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We successfully describe the DESY HERA data on diffractive deep inelastic scattering using a saturation
model which has been applied in our earlier analysis of the inclesivecattering data. No further parameters
are needed. Saturation already turned out to be essential in describing the transition from large to small values
of Q? in inclusive scattering. It is even more important for diffractive processes and naturally leads to a
constant ratio of the diffractive versus inclusive cross sections. We present an extensive discussion of our
results as well as detailed comparison with da0556-282(199)02221-3

PACS numbdss): 13.60.Hb

[. INTRODUCTION taken from the measurement at the DES®Y collider
HERA.

In a recent analysi$l] we introduced a model which The plan of our paper is as follows. In Secs. Il and Il we
provides a description of the transition between large andecapitulate the results found in Rét] and discuss qualita-
low Q2 in inclusive lepton-proton deep inelastic scattering attively the basic features of saturation for both inclusive and
low x. The idea behind our model is a phenomenon whicHiffractive processes. In Sec. IV we provide the detailed for-
we call a combined saturation at l0@? and lowx. In this ~ Mulas for our numerical analysis and discuss the comparison

kinematical region the size of the virtual probe is of the orderVith the data from H17] and ZEUS[8] in Sec. V. In Sec.

of the mean transverse distance between partons in the pry! We present the impact parameter version of our results

ton. The cross section for the interaction between the prob _nd f'n'Sh(th conclu?lng remarkj n _ISec. Vlrll' T(?e_Appen- ¢
and the partons becomes large and multiple scattering has )é\::vraosss se?:tit;r? f% r:rcnals:sng:nceiiﬁrztgz\?eogc;ttz ri%lvfltntl([))gr(-)
e o b et " ular 1 contans the compaton of th reevan set o
but still perturbative values of? (~1-2 GeV for x eynman diagrams which contribute to the quark-antiquark-
Si P : : gluon final state.

~10 7). We therefore believe that saturation should be de-
scribed by means of perturbative QQ&ee also for example
Ref. [2-5)). . IIl. SATURATION IN INCLUSIVE PROCESSES

The QCD framework we use allows us to describe not
only inclusive but diffractive processes as well. A general Our starting point in Ref[1] was the well established
feature of diffraction is its strong sensitivity towards the in- physical picture of smabk interactions in which the photon
frared regime even for larg@”. The fact that diffraction has With virtuality Q?, emitted by a lepton, dissociates into a
a strong soft component has already been noticed earliefuark-antiquark pair far upstream of the nucle6n the
leading to the assumption that the Pomeron in diffractionnucleon rest frameThe dissociation is then followed by the
ought to be soft. The idea of saturation, however, emphasize¥attering of the quark-antiquark pair on the nucleon. In this
the transition from hard to soft physics. As mentioned earliefPicture the relative transverse separaticf theqq pair and
saturation effects become already viable at rather hard scall€ 'ongitudinal photon momentum fractianof the quark
and strongly suppress soft contributions in diffractive pro- 1-a for.the anthliark are good .degrees of freedom.. In
cessed6]. This mechanism leads to an effective enhance:[hese.Va”ables the*p cross sections have the following
ment of hard contributions and hence to an effectivef""cw”zed form(9,10:
Pomeron intercept which lies above the original soft value.

The important conclusion of this paper is that the concept L
of saturation leads to a goc_>d description of the d|ffra(;t|ve or L(Xan):f dzrf da| Wy (a,0)|25(x,r?), (1)
data. Our approach has the important property that the inclu- ’ 0 ’
sive and diffractive cross section have the same power-
behavior inx. We have obtained these results without the
use of any additional fitting parameters, i.e. we solely takevhere ¥ is the squared photon wave function for the
the model as determined in Rdfl] from the analysis of transverse T) and longitudinally polarized L() photons,
inclusive processes. The diffractive slope which we use igjiven by
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Wrilen=222 3 &) 4Qear(1- ?k3@n), (L), ?

In the above formulak, andK, are McDonald-Bessel func- More precise analysis leads to logarithmic@f modifica-
tions and tions of the above estimations. To summarize, the saturation
o model naturally interpolates between the two different re-
Q’°=a(l—a)Q%+ m?. 3 gimes ofot described by Eq96) and (7).
Saturation is characterized by a “critical liné”in the
The dynamics of saturation is embedded in the the effectivex, Q?)-plane given by the equatio(QZ:l/Rg(x) [1,2,4. It
dipole cross sectiow(x,r) which describes the interaction is important to note that at very small saturation effects

of the q pair with a nucleon: become relevant at fairly high scal¢®@’~1-2 Ge\? for
2 DESY HERA energie$l]) where one believes that pertur-
F(X,r2) = 1— _ ’ 4 bative QCD is valid. The critical line divides the phase space
sxr9 UO[ ex 4R(2)(x) @ into two regions, the scaling region in which relatitf) is

valid and the saturation region with the behavior given by
where thex-dependent radiuR, is given by Eq. (6).

The physical picture behind saturation is based on inter-
pretation of thex-dependent radiuRy(x) as the mean sepa-
ration of partons in the proton. We see from E§) that
whenx decreases so does the mean separation. Thus at low
The normalizationo, and the parameters, and A\>0 of  the distribution of partons in the proton is no longer dilute
Ro(x) have been determined by a fit to all inclusive data onwhen probed by a virtual photon of fixed resolution
F, with x<0.01[1]. (The detailed values of these param- (~1/Q) and saturation sets in. This happens when the reso-
eters are quoted in Sec.)V. lution of the probe equals to the mean separatioQ 1/

Saturation in the dipole cross secti¢h) sets in wherr =Ry(x), which condition defines the “critical line.” As a
~2R,, allowing a good description of the data at ld@# result the dipole cross section becomes large and multiple
when 1Q>R, (see right plot in Fig. L The detailed analy- interactions become important. In other words, at bothe
sis of Eqs(1)—(4), presented in Ref1], gives, for smalQ?, proton appears to be black. The important result of our in-

clusive analysis is that blackening occurs already at rather

X N2

1
Ro(X)= m(x—o 5

o1~ 0p- (6)  short distances well below where “soft dynamics” is sup-
5 ) o posed to set in, justifying the use of perturbative QCD.
For largeQ“ the dominant contribution comes from small | the scaling region of larg®? the growth of the inclu-

dipole configurations witl ~2/Q<R, (see left plot in Fig.  sjve cross section is driven by the increase in the number of
1). In this case we have the usual situation of color transparpartons since the gluon densi@(x) is proportional to
ency, ‘Af”r,zv which gives the scaling behavior of thé'p  1/R2(x) (see Sec. IV for details of this relatiprThis growth
Cross sections is eventually tamed in our model by the mechanism of satu-

o1~ 1/0%. @ ration.

