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Saturation in diffractive deep inelastic scattering

K. Golec-Biernat
H. Niewodniczan´ski Institute of Nuclear Physics, Department of Theoretical Physics, Radzikowskiego 152, Krako´w, Poland

and Department of Physics, University of Durham, Durham DH1 3LE, United Kingdom
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We successfully describe the DESY HERA data on diffractive deep inelastic scattering using a saturation
model which has been applied in our earlier analysis of the inclusiveep-scattering data. No further parameters
are needed. Saturation already turned out to be essential in describing the transition from large to small values
of Q2 in inclusive scattering. It is even more important for diffractive processes and naturally leads to a
constant ratio of the diffractive versus inclusive cross sections. We present an extensive discussion of our
results as well as detailed comparison with data.@S0556-2821~99!02221-3#

PACS number~s!: 13.60.Hb
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I. INTRODUCTION

In a recent analysis@1# we introduced a model which
provides a description of the transition between large
low Q2 in inclusive lepton-proton deep inelastic scattering
low x. The idea behind our model is a phenomenon wh
we call a combined saturation at lowQ2 and lowx. In this
kinematical region the size of the virtual probe is of the ord
of the mean transverse distance between partons in the
ton. The cross section for the interaction between the pr
and the partons becomes large and multiple scattering ha
be taken into account. These effects lead to saturation o
total cross section. We found that saturation occurs at
but still perturbative values ofQ2 ~;1 – 2 GeV2 for x
;1024!. We therefore believe that saturation should be
scribed by means of perturbative QCD~see also for example
Ref. @2–5#!.

The QCD framework we use allows us to describe
only inclusive but diffractive processes as well. A gene
feature of diffraction is its strong sensitivity towards the i
frared regime even for largeQ2. The fact that diffraction has
a strong soft component has already been noticed ea
leading to the assumption that the Pomeron in diffract
ought to be soft. The idea of saturation, however, emphas
the transition from hard to soft physics. As mentioned ear
saturation effects become already viable at rather hard sc
and strongly suppress soft contributions in diffractive p
cesses@6#. This mechanism leads to an effective enhan
ment of hard contributions and hence to an effect
Pomeron intercept which lies above the original soft valu

The important conclusion of this paper is that the conc
of saturation leads to a good description of the diffract
data. Our approach has the important property that the in
sive and diffractive cross section have the same pow
behavior inx. We have obtained these results without t
use of any additional fitting parameters, i.e. we solely ta
the model as determined in Ref.@1# from the analysis of
inclusive processes. The diffractive slope which we use
0556-2821/99/60~11!/114023~15!/$15.00 60 1140
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taken from the measurement at the DESYep collider
HERA.

The plan of our paper is as follows. In Secs. II and III w
recapitulate the results found in Ref.@1# and discuss qualita
tively the basic features of saturation for both inclusive a
diffractive processes. In Sec. IV we provide the detailed f
mulas for our numerical analysis and discuss the compar
with the data from H1@7# and ZEUS@8# in Sec. V. In Sec.
VI we present the impact parameter version of our res
and finish with concluding remarks in Sec. VII. The Appe
dix was added to enclose some details on the derivation
the cross section formulas for diffractive scattering. In p
ticular it contains the computation of the relevant set
Feynman diagrams which contribute to the quark-antiqua
gluon final state.

II. SATURATION IN INCLUSIVE PROCESSES

Our starting point in Ref.@1# was the well established
physical picture of small-x interactions in which the photon
with virtuality Q2, emitted by a lepton, dissociates into
quark-antiquark pair far upstream of the nucleon~in the
nucleon rest frame!. The dissociation is then followed by th
scattering of the quark-antiquark pair on the nucleon. In t
picture the relative transverse separationr of theqq̄ pair and
the longitudinal photon momentum fractiona of the quark
(12a for the antiquark! are good degrees of freedom. I
these variables theg* p cross sections have the followin
factorized form@9,10#:

sT,L~x,Q2!5E d2rE
0

1

dauCT,L~a,r !u2ŝ~x,r 2!, ~1!

where CT,L is the squared photon wave function for th
transverse (T) and longitudinally polarized (L) photons,
given by
©1999 The American Physical Society23-1
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uCT,L~a,r !u25
6aem

4p2 (
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2H @a21~12a!2#Q̄2K1

2~Q̄r !1mf
2K0

2~Q̄r !, ~T!

4Q2a2~12a!2K0
2~Q̄r !, ~L !.
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In the above formulasK0 andK1 are McDonald-Bessel func
tions and

Q̄25a~12a!Q21mf
2 . ~3!

The dynamics of saturation is embedded in the the effec
dipole cross sectionŝ(x,r ) which describes the interactio
of the qq̄ pair with a nucleon:

ŝ~x,r 2!5s0H 12expS 2
r 2

4R0
2~x! D J , ~4!

where thex-dependent radiusR0 is given by

R0~x!5
1

GeVS x

x0
D l/2

. ~5!

The normalizations0 and the parametersx0 and l.0 of
R0(x) have been determined by a fit to all inclusive data
F2 with x,0.01 @1#. ~The detailed values of these param
eters are quoted in Sec. V.!

Saturation in the dipole cross section~4! sets in whenr
;2R0 , allowing a good description of the data at lowQ2

when 1/Q.R0 ~see right plot in Fig. 1!. The detailed analy-
sis of Eqs.~1!–~4!, presented in Ref.@1#, gives, for smallQ2,

sT;s0 . ~6!

For largeQ2 the dominant contribution comes from sma
dipole configurations withr;2/Q!R0 ~see left plot in Fig.
1!. In this case we have the usual situation of color transp
ency, ŝ;r 2, which gives the scaling behavior of theg* p
cross sections

sT;1/Q2. ~7!

FIG. 1. The integrand of the inclusive cross sectionsT in ~1!
~solid lines! after the integration overa and the azimuthal angle
plotted for two values ofQ2. The dotted lines show the dipole cros
section~4!. The dashed vertical lines correspond to the characte
tic scalesr 52R0 andr 52/Q. The values for 2R0 at a fixed energy
W5245 GeV are 0.36 fm forQ2510 GeV2 and 0.25 fm forQ2

50.8 GeV2.
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More precise analysis leads to logarithmic inQ2 modifica-
tions of the above estimations. To summarize, the satura
model naturally interpolates between the two different
gimes ofsT described by Eqs.~6! and ~7!.

