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Skewed and double distributions in the pion and the nucleon

M. V. Polyakov* and C. Weiss†

Institut für Theoretische Physik II, Ruhr–Universität Bochum, D-44780 Bochum, Germany
~Received 29 April 1999; published 5 November 1999!

We study the non-forward matrix elements of twist-2 QCD light-ray operators and their representations in
terms of skewed and double distributions, considering the pion as well as the nucleon. We point out the
importance of explicitly including all twist-2 structures in the double distribution representation, which natu-
rally leads to a ‘‘two-component’’ structure of the skewed distribution, with different contributions in the
regionsuXu.j/2 anduXu,j/2. We compute the skewed and double quark distributions in the pion at a low
normalization point in the effective chiral theory based on the instanton vacuum. Also, we derive the crossing
relations expressing the skewed quark distribution in the pion through the distribution amplitude for two-pion
production. Measurement of the latter in two-pion production ing* g andg* N reactions could provide direct
information about the skewed as well as the usual quark-antiquark distribution in the pion.
@S0556-2821~99!00423-3#
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I. INTRODUCTION

In so-called light-cone dominated hard scattering p
cesses the non-perturbative information entering the sca
ing amplitude is contained in matrix elements of certa
QCD light-ray operators between hadronic states. A w
known example is inclusive deep-inelastic scattering, wh
in the asymptotic regime the cross section is determined
forward ~diagonal! matrix elements of twist-2 light-ray op
erators in the target state, which have an interpretation
parton distributions. More recently, factorization has be
proven for a large class of exclusive processes, nam
deeply virtual Compton scattering~DVCS! and hard meson
production @1–9#. The amplitudes for these processes
volve non-forward~more generally, non-diagonal! matrix el-
ements of light-ray operators between incoming and out
ing hadron states, which can be represented by genera
parton distributions. Such matrix elements had been
cussed earlier in the context of the non-local light-cone
pansion@10#.1

Because of the presence of a non-zero momentum tr
fer, non-forward matrix elements of light-ray operators po
sess a much richer structure than the forward ones defi
the familiar parton distributions. In the matrix element of
generic light-ray operator,̂ p2r /2uw(2z/2) . . .w(z/2)up
1r /2&, with z250, both the momentum transfer,r, and the
average of initial and final momenta,p, in general have non
zero longitudinal~‘‘plus’’ ! component with respect to th
light-cone direction defined byz. In a partonic language, on
may express the momentum of the ‘‘active’’ parton in term
of any linear combination ofp•z and r •z. Two approaches

*Permanent address: Petersburg Nuclear Physics Institute, 18
Gatchina, Leningrad District, Russian Federation. Email addr
maximp@tp2.ruhr-uni-bochum.de

†Email address: weiss@tp2.ruhr-uni-bochum.de
1The evolution of so-called ‘‘non-forward parton ladders’’ h

also been considered in connection with the description ofZ0 pho-
toproduction at smallx @11#.
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have been proposed. One can analyze the matrix elem
assuming proportionalityr •z5j p•z, where the value ofj is
determined by the kinematics of the scattering process~e.g.
in DVCS it is related to the Bjorken variable!. This leads to
the so-called skewed distributions,2 families of generalized
parton distributions depending explicitly on th
‘‘skewedness’’ parameter,j @2–6#. In another approach, pro
posed by Radyushkin@4,5#, one writes a spectral represent
tion for the matrix element of the light-ray operator as
independent function ofp•z andr •z in terms of a so-called
double distribution. The skewed distribution for a give
value of j is then obtained as a particular one-dimensio
reduction of this two-variable distribution. The advantage
this approach is that it allows one to make statements ab
the dependence of the skewed distribution on the skewed
parameter,j.

The general structure of skewed and double distributi
—their symmetries, limiting cases, possible singulariti
etc.—is a problem of great theoretical and practical imp
tance. This problem has two aspects. The distributions
pend, of course, on the behavior of the matrix elements
the light-ray operators as functions ofp•z, andr •z. This is a
dynamical question, which one can address from the poin
view of general invariance principles, or by calculations u
ing some dynamical model. However, the properties of
distributions are also determined by the particular way
which one writes the spectral representation for the ma
element. This concerns such things as e.g. the numbe
independent ‘‘twist-2 structures’’ one includes in the doub
distribution representation of the matrix element. A clear u

50
s:

2The term ‘‘skewed distribution’’ has been recommended a
common name for the ‘‘off-forward’’ distributions introduced by
@2,3# and the ‘‘non-forward’’ distributions of Radyushkin@4,5#,
which differ in the definition of the parton momenta, see Ref.@5#
for a detailed discussion. It encompasses also the ‘‘non-diagon
distributions parametrizing matrix elements between hadron st
of different quantum numbers, as have been introduced e.g. to
scribe DVCS withN2D transitions@12#.
©1999 The American Physical Society17-1
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derstanding of both aspects of this problem is necessary
building realistic models for skewed distributions.

In this paper we investigate the structure of hadronic m
trix elements of twist-2 operators at a low normalizati
point, using general principles~symmetries, crossing, etc.! as
well as specific dynamical models, and consider the impli
tions for spectral representations in terms of skewed
double distributions. We show that the standard definition
the double distribution representation of Refs.@4,5# is not
always compatible with the basic structure of the matrix
ements~at the very least, it implies severe singularities of t
double distribution!, and propose a complete representat
which explicitly takes into account all twist-2 structures. T
additional terms give rise to contributions to the skewed d
tribution which are non-zero only in the region2j/2,X
,j/2, and thus naturally lead to a ‘‘two-component’’ form
of the skewed distribution, i.e., to essentially different fun
tions in the two regionsuXu,j/2 anduXu.j/2. Such behav-
ior was first observed in a model calculation of the flav
singlet skewed distribution in the large-Nc limit in Ref. @13#.

