding ‘‘Hubble constant’’

H5
1

tH
5

ds

sdt
, ~111!

wheres is entropy density. We use the entropy density in t
definition because the total entropy is conserved during a
batic expansion, and we are assuming that by the time
system is traversing the transition region and then freez
out, the expansion can be treated as adiabatic. Hydrodyna
models@20# suggest that at SPS energies, heavy ion co
sions havetH'10220 fm/c. If we simply use this value of
tH and neglect dimensionless factors in the scaling rela
~108! we would find

j

l
,S tH

l D 1/D t

;2.5. ~112!

In spite of the long expansion time, the relatively large va
of the dynamical exponentD t can make the finite time re
8-23
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striction more severe than the finite size one~110!. In other
words, although the size of the system allows the correla
length to become as large as 12 fm, there may not be eno
time for such long wavelength fluctuations to develop due
critical slowing down. The estimate~112! is suspect for sev-
eral reasons. First, there may be a large dimensionless
portionality constant in this relation which is unknown to u
@In contrast, the finite size estimate~110! is a consequence o
geometry, and unless the homogeneous region is larger
we estimate, it is unlikely that the finite size bound onj can
be evaded.# Second, in making the estimate~112! we have
estimated the ‘‘bad’’ effect of critical slowing down, name
the fact that a 12 fm correlation length will take longer th
12 fm to develop, but we have not taken into accoun
compensating ‘‘good’’ effect of critical slowing down: be
cause of the large specific heat, the system will spend
unusually long time with a temperature in the vicinity of th
critical point. Because of the uncertainties in~112!, we shall
usejmax;6 fm as a rough estimate of the largest correlat
length possible if control parameters are chosen in suc
way that the system freezes out close to the critical po
More detailed study of the time evolution of the temperat
of the system, of the appropriate choice fortH , and of the
dimensionless factors in Eq.~112! are required in order to
properly estimate whether finite time effects restrictjmax fur-
ther.

Since the thermal contact effect discussed in Sec. IV
pends on the divergent heat capacityCA , we need to esti-
mate how largeCA can get, given the finiteness of the sy
tem. Using the exponent~109!, we can estimate the ratio o
the maximum value of that part ofCA which would be sin-
gular in an infinite system to the ‘‘normal’’ value ofCA for
a degree of freedom with a correlation lengthl;1 fm as

~CA!max
s

~CA!norm
;S jmax

l D DCV

;36. ~113!

This does not mean that the specific heatCA is multiplied by
36, because it receives a nonsingular contribution from o
degrees of freedom. However, it suggests that in using
~59! to estimate how much the anticorrelation induced red
tion of FT is weakened at the critical point, it is reasonable
expect thatCA can be up to an order of magnitude larg
there than it is nearTc far from the critical point.

We now return to our discussion of the effects of the lo
wavelength sigma fluctuations on the fluctuations of
pions, encoded in the microscopic correlator~88!. We de-
rived Eq.~88! using mean field theory, and would now lik
to discuss the effect of non-mean-field corrections. We m
tioned previously that fluctuations of the sigma field arou
the minimum ofV(s) are not small; we now argue that th
does not make much difference to the quantity of intere
One way to see how these corrections can appear is to re
that, at higher order inG, diagrams withs bubbles which are
actually logarithmically divergent asms→0 will contribute.
These bubbles have to be resummed and may modify
exponent of thems

22 singularity in Eq.~88!. This exponent is
easy to infer from universality arguments. Diagrammatica
the 1/ms

2 is the zero momentum value of the sigma propa
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tor, i.e., the sigma field susceptibility. For the 3D-Ising un
versality class we know the corresponding exponent to
g/n522h which is '2 to within a few percent becauseh
is small. We can therefore safely use the mean-field form
~88! with its ms

22 divergence for our estimate, and will tak
ms;1/jmax;1/(6 fm). It therefore turns out that eve
though the effects of Sec. IV depend onCV and the effects of
this section depend on the sigma susceptibility, both are c
trolled by the exponentg/n'2.

E. Magnitude of the effects

We now have all the ingredients in place for our estim
of the size of the effect of the critical fluctuations of th
sigma field on the fluctuations of the observed pions, via
couplingG. We reproduce here Eq.~89!:

^~Dq!2&5 K FDS Q

ND G2L
5

1

^N&2 H(
p

vp
2~qp2^q&!2

1
1

Vms
2

G2

T F(
p

vp
2

vp
~qp2^q&!G2J , ~114!

which we now apply forq5pT . We have restored the facto
of V. The first term in the curly brackets includes the sing
particle inclusive distribution enhanced by the Bose effe
The second term is the effect we are interested in now.
we did in our estimate of the effects of energy conservat
and thermal contact in Sec. IV C, we shall express the siz
the effect of interest as the ratio of the entire expression
curly brackets in Eq.~114! to the first term in these brackets
We find

Fs5110.35S Gfreeze-out

300 MeVD
2S j freeze-out

6 fm D 2

for mp560 MeV ~115!

