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Connection between inclusive semileptonic decays of bound and free heavy quarks
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A relativistic constituent quark model, formulated on the light front, is used to derive a new parton approxi-
mation for the inclusive semileptonic decay width of Bieneson. A simple connection between the decay rate
of a free heavy quark and the one of a heavy quark bound in a meson or in a baryon is established. The main
features of the new approach are the treatment obtheark as an on-mass-shell particle and the inclusion of
the effects arising from thbe quark transverse motion in ti& meson. In a way conceptually similar to the
deep-inelastic scattering case, tBemeson inclusive width is expressed as the integral of the irgeark
partial width multiplied by a bound-state factor related toltkguark distribution function in th8 meson. The
nonperturbative meson structure is described through various quark-model wave functions, constructed via the
Hamiltonian light front formalism, using as input both relativistic and nonrelativistic potential models. A link
between spectroscopic quark models &iheson decay physics is obtained in this way. Our predictions for
the B— Xl v, andB— Xl v, decays are used to extract the CKM parameftétg| and|V,,| from available
inclusive data. After averaging over the various quark models adopted and including leading-order perturbative
QCD corrections, we obtaitVqp| = (43.0%0.7e, = 1.8,) X 1072 and | V| = (3.83+ 0.48,,,+0.14,,) X 103,
implying |Vp/V¢p| =0.089* 0.01%,,+0.005;,, in nice agreement with existing predictions.
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PACS numbses): 13.20.He, 12.15.Hh, 12.39.Ki, 14.65.Fy

[. INTRODUCTION chosen in practicésee Refs[2,3]), introducing consequently
a model dependence. In this respect, the use of phenomeno-

The investigation of inclusive semileptonBmeson de- logical models, like the constituent quark model, could be of
cays can provide relevant information on the Cabibbo-great interest as a complementary approach to the OPE re-
Kobayashi-Maskaw&CKM) parametergV,,| and|V,,| as summation method.
well as on the internal nonperturbative structure of the  Until now, two main phenomenological approaches have
meson. In particular, a precise knowledgeVg, is essential _been applled to the ples_crlpthn of the nonperturbative strong
for the description o€ P violation within the standard model interaction effects in inclusive heavy-flavor decays: the
and indeed its determination is one of the main goals of thé\ltaelli-Cabibbo-CorbeMaiani-Martinelli (ACCMM) model
b-flavored phenomenology. [4] and theex_clusn/_evanant based on the one—by—_one sum-

As far as the theoretical point of view is concerned, theMation of various final resonant channgs-8|. The impact

QCD-based operator product expansi@PB is widely rec- of the Fe_rmi motion in the parton model has also _been ad-
ognized as a consistent dynamical approach for investigatingressed in Ref§9—-11], where the effects due to the internal
inclusive heavy-flavor decay4]. It is also well knowr[2,3] ~ motion of theb quark inside théd meson have been encoded
that an adequate description of the end-point region of thd @ model-dependent quark distribution function. In Ref.
lepton spectrum requires a partial resummation of the modhe latter has _been related to the fragm_entatlon function of
singular terms of the OPE. In this way, the phenomenon off€aVy-quarks into heavy mesons, while in R¢t0,11 the
the Fermi motionof the heavy quark inside the hadron, al- b_our_wd-s_tate effe(_:ts have been incorporated via the following
ready introduced into phenomenological models idehoc ~ distribution function:

way a long time agd4], emerges naturally in the OPE ap-

proach. The final result is conceptually similar to the B - 2112

leading-twist term of deep-inelastic lepton-nucleon scattering F(X)=f dp, [#(x,pD)|?, 1)
case. In particular, the effects of Fermi motion are encoded

in a heavy-quark distribution function, whose first two mo- . . .
ments car): ge expressed in terms of the matrix elements &here|<//.(x,pf)|2 is the probability 10 f"ld théo-quark car-

the heavy-quark kinetic operator. However, the first few mo-¥ing @ light-front (LF) fraction x=py, /Pg of the B-meson
ments do not exhaust the information hidden in the heavyMomentum and a transverse relative momentum squared
quark distribution function, which cannot be calculated yetp? (=|p.|?). In Ref. [11] the model wave function
from first principles; therefore, a particular functional form is z/x(x,pf) has been constructed via the Hamiltonian LF for-
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malism(see Refs[12,13)) using as input the canonical wave model parameters will be estimated through the use of dif-