We find it useful to consider in addition to the nucleo
matrix elements of twist-2 light-ray operators also the ma
elements between pion states. While hardly the targe
choice for actual DVCS experiments, the pion is interest
from a theoretical point of view, for various reasons. First
allows one to avoid complications due to spin, and also
mass can be neglected. Second, the interactions of the
with external fields are described completely by the ch
Lagrangian, which makes it possible to derive certain s
rules for the skewed distributions at a low normalizati
point from first principles. Finally, both the skewed and t
double distribution in the pion at a low normalization poi
can be estimated in the large-Nc limit in the effective low-
energy theory derived from the instanton vacuum of QC
@14#. This is a fully field-theoretic description of the pion
which respects general properties such as crossing symm
etc., and incorporates the consequences of the dynam
breaking of chiral symmetry. The same approach has b
shown to give a realistic description of the quark/antiqu
distributions in the nucleon~both usual@15# and skewed
@13#! as well as the pion distribution amplitude@16,17#. In
fact, the results of our calculation of the skewed and dou
distributions in the pion fully support our general concl
sions concerning the need to modify the double distribut
representation of Refs.@4,5# and the ‘‘two-component’’
structure of the skewed distribution.3

Another reason for our interest in the pion is the fact t
the process related to DVCS off the pion by crossing, nam
production of two pions ing* g collisions, can be measure
at low invariant masses@18#. This process is described by

3In the case of the nucleon the calculation of non-forward ma
elements is complicated by the parametric restrictions imposed
the different components of the nucleons’ momenta by
1/Nc-expansion. While it is possible to compute within the stand
1/Nc-expansion the skewed distributions in the nucleon in the p
metric rangeX,j;1/Nc @13#, it is difficult to get the double distri-
bution in the nucleon in this approach; see Sec. III.
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two-pion distribution amplitude, which, by crossing, is r
lated to the skewed parton distribution in the pion@19,20#. In
this paper we derive the explicit relation between the t
functions, using dispersion relations to connect the region
spacelike and timelike momentum transfers. In particu
this relation allows us to connect moments of the us
quark/antiquark distribution in the pion to characteristics
distribution amplitudes of two-pion resonances@20#. Given
the contributions that measurements ofg* g→p0 @21# have
made to our knowledge of the single-pion distribution amp
tude, study of the processg* g→2p could well be one of the
cleanest ways to get information about the quark distri
tions in the pion — skewed as well as usual.

The scale dependence of skewed and double distribut
is described by generalized evolution equations, which co
bine features of both the Dokshitser-Gribov-Lipato
Altarelli-Parisi ~DGLAP! evolution for usual parton distribu
tions and the Efremov-Radyushkin-Brodsky-Lepa
evolution@22# for meson distribution amplitudes. This prob
lem has extensively been treated in the literature, see
Refs. @3–5,10,11,23–25#. We shall not be concerned wit
this aspect here, but rather focus on the structure of the
tributions at a low normalization point, how they are co
strained by general principles~symmetries, crossing, etc.!
and how they can be estimated in dynamical models tak
into account non-perturbative effects such as the dynam
breaking of chiral symmetry, etc.

We shall proceed as follows. In Sec. II we discuss
properties of non-forward hadronic matrix elements
twist-2 operators and their spectral representation from
general point of view. In Sec. II B, using the pion as t
simplest example, we show the importance of explicitly
cluding all twist-2 structures in the double distribution re
resentation, and discuss the implications for skewed distr
tions. The investigation is extended to nucleon mat
elements in Sec. II C, with analogous conclusions. In Sec
we perform a model calculation of the non-forward pion m
trix elements and the corresponding skewed and double
tributions at a low normalization point (m;600 MeV), using
the effective low-energy theory based on the instan
vacuum. The results serve as an illustration for the gen
discussion in Sec. II. In Sec. IV we discuss the relation of
skewed distribution in the pion to the two-pion distributio
amplitude. The crossing relation is derived in explicit for
using moments. We use the crossing formula, together w
the dispersion relation for the invariant-mass dependenc
the two-pion distribution amplitude, to relate moments of t
pion parton distribution to parameters of the distribution a
plitudes of two-pion resonance wave functions. Our conc
sions are summarized in Sec. V.

Appendix A gives a derivation of the generalized mome
tum sum rule for the skewed distributions in the pion.
Appendix B we consider ‘‘resonance exchange’’ contrib
tions to the non-forward matrix elements in the pion. A ge
eral expression describing the contribution of the excha
of t-channel resonances of arbitrary spin is given. The res
provide a simple dynamical explanation for the general pr
erties of skewed and double distributions discussed in S
II.
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II. NONFORWARD MATRIX ELEMENTS
AND GENERALIZED PARTON DISTRIBUTIONS

A. Skewed vs. double distributions: the pion

To begin, we would like to discuss some general prop
ties of non-forward hadronic matrix elements of QCD ligh
ray operators and their representation in terms of skewed
double distributions. We start with the simplest case,
i
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pion, which already exhibits all features of interest to
here, and generalize to the nucleon in Sec. II C.

Let us consider the non-forward matrix elements
twist-2 light-ray operators~normalized at some scale,m) be-
tween one-pion states. Due to isospin invariance, the ma
elements of the flavor-singlet and non-singlet quark ope
tors are of the form4
fined as
e

-

K pa~p2r /2!Uc̄~2z/2!H 1
tcJ ẑ @2z/2,z/2#c~z/2!Upb~p1r /2!L 5H 2dabM I 50~p•z,r •z;t !,

2i«abcM I 51~p•z,r •z;t !.
~1!

Throughout the following the isoscalar and isovector parts of matrix elements in the pion will be understood to be de
in Eq. ~1!; the isospin decomposition will often not be explicitly written. Here 1 andt3 are flavor matrices; we consider th
SU(2) flavor group. Furthermore,c is the quark field,zm a light-like distance (z250), andẑ[gmzm . Finally, @2z/2,z/2#
denotes the path-ordered exponential of the gauge field~phase factor! in the fundamental representation

@2z/2,z/2#[P expF i E
1/2

21/2

dt zmAm~ tz!G , ~2!

which is required by gauge invariance; the path here is along the light-like direction,z. The matrix element of the correspond
ing twist-2 gluon operator is defined as

zmzn^pa~p2r /2!uFm
r~2z/2!@2z/2,z/2#Frn~z/2!upb~p1r /2!&52dabM G~p•z,r •z;t !, ~3!
nts
cal
h as
e

in-

-
nts

-

-

ob-

e to
whereFmn denotes the gluon field, and the phase factor is
the adjoint representation.