and

Fs5110.14S Gfreeze-out

300 MeVD
2S j freeze-out

6 fm D 2

for mp50, ~116!

where we have takenT5120 MeV. As in Sec. IV, the effect
will be diluted by about a factor of two because not all of t
pions which are observed are direct. We have written
estimates~115!,~116! in such a way that the largest unce
tainties are manifest. The size of the effect depends quad
cally on the couplingG. We argued above thatG is reduced
to GE;300 MeV at the critical point but, as we explaine
there are caveats in this argument. Furthermore, freeze
may occur somewhat away from the critical point, in whi
case G would be somewhat larger, although still muc
smaller than its vacuum value. The size of the effect a
depends quadratically on the sigma correlation length
8-24
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freeze-out, and we have seen that there are many cavea
an estimate likej freeze-out;jmax;6 fm. Finally, the effect is
sensitive to the value ofmp . There are reasons to believ
that mp may be smaller near the critical point than far fro
it. Recall thatmp is zero at chemical freeze-out, and th
grows until thermal freeze-out. At the critical point, the tra
sition temperatureTc is somewhat lower than at lowe
baryon chemical potentialm, and this suggests thatTch may
be lower than the value measured in 160 AGeV collisio
Furthermore, we have argued in Ref.@1# that the thermal
freeze-out temperatureTf will be somewhat higher in the
vicinity of the critical point, because the system lingers th
and expands for a while with a temperature nearTc .21 If the
temperature windowTch2Tf is small near the critical point
thenmp may be significantly smaller than 60 MeV there.

We have studied two different effects onAF in Secs. IV
and V. The effects of energy conservation and thermal c
tact lead to a few percent reduction inAF; this reduction will
be significantly lessened near the critical point due to
divergence ofCA . This yields perhaps a 1–2 % increase
AF near the critical point. The direct effect of the critic
fluctuations which we have estimated in this section is
further, larger, increase inAF by a factor ofAFs. We have
displayed the various uncertainties in the factors contribu
to our estimates~115!,~116! so that when an experimenta
detection of an increase and then subsequent decrease iAF
occurs, as control parameters are varied and the critical p
is approached and then passed, we will be able to use
measured magnitude of this nonmonotonic effect to const
these uncertainties. It should already be clear that an effe
large as 10% inAFs is easily possible; this would be 5
times larger than the statistical error in the present data.

Once we have evaluated the microscopic correla
^DnpDnk&, we can estimate the effect of the critical fluctu
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tions of the sigma field on the fluctuations of many differe
pion observables. To this point, we have focused
^(DpT)2&; we now give a brief account of the effect o
^(DN)2& and ^DNDpT&. We can use the microscopic co
relator ~88! to obtain

^~DN!2&5(
p

vp
21

1

Vms
2

G2

T F(
p

vp
2

vp
G2

'(
p

vp
2H 111.0S Gfreeze-out

300 MeVD
2

3S j freeze-out

6 fm D 2J , ~117!

for q5pT , T5120 MeV, andmp50. The coefficient which
is 1.0 in the last line of Eq.~117! increases to 2.0 ifmp

560 MeV. We see that there can easily be a very la
increase in the multiplicity fluctuations of the direct pion
near the critical point, due to the coupling between the dir
pions and the critical fluctuations of the sigma field. As w
have noted previously, the noncritical fluctuations of the to
pion multiplicity are dominated by the pions from resonan
decay. Using the result~32!, we estimate that the sigma in
duced critical multiplicity fluctuations of the direct pions ca
easily lead to a 10% increase in the total^(DN)2&. This is
comparable in magnitude to the effect on^(DpT)2&, and
should be easily detectable. We will see in Sec. VI that th
should be even a further increase in the fluctuations of
multiplicity of those pions with lowpT .

Turning now to the cross correlation between an intens
quantity andN, we use the microscopic correlator~88! to
calculate
^DNDq&

^q&
5

1

^N&^q& H (p
np

2~qp2^q&!1
1

Vms
2

G2

T F(
k

vk
2

vk
GF(

p

vp
2

vp
~qp2^q&!G J

'20.021H 1112 . S Gfreeze-out

300 MeVD
2S j freeze-out

6 fm D 2J for mp50

'20.046H 1113 . S Gfreeze-out

300 MeVD
2S j freeze-out

6 fm D 2J for mp560 MeV, ~118!
e to
d,
di-
n in
ted
in-
ld.
ay

ical
where we have takenq5pT andT5120 MeV. This corre-
lation only receives contributions from nontrivial effects, a
we see that near the critical point, the contribution from
interaction with the sigma field is dominant. Once again,