functions corresponding to various quark potential models. ferent meson wave functions, either obtained in a phenom-
The important feature of the approach of R¢fid,11] is  enological way(as in Ref.[10]) or constructed via the

the treatment of thé quark as a virtual particle with mass Hamiltonian LF formalism from quark potential modébss

m§=x2M2, whereMg is the B-meson mass, while the ef- in Ref. [11]). Finally, our conclusions are summarized in

fects due to the transverse motion of thequark are ne- Sec. V.

glected everywhere except in the calculation of the distribu-

tion functionF(x) in Eq. (1). The final expressions obtained Il. KINEMATICS

for the semileptonic branching ratios and the lepton energy ) ) ) o

distributions clearly exhibit a close analogy with the deep- The inclusive semileptonic width's, for the decay pro-

inelastic lepton-nucleon scattering case. cessB— Xy v, wherel=e,u, or r andX, is any possible
The aim of this paper is to generalize the work of Refs.hadronic state containing a charm quatk €c) or a light

[9-11] by developing a more refined expression for the in-quark @' =u), can be written in terms of the contraction

clusive semileptonic decay widthThe new features are the among the leptonic tensdr®? and the hadronic on&V, s

treatment of theb quark as an on-mass-shell particle with [1]:

massmy, [as is required in the Hamiltonian light frofitF)

formalism] and the full inclusion of the effects due to the 1 GiVogl? [ , up

b-quark transverse momenta. Our main result is the deriva- SL:(ZTP M—Bf d qf d7rLWeg, (4

tion of a new parton formula for the differential inclusive

width, which is similar to the one derived by Bjorke al. whered4q=2w|ﬁ|dq2dq0 d7,=|5||dQ|/(16772\/52) is the
[15] in the case of infinitely heavp andc quarks, viz. leptonic phase spacef), is the solid angle of the charged

(free) lepton |, |py|=gq?®,/2 is its momentum in the dilepton
dl'g, dI'g,

= (9?,9o) 2) center-of-mass frame and>|E\/1—2)\++)\2_, with N .
2 2 q !qO ? 2 2 )
dg®dg,  dq =(mf=m?)/q®. The tensord ¥ and W,z in Eq. (4) are

wheredl'{*®)/dq? is the free-quark differential decay rate explicitly given by

and the functionw(qg?,q,) incorporates the effects of the

aB= 2l n%n® + pPp® —a®B(p-D. ) +ie?BYS
Fermi motion of the heavy quark expressed in terms of the L 2Lpi Py TRIP, g (P p,,l) '€ p|yp,,|5],

b-quark distribution functior (x,p?)|?. In Eq. (2) g=p, (5)
+p,, is the four-momentum of the lepton pair, agglis the n 45 n
dilepton energy in thdg-meson rest frame. The structure of Waﬁz(zwﬁi f 11 $54( Ps—q— > pi>
Eq. (2) suggests that in the limit of heavy quarks with infinite n i=1 (2)32E; i=1
mass(i.e., my—o andm.—) one has . .
: o) X(B1 0)|n)(nli 4(0)[B), ©
f daow(a?,q0)=1, (3 respectively. The summation in E) includes all possible

final hadronic stateg,,(0) is the weak current mediating the

which means that the total inclusive width of the hadron isd€c@yb—q’ and Pg is the B-meson four-momentum. Tz'he
the same as the total inclusive width at the free quark levelh@dronic tensor(6) is function of the two invariantsy
The corrections to the free-quark decay picture are mainly=d-d and go=(q-Pg)/Mg, where the latter is related to
due to the difference between the quark magsand the the invariant masdy of the final hadronic system by

