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The event-by-event fluctuations of suitably chosen observables in heavy ion collisions at CERN SPS, BNL
RHIC, and CERN LHC can tell us about the thermodynamic properties of the hadronic system at freeze-out.
By studying these fluctuations as a function of varying control parameters, it is possible to learn much about
the phase diagram of QCD. As a timely example, we stress the methods by which present experiments at the
CERN SPS can locate the second-order critical end point of the first-order transition between quark-gluon
plasma and hadron matter. Those event-by-event signatures which are characteristic of freeze-out in the
vicinity of the critical point will exhibit nonmonotonic dependence on control parameters. We focus on
observables constructed from the multiplicity and transverse momenta of charged pions. We first consider how
the event-by-event fluctuations of such observables are affected by Bose-Einstein correlations, by resonances
which decay after freeze-out, and by fluctuations in the transverse flow velocity. We compare our thermody-
namic predictions for such noncritical event-by-event fluctuations with NA49 data, finding broad agreement.
We then focus on effects due to thermal contact between the observed pions and a heat bath with a given
(possibly singularspecific heat, due to the direct coupling between the critical fluctuations of the sigma field
and the observed pions. We also discuss the effect of the pions produced in the decay of sigma particles just
above threshold after freeze-out on the inclusive pion spectrum and on multiplicity fluctuations. We estimate
the size of these nhonmonotonic effects, which appear near the critical point, including restrictions imposed by
finite size and finite time, and conclude that they should be easily obser{/ab&56-282(199)04121-1

PACS numbgs): 25.75—-q, 05.70.Jk, 12.38.Aw, 12.38.Mh

I. INTRODUCTION AND OUTLINE tools which will allow heavy ion collision experiments to
discover the critical end point through the analysis of the
The goal of this paper is to motivate a program of heavyvariation of event-by-event fluctuations as control param-
ion collision experiments aimed at discovering an importangeters are varied.
qualitative feature of the QCD phase diagram, namely the Once experimentalists vary a control parameter which
critical end point at which a line of first-order phase transi-causes the freeze-out point in thg, ) plane to move to-
tions separating quark-gluon plasma from hadronic matteward, through, and then past the vicinity of the end point E,
comes to an enfil]. The possible existence of such an endthey should see all the signatures we describe first
point, denoted E, in the temperatui® vs. baryon chemical strengthen, reach a maximum, and then decrease, as a non-
potential (x) plane has recently been emphasized and iténonotonic function of the control parameter. It is important
universal critical properties have been descrip2@]. The  to have a control parameter whose variation changeg tae
point E can be thought of as a descendant of a tricriticatvhich the system crosses the transition region and freezes
point in the phase diagram for two-flavor QCD witltassless out. The collision energy is an obvious ChOice, since it is
quarks. As pointed out ifil], observation of the signatures known experimentally that varying the collision energy has a
of freeze-out near E would confirm that heavy ion collisionslarge effect onu at freeze-out. Other possibilities should
are probing above the chiral transition region in the phas@lso be explored.
diagram. Furthermore, we would learn much about the quali- An example of nonmonotonic signatures in a different but
tative landscape of the QCD phase diagram. analogous context is the rise and fall in the number of large
In a previous Lettef1], we have laid out the basic ideas fragments as a function of total observed multiplicity in mul-
for observing the critical end point. The signatures proposedifragmentation experimen{$] in low energy nuclear colli-
in [1] are based on the fact that such a point is a genuine
thermodynamic singularity at which susceptibilities diverge
and the order parameter fluctuates on long wavelengths. Thelf the system crosses the transition region near E, but only
resulting signatures all share one common property: they afgeezes out at a much lower temperature, the event-by-event fluc-
nonmonotonia@s a function of an experimentally varied pa- tuations will not reflect the thermodynamics near E. In this case,
rameter such as the collision energy, centrality, rapidity, ofone can push freeze-out to earlier times and thus closer to E by
ion size. The goal of the present paper is to develop a set afsing smaller ion$1,4].
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sions. These experiments allow us to confirm the existencemaller, Gaussian event-by-event fluctuations of the final
and study the properties of another critical point—the endstate to learn about thermodynamic properties at freeze-out.
point of the first-order nuclear liquid-gas transitiémoiling What can we learn from the magnitude of these small
of the nuclear matter liquid to yield a gas of nuclepf&5].  fluctuations and their dependence on the parameters of the
This point occurs at a temperature of order 10 MeV, mucteollision? Do they contain any more information than the
lower than the one we are studyifitj. corresponding moments of one-particle inclusive distribu-
The analogy which is perhaps most familiar is with thetions? Some _of these_ questions have been addressed in
phenomenon of critical opalescence observed in most ligt10,11 where it was pointed out that, for example, tempera-
uids, including water. As the fluid cools down under condi-ture fluctuations are related to heat capacity via
tions such that it passes near the end point of the boiling
transition, it goes from transparent to opalescent to transpar- ((AT)?) 1
ent as the end point is approached and then passed. This 7 Cu(T)’ (1)
nonmonotonic phenomenon is due to the scattering of light
on critical long wavelength density fluctuations, and thus sig- ) i
nals the universal physics unique to the vicinity of the criti-2"d SO can tell us abouhermodynamicproperties of the
cal point. _matter at free;e-out. Slm_llar ideas|ibl] rglate fluctuatlons
The universal property of systems in the vicinity of a IN the occupation of certain momentum bins with/JN and
second-order critical point is the anomalous increase of theitN€ average quantum density in phase space. Furthermore,
modynamic fluctuations of the order parameter and relatefy!"oWczyrski has discussed the study of the compressibility
observables. Here we consider a specific system, namely ttf hadronic matter at freeze-out via the event-by-event fluc-
hadronic matter created in a heavy ion collision at the timguations of the particle numbgi2] and Gadzicki [13] and
interactions freeze out. Our generic expectation is that th&irowczyrski [14] have considered event-by-event fluctua-

event-by-eventiuctuations of suitable observables increaselions of the kaon to pion ratio as measured by NA%9
in the vicinity of a critical end point. In this paper we calcu- N this paper we focus on observables constructed from

late the magnitude of the resulting nontrivial effects, andth® multiplicity and the momenta of the charged particles in
make predictions which, we hope, will allow experiments tothe flr_1al_ state, as measured by NA49. It should be p055|ble_: to
find the end point E. use similar methods to analyze the event-by-event fluctuation
It is clear that before we can achieve this goal we musP_f other classes of observables..For e>.<ample, if it were pos-
develop sufficient understanding efoncritical event-by- sible to measure the baryon to pion ratio, analyses analogous

event fluctuations. Large acceptance detectors, such as NA4® those we discuzss would lead to the thermodynamic sus-
and WA98 at CERN, have made it possible to measure im(_:ept|b|!|ty_(9 Qlou ._As the neutrons are not observed, this
portant average quantities in single heavy ion collision2n@lysis is not available. However, event-by-event fluctua-
events. For example, instead of analyzing the distribution ofions of the kaon to pion ratio may yield similar information.
charged particle transverse momenta obtained by averagirfyj’other example is the data obtained by WA98 on the event-
over particles from many events, we can now study thdy-event qu_ctuatlon of the ch_arg_ed _partlcle to photon ratio
event-by-event variation of the mean transverse momenturtd): They find a Gaussian distribution, and therefore con-
of the charged pions in a single event. The event-by-evertiain nonequilibrium processes in which long wavelength
variation of particle abundance ratios and even of thedisorientations of the chiral condensate are excited, as these
Hanbury-Brown-TwisgHBT) radii are also becoming avail- introduce non.—Gaussmnlty. We leave the extensmn _of the
able. Although much of this data still has preliminary status,Methods of this paper to the study of thermodynamic impli-
with more statistics and more detailed analysis yet to comeEations of the NA49 Gaussian distribution of event-by-event
some general features have already been demonstrated. 4™ fat'OSOanq of the WA98 Gaussian distribution of event-
particular, the event-by-event distributions of these observPy-eéventm/ 7~ ratios for future work.
ables are as perfect Gaussians as the data statistics allow, andT hermodynamic relations like E¢1) suggest the follow-
the fluctuations—the width of the Gaussians—are sfifdll g strategy. Measure the mean transverse momentum of the
This is very different from what one observesgp col- charged pions in each event in an ensemble. Since the inclu-
lisions, in which fluctuations are large. These large nonSive average of the transverse momentum of pions from an
Gaussian fluctuations clearly reflect nontrivial quantum fluc-ensemble of events reflectalthough does not equathe
tuations, all the way from the nucleon wave function to thattemperature of the ensemble, perhaps one carpusehe
of the secondary hadrons, and are not yet sufficiently wellNe&n transverse momentum of the pions in a single évent,
understood. As discussed [8,9], thermal equilibration in &S @ proxy for the temperature of a single event, and so use
AA collisions drives the variance of the event-by-event fluc-Ed: (1) to obtainCy,. One of the lessons of the results we
tuations down, close to the value determined by the variancBrésent below is that this strategy is too naive. To see a sign
of the inclusive one-particle distribution divided by the of this, consider another fundamental thermodynamic rela-
square root of the multiplicity. Iipp physics one can hope to
extract quantum mechanical information about the initial
state from event-by-event fluctuations of the final state; in 2we denote the mean transverse momentum of all the pions in a
heavy ion collisions equilibration renders this an impossiblesingle event byp; rather than(p;) because we choose to reserve
goal. InAA collisions, then, the new goal is to use the much(- - -) for averaging over an ensemble of events.
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tion, namely that the event-by-event fluctuations of the enmust be sought. Thus, this paper is organized as follows:
ergy E of a part of a finite system in thermal equilibrium are Sections Il and Il analyze the background noncritical fluc-

given by tuations; Sec. IV analyzes a particularegativeé contribu-
tion to the noncritical fluctuations which disappears near the
((AE)®)=T?Cy(T). (2)  critical point; Sec. V and VI analyze the critical fluctuations
themselves.
For a system in equilibrium, the mean valuesTdndE are We begin in Sec. Il by discussing the simplest case we

directly related by an equation of staT); their fluctua-  can imagine, namely the fluctuations in an ideal Bose gas of
tions, however, have quite different behavior as a function opions. This allows us to establish some notation and to ex-
Cy, and therefore behave differently whéxy diverges at a plain several conceptual issues. In particular, we explore the
critical point. So, is the&€,, dependence of the event-by-event relation in this simplest case between the ensenfie,
fluctuations ofpy like that of AT in Eq. (1) or like that of  event-by-eventvariance and the variance of the inclusive
AE in (2)? We will show thatpt fluctuations are not like one-particle distribution obtained by averaging over particles
either, although thei€,, dependence is more similar to that from many events. We also point out that the correlation
of AE, in the sense that the fluctuations f grow at the  between the multiplicity and an intensive observable, like the
critical point. mean transverse momentum, only receives contributions
Most of our analysis is applied to the fluctuations of thefrom nontrivial effects such as Bose enhancement, energy
observables characterizing the multiplicity and momenta ofonservation, or interactions. This correlation is in general
the charged pions in the final state of a heavy ion collisionsmall, but we see in Secs. IV and V that it can increase by a
There are several reasons why the pion observables are mdatge factor near the critical point. We derive results in Sec.
sensitive to the critical fluctuations. First, the pions are thdl and throughout which are valid in the thermodynamic
most numerous hadrons produced and observed in relativistlamit. In an Appendix, we explain the subtleties of construct-
heavy ion collisions. A second, very important reason, is thaing estimators for the relevant quantities using a finite
pions couple strongly to the fluctuations of the sigma fieldsample of events each with a finite number of pions.
(the magnitude of the chiral condensatehich is the order Our goal in Sec. lll is the inclusion of various effects
parameter of the phase transition. Indeed, the pions are theeglected in Sec. I, except that we continue to assume that
guantized oscillations of the phase of the chiral condensatfeeze-out isrotoccurring in the vicinity of the critical point.
and so it is not surprising that at the critical end point, wheréWWe model the matter in a relativistic heavy ion collision at
the magnitude of the condensate is fluctuating wildly, signafreeze-out as a resonance gas in thermal equilibrium, and
tures are imprinted on the pions. By Sec. V, we will havebegin by calculating the variance of the event-by-event fluc-
built up the technology needed to analyze these signaturestuations of total multiplicity. Our result suggests that about
Before we outline the structure of the paper, the following75% of the fluctuations seen in the data are thermodynamic
comment is in order. We assume throughout that freeze-out origin. Our prediction is strongly dependent on the pres-
occurs from an equilibrated hadronic system. If freeze-ouence of the resonances; had we not included them, our pre-
occurs “to the left” (lower w; higher collision energyof the  diction would have been significantly lower, farther below
critical end point E, it occurs after the matter has traversedhe data.
the crossover region in the phase diagram. If it occurs “to  Fluctuations in extensive observables like the total multi-
the right” of E, it occurs after the matter has traversed theplicity N are sensitive to nonthermodynamic variation in the
first-order phase transition. This is the situation in which ourinitial size of the system which later thermalizes. Sources of
assumption of freeze-out from an equilibrated system is mostuch variation includéi) the distribution of impact param-
open to question. First, one may imagine hadronization dieters,(ii) fluctuation in the initial positions of the nucleons,
rectly from the mixed phase, without time for the hadrons to(iii) quantum fluctuations of thBIN cross sectioff17] de-
rescatter. Hadronic elastic scattering cross sections are largeribed by the wave function of the nucleon, which can be
enough that this is unlikely. Second, one may worry that thehought of as fluctuations in the effective size of the nucleons
matter is inhomogeneous after the first-order transition, andt the initial moment of the collision. All these effects lead to
has not had time to re-equilibrate. Fortunately, our assumpguctuation in the number of spectator nucleons, and thus in
tion is testable. If the matter were inhomogeneous at freezahe initial size of the interacting system which later thermal-
out, one can expect non-Gaussian fluctuations in various obizes. We plan to evaluate the size of these contributions to
servable$16] which would be seen in the same experimentsfluctuations inN elsewhere. In this paper, we constrain the
that seek the signatures we describe. We focus on the Gaussagnitude of these nonthermodynamic effects by comparing
ian thermal fluctuations of an equilibrated system, and studg¢hermodynamic predictions for the fluctuationsNhto the
the nonmonotonic changes in these fluctuations associatethta.
with moving the freeze-out point toward and then past the We then turn to a calculation of the variance of the event-
critical point, for example from left to right as the collision by-event fluctuations of the mean transverse momenp4m,
energy is reduced. This is an intensive variable and should, therefore, be less
Although our central point is the analysis of the critical sensitive to nonthermodynamic variations in the initial size
fluctuations in the vicinity of the point E, we must first of the system. We calculate numerically the thermodynamic
present an extensive analysis of the noncritical fluctuationsg;ontribution from “direct pions,” already present at freeze-
which are the background on top of which critical effectsout, and from the pions generated later by resonance decay.
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We include Bose effects and the effects of flow and find botrmomenta. We show that this phenomenon follows directly
to be small. We compare our results to those found by NA4grom energy conservation, and conclude that it is much more
for central Pb-Pb collisions at 160 AGeV, and find broadrobust than the idealizations we use to describe it. This sig-
agreement. We do not attempt to include purely experimentalature is present when the system freezes out far from the
effects, such as those due to two-track resolution, and so dgitical point, and is reduced near the critical point. It should
not expect precise agreement. Our goal is to compare othe observable in present data on central PbPb collisions at
served variance with thermodynamic expectations and to sek50 AGeV, even if freeze-out is not occurring near the criti-
whether they are consistent. Our results support the generéf! point in these C_0||'S'0n3- . .
idea that the small fluctuations observedAm collisions, Section V describes what we believe to be the dominant
relative to those irpp, are consistent with the hypothesis €vent-by-event signatures directly related to the divergent
that the matter in theAA collisions achieves approximate correlation length which character!zes the critical point. We
local thermal equilibrium in the form of a resonance gas@PPly much of the technology built up over the preceding
Once data is available for other collision energies, centraliS€ctions in Sec. V to study the effect of the interaction of the
ties, or ion sizes, the present NA49 data and the calculatiorions with the almost classical sigma field. We find a large
of this section will provide an experimental and a theoreticaincrease in the fluctuations of both the multiplicity and the
baseline for the study of variation as a function of contro/méan transverse momentum of the pions. This increase
parameters. would be divergent in the infinite volume limit precisely at
In Secs. IV and V, we analyze how the proximity of the the cnpcal point. We apply finite size and f|n|t(_a time scalln_g
critical end point to the freeze-out point is reflected in thel0 estimate how close the system created in a heavy ion
fluctuations. We begin in Sec. IV by making the idealizationcollision can come to the critical singularity, and conse-
that the pions which one observes are an ideal Bose gas fiently how large an effect can be seen in the event-by-event
thermal contact with a heat bath which includes the sigmdluctuations of the pions. We conclude that the nonmono-
field. The heat capacity of this heat bath is therefore infinitdOniC changes in the variance of the event-by-event fluctua-
at the critical point. This treatment neglects the cou-  tion of the pion multiplicity and momenta which are induced
pling, which allows the critical fluctuations of the sigma field by the universal physics characterizing the critical point can
to influence the pion fluctuations directly, rather than just by8asily be between one and two orders of magnitude greater
thermal contact. than the statistical errors in the present data.