21The expansion rateH of Eq. ~111! does not decrease. Howeve
the rate of change ofT with time is reduced because of the larg
specific heat.
e
e

see that this correlation is a very interesting quantity to us
look for the critical point. As the critical point is approache
thermal contact with a heat bath whose heat capacity is
verging reduces the effect of energy conservation, as see
Eq. ~70!; we now see that this reduction is overcompensa
by the larger increase in the cross correlation which is
duced by the direct coupling of the pions to the sigma fie
The lesson is clear: although this correlation is small, it m
increase in magnitude by a very large factor near the crit
point.
8-25
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The effects of the critical fluctuations can be detected i
number of ways. First, one can find a nonmonotonic incre
in Fs , the suitably normalized increase in the variance
event-by-event fluctuations of the mean transverse mom
tum. Second, one can find a nonmonotonic increase
^(DN)2&. Both these effects can easily be between one
two orders of magnitude greater than the statistical error
present data. Third, one can find a nonmonotonic increas
the magnitude of̂ DpTDN&. This quantity is small, and i
has not yet been demonstrated that it can be measured. H
ever, it may change at the critical point by a large factor, a
is therefore worth measuring. In addition to effects on th
and many other observables, it is perhaps most distinctiv
measure the microscopic correlator^DnpDnk& itself. The
term proportional to 1/ms

2 in Eq. ~88! has a specific depen
dence onp and k. It introduces off-diagonal correlations i
pk space. Like the off-diagonal anticorrelation discussed
Sec. IV, this makes it easy to distinguish from the Bo
enhancement effect, which is diagonal inpk. Near the criti-
cal point, the off-diagonal anticorrelation vanishes and
off-diagonal correlation due to sigma exchange grows. F
thermore, the effect ofs exchange is not restricted to iden
tical pions, and should be visible as correlations between
fluctuations ofp1 andp2. The dominant diagonal term pro
portional todpk in Eq. ~88! will be absent in the correlato
^Dnp

1Dnk
2&, and the effects ofs exchange will be the domi

nant contribution to this quantity near the critical point.

VI. PIONS FROM SIGMA DECAY

There is another signature of freeze-out near the crit
point discussed in@1# in addition to those we have analyze
in depth above. For choices of control parameters such
freeze-out occurs at or near the critical end point, the e
tations of the sigma field, sigma~quasi!particles, are nearly
massless at freeze-out and are therefore numerous. Bec
the pions are massive at the critical point, theses ’s cannot
immediately decay into two pions. Instead, they persist as
temperature and density of the system further decrease.
ing the expansion, the in-mediums mass rises towards it
vacuum value and eventually exceeds the two pion thresh
Thereafter, thes ’s decay, yielding a population of pion
which do not get a chance to thermalize because they
produced after freeze-out. Here, we estimate the momen
spectrum of these pions produced by delayeds decay. An
event-by-event analysis is not required in order to see th
pions. The excess multiplicity at lowpT will appear and then
disappear in the single particle inclusive distribution as c
trol parameters are varied such that the critical point is
proached and then passed.

The event-by-event fluctuations of the multiplicity o
these pions reflect the fluctuations of the sigma field whe
they came@1#. We estimate the resulting increase in t
event-by-event fluctuations ofN, the total pion multiplicity.

We begin with the inclusive single particlepT spectrum of
the pions from sigma decay. We use the expression~93! for
the width of thes, but now treatms as time dependent. W
should also takeG to evolve with time. However, the domi
nant time-dependent effect is the opening up of the ph
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space for the decay asms increases with time and crosses t
two-pion threshold. We will therefore treatG as a constant.
In Sec. V, we estimated that in vacuum withms

5600 MeV, the coupling isG;1900 MeV, whereas at the
critical end point withms50, the coupling is reduced, per
haps by as much as a factor of six or so. In this section,
need to estimateG at the time whenms is at or just above
twice the pion mass. We will useG;1000 MeV, recogniz-
ing that we may be off by as much as a factor of two.

Let us parametrize the time dependence of the sigma m
by

ms~ t !52mp~11t/t! ~119!

where we have definedt50 to be the time at whichms has
risen to 2mp and have introduced the time scalet over
which ms increases from 2mp to 4mp . We will be inter-
ested in times 0,t,t, for which this linear parametrization
of the time dependence is not unreasonable. Note that
this choice of notation, freeze-out occurs at a negative ti
and the collision begins at an even more negative time. S
stituting into Eq.~93!, and working to lowest order int/t, we
find

G~ t !;
3G2

32pmp
A2t/t5DAt/t, ~120!

where we have defined

D5
3A2G2

32pmp
;~300 MeV!S G

1000 MeVD
2

. ~121!

N(t), the number ofs ’s present at timet, is determined by

1

N~ t !

dN~ t !

dt
52G~ t !52DAt/t, ~122!

and is therefore

N~ t !5N~0!expS 2
2

3
Dt3/2t21/2D . ~123!

We can now estimate the momentum distribution of t
pions produced in the decay of the sigmas, upon making
assumption that the sigmas are at rest when they decay.
is a good approximation for two reasons. First, as the sys
expands after freeze-out, the sigma mass is increasing a
have discussed. This means that the kinetic energy of e
sigma is decreasing. Second, during the time between fre
out and decay, some of the sigmas which happen to be m
ing outwards toward the less dense region of the collision
which their mass would increase more than allowed by
ergy conservation will instead be reflected back inward. E
sigma which suffers such a reflection loses momentum
the reflection occurs as if off an outward moving surfac
This effect confines the sigmas to the densest region of
plasma, where their mass remains low for the longest ti
and in addition reduces their momenta. We do not attem
quantitative estimate of these two momentum-reducing
fects here. Suffice to say that since at freeze-out the typ
8-26
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sigmas will have momenta of order the freeze-out tempe
ture or less, we think it reasonable to approximate them
being at rest at timet50 when they begin to decay.