Saturation is characterized by a ‘‘critical line’’1 in the
(x,Q2)-plane given by the equationQ251/R0

2(x) @1,2,4#. It
is important to note that at very smallx saturation effects
become relevant at fairly high scales~Q2;1 – 2 GeV2 for
DESY HERA energies@1#! where one believes that pertu
bative QCD is valid. The critical line divides the phase spa
into two regions, the scaling region in which relation~7! is
valid and the saturation region with the behavior given
Eq. ~6!.

The physical picture behind saturation is based on in
pretation of thex-dependent radiusR0(x) as the mean sepa
ration of partons in the proton. We see from Eq.~5! that
whenx decreases so does the mean separation. Thus at lx
the distribution of partons in the proton is no longer dilu
when probed by a virtual photon of fixed resolutio
(;1/Q) and saturation sets in. This happens when the re
lution of the probe equals to the mean separation, 1Q
5R0(x), which condition defines the ‘‘critical line.’’ As a
result the dipole cross section becomes large and mult
interactions become important. In other words, at lowx the
proton appears to be black. The important result of our
clusive analysis is that blackening occurs already at ra
short distances well below where ‘‘soft dynamics’’ is su
posed to set in, justifying the use of perturbative QCD.

In the scaling region of largeQ2 the growth of the inclu-
sive cross section is driven by the increase in the numbe
partons since the gluon densityG(x) is proportional to
1/R0

2(x) ~see Sec. IV for details of this relation!. This growth
is eventually tamed in our model by the mechanism of sa
ration.

III. SATURATION IN DIFFRACTIVE DEEP
INELASTIC SCATTERING

Inclusiveg* p cross section at largeQ2 is dominated by
the scaling region. Diffractive scattering on the other hand
essentially determined by the saturation region. In this c
the dependence onx is controlled by the available phas
space in the transverse momentum. This phase space g
proportional to 1/R0

2(x) and leads to the same power beha
ior in x as was found for the inclusive cross section. It a
means that the average transverse momentum of the dif
tive final state will increase whenx decreases. The proces
becomes ‘‘harder’’ whenx becomes smaller. Crucial for thi

1There is no phase transition or critical behavior present in
approach.
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3-2



c
he
th

n
to

t
in

e

-
p

in

e

th
r

t
tio
re

gge

et

in
to

,
ro-
tion
or

e
n.

t’’
le

so

SATURATION IN DIFFRACTIVE DEEP INELASTIC . . . PHYSICAL REVIEW D 60 114023
picture to work is the scale invariance which in our approa
is maintained by the lack of any additional cutoff on t
transverse momenta of the final state. We will discuss
conclusion in more details below.

In order to demonstrate the main features of saturatio
diffraction we will confine our discussion in this section
the elastic scattering of theqq̄-pair as shown in Fig. 3~a!.
Elastic qq̄-scattering dominates diffractiveg* p scattering
for values of the diffractive massM that are not too large. A
large M , however, the emission of a gluon as depicted
Fig. 3~b! becomes the dominant contribution. The cross s
tion for elasticqq̄-scattering takes on the following form

dsT,L
D

dt
U

t50

5
1

16p E d2rE
0

1

dauCT,L~a,r !u2ŝ2~x,r 2!,

~8!

with the same dipole cross sectionŝ as introduced for inclu-
sive scattering. We account for thet dependence by assum
ing an exponential dependence with the diffractive slo
BD . Thus thet-integrated diffractive cross section equals

sD~x,Q2!5E
2`

0

dteBDt
dsD

dt U
t50

5
1

BD

dsD

dt U
t50

, ~9!

for both longitudinal and transverse photons.
The distributions inr ~qq̄ dipole size! of the integrand for

inclusive @Eq. ~1!# and diffractive@Eq. ~8!# scattering atQ2

510 GeV2 are shown in Fig. 2. The integrations overa and
the azimuthal angle have been performed. The dotted l
denote the dipole cross sectionŝ. Comparing the two solid
lines in Fig. 2~a! we see that for a typical inclusive event th
main contribution is located aroundr;2/Q!2R0 . The dif-
fractive cross section on the other hand is dominated by
saturation regionr;2R0 . The importance of saturation fo
diffraction is illustrated in Fig. 2~b! where we letŝ rise
proportionally tor 2. While this change has only little effec
on the inclusive cross section, the diffractive cross sec
becomes strongly divergent One, in fact, needs an infra
cutoff—a new, additional scaleRcut—to be introduced by
hand. As a consequence an additional factorRcut

2 /R0
2(x)

FIG. 2. The integrands of the inclusive~Inc! and diffractive
~DD! cross sections atQ2510 GeV2 for the following two cases:
~a! saturation according to Eq.~4! ~dotted line! and ~b! no satura-
tion, i.e. ŝ;r 2.
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emerges which leads a result reminiscent of the triple Re
approach wheresD;x22l instead ofsD;x2l as we find
with saturation.

Figure 2 also illustrates the idea of Ref.@6# that diffrac-
tion at smallx is not a purely soft but semi-hard process. L
us assume for simplicity that the ‘‘soft regime’’ begins atr
54R0 . It becomes quite clear by comparing the two plots
Fig. 2 how strongly the soft contribution is suppressed due
saturation~blackness of the nucleon!. The relative fraction of
hard contributions (r ,2R0) is enhanced to almost 50%
making diffractive deep inelastic scattering a semi-hard p
cess. A related issue is the smallness of the profile func
in central collisions inpp̄ scattering and its consequence f
single diffraction.

The following qualitative estimates will help to clarify th
remarks about the importance of saturation for diffractio
The wave function in Eq.~2! can be approximated by2 ~see
also Refs.@11, 10#!

uCT,L~a,r !u2'
6aem

4p2 (
f

ef
2@a21~12a!2#

3
1

r 2
Q@a~12a!Q2r 2,1#. ~10!

The leading contribution is associated with the ‘‘aligned je
configuration. In theg* -Pomeron CMS the scattering ang
u is given by cos(u)5122a, i.e. for a→0(1) we have u
→0(p). The Q-function in Eq.~10! enforces the condition
that eithera or 12a is smaller than 1/(Q2r 2). We make use
of this condition and thea↔12a symmetry to perform the
a-integration in Eqs.~1! and ~9! and obtain

s~x,Q2!'
6aem

2p (
f

ef
2 1

Q2 E
4/Q2

` dr2

r 4 ŝ~x,r 2! ,

sD~x,Q2!'
6aem

32p2BD
(

f
ef

2 1

Q2 E
4/Q2

` dr2

r 4 ŝ2~x,r 2!.

~11!

The lower limit is required, since the factor 1/(Q2r 2) which
results from thea-integration should not exceed 1/4. We al
approximate the dipole cross section~4! by

ŝ'H s0r 2/@4R0
2~x!# for r 2,4R0

2~x!,

s0 for r 2.4R0
2~x!