The dominant effects of the critical fluctuations on the ~Once we have analyzed the effects of the sigma field on
pions are the direct effects occurring via ther coupling. the fluctyauons of the pions, in Sec._ VI we ask what becomes
The idealization of Sec. IV is nevertheless useful, because R the sigmas themselves. Assuming that freeze-out occurs
allows us to explain and illustrate an important point not"€&r the critical point, they are numerous at freeze-out and
made clear ir{1] related to the practical application of Eq. they can only decay later, once the sigma mass has risen
(1). The fluctuations of the temperatudependon what a_bove twice the pion mass. Th|s_ results in a nonmonotonic
“mechanical” observabldsuch as the energy, for example signature of the critical point whlc_h can be observed even
is measured, and how the measured observable is convert¥ffhout an event-by-event analysis. We calculate the mo-
into a temperature. In particular, these fluctuations depend dff€ntum distribution of these low momentum pions produced
what part of a system is used as a thermometer. Equétjon I the delayed decays of the sigmas. _We close by an_alyz_mg
describes a particular case when the whole system of intere§t€ enhanced event-by-event fluctuations of the multiplicity
is used as a thermometer. It requires us to use the equation 8f these low momentum pions. _ ,
state T(E) of the whole system of interest to translate the Ve end the paper with a summary of the different contri-
energy, which is measured in this case, into the temperatuf@tions to the event-by-event fluctuations which we have
[18]. The fluctuations of “mechanical” variables, such as @nalyzed, and a more general look to the future. In striving to
energy,increaseat the critical point, as in Eq2). Because pr(_)V|de analyses_wh|ch will a_s_5|st expenmentahsts to use the
T(E) is singular at the critical point, the fluctuations ®f universal properties of Fhe crlfu.cal point to learn its location,
decrease, and vanish at the critical point whege—. Itis ~ We hope that we have in addition p.rowded.a. set of t_ools f_or
a fact that what we measure are the mechanical observabldd/€nt-by-event analyses of heavy ion collisions which will
and since we in general only knoW(E) for simple systems Prove useful in the st_udy of the thermodynamics of QCD in
we call thermometers, we cannot apply Egj. to the com- & Variety of contexts in the future.
plicated system of interest. We illustrate these points by
evaluating the fluctuations of several observables in an idealll. THERMODYNAMIC FLUCTUATIONS IN AN IDEAL
gas of detected pionghe thermometerwhich is in thermal BOSE GAS
contact with an undetected nonideal, possibly singular, heat
bath. The effect we find vanishes at the critical point, where
the specific heat of the heat bath diverges due to the fluctua- We begin by recalling text-book facts about the thermo-
tions of the sigmas therein, and so provides a nonmonotonidynamics of an ideal Bose gas which are relevant to our
signature. The effect involves a reduction in the fluctuationsvent-by-event analysis. Little in this section is new, but it is
of the mean transverse momentum of the pions. What makesevertheless a very helpful exercise and will allow us to
it distinctive is that it also involves an anticorrelation be- establish some notation. The basic fact is that every quantum
tween fluctuations of pion occupation numbers with differentstate of a system of identical spinless Bose particles is com-

A. The basics
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pletely characterized by a set of numbens,—the occupa- or it could be the total transverse momentiy(p+),n,; Of

tion numbers for the one-particle states labeled by momentsimply the total particle number

p. All thermodynamic quantities are functions of these num-

bers and thus all we need to know is the fluctuations pf _ 2\ _ 2

from one member of the ensemhlene event to anothef. N_zp: Mo, ((AN) >_§p: Ve (D

The first step toward a characterization of these fluctuations

is the ensemble average of the occupation number for the For future reference we also give here an expression for

mode with momentunp, namely the heat capacitg, of the Bose gas at constavitand u:
1 S 7?Q
(o) =—7—. 3 =TT =Tl (12
er’'—1 “ “w

where e,= w,— u and, as usualwpz\/52+_m2. Next, we Using the expression for the thermodynamic potential,

need the deviationAn,=n,—(n,), whose mean square av-

erage in the ensemble is given by Q=T In(1—e %'T), (13
P
<(An )2>_T(?np_ eEp/T _<n >(1+<n >)=V2 one finds
o (e T-1)2 T F e
4 1
( ) C\/:F % ef,vf,. (14)

We have introduced notatiorf, for this quantity which will

be used frequently below. This expression is “microscopic,” Comparing to Eq(10) we find the well-known relation

in the sense that it is written for a single mode in momentum ) )

space. However, it can be derived “macroscopically” as fol- ((AE)H)=TCy, (15

lows. The fluctuations in the total particle number L . . S
which is valid for any system in equilibrium.

N= Ep Np (5) B. Energy per particle: Event-by-event average vs.
single-particle inclusive average

are given by{18] Let us now compute the fluctuation of amensiveob-

N servable, such as the mean energy per particteE/N,

((AN)Z)zT(—> ) () WhereE and N are extensive, opr, the mean transverse
J momentum per particle in a single event. Analyzing the
member-of-the-ensemble-by-member-of-the-ensemble fluc-

Because the fluctuations of different modes are StatiStiC&”Yuations of the mean energy per partide in a Sing]e member
independent, we can elevate this relation to the microscopigf the ensemble is a good warmup. We henceforth begin to
form (4), and indeed to refer to members of the ensemble as events. For small fluc-
tuations(and AE/E~N~?<1 is smal) we can write

(AnpAnY =((ANp)2) 8ok =V5pk- (7)
E\ E/AE AN
The correlator{An,An,) is the central quantity which we A(N) ~ N(?_ W) (16
will calculate repeatedly throughout this paper, as we pro-
ceed beyond the ideal Bose gas. Now, we square:

The correlator in Eq(7) enters in the calculation of the
event-by-event mean square deviation of any generic ther- ( (E

2 1 E 2
modynamic variable of the form = ) = ﬁz[(AE)2+(N

(AN)Z—Z(E)AEAN}

N
.S 17)
Q= 5 ApMp - ®  Then we average. We already knd@AE)?) and((AN)?),
but we also need
Indeed, sincAQ=Q—(Q)==,q,An,, we find that
(AEAN):% V3, (18

(AQH=2 apaAnpAng=2 govp. (9
which is obtained in the same way as before. Putting this all
The quantityQ could be the total energy together, we find

1
E=§ Npép, <<AE>2>=§ v, (10) <(Ae>2>=W§ (ep—(e))?vp. (19)
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Let us now compare E@19) to the variance of the inclu- Note that the terms proportional {m,) have canceled, and
sive single particle average energy per particle. To do thisthe remaining term, proportional l(mp>2, is obviously due
we introduce the notation to the Bose effect. This result applies to any such correlation;
for example, we could have usgd instead ofe. The lesson
—ine_ 3 we learn is this: cross correlations betwedrand intensive
dp => %(np)/E <”p>—2 dp(Np)/(N). (200 opservables are generally small, because they receive no
P P P contribution if one takes the classical ideal gas limit. Recall
Whereas - - -) denotes an average over events of some pro t_hat in Eq.(z;) we find a dominant cont(ibgtion © th? event-
_ e . ) IOby-event variation coming from the variation of the inclusive
erty of a single event, .. p™ denotes an inclusive average single particle distribution. In Eq(23), this effect cancels
of a property of a single pion over all pions in the ensemble, " the remaining effects due to Bose enhancement domi-
of events, without reference to in which event each pion e This means that the nontrivial effects on the pions due
occurs. It is more convenient for theoretical purposes 1qq their interactions and due to energy conservation and ther-
work with occupation numbers,, and the inclusive average 5| contact with other degrees of freedom only need to be

is then donen, by n, as defined in Eq(20). The subscripp  |5rger than the effects of Bose enhancement in order to domi-
on the left-hand side of Eq20) reminds us that the average nate this cross correlation.

is done momentum bin by momentum bin: itgs which is

being averagediot g=Q/N. However, the quantitxqpi”c is

p independent. Were we only interested in a quantity |ike|||. NONCRITICAL THERMODYNAMIC FLUCTUATIONS

(€e), there would be no need to take care with definitions IN HEAVY ION COLLISIONS

because averaging a single-particle quantity pion by pion is

the same as first averaging it over an event, and then aver- In this section we proceed to quantitative estimates of the

aging event by event: magnitude of noncritical event-by-event fluctuations in
heavy ion collisions. As an example of artensivejuantity
(e>=<E/N>=e_p‘“°. (21) we use the total charged pion multiplicity of an event; as an

example of anntensivequantity we use the mean transverse
This is not true for fluctuations about the mean, as we see b&no?nflegtfugm of tt_he charged pllc_)n_s inan dever;t. we ﬁorarfig
using our definitions to rewrite Eq19) as . ur estimates to preliminary data from the
experiment at CERN Super Proton Synchrot(@P3S on
PbPb collisions at 160 AGeV, and find broad agreement. In
(Ae)?)= i(ep_<€>)2(1+<np>)inc_ (22) this.s';ec':tion, and throughout this paper, we assume thermal
(N) equilibrium at freeze-out. In this section, but not throughout
this paper, we assume that the system freezes out far from
The same formula holds #=E/N is replaced by any quan- the critical point in the phase diagram, and can be approxi-
tity of the formqg=Q/N, for example by the mean transverse mated as an ideal resonance gas when it freezes out. The
momentum per event. results obtained seem to support the hypotheses that most of
The lesson we learn from E€R2) is that up to the Bose the fluctuation observed in the data is indeed thermodynamic
enhancement factor (d(n,)), the ensembléalias event-by-  in origin and that PbPb collisions at 160 AGeV do not freeze
evenj fluctuations ofintensivequantities, such as the energy out near the critical point.
per particle, are indeed given by the variance of the single
particle diStI’ibUtiOﬂ(Ep—<€>)2inc and the central limit theo- )
rem which dictates the factor(M). We see that the effect of ~ A- Pion gas at thermal freeze-out and Bose enhancement
the Bose factor is to increase the variance of the event-by- The observed spectrum of pions reflects the distribution of
event distribution relative to that of the inclusive distribution. pion momenta at the time of thermal freeze-out, namely the
When we apply formulas like those we have just derivediime at which the interaction rates fall behind the expansion
which are valid in the thermodynamic limit to heavy ion rate. After this time, one can approximately neglect energy
collision data, we will need to construct estimators for theand/or momentum exchange interactions and consider the
relevant quantities using a finite ensemble of events, inmomenta of particles as frozen. Freeze-out is by definition
which the number of particles in each event is also finite. Wehe time at which the system ceases to be in thermal equilib-
describe how this should be done in the Appendix. rium. However, if the system has thermalized before it
Having discussed the fluctuations of extensive and intenfreezes out, then even after freeze-out one has a thermal
sive quantities, we end this section by considering the crosgistribution of pion momentd,approximately with a single
correlation between an intensive observable and the extememperature over the whole system. This standard idealiza-
sive observableéN. For example, let us calculat®deAN).  tion at this point seems sufficient to describe the déRar-
Using ingredients we have spelled out above, we find ticles which interact more weakly than pions freeze out ear-

1 1
<AeAN>=W % Vi(ep— (€)= o > (np)2(ep—(€)).

p 3As is very accurately the case for the cosmic microwave back-
(23 ground radiation, 18 10° years after its freeze-out.
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lier, at a higher temperature. We leave such particles, 1.6 allpr ——

. . . T
together with details of the dynamics of the freeze-out of the P7<300 MoV -
pions, to future work. 4

We start with the simplest model for the pions at freeze-
out — the ideal Bose gas. This allows us to use the results of
the previous section. Later in this section, we add _pions_ pro- = 43t
duced by the decay of resonances as well. The isospin de-
generacy of the pions requires a small modification to the
formulas of the previous section. Since only the momenta of
charged pions are observed, we must only catihtand 7.
Becauser™ andw~ are distinct, the Bose enhancement fac-
tor is reduced from ¥ n, to 1+ (n,/2), wheren, counts the 1
total number of charged pions. This is the consequence of the
fact that only identical pions can interfete.

We_ begin by she_vving that the effect_ of the que enhance— FIG. 1. Bose enhancement fac®g=(N)v2,{pr)/v2(pr) de-
ment is very sensitive to a nonzero pion chemical potentiascribing the contribution of the Bose effects to the fluctuations of
m, (not to be confused with the baryon number chemicalkhe mean transverse momentum in an ideal Bose gas of fgris.
potential x). Let us first remind the reader why a nonzeroplotted as a function of the pion chemical potengia), in MeV.

1, may be needed. The pion chemical potential is not ahe dashed line shows the Bose enhancement factor if only pions
thermodynamic conjugate to any fundamentally conservedith low momentump;<300 MeV are included.
guantity, and is the same for pions of all charges. It is sup-

0 30 60 90 120
W, MeV

posed to represent the overpopulation of pion phase space. It <N>V2be(Q)
allows for the possibility that even though the momenta of F= 2—6 (25
the pions are in equilibrium at freeze-out, their number den- Vind(@)

sity is not. This arises because all reactions which can

change the number of particles, and thus keep this quantity if1en we can write the resul2?) for the ideal Bose gas as
equilibrium, have small cross sections at the relevant low

energies. In contrast, elastic rescattering is strongly enhanced J 43 _ 2 2

by resonanceg¢such asA,N* for #N, o,p for 7, eto. 1 P(Ap—(a)*(np)

As a result, thermal equilibrium of momenta is maintained to F=Fg=1+3
a lower freeze-out temperature, whereas chemical freeze-out f dsp(Qp—(CD)Z(np)
(below which particle numbers do not chahgecurs some-

Wr?at ea:her. dT[]here ISI t]nerefore ? (\:/ivmldow %f t;]mte] bm"\’?enThe factor of 1/2 appears because, as discussed above, there
chemical and thérmal freeze-out during which € SySteny o vy charged pions. As we consider effects not present in

evolves with f'X.Ed pion number; during this tlrne a pIon 4 ideal gas, we will find that the rati®is not given simply
chemical potential naturally develops. At chemical freeze-by the Bose enhancement facfeg . It is a product ofF
out, '“.”:O' As the temperat_ure then continues to drop Whlleand other factors which we estimate later in this section and
the pion number remains fixeg,, increases. For an over- in subsequent sections

view of pion kinetics and references ddé)]. Practical cal- The dependence (ﬁ' on ., is shown in Fig. 1 forg
culations of the magnitude of the effect for heavy ion colli- _ =\/_2+_2 (Note tﬁatvz Wdoes o On. Ll
sions at CERN SPS can be found[i20]. The conclusion Pr= VPx T By inc P P

inferred from this analysis is that the pions in central PbeC.hem'C"’.lI potential as well.We have also showrlfB_for
collisions at SPS energies freeze out at a temperafyre pions withpt<<300 MeV to demonstrate that restricting the

~120 MeV with 1,~60 MeV. Pencoment ot 1 1s worth notng thal for eore comtal
Now we return to the calculation of the Bose enhance- ) 9

ment of fluctuations of some generic single-particle intensiveCOIIISIOnS the thermal freeze-out temperatiifds lower be-

observablej=Q/N. If we use the notatiom,.for the event- cause the system is larger and freezes out [atErThere-

by-event variance and,,. for the variance of the inclusive fore, 41, Should be somewhat Iarge_r and the Bose enhance-
distribution: ment effect should somewhat increase event-by-event

fluctuations for more central collisions. To conclude, the
nge(q)=<(Aq)2> and Viznc(q):mmc, (24) _Bose enhancement effect is sensitiyedp, end leads to en

increase invepeby a factor of\Fg, which typically results in
an increase of the order of a few percent.

The effects of Bose enhancement on the variance of the
fluctuations ofp; in an ideal Bose gas have been considered
previously[21,7]: our results are in quantitative agreement
with theirs. These authors use the quantity

(26)

and define the ratio

“It is easy to see thatAn,Anl)=(np)(1+(n,)) & 5, where
i,j=+,—. On the other hand, from,=3;ny it follows that(n,) T B
=(np)/2 and(An,An,) =(np)(1+(Np)/2) Sy @ =(N) A erd Pr) = Vine P1) (27)
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introduced in Ref[8] as a measure of the Bose enhancementatter. The pions observed in the data are therefore a sum of
effect. As we discuss in the Appendix and below, wiBh (i) “direct pions” which were pions at freeze-out arii)
is finite one must take care in definiﬂng to use an appro- pions produced from the decay of resonances after freeze-
priate estimator fov,{pt). To compare our results with Out. Note that the direct pions also originate from reso-
theirs, note that what we describe @B: 1.01 corresponds hances, in the sense that most of the low energy rescattering
to ®,_=(0.01)v;y(pr). This already hints at what we will Which occurs before freeze-out occur via resonances. As we
see below, namely that whereds, depends on the flow have discussed above, inelastic reactions which change the
¥ number of participants freeze out earlier than elastic scatter-

d’ng. What this means is that the multiplicities of the pions
and resonances, although thermal, should be fixed not at the
thermal freeze-outT;~120 MeV in PbPb but earlier, at
chemical freeze-out. Fits of SPS data on ratios of particle
yields to thermal models yield 4~ 160-170 MeV[23].°

The hadronic matter produced in a heavy ion collision is' | the remainder of this subsection, we investigate three
notsimply an ideal gas of pions. A number of approaches tqsftects of the resonances on the event-by-event fluctuations

heavy ion collisions have successfully treated the matter gl ine extensive observablé, the number of charged pions

freeze-_out as g resonance gas in the_rmal equilibrium. O er event, and the intensive observaple the mean trans-
analysis of the fluctuations observed in present data len

L erse momentum per event. We first describe all three effects
support to this idea.

briefly, and then describe the simulation which we have used

Even the global properties of hadronic matter are st_rongl)f order to investigate them. The firgtnd largesteffect is a
affected by resonances. Although at temperatures of 'mereaﬁrect contribution to the fluctuations df, and indeed to any

(T<Tc) the Boltzmann factor exp(M/T) for each reso- extensive observable. The multiplicity fluctuations in a clas-

nance is small, it is partially compensated by the pre-_. /. : 2 _
exponential factor due to the large number of states involved® 'Cal ideal _gas are charact_en_zed(hﬁxt\ N)—>/i<n';l> 1 and for
n ideal pion gas this ratio is1(1/2)(np)" due to Bose

One may recall here the Hagedorn conjecture, that at a ceft

tain temperature the contribution to the energy density due tsffe-cts.e.md Is therefare a few percent larger than 1. This ratio
the resonances would diverge because of the exponentigﬁ S|gn|f|_cantly larger for a resonance gas. Each resonance
growth of the density of states. Although this does not hap?€¢ayS :jnttl)q_several pl(;]r@or Examﬁle,p—Qw,w, ’7;3”' .
pen in practice, because the chiral phase transition occurs {C)’ and this means that when the resonances decay after
a much lower temperature than any putative Hagedorn tra reeze-out, they_ significantly modify the statistics of pion
sition, one nevertheless find&2] that when relevant reso- number fluctuations. If the resonances themselves are pro-

nances are included, the energy density and pressure increé%éc,e((jj randomlij/, with a Pmssgn multlplllc:lty.fdlr?trlbutlon,
rapidly with T, and can be fitted by a power law t_elr ecay pro ucts are not. -or example, | t ere were no
direct pions and only one species of resonance which always

velocity throughv;,«(pt), ratios likeFg are much less sen-
sitive to the effects of flow and are therefore more easy t
calculate.