. . . _ 2 2 2 . .
meson masM g as well as to the@rimordial motion of theb ~ =(Mg+q°—M5)/2Mg. In what follows we will consider
quark inside the meson. These nonperturbative correctionsthe B-meson rest frame. _ _ _
vanish in the heavy-quark limin,—, but at finite values The integral over the leptonic phase space in &.is

of the b-quark mass a new parton description of inclusivediven by

semileptonic decays, based on the constituent quark model, | . |

is derived. 1 |p
The plan of the paper is as follows. Section Il contains a J dTlLa'g:E ﬁ<|‘aﬁ>’ @

brief discussion of the kinematics relevant to inclusive semi-

leptonic B-meson decays. In Sec. Ill we derive our main it

result, Eq.(2), for the differential inclusive semileptonic de-

cay rate. In Sec. IV we compute the semileptonic branching 1

ratio for the processeB— X l», and B—X,/v,, paying (L*Py= 4—J dQ, L8

particular attention to the extraction pf.,| and|V,y| from 7

available inclusive data. The dependence upon the quark

2 3
=3 (1+20)(9"a’ =90 + 210"7q% 1, (8)

A preview of our approach can be found in REF4]. wherex ;=\, —2\2 and No=\y —\2.
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Introducing the dimensionless kinematical variables malization is given b){fédxfdﬁi|¢(x,pf)|2=1- In Eq.(12)
=q’/mj ands=M3/mg, the semileptonic widtft4) can be  the function O(eq), Wheree, is the q'-quark energy, is

cast into the form inserted for consistency with the use of the valence LF wave
- o ap function zp(x,pf), while the § function, expre_ssing the de-
FSL:GF—mg|Vb ,|2ftmaxdt¢/(t)fsmaxdsm (L)W, cay of theb-quark to aq’-quark, can be rewritten as
(4m) q tmin Smin My M é ,
© APy )= 1= oo 20pT-ptY), (19
where °
R whereq? is the LFplus component of the dilepton momen-
MEa(t,s)zi\/(1+x§t—xgs)2—4x§t (10  tum,q"=qgo+[q|, and
My Xo
X m x my)2
andxy=my/Mg. In Eqg.(9) the limits of integrations in the p*2=mZ X q—+(1+t—p)—(x—0 q—+) t—1}, (14

t-s plane are given bgmin=2%3, Smax=(1—Xo\1)2/X3, tmin
=n¢/mg, and tya,=(1-)%3, where (=M, /Mg, with

M, being the lowest mass of the final hadronic std¥g( . .
—My, in case of theb—c transition andVl,,=M . for the We now substitute Eq(11) into (9) and use the fact that

) B
b—u transitior). the contraction of theveragedepton tensoKL*?) and the

Before closing this section we note that the right-hangduark tensow’{ does not depend anands and, therefore,
side of Eq.(9) is expressed in terms of an integral over can be taken out of the integral oveiin Eqg. (11); the ex-
physical spectral densities and phase space, both dependiBticit expression for the tensor contraction is given in the
on meson masses. As it will be shown in the next section, if\Ppendix[see Eqs(A6)—(A9)]. The differential decay rate
our parton picture the heavy-quark masg emerges as the becomes
relevant parameter.

with pzmé,/mﬁ being the quark mass ratio squared.

derL_Gémﬁw |2@¢ ©
lll. LIGHT FRONT CONSTITUENT QUARK MODEL dtds  (4m)3 "0 m, !
APPROXIMATION FOR W,,,

. . . LePywES) 7 my [minix;]
In this section we apply the constituent quark model to the x# — —fJ ? dx| g (x,p} 2)|2,
treatment of semileptonic beauty decas; X l v, in close Mg Xoq Jx
analogy with the parton approximation in deep-inelastic (15)

lepton-nucleon scattering. Our approach is basedipthe

hypothesis of quark-hadron duality, which assumes thalyhere the integration limits follow from the conditigt 2
when a sufficient number of exclusive hadronic decay modes. i,

is summed up, the decay probability into hadrons equals the '

one of its partons, andii) the dominance of the valence N ‘g
component in theB-meson wave function. Following this Xp o= Xofl—=xo Got |l (16)
assumption, the hadronic tens@f,; is given through the ’ g aoi|a|

optical theorem by the imaginary part of the quark box dia-

gram describing the forward scattering amplitl@e-11]: o~ = .
with go (q) being the energythree-momentupnof the lep-

1dx S g ) ton pair in theb-quark rest frame, viz.
W= | S [ aBwgs b0 (o= 0)