. ~12!

Inserting~12! into ~11! gives after integration

2The relationK1(x).1/x for x,1 is used in Eq.~2! in the pre-
sented estimation.
3-3
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s~x,Q2!'
6aem

2p (
f

ef
2 s0

4R0
2~x!Q2 ln@R0

2~x!Q2# ,

sD~x,Q2!'
6aem

16p2BD
(

f
ef

2
s0

2

4R0
2~x!Q2 . ~13!

Thus we obtain an approximate constant ratio of the diffr
tive to inclusive cross sections similar to the exact resul
Ref. @1#:

sD

s
'

s0

8pBD

1

ln@R0
2~x!Q2#

. ~14!

If, on the other hand, we had used

ŝ~x,Q2!'s0

r 2

4R0
2~x!

~15!

instead of~11!, i.e. no saturation, then a cutoffRcut
2 would be

required leading to

s~x,Q2!'
6aem

2p (
f

ef
2 s0

4R0
2~x!Q2 ln~Rcut

2 Q2/4! ,

sD~x,Q2!'
6aem

32p2BD
(

f
ef

2
s0

2Rcut
2

@4R0
2~x!#2Q2 . ~16!

The important point is that the inclusive cross section
pends only weakly onRcut whereas the diffractive cross se
tion shows a strong dependence. We also realize that u
the assumption~15! the diffractive cross section, being pro
portional to 1/R0

4(x), rises at smallx twice as strongly as the
inclusive cross section~;x22l as mentioned earlier!. The
ratio ~14! would be proportional tox2l which is clearly not
observed at HERA.

To summarize, since the diffractive cross section is
sensitive to the infrared cutoff which is effectively given b
2R0(x) one can conclude that diffraction directly probes t
transition region. We will now turn to a full description o
the diffractive deep inelastic scattering data from HERA.

IV. DIFFRACTIVE STRUCTURE FUNCTION IN
MOMENTUM SPACE REPRESENTATION

In this section we summarize the relevant contributions
the diffractive structure function. We use the standard no
tion for the variablesb5Q2/(M21Q2) and xP5(M2

1Q2)/(W21Q2) whereM is the diffractive mass andW the
total energy of theg* p-process.

Before we start to compute the diffractive structure fun
tion it is useful to introduce the unintegrated gluon distrib
tion F which is related to the effective dipole cross secti
Eq. ~4! in the following way@9,10#:
11402
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ŝ~x,r !5
4p

3 E d2lt
l t
2 @12ei r• l#asF~x,l t

2!

5
4p2

3 E dlt
2

l t
2 @12J0~ l tr !#asF~x,l t

2!. ~17!

A short calculation shows that with the following form forF,

asF~x,l t
2!5

3s0

4p2 R0
2~x!l t

2e2R0
2(x) l t

2
, ~18!

one can indeed reproduce Eq.~4!. At large Q2 the usual
gluon distributionG can be calculated fromF by a simple
integration:

xG~x,Q2!5E
0

Q2

dlt
2F~x,l t

2!

5
3

4p2as

s0

R0
2~x!

@12~11Q2R0
2!e2Q2R0

2
#

.
3

4p2as

s0

R0
2~x!

~Q2R0
2~x!@1!. ~19!

Important to note is the fact that at largeQ2 the gluon dis-
tribution exhibits a plain scaling behavior. The prop
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi~DGLAP! evolu-
tion in Q2 for the gluon can be added to our model, e.g.
treating relation~19! as the initial distribution for the linea
DGLAP evolution equations. However the results of o
model presented in Fig. 6 suggest that theQ2 dependence of
the data at lowx values are properly accounted for in th
presented approach and the additional gluonic evolution
only lead to a moderate improvement.

We have three terms owing to the diffractive producti
of a quark-antiquark pair with transverse and longitudina
polarized photons and the emission of an extra gluon in
final state~Fig. 3!. The latter contribution is only known a
present in certain approximations: strong ordering in
transverse momenta or strong ordering in the longitudi
momentum components. The first approximation is valid a
very largeQ2 and finite diffractive masses, i.e. finiteb, and
picks out the leading logarithm inQ2 from the quark box.
The second approximation is valid for large diffractiv
masses, i.e. smallb, and finiteQ2 @12#. Since the diffractive

FIG. 3. Diffractive production of aqq̄-pair ~left! and the emis-
sion of an additional gluon~right!.
3-4
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data range aroundb50.5 we will pursue the first approxi
mation and assume that the transverse momenta of
quarks compared to the gluon are much larger.

For a detailed discussion of the derivation of the follo
ing formulae we refer to Ref.@13# and only quote the result

xPF $t,qq̄%
D ~Q2,b,xP!5

1

96BD

3(
f

ef
2 Q2

12b E
0

1

da@a21~12a!2#

3H E dlt
2

l t
2 asF~xP ,l t

2!F122b

1
l t
22~122b!k2

A@ l t
21k2#224~12b!l t

2k2G J 2

~20!

and

xPF $ l ,qq̄%
D ~Q2,b,xP!5

1

6BD
(

f
ef

2E
0

1

dak2b2

3H E dlt
2

l t
2 asF~xP ,l t

2!

3F12
k2

A@ l t
21k2#224~12b!l t

2k2G J 2

.

~21!

We have introduced the variablek2 which is defined as

k25a~12a!
Q2

b
5

kt
2

12b
~22!

and describes the mean virtuality of the exchange quar
the upper part of the diagram. Equation~22! follows from the
kinematics of the two-body final state. The variablea stems
from the Sudakov decomposition:k5aq81(ukt

2u/2aq8
•p)p1kt and q85q1xp. The unintegrated structure func
tion F is visualized in Fig. 3 as the lower blob. It is related
the inclusiveF2 by the optical theorem for zero momentu
transfert. In order to include thet-averaged distribution we
have simply divided all expressions by the diffractive slo
parameterBD which has to be taken from the measureme
see Eq.~9!.

The third contribution takes on the form3

3In Ref. @13# an overall factor of 2 was miscalculated and need
to be added.
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xPF $t,qq̄g%
D ~Q2,b,xP!

5
9b

64BD
(

f
ef

2E
0

Q2

dk2
as

2p
lnS Q2

k2 D
3E

b

1 dz

z2~12z!2 F S 12
b

z D 2

1S b

z D 2G
3H E dlt

2

l t
2 asF~xP,l t

2!F z21~12z!2

1
l t
2

k2 2
@~122z!k22 l t

2#212z~12z!k4

k2A~ l t
21k2!224~12z!l t

2k2 G J 2

. ~23!