Q%= 10 GeV? Q%= 0.8 GeV? Ill. SATURATION IN DIFFRACTIVE DEEP
: ; INELASTIC SCATTERING

; : Inclusive y* p cross section at larg®? is dominated by
2 ; i the scaling region. Diffractive scattering on the other hand is
ne_| f essentially determined by the saturation region. In this case
1 R — the dependence or is controlled by the available phase
e i space in the transverse momentum. This phase space grows
T : 3 Ty S— T 5 . proportional to 1R3(x) and leads to the same power behav-
2/Q 2/Q ior in x as was found for the inclusive cross section. It also
means that the average transverse momentum of the diffrac-
tive final state will increase whex decreases. The process

becomes “harder” wherx becomes smaller. Crucial for this

Integrand

FIG. 1. The integrand of the inclusive cross sectiopin (1)
(solid lineg after the integration ovew and the azimuthal angle,
plotted for two values 0Q?. The dotted lines show the dipole cross
section(4). The dashed vertical lines correspond to the characteris-
tic scales =2R, andr =2/Q. The values for R, at a fixed energy
W=245GeV are 0.36 fm foQ?=10Ge\? and 0.25 fm forQ? IThere is no phase transition or critical behavior present in our
=0.8 Ge\~. approach.
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0%=10 GeV? Q%=10 GeV? emerges which leads a result reminiscent of the triple Regge
- D__y—2\ ; D_y—X\ .
2 @ e | o approach wherer X instead ofc”~x"" as we find
g AN S with saturation.
E i Figure 2 also illustrates the idea of Rg®] that diffrac-
2 oo/ tion at smallx is not a purely soft but semi-hard process. Let

us assume for simplicity that the “soft regime” beginsrat
=4R,. It becomes quite clear by comparing the two plots in
' ; , Fig. 2 how strongly the soft contribution is suppressed due to
FEE 2 Ry © 11 2 r[2R] saturation(blackness of the nuclepriThe relative fraction of

2a 2Q hard contributions (<2R;) is enhanced to almost 50%,

FIG. 2. The integrands of the inclusivénc) and diffractive making diffractiv_e deep inelastic scattering a sem?—hard pro-
(DD) cross sections aD?= 10 Ge\? for the following two cases: C€SS- A related issue is the smallness of the profile function

(a) saturation according to Eq4) (dotted ling and (b) no satura- 1N central collisions inpp scattering and its consequence for
tion, i.e.5~r2. single diffraction.

The following qualitative estimates will help to clarify the
femarks about the importance of saturation for diffraction.
The wave function in Eq(2) can be approximated Bysee
also Refs[11, 10Q)

picture to work is the scale invariance which in our approac
is maintained by the lack of any additional cutoff on the
transverse momenta of the final state. We will discuss thi
conclusion in more details below.

In order to demonstrate the main features of saturation in 6a
diffraction we will confine our discussion in this section to |, | (a,r)|?~ emE ef[a2+(1_a)2]
the elastic scattering of thgg-pair as shown in Fig. @). ' 42 7
Elastic qg-scattering dominates diffractive* p scattering
for values of the diffractive madd that are not too large. At Xi[a(l— @)Q2r2<1] (10)
large M, however, the emission of a gluon as depicted in r2 '
Fig. 3(b) becomes the dominant contribution. The cross sec-
tion for elasticqqg-scattering takes on the following form

The leading contribution is associated with the “aligned jet”
L configuration. In they* -Pomeron CMS the scattering angle
2 2520y, 2 0 is given by cosf)=1—-2q, i.e. for a—0(1) we have ¢
f d rfo daf W, (N[5 (xr%), —0(m). The ®-function in Eq.(10) enforces the condition
(8)  that eithera or 1— a is smaller than 1/Q°r?). We make use
of this condition and thex<»1— a symmetry to perform the
a-integration in Eqs(1) and(9) and obtain

1

=0 167

do—?,L
dt

with the same dipole cross sectiénas introduced for inclu-
sive scattering. We account for thelependence by assum-

ing an exponential dependence with the diffractive slope 6 1 (* dr?
. . . . 2 @em 2 r. 2
Bp . Thus thet-integrated diffractive cross section equals o(X,Q%)~ o Z €} Q? 202 2 a(X,r%),
0 (x.02) fo ot BDthD 1 doP © ,
o°(x,Q%)= e —| =———— 6a 1 (= dr
= 9o Bodtli P Q)= i S & o [ S
32m°Bp 7 Q% Ja2 r

- 11
for both longitudinal and transverse photons. (D

The distributions irr (qq dipole size of the integrand for
inclusive[Eq. (1)] and diffractive[Eq. (8)] scattering aQ?  The lower limit is required, since the factor @¢r?) which
=10 GeV are shown in Fig. 2. The integrations owerand  results from thex-integration should not exceed 1/4. We also
the azimuthal angle have been performed. The dotted linegpproximate the dipole cross secti@h by
denote the dipole cross sectién Comparing the two solid
lines in Fig. Za) we see that for a typical inclusive event the 9 5 2 2
main contribution is located around-2/Q<2R,. The dif- 5 ool /L4RG(X)]  for T°<4Rg(x), (12
fractive cross section on the other hand is dominated by the o9 for r2>4R3(x)
saturation regiom ~2R,. The importance of saturation for
diffraction is illustrated in Fig. &) where we letg rise ) ) _ ) )
proportionally tor2. While this change has only little effect nserting(12) into (11) gives after integration
on the inclusive cross section, the diffractive cross section
becomes strongly divergent One, in fact, needs an infrared
cutoff—a new, additional scal®;,—to be introduced by  2The relationk,(x)=1/x for x<1 is used in Eq(2) in the pre-
hand. As a consequence an additional fad®d[,/R3(X)  sented estimation.
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FIG. 3. Diffractive production of &g-pair (left) and the emis-
Thus we obtain an approximate constant ratio of the diffracsion of an additional gluofright).
tive to inclusive cross sections similar to the exact result in