2q 2|a| -
—mi,]ﬁ(t?q')|¢(x,pf)|2, (11 —m;=1+t—p, —mbEa(tlp)=V(1+t—P)z—4t-
(17)

where p,=(py Py .P.) =[xMg.,(Mi+p?)/xMg,p, ] with
02=p; byt — p? =m? and the quark tensw&bﬁq')(pb Py i To proceed further we do not need the explicit expression for

defined analogously to the lepton tensor in E5): the contraction(L*#yw"), which any way can be easily

calculated using Eq$8) and(12) [see Eqs(A6) and(A9) in
W%J )(pb,pq,):4[pq,apbﬁ+ Pq’ sPba— Jap( Py’ Pb) the Appgndb}. Ir_13tead we not_e that.the same contraction
appears in the differential semileptonic decay width of a free
+i€apysPy po)- (12 bquark into aq’ quark
Equatior)(l;) cprresponds to thg average of the free-quark dl“g[ee)(t) - Gémg 2|a’| <Laﬁ>wgb’8q!)
decay distribution over the motion of the heavy quark, de- = 3| Vo |2 — @ (1) ——————. (19
dt (4ar) " m, m#

scribed by the distribution functiops(x,p?)|?, whose nor- b
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Using Eq.(18) we can express the contracti()ln“ﬁ)wg%' practical way for the extraction of the CKM parametprs,)|
throughdl“g’fe)/dt. Then, from Eq(15) we obtain our main and|V,;,| from available inclusive data. The nonperturbative

result for the semileptonic decay width of tBemeson ingredient in Eq(20) is the meson wave functiotﬂ(x,pf).
In what follows, we will adopt both a phenomenological an-
dls, drg[ee)(t) Smax satz and the wave functions corresponding to various quark
TR i dsw(t,s), (19  potential models. As for the phenomenological wave func-
Smin tion, we use the exponential atsantroduced in Ref[10],

where the bound-state functian(t,s) is defined as which reads as

i 2

_ 2 me@ min[Lxz] *2y]2 X.p2)= N ex _E E_Fi 1+p_l
o(t,8)=mzx, T |:| . dx|g(x,p¥?)[2. (200  #(X,pL) = 2| & T1-x )|’
q (21

In Eqg. (19) the region of integration over the final invariant
hadron mass is characterized bygaark threshold M{®)
=m., defined through the condition;=min[1x,] in Eq.
(20), which differs from the hadronic thresho{de., M for
q'=c or M_ for q'=u).? Explicitly one getssm,=p
=(my/my)? and spa=X3(1—Xo\t)2. Moreover, since the in-
equalityt<(1—/p)? follows from Eq.(17), the bound-state
factor (20) as well as the structure functiofa8) are iden-

wheremg,, is the mass of the spectator quark in Beneson,
é,=mg,/Mg, Nis a normalization constant ang=1 is an
adjustable parameter obtained in Rgf0] from a fit of the
experimental data on the differential decay rate of the exclu-
sive proces8—D*|v,. In what follows we will refer to the
phenomenological ansat21) as the quark model. The
other models considered(to E) are based on LF-type me-
son wave functions, which can be written in terms of the

; ishi 2 _ 2
me_}!g \Slﬁmsl:"nq[ggr?n;fsr?\;’e sn;qr,n)ilé tonic decav width. E radial wave functionw(p?) corresponding to a particular
P, P y ' q'quark potential model dsl1]

(19), is expressed as an integral of two factors. The first one
is the parton differential decay ratg18) of a free heavy

quark, which sets the overall scale for the decay rates and S (x,p2) \/ Mg L mﬁ—mgp 2 w(p?)
X! = - i)
does not depend on the spectator quark. The second factor Py 4x(1—x) M2 Jan