In analogy to the previous formulas the variablek2 expresses
the mean virtuality of the exchanged gluon in the upper p
of the right diagram~Fig. 3!:

k25
kt

2

12z
. ~24!

The variablez represents the momentum fraction of the u
per t-channel gluon with respect to the Pomeron moment
xPp. It needs to be stressed that this formula was derive
the spirit of a leading log(Q2) approximation which intro-
duces uncertainties besides those related to the choice oas .
In this approximation the true kinematical constraints are
exactly fulfilled. The violation of these constraints, howev
gives contributions which are sub-leading in the limit of ve
large Q2. An improvement can be achieved by an exa
Monte Carlo integration. The exact treatment of the ph
space, however, has to go along with the use of the e
matrix-element which is not known up to now. Similar an
lytic results can be found in Ref.@14#. The main difference
as compared to our approach is hidden in the unintegra
gluon distribution which in Ref.@14# is modeled by a heavy
quark-antiquark pair.

There are two limits which are interesting to look at a
which have been discussed in the literature: the first limi
the triple Regge limit~smallb! in which z can be set to zero
in the square bracket of Eq.~23!. This leads to

xPF $t,qq̄g%
D ~Q2,b,xP!

5
9b

64BD
(

f
ef

2E
0

Q2

dk2
as

2p
lnS Q2

k2 D
3E

b

1 dz

z2 F S 12
b

z D 2

1S b

z D 2G
3H E dlt

2

l t
2 asF~xP ,l t

2!

32FQ~ l t
22k2!1

l t
2

k2 Q~k22 l t
2!G J 2

~25!

and agrees with results of Refs.@12, 15, 16#. The other limit
is l t

2!k2 and requires a lower cutoffk0
2 on k2:

d

3-5
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FIG. 4. The results~solid lines! of the
fit to the inclusive DESY HERA data on
F2 for different values ofQ2, using the
model of @1# with saturation.
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xPF $t,qq̄g%
D ~Q2,b,xP!5

9b

64BD
(

f
ef

2E
k0

2

Q2

dk2
as

2p
lnS Q2

k2 D
3E

b

1 dz

z2~12z!2 F S 12
b

z D 2

1S b

z D 2G
3H asxPG~xP ,k2!2~12z!2

3~112z!
1

k2J 2

. ~26!

This result and corresponding approximations for Eqs.~20!
and ~21! have been derived earlier in Ref.@17#. They have
been utilized in Ref.@18# to perform a similar analysis o
diffraction as presented in this paper. The approximati
used in Ref.@18# allow the direct implementation of th
gluon structure function as given by standard parameter
tions. The result is a too steep increase of the diffract
structure function with decreasingxP . The exact formulas in
conjunction with saturation give a much shallower behav
which is in better agreement with the data~see below!.

V. COMPARISON WITH DATA

Before we start our numerical investigation into diffra
tive scattering we would like to review the fit to the inclusiv
data @1#. The expression for the structure functionF2 we
have used in@1# was derived from Eq.~1! in combination
11402
s
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e

r

FIG. 5. The diffractive structure functionxPFD(xP ,b,Q2) for
xP50.0042 as afunction of b. The dashed lines show theqq̄
contribution for transverse photons~20!, the dot-dashed lines cor
respond to the contribution from the longitudinal photons~21! and
the dotted lines illustrated theqq̄g ~23!. The solid line is the total
contribution and the data are from ZEUS.
3-6
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with the saturation model~4! quoted in Sec. II. The param
eters were found to bes0523.03 mb, l50.288 andx0
53.0431024. These parameters enter into the diffracti
cross section via the functionF in Eqs.~20!–~23!. To illus-
trate the quality of the fit we plot in Fig. 4 the structu
function F2(x,Q2) in different Q2 bins in comparison with
the data from H1@19# and ZEUS@20# ~see also@1# for dif-
ferent comparison!.

The remaining integrations in Eqs.~20!–~23! have been
performed numerically. We consider three light flavors a
assume the diffractive slope parameterBD56 GeV22 which
is somewhat lower than the reported value of 7.1 GeV22

@21#. One has, however, to take into account some cor
tions due to double dissociation~dissociation of the proton!
which can be roughly estimated by lowering the diffracti
slope from 7.1 to 6 GeV22. The coupling constant is kep
fixed: as50.2.

Figure 5 shows our result for the diffractive structu
functionxPFD(xP ,b,Q2) at fixedxP50.0042 plotted overb
for variousQ2 together with data from ZEUS@8#. Figure 6
contains similar plots with H1-data for fixedxP50.003 @7#.
The three contributions~20!, ~21! and ~23! have been dis-
played separately in Fig. 7. The important feature is the se
ration in three distinct regimes of small, medium and highb
where the production ofqq̄g, qq̄ with transverse andqq̄
with longitudinally polarized photons, respectively, is dom
nant. It was already argued in Ref.@22# that this behavior is
mainly due to the nature of the wave functions rather th

FIG. 6. The same comparison as in Fig. 5 but with H1 da
Only the total contribution is shown~solid lines!.
11402
d

c-

a-

n

the model we use. The relative strength of the three con
butions is fixed by QCD-color factors. The overa
normalization, however, directly results from the saturat
model without any fits to diffractive data. This fact
important to point out, since in Ref.@22# the overall and the
relative normalization for the mentioned three contributio
was fitted. One should note that there is no hard gluon co
ponent present in our approach~compare the analyses base
on the concept of the ‘‘soft’’ Pomeron structure functio
@7,28#!.

The prediction of thexP-dependence, besides the over
normalization, is an important consequence of the satura
model. In Fig. 7 and Fig. 8 we compare our predictions w
the data forxPFD(xP ,b,Q2), now analyzed as a function o
xP for different values ofb andQ2. Notice the good agree
ment, especially in the region of moderate and large val
of b which corresponds to not too large values of the diffra
tive massM . We also reproduce the change of the effect
Pomeron interceptāP(e f f) as a function ofQ2 for different
diffractive massesM , see Fig. 9. The effective intercept
related to the logarithmicxP-slope n of xPFD(xP ,b,Q2)
through the relation:n5122āP(e f f) . At low massesM
where the longitudinal part dominates, the slope inxP is
slightly steeper due to the enhanced longitudinal part of
cross section. Using the effective Pomeron intercept me
having incorporated shrinkage in the context of soft Reg
phenomenology. The rise inQ2 is again mainly caused by
the longitudinal part. There is, however, another effect
work which lowers the intercept at smallb. Theqq̄g contri-

.