B. Contribution of resonances

e(T)~P(T)~T« (29 decayed intod charged pions, the pions produced in this
ensemble would hav§ AN)2)/(N)=d.
with the powerk~6 at zero baryon densiffOne also finds Resonances also affect the fluctuations of intensive ob-

that the heat capacity, normalized to the number of pionservables, like the energy per pion or mean transverse mo-
(which means that we have "decayed” all resonancesmentumpy. The second effect we analyze arises because

counting eactp meson as 2 pions, eaeh as 3, etg. is pions produced in resonance decays have a single-particle
momentum spectrum which is similar but not identical to the
(Cv/Nz)resonance gas™ 23, (29 thermal spectrum for the direct pions. The products of reso-

nance decay populate the lops region of the spectrum

atT;=120 MeV, while for the ideal Bose gas of pions one somewhat mork.In order to estimates,{p-), we must

has only therefore include the change in,.(p7) introduced by the
(Cy/IN ) pions ~14 (30  pions produced by the decay of resonances after freeze-out.
The third effect of resonance decays is that they contrib-
at the same temperature. This general observdtidhal-  ute additional kinematic correlations between their decay
ready suggests that the resonances may affect the fluctuatiopgoducts, which then have no chance to rethermalize. New
considerably. terms arise in the correlat@?¥) which describes the fluctua-

The resonances play another role in the problem. Those
which are present at freeze-out decay after freeze-out, and by
definition this means that the pions they produce cannot r€S-6Note that this number is close to the critical temperature obtained
in lattice simulations with zero baryon densf&4].
Al resonances are heavy enough that Bose enhancement for

SFor nonzero baryon density this effective power is even largerthem can be neglected.
but we will ignore this since it is only important at much higher 8This effect is qualitatively similar to the effect of a nonzero pion
baryon densitiesand lower collision energi¢shan achieved at the chemical potential. A clear distinction between these effects in data
CERN SPS. analysis is still lacking.
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tions microscopically. For example, two-body de¢aych as TABLE I. Results of a numerical simulation of a resonance gas.
p— w7 at resj generates a term in the correlation func- The results include the effects of the the correlations induced by
tion: resonance decays on the inclusjwe spectrum. The simulation it-
self does not include Bose enhancement effects, and so can be
FA thought of as the simulation of a single event with 1.234° pions
{(Ang Any) =85, -kC(P), 3D with ga meanp; of 276 MeV, or cgn be sliced up into psmaller
vents.
whereC(p) is proportional to the square of the pion fraction erens
originating frompy decays. The result of all such terms will No. of
be a change in,d p7) which can be parametrized as a new pions  {(p1)  VindP7)
contributionF s to the ratioF of Eq. (25). (That is, we now (10°)  (MeV) (MeV) vind(pr)/{p7)
haveF=FgF,.s.) Instead of attempting to study all contri- — -
butions like Eq.(31) one by one, we address this effect and “direct pions”only 541 283 189 0.67
the first two by doing a simulation. We will see that the Pions from 3 271 177 0.65
second and third effects we have described are both small’ésonances only
We have simulated a gas of pions, nucleons, and resdl! pions 1254 276 183 0.66

nances in thermal equilibrium at freeze-out, including the

K, n p, w, ', N,A, A, 3, andZ, and then simulated the . . .
7 Py @ 7 % pns by a large factor, relative to the fluctuations of the

subsequent decay of the resonances. That is, we have genIal d ) , .
ated an ensemble of pions in three stéfsThermal ratios of Irect pions alone. We compare this result to what is seen in
NA49 data below.

hadron multiplicities were calculated assuming equilibrium . _
P g €q We now turn to the resonance-induced contribution to the

ratios at chemical freeze-out. Followin@3], the values . . > Lo
ngs] fluctuations of the intensive observalje, which is much

Tepn=170 MeV andupayor=200 MeV were usedii) Then, o X
a program generates hadrons with multiplicities determinec?ma”_er' We be_gln ‘.N'th the eff_eCt_ Ofnc - Table_l describes
the single-particle inclusive distribution obtained from the

at chemical freeze-out, but with thermal momenta as appro-. ; . . ) S
imulation, assuming uncorrelated particles in an equilibrium

priate at the thermal freeze-out temperature, which we takg
to be T;=120 MeV, with u. =60 MeV. The last steii) resonance gas at freeze-out. We see that the resonances

is to decay all the resonances, using the appropriate subroﬁh"’mge\’mc(pT)/_< Pr) _only by a few percent. The contribu-
tine from RQMD? Under these conditions, more than half of tions of correlations induced by resonance decay and of Bose
the observed pions come from resonanc,e decays enhancement t& are not included. The effects of flow are

We evaluate the variance of the fluctuations of the multi-"°t Included. We now dlscussl?sch in turn, and find that all
plicity of the pions obtained from the resonance gas as folYi€ld small contributions tqN)“*vend pr)/(py) relative to

lows. For each species in the resonance gas, we label tc(Pr)/{Pr) which we have evaluated in the table.
different decay modes by an indexand refer to the branch- W€ have estimateB esby slicing up the pions from Table
ing ratios for the speciesasb’ . For each decay we define | MO varying numbergup to 2500 of events, and evaluating

dirr the number of charged pions produced. From the Simu_F. Since Bose enhancement is not included in the simulation,

k ) S the F so obtained is jusE,s. We find no statistically sig-
lation, we'opt.am the.mu|t|_pI|C|ty of eaicr: resonanbk, Thg nificant contribution toF, and conclude thaiF . 1]
total multiplicity of pions isN, =X, ;d,b,N, and the multi- <0.01

plicity fluctuations are described by We now use the results of Sec. Il A to incorporate Bose

enhancement effects, after noting the connection between

S (di)2iN Bose enh.ancement and resonance de_cay pions. There can be
((AN?) & 7T quantum interference between direct pions and resonance de-
Ny ——=14. (32 cay pions, or among resonance decay pions. It is well known
T > dibiN, that all resonances can be approximately separated into two
r

groups: those which are short-lived and those which are
long-lived. The former(e.g.,p andA) have lifetimes much
Bose enhancement increases thig N ;)2)/(N,)~1.52  shorter than the duration of pion radiation from the fireball
We see that the resonances increase the multiplicity fluctuas.e., the time over which freeze-out occur§herefore, their
decay products interfere with other pions. The decay prod-
ucts of long-lived particlege.g.,w and #) can only interfere

We treat particles which decay by weak interactions as stable‘{"ith other pions if one selects pions with a very small energy

which raises an additional issue. Experimentally, some weak decaydifference|w; — wo|<I', wherel" is the width of the reso-
happen so quickly that they feed up into the observed pion spectr@@nce. This is essentially impossible, and pions produced in
We treat these particles as stable here; we hope that experimentdle decay of long-lived particles therefore do not contribute
ists make the appropriate corrections to the data. to the Bose enhancement factor. This means fhat 1
1%Event-by-event fluctuation in the resonance multiplicities as ~ should be multiplied by a factor feetf,+fa+ - )2
may be computed, for example, in dynamical models in which thewhere thef’s are the fractions of alr mesons coming from
resonances themselves are produced by decays of “clusters,” maghort-lived sources. This same fraction enters the HBT cor-
result in a small further increase in this ratio. relation function, and is about 0[25]. So, we takeFg—1
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=0.073 for u,=60 MeV from Fig. 1 and reduce it by a wherept™is the corresponding momentum in the rest frame

factor of 0.5 yielding of the matter. The fluctuations of the observed momentum
are then related to the fluctuations in the rest fraoacu-
Fg=1.037, (33 lated abovgand the flow velocity fluctuations through
and therefore conclude that the effect of Bose enhancement ((ApT)2> _((Ap¥ES 2) 5
is a small increase inq,d p7) by a factor ofFz=1.018. P (pe2 (AR, (37)
C. The effects of radial flow where we have neglected corrections which are suppressed

by O(B) relative to({(AB)?). The fluctuations in the flow

To this point, we have calculated the fluctuationpinas . :
velocity are given by

if the matter in a heavy ion collision were at rest at freeze

out. This is not the case: by that stage the hadronic matter is (AP [ 7y
undergoing a collective hydrodynamic expansion in the <(Mg)2>:32_2(m (38
transverse direction, and this must be taken into account in P Tflow

order to compare our results with the data. A very important
point here is that the fluctuations in pion multiplicity are not
affected by flow, and our prediction for them is therefore
unmodified. Fluctuations in multiplicity ratioge.g., K/ )

would also be unaffected. However the event-by-event fluc

tuations of meam are certainly affected by flow. The fluc- f a collision (the lifetime of a typical resonaneand the

tuations we have calculated pertain to the rest frame of th L . .
matter at freeze-out, and we must now boost them. A deime between collisionsthe Inverse O.f the_ scattering rate
tailed account of the resulting effects would require a com—BOth are close to the microscopic time scqlemicm .
plicated analysis. Here we shall use the simple approxima-1 fm/c. The expansion duration relevant for radial flow is
tion [26] that the effects of flow on the pion momenta can beactgally much longerryoy~10-20 fmb_ for cent_ral Pb-Pb
treated as a Doppler blueshift of the spectrun{p-) collisions. This means that for each microscopic volume el-
. o ’ ement one first does the time integral and obtains a “random
—n(prv1-pB/y1+B). This blueshift increaseépr), and

” . 1/2__ f
increasesvi(pr), but leaves the rativ;.(pr)/(pr) [and walk faCtorl(:mC'icm/le"’W | 14 tm IAﬁcj -[h?aﬂ/’mthf/\/sﬁlm
therefore the ratiovepd pr)/{pt)] unaffected. This ratigthe Over uncorrelated volume elements jeads 1o r '

fourth column in Table)l is therefore a good quantity to which we have already seen in the expres$8#) for (AP).

compare to experimental data, since our goal here is to ex- The flow velocity can be estimated for our purposes from

; rest : :
tract information about thermodynamics and not about flow!Ne ratio of (pr*)~276 MeV given in Table | and the ex-
376 MeV observed by NA49. Thus3

However, event-by-event fluctuations in the flow velocity Perimental(pr)~3 , , ,
8 must still be taken into account. This issue was discussed 0-3- Finally, putting all the estimates into E§8) we find
qualitatively already if11], where it was argued that this 2\ 2
effect must be relatively weak. Here we provide the first N((AB)%)~(0.D% (39)

rough estimate of its magnitude. The magnitude of the flowyqte that although our estimate is uncertain at various
velocity is proportional to the integral of the pressure gradi-pomtS the result is very small. Even if we have underesti-
ent over the expansion time. Thus the fluctuations of the ﬂOVYnated, the size of(AB)2) by a factor of 4, the contribution
velocity are determined by the pressure fluctuations. The siz& Vind(P1)/{p7) would only be 0.02. It is q'uite clear that the
of the_ pressure fluctuations is related to _the adiabatic Comgrez;tcbulk ofvine/{p7) is thermodynamic, with the contribu-
pressibility by the standard thermodynamic relatjas] tions of the fluctuations in the flow velocity being negligible
= in comparison.
((AP)?)= —T(a—v) . (34 The largest uncertainty in our estimate fgx.(p7)/{pT)
s is not due to the fluctuations in the flow velocity, which can
) . clearly be neglected, but is due to the velocity itself. The
For the resonance gas equation of state this gives blueshift approximation which we have used applies quanti-
2 2 tatively only to pions with momenta greater than their mass
((aP) >: K l: K E (35) [26]. Because of the nonzero pion mass, boosting the pions
P* k—1PV k=18 does not actually scale the momentum spectrum by a mo-
o ] ) “mentum independent factor. Furthermore, in a real heavy ion
The entropy per pion in the ideal gas is around 2.4, and igo|jision there will be a position dependent profile of veloci-
larger for the resonance gas. We shall t&ke3N for our  tjes rather than a single velocif. A more complete calcu-

The last factor on the right-hand side appears because the
final velocity is proportional to the timmtegral of the pres-
sure gradient over the entire evolution prior to freeze-out,
and this integral is a sum over uncorrelated fluctuations in
time. In a resonance gas one can discuss the typical duration

estimate. . . o _ lation of vi,(p7)/{pt) Would require a better treatment of
Using the “blueshift” approximation we can write these effects in a hydrodynamic model; we leave this for the
future.
~ presty | B (36) We obtain our final estimate of the magnitude of the
Pr=pr 1-p event-by-event fluctuations of the intensive quanfity far
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TABLE Il. Preliminary NA49 data[7]. The charged particles 1.5 We therefore conclude that about 75% of the observed
are taken from the kinematic region 0.60pr<2 GeV and 4  fluctuation is thermodynamic in origin. The contamination
<y<5.5 (assumingm mass. The events used are the 5% most introduced into the data by fluctuations in centrality could be
central of all events, with centrality measured using a zero degregaduced by analyzing data samples with more or less restric-
calorimeter. The products from weak decays such @msandK%s tive cuts but the saméN), and extrapolating to a limit in
were only partially rejected with approximately 60% rejection effi-\yhich the cut is extremely restrictive. This could be done
ciency. The errors are statistical only. using cuts centered at any centrality. In addition to fluctua-
tions in centrality, there is another experimer(as opposed

Number of events _ 98426 to thermodynamicfactor which could affect the agreement
Total number of charged particles 26587685 between resonance gas predictions and the observed fluctua-
(N) 270.13-0.07 tions. The increase in the fluctuations due to resonances can
Verd N) 23.29£0.05 only be detected provided the detector acceptance is large
(pr) 376.75-0.06 MeV enough to ensure the detection of @t mos} of the decay
Vine(PT) 282.16:0.04 MeV products. NA49 seem to have coverage wide enough to sat-
Vend P7) 17.270.03 MeV isfy this criterion and a quantitative estimate of losses on its

boundaries can easily be made. Our resonance gas model
predicts that as the centrality cut is tightened, the ratio
from the critical point as follows. Using the estimate of v2, (N)/(N) should decrease toward a limit near 1.5.
Vincd(P7) "I (p)'etfrom Table | and Eqs(37),(39), we esti- Although further work is certainly required, it is already
mate that fluctuations in the flow velocity increase apparent that the bulk of the multiplicity fluctuations ob-
Vind(P7)/{pt) from 0.66 to 0.67. Multiplication by/F then  served in the data are thermodynamic in origin. Because the
yields multiplicity fluctuations are sensitive to impact parameter
fluctuations, it may prove difficult to explain their magnitude
with greater precision even in future. However, the fact that
they are largely thermodynamic in origin suggests that the
(N)YA gpd ) _ effects present near the critical point, which we study in
(Pr) ~0.68, (40 Secs. v and VI, could result in a significant nonmonotonic
enhancement of the multiplicity fluctuations. This would be
of interest whether or not the noncritical fluctuations on top
of which the nonmonotonic variation occurs are understood
subject to the uncertainties introduced by the blueshift apwith precision.
proximation. Now we proceed t@+ fluctuations. As we explain in the
Appendix, in order to be sure th&t=1 when there are no
correlations between pions, care must be taken in construct-
ing an estimator fow ., p7) using a finite sample of events,

In this section we compare our results with the NA49 dataeach of which has finite multiplicity. The appropriate pre-
from central Pb-Pb collision&] summarized in Table Il. As  scription (A16) is to weight events in the event-by-event
a first qualitative check of the predictions of our resonanceaverage by their multiplicity. This has not been done in
gas model, we can look at the multiplicity fluctuations. It is Table Il. However, we show in EqA18) that we can use
clear that with no cut on centrality, one would see a very(N) and veg,d N) to changeve,dpr) as required, and the
wide non-Gaussian distribution of multiplicity determined by result is
the geometric probability of different impact parametbrs
Gaussian thermodynamic fluctuations can only be seen if a

D. Comparison with NA49 data and outlook

tight enough cut in centrality is applied. The event-by-event 1 VapdN)
N-distribution found by NA49 when they use only the 5% Vend Pr)=(17.270.03 MeV)| 1- 2 (N)? )

most central of all events, with centrality measured using a

zero degree calorimeter, is Gaussian to within about 5%. =(17.21+0.03 MeV). (42

This cut corresponds to keeping collisions with impact pa-

rametersh<3.5 fm[7]. The non-Gaussianity could be fur-

ther reduced by tightening the centrality cut further. We now a1, yu0 Na49 data of Table I, all charged particles are counted
ask how well our resonance gas describes the width of thﬁ/hereas we have done our calculations assuming that only the

(almos} Gaussian distribution. From the data, we have charged pions are observed. In our resonance gas model and in the

data[7], about 80% of the charged particles in the final state are
P pions. If we redo the calculatiof82), but this time defina, as the
Vend N) —2.008+0.009 (41) number of charged particlépions, kaons, protonproduced in the
(N) ' RN ith decay of therth resonance, we find that thaf,(N)/(N) in-
creases, but only by a few percent. NA49 has demonstrated that it
can study particle identification event-by-event and it may therefore
which we should compare to our resonance gas prediction dfe possible to analyze data on chargésh multiplicity in future.
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We use this henceforth. We must now compare percent* This is a remarkable fact, since the contribution of
the Bose enhancemefdee Sec. Il A to this difference is
almost an order of magnitude biggefRz—1 is a few per-

(NYY2 gpd pr) ceny. Therefore, there must be some mechanism at work
o7 =0.751+0.001 (43 which compensates for the Bose enhancement. One possible

T mechanism is the effect of the two-track resolution, dimin-

. ishing the observed number of pions with very similar mo-

to our prediction(40) of 0.68. . ! 4

We see that the major part of the observed fluctuation irﬂq?sni)e:‘[(?:]c;r;rg:rgiﬁeuﬁ:g;gi?uﬁéﬁtbatﬂg gﬁ:g giagﬁégfngﬁt of.
pr is accounted for by the thermodynamic fluctuations Wetect but with the opposite sign. We do not attempt to include

have considered. A large part of the discrepancy is in our; ) : .
prediction for the variance of the inclusive single-particlee'ther this effect or the effect of final state Coulomb interac-

L . tions between charged pions in our analysis, leaving that to
. . = 0,
distributionvin(Pr). OUr Vine(pr)/{pr) =0.67 is about 10% the experimentalists. However, we point out that in the next

lower than that in the dat& First, this suggests that there section we find another possible origin of this effect. We
may be a small nonthermodynamic contribution t0 ¢  ghq| see that anticorrelations due to energy conservation and
fluctuations, for example from fluctuations in the impactiyerma| contact between the observed pions and the rest of
parameter The other source of this discrepancy is the blue-yq system reducE, as long as the system does not freeze
shift approximation. We have applied a blueshift factor suchy ;t near the critical point.