Ref. [1]: 47 ( d?l,

&(X,I’)=? —lr[l_eir'l]asf(x’ltz)
o %o 1 (14) |
o 8mBp IN[RA(x)Q?]" 47?  dI? 2
:TfF[l—aoutr)]asf(x,h). (17

If, on the other hand, we had used

. A short calculation shows that with the following form &t

A 2 ~
a(x,Q%) UOW (15 . 300, e
asF(x,15)= 73 R5(x)lte o0l (18)
instead of(11), i.e. no saturation, then a cutd®,,, would be
required leading to one can indeed reproduce E@). At large Q? the usual
gluon distributionG can be calculated fronF by a simple

6em oo integration:
2y 2 2 A2
o(x,Q%)~ — Z ef Wln(Rcth 14), 2
xG(x,Q2)=JQ dI2F(x,12)
0
6w o2R2
D 2 ~ em 2 0" *cut
g (X,Q ) 327TZBDEf ef [4R3(X)]2Q2 (16) 3 -

B 4772a5 Rg(x)

[1-(1+Q?RYe™¥'Ro]

The important point is that the inclusive cross section de-

pends only weakly oRR.,; whereas the diffractive cross sec- 3

i i g,

tion shows a strong dependence. We also realize that under _ 0 (QZRS(X)>1). (19

the assumptiori15) the diffractive cross section, being pro- " 4nlag Rg(x)
portional to 1Rg(x), rises at smalk twice as strongly as the

inclusive cross sectiof~x** as mentioned earlierThe  |mportant to note is the fact that at lar@¥ the gluon dis-
ratio (14) would be proportional toc* which is clearly not  ripution exhibits a plain scaling behavior. The proper
observed at HERA. Dokshitzer-Gribov-Lipatov-Altarelli-ParisiDGLAP) evolu-

To summarize, since the diffractive cross section is sQjon in Q2 for the gluon can be added to our model, e.g. by
sensitive to the infrared cutoff which is effectively given by treating relation(19) as the initial distribution for the linear
2Ro(x) one can conclude that diffraction directly probes thepGLAP evolution equations. However the results of our
transition region. We will now turn to a full description of mgdel presented in Fig. 6 suggest that @edependence of
the diffractive deep inelastic scattering data from HERA. the data at lowx values are properly accounted for in the
presented approach and the additional gluonic evolution will
only lead to a moderate improvement.

We have three terms owing to the diffractive production
of a quark-antiquark pair with transverse and longitudinally

In this section we summarize the relevant contributions tgolarized photons and the emission of an extra gluon in the
the diffractive structure function. We use the standard notafinal state(Fig. 3). The latter contribution is only known at
tion for the variables3=Q?%(M?+Q?) and xp=(M? present in certain approximations: strong ordering in the
+Q?)/(W?+Q?) whereM is the diffractive mass and/ the ~ transverse momenta or strong ordering in the longitudinal
total energy of they* p-process. momentum components. The first approximation is valid at a

Before we start to compute the diffractive structure func-very largeQ? and finite diffractive masses, i.e. finig and
tion it is useful to introduce the unintegrated gluon distribu-picks out the leading logarithm i®? from the quark box.
tion F which is related to the effective dipole cross sectionThe second approximation is valid for large diffractive
Eq. (4) in the following way[9,10]: masses, i.e. smaB, and finiteQ? [12]. Since the diffractive

IV. DIFFRACTIVE STRUCTURE FUNCTION IN
MOMENTUM SPACE REPRESENTATION
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data range aroung=0.5 we will pursue the first approxi- x,EP — (Q2,8,%p)
; PT{t,qqg} P

mation and assume that the transverse momenta of the

quarks compared to the gluon are much larger. ) s Q
For a detailed discussion of the derivation of the follow- 64302 dk K2

ing formulae we refer to Ref13] and only quote the result:

fl dz
8 pZ%(1—2)?

(1—8) {2

z 4
di?

X| f thasf()(p,ltz)

X)I t.go (Q ,ﬂ,X))—

2 r1
Jo daf a?+(1—a)?]

2
x}f: e 13

12 [(1-22)k2—122+22(1-2)k*]| ?
dif 2 e [(kZ\/(|2)+ |<2)2t14(1—(z)|2k)2 ] @
X[f?asf(xp,l )| 1-28 t t
In analogy to the previous formulas the variakfeexpresses
12— (1-2B)k? z the mean virtuality of the exchanged gluon in the upper part
\/[I K41 ﬁ)'szH of the right diagram(Fig. 3):
20 ki
(20 k?= =3 (24)

and The variablez represents the momentum fraction of the up-

pert-channel gluon with respect to the Pomeron momentum
5 ) 1 , (1 - XpP. It.n.eeds to be .stressed that this. formula was d_erived in
XpF i qa(Q ,,B-Xp)=6?2 eff dakp the spirit of a leading log}?) approximation which intro-
b f 0 duces uncertainties besides those related to the choieg. of
In this approximation the true kinematical constraints are not
x[ f —Izias}“(x]p 12) exactly fulfilled. The violation of these constraints, however,
t gives contributions which are sub-leading in the limit of very
2 Hz large Q2. An improvement can be achieved by an exact

X{l_ VIEF P =4(1- g1

Monte Carlo integration. The exact treatment of the phase
space, however, has to go along with the use of the exact
matrix-element which is not known up to now. Similar ana-
(21 lytic results can be found in Ref14]. The main difference
as compared to our approach is hidden in the unintegrated
We have introduced the variabk& which is defined as gluon distribution which in Refl14] is modeled by a heavy
quark-antiquark pair.
) 5 There are two limits which are interesting to look at and
k2= (1 — a)Q_: ks 22) which have been discussed in the literature: the first limit is
B 1-5 the triple Regge limi{small 8) in which z can be set to zero
in the square bracket of E€R3). This leads to

and describes the mean virtuality of the exchange quark in y gD _ (Q%,B,Xp)