FIG. 7. The diffractive structure functionsxPFD(xP,b,Q2) as
measured by ZEUS plotted as a function ofxP for different values
of b andQ2 ~in unites of GeV2!.
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FIG. 8. The same as in Fig. 7 but for H1 dat
Q2 values are in units of GeV2.
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bution has a logarithm ln(Q2/k2) which is approximately-
equal to ln(Q2R0(x)2). This term effectively lowers the inter
cept in the regime whereqq̄g dominates, i.e. at smallb.

In Fig. 10 we show the ratio of the diffractive versu
inclusive cross section as a function ofW for different values
of Q2 and the diffractive massM , in analogy to the analysis
in Ref. @8#. Thus for the presented analysis we have in
grated Eqs.~20!, ~21!, ~23! over theb values which corre-
spond to the indicated ranges ofM . The values of the inclu-
sive cross section were taken from the analysis in Ref.@1#.
The ratio is almost constant over the entire range ofQ2 and
W with a slight growth at smallM caused by the longitudina
higher twist contribution. One can extract this behavior
rectly from the leading twist contributions of Eqs.~20! and
~23! by simultaneous rescaling of thel 2- andk2-integration
with respect toR0

2. We have already discussed that the co
stant ratio is a particular feature of our saturation model
certainly deviates from the ‘‘conventional’’ triple Regge a
proach.

VI. DIFFRACTIVE STRUCTURE FUNCTION IN IMPACT
PARAMETER SPACE REPRESENTATION

We have started our discussion in impact parameter sp
because it provides a natural way to formulate saturation.
11402
-

-

-
d

ce
or

this reason we re-derive the formulae of Sec. V in imp
parameter space. Moreover, the dipole formulation has
natural foundation in impact parameter space@23,24#. A
simpleqq̄-pair represents an elementary color dipole wh
has an effective scattering cross section depending on
separation between the quark and antiquark.

We will briefly recall the wave function description for
qq̄-pair in impact parameter space using the convention
Ref. @25# where the subscript~6,6! denotes the photon- an

FIG. 9. The effective Pomeron slope as defined in the text a
function of Q2 for two values in the diffractive massM.
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quark helicity~complex notation!:

c (1,1)~r ,a!5
& ie

2p
aAa~12a!Q2K1~Aa~12a!Q2r 2!

r

r

c (1,2)~r ,a!5
& ie

2p
~12a!

3Aa~12a!Q2K1~Aa~12a!Q2r 2!
r

r

c (2,1)~r ,a!5
& ie

2p
~12a!

3Aa~12a!Q2K1~Aa~12a!Q2r 2!
r*

r

c (2,2)~r ,a!5
& ie

2p

3aAa~12a!Q2K1~Aa~12a!Q2r 2!
r*

r
.

~27!

K1 is the MacDonald-Bessel function, and the variabler is
conjugate tokt ; i.e.,

c~r ,a!5E d2kt

~2p!2 eikt•rc~kt ,a!. ~28!

FIG. 10. The ratio of the diffractive versus the inclusive cro
sections as a function ofW for different values ofQ2 and the
diffractive massMX.
11402
The longitudinal wave function reads

c (0,6)~r ,a!5
e

p
a~12a!QK0~Aa~12a!Q2r 2!. ~29!

Theb-integrated diffractive structure function can now b
readily expressed in terms of the above wave function
the effective dipole cross sectionŝ @10,11#:

F $t,qq̄%
D ~Q2,x!

5
3Q2

128p5BD
(

f
ef

2E
0

1

da@a21~12a!2#

3a~12a!Q2E d2rK1
2~Aa~12a!Q2r 2!ŝ2~r ,x!

~30!

and

F $ l ,qq̄%
D ~Q2,x!5

3Q2

32p5BD
(

f
ef

2E
0

1

daa~12a!a~12a!Q2

3E d2rK0
2~Aa~12a!Q2r 2!ŝ2~r ,x!.

~31!

These two equations demonstrate the simplification
achieves in impact parameter space provided the distr
tions are totally integrated. They have already been quote
Eq. ~8! rewritten as diffractive cross section. The disadva
tage, however, is that for differential distributions which d
pend on final state energies one has to transform bac
momentum space as in the case of theb-dependent structure
function:

xPF $t,qq̄%
D ~Q2,b,xP!

5
3

64p5BD
(

f
ef

2
b2

~12b!3E d2kt

~2p!2 kt
4

12
2b

12b

kt
2

Q2

A12
4b

12b

kt
2

Q2

3QS 12
4b

12b

kt
2

Q2D
3E d2rE d2r 8eikt•(r2r8) ŝ~r ,xP! ŝ~r 8,xP!

r•r 8

rr 8

3K1SA b

12b
kt

2r 2D K1SA b

12b
kt

2r 82D . ~32!

We have made use of Eq.~22! to substitutea by b keeping
kt fixed. For the longitudinally polarized photons we find
3-9
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xPF $ l ,qq̄%
D ~Q2,b,xP!

5
3

16p5BD
(

f
ef

2
b3

~12b!4E d2kt

~2p!2 kt
4

3
kt

2/Q2

A12
4b

12b

kt
2

Q2

QS 12
4b

12b

kt
2

Q2D

3E d2rE d2r 8eikt•(r2r8) ŝ~r ,xP! ŝ~r 8,xP!

3K0SA b

12b
kt

2r 2D K0SA b

12b
kt

2r 82D . ~33!

This contribution is suppressed by an extra power inQ2 and
therefore is a higher twist contribution. By using Eq.~17!
one can directly transform Eqs.~32! and ~33! into Eqs.~20!
and ~21!.

It should be noted that, when Eqs.~32! and ~33! are
integrated over b, the argument xP in ŝ is simply
substituted byx. This procedure is valid in the high
energy approach as long as the dominant contribution
not concentrated at smallb. The b-integration then leads
from Eqs.~32! and ~33! back to Eqs.~30! and ~31!. In the
case of a gluon in the final state one can no longer d
simple substitution but has to integrate the argument oŝ
explicitly.

We will discuss the impact parameterization of t
qq̄g-final state in more detail. Our starting point is the wa
function for the effective gluon dipole as described in@13#
~we use in this case the vector notationkt5(kt

1 ,kt
2) and

m,n51,2!

cmn~a,kt!5
1

Aa~12a!Q2

kt
2dmn22kt

mkt
n

kt
21a~12a!Q2

5
1

AaQ2

kt
2dmn22kt

mkt
n

kt
21aQ2 . ~34!