Sigmas which decay at rest at timet each yield two pions
with momentap;mpA2t/t, to lowest order int/t. As a
result, the number of pions with momentampA2t/t,p
,mpA2(t1dt)/t is 22dt@dN(t)/dt# with N(t) given by
Eq. ~123!. Upon making suitable substitutions, we find th
the number of pions with momenta betweenp anddp is

dN5A2N~0!Dt
p2dp

mp
3

expS 2
1

3A2
Dt

p3

mp
3 D . ~124!

With the momentum distribution in hand, we determine t
mean pion momentum to be

p̄inc521/6322/3G~1/3!mp~Dt!21/351.45mp~Dt!21/3.
~125!

Large t corresponds to slow expansion and a sigma m
which consequently increases only slowly with time; largeD
corresponds to a large coupling constantG. It therefore
makes sense that ifDt is large, the sigmas decay before t
sigma mass has increased far above threshold, and the re
ing pions have small momenta. We definedt to be the time
it takes thems to increase from 2mp to 4mp . This time
scale is hard to estimate, but our result is not strongly dep
dent on t. It seems likely that 5 fm,t,20 fm and we
therefore quote our result as

p̄inc;0.58mpS 1000 MeV

G D 2/3S 10 fm

t D 1/3

, ~126!

where we have used Eq.~121!. We therefore estimate that
freeze-out occurs near the critical point, there will be a n
thermal population of pions with transverse momenta of
der half the pion mass distributed according to Eq.~124!.

How many such pions can we expect? That is, how la
is N(0)?This is determined by the sigma mass at freeze-o
If ms is comparable tomp at freeze-out, then there are ha
as manys ’s at freeze-out as there are charged pions. Si
each sigma decays into two pions, and two thirds of th
pions are charged, the result is that the number of char
pions produced by sigma decays after freeze-out is 2/3 of
number of charged pions produced directly by the freeze
of the thermal pion gas. Of course, if freeze-out occurs clo
to the critical point at whichms can be as small a
(6 fm)21, there would be even more sigmas. We theref
suggest that as experimenters vary the collision energy,
way they can discover the critical point is to see the appe
ance and then disappearance of a population of pions
^pT&;mp/2 which are almost as numerous as the dir
pions. Yet again, it is the nonmonotonicity of this signatu
as a function of control parameters which makes it disti
tive.

As we discussed briefly in@1#, the event-by-event fluctua
tions in the multiplicity of these low momentum pions a
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also of interest. If we were able to measure the multiplic
of sigma quasiparticles at freeze-out, we would find fluctu
tions given by

^~DNs!2&5(
p

^np
s&~11^np

s&!, ~127!

where thenp
s’s are the sigma occupation numbers. In t

present analysis, we neglect the effects of interactions am
the sigmas and just takenp

s as for an ideal Bose gas wit
small ms . We expect that this makes our prediction for t
fluctuations an underestimate. Sincems is small, the low
momentum modes have large occupation number, and h
fluctuations proportional to the square of their occupat
number. Each sigma eventually decays into two pio
whose momenta are determined by the time at which
sigma decays, rather than by the sigma momentum at fre
out. It is therefore not possible to make a measuremen
the pions which restricts the(p in Eq. ~127! to low pT . We
therefore do the entire sum, and find that the variance of
event-by-event distribution of the multiplicity of th
s-produced pions is

^~DN!2&52^N&~11^np
s& inc! ~128!

whereN is the number of charged pions. The factor of tw
arises because every sigma which produces charged p
produces two charged pions, and was discussed in Sec
Taking ms50 yields ^np

s& inc'0.37, and therefore

^~DN!2&'2.74̂ N&. ~129!

We have already seen in Sec. V that the critical fluctuatio
of the sigma field increase the fluctuations in the multiplic
of the direct pions sufficiently that the increase in the flu
tuation of the multiplicity of all the pions will be increase
by about 10%. We now see that in the vicinity of the critic
point, there will be a further nonmonotonic rise in the flu
tuations of the multiplicity of the population of pions wit
^pT&;mp/2 which are produced in sigma decay.

VII. SUMMARY AND OUTLOOK

In order to estimate the magnitude of the effects of criti
fluctuations, one must first analyze the background, nonc
cal fluctuations. NA49 data from PbPb collisions at 1
AGeV shows that the event-by-event distribution of t
mean transverse momentum is as perfect a Gaussian a
central limit theorem allows. Since a system in thermod
namic equilibrium exhibits Gaussian fluctuations, in Sec.
we give a quantitative answer to the question of how mu
of the observed fluctuations are thermodynamic in origin.
this end, we model the matter at freeze-out as an ideal ga
pions and resonances in thermal equilibrium, estimate
resulting fluctuations, and compare with the data.