[Eqg. (20)], which incorporates the nonperturbative correc- 22)
tions to the free-quark resulbow depending on the specta-
tor quark, is given by an integral over the distribution func- . - ) )
tion of the b quark. In the heavy-quark limitn,—«, the Wherze ) MOEII\Z/mb“L P+ ymg,+ pzz[(sz szmb)éx
b-quark distribution in thé-meson becomes a delta function +(P%+msp)/(1—x)]7< is t2he freze mass anp=p? +p;,
peaked ak=1 [more precisely(x—1)- 8(p, )], which im-  With = p,=(X=1/2)Mo+(m5,—my)/2M,.  In pa}rtlculgr,
plies that the functions(t,s) goes tod(s—p) for m,—, modelsB—E c;orrespond to the radial wave functlow§p )
leading to the sum rulé3). At finite values of theb-quark  Of the potential models of Ref$18,6,19,20, respectively.
mass our result fof's, exhibits anm, dependence of the The main Q|ﬁerenc2e among the various qgark models lies in
following general form: FSL“mg[1+C/mb+O(1/m§)], the behavior ofw(p~) at high values of the mterna_l momen-
wherec is a nonvanishing coefficient depending on the par-tum P- Model;B andC corresppnd to a soft Gaussian ansgtz,
ticular quark model adopted. However, the massis the which takes into account malnl_y the 2effects of the.conflne-
constituent mass of thie quark, which may differ from the ment scale, Whefe'?s. th_e functiongp®) corresponding to
pole quark masg., commonly appearing in the OPE of the modelsD andE exhibit high momentum components gener-

: ted by the effective one-gluon exchange part of the inter-
B-meson decay ratésee Refs[1] and[16]). Assumingm a ; o
:Mb_C/5+O(:)L//Mb)i the well-known resulf1] of thegabb- quark potential. In case of modefs D, andE the distribu-

sence of the 1k, corrections to the free-quark decay may betion function F(x) [Eqg. (1)] has been already calculated in

recovered. The above argument is completely analogous EBef' [11% Itftulr:ns out thhat the mo(;i;ls— %.yiteld quite Sl|<mt|)|
that used to eliminate the &/ corrections from the total ar resufts for (.X)’.W ereas mo predicts a remarkably
width in the ACCMM model[17]. broader x distribution. In terms of the mean valugx)

=[3dxxF(x) and the variances?= [§dx(x—(x))?F(x),

one gets/x)=0.90 and\/a?=0.06 for modelsA— D, while

in case of modeE [the Godfrey-IsgukGl) potential modéel
After having described the theoretical tools involved inone has(x)=0.87 andyo?=0.093 Such a striking differ-

the calculation of the inclusive rate, we now focus on theence is directly related to the larger mean value of the inter-

nal momentum characterizing the Gl model with respect to

the others caseA—D. The values of the constituent quark

IV. NUMERICAL RESULTS

Note that thequark thresholdM{)=m, differs also from the
parameteM,, , which was introduced in Reff10,11] with the aim
of separating the exclusiv® and D* channels from the hadron  3Note that(x) does not generally coincide with the location of the
continuum. maximum ofF(x) as well as with the value of.

114024-4



CONNECTION BETWEEN INCLUSIVE SEMILEPTONT . . . PHYSICAL REVIEW D 60 114024

TABLE I. The values of the constituent quark mas&asGeV) TABLE Ill. The branching ratid“SL/F(Bexp) of the inclusive pro-
and of the average internal momentum squaEd (in GeV?) for cess B—=X,ly (with l=e,u) in units 102
the quark model#\—E (see text The value of theB meson mass ><(|Vub|/0.0032)2(Tf§"p)/1.57 ps), calculated within the quark
is Mg=5.279 GeV[22]. modelsA—E and considering for the pQCD corrections an overall

reduction factor equal to 0.8§23]. The values ofV| in units of
Model A B C D E 10 3% \Bri§®0.16%,/1.57 psks® and the values of the ratio

[Vup/Vepl, obtained within the various quark modefs-E, are

my 4800 4880 5200 5237 4977 LN Boned

me 1.400 1550 1.820 1.835  1.628

m, 0.300 0.330 0.330 0.337 0220 podel A B c D E
Mg—m, 0479 0399  0.079  0.042  0.302

m,— m, 3400 3330 3380 3402 3349 Is /TE® 0.109 0108 0.121 0123  0.102
my—m, 4500 4550 4870 4900 4757 [Vl 3.88 3.89 3.69 3.64 4.01
my, /Mg 0.909  0.924 0985 0992 0943 [Vu/Vel 0.095  0.091 0.086 0085  0.088
me/my 0.292 0318 0.350 0.350  0.327

my/my 0.063  0.068  0.063  0.064  0.044 o .
(p?) 0234 0.952 0.277 0.262 0.553 model dependence of about10%. Finally, assuming the

experimental world average valueBr&P(B—Xev,)
=(10.43+0.24)%[22], the CKM matrix elementV,,| can
P N2 easily be obtained from the predicted values of$tiebrang-
masses as well as the mean valpé)= [ 5dpp’|w(p?)|? for hing ratio and the corresponding results are reported in Table

the different quark models considered in this paper are coly  The average over the various quark-model predictions
lected in Table I.