In Eqs.~1! and~3! the dynamical information is containe
in scalar functions,M I 50,1 andM G, which depend on the
dimensionless invariantsp•z and r •z, as well as ont[r 2.
From the mass shell conditions (p6r /2)25mp

2 it follows
that

p•r 50,
~4!

p25mp
2 2

t

4
,

so t is the only independent dimensionful invariant. In t
physical regiont,0. In the following we consider the mass
less limit, mp→0. We note thatG-parity ~or, equivalently,
time reversal invariance! requires that

M I 50~p•z,r •z!5M I 50~2p•z,2r •z!,
~5!

M I 51~p•z,r •z!52M I 51~2p•z,2r •z!,

for same t; the symmetry ofM G is the same as that o
M I 50. In fact, using in addition Hermitean conjugation o
obtains a stronger symmetry relating the functions withr •z
→2r •z and samep•z @26#:

M I 50,1~p•z,r •z!5M I 50,1~p•z,2r •z!; ~6!

this will be discussed in detail in Sec. II B.
n Skewed distributions.In principle, the matrix elements
Eqs.~1!, ~3! can be considered as functions of the invaria
p•z andr •z as independent variables, defined in the physi
region. However, in the amplitude for hard processes suc
DVCS off the pion the matrix elements enter with som
fixed ratio of r •z andp•z,

r •z5jp•z, ~7!

which is dictated by the kinematics of the process; for
stance, in DVCSj is related to the Bjorken variable (21
,j/2,1) @2–5#. This suggests to define a ‘‘one
dimensional’’ spectral representation of the matrix eleme
in the form

M I 50,1~p•z,r •z5jp•z;t !

52p•zE
21

1

dXe2 iXp•zHI 50,1~X,j;t !, ~8!

where HI 50,1(X,j;t) are called the skewed quark distribu
tions in the pion~the definition of the gluon distribution is
analogous!. The limits 61 for the integral over the param
eterX follow from rather general considerations@3–5#. One

4From Eq.~1! the matrix elements in charge eigenstates are
tained in the usual way:up0&[up3&, up6&[(up1&6 i up2&)/A2.
Note that the neutral pion has no non-singlet matrix element du
C-invariance.
7-3
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can also give an explicit expression forH: Introducing a dimensionless light-like vector,n, and settingz5tn, one can invert
Eq. ~8! and obtain@2,13#

2dabHI 50(X,j;t)

2i«abcHI 51~X,j;t !J 5
1

2E dt

2p
ei tXp•nK pa~p2r /2!Uc̄~2tn/2!H 1

tcJ n̂ @2tn/2,tn/2#c~tn/2!Upb~p1r /2!L , ~9!
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and similarly for the gluon distribution. The symmetry pro
erty Eq.~5! requiresHI 50 to be an odd function ofX, HI 51

to be even. From the stronger symmetry Eq.~6! it follows
that the skewed distribution is an even function ofj for any
X @6#. This can also be inferred from the symmetry propert
of the double distributions~see below! @26#.

The skewed distributions possess a simple partonic in
pretation, the character of which depends on the relationX
to the skewedness parameter,j; see Refs.@3–6,28# for de-
tails. For X.j/2 andX,2j/2 the skewed quark distribu
tions describe the amplitude for emission and reabsorptio
a quark/antiquark in the infinite-momentum frame, and th
have properties analogous to the usual quark/antiquark
tribution functions. For2j/2,X,j/2, on the other hand
they have the character of distribution amplitudes for
creation of a quark/antiquark pair. One may thus expect
behavior of these functions to be quite different in the t
regions.

In particular, in the forward limit of the matrix elemen
r→0 andj→0, the skewed quark distributions reduce to t
usual quark/antiquark distributions in the pion:

HI 50~X,j50;t50!5
1

2
@u~X!qs~X!2u~2X!qs~2X!#,

~10!
HI 51~X,j50;t50!5u~X!qv~X!1u~2X!qv~2X!,

where qs(X),qv(X) correspond, respectively, to the singl
~quark plus antiquark! and valence~quark minus antiquark!
distributions in a physical pion:

qs~X!5@u1ū#p6~X!5@d1d̄#p6~X!

5@u1ū#p0~X!5@d1d̄#p0~X!,
~11!

qv~X!56@u2ū#p6~X!57@d2d̄#p6~X!.

The moments of the skewed distribution, Eq.~9!, are
given by non-forward matrix elements of local twist-2 spi
N operators in the pion, which are parametrized by gene
ized form factors. On general grounds, the non-forward m
trix elements of the spin-N operators are irreducible rank-N
tensors constructed from the momentap and r, so the mo-
ments of Eq.~9! are polynomials of degree at mostN in j
@27#; see also Refs.@6,28#. In particular, the second momen
of the isoscalar skewed distribution is related to the fo
factor of the QCD energy-momentum tensor@3#. For the
pion this form factor att50 can be computed from firs
principles using the chiral Lagrangian~see Appendix A!, and
one obtains a generalized momentum sum rule for the p
11401
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E
21

1

dX X@HI 501HG#~X,j;t50!5
1

2 S 12
j2

4 D . ~12!

The isovector skewed distribution in the pion is normaliz
to the pion electromagnetic form factor. For anyt,0,

E
21

1

dX HI 51~X,j;t !5Fp
e.m.~ t !. ~13!

Double distributions.Alternatively to the skewed distri-
bution, Eq. ~8!, one can try to formulate a ‘‘two-
dimensional’’ spectral representation of the matrix elem
Eq. ~1!, as a function ofr •z and p•z as independent vari
ables. In the spirit of Refs.@4,5# we could write for the pion
matrix elements a spectral representation in terms of a si
function of two variables in the form

M I 50,1~p•z,r •z;t !52p•zE
21

1

dx e2 ixp•z

3E
2(12uxu)

12uxu
dy e2 iyr •z/2FI 50,1~x,y;t !,

~14!

where the functionsFI 50,1 are called double distributions.5

Here the range of the variablesx,y is limited to @4,5#

21<x<1,

2~12uxu!<y<12uxu,

see Fig. 1. The property Eq.~6! implies that@26#

FI 50,1~x,y;t !5FI 50,1~x,2y;t !. ~15!