. : PP it,qag( Q7 B:X
the upper part of the diagram. Equati@®) follows from the
kinematics of the two-body final state. The variablstems 2 2 s Q2
from the Sudakov decompositionk=aq’+ (|k?|/2aq’ 64BD dk
-p)p+k; andq’=q+xp. The unintegrated structure func-
tion Fis visualized in Fig. 3 as the lower blob. It is related to 1dz B\? [B\?
the inclusiveF, by the optical theorem for zero momentum 1- 7 + 7

F2
transfert. In order to include the-averaged distribution we g
have simply divided all expressions by the diffractive slope
parameteBp which has to be taken from the measurement, f |2 agF(xp,If)
see Eq(9).
The third contribution takes on the fofm ) 12 , 1°
2 @(It—k2)+P(k2—lt)” (25)

3In Ref.[13] an overall factor of 2 was miscalculated and neededand agrees with results of Refd2, 15, 16. The other limit
to be added. is 12<k? and requires a lower cutok; on k?:
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H1/ZEUS

FQ%=15GeV* [ Q= EQ%=2. E Q*=3.5

FIG. 4. The result¢solid lines of the
fit to the inclusive DESY HERA data on
F, for different values ofQ?, using the
model of[1] with saturation.
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X
9B Q? ZEUS 1994
D 2 _ 2 %s
X\PF{t’qag}(Q 131)(?‘)_ @Z ef dk l ( k2
g 0.06
1 dz B\2 (B2 1™ o5 Q=8 GeV” |} Q=14 GeV*
X f = (1— o Bl s '
sZ2°(1—2) z z
x{ aXpG(Xp,k?)2(1—2)?
1 2
X (1+22) kz] . (26)

This result and corresponding approximations for Eg6)

and (21) have been derived earlier in R¢fL7]. They have
been utilized in Ref[18] to perform a similar analysis of
diffraction as presented in this paper. The approximations
used in Ref.[18] allow the direct implementation of the
gluon structure function as given by standard parameteriza-
tions. The result is a too steep increase of the diffractive
structure function with decreasing . The exact formulas in - : : .
conjunction with saturation give a much shallower behavior YR TIEY 02 04 06 08
which is in better agreement with the ddtee below.

V. COMPARISON WITH DATA FIG. 5. The diffractive structure functior,F°(x;,8,Q?) for
xp=0.0042 as dunction of 8. The dashed lines show thgq
Before we start our numerical investigation into diffrac- contribution for transverse photori20), the dot-dashed lines cor-
tive scattering we would like to review the fit to the inclusive respond to the contribution from the longitudinal phot¢2$) and
data[1]. The expression for the structure functiéi we  the dotted lines illustrated theqg (23). The solid line is the total
have used if1] was derived from Eq(1) in combination  contribution and the data are from ZEUS.

114023-6



SATURATION IN DIFFRACTIVE DEEP INELASTLC ... PHYSICAL REVIEW D 60 114023
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0 01 02 03 04 05 06 07 08 09 ; FIG. 7. The diffractive structure functions,F°(xp,3,Q?) as
measured by ZEUS plotted as a functionxgffor different values

FIG. 6. The same comparison as in Fig. 5 but with H1 data °f 8 and Q? (in unites of GeV).

Only the total contribution is show(solid lines.
the model we use. The relative strength of the three contri-

with the saturation mode#) quoted in Sec. Il. The param- butions is fixed by QCD-color factors. The overall
eters were found to bey=23.03mb, \=0.288 andx, normalization, however, directly results from the saturation
=3.04x10 4. These parameters enter into the diffractivemodel without any fits to diffractive data. This fact is
cross section via the functiafi in Egs.(20)—(23). To illus-  important to point out, since in Ref22] the overall and the
trate the quality of the fit we plot in Fig. 4 the structure relative normalization for the mentioned three contributions
function F,(x,Q?) in different Q bins in comparison with was fitted. One should note that there is no hard gluon com-
the data from H119] and ZEUS|[20] (see alsd 1] for dif- ponent present in our approa@tompare the analyses based
ferent comparison on the concept of the “soft” Pomeron structure function

The remaining integrations in Eq&0)—(23) have been [7,28]).
performed numerically. We consider three light flavors and The prediction of the;,-dependence, besides the overall
assume the diffractive slope parameBgy=6 GeV 2 which  normalization, is an important consequence of the saturation
is somewhat lower than the reported value of 7.1GeV model. In Fig. 7 and Fig. 8 we compare our predictions with
[21]. One has, however, to take into account some correcthe data fox,F°(x;,3,Q?), now analyzed as a function of
tions due to double dissociatigdissociation of the proton  x, for different values of8 and Q2. Notice the good agree-
which can be roughly estimated by lowering the diffractive ment, especially in the region of moderate and large values
slope from 7.1 to 6 GeV2. The coupling constant is kept of 8 which corresponds to not too large values of the diffrac-
fixed: as=0.2. tive massM. We also reproduce the change of the effective

Figure 5 shows our result for the diffractive structure Pomeron intercepé .y as a function ofQ? for different
functionx,FP(xp,8,Q?) at fixedx,=0.0042 plotted oveg  diffractive massedM, see Fig. 9. The effective intercept is
for variousQ? together with data from ZEU$8]. Figure 6 related to the logarithmic,-slope n of xpFP(xp,3,Q?)
contains similar plots with H1-data for fixed:=0.003[7].  through the relationn=1—2ape¢;. At low massesM
The three contribution$20), (21) and (23) have been dis- where the longitudinal part dominates, the slopexjnis
played separately in Fig. 7. The important feature is the sepaslightly steeper due to the enhanced longitudinal part of the
ration in three distinct regimes of small, medium and hgsh cross section. Using the effective Pomeron intercept means
where the production ofjqg, qq with transverse andjq  having incorporated shrinkage in the context of soft Regge
with longitudinally polarized photons, respectively, is domi- phenomenology. The rise i®? is again mainly caused by
nant. It was already argued in R¢22] that this behavior is the longitudinal part. There is, however, another effect at
mainly due to the nature of the wave functions rather tharwork which lowers the intercept at smail Theqqg contri-