We calculate the event-by-event fluctuations ofpT , an
intensive quantity which is therefore little affected by no
thermodynamic fluctuations in the initial size of the syste
We find that the resonances turn out to be of lit
importance—the resonance gas prediction
8-27
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^(DpT)2&/^pT&2 is almost indistinguishable from that of a
ideal Bose gas of pions. Furthermore, we have verified qu
titatively that the correlations between pions introduced
the fact that some originate in resonance decays can be
glected. We have computed the effects of Bose enhancem
and find that they increasê(DpT)2& by only a few percent,
although the precision of the data should make effects of
magnitude detectable.

The difficulty comes in the treatment of the collectiv
flow. This hydrodynamic expansion boosts the momenta
the pions, affecting both the numerator and the denomin
in ^(DpT)2&/^pT&2. Although we do expect that the effec
cancels in the ratio to a significant extent, the ‘‘blueshif
approximation which we have used is too simple. We ha
shown quantitatively that thefluctuationsin the flow velocity
can be neglected. However, the effects of the flow itself a
not sufficiently accurately treated as a uniform blueshift, a
must be treated more quantitatively in the future. We fi
that our prediction for̂ (DpT)2&/^pT&2 is about 90% of that
which NA49 observes. This gives us further confidence t
we can use thermodynamics to understand the great bu
the observed fluctuations; improving the precision of the p
diction by improving upon the blueshift approximation r
mains to be done.

The data are precise enough that we can do more
analyze the ‘‘bulk’’ of the fluctuations. We can ask, for e
ample, about the ratioAF of ^N&1/2vebe(pT) to the variance
of the inclusive single particle distribution. This ratio is in
sensitive to the effects of the flow velocity. For a classi
ideal gas,AF51. We estimate that Bose effects result
AF5AFB'1.02. In the data, however,AF51.00260.002.
The Bose effects may be small, but they are ten times la
than the statistical error in the data. The Bose correlations
being compensated by some anticorrelation, and in Sec
we find a possible explanation.

We show that energy conservation results in an antico
lation which is reduced by thermal contact between the di
pions and an unobserved heat bath. The anticorrelation
ishes if the heat bath has infinite heat capacity. This eff
and indeed everything about the fluctuations we analyze,
be derived from the correlator^DnpDnk& between the fluc-
tuations of the occupation numbers of pion modes with m
mentap andk. Energy conservation implies that ifnp fluc-
tuates up, thennk is more likely to fluctuate down. The
magnitude of the effect depends on the heat capacity of
‘‘heat bath,’’ but we estimate that it leads toAF5AFBFT

with AFT'0.99.
With more detailed experimental study, either now at

SPS, or soon at RHIC~STAR will study event-by-event fluc
tuations in pT , N, particle ratios, etc.; PHENIX and
PHOBOS inN only! it should be possible to disentangle th
different effects we describe. Making a cut to look at on
low pT pions should increase the effects of Bose enhan
ment. Bose enhancement effects are sensitive tomp , and
measuring these effects would allow one to make an exp
mental determination of this quantity. The anticorrelation
troduced by energy conservation and thermal contact is
to terms in^DnpDnk& which are off-diagonal inpk. Thus, a
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direct measurement of̂DnpDnk& would make it easy to
separate this anticorrelation from other effects. The cr
correlation ^DNDpT& is a very interesting observable t
study because it only receives contributions from interest
effects, like Bose enhancement, thermal contact, and
critical fluctuations discussed in Sec. V. We hope that
combination of the theoretical tools we have provided a
the present NA49 data provide a solid foundation for t
future study of the thermodynamics of the hadronic ma
present at freeze-out in heavy ion collisions.

We also consider fluctuations in multiplicityN, an exten-
sive observable. These are not affected by the boost w
the pion momenta receive from the collective flow, and t
makes them easier to calculate than the fluctuations inpT .
However, multiplicity fluctuations are contaminated expe
mentally by fluctuations in the initial state, for example d
to the distribution of impact parameters. This experimen
contamination can be reduced by making a tight enough c
trality cut using a zero degree calorimeter. We compare
multiplicity fluctuations of the 5% most central events in t
NA49 data to those we predict from a resonance gas,
find evidence that about 75% of the observed fluctuation
indeed thermodynamic in origin. We find that resonanc
play a significant role in this comparison, increasing t
magnitude of thermodynamic fluctuations of the pion mu
plicity and bringing it closer to the data.