The skewed distribution, Eq.~8!, is obtained as a one
dimensional ‘‘section’’ of this two-variable function, impos
ing a particular ‘‘skewedness’’,j:

E
21

1

dxE
2(12uxu)

12uxu
dy d~X2x2yj/2!FI 50,1~x,y;t !

5HI 50,1~X,j;t !. ~16!

5We consider here the ‘‘modified’’ double distribution of Ref.@5#,
which is appropriate for the symmetric choice of the momenta
the incoming and outgoing pion in Eq.~1!.
7-4
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This reduction process is illustrated in Fig. 1. In particular,
the forward limit the usual quark-antiquark distribution
recovered as

E
2(12uXu)

12uXu
dy FI 50~X,y;t50!

5
1

2
@u~X!qs~X!2u~2X!qs~2X!# ~17!

and similarly for the isovector component, cf. Eq.~10!.
The main reason for interest in a double distribution re

resentation is the possibility to relate skewed distributio
with different values ofj. With certain assumptions abou
the behavior of the double distribution a number of sta
ments about the skewed distributions follow immediat
from the reduction formula, Eq.~16!; see Refs.@4,5# for an
extensive discussion. For instance, if the double distribu
were continuous everywhere on its region of support~see
Fig. 1!, the skewed distribution would be a continuous fun
tion of x andj. The double distribution is also convenient f
model building, since any model of the double distributio
when inserted in the reduction formula, produces skew
distributions satisfying the polynomiality condition for th
moments@4,5,26,28#. However, in order to be practically re
evant, such applications require understanding of the gen
behavior of the double distributions, in particular, of the
possible singularities.

B. Trouble with double distributions

When discussing properties of double distributions~such
as their singularities! one should keep in mind that the b
havior of these functions is determined by the behavior
the matrix element, Eq.~1!, as a function ofp•z andr •z, as
well as by the particular way in which one writes the spec
representation for it. This concerns, in particular, the num
of independent ‘‘twist-2 structures’’ one takes into accou
in the decomposition of the matrix element. We shall arg
now that it is not always adequate to represent the pion n
forward matrix element in the form of Eq.~14!, as a double
spectral integral with a single prefactor,p•z. This form is

FIG. 1. The range of the variablesx andy in the double distri-
bution, Eq.~14!. The reduction to the skewed distribution,H(X,j),
is achieved by integrating the double distribution over the linex
1yj/25X, cf. Eq.~16!, shown here for the case thatX.j/2 ~thick
line!.
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incompatible with general features of the dependence of
isoscalar matrix element, Eq.~1!, on p•z andr •z, and insist-
ing on it one would incur severe singularities in the doub
distribution.

In order to obtain information about the behavior of t
functions M(p•z,r •z,t), Eq. ~1!, it is useful to consider
instead of Eq.~1! the more general matrix element of th
non-local vector operator@isospin components are defined
analogy to Eq.~1!#

^p~p2r /2!uc̄~2z/2!gm@2z/2,z/2#c~z/2!up~p1r /2!&

[Mm~p,r ,z!, ~18!

from which the matrix element Eq.~1! is obtained by con-
traction with the light-cone vector,zm. On general grounds
this matrix element can be parametrized as~for both I 50
and 1)

Mm~p,r ,z!52pmG1r mGi1term}zm , ~19!

whereG andGi are generalized form factors depending
p•z,r •z and t. The terms proportional tozm vanish upon
contraction withzm and do not contribute to the twist-2 pa
of the matrix element, Eq.~1!. The term proportional tor m ,
however, does contribute to Eq.~1!. In fact, it is the presence
of this structure which causes trouble in the double distri
tion representation of the isoscalar matrix element, Eq.~14!.

In the limit z→0 the operator in Eq.~19! reduces to the
local vector current, which is conserved. This implies th
Gi(z50)[0 for all t, i.e., the matrix element is ‘‘trans
verse’’ (}pm). However, the non-local operator withzÞ0 is
generally not conserved, so there is no reason forGi to be
zero forzÞ0. Actually, current conservation is only a suffi
cient condition forGi to be zero, not a necessary one. F
z50 one obtainsGi[0 already from time reversal invari
ance and the Hermiticity of the local current operator. A
plying the same symmetry transformations to the non-lo
operator, one finds that for the isoscalar matrix element

GI 50~p•z,r •z,t !5GI 50~p•z,2r •z,t !,
~20!

Gi
I 50~p•z,r •z,t !52Gi

I 50~p•z,2r •z,t !.

In the local caser •z50, andGi
I 50 would be zero identically

in t. However, in the general case,zÞ0, there is again no
reason forGi

I 50 to be zero.
The presence of a ‘‘longitudinal’’ (}r m) part of the vec-

tor matrix element, Eq.~19!, means that the matrix elemen
M I 50, obtained by contracting Eq.~19! with zm, contains in
addition to thep•z-term a piece with prefactorr •z,

M I 50~p•z,r •z,t !5p•zGI 50~p•z,r •z,t !

1r •zGi
I 50~p•z,r •z,t !. ~21!

In particular, since generallyGi
I 50Þ0, M does not vanish in

the limit p•z→0 andr •zÞ0:

M I 50~p•z→0,r •zÞ0,t !Þ0. ~22!
7-5
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One can easily see that this implies that the matrix elem
M I 50 cannot be represented in the form Eq.~14! with a
non-singular double distributionFI 50(x,y). Suppose
FI 50(x,y) were non-singular in its range of support.
would then define the matrix element on the left-hand s
~LHS! as an analytic function of the variablesp•z and r •z,
which could be continued to a point~in the unphysical re-
gion! wherep•z50, butr •zÞ0. At this point the right-hand
side ~RHS! of Eq. ~14! vanishes because of the prefact
p•z, but not the matrix element on the LHS, cf. Eq.~22!.
Clearly, this implies thatFI 50(x,y) must be singular, in one
way or another.

What would be the character of these singularities? T
ing to absorb ap•z-independent piece in the integral E
~14! would amount to finding an integral representation
1/p•z in the form

1

p•z
5E

21

1

dx e2 ixp•zf ~x!, ~23!

with f (x) some generalized function. Assuming that the
tegral on the RHS can be continued top•z→0, one con-
cludes that no Mellin moments of the functionf (x) exist. In
particular, this means that the singularity inf (x) cannot be
of delta-function type.~We shall return to this point below.!
Thus, we conclude that, although the two contributions
M I 50 in Eq. ~21! are not structurally distinct, it is not pos
o

t
e

on
q

bu
l
e
y
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sible to include ther •z-term in a double distribution repre
sentation of the form Eq.~14! staying within the usual clas
of generalized functions.