114023-7



K. GOLEC-BIERNAT AND M. WUSTHOFF PHYSICAL REVIEW D60 114023
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FIG. 8. The same as in Fig. 7 but for H1 data.
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bution has a logarithm I@/k? which is approximately- this reason we re-derive the formulae of Sec. V in impact
equal to InQ?Ry(x)?). This term effectively lowers the inter- parameter space. Moreover, the dipole formulation has its
cept in the regime whergqg dominates, i.e. at smaB. natural foundation in impact parameter spd@3,24. A

In Fig. 10 we show the ratio of the diffractive versus Simpleqg-pair represents an elementary color dipole which
inclusive cross section as a functionwffor different values has an effective scattering cross section depending on the
of Q2 and the diffractive mashl, in analogy to the analysis Separation between the quark and antiquark.
in Ref. [8]. Thus for the presented analysis we have inte- We will briefly recall the wave function description for a
grated Eqs(20), (21), (23) over theB values which corre- dd-pair in impact parameter space using the conventions of
spond to the indicated ranges Mf. The values of the inclu- Ref.[25] where the subscrigt-,*+) denotes the photon- and
sive cross section were taken from the analysis in Réf.
The ratio is almost constant over the entire rang®6fand ZEUS 1994
W with a slight growth at smalM caused by the longitudinal

higher twist contribution. One can extract this behavior di- @1_6 r My=2GeV §1_6 r My=5GeV
rectly from the leading twist contributions of EqR0) and 5& [ 55 r
(23) by simultaneous rescaling of thé andk?-integration 140 141
with respect tcRS. We have already discussed that the con- A r
stant ratio is a particular feature of our saturation model and 42 120
certainly deviates from the “conventional” triple Regge ap- L L
proaCh. 1 L Soft Pomeron 1 :— Soft Pomeran *
il Lol f Lol ol

1 10 10° 1 10 102

VI. DIFFRACTIVE STRUCTURE FUNCTION IN IMPACT Qz(GeVZ) QZ(GeVZ)

PARAMETER SPACE REPRESENTATION

We have started our discussion in impact parameter space FIG. 9. The effective Pomeron slope as defined in the text as a
because it provides a natural way to formulate saturation. Fdunction of Q2 for two values in the diffractive madd.
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The longitudinal wave function reads

e
lﬂ(o,:)(r,a):;a(l—a)QKo(\/a(l—a)erz)- (29

The B-integrated diffractive structure function can now be
readily expressed in terms of the above wave function and
the effective dipole cross secti@égn[10,11]:

D
F{['qE}(Qzax)

1
128775 2 ef da[a2+(l_a)2]

X a(1— a)sz d?rK3(Va(1— @)Q?r?)53(r,x)

(30

and

2

2 3Q
F{l qq}(Q X)) = 307 SB eff daa(l—a)a(l—a)Q?

FIG. 10. The ratio of the diffractive versus the inclusive cross

sections as a function ofV for different values ofQ? and the

diffractive massM .

quark helicity(complex notatioj

.

o (1.) = g a1~ @) QK (a1~ @) Q)
V2ie

¢(+',)(r,a):ﬁ(1—a)
X \a(1= ) Q@K (Va(1- ) Q%) -
V2ie

z/f(_’+)(r,a)zﬁ(1—a)
X a(1= @) QK (Va1 - ) Q77) —
V2ie

Y- -ra)=—_—

X ava(l—a)Q%K (Va(l— a)Q?r?) rT
(27)

K; is the MacDonald-Bessel function, and the variablis
conjugate t, ; i.e.,

d’k;
= | e utk 29

xf d?rK3(Va(1— a)Q2r?)&(r,x).
(3D

These two equations demonstrate the simplification one
achieves in impact parameter space provided the distribu-
tions are totally integrated. They have already been quoted in
Eq. (8) rewritten as diffractive cross section. The disadvan-
tage, however, is that for differential distributions which de-
pend on final state energies one has to transform back to
momentum space as in the case of fhdependent structure
function:

XiF 1 g (Q2B.Xr)

L 2B K
_ 3 S @ B2 d?k; 4 1-8 Q2
647°Bp T ' (1-p)°%) (2m)2 4p K2
Viige
48 K
X0 1__3_;)
1-8Q

r-r’

xfdzrf d2r'e'ke =) G(r,xp) &(r’,xu))”—,

ikZ 2 ( ikZ /2) (32)
Vi-g™t V1-gt

We have made use of E(R2) to substitutea by B keeping
k; fixed. For the longitudinally polarized photons we find

XKy
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XpFD —(Q2,8,Xp) The following relation illuminates the use of the wave
PY,qq) 1P AP . K . .
function in momentum space. After the integration over the
3 E ) B3 f d?k, Y azimuth angle of, one arrives at the core expression of Eq.
= e
1678, ¢ ' (1-B)*) (2m)2 (23

k?/Q? ( 4B ﬁ)

X 2 k2® 1- 1—ﬁ@ d2|t
:|___'8_t f _2asf(xwlhhz)[zwmn(a,kt)_lﬁmn(a,kt"'lt)
V1@ i

J 5 2t il (F— ") =" ki—1p)]
X drfdr’e't'r‘r a(r,xp) o(r’,Xp)
(1xe) or X o di? asf(xp,lf){ 2k 12 aQ?