We have calculated Eq$19),(20) in case of the decay yields
procesesB— X | v, and B— Xl v, adopting the five quark |Vep| = (43.020. 7+ 1.8) X 103
modelsA to E [in all these models the physical mass of Bie
meson,Mg=5.279 GeV, has been taken from the recent Brg® 1.57 ps

Particle Data GrougPDG) publication[22]]. We have also (23
considered that perturbative QCD corrections lead approxi-
mately to an additional multiplicative factdPg'in Eq. (19),

which typically reduces the semileptonic decay width. At
leading order the correction associated with the running cou
pling constanteg is well known[23] and for theb—c (b

—u) transition we will consider in what follows the value
JPS'=0.90 (0.85). Our results for the branching ratio

s /TP wherel' P is the experimentaB-meson width

(PEP=1/7" with 7(*=1.57+0.04 ps [21]), are col- semileptonic decayB—X,lv,. The existence of theb
lected in Table Il for the proced3— Xl v; with the branch- —.uly, transition has been demonstrated few years ago by
ing ratio being given in units of 1ﬁ(|Vcb|/0-040)2(Tfaexp)/ the CLEO[26,27 and ARGUS[28] Collaborations through
1.57 ps). It can be seen that the nonperturbative effectgpe observation of semileptonB:meson decays with leptons
mocked up in theb-quark distribution functiofy(x,p?)I%  that are too energetic to originate from the-cly, transi-
are mainly related both to the broadening of thdistribu-  tion. Very recently, the CLEO Collaboratiof29] has re-
tion, generated by the high-momentum components of th@orted the first signal for exclusive semileptonic decays of
B-meson wave functiorisee modelE), and to the quark the B-meson into charmless final states. In RES0] the
mass ratioyp= my, /My, (see Table)l The values predicted ALEPH Collaboration has announced a model-independent
for the semileptonic branching ratibg /TP exhibit a measurement of the inclusive—uly, width, viz. Br(b
—uly))=(0.16=0.04)%. The most important application of
TABLE II. The branching ratid’s, /T for the inclusive pro-  the analysis of the inclusive dec&— Xl is the extrac-
cess BXJy (with l=ex) in units of 102x(|V|/ tion of the CKM parametefV,,|. Our results obtained for
0.0400(7&PY1.57 ps), calculated within the quark modéls-E  the branching ratid”s /T'§* and for the CKM parameter
and considering for the pQCD corrections an overall reduction fac{V,| extracted adopting the ALEPH value for the experi-
tor equal to 0.90[23]. The values of|V,,| in units of 10°  mental semileptonic branching ratjae, Br{&*®(B— X eve)

X \Bri®/10.43%/1.57 psk5*®, obtained within the various =(0.16+0.04%)], arereported in Table Ill. Using the val-
quark models considered, are also reported.

10.43% N (&0

where the experimental errors of the branching ratio and the
B-meson lifetime have been taken in quadrature. Our LF
prediction (23) is consistent with the updated “experimen-
tal” determination of |Vep| [24],* |Vep|ing=(39.8£0.9,
+4.0,) X103, as well as with the recent OPE analysis of
Ref. [25], |Vp|ing= (41.3% 16,45+ 2.01) X 1073,

The other inclusive process we want to consider is the

Model A B C D E 4 ) o

The value quoted in Ref{24] corresponds taBr&P=10.77
Lo /TP 10.1 9.2 9.0 9.1 8.0 +0.43% andr$™=1.60+0.03 ps. After correcting for the values
[Vep| 40.7 42.6 43.1 42.8 456 adopted in this paper, one get¥ p|inc=(39.5*0.9p*4.01)