The second line of the previous equation is a consequenc
the strong ordering condition which impliesa!1. The vari-
able a has been introduced in analogy to Eq.~22! and is
identical tozkt

2/(12z)Q2,

aQ25
zkt

2

12z
5zk2, ~35!

wherekt is the gluon transverse momentum in this case
k2 describes the mean virtuality of the gluon in the upp
t-channel.
11402
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The following relation illuminates the use of the wav
function in momentum space. After the integration over t
azimuth angle ofl t one arrives at the core expression of E
~23!

E d2lt
p l t

2 asF~xP ,l t
2!@2cmn~a,kt!2cmn~a,kt1 lt!

2cmn~a,kt2 lt!#

5E dlt
2

l t
2

asF~xP ,l t
2!

AaQ2 F12
2kt

2

kt
21aQ2 2

l t
2

kt
2 2

aQ2

kt
2

1
@ l t

22kt
21aQ2#212kt

2aQ2

kt
2A@ l t

21kt
21aQ2#224l t

2kt
2G H 2

kt
mkt

n

kt
2 2dmnJ

5E dlt
2

l t
2

asF~xP ,l t
2!

~12z!Azk2 F z21~12z!21
l t
2

k2

2
@~122z!k22 l t

2#212z~12z!k4

k2A~ l t
21k2!224~12z!l t

2k2 G H dmn22
kt

mkt
n

kt
2 J .

~36!

The four terms cmn(a,kt)1cmn(a,kt)2cmn(a,kt1 lt)
2cmn(a,kt2 lt) represent the four possible ways of co
pling the twot-channel gluons to the gluon dipole~without
crossing in thet-channel!. The Fourier transformation of the
wave function leads to

cmn~a,r !52
1

2p S dmn22
rmrn

r 2 DAaQ2K2~AaQ2r 2!.

~37!

Inserting the Fourier transform into the first line of Eq.~36!
and using Eq.~17! we find

E d2lt
p l t

2 asF~xP ,l t
2!@2cmn~a,kt!2cmn~a,kt1 lt!

2cmn~a,kt2 lt!#

5E d2r cmn~a,r !eikt•rE d2lt
p l t

2 asF~xP ,l t
2!

3~22ei lt•r2e2 i lt•r !

52E d2rcmn~a,r !eikt•r
3

4p2 ŝ~xP ,r !. ~38!

We can now rewrite Eq.~23! in impact parameter space a
3-10
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xPF $t,qq̄g%
D ~Q2,b,xP!5

81b

256p5BD
(

f
ef

2 as

2p E
b

1 dz

z F S 12
b

z D 2

1S b

z D 2G z

~12z!3E d2kt

~2p!2 kt
4 lnS ~12z!Q2

kt
2 D

3Q@~12z!Q22kt
2#E d2rE d2r 8eikt•(r2r8)ŝ~r ,xP! ŝ~r 8,xP!S dmn22

rmrn

r 2 D
3S dmn22

r 8mr 8n

r 82 DK2SA z

12z
kt

2r 2DK2SA z

12z
kt

2r 82D . ~39!
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Again, a direct computation of Eq.~39! after substitutingŝ
according to Eq.~17! reproduces the result of Eq.~23!.

The impact parameter representation in Eqs.~32! and~39!
demonstrate the similarity of our approach and the semic
sical approach of Ref.@26#. It suggests that the two-gluo
exchange model can be extended to multi-gluon excha
without changing the basic analytic structure. The lead
color tensors in the limit of largeNc ~number of colors! for a
quark- and a gluon-loop with an arbitrary number
t-channel gluons attached to them are found to be iden
up to an overall constant factor@27#. The largeNc result
differs only slightly fromNc53 in the two-gluon exchange
model and, hence, multi-gluon exchange is expected to
very similar results as the two-gluon exchange.

VII. CONCLUSIONS

In our analysis we successfully describe diffractive de
inelastic scattering using the saturation model propose
Ref. @1#. This model reproduces quite accurately theb and
xP distributions as measured by H1 and ZEUS@7,8# without
tuning or fitting any additional parameters.

As demonstrated in Ref.@1# saturation naturally explain
the transition of the inclusive structure functionF2 from high
to low values ofQ2. Diffractive scattering is even more e
fected by saturation~see Sec. III!. The constant ratio of the
diffractive versus inclusive cross sections as observed
HERA is a direct consequence of saturation. It was a
pointed out that soft contributions are significantly su
pressed leading to a relative enhancement of semi-hard
tributions. This fact allows the conclusion that diffraction
deep inelastic scattering is a semi-hard process@6#. The ef-
fective Pomeron intercept is higher than expected from
‘‘soft’’ Pomeron approach@7,28#. The b-spectrum depend
only weakly on the model and is therefore more universa

The model we choose for saturation is purely phenome
logical. An alternative model without low-x saturation can be
found in Ref.@29#. A completely theoretical framework in
volves non-linear QCD evolution equations as proposed
Refs.@2, 5, 30#. We believe, however, that our model repr
sents the basic dynamics at very lowx, since it allows us to
describe a wide range of data in a satisfactory way.

We can use our analysis to predict diffractive charm p
duction. This requires the discussion of factorization, the
troduction of diffractive parton distributions and the evol
tion of the diffractive final state. The detailed discussion
these topics will be presented elsewhere@31#.
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APPENDIX

In this appendix we would like to recall the derivation
Eq. ~23! which represents the contribution due to the em
sion of an additional gluon@32#. We choose light-cone gaug
with the gauge fixing conditionq8•A50 ~A is the gluon
potential, q85q1xp!. The frame which naturally corre
sponds to this choice of gauge is the Breit frame, i.e.
frame in which the proton is fast moving. All quas
Bremsstrahlungs gluons emitted from theqq̄-pair can be ne-
glected. Those from the incoming partons on the other h
have to be taken into account.

The polarization vectore for real gluons and the polariza
tion tensor for the gluon propagatordnm read

em~k!5e t
n~k!2q8m

kt•e t~k!

k•q8

dnm~k!5gnm2
knq8m1q8nkm

k•q8
. ~A1!

Figure 11 shows all the essential diagrams. The two d
grams to the left have a similar momentum structure and
be summed up right from the beginning whereas the diag
on the right will be calculated separately. The bottom line

FIG. 11. Gluon radiation.
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all the diagrams represents a quark. It is accompanied
other ‘‘spectator-quarks’’ which are not shown explicitl
The cut through the diagrams effectively subdivides
whole amplitude into two subprocesses. We will introdu
effective three gluon couplings which are the sum of
original three gluon coupling and extra bremsstrahlungs c
tributions ~see Fig. 12!. These couplings and their analyt
formulas represent the core of the whole calculation. T
blob at the top of the rightt-channel gluon in Fig. 11 indi-
cates the simultaneous coupling of thet-channel gluon to the
qq̄-pair which in color space combines into a gluon.