that(pr) increases from 281 MeV in Table I to 377 MeV as |y summary, we have shown in this section that the as-
in the data, and in so doing have obtained a value fog mption that the system is a thermal resonance gas at
Ving(P7) Which is low by 10%. This may be a reasonable freeze-out is in reasonable agreement with the magnitude of
estimate for the error which we have introduced by using thgne gpserved event-by-event fluctuations in the pion multi-

blueshift approximation rather than a more sophisticatecbncity and mearp;. We will see in Sec. IV that the effects

treatment of the effects of flow on the_ spectrum, which we¢ energy conservation bring our prediction @ into even
leave to future work. Such a treatment is necessary before

X . -y tter agreement with the data. Of course, a number of issues
can estimate how much of the 10% discrepancy is introduceg,o have touched upon need further study: it cannot be oth-

by the blueshift approximation. Future work on the experi-gnyise for the first quantitative study of a new set of phe-

mental side(varying the centrality cutcould lead to an es- omena The situation is, however, very encouraging. First,

timate of how much of the discrepancy is due to impactgy Relativistic Heavy lon CollidefRHIC) detectors are

parameter fluctuations. , o _ very well suited to measurements of the fluctuations we have
We have gone as far as we will go in this paper in ourynayy7eqd. Second, although some of the interesting effects

quest to understand the thermodynamic origins of the width, .o g4 Es, for example with 10° of recorded events all

of the inclusive single particle distribution. Another very im- . «cian widths can be measured to much better statistical

portant feature in the data is the value of the ratio of the, ., racy than even the smallest of the systematic effects we

scaled event-by-event variation to the variance of the inClup,ye giscussed, and will discuss in later sections. Third, the
sive distribution: interesting systematic effects can be studied by varying the
cuts made on the data. For example, considering only low-
momentum pions one should find the effect of both the reso-
nances and the Bose enhancenjeat Fig(1)] to be several
times higher. Alsou . and therefore the Bose enhancement
factorFg may be somewhat larger in central events. Detailed
study (varying centrality; varying cuts ip) may allow ex-
The difference between the scaled event-by-event variandeerimentalists to separate the effects of Bose enhancement
and the variance of the inclusive distribution is less than &rom other effects we have described, and will describe later
in this paper. Fourth, one can significantly widen the types of
fluctuations which are analyzed. For example, one can study

new correlators like the event-by-event cross correlation be-

As we have already noted, all charged particles are included i . :
the data whereas we have calculated the fluctuations for the charg%ﬁii? jSlglrglgg ?:r(;crjrgaet?(;)rr résﬁjﬁ;Aol:iI)y Yr\/oemsi\gr:tnr i\igﬁef-

pions alone. We have checked that including the protons ang ts. Finallv. it is important to note that we do not expect
charged kaons from the resonance gas increases our prediction ofo ally, 1 1S important 1o note that we do not expec

Vin(pr)/(p1) in the rest frame by only a few percent. This small any of the effects we have analyzed in this section to change

increase in the ratio is likely further reduced once the flow-induced

increase in(p) for the kaons and protons is taken into account. 1 ) -

Although it would be good to remove this uncertainty completely ~ AS noted above, becausg.(pr) is scaled by the blueshift in-

by analyzing a data sample of pions alone, it is already clear thafoduced by the expansion velocity, sods, . This makes®,_

this is not the explanation for the present 10% discrepancy. harder to predict thaf. However, for convenience, we note that if
13e expect that the fluctuations of an intensive quantity ke  one uses the experimental valuevgf,(p-), a valueyF =1.01 cor-

are less sensitive to impact parameter fluctuations than are those fsponds tGDpT:2.82 MeV, and the/F in the data Eq(44) cor-

the multiplicity, and this seems to be borne out by the data. responds toI)pT=O.6i 0.6 MeV.

\/E= < N>l/2Vebe( pT)

=1.002+0.002. 44
Vinc( pT) ( )
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significantly near the critical point. tween ideal pions and singular rest of the system. We ana-

Our analysis demonstrates that the observed fluctuatiorlgze the consequences of the pion-sigma coupling in Sec. V.
are broadly consistent with thermodynamic expectations, and
therefore raises the possibility of large effects when control ) .
parameters are changed in such a way that thermodynami@‘- Thermometers, temperature fluctuations and heat capacity
properties are changed significantly, as at a critical point. et us step back and recall the text-book formalism de-
The smallness of the statistical errors in the data also highscribing the measurement of temperature. A thermometer
lights the possibility that many of the interesting systematicshould be a simple system which has been already calibrated,
effects we analyze in this paper will be accessible to detaile¢h the sense that we can relate its total endfgy its tem-
study as control parameters are varied. peratureT via a functionT(E) which we already know. In-
stead ofE, we could also use any other mechanical observ-
able, like for example the volume of the liquid in a liquid
thermometer. An ideal pion gas makes a very good ther-
mometer because it is a simple system with a known equa-
tion of state. Having the equation of state, we readToffy

To this point, we have assumed that the system does noteasuring a mechanical observable, suck.as
freeze out close to the critical point, and can be approxi- If the mechanical observable fluctuates, so will the mea-
mated at freeze-out as a noninteracting ideal resonance gagired temperature. In particular, if we measure the total en-
In this section, we take a first step towards understandingrgy, which fluctuates a§ AE)?)=T2C, in the canonical
how the physics characteristic of the vicinity of the critical ensemble the temperatufB(E) will also fluctuate, with
point affects the event-by-event fluctuations. Along the way{(AT)?) given by Eq.(1). Note that given that we measure a
we quantify the effects of energy conservation on e  mechanical observablg rather thanT, in order to find the
fluctuations. This leads to a small reduction\ii far from  result(1) we must knowT(E). This is possible for a ther-
the critical point, which may be required by the dé4d). In  mometer such as an ideal pion gas, but may not be possible
this section, we consider only the “direct pions,” and asfor the system one wishes to study using the thermometer.
before we treat them as an ideal Bose gas at freeze-out. Wene of the questions we address in this section is when we
further imagine that the pions are in thermal contact with theneasure the energy of the thermometer dirigtead of mea-
“rest of the system,” which is not directly observed and suring the energy of the whole systein which Cy is rel-
which need not be ideal. The rest of the system includes thevant: that of the thermometer, that of the rest of the system,
neutral pions, the resonances, the pions not in the experime@+ a combination.
tal acceptance and, most important, the order parameter or Suppose now we use our thermomeeto measure the
sigma field. If freeze-out occurs in the vicinity of the critical temperature of another systefn The measurement consists
point, the thermodynamic properties of the sigma figldd  of bringing the two systems in thermal contact. If the result-
therefore of “the rest of the systemare singular. In the ing systemA+B is closed, thermal equilibrium will result.
analysis of this section, we imagine that the observed pionBy ergodicity, the thermodynamic ensemble will consist of
are an ideal gas even for freeze-out in the vicinity of theall the states with the same ener@y , g, taken with equal
critical point, while the equation of state and susceptibilitiesprobability weight. Although the total energy does not fluc-
of the rest of the system become singular there. Some of thigiate, the energies of the subsystdisand Eg do, subject
universal critical indices characterizing this singularity areto a constrainE,+ Eg=E,.g. The probability that the sub-
discussed if1]. The question we ask here is how the fluc- systemB has energyEg is proportional to the number of
tuations of the pions are affected by being in thermal contacstates[I’, of the systenB with energyEg times the number
with the rest of the system, particularly when the susceptiof states ofA with energyE,=Es,g—Eg:
bilities characterizing the sigma field diverge.

A reader who is used to thinking about tl&4) second
order transition may be concerned that we are treating the
pions and the sigma field so differently. The point is that
near the critical end point which we wish to analy@nd
which may occur in natubethe pions and sigmare differ- ~ Both ', g are exponentially growing functions of their argu-
ent. The pions remain massive, while the sigma mass variments(and also the size of the systgand their product on
ishes and the long wavelength modes of the sigma field urthe right-hand side of Eq45) has a sharp maximum at some
dergo critical fluctuations and are almost classical. Thevalue ofEg. Introducing the entropgasS(E)=InT'(E), we
divergence of the specific heat of the system as a whole igan write for the value oEg at the maximum:
primarily due to the fluctuations of the sigma field. The
analysis of this section is therefore a reasonable first step. q
What it leaves out, of course, is the fact that the pions, al- _ _
though not massless, do interact strongly with the sigma field 0 dEB[SA(E’HB Es)+Ss(Ep)]
and are therefore not an ideal gas. We are neglecting the
direct effects of the pion-sigma coupling. Once these are - _ ﬂ d_SB:_i i
included, it is not possible to make a clean separation be- dEn dEg  Ta Tg’

IV. USING AN IDEAL GAS OF PIONS AS A
THERMOMETER

FA+B<EA+B>=E2 TA(En:s—Eg)Tg(Eg). (45

(46)
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since the temperature is, by definitionTH#dSdE. We re-  instead use the equation of state of the thermomBi{€Eg)
cover the textbook result that the temperatures of two syswhich is nonsingular, the fluctuations dfz will increase
tems in equilibrium are equal. Measurifg, and using the because the fluctuations Bfdo, and will approach the value
known functionTg(Eg), we find this(common temperature. determined by Eq(l) with C,,=Cg.

Of course, it is not necessary that the systdmB is Note that the temperatures of the systelnandB deter-
rigorously closed. In practice it is sufficient that the rate ofmined through their respective equations of state are differ-
the thermal equilibration betweehandB is faster than the ent on the event-by-event basis. This is not in contradiction
rate of thermal equilibration oA+ B with the environment.  with thermodynamics which only requires theeanvalues

So far we have only discussed the mean valuEpfand, to agree as in Eq46).
consequently, the mean temperature. The size of the fluctua- Returning to our idealized system at freeze-out we want
tions of Eg is given by the width of the maximum in to use pions we observe as a thermomegefhe rest of the

I'a(Earg—Eg)I's(Eg). We need the second derivative
d2
E[SA(EAJrB_ Eg)+Sg(Eg)]
B

_d?S, . d2Sg
~dEZ ' dEZ

1

T2

1 1)
. el @

whereC, g are the heat capacities of the systefnandB.
Thus we find forAE=AEgz=—AE,:

-1

system, which includes all the other particles, including
pions not ending up in our detectors, we consider as system
A. The singularity of the heat capacity occursGp, while

Cg is the heat capacity of the ideal gas and is regular. Nev-
ertheless this singularity affects the fluctuations of the pions
through Eq.(48). The effect of the singularity ifC, is an
increase in the fluctuatiof(AE)?). If one were able to use
TA(E) to defineT, one would find that fluctuations iffi5
would decrease at the critical point. Usiig(E), or any
practical definition of a temperature, leads to fluctuations in
T which, like those irE, increase. Since what we measure is
always a mechanical thermodynamic observable, like the to-
tal energyE, or the energy per particle, or the transverse
momentum per particle, etc., it is not in fact necessary to do

(4g @ translation to the temperature variable to detect a singular-
ity. It is easier to look directly at the fluctuations of observ-
able quantities. To this we now turn.

1 1
—_— 4 —

(AB)=T*| e+

The importance of the resul##d) is that the thermometes
allows us not only to measure the temperature of the system
A, but also the heat capacity of the systé&m® In order to
make such a measurement, we must watch the fluctuations 8%‘
Eg in addition to(Eg).

Another consequence of E@8) is that whenC,>Cg we
recover the result for the canonical ensem@dlg What is
important is that the heat capaci@y, appearing in Eq(l) in
this case is that of the thermometer its€lfy, and not that of
the measured syster@, .

Now, suppose that the systef has a thermodynamic
singularity at some temperature, as a result of whith
—oo. This is precisely the situation which arises near the
critical point in the idealization of this section: the ideal pion as in Egs.(10) and (14). This corresponds to the ca&®
thermometerB is in thermal contact with a systed with =oo, whereB is a(grand canonical ensemble. In the case
divergent susceptibilities. Equati@a8) tells us that the fluc-  when C, is finite Eq. (48) tells us that the correlator

tuations of the energy, which are equalirandB due to the  (An An,) should change. A simple derivation of this cor-
conservation of energy il+B, will increaseas we ap- relator given below yields the result

proach the critical point wher€, diverges. What happens to

the temperature fluctuations? Remember that we do not mea- ) ViEpViex

sure the temperature directly, but use the equation of state (AnpAng =vypdpy————. (50
T(E) to read it off from the value oE. If we used the T20A+2 vf,e
equation of state of the syste)TA(E,), the fluctuations of P
Ta would decreaseand vanish at the critical point as dis- This result is easy to understand intuitively and it passes

cussed in[1], becauseCp=dE,/dTo=2. However, the many nontrivial checks. Whei€,>Cg=5,€2v2/T? the

equation of state of the syste#nis not known to us. Indeed, gecond term in Eq50) is negligible and we rpegml;er ED).

we are trying to learn about it doing our measurements. If Wey, the other hand, whe@,=0, the systenB is closed and
the total energyE=>,e,n, cannot fluctuate. Accordingly,

S pep(AnpAn,) =0 in this case. Note that the correlation is
150ne example of such a measurement in a simple lattice systemegative as it should be, since finitenessGyf suppresses
can be found if27]. fluctuations ofE, which means that if ona,, increases, oth-

B. The microscopic correlator

As discussed in Sec. Il A, the mean square variations of
ermodynamic observables in the pion gas are determined
by the microscopic correlatqiAn,Any). Once we find this
correlator we can then use it to calculate any fluctuations of
interest.

For the case of the canonical ensemble this correlator is
given by Eq.(7) which leads to

<(AE)2>=§p‘, €lv3=T*Cg, (49)

2
p
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ers are more likely to decrease. This negative correlation is We now turn to the derivation of the resu0). The
therefore a direct consequence of energy conservation, andcorrelated fluctuations given by formul@ follow from
should persist even in systems which are less ideal than thie factorizable probability distributidh
one we are analyzing in this section.

The microscopic correlatofc0) determines the fluctua- 1
tions of many observables. For example, by convolving it _ - 2
with €,€, as in Eq.(9) one can derive the resu#8). This is dP(np) 1;[ dn, exp{ v2 (Anp) ] ' 6D
yet another check of E450). Note also that the correlation
term in Eq. (50) is down by a factor of M (since Cpp )
~V), whereV is the volume of the system. This is also easy 1€ energyE=ZX,eyn, in such an ensemble fluctuates ac-
to understand: the restriction on some linear combination o€ording tO((AE)2>=EpV§E§=T2CB.
n,'s imposed by energy conservation affects each individual Now, if we bring this system into thermal contact with the
n,, little if the number ofny’s (i.e., the size of the systens  system A, according t@45), (46), and (47) the probability
large. However, the contribution of this term to fluctuationsreceives an additional factor: exp(AE)%/(2T°C,)]. For ex-
of extensive or cumulative quantities is not small, as#&8) ample, if C,=0 it becomes a delta function, meaning that
shows. This is due to the absence of the Kronecker delta ithe systenB is closed itself, and the energy cannot fluctuate.
the second term. So, we write

p

dP(n,)=

1
dn,|exp — 2, == (An )2]
]-_p-[ P) 5 2\/[2) p

1 2
XeXF{—m(% EpAnp) ]
1 \?
l_p[ dnp)fd)\ exp{—% V—zp(Anp)2+)\Ep epAnp}exp{Tchi], (52)

where we have introduced a Lagrange multipherThe in-  from which we find

tegration ovein should be done along the imaginary axis for _2 2 2

convergence. <AnpAnk>—Vp5pk+<)\Anp>vk€k+<)\Ank>VpEp
Completing the squares we find —<7\2>Vf,epV§6k

_\,2 2\y,2 2
_Vpépk+<)\ >Vp€ka€k

1 V;Z)GpVEGk

1
dP(np,)\)zd)\<1_p[ d”p)eXP{ _% F(Anp—)\vgep)z} 1
T2 CptCq

p (57

_2s _
=Vp0pk

)\2
Xexp[(TZCA+2 vgeg) 7] (53
P 18A careful reader may note that E@) literally implies that
Anp~V°, as far as the thermodynamic limitVLpower counting is
Now we see that concernedn, is also of orderVO. If it were the case thatn,
~np/\/\—/, our assumption that the fluctuations of the occupation
numbersn, are Gaussian would be immediately justified. Instead,
((Anp—)\vgep)(Ank—)\vﬁek))=v,2)5pk, (54) the fluctuations of the occupation numbers are not necessarily
Gaussian. This can be cured by considering, in placg,othe sum
of occupation numbers of a set of modes in a c&lp)® centered at
-1 -1 p in momentum space, whenep is fixed asV— . Since the num-
(\?)= —(TZCA+Z vgeg) =TZC.rCy) (55 ber of modes in such a set idp)3V= (V) and the modes fluc-

P (CatCe) tuate independently, the central limit theorem will apply and make
fluctuations of such “smearedn, Gaussian. Practically, we al-
ways convolven, with a smooth function op. Instead of display-
ing the smearing of, explicitly in our notation, we can instead just
treat the fluctuations afj, as if they are Gaussian, because this will

not affect any of the quantities calculated by convolvimgwith a
2 —
(MANE—=Avie))=0, (56)  smooth function of.

and
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Q.E.D. 0.12
Now, armed with Eq.(50), we can calculate all other Fr~1- ——=——, (59
. . X . ) CalCg+1
fluctuations in our ideal Bose g&sin contact with the sys-
temA.

for T=120 MeV andw,.=0. We see that the effects of
energy conservation and thermal contact on the fluctuations
As an example of the application of the formula for the of an intensive quantity likep are smaller than the effects
microscopic correlatofs0) we analyze the fluctuations of an on the fluctuations of the energy in EG8). Several ob-
intensive variable in the ideal Bose gas of pions which westacles make it difficult to us&9) quantitatively. First, some
denoteq,q=Q/N. We wish to see how the fluctuations@f  djlution of the effect is to be expected because less than half
are influenced by the fact that the pions are in thermal conpf the pions which are observed are direct. Second, it is a
tact with a system witlipossibly singularheat capacitCa. |ittle bit difficult to know how to estimateC,/Cg, because
We shall be interested in a particular case whers the \\e have analyzed such an idealized situation. The system
mean transverse momentym, but shall use the more gen- ¢,q certainly include the neutral pions in the same region

eral notation both for later convenience and to make conta%f rapidity as the observed charged pions; however, should
with Sec. Il in which we discussec=E/N, another possible pions at different rapidities be included? The total num-

q ber of pions, neutral and charged, in a central event at the
SPS at 160 AGeV is about ten times larger than the number
of charged pions per event used in NA49’s present analysis.
This suggests thaf,/Cg is at the very most 10. If we take

C. Application: Fluctuations of mean pt

Starting from an equation similar to E¢L7), averaging,
and using the correlatdb0) instead of Eq(7) we obtain:

<(Aq)z>:< A(E) )2> Ca/Cg~3 for orientation, which can be justified if one as-
N sumes thatC, includes the heat capacity of the resonances
1 1 and that of the neutral pions in the same region of phase

= > [ E v2(qp—<q>)2— —_— space as the observed pions, we fing—1 of the order of

(N5 P T7(Cat+Cp) — 3%, before taking into account the dilution by nondirect
5 pions. The effect is comparable in magnitude to the Bose
% E VSE;,(Q{(Q))} ] (58) enhancement, acts in the opposite direction, and should be

p

reduced near the critical point at whi€), diverges.