It is important to mention that the difficulties noted he
do not concern the representation of the matrix elem
through a skewed distribution, Eq.~8!. In this case one writes
the representation of the matrix element under the condi
r •z5jp•z, with j fixed. In particular, repeating the abov
argument and taking in Eq.~8! the limit p•z→0 we would
now also haver •z→0, so that both LHS and RHS of Eq.~8!
would vanish, and there is no need forHI 50 to be singular.

Since there are many advantages in a double distribu
representation of the non-forward matrix elements, it
worthwhile to think how Eq.~14! could be modified to allow
for a double spectral representation in terms of standard g
eralized function. The origin of the problems with the for
Eq. ~14! is that the matrix element does not go to zero in t
limit p•z→0, Eq. ~22!. One possibility would be to simply
omit the prefactorp•z in Eq. ~14!; however, this would re-
sult in a functionFI 50(x,y) which does not reduce to th
usual parton distribution in the forward limit,r→0, cf. Eq.
~17!, and would not be useful for model building. Alterna
tively, one could add to Eq.~14! a term not vanishing in the
limit p•z→0. Minimally, this could be a term dependin
only on r •z, which can be represented by a one-dimensio
spectral integral:
M I 50~p•z,r •z;t !52p•zE
21

1

dx e2 ixp•zE
2(12uxu)

12uxu
dy e2 iyr •z/2FI 50~x,y;t ! 1 r •zE

21

1

dy e2 iyr •z/2D~y;t !. ~24!
q.

p-
The functionsFI 50(x,y;t) andD(y;t) are uniquely defined
if we understand the first term to be a representation
M I 50(p•z,r •z;t)2M I 50(0,r •z;t), the second of
M I 50(0,r •z;t), i.e., as a ‘‘subtraction term.’’ The explici
factor r •z in front of the second term is natural sinc
M I 50(0,r •z→0)50. The support ofD is limited to 21
<y<1, i.e., this function has the character of a distributi
amplitude. Time reversal invariance and Hermiticity, E
~20!, require that~samet)
f

.

FI 50~x,y!5FI 50~x,2y!,
~25!

D~y!52D~2y!;

i.e., the behavior with respect toy→2y of the new function
D(y) is opposite to that of the usual double distribution, E
~15!.

The skewed distribution which follows from the new re
resentation Eq.~24! is now the sum of two contributions:
HI 50~X,j;t !5E
21

1

dxE
2(12uxu)

12uxu
dy d~X2x2yj/2!FI 50~x,y;t ! 1 sgn~j!DS 2X

j
;t D . ~26!
-

is
e
a-
Note that both contributions are even functions ofj, in ac-
cordance with the general symmetry of the skewed distri
tion following from Eq.~6!. The first piece follows the usua
reduction formula, Eq.~16!, and is generally non-zero in th
entire range21,X,1. The second piece is obtained b
-
substituting in Eq.~24! r •z5jp•z and changing the integra
tion variable tojy/2. Since the support ofD is limited to
21<y<1 this contribution to the skewed distribution
present only for2j/2<X<j/2. Thus, the need to includ
the ‘‘subtraction term’’ in the double distribution represent
7-6
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SKEWED AND DOUBLE DISTRIBUTIONS IN THE PION . . . PHYSICAL REVIEW D60 114017
tion naturally leads to a skewed distribution with essentia
different behavior in the regionsuXu,j/2 and inuXu.j/2.

So far we have explored the consequences of the pres
of ‘‘longitudinal’’ terms in the matrix element Eq.~19!, or of
property Eq.~22!, from a general point of view, arguing tha
there is no reason for such contribution to be zero. In Sec
we perform a model calculation of the pion matrix eleme
at a low normalization point in the effective chiral theo
based on the instanton vacuum, which shows that such te
in the matrix element do indeed appear, and lead to
‘‘two-component’’ form of the skewed distribution describe
above.

The regionp•z→0 andr •zÞ0 implied in the limit in Eq.
~22! corresponds to values ofuju.2, which are not physi-
cally accessible in DVCS. However, using crossing inva
ance one can relate the functionM(p•z,r •z) in the unphysi-
cal region, Eq.~22!, to the matrix element for two-pion
production by a light-ray operator in thephysicalregion~see
Sec. IV!. The latter can be measured~e.g. ing* g→pp and
g* N→ppN reactions! and is generally non-zero, providin
additional evidence for the presence ofr •z-terms and the
property Eq.~22!.

A simple dynamical explanation for the origin o
r •z-terms in the isoscalar pion matrix element can be fou
by considering ‘‘resonance exchange’’ contributions to
matrix element, in the spirit of the vector dominance mo
for the pion electromagnetic form factor@29#. By this we
mean ‘‘factorized’’ contributions to the matrix element
which the pion and the light-ray operator communicate
t-channel exchange of a resonance characterized by a tw
distribution amplitude, as are shown schematically in Fig
In Appendix B we derive a general formula describing t
contribution resulting from the exchange of a resonance
arbitrary spin to the pion matrix element. In particular, w
show there that the property Eq.~22! of the isoscalar matrix
element is naturally obtained from exchange of even-s
isoscalar resonances. Far from being a complete dynam
description of the non-forward matrix element, this pheno
enological model helps to develop an intuitive understand
of why the structures described above appear.