Before starting the calculation one has to recall and m
use of the kinematic assumptions made in this approa
Firstly, there is the Regge limit with respect to the lower p
of the diagram, i.e. the emitted gluon and the quark at
bottom have an invariant subenergy much larger than
diffractive massM . The high energy assumption allows on
to simplify the t-channel propagator to

drs~ l 1xPp!5grs2
~ l 1xPp!rq8s1q8r~ l 1xPp!s

~b l1xP!p•q8

.2
l t
rq8s

~b l1xP!p•q8
~A2!

where the indexr refers to the polarization at the upper e
of the gluon line ands to the lower end.b l corresponds to
the Sudakov decompositionl 5b l p1a lq81 l t where a l is
fixed using the fact that the quark at the bottom is on-sh
(a l. l t

2/s). b l itself is given through the on-shell conditio
of the intermediates-channel gluon (l 1xPp2k)250 and
the final state gluon (xPp2k)250:

b l5
l t
222l t•kt

aks

ak5
kt

2

~xP2bk!s
~A3!

(s52p•q8). Here the Sudakov representation ofk enters
with bk as free variable denoting the momentum fraction
the uppert-channel gluon with respect to the momentump.
Later on it will be substituted byz (z5bk /xP) which then
denotes the momentum fraction of thet-channel gluon with
respect to the Pomeron momentum. The contraction ofq8s

with the lower quark-gluon vertex gives roughlyq8•p which
cancels the same factor in the denominator of Eq.~A2!. The
remaining factor 1/(b l1xPp) in front of the vectorl t

r is
large provided thatxP is small. The other components of th
polarization tensordrs are negligible. All these propertie

FIG. 12. Effective triple gluon couplings.
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are crucial in proving thekt-factorization theorem. For the
uppert-channel gluon the situation is different. In this ca
the corresponding tensor reads

drs~k!5grs2
krq8s1q8rks

k•q8

5gt
rs2

kt
rq8s1q8rkt

s12akq8rq8s

bkp•q8
.

~A4!

Due to the fact that the contraction ofq8s downwards gives
a factorxPp•q8 which is not much larger thanbk , but of the
same order, the termbk in the denominator of Eq.~A4! is no
longer enhanced as in Eq.~A2!. However, a simplification is
still possible, if one restricts oneself to the calculation
leading twist terms and keeps only the leading logs inQ2.
Then, the transverse momenta of the quarks at the top o
diagram in Fig. 11 and the gluon below are strongly orde
and all contributions with an extra inverse power of the lar
quark transverse momentum are suppressed. This allows
to set the transverse momentumkt along any of the quark
lines to zero. Moreover, the projection ofq8r with one of the
upper quark-gluon vertices cancels or is sub-leading, and
~A4! may be reduced to

drs~k!.gt
rs2

kt
rq8s

bkp•q8
. ~A5!

This kind of technique is well known and has been applied
deriving the conventional Altarelli-Parisi splitting function
Therefore it is not surprising that the production of t
qq̄-system is basically described by the AP-splitting functi
associated with the splitting of a gluon into two quarks a
companied by a logarithm inQ2/kt

2 . Certainly, this approach
is only valid for the transverse part of the cross section. T
longitudinal part gives a next-to-leading log(Q2) contribution
which is not considered here. The coupling of the seco
gluon to theqq̄-system does not affect the dynamics with
this system, but feels only the total color charge which is
same charge as carried by the first gluon.

To summarize, the leading twist approach allows one
factorize off theqq̄-system analogously to the convention
leading order DGLAP-scheme whereas in the lower part
kt-factorization theorem is applicable. All together, a loc
vertex may be extracted describing the transition between
lower Pomeron exchange and the upper QCD-radiation.
useful to rewrite Eq.~A5! in terms of transverse polarizatio
vectorse t defined as

gt
rs52(

pol
e t

re t
s

~e t! i•~e t! j52d i j . ~A6!

The sum has to be taken over the two helicity or polarizat
configurations in the transverse plane.drs then reads
3-12
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drs5(
pol

er~k!es~k! ~A7!

with

es~k!5e t
s2

kt•e tq8s

bkp•q8
. ~A8!

Having in mind the previous discussion one can now s
the calculation of the diagrams in Fig. 11. The effecti
triple gluon vertex to the left of the first diagram gives t
following contribution:

2p•e~k!l t•e~ l 1xPp2k!2
b laks

b l1xP
e t•e~ l 1xPp2k!22p•e

3~ l 1xPp2k!l t•e t22p•e~ l 1xPp2k!kt•e t

l t
2

bkaks
.

~A9!

The first three terms of Eq.~A9! result from the ordinary
three gluon coupling whereas the last is the sum of the
Bremsstrahlungs gluons as illustrated in the first row of F
12. The momentum structure of these contributions is
same except the overall sign which is opposite. It is obvio
that the two color tensors add up to the same tensor
ordinary three gluon coupling has. The overall color fac
will be evaluated later. Here, only the correspondence
n
m
iv

th
t

ec
rs

ty
as
g
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tween different color tensors is of interest but not the wh
tensor itself. The right effective vertex in the first diagram
Fig. 11 is different as it contains twos-channel gluons. Since
these gluons are on-shell, the Ward identityl rAr50, where
Ar is the triple gluon coupling contracted with the gluo
polarization vectors, may be used to change thet-channel
polarization vector froml t

r/b l to pr. The resulting expres-
sion is

22l t•e~xPp2k!p•e~ l 1xPp2k!12l t•e~ l 1xPp2k!

3p•e~xPp2k!2akse~ l 1xPp2k!•e~xPp2k!

12p•e~ l 1xPp2k!p•e~xPp2k!
l t
2

aks
. ~A10!

Both pieces Eqs.~A9! and ~A10! have to be combined an
the sum over the transverse polarizations of the intermed
s-channel gluon has to be performed. The following equat
will be used:

(
pol

e t
m~ l 1xPp2k!e t

n~ l 1xPp2k!52gt
mn , ~A11!

and products likep•e(k) will be reduced to22kt•e t /bk .
Furthermore, the propagator 1/k25xP /(aks)5(12z)/kt

2 is
introduced andb l is expressed through Eq.~A3! as well as
the variablebk is substituted byz (bk5xPz):
2
2

xP

kt•e t

zk2 H 22
l t•~ l t2kt!