With the foundations established, we then describe h
the fluctuations we analyze will change if control paramet
are varied in such a way that the baryon chemical potentia
freeze-out,m f , moves toward and then past the critical po
in the QCD phase diagram at which a line of first-order tra
sitions ends at a second order end point. We provide qua
tative estimates of the magnitude of the change in the
servables we have analyzed which can be expected nea
point. The agreement between the noncritical thermo
namic fluctuations inpT which we analyze in Sec. III and
NA49 data make it unlikely that central PbPb collisions
160 AGeV freeze out near the critical point. Estimates
have made in a previous paper suggest that the critical p
is located at a baryon chemical potentialm such that it will
be found at an energy between 160 AGeV and Alternati
Gradient Synchrotron~AGS! energies. This makes it a prim
target for detailed study at the CERN SPS by comparing d
taken at 40 AGeV, 160 AGeV, and in between. If the critic
point is located at such a lowm that the maximum SPS
energy is insufficient to reach it, it would then be in a regim
accessible to study by the RHIC experiments. We wan
stress that we are more confident in our ability to descr
the properties of the critical point and thus to predicthow to
find it than we are in our ability to predict where it is.

The critical fluctuations near the end point affect t
event-by-event fluctuations which we analyze in two diffe
ent ways. First, all effects of energy conservation should
greatly reduced by thermal contact as the critical fluctuati
in the sigma field cause the heat capacity to grow. Seco
these critical fluctuations have direct effects on the fluct
tions of the pions through theGspp coupling. We analyze
the most singular effects of this coupling, which are due
the zero momentum mode of the sigma field. It is possible
8-28
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analyze subleading corrections using a diagrammatic
proach, but we leave this to the future.

In the chiral limit, the critical point becomes a tricritica
point at whichG vanishes. We estimate the vacuum value
G and use scaling laws valid near a tricritical point to es
mateG at the critical point. We then estimate the increase
the fluctuations ofN andpT distributions which we expect in
heavy ion collisions which freeze out near the critical poi
Finite size and finite time effects prevent^(DN)2&/^N& and
^(DpT)2&^N& from diverging, as they would in an infinite
system. We estimate that^(DN)2&/^N& can grow by more
than 10%. The ratioAF which describes thepT fluctuations
becomesAFBFTFs with AFs about 1.1. This effect is no
large but is still predicted to be 50 times larger than
statistical error in the present NA49 measurement ofAF
51.00260.002. We quantify the uncertainty in our estimat
in terms of the sigma correlation lengthj and the couplingG
at freeze-out; measurement of the enhanced fluctuationsN
andpT would allow one to estimateGj.

We want to emphasize that the ratioAF is not the only
observable which can be used to detect the proximity of
critical point, and indeed is not the most sensitive observa
available. We have focused onAF because it is simple to
define, and because NA49 has published data to which
can compare our predictions. However, the specific form
the singularity in^DnpDnk& which we find in Eq.~88! tells
us how to construct observables which are more sensitiv
the critical fluctuations. One possibility is to consider obse
ables which are sensitive to the off-diagonal part
^DnpDnk&, because the noncritical off-diagonal anticorre
tion in ^DnpDnk& should be replaced by a much larger o
diagonal correlation near the critical point. A second pos
bility is an analysis of the cross correlation̂DNDpT&.
Because this cross correlation is dominated by interes
effects, we have seen that it can increase by an orde
magnitude at the critical point. A third possibility is to con
struct a ratio likeAF, but using only soft pions, withpT less
than a specified cutoff. The effects of the critical fluctuatio
are largest on the softest pions, and they are there
masked inAF which receives significant contribution from
harder particles. Whereas we have found that the crit
fluctuations changeAF at the 10% level, their effect on
‘‘soft AF ’’ can easily be at the factor of two level.

Although the sigma quasiparticles themselves canno
reconstructed, their presence can be detected even mor
rectly than via their influence on the pions at freeze-out
freeze-out occurs near the critical point, some time a
freeze-out the sigma mass rises above the two pion thr
old, and the sigmas decay quickly. Since these pions do
rethermalize, the resulting excess in the low-pT region of the
pion momentum spectrum should be observable. The m
pT of these pions is aboutmp/2, and they are almost a
numerous as the direct pions. The event-by-event fluc
tions in the multiplicity of these soft pions would be eve
larger than those of the rest of the pions near the crit
point.

In summary, our understanding of the thermodynamics
QCD will be greatly enhanced by the detailed study of eve
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by-event fluctuations in heavy ion collisions. We have es
mated the influence of a number of different physical effec
some special to the vicinity of the critical point but man
not, on the fundamental correlator^DnpDnk&. This is itself
measurable, but we have in addition used it to make pre
tions for the fluctuations of observables which have be
measured at present, like^(DpT)2& and^(DN)2& and also for
the cross correlation̂DNDpT&. The predictions of a simple
resonance gas model, which does not include critical fluct
tions, is to this point in broad agreement with the data. M
detailed study, for example with varying cuts in addition
new observables, will help to further constrain the nonth
modynamic fluctuations, which are clearly small, and be
understand the different thermodynamic effects. The sig
tures we analyze allow experiments to map out distinct
features of the QCD phase diagram. The striking exam
which we have considered in detail is the effect of a seco
order critical end point. The nonmonotonic appearance
then disappearance of any one of the signatures of the cri
fluctuations which we have described would be strong e
dence for the critical point. Furthermore, if a nonmonoton
variation is seen in several of these observables, then
maxima in all the signatures must occur simultaneously
the same value of the control parameters. Simultaneous
tection of the effects of the critical fluctuations on differe
observables would turn strong evidence into an unambigu
discovery.