The double distributionFI 50(x,y) in Eq. ~24! is a gener-
alized function which may contain delta function type sing
larities. Such terms in the double distribution@in the re-
stricted ansatz Eq.~14!# were studied by Radyushkin i

FIG. 2. Schematic representation of resonance exchange co
butions to the non-forward matrix element of the twist-2 operato
the pion, Eq.~1!. The upper blob denotes the distribution amplitu
of the spin-J resonance, Eq.~B2!.
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connection with resonance exchange contributions to
non-forward nucleon matrix elements@5,28#. We already ar-
gued above that the purer •z-terms in the isoscalar pion ma
trix element, cf. Eq.~22!, cannot be described by delta fun
tion type contributions toFI 50(x,y). It is interesting to
verify this at the level of the reduction formula, Eq.~26!.
Could delta function contributions toFI 50(x,y) mock up the
structure of theD-term inHI 50? A term inFI 50(x,y) of the
form d(x)f(y) would give a contribution to the skewed dis
tribution HI 50}f(2X/j)/uju, which is ruled out because
HI 50 must at the same time be odd inX and even inj. One
thus has to turn to derivatives ofd(x). A term d8(x)x(y)
would give a contributionHI 50}sgn(j)x8(2X/j)/j2, which
can be non-zero but cannot describe the contribution ge
ated byD(y) in Eq. ~26! ~consider for example the forwar
limit !. This argument can easily be extended to any deri
tive of d(x). Thus, we conclude that the term generated
D(y) in Eq. ~24! represents a genuine separate struct
which cannot be obtained from delta function contributio
to FI 50(x,y).6 We remark that in the resonance exchan
model of Appendix B, exchange of even-spin resonan
generally contributes to bothD(y) and to delta function
terms inFI 50(x,y), cf. Eq. ~B4!. Spin-0 ~‘‘sigma meson’’!
exchange is special in that it contributes only toD(y).

Another simple way to see the incompleteness of the
rametrization Eq.~14! is to consider theN-th moment of the
isoscalar skewed distribution,

E
21

1

dX XN21HI 50~X,j,t !,

which on general grounds must be a polynomial of degreN
in j @6,27,28#. One can easily see that the skewed distrib
tion obtained from Eq.~16! with the restricted ansatz for th
double distribution, Eq.~14!, produces a polynomial at mos
of degreeN22. In the complete representation, Eq.~24!, it
is precisely the contribution of the second term,}D(y),
which gives rise to thejN-term in the moment ofHI 50, cf.
Eq. ~26!. This is particularly important in the case of th
second moment,N52: The generalized momentum su
rule, Eq. ~12!, requires aj2-term in the second momen
which is impossible to get from Eq.~14!.

In the amplitude for hard exclusive processes such
DVCS the skewed distribution is convoluted with a ha
scattering kernel which is singular atX56j/2 @2–5#. For
this integral to exist~i.e., for factorization to hold! it is im-
portant that the skewed distribution be continuous inX at
these points. Assuming that the first term on the RHS of
~26! is continuous, this would be satisfied if

D~y;t !→0 ~y→61!. ~27!

We shall see below that it is indeed reasonable to expect
D(y;t) satisfies this property, reminiscent of a meson dis
bution amplitude. Model calculations of the matrix elemen

6It is amusing to note that, rather than a derivative ofd(x) this
term represents, in a sense, an ‘‘integral’’ ofd(x), cf. Eq. ~23!.

tri-
n
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in the effective chiral theory based on the instanton vacu
and in a ‘‘resonance exchange’’ model give rise to functio
satisfying Eq.~27!.

The representation Eq.~24! is the minimal modification of
n

io

y

e-

11401
m
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Eq. ~14! consistent with Eq.~22!. For some purposes~e.g.
crossing symmetry! it could be convenient to have a repr
sentation which is symmetric with respect top•z and r •z.
One could write
M I 50~p•z,r •z!52p•zE
21

1

dx e2 ixp•zE
2(12uxu)

12uxu
dy e2 iyr •z/2FI 50~x,y!

1r •zE
21

1

dx e2 ixp•zE
2(12uxu)

12uxu
dy e2 iyr •z/2F i

I 50~x,y!. ~28!
e

asily
n

e
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The two functions FI 50 and F i
I 50 would be uniquely

determined if we defined them as the spectral represe
tion of the generalized form factorsGI 50(p•z,r •z,t) and
Gi

I 50(p•z,r •z,t) of the vector operator, Eq.~19!.7 Again,
Eq. ~20! requires that

FI 50~x,y!5FI 50~x,2y!,
~29!

F i
I 50~x,y!52F i

I 50~x,2y!.

In terms of these new functions the skewed distribut
would now be given by the reduction formula Eq.~16! with

F~x,y!→F~x,y!1
j

2
F i~x,y!. ~30!

Note that bothF andF i are generalized functions which ma
contain delta-function singularities.

Finally, let us note that for the isovector pion matrix el
ment, M I 51, the original form of the double distribution
representation, Eq.~14!, works fine, and no ‘‘subtraction
ta-

n

terms’’ of the kind in Eq.~24! are required. This is becaus
M I 51 is odd in p•z for any r •z and t @as follows from
combining Eq.~5! and Eq.~6!#, and thus

M I 51~p•z→0,r •zÞ0,t !→0. ~31!

In the resonance exchange model this property is again e
understood; it follows from the fact that isovector two-pio
resonances have odd spin, see Eq.~B4! in Appendix B.

C. The nucleon

We now turn to non-forward matrix elements in th
nucleon. By a simple extension of the arguments offered
the previous subsection for the pion, we show that also in
case of the nucleon the double distribution representatio
Refs. @4,5,28# should be modified to take into account a
possible twist-2 structures.

The object of interest now is the nucleon matrix eleme
of the twist-2 light ray operator of Eq.~1!. Again we distin-
guish the isoscalar and isovector matrix elements:
e
.

s

l
Eq.
K N~p2r /2!,T38 ,l8Uc̄~2z/2!H 1
tcJ ẑ @2z/2,z/2#c~z/2!UN~p1r /2!,T3 ,l L 5H 2dT3T

38
M I 50~l8,l;p•z,r •z;t !

2~tc!T3T
38
M I 51~l8,l;p•z,r •z;t !,

~32!

whereT3 ,T38 denote the isospin projection (T3 ,T38561/2 for proton/neutron!. The only difference to the pion is that now th
functionsM I 50,1 depend also on the helicities of the incoming (l) and outgoing (l8) nucleon. In analogy to the pion, Eq
~19!, let us consider also the matrix element of the more basic light-ray operator withgm @the isospin decomposition i
analogous to Eq.~32! and not written#,

7Strictly speaking, we have no general proof that a double spectral representation for the form factorsG andGi exists. At least in our mode
calculations in Sec. III and Appendix B we shall encounter only contributions to the matrix element which can be represented by~28!
with F,F i having at most delta function singularities.
7-8
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^N~p2r /2!,l8uc̄~2z/2!gm@2z/2,z/2#c~z/2!uN~p1r /2!,l&[Mm~l8,l;p,r ,z!, ~33!
on

e
n.