A divergent specific heat is only possible in an infinite
The first term on the right-hand side is the same as in Ecgystem. In Sec. V we will estimate that in a realistic heavy
(22) with g=¢€,. This is the main contribution to(AQ)?). ion collision, finite size effects suggest that near the critical
We have seen that these thermodynamic fluctuations can kgwint the sigma contribution t€, could be as much as a
described using the variance of the inclusive single-particldactor of ~62 larger than the contribution of a typical light
distribution and the Bose enhancement factor. The secondegree of freedom. This suggests tit could easily in-
negative term in Eq.(58) is the effect of the anticorrelation crease by as much as an order of magnitude at the critical
[second term in Eq(50)] induced by energy conservation point, reducing the anticorrelation ifAn,An,) and the
and thermal contact with the systet This term would be  pegative contribution t& by the same factor.
nonzero even i, were zero. In this case, it would describe  The effects of thermal contact can be distinguished from
the effects of energy conservation on the fluctuationgiof ey effects, like those of finite two-track resolution, which
the systenB. Thermal contact with the systefreduces this 554 counter the Bose enhancement effect because of the spe-
term, but it remains important as long @g is comparable 10 ¢ific form of the microscopic correlatd0). The effect of
Ce. It vamshgs at th? _pomt whei@, dlverges. . energy conservation and thermal contact introducesf&n

In a heavy ion collision, the heat capacity of the pion gasdiagonal (in p k space anticorrelation. Although our esti-

Cg is a sizable fraction of the total heat capadiy+ Cg. . .
. mate of the magnitude of the effect suffers from a variety of
The effect(58) can therefore decrease the fluctuationspf uncertainties introduced by the idealizations used throughout

countering the Bose enhancement. This effect will be re-th.S section. the existence of this off-diagonal anticorrelation
duced as we approach the critical point whéxe diverges. ! lon, Xl ! 1ag : :

This will lead to an increase in the event-by-event fluctuaS "OPUSt. It arises simply due to energy conservation: when

tions of p; as compared to the variance of the inclusive©nen, fluctuates up others must fluctuate downward, and it

single-particle spectrum. is therefore more likely that, fluctuates downward. K€, is

To make the comparison with the Bose enhancement efncreased, then the systetncan more easily supply the en-
fect estimated in Sec. IllA easier, we shall express theergy needed for the upward fluctuationnp, and the anti-
strength of the effect of the thermal contact in terms of thecorrelation between, andn, is reduced. Preliminary analy-
ratio, Fy of the whole expression in curly brackets in Eq.Sis by NA49 suggests that some amount of such
(58) to the first term in this expression. For the fluctuation ofanticorrelation is observed in the dd@8]. It will be inter-
mean transverse momentum per event, i.e.,cferpr we  esting to compare the magnitude of any effect observed in
find the data with our estimates. We leave this to future work. If
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it is possible to separate this effect from other effects becausghere we omit the tilde oif. Note that even ifaf, contains

it is an off-diagonal anticorrelation, then a measurement ofiependence off, it will be always multiplied by gp_ng)
this effect would yield an estimate for the effective value ofwhich is zero to the relevant order in the size of the fluctua-

the ratioC,/Cg at freeze-out. tion. Now we need
Note thatF+ increases near the critical point, but it in-
creases towards a finite valggamely 1) In contrast, in Sec. &ng(T) 1 0 0 1 )
V we will explore effects which result in thdivergenceof aT Ffpnp(lJrnp): T2¢Vp: (64)

an analogously defined ratf, at the critical point.
according to Eq(4). We rewrite Eq.(63) as

D. Another application: T

| S AT o .1 L1
In this subsection we introduce another measure of the Tz 2 € p—zzz Anpepvp—z. (65)
temperature of the pion ga$, Our new variableT is well P Tp P Tp
defined on a single event, and has the property ¢fatis We can carry on with an arbitray; , but let us make the

related to the slope parameter. We have found that aIthouglla”Ong choice:o2=v2 . This choice makes a lot of sense

; : ) : .
(pr) is related toT, the ﬂléCtPatlonf{(A pr)?) are notatall it 5ne recalls that in the standard definitionygf one divides
I|ke~th2e fluctuation(AT)) in Eq. (1). We now show that  gach square deviation term by its normal square deviation
((AT)) also does not behave quite likAT) ). The reader  (which is usually obtained from experimental error, and

should expect this, since we argued on general grounds th@fich here we know to beg from the fluctuations ofp).

Eqg. (1) can only be obtained from a mechanical observable ifrhis choice simplifies formulas.

the equation of state of the systeis known. Still, it is nice Now we square Eq65), average over events, and restore
to confirm this using an example of an observable which is gne tilde onT:

less straightforward intensive quantity than just E/N or

o, (AT)?)
We define for each member of the ensenmibke, for each —=

T4
even} independently T P

2
> egvg} :Ep Ek epe(An,Any),  (66)

which, according to Eq(50) means

1 1
Xo(M)=5 2 [np=ni(M P, (60) i,
P Tp (AT)) 1 Cu ®
T2 CgCatCg’ K
where
We see that fluctuations of, like those ofp;, increase
ng(T)= Tl (61) towards the critical point of the systely where Cp— oo,
er’ —

approaching a finite constant. Whéh, is infinite, the sys-

tem B (the Bose gasis in the canonical ensemble, and the
and crf, is some function of which we can choose for con- flyctuations of T are given precisely by Eqd), with the
venience later. Then for each event individually we can despecific heaCjg in the denominatot’

fine a temperaturel, which is found by minimizingy?(T) Different definitions of the temperatufie can be devised
for this event, (using different choices o). They will lead to different
) temperatures for a given event, which are the same in the
{dX (T -0 62) mean (and equal toT), but different in the size of their
dT T=7|'_ ' fluctuations. All these fluctuations will increase somewhat at

the critical point, but will not diverge there as they are con-
trolled there byCg (or some other property of the thermom-

It is clear that mean value &F over all events for the ideal e .
gterB) which is nonsingular.

Bose gas will coincide with the actual temperature of the ga
T. But, sinceT is defined for a single event, rather then for
the whole ensemble, it fluctuates.

As before, the fluctuations it are determined by fluc- ~ Once we understand how some physical effect influences
the microscopic correlatofAn,An,), we can calculate the

E. Two further applications: ((AN)?) and (ANAp+)

tuations ofnp. For small fluctuatiom\T we can write

0

dx?(T) 0 ang
= aT _=A % (np(T) = np)ﬁ 2 "The heat capacitg, in this case is that at fixed. It is remark-
=T P able that if we defindl by simultaneously fittingwo variables in
ang ang 1 Eq. (60), T and, the resultingl will again fluctuate according to
= 2 AT——An,|— — (63 Eq. (1), but with heat capacity at constaNt We leave this as an
) JT aT o . . .
p instructive exercise for our reader.
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fluctuations of many different observables. The task then is V. PIONS NEAR THE CRITICAL POINT:
to look for observables in which the effect of interest is large, INTERACTION WITH THE SIGMA FIELD
and which are of practically utility in the sense that they are

easily accessible to experimental analysis. We give two fur;, ,. L . ;
ther simple examples here. direct pions” at freeze-out could be described as an ideal

In Sec. IV C, we analyzed the fluctuations of an intensiveBose gas. We do not expect this to be a good approximation

quantity,pr, and obtained the expressit8) for ((Apr)2). if the freeze-out point is near the critical point. The sigma

S . ; field is the order parameter for the transition and near the
Similarly, we can use the microscopic correlaf6®) to ana- " o .
. X ) : critical point it therefore develops large critical long wave-
lyze the fluctuations of the extensive quantityand obtain . : )
length fluctuations. These fluctuations are responsible for
2
> vie
pEp
P

In the previous section, we made the assumption that the

2 singularities in thermodynamic quantities. In the previous
(68) section, we analyzed this situation by pretending that the
only effect on the pions was due to thermal contact with a
nIaeat bath with divergent susceptibilities. In this section we
ntg:lke the next logical step, and consider the effect of the clas-
sical critical fluctuations on the pions through e 7 cou-
pling. It would be strange if, as in the previous section, the

X . g o
term is to multiply ((AN)®) by a factor of[1—0.20/(1 properties of the pions remained regular in the thermody-

* Ca/Cg)]. Note, however, that the multiplicity fluctuations | i1 it in the presence of the nonanalytic behavior of
of the pions obtain from the resonance gas which we an he si field Wp i that the fluct ty f both th
lyzed in Sec. Il are dominated by the pions from those reso- elts.'ﬁ’.m.? e d.th e wi s?e at the fluctua |t0ns Of tho the
nances which decay into more than one pion. Doubling th%nu. IprCI yd:’_in € mehan r_a_nS\I/ers_e momentum ot the pions
contribution of the direct pions t{AN)?) in the calculation 0 In fact diverge at the critical point. . .
(32) only increaseg(AN)?) by 10%. The effect of thermal W? then estimate the. size o.f thg effects in a heavy ion
' collision. This requires first estimating the strength of the

contact and energy conservation on the direct pions seen Coupling constan6, and then taking into account the finite
Eq. (68) is therefore a very small contribution to the total ping ' 9

((AN)?) of Eq. (32). size of the system and the finite time during which the long

We saw at the end of Sec. Il that cross correlations beyvavelength fluctuations can develop. The pion fluctuations

; . . induced by theGomm interaction are divergent and are
tween intensive observables ahNdare of interest, because . . . I
L . . therefore the dominant fluctuations in an infinite system. In
they vanish in a classical ideal gas. We therefore use th

) : the finite system of interest, we find that the momentum fluc-
microscopic correlato(50) to calculate . .
tuations are large enough to be easily detectable, but not so
large as to seriously jeopardize our treatment, which consid-
ers the effects of the interaction only to lowest order. It is for
this reason that we have first analyzed all effects other than
those introduced by th&om7 interaction, and now add
2 vgep(qp—<q>)”. (69) these effects in. The multiplicity fluctuations are large
P enough that in this case a treatment which goes beyond low-
est order inG seems called for. We leave this to the future.

1
— 2_
(AN=2 ¥5~ 6,76y

The first term is the ideal Bose gas result, and the seco
term is the correction due to thermal contact and energy co
servation. FoiT =120 MeV,u =0, the effect of the second

EK Vﬁfk

1 , 1
(ANACD:W Ep np(dp—(a)) — T2Ca Cq)

X

Forg=pt,T=120 MeVu =0 we find

(ANADpT) A. Microscopic correlator

Dy - 0.021( 1+ ) (70

10.
Cp/Cg+1 As before, we shall derive the expression for the micro-
_ . _ o scopic “master” correlatof AnpAny), which can then be
As we saw in Sec. II, correlations like this arise only due toysed to calculate fluctuations of various observables. We ne-
nontrivial effects, and are generally small. In this case, Weylect the effects considered in the previous section, as they
see thatfor C,~3Cp) the effect of energy conservation and can be added to the effects of this section at the end. We
thermal contact is~2.5 times as large as that due to Boseconcentrate on the fluctuations of the sigma field, the fluc-
enhancement. This suggests that this correlation would be @ations of the pion occupation numbers, and dher cou-
very interesting quantity to use to look for the critical point. pling. The long wavelength fluctuations of the sigma field
It is small in magnitude, but even after the dilution of the which are responsible for the singular effects of interest are
direct pions by those produced in resonance decays are takemssical.
into account, it may change by a large factor near the critical The effective potentiaf) determines the probability dis-
point whereC,—0. tribution of the classical fieldr through

In conclusion, the effects of thermal contact and energy
conservation on the pions could either be found directly, by Qo)
detecting the anticorrelation in the microscopic correlator T |
(AnyAny). Or, the resulting effects of(Apr)?), ((AT)?),
((AN)?), or (AprAN) which we have estimated may be This equation can actually be thought of as the definition of
discovered, likely by seeing them change as control paramf (o). The effective potential is extensive, but for conve-
eters are varied. nience we set the volumé=1 in the calculations to follow,

dP(o)=do exp[ - (7D
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although we will restore it explicitly in our resultdNote that up to the temperature independent vacuum contribution
throughout previous sections, we had set1 implicitly. (equal toX ,wp/2) from InZr—,. So we have
The momentum sumX, should always be read as

V[d3p/(27)3.] Let us consider small fluctuations of the 2= in 77
field o around the minimum of) (o). We can then expand P Wp P
the effective potentiall(o) aroundo=0. The first terms
will be Note now thal(ﬂ'2>=2p(np)/wp¢0. So, unless we subtract
(772> the minimum ofo will be shifted from the origin(this
m2 g2 subtraction will also take care of the vacuum fluctuatjons
Q(o)= ‘; +Go: 7%+ O0(0?), (720 We have
. : . An
where we have temporarily omitted terms independent of 772—<772>=E w—p. (78)
p @p

(such asm?72/2) X8 The second term is the interaction be-
tween sigmas and pions. The coupli@has the dimensions o putting everything together, we find the joint probabil-

of mass, and its magnitude near the critical point will bej gistribution for the sigma field and for the pion occupa-
estimated below. The notation :: signifies tadpole subtracgon numbers:

tion: : 7%= 72— (w?), which makes sure that the minimum

of o is not shifted as we shall see belofhe notations? 1

itself is itself somewhat symbolic, as it represents dP(cr,np)=da'( H dnp> exp{ —2 —Z(Anp)2
Jd3xam(x)m(x).] Thus we have P P 2vp

2 ;2 Go « An, m;
mio° G NP 7,2
dP(U)=dUexp{— e L BECE) T2 W, 2T"]' (79

Now, the field = also fluctuates. Let us determine the This is a very important formula which will allow us to

correspondindjoint) probability distribution. In the previous calculate the quctuat|ons._ . o
section we used the probability distribution for the occupa- The mea;ure:l P(c,ny) is Gaus_5|an, which is very help-
tion numbers, and we begin by translating the fluctuations OFJI' Completing the squares, we find
the field 7 into fluctuations of the occupation numbers. We
write, doing the usual Fourier transform: dP(a,np)=d0< H dnp)
p

2\ 2
WZ:% Il (79 Xexp{—z i(An +@ﬂ) ]

p
P 2vy T wp

We can relate the Fourier components to the occupation m2 G2 v2
numbersn,,. It is clear thatn,~|,|. The coefficients can Xexp{ _( )02] (80)

A
2T Tzzpz 2

be determined, for example, by using w,
uT 1 1 Before we make the final and the simplest step, let us make
sz D exp{ —f dtf dv[z(aﬂ)%r Emi#” two side notes.
0 Equation (80) shows that the interaction withr shifts
mean occupation numbers by
=Zr_oll (1—e /T, (75) ,
p s B Go vy 81
(Np)=— =~ oy (81)

Differentiating InZ with respect tam? we find
As the reader might have guessed already, this must be due

1 to the shift of the mass of the pions linearanwhich can be
2 _ el
( >_§p: w_p<np>’ (76 seen from Eq(72),
sm?
> = Go. (82

8Clearly, the fluctuations oé are not small. We shall proceed
with the assumption that the higher-order term$i(v) yield sub- |1 is trivial to evaluate the change i('“p) induced by the

leading contributions to the singular effect we seek. We shall retur h . 2 .
) o - n f the mass. Sineg=/p?+m2— x we fin
to this point in Sec. VI D. Also note that we consider only the zerorb ange of the mass. S & P =~ p we find

momentum mode of the fiela. This can be justified in a diagram- Se 1 sm?
matic approach, which can also handle nonzero momentum modes S =— 1+ - q—". 83
of o. T T 20,
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5 ond term in Eq.(88) is the most singular one in this cor-
p k o+ p G G k relator asm,—0 because it involves the exchange of the
sigma field with zero momentum. We defer an analysis of

1Jess singular terms using the diagrammatic approach to fu-

FIG. 2. Diagrammatic representation of the right-hand side o
ture work.

the correlator(88). The crosses represent the insertionsAaf,
::wpv-r; .. The solid and dashed lines are the pion and sigma field
thermal propagators. B. Application: Fluctuations of mean pt

Using Eq.(88), we can determine the fluctuations of any
thermodynamic observable which can be expressed in terms
of the pion occupation numbers. For a generic intensive ob-
servableg=Q/N we find

kil

which is the same as E(B1) with Eq. (82). The fluctuations
of the sigma field will have further affects on the pion occu-
pation numbers, but these are higher ordeGiand we ne-
glect them here.

The second side note is more important. We see from Eq.
(80) that the mass of the field is corrected by the fluctua- ((Aq)2)=<
tions of the pions:

1
~ G2 o, V2 - V2(Qu— ()2
me=m2- 27 > 5. (84 <N>2[2p o= (a)
P wp 1 G2 V2 2
. . . p
Diagrammatically, this corresponds to the thermal one-loop U T Ep: > (dp—(a)) ] (89)
o p

diagramo— 77— . The physical mass of the sigmaris, ,

I/c;:i]sehcérsdzrt i&g?ﬁgcgfpagﬁ 'EN?/\rllgnng;I—Ih(i)sniwist tg}zrg%? i‘r’;’r;iﬁgNhere we have displayed the factor \éfexplicitly to show
following. ' that bc>3th term_:, are of the same ordeNn[RecaII that> .
; . . —V/[d°p/(2m)°.] As before, the intensive observable of pri-
Finally, we can rea_d qff the following expectation values mary interest will be the mean transverse momentum in an
from the probability distributior{80): event,q=pr. Itis clear from Eq(89) that the fluctuations of
Go V2 pt increase near the critical point and diverge at the critical
<(Anp+ - _P) ( Ang+ — _) > =V,235pk; (85) point, wherem, vanishes. We will give a quantitative esti-
@Wp Wk mate of the effect in Sec. V E. We must first estimate the size
of the couplingG and the value ofm, near the critical

T .
(02)= —; 86  point™
2 C. The size of the couplingG
(oAny)= —(02>? w—p (87) The strength of the singular contribution to the pion cor-

P relator near the critical point depends on the size of the cou-

This gives pling G between ther and :
1 GZ Vf’vi £|:GO"7Ti i (90)
2
<AnpAnk>—Vp5pk+ 5 T _wpwk. (88)

where the isospin index=1,2,3 is summed. We first make a
phenomenological estimate of the magnitude Gf in
vacuum, and then estimate by how mu@hs reduced near
the critical point E.