./ / )T T e | e K
><Ko( %kfrz)Ko( %k?r'z). (33 ©oNeQ t ©on

[17—k{+aQ?]?+2kfaQ? | X k{"k{ 5mn]
K12+ Ko+ aQZP—a12k2| | © K

This contribution is suppressed by an extra powe®fnand

therefore is a higher twist contribution. By using EG7) diZ @ F(xp,12) 12
one can directly transform Eq&32) and(33) into Eqgs.(20) - j U 24 (1-2)%+
and (21). It (1-2)Vzk k

It should be noted that, when Eq&2) and (33) are s 200 A i
integrated over 8, the argumentx, in & is simply [(A=27)k*—I7]"+22(1-2)k 5mn_2kt K
substituted byx. This procedure is valid in the high k2\(12+Kk?)2—4(1—2)12k? K2 |
energy approach as long as the dominant contribution is
not concentrated at smaB. The g-integration then leads (36)

from Egs.(32) and (33) back to Egs.(30) and (31). In the
case of a gluon in the final state one can no longer do Fhe f t My kD) 4 M k) — M Ko+ |
simple substitution but has to integrate the argumené of —z;m“(gzulit—ﬁ;rr:i:plfeséﬁf ttr)le lfﬂour(c:),oé)sibllé V\(/g);stoftz:ou—

explicitly. pling the twot-channel gluons to the gluon dipo{eithout

_W]f V;""t ?'S.CUSS thg t'”_‘lp%“ p?rimeterlga;t!or;h of thecrossing in the-channel. The Fourier transformation of the
qqg-final state in more detail. Our starting point is the wave, - ¢ 0 tion leads to

function for the effective gluon dipole as described 113]
(we use in this case the vector notatikp=(ki,k?) and
m,n=1,2)

1 rmen
I = | 72 | e
1 kZomN—2k{"k; 37

Ja(l—a)Q? ki+a(l—a)Q?

P a k)=

Inserting the Fourier transform into the first line of E§6)
L K2smn kKD and using Eq(17) we find
= t — 34)
Ja0?  KtaQ? (

2

d?,
The second line of the previous equation is a consequence of J W—|t2asf(xr ID20™ (k) = ™, ki + 1)
the strong ordering condition which impliee<1. The vari-
able « has been introduced in analogy to E&2) and is — ™, ki—1)]
identical tozk/(1—2)Q?,

. d?l
=J d?r w’““(a,r)e'kt'rj—Iztasf(x]p,lf)
T

X(z_eilt-r_efilt-r)

anzﬁzzkz, (35)
1-z 3
:2f dzrzpm”(a,r)e”‘t'rm?r(x]p,r). (39)
wherek; is the gluon transverse momentum in this case and
k? describes the mean virtuality of the gluon in the upper
t-channel. We can now rewrite Eq(23) in impact parameter space as
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B\? [B\*] =z d?k, (1-2)Q?
(17) +(E) (1—z>3f<2w)2"?'”< 2

. , rmen
X@[(l—z)Qz—ktZ]J dzrj d?r’e* e =5 (r,xp) o (r',xp)| ™2 2 )

r'mrn [ z [ z
5mn_2rT> K2( Ektzl'z) Kz( Ekfr’z). (39)

813 a. (1dz
D 2 _ 2 S
XPF{t,qqg}(Q vIBvX]P)_ 256 SBDZ ef 20 f/; 7

X

Again, a direct computation of E¢39) after substitutingr ACKNOWLEDGMENTS
according to Eq(17) reproduces the result of EQR3).

The impact parameter representation in E§8) and(39)
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APPENDIX

VIl. CONCLUSIONS . . . A
In this appendix we would like to recall the derivation of

In our analysis we successfully describe diffractive deefEq. (23) which represents the contribution due to the emis-
inelastic scattering using the saturation model proposed ision of an additional gluof832]. We choose light-cone gauge
Ref. [1]. This model reproduces quite accurately fhend  with the gauge fixing conditiorg’-A=0 (A is the gluon
xp distributions as measured by H1 and ZE[¥$8] without ~ potential, g’ =q+xp). The frame which naturally corre-
tuning or fitting any additional parameters. sponds to this choice of gauge is the Breit frame, i.e. the

As demonstrated in Refl] saturation naturally explains frame in which the proton is fast moving. All quasi-
the transition of the inclusive structure functiBa from high ~ Bremsstrahlungs gluons emitted from tipg-pair can be ne-
to low values ofQ?. Diffractive scattering is even more ef- glected. Those from the incoming partons on the other hand
fected by saturatioiisee Sec. I)l. The constant ratio of the have to be taken into account.
diffractive versus inclusive cross sections as observed at The polarization vectoe for real gluons and the polariza-
HERA is a direct consequence of saturation. It was alsdion tensor for the gluon propagatdf* read
pointed out that soft contributions are significantly sup-

. . ._ _ k . € k
pressed leading to a relative enhancement of semi-hard con (k)= e'(k)—q'* i €(K)

tributions. This fact allows the conclusion that diffraction in k-q’

deep inelastic scattering is a semi-hard pro¢é$sThe ef-

fective Pomeron intercept is higher than expected from a k’q'*+q' "k

“soft” Pomeron approach7,28]. The g-spectrum depends d"(k)=g"— k—q’ (A1)

only weakly on the model and is therefore more universal.

The model we choose for saturation is purely phenomeno- Figure 11 shows all the essential diagrams. The two dia-
logical. An alternative model without low-saturation can be grams to the left have a similar momentum structure and will
found in Ref.[29]. A completely theoretical framework in- be summed up right from the beginning whereas the diagram
volves non-linear QCD evolution equations as proposed imn the right will be calculated separately. The bottom line in
Refs.[2, 5, 30. We believe, however, that our model repre-
sents the basic dynamics at very lasince it allows us to s
describe a wide range of data in a satisfactory way.

We can use our analysis to predict diffractive charm pro-
duction. This requires the discussion of factorization, the in-
troduction of diffractive parton distributions and the evolu-
tion of the diffractive final state. The detailed discussion of
these topics will be presented elsewhfsa]. FIG. 11. Gluon radiation.
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are crucial in proving the;-factorization theorem. For the

é“‘“ = E“‘““ + gy“"” * Eif”' uppert-channel gluon the situation is different. In this case

the corresponding tensor reads

ST ey g I

FIG. 12. Effective triple gluon couplings.