sing

he

.
a-
which on general grounds can be parametrized as~for both
I 50 and 1)

Mm5Ū8FgmG11
i

2MN
smnr nG21r mGi1 . . . GU

~34!

whereŪ8[Ū(p2r /2,l8),U[U(p1r /2,l) are the nucleon
spinors, andsmn[( i /2)@gm ,gn#. We have not written ex-
plicitly terms which vanish upon contraction withzm and do
not contribute to the twist-2 part~such aszm ,smnzn). Here
G1 ,G2 ,Gi are generalized form factors depending
p•z,r •z, and t. In the limit of a local operator,z→0, G1
and G2 reduce to the usual Dirac form factors for th
vector current, andGi→0 because of current conservatio
However, as in the case of the pion, forzÞ0 the term}r m is
generally non-zero,GiÞ0.

Contracting Eq.~34! with zm we obtain the twist-2 matrix
element, Eq.~32! ~for both I 50 and 1):

M~l8,l;p•z,r •z;t !5Ū8F ẑG11
i

2MN
smnzmr nG2

1r •zGiGU. ~35!
t
tio

d
d
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n
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Actually, here the three structures are not independent. U
the well-known identity

Ū8Upm52MNŪ8gmU1 iŪ 8smnUr n, ~36!

we could rewrite the third term as a linear combination of t
first two. In this way we would arrive at (I 50,1):

M~l8,l;p•z,r •z;t !5Ū8F ẑG̃11
i

2MN
smnzmr nG̃2GU,

~37!

where

G̃15G112
r •z

p•z
Gi ,

~38!

G̃25G212
r •z

p•z
Gi .

A decomposition of the form Eq.~37! was assumed in Refs
@4,5#, where a double distribution representation of the m
trix element was proposed in the form
M I 50,1~l8,l;p•z,r •z;t !5Ū8ẑUE
21

1

dx e2 ixp•zE
2(12uxu)

12uxu
dy e2 iyr •z/2FI 50,1~x,y;t !

1
i

2MN
zmr nŪ8smnUE

21

1

dx e2 ixp•zE
2(12uxu)

12uxu
dy e2 iyr •z/2KI 50,1~x,y;t !. ~39!
en-

e-
We see that in the isoscalar case this ansatz suffers from
same problem as the simple ansatz for the double distribu
in the pion, Eq.~14!. Since in generalGi

I 50Þ0, the functions

G̃1
I 50 ,G̃2

I 50 in the reduced decomposition, Eq.~38!, have
singularities of the type 1/p•z, which cannot be represente
by spectral integrals with usual generalized functions, as
scribed in the previous subsection. Thus, the conclusio
the same as for the pion: Although the twist-2 contributio
from the ‘‘longitudinal’’ part (}r m) of the vector matrix
element are not structurally distinct from those from t
‘‘transverse’’ part (}pm), one cannot obtain them from
double distribution representation whose form is modeled
the ‘‘transverse’’ part.
he
n

e-
is
s

n

Again we stress that there is no problem with a repres
tation of the matrix element Eq.~37! in terms of skewed
distributions ~see Refs.@2–5# for their definition in the
nucleon!. In this case the factorsr •z/p•z incurred in elimi-
nating the r •z-term, Eq. ~38!, are replaced by the
skewedness,j, which is a fixed external parameter.

In analogy to the pion, Eq.~24!, we suggest to modify the
spectral representation Eq.~39! by explicitly including the
r •z-terms. A minimal variant would be to add a term d
pending only on r •z, in which one could absorb the
p•z-independent part of the ‘‘longitudinal’’ term of Eq.~21!,
r •zGi

I 50(p•z50,r •z):
7-9



M. V. POLYAKOV AND C. WEISS PHYSICAL REVIEW D60 114017
M I 50~l8,l;p•z,r •z;t !5Ū8ẑUE
21

1

dx e2 ixp•zE
2(12uxu)

12uxu
dy e2 iyr •z/2FI 50~x,y;t !

1
i

2MN
zmr nŪ8smnUE

21

1

dx e2 ixp•zE
2(12uxu)

12uxu
dy e2 iyr •z/2KI 50~x,y;t !

1Ū8Ur •zE
21

1

dy e2 iyr •z/2D~y;t !. ~40!
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Alternatively, one could directly work with the spectral re
resentation of the form factorsG1 ,G2 and Gi , as in the
representation Eq.~28! for the pion.

The skewed distribution in the nucleon resulting from t
full double distribution representation, Eq.~40!, again has a
‘‘two-component’’ form, since the term withD(y) gives rise
to a contribution non-zero only in the region2j/2<X
<j/2. ~The corresponding reduction formulas can be o
tained by a trivial modification of the ones written in Ref
@4,5,28#.! This explains the behavior of the isoscalar skew
distribution,HI 50, which was encountered in a model calc
lation in the large-Nc limit @13#.

III. DISTRIBUTIONS IN THE PION FROM EFFECTIVE
CHIRAL DYNAMICS

For quantitative estimates of the non-forward matrix e
ments Eq.~1! and the skewed and double distributions o
has to turn to model calculations. Here we compute th
quantities at a low normalization point in the low-ener
effective field theory based on the instanton model of
QCD vacuum. This effective theory incorporates the d
namical breaking of chiral symmetry, and provides a realis
description of hadronic properties of the pion and nucle
@14,30#. Its content can be summarized in an effective act
describing the interaction of a pion field with massive ‘‘co
stituent’’ quarks, in a way which is dictated by chiral invar
ance:

Seff5E d4xc̄~x!@ i ]̂2MF~]2!eig5tapa(x)/FpF~]2!#c~x!.

~41!

Here,pa is the pion field, andFp593 MeV is the weak pion
decay constant. The dynamical quark mass generated in
spontaneous breaking of chiral symmetry is momentum
pendent; the form factorsF(]2) are related to the instanto
zero modes@14#. They cut loop integrals at momenta of o
der of the inverse average instanton size,r̄21'600 MeV.