We see that the coupling of the pions to the sigma field lead
to asingular contribution to the correlator of the pion fluc-
tuations as we approach the critical point at whinph=0. ; N .
The first term on the right-hand side describes the variance of The value of this couplmg.m th‘? ve.u.:uum can be 'F‘fe”ed
the inclusive distribution and the Bose enhancement effect d dppendently from two conS|dgrat|or(s). from the'relatlon—
we saw in Sec. lll. The additional terms which we discov-S"P between the sigma and pion masses fgnd(ii) more

ered in Sec. IV could now be added to the right-hand side. Ifiréctly. from the width of the sigma. We shall use both and

is of course the new, divergent term on which we shall focuFompare. L .
our attention. One way of estimating the vacuum value @fis to use

the Gell-Mann—Lgy linear sigma modef29], in which the

One can represent both terms in this equation diagramL ian d ibing the d . f the f
matically as in Fig. 2. The singular term is due to the ex- agrangian describing the dynamics of the four component

change of the sigma in the process of forward pion-pionfIGId ba=(o,m) is given by

scattering. This results in a characteristim3/singularity. A

different way of deriving the formula for the correlator

would be to do a straightforward diagrammatic expansion of 19Similarly, one can also calculate the fluctuations adefined in
(AnpAny). This will also allow one to include the effects of Sec. IVD and show that these fluctuations also increase near the
the nonzero momentum modes of the sigma field. The sesritical point and diverge at the critical point.
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j d*x

where theO(4)-breaking fieldH is proportional to the quark

mass:H=m(¢)/f .. The vacuum expectation valye,)

is nonzero and should be set equafta Theo field is then
defined by o=¢o—(dg). Setting f,=93 MeV, m,
=135 MeV, andm, =600 MeV fixes all three parameters
in the potential, and in particular yields=20.0. If we re-
write Eq. (91) in terms ofo, we find a term\ f _o#?, from
which we conclude that

1(9” 3, ba— A —v?)2+H
E ¢a /.Ld)a Z(¢a¢a v ) ¢0 ’
(91)

G=\f,~1900 MeV. (92)

This value forG seems large at first sight, but such a large

coupling is in fact required by experiment. In order to see

this, we evaluate the width of the sigma due to its tree-leve
decay into two pions, and find

m 2
\/(7") —m2~300 MeV,

(93

3G2 p 3G?

= o
2 2
87T m2 8mwm?

where we have useah, =600 MeV as above. The width of
the sigma is known experimentally to be so large that thi
“particle” is only seen as a broad bump in tisevave -

scattering cross section. An estimate of 300 MeV for this

width is therefore reasonable. We conclude that the vacuu
o coupling must be at least as large@s-1900 MeV,
since the sigma would otherwise be too narrow.

Our estimate makes it clear that the vacuum valu&of
would not change much if one were to take the chiral limit
m— 0. The situation is different at the critical point. Taking
the quark mass to zero while following the critical end point
leads one to the tricritical point P in the phase diagram fo
QCD with two massless quarks. At this poi®,vanishes as
we discuss below. This suggests that at E, the couytling
less than in vacuum. Our goal in the remainder of this sub
section is to use what we know about physics near the tric

G is reduced at the critical end point(&ith the quark mass
m having its physical value relative to the vacuum value
G~1900 MeV estimated above.

We begin by recalling some known resul{gor detalils,
see Refs[2,3,1].) In QCD with two massless quarks, a spon-

I

L ; . .t
ritical point P to make an estimate of how much the coupllngt

PHYSICAL REVIEW D60 114028

a b , C 3
Q(¢a)=§¢a¢a+ Z(%fﬁa) +g(¢a¢>a) . (99

The coefficients, b, andc>0 are functions ofx andT. The
second-order phase transition line describedaby0 at b

>0 becomes first order whelm changes sign, and the tric-
ritical point P is therefore the point at whiedh=b=0. The
critical properties of this point can be inferred from univer-
sality[2,3], and the exponents are as in the mean field theory
(94). We will use this below. Most important in the present
context is the fact that becaus¢)=0 at P, there is nom
coupling, andG=0 there.

In real QCD with nonzero quark masses, the second-order
phase transition becomes a smooth crossover and the tricriti-
cal point P becomes E, the second-order critical end point of
a first-order phase transition line. Whereas at P there are four

assless scalar fields undergoing critical long wavelength
luctuations, ther is the only field which becomes massless
at the point E, and the point E is therefore in the Ising uni-
versality clasg2,3]. The pions remain massive at E because
of the explicit chiral symmetry breaking introduced by the
quark masan. Thus, when we discuss physics near E as a
function of x and T, but at fixedm, we will use universal
scaling relations with exponents from the three dimensional
Ising model. Our present purpose, however, is to imagine

%/arying m while changingT and . in such a way as to stay

at the critical point E, and ask how lar@(andm,) become
oncemis increased from zer(he tricritical point P at which

r&:m,7=0) to its physical value. For this task, we use ex-

ponents describing universal physics near P. Applying tric-
ritical scaling relations all the way up to a quark mass which
is large enough tham_ is not small compared td, may
introduce some uncertainty into our estimate.

In order to determine the trajectory of the critical line of
sing critical points E as a function of quark mass? it is
sufficient to consider the effective potential only as a func-
tion of the single componenp,= ¢ of the four-component
order parameter. When the quark mass is nonzero we can

add terms containing odd powers éf ¢> and ¢°, in addi-
fion to just¢. We shall assume that the linear term provides
he leading effect, and check this assumption for self-

consistencya posteriori So, we have at nonzera

A(B)=—me+ 292+ Dt gt (95)
2 4 6"

taneously broken chiral symmetry is restored at finite tem-

perature. This transition is likely second order and belongs iYVe assume that the units of mass are chosen in such a way
the universality class o®(4) magnets in three dimensions. that the coefficient of the linear term in E@5) assumes this

At zero T, various models suggest that the chiral symmetrysimple form. That is, instead of writing it a$=mM?, we
restoration transition at finitg is first order. Assuming that are using units wittM=1. Stable or metastable thermody-

this is the case, one can easily argue that there must be
tricritical point P in theTx phase diagram, where the tran-
sition changes from first ordéat higheru than B to second
order(at loweru), and such a tricritical point has been found
in a variety of model$2,3,30. The nature of this point can

namic phases are described by minima(bf at which Q'

205ee Ref.[31] for a derivation of the analogous line of Ising
points emerging from the tricritical point in the QCD phase diagram

be understood by considering the Landau-Ginzburg effectivgt zerou as a function ofn and the strange quark mass . This
potential for¢,, order parameter of chiral symmetry break- tricritical point can be related to the one we are discussing by vary-

ing:
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=0. At the critical point E)’=0 and in addition bott}”

PHYSICAL REVIEW D60 114028

Assuming that the dimensionful factor in this formula is of

andQ" vanish. This is because three roots of the polynomiathe same order of magnitude as the one in the Zesod »

Q' (¢) coalesce(two minima of 0 and one maximum in
between. So, we have three conditions:

Q'=—m+a(¢)+b(¢)3+c(¢)°=0; (96)
Q"=a+3b($)%+5c(¢)*=0; 97)
Q"= +6b{¢)+20c(¢)*=0. (98)

These conditions allow us to expresd, and({ ¢) (the value
of ¢ at the minimum, as functions ofm andc. We neglect
any change irg; it is the vanishing ofm at P which is of

formula m>~m we conclude that the pion mass does not
change much from its vacuum value, and is likely to be very
slightly bigger[by a factor of order 4 qgcp/m)*9. This is
similar to what is known to happen negg for u=0. [See
Ref.[31] for a review]

To determine the constaf®, we need to collect the 7
terms in Eq.(100 where, as beforeg= ¢p—{ ). Only the
last two terms contribute and we find

Q=0m?(b{(¢p)+2c($)°)+- - -. (104

interest to us. Solving these equations by working up fromThis meansG=b(¢)+2c(¢)* which, according to Eg.

the last to the first and keeping only the expondntglect-
ing prefactorg we find

4/5. 2/5.

—b~m?%  ($)~m'~, (99
The power 1/5 is easy to understand: it i$,IWhere 6=5
for the ¢° potential.

At m=0, the tricritical point P ah=b=0 has{¢)=0;

a~m

(99), gives G=2b{¢)/5=—4c{¢)%/3. Using them power
counting(99) we find

G~m?5, (105
Thus the couplings is suppressed compared to its “natural”
vacuum valueS, . by a factor of order i/ A ocp) ¥ Taking
Agcp~200 MeVm~10 MeV we obtain our estimate

the expressiong9) describe how the location of the critical
point E in theab plane, and the value @fp) at E, change as
mis increased from zero. From these, we will determine how

m, andG at E vary withm, after two asides. First, note that o main source of uncertainty in this estimate is our inabil-

from these universal arguments we learn nothing about thgy 1, compute the various nonuniversal masses which enter

location of the tricritical poine=b=0 in theTy plane. One  yhe estimate as prefactors in front of thelependence which
can only make rather crude estimates of the position of thi§,« have followed. In other words. we do not know the cor-

point, as we have done in RéfL]. Our main purpose here o yaiue to use for ocp in the suppression factor which
and in[1] is to tell experimentalisthiow to find P, so that Pip

they can find it and tell usvhereit is. Second, we must W& Writ€ as (WAqco)™
estimate the size of theé® and ¢° terms we have neglected.

vac

Ge~—5~~300 MeV.

(106)

Assuming that both terms come with coefficients which are

at least linear iim (higher odd powers afn are possible, but
will make the size of these terms even smallrd using the

m power counting of Eq(99), we see that while all the terms

in Eq. (95) are O(m®®), the ¢° and ¢° terms contribute at
mostO(m®®) and O(m?), respectively.

To follow m,, and G, we need the full dependence Qf
on the ¢, and s fields:

Ub.m)= M+ (24 )+ (24 7

+ %(¢2+ )3, (100

For the pion mass, we need to expand arognel( ¢) and
7=0 and collect ordet? terms:

-
Q= (atb(@)?+o(@)+---. (101

We can now read off the pion mass

m2=a+b($)>+c(¢)?, (102
which, according to Eq(96), meansm?=m/( ). Using Eq.
(99) we find

(103

D. Finite size and finite time effects

The final ingredient needed for the estimate of the size of
the effect described in Secs. VA and VB is an estimate of
m, . We found tha AnyAn,) is infinite at E wherm,=0.

This singularity occurs because the correlation lengjtbf

the sigma field is infinite. In practice, however, there are
important restrictions on how largécan become. The fire-
ball created in a heavy ion collision has a finite size and lives
for a finite time; both restricE. Similar considerations affect
the estimate of the size of the effect described in Sec. IV B.
There we found an anticorrelation {fAn,An,) which van-
ishes as the specific heat of the system diverges. The limit on
& introduced by finite size and finite time effects also limits
how large the heat capacit,, becomes.

We discuss finite size scaling first. If the system is infi-
nite, a singular thermodynamic quantity suchCysdiverges
at the critical point. If the system is large relative to micro-
scopic scales€1 fm in our casgbut finite, thenC,, exhib-
its a peak at the critical point which becomes narrower and
higher as larger and larger systems are considered. Finite size
scaling analysis tells us how the magnitude of the peak
scales with the system size. The scaling postulate tells us that
the singular parts of all observables are due to the diverging
correlation lengthk¢ and can be characterized by an appropri-
ate critical indexQgjng™ £, whereQ could beC,, or some
other quantity which diverges at E. In a finite system the
growth of the correlation length is limited by the size of the
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system:,.~ R. Therefore, the magnitude of the singularity and a homogeneous freeze-out at a single freeze-out time for
in a given thermodynamic quantitghe height of the peak all rapidities is not a good approximation. A similéal-
depends on the size of the system as though not identicalproblem has already been faced in two
R (107 pion interferometry, which provides sizémnd durationsnot
max ' of the whole system, but of a “patch” large enough that
o : . . particles emitted from it can still interfere. The size of such
Similarly, if the system is not allowed enough time to

equilibrate, the singularity is also smeared. The magnitude o?atches depends somewhat on the direction and magnitude

the singularity in this case can be estimated using finite timeOf the total momentum of the pion pair used in the interfero-

. . ) ) fmetric measurement, but is an approximate measure of the
or dynamic, scalind32]. In this case the scaling postulate _. . .
X o . . size of the system over which freeze-out is homogeneous.
tells us that the typical equilibration time diverges at the

critical point (critical slowing down, with this divergence The longitudinal size of such a patch for central PbPb colli-
related to that of the correlation length by £2t. Reversing sions at 160 AGeV is estimated to @S] 2R, ~12

. ; . T —14 fm. At its ends, the rapidity difference is already about
this relation, we conclude that if the typical time allowed for . . . . )
. S ; 1. We therefore estimate that sigma field correlation length is
the system to equilibrate is limited t@, the correlation

length can only grow up td, .~ %At Thus, in this case limited by finite_size effects to be I_ess _thaRLZ. _
max ' ' The sizeD+ in the transverse direction beyond whigh
max~ 7@ /A1, (108  cannot grow can be estimated in two ways. The initial size is
that of the diameter of the nucld}p,~14 fm. The trans-
The calculation of the numerical prefactors in Eq)7)  verse(radia) flow makes the physical size of the freeze-out
and(108) requires precise knowledge of the QCD dynamicssurface larger than the nuclear radius, by 30-50 % at freeze-
and is not feasible at this time. The exponents, however, areut. Therefore, it must be the case tBat<20 fm. This is,
universal and can be understood by relating them to suitableowever, an overestimate. Because of the relativistic trans-
exponents in the three-dimensional Ising model. For exverse expansion, regions with different positions in the trans-
ample, the exponent for the specific h€at at the end point  verse directions cross the transition region and then freeze-

E was determined ifil]: out at different times. Therefore, as fef above we can use
the size of “patches” observed via two particle interferom-
Ac = (Z ~2. (109  etry as aguide, the sigma field correlation length in the trans-
Vol 3D-Ising verse directions to be less thBr=2R;~10-12 fm[25]. It

therefore seems that the relevant longitudinal and transverse
Ac, is not given by the(smalley exponent &/v)sp.sing D~ length scales at freeze-out are about the same, and we con-
cause of the obliqueness of the first-order phase transitioplude that based on finite size restrictions alone
line relative to theT axis on the phase diagram as explained
in [1]. The idea is that at the critical poirG, = d>Q/JT? is §< 12, (110
related to some linear combination of the Ising model sus- |
ceptibilities 9°Q/at?, 32Q/atoh, and 9°Q/dh? where the

Ising model temperature axisand magnetic field axik are - .
We now turn to the restriction on the correlation length

oblique relative to thd and u axes.Cy is controlled by the . . X
mosclt divergent of the thrILeLze Isingvmodel suscep'zbilities which arises from the fact that the matter created in a heavy
which is 42Q/5h2, and Eq.(109) results lon system does not enjoy an infinite period of time in which

The dynamic scaling exponedt,, which is often called to equilibrate. The expansion time can be defined through the

z, is also universal. The dynamic universality class of a Sysporrespondlng Hubble constant

tem is sensitive to details of the dynamics such as whether 1 ds

the order parameter is or is not conserved and whether the H= T sat (111
system has other conserved quantities. The determination of H

A is a rather involved problem in some cag&g]. If we  \heresis entropy density. We use the entropy density in the
assume that QCD at the critical point E falls into the dy-gefinition because the total entropy is conserved during adia-
namic universality class of the gas-liquid phase transitiomyatic expansion, and we are assuming that by the time the
(model H in the classification of Hohenberg and Halperingystem is traversing the transition region and then freezing
[32]) the exponentA; can be estimated a&~3. It may  out, the expansion can be treated as adiabatic. Hydrodynamic
therefore turn out that becaudg™>1 the finite time scaling models[20] suggest that at SPS energies, heavy ion colli-
restriction (108 may be somewhat more restrictive in a sjons haver,,~10—20 fm/c. If we simply use this value of
heavy ion collision than the finite size scaling restriction -, and neglect dimensionless factors in the scaling relation

(109. , , (108) we would find
Let us estimate some typical numbers for central PbPb

collisions at the SPS. We start with an estimate for the rel-
evant size in the longitudinal and transverse directions be-
yond which& cannot grow. The longitudinal expansion ex-
tends the longitudinal size of the fireball considerably, butlin spite of the long expansion time, the relatively large value
regions with different rapidities freeze out at different times,of the dynamical exponenk,; can make the finite time re-

wherel is the “microscopic length” of order 1 fm.

| M
+| ~25 (112

£
<
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striction more severe than the finite size daé0). In other  tor, i.e., the sigma field susceptibility. For the 3D-Ising uni-
words, although the size of the system allows the correlationersality class we know the corresponding exponent to be
length to become as large as 12 fm, there may not be enougyl v=2— z which is ~2 to within a few percent becausg
time for such long wavelength fluctuations to develop due tds small. We can therefore safely use the mean-field formula
critical slowing down. The estimatd 12) is suspect for sev- (88) with its m, 2 divergence for our estimate, and will take
eral reasons. First, there may be a large dimensionless pren ~1/¢,,.,~1/(6 fm). It therefore turns out that even
portionality constant in this relation which is unknown to us. though the effects of Sec. IV depend 6 and the effects of

[In contrast, the finite size estimaE10) is a consequence of this section depend on the sigma susceptibility, both are con-
geometry, and unless the homogeneous region is larger thaglled by the exponery/ v~2.

we estimate, it is unlikely that the finite size bound &€nan

be evaded.Second, in making the estima(#12 we have E. Magnitude of the effects

estimated the “bad” effect of critical slowing down, namely ) ) ) )

the fact that a 12 fm correlation length will take longer than e now have all the ingredients in place for our estimate
12 fm to develop, but we have not taken into account ao_f the size of the effect pf the critical quctuaUpns of. the
compensating “good” effect of critical slowing down: be- SIgMa field on the fluctuations of the observed pions, via the
cause of the large specific heat, the system will spend aROUPIiNgG. We reproduce here E9):

critical point. Because of the uncertainties(irl2), we shall <(Aq)2): < {A(—)

useénax—6 fm as arough estimate of the largest correlation N

way that the system freezes out close to the critical point. = iz{ E V,Zj(qp—<Q))2

More detailed study of the time evolution of the temperature (N[5

unusually long time with a temperature in the vicinity of the Q 2>
length possible if control parameters are chosen in such a

of the system, of the appropriate choice fqr, and of the 1 @2 V2 2
dimensionless factors in Eq112) are required in order to +—— > —2(q,—(q)) ] (114
properly estimate whether finite time effects restéjgt, fur- v T % wp P

ther. )
Since the thermal contact effect discussed in Sec. IV dewhich we now apply fog=p. We have restored the factor

pends on the divergent heat capadlly, we need to esti- of V. The first term in the curly brackets includes the single-
mate how largeC, can get, given the finiteness of the sys- particle inclusive distribution enhanced by the Bose effect.
tem. Using the exponeriL09), we can estimate the ratio of The second term is the effect we are interested in now. As

the maximum value of that part &, which would be sin- We did in our estimate of the effects of energy conservation
gular in an infinite system to the “r?ormal” value @, for and thermal contact in Sec. IV C, we shall express the size of

a degree of freedom with a correlation lengthl fm as the effect of inlterest as the ratic_> of the t_antire expression in
curly brackets in Eq(114) to the first term in these brackets.