X108,
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ues of|V.,| obtained in Table Il, also our predictions for the rate of a free heavy-quark and the one of a heavy-quark
ratio |Vp/Vep| are reported in Table llI. It can be seen that bound in a hadron. The main features of our approach are the
the model dependence of the predicted branching ratio iFeatment of théd quark as an on-mass-shell particle and the
about+10% as in case of the decay proc&s X v, (see inclusion of the effects arising from thequark transverse
Table 1). Averaging our predictions over the various quark motion in theB meson. Our main result is E¢R), or more

models, one gets precisely Egs(19), (20).
s Another result of this paper is the determination of the
|Vupl = (3.83% 0.48,,+0.14;,) X 10 CKM parametergV,,| and|V,,| using the available experi-

mental values for the branching ratio of the procesBes

exp
Brg! 1.57 ps (24) —Xlvy andB— Xl v;. Our results exhibit a model depen-

0.16% V 75" dence related mainly to the uncertainties associated to the
nonprecise knowledge of the primordialquark distribution
|Vub/Vep| =0.089+ 0.01%,,+ 0.005y, (25  function and to the values of the constituent quark masses.

) ) ) These uncertainties lead to a final theoretical uncertainty in
Our result for|V,/Vep| [Eq. (25)] is consistent with the  ihe extracted value of bothV,,| and|V,,| of about+5%.
model-independent value derived from the QCD-baseqncjyding leading-order perturbative QCD corrections, we
heavy-quark expansiof¥,/Vcp|=0.098+0.013[31], and  hayve found |V, = (43.0+0.7,,+1.8,)X 10" and |V,

. Xp—
with the value extracted from the measurement of the end- 3 g3+ 0.48,,*0.14,) X 103, which imply |Vyy/V|

point region of the lepton spectrumVy,/Ve,|=0.08  _g ogor 0.01%,,*0.005;, in nice agreement with existing
*0.01e4,=0.02;, [27,28, as well as with the result obtained predictions.

from a LF analysis of the exclusive decags->Dlv, andB In conclusion, we point out that olwF approach can be

— vy, |Viyp/Vep|=0.082-0.016 [13]. Furthermore, our  applied to the investigation of lepton energy spectra and to
result for| V| [Eq. (24)] is consistent within the errors with jnclusive processes other than semileptonic decays, such as,
the value|V,|=(2.9=0.4)<10 ", obtained in Ref[13] ¢ g, the nonleptonic branching ratios both for external and
from a LF analysis of the excluswe_gecaﬁyﬁwl v, and internal types of decayd0,11]. Another field of application
with the finding| V| =(3.2+0.4)x 10 °, obtained in Ref. s the calculation of the lifetime of th&, meson and the

[32] after averaging over the exclusii@—mly; and B theoretical estimation of the inclusie—sy width.
—plv, decay modes, as well as with the regMt,,| = (3.3

+0.2733+0.5)x 1072 quoted in a recent CLEO repdi33].

Note that the larger uncertainty in our extracted value of ACKNOWLEDGMENTS
[Vl [EQ. (24)] is the experimental one, mainly because of
the large error quoted by the ALEPH Collaborat{@®]. An Three authorgS.Ya.K., LM.N., and K.A.T.-M) grate-

interesting way to obtain a better determinatior]\¢f,| has  fully aknowledge the financial support of the INTAS-RFBR
been proposed recently in R¢B4] and it is based on the Grant No 95-1300 and the INTAS Grant No. 96-195. This
investigation of the recoil mass spectrum in tBe>X,lv,  Work was in part supported by the RFBR Grant No 95-02—
decays aM y<M ,..<Mp. The suggested value fdd ., is 04808a and RFBR grant Ref. No 96—15-96740.

1.5 GeV, chosen in order to avoid the leakage of the tail of

the B— X l v, transitions, which can occur because of the

finite resolution of the experiments. We have therefore APPENDIX

evaluated the partial branching ratle, /T ", obtained by
cutting the integration oves in Eq. (19) at the values,y
=(1.5 GeVimy)2. The results forl'% /T in units of
1072X (| V| /0.0032F (7P 1.57 ps) are 0.073, 0.064,
0.074, 0.078, 0.060 in case of the quark mod®isE, re-
spectively, which correspond to a fraction lof>u decays
with My=<1.5 GeV equal to 67, 59, 61, 63, and 59 %. __ 2 2
Their average is 0.0760.008 in comparison with the total Wap= = 9apWa(G%,Go) +VaV s Wo(47, Go)
(averageylbranching ratio of 0.1180.009 in the same units — i €48,5U7V W3(G%,dg) + (V,Ug+ U,V 5)W4(G?,do)
(see Table I}, corresponding to a fraction of (624)% of
b—u decays withMy<1.5 GeV. It follows that the model
dependence is only slightly increased by cutting the integra-
tion over the recoil masklyx atM ,.,,=1.5 GeV, at the price . )
of reducing the number dB— Xl v, events by=40%, in wherev=Pg /M3 is the four-velocity of theB meson and