~ l t2kt!
2 F l t

2

kt
2 kt•e~xPp2k!2 l t•e~xPp2k!G12l t

2 kt•e~xPp2k!

kt
2 2 l t•e~xPp2k!J

2
1

xP
S 12

k2

k21 l t
222l t•kt

D H 22
~ l t2kt!•e t

~ l t2kt!
2 F l t

2

kt
2 kt•e~xPp2k!2 l t•e~xPp2k!G12l t•e t

kt•e~xPp2k!

kt
2

2e t•e~xPp2k!J 1
2

xP
F l t•e t1

12z

z

l t
2

kt
2 kt•e tG H 2

2

~ l t2kt!
2 F l t

2

kt
2 kt•e~xPp2k!2 l t•e~xPp2k!G

12
l t•~ l t2kt!

~ l t2kt!
2

kt•e~xPp2k!

kt
2 2

~ l t2kt!•e~xPp2k!

~ l t2kt!
2 J . ~A12!
e
ast

to
cial
ap-
r-
The next contribution has to be taken from the seco
diagram in Fig. 11. In this case the situation is slightly si
pler compared to the first diagram, since only one effect
triple gluon vertex appears. Moreover, the uppert-channel
gluon is attached to a quark line where the incoming and
outgoing quarks are on-shell with the consequence that
momentum of this gluon is purely transverse up to corr
tions proportional to the squared ratio of the gluon transve
momentum and the quark transverse momentum. This
of correction is sub-leading due to the strong ordering
sumption. The polarization tensor simplifies in the followin
way:
d
-
e

e
he
-
e

pe
-

drs~ l 1xPp2k!5
prq8s

p•q8
. ~A13!

The upper polarization vector was changed from2( l t
2kt)

r/(b l1xP2bk) to pr making use of the fact that th
two quarks to the left and to the right are on-shell. In contr
to the first diagram in Fig. 11 the tensorgt

rs along the
t-channel line gives only a sub-leading contributions due
the smallness of the longitudinal momentum. The spe
kinematic situation in the second diagram allows one to
ply the eikonal approximation to the right quark-gluon ve
tex. The subsequent contraction withpr gives a factor which
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is cancelled by the residue of thed-function corresponding to
the intermediate quark, and the remaining factor is sim
21. The softness of the upper rightt-channel gluon has no
further dynamical effect except that the color charge of b
quarks add up to the total color charge of the leftt-channel
gluon. Consequently, the color factor is identical to that
the first diagram in Fig. 11. After all, one finds for this di
gram:

2
2

bk
l t•e tl t•e~xPp2k!1

2

bk
l t•e t

l t
2

aks
p•e~xPp2k!.

~A14!

Inserting the propagator 1/(l t2kt)
2 and substitutingbk as

well asak one finally comes to:

2

xP

1

z

l t•e t

~ l t2kt!
2 F l t

2

kt
2 kt•e~xPp2k!2 l t•e~xPp2k!G .

~A15!

In the following step the two expressions~A12! and
~A15! will be added and the result integrated over the a
muth angle betweenl t and kt . A lot of cancellations occur
and the final expression is rather short:

2
1

2xP

1

z~12z! H z21~12z!21
l t
2

k2

2
@~122z!k22 l t

2#212z~12z!k4

k2A~k21 l t
2!224~12z!l t

2k2 J e t•e t~xPp2k!.

~A16!

Recalling the fact that only the amplitude has been con
ered, the calculation of the cross section requires to take
square of Expression~A16!. In doing so one has to sum ove
the final state polarizations which leads to a contraction
the vectore t with its conjugate. In the end the transverse p
of the g-matrices in the lower edges of the quark-box a
contacted as well~see Fig. 11!.

Moving on to the final diagram~Fig. 11! one encounters a
similar situation as in the case of the second diagram of
same figure. The rightt-channel gluon is soft in the sens
that its momentum is small compared to the quark mome
It has no dynamical effect except that the color charge a
up as before, so that the final color factor is identical to t
in the first two diagrams of Fig. 11. What remains is t
calculation of the left effective triple gluon vertex. This h
to be performed in a similar way as in the case of the
vertex in the second diagram:

2p•e~ l 1k!l t•e~xPp2k!1
l t
212l t•kt

b l1xP
e~ l 1k!•e~xPp2k!

22p•e~xPp2k!l t•e~ l 1k!22p•e~xPp2k!

3~ l t1kt!•e~ l 1k!
l t
2

~b l1bk!aks
. ~A17!
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The last term in Eq.~A17! summarizes the contribution o
the Bremsstrahlungs gluons associated with the effec
triple gluon coupling. As was argued before the longitudin
momentum of the right softt-channel gluon is negligible and
b l equals zero. The momentum of the upper leftt-channel
gluon does not reduce to its transverse component, bu
cludes the non-negligible longitudinal fractionz of the
Pomeron momentum. Therefore, the propagator 1/(l 1k)2

transforms into 1/(zk21( l t1kt)
2). Introducing this propaga-

tor into Eq. ~A17! and substitutingbk5zxP as well asaks
5k2/xP one finds

2
2

xP

1

z

~ l t1kt!•e~ l 1k!l t•e~xPp2k!

zk21~ l t1kt!
2

2
2

xP

1

z

l t
2

kt
2

~ l t1kt!•e~ l 1k!kt•e~xPp2k!

zk21~ l t1kt!
2

2
2

xP

1

12z

l t•e~ l 1k!kt•e~xPp2k!

zk21~ l t1kt!
2

1
1

xP

~ l t1kt!
22kt

2

zk21~ l t1kt!
2 e~ l 1k!•e~xPp2k!. ~A18!

Once more one has to integrate over the azimuth angle
tweenl t andkt with the remarkable outcome that the resu
ing expression is identical to Eq.~A16!:

2
1

2xP

1

z~12z! H z21~12z!21
l t
2

k2

2
@~122z!k22 l t

2#212z~12z!k4

k2A~k21 l t
2!224~12z!l t

2k2 J e t•e t~xPp2k!.

~A19!

In other words, the sum of the first two diagrams in Fig.
is identical to the third diagram bearing in mind that the lig
cone gauge with the conditionq8•A50 was used. One
should remember that the amplitude was calculated in
high energy asymptotic region where the real parts of
s-channel andu-channel contributions cancel due to the ev
signature of the color singlet exchange.~Theu-channel con-
tribution corresponds to the crossing of the two low
t-channel gluons in Fig. 11.! Hence, the imaginary par
givesthe leading part and was calculated taking thes-channel
discontinuity, i.e. cutting the diagrams. However, the cut d
gram gives twice the imaginary part and one has to div
the final result by 2.

The structure in Eq.~A19! has been used in Eq.~23!. The
wave function in Eq.~34! cannot be extracted directly from
the diagrams discussed here, but was constructed such t
reproduces the same results.
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