. KA'7+a’’ki+2a9'"q"0
all the diagrams represents a quark. It is accompanied by =07 Bkp-q’
other “spectator-quarks” which are not shown explicitly. (A4)
The cut through the diagrams effectively subdivides the

whole amplitude into two subprocesses. We will introducepye to the fact that the contraction of’ downwards gives
effective three gluon couplings which are the sum of they factorxpp-q’ which is not much larger thag, , but of the
original three gluon coupling and extra bremsstrahlungs conggme order, the terf, in the denominator of EqA4) is no
tributions (see Fig. 12 These couplings and their analytic |onger enhanced as in EA2). However, a simplification is
formulas represent the core of the whole calculation. Thesj| possible, if one restricts oneself to the calculation of
blob at the_top of the right-channel gluon in Fig. 11 indi- leading twist terms and keeps only the leading log€h
cates the simultaneous coupling of thehannel gluon to the  Then, the transverse momenta of the quarks at the top of the
dg-pair which in color space combines into a gluon. diagram in Fig. 11 and the gluon below are strongly ordered
Before starting the calculation one has to recall and mak@nd all contributions with an extra inverse power of the large
use of the kinematic assumptions made in this approackyyark transverse momentum are suppressed. This allows one
Firstly, there is the Regge limit with respect to the lower partiy set the transverse momentugmalong any of the quark
of the diagram, i.e. the emitted gluon and the quark at thgines to zero. Moreover, the projection @f* with one of the

bottom have an invariant subenergy much larger than thgpper quark-gluon vertices cancels or is sub-leading, and Eq.
diffractive massM. The high energy assumption allows one (a4) may be reduced to

to simplify thet-channel propagator to

' ’ kpq,g
(I +X][’p)pq 0+q P(| +XPp)U dplr(k): po__ 't
po , — PO _ gt ’ (AS)
F+xp)=g (B+xp)p-q’ Pep-d
1P’ This kind of technique is well known and has been applied in
= (A2)  deriving the conventional Altarelli-Parisi splitting function.
(Bi+xp)p-q Therefore it is not surprising that the production of the

where the index refers to the polarization at the upper end 49-System is basically described by the AP-splitting function
of the gluon line andr to the lower end, corresponds to assomat.ed with the s_pllttlngzof 2a gluon_lnto tvyo quarks ac-
the Sudakov decomposition=3,p+ a,q’ +1, where o is _companle(_j by a logarithm iQ</k¢ . Certainly, this appr_oach

fixed using the fact that the quark at the bottom is on-shellS only valid for the transverse part of the cross section. The

(a|z|t2/5)- B, itself is given through the on-shell condition longitudinal part gives a next-to-leading I6f) contribution
of the intermediates-channel gluon I(+x,p—k)2=0 and which is not considered here. The coupling of the second

the final state gluonx.p—K)2=0: gluon to theqg-system does not affect the dynamics within
¢ Xp—k) this system, but feels only the total color charge which is the

|t2_2|t. K, same charge as carried by the first gluon.
B=———" To summarize, the leading twist approach allows one to
S . — L
factorize off theqqg-system analogously to the conventional
K2 leading order DGLAP-scheme whereas in the lower part the
= A3 ki-factorization theorem is applicable. All together, a local
k - (A3) t b >
(Xp=Bi)s vertex may be extracted describing the transition between the

lower Pomeron exchange and the upper QCD-radiation. It is
useful to rewrite Eq(A5) in terms of transverse polarization
vectorse, defined as

(s=2p-q’). Here the Sudakov representation lofenters
with B, as free variable denoting the momentum fraction of
the uppert-channel gluon with respect to the momentpm
Later on it will be substituted by (z= B /xp) which then
denotes the momentum fraction of thhehannel gluon with gr7= _E elel

respect to the Pomeron momentum. The contractiog’ 6f pol

with the lower quark-gluon vertex gives roughgy- p which

cancels the same factor in the denominator of B&). The (€)i-(€)j=—3ij . (AB)
remaining factor 1/,+xpp) in front of the vectorl? is

large provided thak;, is small. The other components of the The sum has to be taken over the two helicity or polarization
polarization tensod”’ are negligible. All these properties configurations in the transverse plawé? then reads
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tween different color tensors is of interest but not the whole
dr7=2 e(k)e’(k) (A7) tensor itself. The right effective vertex in the first diagram of
pol Fig. 11 is different as it contains twechannel gluons. Since
with these gluons are on-shell, the Ward identitj , =0, where
A? is the triple gluon coupling contracted with the gluon
ki-eq'“ polarization vectors, may be used to change tiobannel
B Bp-q’ (A8) polarization vector from{/B, to p”. The resulting expres-
sion is
Having in mind the previous discussion one can now start
the calculation of the diagrams in Fig. 11. The effective —2I;-e(xpp—Kk)p-e(l +xpp—K)+2l;- (I +xpp—Kk)
triple gluon vertex to the left of the first diagram gives the

e’(k)y=¢

following contribution: X p-e(xpp—K) — ayse(l +xpp—kK) - e(xpp—K)
2
s t
2pemnreu+mp—ky—gﬁipﬁfﬂ+xNywo—zpe +2p-e(l+xpp—k)p- e(xpp—k) 7 <. (A10)
If Both pieces Eqs(A9) and (A10) have to be combined and
X (I +xpp—K) ;- €—2p- e(l +Xpp—K)k;- TS the sum over the transverse polarizations of the intermediate

s-channel gluon has to be performed. The following equation
(A9)  will be used:

The first three terms of EqA9) result from the ordinary

three gluon coupling whereas the last is the sum of the two > el+xpp—K) e (I +xpp—k)=—gt", (A11)

Bremsstrahlungs gluons as illustrated in the first row of Fig. pol

12. The momentum structure of these contributions is the

same except the overall sign which is opposite. It is obviougind products likep- (k) will be reduced to— 2k;- €/

that the two color tensors add up to the same tensor thEurthermore, the propagatorki/ xp/(ozks)z(l—z)/kt2 is
ordinary three gluon coupling has. The overall color factorintroduced ands, is expressed through E¢A3) as well as
will be evaluated later. Here, only the correspondence bethe variablegy is substituted by (By=xXpz):