(CA)%aX gmax ACV We find

AN ~36. (113 5 )

( A)norm F —1+03 Gfreeze-out ffreeze—ou
a 1300 MeV, 6 fm

This does not mean that the specific h€atis multiplied by
36, because it receives a nonsingular contribution from other

degrees of freedom. However, it suggests that in using Eq. for pr=60 MeVv (119
(59) to estimate how much the anticorrelation induced reducand
tion of F is weakened at the critical point, it is reasonable to
expect thatC, can be up to an order of magnitude larger Greeze-outl %[ Exrecze-oul >
there than it is neaf far from the critical point. Fo= 1+0-1‘< 300 MeV) ( 6 fm >
We now return to our discussion of the effects of the long
wavelength sigma fluctuations on the fluctuations of the for w.=0, (116

pions, encoded in the microscopic correlatéB). We de-

rived Eq.(88) using mean field theory, and would now like where we have takefi=120 MeV. As in Sec. IV, the effect

to discuss the effect of non-mean-field corrections. We menwiill be diluted by about a factor of two because not all of the
tioned previously that fluctuations of the sigma field aroundpions which are observed are direct. We have written the
the minimum of()(o) are not small; we now argue that this estimates(115),(116) in such a way that the largest uncer-
does not make much difference to the quantity of interestiainties are manifest. The size of the effect depends quadrati-
One way to see how these corrections can appear is to realizglly on the couplings. We argued above th& is reduced
that, at higher order i, diagrams witho bubbles which are  to G.~300 MeV at the critical point but, as we explained,
actually logarithmically divergent as,— 0 will contribute.  there are caveats in this argument. Furthermore, freeze-out
These bubbles have to be resummed and may modify thgiay occur somewhat away from the critical point, in which
exponent of thelzn;2 singularity in Eq.(88). This exponentis case G would be somewhat larger, although still much
easy to infer from universality arguments. Diagrammatically,smaller than its vacuum value. The size of the effect also
the 1m§ is the zero momentum value of the sigma propagadepends quadratically on the sigma correlation length at
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freeze-out, and we have seen that there are many caveatstions of the sigma field on the fluctuations of many different
an estimate lik&peeze-oii- Emax—6 fm. Finally, the effectis pion observables. To this point, we have focused on
sensitive to the value oft,. There are reasons to believe ((Apr)?); we now give a brief account of the effect on
that u,, may be smaller near the critical point than far from ((AN)?) and (ANAp;). We can use the microscopic cor-
it. Recall thatu, is zero at chemical freeze-out, and thenrelator(88) to obtain
grows until thermal freeze-out. At the critical point, the tran-
sition temperatureT, is somewhat lower than at lower 5
baryon chemical potentiat, and this suggests that, may (AND=S 2+ 1 G D Vp
be lower than the value measured in 160 AGeV collisions. 5P vm T % wp
Furthermore, we have argued in REL] that the thermal
freeze-out temperatur; will be somewhat higher in the E 2{ ({Gfreeze—out)z

~2, Vpi 1+ 1.0 oo———

P

272
p

vicinity of the critical point, because the system lingers there 300 MeV
and expands for a while with a temperature rigar’! If the
) : S ) 2
temperature window .,— T; is small near the critical point, % &treeze-ou (117)
then . may be significantly smaller than 60 MeV there. 6 fm '
We have studied two different effects aff in Secs. IV

and V. The effects of energy co_nse_rvatlo_n and th_erma_l COMfor q=p;, T=120 MeV, andu,=0. The coefficient which
tact lead to a few percent reduction,ffr; this reduction will is 1.0 in the last line of Eq(117) increases to 2.0 ifx,,
be significantly lessened near the critical point due to the-= g0 MeV. We see that there can easily be a very large
divergence ofC,. This yields perhaps a 1-2 % increase injncrease in the multiplicity fluctuations of the direct pions
\F near the critical point. The direct effect of the critical near the critical point, due to the coupling between the direct
fluctuations which we have estimated in this section is gjons and the critical fluctuations of the sigma field. As we
further, larger, increase ifF by a factor of\F,. We have  have noted previously, the noncritical fluctuations of the total
displayed the various uncertainties in the factors contributingpion multiplicity are dominated by the pions from resonance
to our estimateg115),(116 so that when an experimental decay. Using the resu(B2), we estimate that the sigma in-
detection of an increase and then subsequent decreae in duced critical multiplicity fluctuations of the direct pions can
occurs, as control parameters are varied and the critical poirgasily lead to a 10% increase in the tot@AN)?). This is
is approached and then passed, we will be able to use themparable in magnitude to the effect ¢Ap+)?), and
measured magnitude of this nonmonotonic effect to constraishould be easily detectable. We will see in Sec. VI that there
these uncertainties. It should already be clear that an effect ahould be even a further increase in the fluctuations of the
large as 10% inJF, is easily possible; this would be 50 multiplicity of those pions with lowpr .
times larger than the statistical error in the present data. Turning now to the cross correlation between an intensive
Once we have evaluated the microscopic correlatoguantity andN, we use the microscopic correlat@8) to
(AnpAny), we can estimate the effect of the critical fluctua- calculate

(ANAg) 1 , 1 G’ Vi vh
= nS(qe—{(q) + — = — —(gp—
@ | 5 @D G| 203 5, 0@
Gfreeze-out 2 ‘ffreeze-ou 2 _
~—0.021{1+12.(300 MeV) 5 for w,=0
Gfreeze-out 2 ffreeze-ou 2
~—0.046 1+13. 300 MaV. 6 fm for u,=60 MeV, (118

where we have takeg=p; andT=120 MeV. This corre- see that this correlation is a very interesting quantity to use to
lation only receives contributions from nontrivial effects, andlook for the critical point. As the critical point is approached,
we see that near the critical point, the contribution from thethermal contact with a heat bath whose heat capacity is di-

interaction with the sigma field is dominant. Once again, weverging reduces the effect of energy conservation, as seen in
Eq. (70); we now see that this reduction is overcompensated

by the larger increase in the cross correlation which is in-

duced by the direct coupling of the pions to the sigma field.

2!The expansion ratkl of Eq. (111) does not decrease. However, The lesson is clear: although this correlation is small, it may

the rate of change of with time is reduced because of the large increase in magnitude by a very large factor near the critical
specific heat. point.
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The effects of the critical fluctuations can be detected in aspace for the decay a&s, increases with time and crosses the
number of ways. First, one can find a nonmonotonic increasevo-pion threshold. We will therefore tre@ as a constant.
in F,, the suitably normalized increase in the variance ofin Sec. V, we estimated that in vacuum witm,
event-by-event fluctuations of the mean transverse momen=600 MeV, the coupling i$S~1900 MeV, whereas at the
tum. Second, one can find a nonmonotonic increase igritical end point withm,=0, the coupling is reduced, per-
((AN)?). Both these effects can easily be between one anHaps by as much as a factor of six or so. In this section, we
two orders of magnitude greater than the statistical errors imeed to estimat& at the time whemm,, is at or just above
present data. Third, one can find a nonmonotonic increase itwice the pion mass. We will us8~1000 MeV, recogniz-
the magnitude of AprAN). This quantity is small, and it ing that we may be off by as much as a factor of two.
has not yet been demonstrated that it can be measured. How- Let us parametrize the time dependence of the sigma mass
ever, it may change at the critical point by a large factor, andy
is therefore worth measuring. In addition to effects on these
and many other observables, it is perhaps most distinctive to My(t)=2m (1+t/7) (119

measure the microscopic correlatohnyAn,) itself. The where we have define=0 to be the time at whicm, has

. 2 . e _
term proportional to 0, in Eq. (88) has a specific depen risen to 2n_ and have introduced the time scateover

dence onp andk. It introduces off-diagonal correlations in ; . . .
. ) X : : . which m, increases from &1, to 4m_. We will be inter-
pk space. Like the off-diagonal anticorrelation discussed in N ™ T L
Sec. IV, this makes it easy to distinguish from the BoseeSted in times &t<r, for _Whlch this linear parametrlzanon_
enhéncément effect. which is diagonaldk. Near the criti- of the time dependence is not unreasonable. Note that with
) - diagona’pk. . this choice of notation, freeze-out occurs at a negative time,
cal point, the off-diagonal anticorrelation vanishes and the

. : . and the collision begins at an even more negative time. Sub-
off-diagonal correlation due to sigma exchange grows. Fur-

thermore, the effect of- exchange is not restricted to iden- fsitr::lijtlng into Eq.(33), and working to lowest order iti 7, we
tical pions, and should be visible as correlations between the
fluctuations ofr ™ and~. The dominant diagonal term pro- 3G2

portional to 8, in Eq. (88) will be absent in the correlator (1)~ g5——\2t/7=D N (120
(AnjAny ), and the effects of exchange will be the domi- v
nant contribution to this quantity near the critical point. where we have defined
VI. PIONS FROM SIGMA DECAY 3.2G? 2
= 32am. (300 MeVI| 36560 ey - (12D

There is another signature of freeze-out near the critical
point discussed ifl] in addition to those we have analyzed N(t), the number ofr’s present at time, is determined by
in depth above. For choices of control parameters such that
freeze-out occurs at or near the critical end point, the exci- 1 dN(t)
tations of the sigma field, sigm@uas)particles, are nearly NOD dt I'(t)=—D\l/r, (122
massless at freeze-out and are therefore numerous. Because
the pions are massive at the critical point, these cannot  gnd is therefore
immediately decay into two pions. Instead, they persist as the
temperature and density of the system further decrease. Dur- 32 12
ing the expansion, the in-medium mass rises towards its N()=N(0)expg — §Dt T : (123
vacuum value and eventually exceeds the two pion threshold.
Thereafter, theo’s decay, yielding a population of pions We can now estimate the momentum distribution of the
which do not get a chance to thermalize because they afgions produced in the decay of the sigmas, upon making the
produced after freeze-out. Here, we estimate the momentuassumption that the sigmas are at rest when they decay. This
spectrum of these pions produced by delayedecay. An is a good approximation for two reasons. First, as the system
event-by-event analysis is not required in order to see thesexpands after freeze-out, the sigma mass is increasing as we
pions. The excess multiplicity at lops will appear and then have discussed. This means that the kinetic energy of each
disappear in the single particle inclusive distribution as consigma is decreasing. Second, during the time between freeze-
trol parameters are varied such that the critical point is apeut and decay, some of the sigmas which happen to be mov-
proached and then passed. ing outwards toward the less dense region of the collision in
The event-by-event fluctuations of the multiplicity of which their mass would increase more than allowed by en-
these pions reflect the fluctuations of the sigma field whencergy conservation will instead be reflected back inward. Each
they came[1]. We estimate the resulting increase in thesigma which suffers such a reflection loses momentum, as
event-by-event fluctuations of, the total pion multiplicity.  the reflection occurs as if off an outward moving surface.
We begin with the inclusive single partighg spectrum of  This effect confines the sigmas to the densest region of the
the pions from sigma decay. We use the expres@8hfor  plasma, where their mass remains low for the longest time,
the width of theo, but now treaim, as time dependent. We and in addition reduces their momenta. We do not attempt a
should also tak& to evolve with time. However, the domi- quantitative estimate of these two momentum-reducing ef-
nant time-dependent effect is the opening up of the phastects here. Suffice to say that since at freeze-out the typical
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sigmas will have momenta of order the freeze-out temperaalso of interest. If we were able to measure the multiplicity
ture or less, we think it reasonable to approximate them asf sigma quasiparticles at freeze-out, we would find fluctua-

being at rest at timé=0 when they begin to decay. tions given by

Sigmas which decay at rest at tirheach yield two pions
with momentap~m_+2t/7, to lowest order int/7. As a (AN = (n2)(1+(n%)) (127)
result, the number of pions with momenta,\2t/7<p b P P

<m_2(t+dt)/7 is —2dt[dN(t)/dt] with N(t) given by o . .

Eq. (123. Upon making suitable substitutions, we find thatWhere theny’s are the sigma occupation numbers. In the

the number of pions with momenta betweganddp is present analysis, we neglect the effects of interactions among
the sigmas and just take] as for an ideal Bose gas with

2 3 smallm,. We expect that this makes our prediction for the
p<dp 1 p k . . s
dN=+2N(0)D exp ——=Dr—|. (124 fluctuations an underestimate. Singg is small, the low
mi 3V2 mf; momentum modes have large occupation number, and have

fluctuations proportional to the square of their occupation
With the momentum distribution in hand, we determine thenumber. Each sigma eventually decays into two pions,
mean pion momentum to be whose momenta are determined by the time at which the
sigma decays, rather than by the sigma momentum at freeze-
e ~1/60—2/ _13_ 13 out. It is therefore not possible to make a measurement on
pre=2"3"*T(1/3m,(D7) 1.45m, (D7) (125) the pions which restricts the, in Eq. (127) to low py. We
therefore do the entire sum, and find that the variance of the

. . event-by-event distribution of the multiplicity of the
Large 7 corresponds to slow expansion and a sigma mass$

which consequently increases only slowly with time; laiye o-produced pions is
corresponds to a large coupling constddt It therefore 2\ _ 4 {noyinc
makes sense that i 7 is large, the sigmas decay before the (AN)H=2(N)(1 (np) ) (128

sigma mass has increased far above threshold, and the resyfihere N is the number of charged pions. The factor of two
ing pions have small momenta. We definetb be the time  arises because every sigma which produces charged pions

it takes them,, to increase from ;. to 4m,. This time  produces two charged pions, and was discussed in Sec. Il
scale is hard to estimate, but our result is not strongly depenl‘aking m, =0 yields(n?)"™~0.37, and therefore
o p . 1

dent on7. It seems likely that 5 frr7<20 fm and we
therefore quote our result as <(AN)2>~2.74(N). (129

13 We have already seen in Sec. V that the critical fluctuations
, (120 of the sigma field increase the fluctuations in the multiplicity
of the direct pions sufficiently that the increase in the fluc-

) tuation of the multiplicity of all the pions will be increased
where we have used EQL21). We therefore estimate that if 1, 51,64t 1006. We now see that in the vicinity of the critical

freeze-out occurs near the critical point, there will be a NONHgint, there will be a further nonmonotonic rise in the fluc-

thermal population of pions with transverse momenta of ory,,ations of the multiplicity of the population of pions with

der half the pion mass distributed according to .Elqz4). épT>~mw/2 which are produced in sigma decay.
How many such pions can we expect? That is, how larg

is N(0)? This is determined by the sigma mass at freeze-out.
If m, is comparable ton, at freeze-out, then there are half
as manyo’s at freeze-out as there are charged pions. Since In order to estimate the magnitude of the effects of critical
each sigma decays into two pions, and two thirds of thos@uctuations, one must first analyze the background, noncriti-
pions are charged, the result is that the number of chargechl fluctuations. NA49 data from PbPb collisions at 160
pions produced by sigma decays after freeze-out is 2/3 of thaGeV shows that the event-by-event distribution of the
number of charged pions produced directly by the freeze-outnean transverse momentum is as perfect a Gaussian as the
of the thermal pion gas. Of course, if freeze-out occurs closecentral limit theorem allows. Since a system in thermody-
to the critical point at whichm, can be as small as namic equilibrium exhibits Gaussian fluctuations, in Sec. IlI
(6 fm)~1, there would be even more sigmas. We thereforeve give a quantitative answer to the question of how much
suggest that as experimenters vary the collision energy, ongf the observed fluctuations are thermodynamic in origin. To
way they can discover the critical point is to see the appearthis end, we model the matter at freeze-out as an ideal gas of
ance and then disappearance of a population of pions withions and resonances in thermal equilibrium, estimate the
(pt)~m_/2 which are almost as numerous as the directresulting fluctuations, and compare with the data.
pions. Yet again, it is the nonmonotonicity of this signature We calculate the event-by-event fluctuationspaf, an
as a function of control parameters which makes it distincintensive quantity which is therefore little affected by non-
tive. thermodynamic fluctuations in the initial size of the system.
As we discussed briefly ifL], the event-by-event fluctua- We find that the resonances turn out to be of little
tions in the multiplicity of these low momentum pions are importance—the resonance gas prediction for

—e._.0.58 1000 MeV|?3/10 fm
P .58m,;. G

VIl. SUMMARY AND OUTLOOK
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((Ap7)?)/{pr)? is almost indistinguishable from that of an direct measurement ofAnyAny) would make it easy to
ideal Bose gas of pions. Furthermore, we have verified quarseparate this anticorrelation from other effects. The cross
titatively that the correlations between pions introduced bycorrelation (ANApy) is a very interesting observable to
the fact that some originate in resonance decays can be nstudy because it only receives contributions from interesting
glected. We have computed the effects of Bose enhancememifects, like Bose enhancement, thermal contact, and the
and find that they increasg¢Ap+)?) by only a few percent, critical fluctuations discussed in Sec. V. We hope that the
although the precision of the data should make effects of thisombination of the theoretical tools we have provided and
magnitude detectable. the present NA49 data provide a solid foundation for the