Note added. As we have stressed in Sec. IV, the fluctu
tions in an extensive quantity such as the observed multip
ity are unlike fluctuations in intensive quantities in that th
receive significant contributions from both~i! thermody-
namic fluctuations at freeze-out and~ii ! nonthermodynamic
fluctuations during the initial stage of the collision. Our a
proach has been to use a comparison between the data
thermodynamic predictions to constrain the magnitude
nonthermodynamic fluctuations. After this paper was subm
ted, Ref.@33# appeared. These authors have attempted a
oretical treatment of those nonthermodynamic fluctuatio
which are purely geometrical in that they can be attributed
the distribution of impact parameters. Further analysis is p
sented in Ref.@34#. These authors include in addition th
effects of fluctuations in theNN cross section@17#, which
they find to be small, and also fluctuations in the number
punch-through spectators and effects due to the diffuse e
of the incident nuclei, both of which are significant. Combi
ing all contributions to the multiplicity fluctuations, thermo
dynamic and nonthermodynamic, yields fluctuations whi
with no new free parameters, reproduce the magnitude of
observed multiplicity fluctuations to within a few perce
accuracy@34#.
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APPENDIX: FINITENESS OF MULTIPLICITY

Throughout the body of the paper, we use event-by-ev
and inclusive averages defined probabilistically. If we we
interested in an infinite ensemble in which each membe
the ensemble was in the thermodynamic limit, no translat
would be required. However, when we want to compare
relations involving quantities which are defined probabilis
cally to those measured in an experiment, as in any app
tion of probability theory we must have estimators for the
quantities which can be constructed fromfinite samples. In
this Appendix, we discuss the effects due to finite sam
size.

The typical size of these effects is one over a power of
sample size. The total number,C, of events can be easil
made very large~say, 106), so that 1/C, and even 1/AC is
much smaller than thephysicaleffects we consider~such as
Bose enhancement, for example! which are of the order of a
few percent or more. However, the number of pions in
event,N, is limited by the size of the colliding system an
the experimental acceptance of a detector, and is typicall
the order of a few hundred. This can introduce corrections
the order of a fraction of a percent. Of course, these effe
are negligible when compared to the bulk of the fluctuatio
which we analyze in Sec. III. They are also smaller than
effects we discuss in Secs. IV and V, where we are intere
in signatures which rise and fall by of order 10% near
critical point. However, we have seen in Sec. III that t
statistical errors in the present data are small enough that
can compare quantities likêN&vebe

2 andv inc
2 to a precision of

less than a percent. At this level, we must understand ho
deal with the 1/N corrections.

Let us consider a sample of values of some one-part
observableq. This sample is broken intoC subsets, i.e.,
events, withNa values per event. We use the notation:qi

a ,
wherea51 . . .C and i 51 . . .Na . ~For example,qi

a may
be the momentum of thei th pion in the ath event.! The
numbersqi

a are distributed according to some~joint! prob-
ability distribution. We assume that the expectation value
the same for allqi

a :M @qi
a#5m.

In Sec. II we pointed out that the inclusive meanq̄inc is
the same as the event-by-event average^q&. Both quantities
are defined in the infiniteC and N limit. Let us now try to
estimate these two quantities, using our finite sampleqi

a .

The natural estimate forq̄inc is the following:

q̄est
inc5

(
a51

C

(
i 51

Na

qi
a

(
a51

C

Na

5
1

C^N& (a51

C

(
i 51

Na

qi
a ~A1!

where we have introduced~somewhat inconsistently, bu
suggestively!:
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^N&5
1

C (
a51

C

Na , ~A2!

which is ~an estimate for! the mean multiplicity in an event
The total number ofq’s in the sample isC^N&. The property
of the estimate~A1! is that its expectation value is equal
m:

M @ q̄est
inc#5m, ~A3!

for any N or C. The standard deviation of this quantity
O(1/AC^N&), so the estimate becomes perfect in the infin
C, N limit. Now let us estimate the event-by-event mean
q. An estimate which appears natural is

^q&est05
1

C (
a51

C S 1

Na
(
i 51

Na

qi
aD . ~A4!

The expectation value of this estimate is

M @^q&est0#5m, ~A5!

and this estimate also becomes perfect asC, N go to in-
finity. However,

^q&est0Þq̄est
inc . ~A6!

One can show that the difference between the two is on
order of^(DN)2&/N2;1/N. It is obvious how to improve the
estimate~A4! to make the relationship̂q&5q̄inc hold exactly
for finite N. Writing

q̄est
inc5

1

C (
a51

C
Na

^N&S 1

Na
(
i 51

Na

qi
aD 5

def

^q&est, ~A7!

we can interpret this definition of the estimate^q&est as a
result of averaging over events with a weight proportiona
the multiplicity in this event,Na . It is also clear intuitively
that such a procedure is more natural than taking all eve
with equal weight as is done in Eq.~A4!. What is important
is that, by construction, this procedure rids us of any 1N

correction to the equality between^q&est and q̄est
inc .