2 Ky € - (l—k) [ 17 o K- €(xpp—k)
X 2R [— AL E{Zkt'E(XPp_k)_lt'G(X]Pp_k) +2|t—ktZ—_|t‘E(X]Pp_k)
1 k? (I—k) &I} K- €(xpp—K)
- - - - . »P— — 1t P — + . —_—
Xp(l k2+|t2_2|t'kt)[ 2 (It_kt)z ktzkt E(X\Ip k) It E(X]p k) 2|t €t kt2
) F+ |1 +1_2Ek 2 t2k k)~ k
€ €(Xpp—K) x| 7K t € k2|2 i+ €(Xpp—K) =l e(xpp—K)
- (1 — k) ki e(xpp—k li—k) - e(Xpp—k
i (It ;) 1 €( ]l;p )_(t 1) €( ]Pzp ) (A12)
(lt_kt) kt (lt_kt)
|
The next contribution has to be taken from the second pq’’
diagram in Fig. 11. In this case the situation is slightly sim- dP7(I+xpp—Kk) = 0q (A13)

pler compared to the first diagram, since only one effective

triple gluon vertex appears. Moreover, the upp@hannel  The upper polarization vector was changed froa(l,
gluon is attached to a quark line where the incoming and the- ke)?/(B;+Xp— By) to p? making use of the fact that the
outgoing quarks are on-shell with the consequence that thgvo quarks to the left and to the right are on-shell. In contrast
momentum of this gluon is purely transverse up to correcto the first diagram in Fig. 11 the tensgf” along the
tions proportional to the squared ratio of the gluon transverse-channel line gives only a sub-leading contributions due to
momentum and the quark transverse momentum. This typthe smallness of the longitudinal momentum. The special
of correction is sub-leading due to the strong ordering askinematic situation in the second diagram allows one to ap-
sumption. The polarization tensor simplifies in the following ply the eikonal approximation to the right quark-gluon ver-
way: tex. The subsequent contraction wjih gives a factor which
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is cancelled by the residue of tidfunction corresponding to The last term in Eq(A17) summarizes the contribution of
the intermediate quark, and the remaining factor is simpljthe Bremsstrahlungs gluons associated with the effective
— 1. The softness of the upper rigbithannel gluon has no triple gluon coupling. As was argued before the longitudinal
further dynamical effect except that the color charge of botrmomentum of the right softchannel gluon is negligible and
qguarks add up to the total color charge of the tefhannel B, equals zero. The momentum of the upper tetthannel
gluon. Consequently, the color factor is identical to that ofgluon does not reduce to its transverse component, but in-
the first diagram in Fig. 11. After all, one finds for this dia- cludes the non-negligible longitudinal fraction of the

gram: Pomeron momentum. Therefore, the propagatot+1k)?
transforms into 14£k®+ (1, +k,)?). Introducing this propaga-
2 t2 tor into Eq.(A17) and substitutings,=zx, as well asa,s
- Elt' €l e(xpp—k) + Elt- eta—ksp- e(xpp—K). =k?/xp one finds
(A14)
Inserting the propagator 1j¢k,)? and substituting3, as 2 1(litky- el +k)li- e(xpp—k)
well as ay one finally comes to: Xp Z zk+ (14 ky)?
2 1 It' € |t2 2
X—E(l_—k)z Fkt-E(pr—k)—h-E(qup—k) . _Ell_t(|t+kt)'6(|+k)kt'6(xlnp_k)
L Xp Z k? zkR%+ (I, +ky)?

(A15)

In the following step the two expressio®12) and
(A15) will be added and the result integrated over the azi- _ 2 1 etk E(XPE_k)
muth angle betweeh andk,. A lot of cancellations occur Xpl-2z zk+ (1i+ky)
and the final expression is rather short: 2 2

1 (|t+ kt) - kt

, +X][>Z +(It+kt)26(|+k)'€(X]pp_k). (A18)
1 1 5 , i
_EZ(l—Z) z°+(1-2) +E2 . .
Once more one has to integrate over the azimuth angle be-
[(1—22)k2—I2]2+22(1—z)k4 tweenl; andk, with the remarkable outcome that the result-
— ¢ € €(Xpp—K). ing expression is identical to E¢AL6):
k(K2 +12)2—4(1—2)I17k?
(Al6) 5
) . ) 1 1 ) , It
Recalling the fact that only the amplitude has been consid- — 2% 21=2) z°+(1-2)+ 2
ered, the calculation of the cross section requires to take the r
square of ExpressiofA16). In doing so one has to sum over B 2 1292 L4
the final state polarizations which leads to a contraction of _ [(1-22)k"— 111"+ 22(1—2)k € e(xpp—K).
the vectore, with its conjugate. In the end the transverse part k2\(K?2+12)2—4(1—2)17k? c
of the y-matrices in the lower edges of the quark-box are (AL9)

contacted as wellsee Fig. 11

Moving on to the final diagranfFig. 11) one encounters a
similar situation as in the case of the second diagram of thén other words, the sum of the first two diagrams in Fig. 11
same figure. The right-channel gluon is soft in the sense is identical to the third diagram bearing in mind that the light
that its momentum is small compared to the quark momentasone gauge with the conditioq’-A=0 was used. One
It has no dynamical effect except that the color charge addshould remember that the amplitude was calculated in the
up as before, so that the final color factor is identical to thahigh energy asymptotic region where the real parts of the
in the first two diagrams of Fig. 11. What remains is thes-channel andi-channel contributions cancel due to the even
calculation of the left effective triple gluon vertex. This has signature of the color singlet exchang&he u-channel con-
to be performed in a similar way as in the case of the leftribution corresponds to the crossing of the two lower

vertex in the second diagram: t-channel gluons in Fig. 11.Hence, the imaginary part
givesthe leading part and was calculated takingstebannel
It2+ 21k, discontinuity, i.e. cutting the diagrams. However, the cut dia-
2p-e(l+K)li- e(xpp—k) + BTG(' +k) - e(xpp—k) gram gives twice the imaginary part and one has to divide
Lo the final result by 2.
—2p-e(xpp—Kk)l;- (1 +k)—2p- e(xpp—Kk) The structure in Eq{A19) has been used in E3). The
) wave function in Eq(34) cannot be extracted directly from
t the diagrams discussed here, but was constructed such that it
X(Iitky)- e(l+k) (B1+ B s’ (ALD) reproduces the same results.
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