The difficulty comes in the treatment of the collective future study of the thermodynamics of the hadronic matter
flow. This hydrodynamic expansion boosts the momenta opresent at freeze-out in heavy ion collisions.

the pions, affecting both the numerator and the denominator We also consider fluctuations in multiplicity, an exten-
in ((Apr)2)/(p7)2 Although we do expect that the effect Sive observable. These are not affected by the boost which

cancels in the ratio to a significant extent, the “blueshift” the pion momenta receive from the collective flow, and this

approximation which we have used is too simple. We havdn@kes them easier to calculate than the fluctuationsrin
shown quantitatively that thiuctuationsin the flow velocity However, multiplicity fluctuations are contaminated experi-

can be neglected. However, the effects of the flow itself arementally by fluctuations in the initial state, for example due

not sufficiently accurately treated as a uniform blueshift, anci%rt]?aem?f;ggﬁt&nn %fe'gﬂiitegagamztﬁf ;— glshfzaiﬁmﬁzteali-
must be treated more quantitatively in the future. We find y galg g

that our prediction fof (Aps)2)/(ps)? is about 90% of that trality cut using a zero degree calorimeter. We compare the

. o X multiplicity fluctuations of the 5% most central events in the
which NA49 observes. This gives us further confidence tha A49p dat);\ to those we predictofrom a resonance gas, and
we can use thermodynamics to understand the great bulk ¢ i

he ob dl SR i th - ‘th d evidence that about 75% of the observed fluctuation is
the observed fluctuations; improving the precision of the pre;,jeeq thermodynamic in origin. We find that resonances
diction by improving upon the blueshift approximation re-

. be d play a significant role in this comparison, increasing the
mains to be done. magnitude of thermodynamic fluctuations of the pion multi-
The data are precise enough that we can do more th

. icity and bringing it closer to the data.
analyze the “bulk” of the fluctuations. We can ask, for ex—aﬂ y ging

k 12, ) With the foundations established, we then describe how
ample, about the ratiF of (N)"Aepdpr) to the variance e flyctuations we analyze will change if control parameters

of th_e_inclusive single particle distribution. This ratio is |n are varied in such a way that the baryon chemical potential at
_sensmve to the effects of_ the flow velocity. For a Class"?alfreeze-outﬂf, moves toward and then past the critical point
ideal gas,/F=1. We estimate that Bose effects result inp the QCD phase diagram at which a line of first-order tran-
JF=\Fg~1.02. In the data, however/F=1.002-0.002.  sjtions ends at a second order end point. We provide quanti-
The Bose effects may be small, but they are ten times largegtive estimates of the magnitude of the change in the ob-
than the statistical error in the data. The Bose correlations argaryables we have analyzed which can be expected near this
being compensated by some anticorrelation, and in Sec. I\joint. The agreement between the noncritical thermody-
we find a possible explanation. _ ~ namic fluctuations irp; which we analyze in Sec. Ill and
We show that energy conservation results in an anticorreNa49 data make it unlikely that central PbPb collisions at
lation which is reduced by thermal contact between the direci o AGeV freeze out near the critical point. Estimates we
pions and an unobserved heat bath. The anticorrelation vapzye made in a previous paper suggest that the critical point
ishes if the heat bath has infinite heat capacity. This effectg |gcated at a baryon chemical potentialsuch that it will
and indeed everything about the fluctuations we analyze, cape found at an energy between 160 AGeV and Alternating-
be derived from the correlatdiinyAn,) between the fluc-  Gradient SynchrotrofAGS) energies. This makes it a prime
tuations of the occupation numbers of pion modes with motarget for detailed study at the CERN SPS by comparing data
mentap andk. Energy conservation implies thatnf, fluc-  taken at 40 AGeV, 160 AGeV, and in between. If the critical
tuates up, themy is more likely to fluctuate down. The point is located at such a low that the maximum SPS
magnitude of the effect depends on the heat capacity of thenergy is insufficient to reach it, it would then be in a regime
“heat bath,” but we estimate that it leads {F=\FgF7  accessible to study by the RHIC experiments. We want to
with F1~0.99. stress that we are more confident in our ability to describe
With more detailed experimental study, either now at thethe properties of the critical point and thus to prediotvto
SPS, or soon at RHICGSTAR will study event-by-event fluc- find it than we are in our ability to predict where it is.
tuations in pr, N, particle ratios, etc.; PHENIX and The critical fluctuations near the end point affect the
PHOBOS inN only) it should be possible to disentangle the event-by-event fluctuations which we analyze in two differ-
different effects we describe. Making a cut to look at only ent ways. First, all effects of energy conservation should be
low pr pions should increase the effects of Bose enhancegreatly reduced by thermal contact as the critical fluctuations
ment. Bose enhancement effects are sensitivee jo and  in the sigma field cause the heat capacity to grow. Second,
measuring these effects would allow one to make an experthese critical fluctuations have direct effects on the fluctua-
mental determination of this quantity. The anticorrelation in-tions of the pions through th€ o7 coupling. We analyze
troduced by energy conservation and thermal contact is dughe most singular effects of this coupling, which are due to
to terms in{AnpAn,) which are off-diagonal irpk. Thus, a  the zero momentum mode of the sigma field. It is possible to
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analyze subleading corrections using a diagrammatic afy-event fluctuations in heavy ion collisions. We have esti-
proach, but we leave this to the future. mated the influence of a number of different physical effects,
In the chiral limit, the critical point becomes a tricritical some special to the vicinity of the critical point but many

point at whichG vanishes. We estimate the vacuum value ofnot, on the fundamental correlatoAn,Any). This is itself

G and use scaling laws valid near a tricritical point to esti-measurable, but we have in addition used it to make predic-
mateG at the critical point. We then estimate the increase intions for the fluctuations of observables which have been
the fluctuations oN andp- distributions which we expect in measured at present, likeApr)?) and((AN)?) and also for
heavy ion collisions which freeze out near the critical point.the cross correlatiofANApy). The predictions of a simple
Finite size and finite time effects prevef{tAN)2)/(N) and resonance gas mpde], which does not mclgde critical fluctua-
((Ap7)2)(N) from diverging, as they would in an infinite tions, is to this point in broad agreement with the data. More

- detailed study, for example with varying cuts in addition to
system. We estimate th&tAN)2)/(N) can grow by more : . i
than 10%. The ratia/F which describes the- fluctuations new observables, will help to further constrain the nonther

. , X modynamic fluctuations, which are clearly small, and better
becomes\FgFF,, with \F,, about 1.1. This effect is not ngerstand the different thermodynamic effects. The signa-

large but is still predicted to be 50 times larger than theyres we analyze allow experiments to map out distinctive
statistical error in the present NA49 meas_urement@ features of the QCD phase diagram. The striking example
=1.002+0.002. We quantify the uncertainty in our estimates,yhich we have considered in detail is the effect of a second-
in terms of the sigma correlation lenggrand the couplings  order critical end point. The nonmonotonic appearance and
at freeze-out; measurement of the enhanced fluctuatioNs of then disappearance of any one of the signatures of the critical
andpr would allow one to estimat&¢. fluctuations which we have described would be strong evi-
We want to emphasize that the rai@ is not the only  dence for the critical point. Furthermore, if a nonmonotonic
observable which can be used to detect the proximity of thgariation is seen in several of these observables, then the
critical point, and indeed is not the most sensitive observablgnaxima in all the signatures must occur simultaneously, at
available. We have focused ofF because it is simple to the same value of the control parameters. Simultaneous de-
define, and because NA49 has published data to which wction of the effects of the critical fluctuations on different
can compare our predictions. However, the specific form obbservables would turn strong evidence into an unambiguous
the singularity in(An,An,) which we find in Eq.(88) tells  discovery.
us how to construct observables which are more sensitive to Note addedAs we have stressed in Sec. IV, the fluctua-
the critical fluctuations. One possibility is to consider observ-tions in an extensive quantity such as the observed multiplic-
ables which are sensitive to the off-diagonal part ofity are unlike fluctuations in intensive quantities in that they
<AnpAnk>, because the noncritical off-diagonal anticorrela-receive significant contributions from botti) thermody-
tion in (AnyAn,) should be replaced by a much larger off- namic fluctuations at freeze-out afié) nonthermodynamic
diagonal correlation near the critical point. A second possifluctuations during the initial stage of the collision. Our ap-
bility is an analysis of the cross correlatigANAp+). proach has been to use a comparison between the data and
Because this cross correlation is dominated by interestinthermodynamic predictions to constrain the magnitude of
effects, we have seen that it can increase by an order afonthermodynamic fluctuations. After this paper was submit-
magnitude at the critical point. A third possibility is to con- ted, Ref.[33] appeared. These authors have attempted a the-
struct a ratio like\F, but using only soft pions, witp; less  oretical treatment of those nonthermodynamic fluctuations
than a specified cutoff. The effects of the critical fluctuationswhich are purely geometrical in that they can be attributed to
are largest on the softest pions, and they are thereforéhe distribution of impact parameters. Further analysis is pre-
masked inyF which receives significant contribution from sented in Ref[34]. These authors include in addition the
harder particles. Whereas we have found that the criticagffects of fluctuations in thé&IN cross sectiorj17], which
fluctuations change/F at the 10% level, their effect on a they find to be small, and also fluctuations in the number of
“soft \F” can easily be at the factor of two level. punch-through spectators and effects due to the diffuse edges
Although the sigma quasiparticles themselves cannot bef the incident nuclei, both of which are significant. Combin-
reconstructed, their presence can be detected even more #ig all contributions to the multiplicity fluctuations, thermo-
rectly than via their influence on the pions at freeze-out. Ifdynamic and nonthermodynamic, yields fluctuations which,
freeze-out occurs near the critical point, some time aftetvith no new free parameters, reproduce the magnitude of the
freeze-out the sigma mass rises above the two pion thresRbserved multiplicity fluctuations to within a few percent
old, and the sigmas decay quickly. Since these pions do n@&ccuracy34].
rethermalize, the resulting excess in the Ipywregion of the
pion momentum spectrum should be observable. The mean
p; of these pions is abouin_/2, and they are almost as
numerous as the direct pions. The event-by-event fluctua- We are grateful to G. Roland for providing us with pre-
tions in the multiplicity of these soft pions would be even liminary NA49 data. We acknowledge helpful conversations
larger than those of the rest of the pions near the criticaith M. Creutz, U. Heinz, M. Gadzicki, V. Koch, St.
point. Mrowczyrski, G. Roland, and T. Trainor. The work of M.S.
In summary, our understanding of the thermodynamics ofs supported by NSF grant PHY97-22101. The work of K.R.
QCD will be greatly enhanced by the detailed study of eventis supported in part by the DOE Outstanding Junior Investi-
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APPENDIX: FINITENESS OF MULTIPLICITY

PHYSICAL REVIEW D60 114028

1 C

(N)=g 2 Na. (A2)
a=1

which is (an estimate forthe mean multiplicity in an event.

The total number off’s in the sample i({N). The property
of the estimatdAl) is that its expectation value is equal to

Throughout the body of the paper, we use event-by-everif

and inclusive averages defined probabilistically. If we were
interested in an infinite ensemble in which each member of

M[qge]=m, (A3)

the ensemble was in the thermodynamic limit, no translation,, any Nor C. The standard deviation of this quantity is

would be required. However, when we want to compare th
relations involving quantities which are defined probabilisti
cally to those measured in an experiment, as in any applicaq An

Gb(l/vC(N)), so the estimate becomes perfect in the infinite
“C, N limit. Now let us estimate the event-by-event mean of

estimate which appears natural is

tion of probability theory we must have estimators for these

guantities which can be constructed frdimite samples. In

this Appendix, we discuss the effects due to finite sample

size.

The typical size of these effects is one over a power of therpe expectation value of this estimate is

sample size. The total numbeE, of events can be easily
made very largdsay, 16), so that 1€, and even 1/C is
much smaller than thphysicaleffects we considefsuch as
Bose enhancement, for exampighich are of the order of a

few percent or more. However, the number of pions in a
event, N, is limited by the size of the colliding system and

18 (1
<q>est0:E azl (N_a izl q?) . (A4)
M[<q>est(i|:mi (A5)

and this estimate also becomes perfecCas N go to in-

nfinity. However,

() esto” Uost- (A6)

the experimental acceptance of a detector, and is typically of

the order of a few hundred. This can introduce corrections 0bne can show that the difference between the two is on the
the order of a fraction of a percent. Of course, these effectgrger of((AN)?)/N?~ 1/N. It is obvious how to improve the

are negligible when compared to the bulk of the fluctuations
which we analyze in Sec. lll. They are also smaller than th
effects we discuss in Secs. IV and V, where we are intereste
in signatures which rise and fall by of order 10% near the
critical point. However, we have seen in Sec. lll that the
statistical errors in the present data are small enough that one

can compare quantities liK&)v2,.andv? to a precision of

estimate(A4) to make the relationshix) =™ hold exactly

Efgr finite N. Writing

C

>

a=1

def

=(d)est

1

inc_ —

q est™ C

Naf 1 &
ol

we can interpret this definition of the estimatg).y as a

(A7)

less than a percent. At this level, we must understand how tg.g it of averaging over events with a weight proportional to

deal with the 1IN corrections.

the multiplicity in this eventN,. It is also clear intuitively

Let us consider a sample of values of some one-particlgyat such a procedure is more natural than taking all events

observableq. This sample is broken int&€ subsets, i.e.,
events, withN, values per event. We use the notatiof;,
wherea=1...C andi=1...N,. (For exampleg? may
be the momentum of théth pion in theath event) The
numbersq? are distributed according to sonfint) prob-

ability distribution. We assume that the expectation value is

the same for alb:M[qgi]=m.

In Sec. Il we pointed out that the inclusive megf° is
the same as the event-by-event averégje Both quantities
are defined in the infinit€ andN limit. Let us now try to
estimate these two quantities, using our finite sangile

The natural estimate fay™ is the following:

c N,
_ azlizlqia 1 & L
Jos=—c = X (A1)
C<N>a:1|:1
2N

where we have introducesomewhat inconsistently, but
suggestively.

with equal weight as is done in EGA4). What is important
is that, by construction, this procedure rids us of any 1/

correction to the equality betwedn)es; and gii.

Let us now consider estimating variancesgofThe natu-
ral estimate for the inclusive square variance is

1 C

Vil @) es— mgl (A8)

Na
'21 (qia_q?sct 2,
Assuming that the variableg® are uncorrelated and their
dispersions are equal, i.e.,
M[afgy]=m?+ 25, 6%, (A9)
one can show that
M[V%C(Q)esﬂ=02,

for any C or N. This is the property which we require of this
estimate.

Next, we consider estimating the event-by-event variance.
One seemingly natural candidate is

(A10)
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2
. (A11)

Na

1 &1
vibe(Q)esto:m Z (N—a;:

a=1 =1

qs’i_ <q>est

This is the procedure used by NA49 to calculaigd pT)
from their data, leading to the result shown in Table Il. Let

PHYSICAL REVIEW D60 114028

Calculating the expectation value we find that

0_2

o) (A17)

M [nge(q)est] =

us calculate the expectation value of this quantity, assumingxactly. This means that the estim&#el6) satisfies our cri-

that allg’s are independent as in EGA9). We find

) ., C ( 1, 1 )~ 1
MVeod Desd=0"=—7| | § o) TN (A12)

where in the last approximate equality we neglected terms o

relative sizeO(1/C). In the case of completely uncorrelated
g we expect the following relation to hold between the

v2,dq) andvz(q):

(N)VZpda)=vadq). (A13)

terion (A14) exactly, to all orders in N and 1C. This is the
estimate forv2,(q) that should be used to analyze experi-
mental data. It introduces noN/or 1/C errors in the state-
ment that the raticc=1 in the absence of correlation or
]nteraction between the pions.

We can avoid having to apply the formula16) to the
original experimental data set in order to recalculate the
Vend P7) given in Table Il, which used the estimatall).
Using our analysis, we can instead just use the fact(that
expectation values pfthe two estimates are related fgee
Eq. (A15)]

This equality cannot and should not be satisfied for an arbi-

trary sample(unlike the equality(q)=q™), but we want it
to be satisfied on the level of expectation values:

(NYM[VZpd @ estd =MV @) esil-

We see that for the estimat&11) the difference between the
left-hand side and the right-hand side of E414) is

(A14)

1
<N>M[v§be<q>esm1—M[v%c(q>esa~a(<N><N> —1)

,((AN)?)

W , (A15)

~0
where we have neglected th®(1/C) corrections and the
corrections which are higher order inNL/ The difference
(A15) is a 1N effect, of course, but witiN~300 it could

1 ((AN)?)

SR

Vebd @) est= Vebd q)est(( 1

up to corrections which are higher order ilN1{(and correc-
tions of order 1{/C). We use this relation to convert from
one estimate to another in E@2) of Sec. Il D.

To finish the discussion of the N/effects we also point
out that yet another estimate fog,dq) is used implicitly in
the definition of(I)pT in [8,21]

(I)pT: <N>l/2Veb(_( pT)estb _Vinc( pT)- (A19)

The definition ofvgd P1)esy COrresponds, in the language
that we use here, to giving each event a weNjt(N)? (and
usingC instead ofC—1):

easily reach a fraction of a percent. Note that we are not

talking here about statistical fluctuations around the mean
values which make the two estimates deviate from sample to

sample. Such effects are of the ordey@/and can easily be
made negligible with sufficient statistics. Equati@il5), on
the other hand, reflectssystematidiscrepancy between the

C 2

, 1 21 &
Vebéq)estbza a§=:1 W N_azl d; _<q>est

(A20)

expectation values of the estimates, which would only gOCalculating the expectation value of this estimate, one finds

away if N, the number of particles in one event, were infinite.
Our task now is to give an estimator fof,{q) which
satisfies Eq(A14) with no errors of order M in the case

2

i‘ﬂ> Ny

M[v§b4q>esm]=az( o

when theg® are uncorrelated. The lesson we learned from
the estimator foq) suggests that we take each event withwhere we neglected(1/C) corrections in the last step. We

the weightN,/{N). This gives

CNa

1 2
nge(q)est: CcC-1 El TNIN

N
1 a

) qia_<Q>est)
i=1

a= <N> ( Na
(A16)

see that in th&€ — oo limit this estimate does not suffer from
1/N corrections as far as the relatiohl14) is concerned, and
does not differ from the estimat@\16). However, it does
introduce small X corrections, while the estimat@\16)
satisfies Eq(A14) exactly.
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