Let us now consider estimating variances ofq. The natu-
ral estimate for the inclusive square variance is

v inc
2 ~q!est5

1

C^N&21(
a51

C

(
i 51

Na

~qi
a2q̄est

inc!2. ~A8!

Assuming that the variablesqi
a are uncorrelated and the

dispersions are equal, i.e.,

M @qi
aqj

b#5m21s2d i j d
ab, ~A9!

one can show that

M @v inc
2 ~q!est#5s2, ~A10!

for anyC or N. This is the property which we require of thi
estimate.

Next, we consider estimating the event-by-event varian
One seemingly natural candidate is
8-30
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vebe
2 ~q!est05

1

C21 (
a51

C S 1

Na
(
i 51

Na

qi
a2^q&estD 2

. ~A11!

This is the procedure used by NA49 to calculatevebe(pT)
from their data, leading to the result shown in Table II. L
us calculate the expectation value of this quantity, assum
that all q’s are independent as in Eq.~A9!. We find

M @vebe
2 ~q!est0#5s2

C

C21 S K 1

NL 2
1

C^N& D's2K 1

NL , ~A12!

where in the last approximate equality we neglected term
relative sizeO(1/C). In the case of completely uncorrelate
q we expect the following relation to hold between t
vebe

2 (q) andv inc
2 (q):

^N&vebe
2 ~q!5v inc

2 ~q!. ~A13!

This equality cannot and should not be satisfied for an a
trary sample~unlike the equalitŷ q&5q̄inc), but we want it
to be satisfied on the level of expectation values:

^N&M @vebe
2 ~q!est0#5M @v inc

2 ~q!est#. ~A14!

We see that for the estimate~A11! the difference between th
left-hand side and the right-hand side of Eq.~A14! is

^N&M @vebe
2 ~q!est0#2M @v inc

2 ~q!est#'sS ^N&K 1

NL 21D
's2 ^~DN!2&

^N&2 , ~A15!

where we have neglected theO(1/C) corrections and the
corrections which are higher order in 1/N. The difference
~A15! is a 1/N effect, of course, but withN;300 it could
easily reach a fraction of a percent. Note that we are
talking here about statistical fluctuations around the m
values which make the two estimates deviate from sampl
sample. Such effects are of the order 1/AC and can easily be
made negligible with sufficient statistics. Equation~A15!, on
the other hand, reflects asystematicdiscrepancy between th
expectation values of the estimates, which would only
away if N, the number of particles in one event, were infini

Our task now is to give an estimator forvebe
2 (q) which

satisfies Eq.~A14! with no errors of order 1/N in the case
when theqi

a are uncorrelated. The lesson we learned fr
the estimator for̂ q& suggests that we take each event w
the weightNa /^N&. This gives

vebe
2 ~q!est5

1

C21 (
a51

C
Na

^N& S 1

Na
(
i 51

Na

qi
a2^q&estD 2

.

~A16!
v
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Calculating the expectation value we find that

M @vebe
2 ~q!est#5

s2

^N&
~A17!

exactly. This means that the estimate~A16! satisfies our cri-
terion ~A14! exactly, to all orders in 1/N and 1/C. This is the
estimate forvebe

2 (q) that should be used to analyze expe
mental data. It introduces no 1/N or 1/C errors in the state-
ment that the ratioF51 in the absence of correlation o
interaction between the pions.

We can avoid having to apply the formula~A16! to the
original experimental data set in order to recalculate
vebe(pT) given in Table II, which used the estimate~A11!.
Using our analysis, we can instead just use the fact that~the
expectation values of! the two estimates are related by@see
Eq. ~A15!#

vebe~q!est5vebe~q!est0S 12
1

2

^~DN!2&

^N&2 D , ~A18!

up to corrections which are higher order in 1/N ~and correc-
tions of order 1/AC). We use this relation to convert from
one estimate to another in Eq.~42! of Sec. III D.

To finish the discussion of the 1/N effects we also point
out that yet another estimate forvebe(q) is used implicitly in
the definition ofFpT

in @8,21#

FpT
5^N&1/2vebe~pT!estF 2v inc~pT!. ~A19!

The definition ofvebe(pT)estF corresponds, in the languag
that we use here, to giving each event a weightNa

2/^N&2 ~and
usingC instead ofC21):

vebe
2 ~q!estF 5

1

C (
a51

C Na
2

^N&2 S 1

Na
(
i 51

Na

qi
a2^q&estD 2

.

~A20!

Calculating the expectation value of this estimate, one fin

M @vebe
2 ~q!estF #5s2S 1

^N&
2

^N2&
C^N&3D'

s2

^N&
, ~A21!

where we neglectedO(1/C) corrections in the last step. W
see that in theC→` limit this estimate does not suffer from
1/N corrections as far as the relation~A14! is concerned, and
does not differ from the estimate~A16!. However, it does
introduce small 1/C corrections, while the estimate~A16!
satisfies Eq.~A14! exactly.
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