overall agreement with the findings of RE84]. u=q/Mg. Note that the terms proportional tg, or ug in
Eq. (8) do not contribute to the differential decay rate if the

lepton masses can be neglected. Therefore| foe or u
only Wy(g%,do), Wa(q%,do), and Ws(g%,qo) are actually
In this paper we have derived a new parton formularelevant. The dimensionless structure functidNgg2,0)

which establishes a simple connection between the decayre functions of the two invariant® andgy=v - q.

Let us remind that the dimensionless ten®¥dy; in Eq.
(6) can be decomposed into five different Lorentz covariants,
involving therefore five structure functionsV,(qg?,q,) to

Ws(92,qp): Vviz,

+uauﬁw5(q2!qo)! (Al)

V. CONCLUSIONS
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All the inclusive observables can be expressed in terms ofvhere

the structure functionsV,(g2,qo) (i=1,5). Thus, the con-
traction(L*)W,,/M3 in Eq. (9) is given by

< Laﬁ>Wa

B 4 2
2 = §XOF(t,s), (A2)
B

where

2
@

My

F(t,S)Egt(l+)\1 2)\2)Wl(t S)+

3
+ =Nt

3
5 Wz(t,s)+§)\2t[(1+xgt—x§s)w4(t,s)

+X3tWs(t,8)]. (A3)
We have derived our basic res(i9),(20) without calcu-

lating explicitly the structure functionsV;(t,s) in our LF

parton approximatioiill). However, since we have in mind

also more general applications, such as, e.g., the calculation
of the lepton energy spectrum, we now present our LF for-

mulas for the function®V;(t,s). To this end, after averaging
over the azimutal angle of the transverse momentum ,
the quark tensowg%'(pb,pq,) can be cast into the form

de
b 2
f e ( q )(pb Pgr) =Mp{ —GupW1t VoV W0
_i6a375V7U5W3+(VaUIB
VU, Wyt U UgWs),  (A4)

which implies {=1,5)

277- min[1.x,] 2112
wits)=me [ " s w2 (48)

1

wherer =xoq"/m,. Note that the contractiofL“#)w°% of

2
(1+)\1)|q| + =

F(t,p)=3t(1+XA;—2\)W; 5
b

ot |w

3 202 2
+ 5 Not[ (1+XGt—XgS) W4+ Xgtws]. (A7)

The calculation of the functions;(t,s;x) is straightforward
and leads to

Wi (t,5;X) = 2[ (- 1/2)zo— £2t],

2,2 1,
Wo(t,S;X)= 3&t°—3étzpt+t+ EZO

8
az(t,s)

Ws(t,s;X)=— 2ét],

Xoa(t,s) (20~

: Xoa(t,S)

Pz e) - =

X—
r

sl
X%az(t,s)

Wy(t,s;X)=
X (zg—2&t) +[ 29— E2t— 1](1+x§t—xgs)] ,

x—xéé(zO—gn

X2
x= (2= &)

4

— 2§ £z9— £%t— 1]} ;

where é=x/r, zy=1+t—p and the quantityx(t,s) is de-

fined by Eqg.(10). Using Eq.(A8) it can be easily verified
that

F(t,p)=(1+X)[(1-p)?+(1+p)t—21t%]

— 3N\, t(1+p—t). (A9)

Using Egs.(18), (A6), and(A9) one obtains the well-known

the lepton and quark tensors is given in terms of the funcresult

tions w; by

(LByWPd 4
=),
b

(AB)

(free)(t)
dt

GEm al

IVbq |2—<I>|(t>{(1+x1>[<1—p)2

+(1+p)t—2t2]—3)\2t(1+p—t)}. (A10)
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