The effective theory Eq.~41! has been derived from th
instanton model of the QCD vacuum. This allows for
unambiguous identification of the twist-2 QCD operato
with operators in the effective theory. It is understood th
the QCD operators are normalized at a scale of the ordem

5 r̄21'600 MeV. The general framework for computin
parton distributions and meson wave functions at a low n
malization point within this approach has been developed
11401
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Refs.@15,16#. An essential point is that the value of the d
namical quark mass,M, is parametrically small compared t
the UV cutoff, r̄21; their ratio is proportional to the packin
fraction of the instanton medium (M r̄)2;( r̄/R̄)4. Qualita-
tively speaking this means that in leading order in this p
rameter one is dealing with structureless constituent qua
in particular, the gluon distribution appears only at ord
(M r̄)2. At a technical level, working in leading order inM r̄
means retaining only the ultraviolet divergent part of t
quark loop integrals computed with Eq.~41!, absorbing the
ultraviolet divergence in the pion decay constant,Fp .

The non-linear form of the coupling of the pion to th
quarks in Eq.~41! is required by chiral invariance. Expand
ing the exponential in powers of the pion field we obtain

eig5tapa(x)/Fp511
i

Fp
g5pa~x!ta

2
1

2Fp
2

pa~x!pa~x!1 . . . . ~42!

The effective theory contains a Yukawa-type quark-pion v
tex as well as a two-pion quark vertex. Consequently, th
are in general two contributions to the matrix element o
twist-2 quark operator between pion states, correspondin
the diagrams~a! and~b! of Fig. 3. The diagram~a! of Fig. 3
contributes only to the flavor-singlet matrix element, wh
~b! contributes both in the flavor-singlet and non-sing
case. The Feynman integrals can straightforwardly be c
puted introducing light-cone coordinates with respect to

FIG. 3. Diagrams in the effective low-energy theory contribu
ing to the skewed quark distribution at a low normalization poi
The dashed lines denote the pion field, the solid lines the qu

propagator with the dynamical quark mass,@ i ]̂2MF2(]2)#21, and
the filled circles the quark-pion vertices contained in the effect
action, Eqs.~41! and ~42!, which include a form factorF(]2) for
each quark line. Diagram~a! contributes only to the isoscalar dis
tribution, and vanishes in the forward limit (r→0).
7-10
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vector n;z; see Refs.@16,17,19# for details. The integral
over transverse momenta contains a logarithmic diverge
which is cut by the form factors,F(]2). More simply, one
may keep only the logarithmically divergent part of the d
gram and absorb the logarithmic divergence in the pion
cay constant. It was shown in Refs.@13,17# that this is a
legitimate approximation except in the vicinityX56j/2.
~We shall include the form factors in the calculation later!

In this approximation the contributions of diagrams~a!
and ~b! of Fig. 3 to the matrix elements, Eq.~1!, can be
computed analytically. For the isoscalar part we obtain~for
simplicity we taket→0):

M I 50~p•z,r •z!(a)52i F2cos
r •z

2
1

2

r •z
sin

r •z

2 G , ~43!

M I 50~p•z,r •z!(b)52i Fcosp•z2
2

r •z
sin

r •z

2 G
~44!

and the total result is

M I 50~p•z,r •z!52i Fcosp•z2cos
r •z

2 G . ~45!

Here contribution~a! depends only onr •z; due to the contac
nature of the two-pion–quark vertex, Eq.~42!, the average
momentump does not enter in the quark loop, see Fig.
This contribution vanishes in the forward limitr→0. Note
that both contributions to the isoscalar matrix element,
well as their total, behave as described in Sec. II: they do
go to zero in the limitp•z→0,r •zÞ0, and thus cannot be
represented by a double distribution in the form Eq.~14!.
Within the proposed new representation, Eq.~24!, which al-
lows for a p•z-independent part, the model result Eq.~45!,
would correspond to

FI 50~x,y!5
1

2
@u~21,x,0!2u~0,x,1!#d~y!,

~46!

D~y!5
1

2
@2u~21,y,0!1u~0,y,1!#,

~47!

whereu(a,X,b) is unity if a,X,b and else zero. Tha
FI 50 here is proportional to a delta function iny should be
seen as an artifact of keeping only the logarithmically div
gent piece; this would change when retaining finite terms
tÞ0.

The result for the isovector matrix element, Eq.~1!, at t
→0 is

M I 51~p•z,r •z!5M I 51~p•z,r •z!(b)54 sinp•z.
~48!
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This matrix element vanishes in the limitp•z→0, hence
there is no problem with representing it by a double dis
bution in the form Eq.~14!:

FI 51~x,y!5u~21,x,1!d~y!. ~49!

The corresponding skewed distributions may be compu
either using the results for the matrix elements, Eqs.~43! and
~44!, and the definition Eq.~8!, or directly by computing the
RHS of Eq.~9!; both ways lead to identical results. For th
isoscalar part we find

HI 50~X,j!(a)52
1

2
uS 2

j

2
,X,

j

2D2X

j
, ~50!

HI 50~X,j!(b)5
1

2 F2uS 21,X,2
j

2D
1uS 2

j

2
,X,

j

2D2X

j
1uS j

2
,X,1D G ;

~51!

the total result is

HI 50~X,j!5
1

2 F2uS 21,X,2
j

2D1uS j

2
,X,1D G .

~52!

The functions are shown in Figs. 4 and 5~dashed lines!. One
sees that the contribution from diagram~a!, Eq. ~50!, is non-
zero only in the region2j/2,X,j/2. It is absent in the
forward limit, r→0. Note that this contribution to the
skewed distribution is discontinuous inX at 6j/2; this be-
havior will be modified when taking into account the m
mentum dependence of the dynamical quark mass, see
low. The contribution from diagram~b! is continuous at

FIG. 4. The contributions from diagrams~a! and~b! ~cf. Fig. 3!
to the isoscalar skewed quark distribution in the pion,HI 50(X,j),
at a low normalization point, as functions ofX, for a value ofj
51. ~Here t50). Dashed lines: Results obtained neglecting
momentum dependence of the dynamical quark mass, cf. Eqs.~50!
and ~51!. Solid lines: The corresponding contributions obtain
when including the form factors,F(]2). Note that the contribution
from diagram~a! is non-zero only in the region2j/2,X,j/2. The
momentum dependence of the dynamical quark mass forces
contribution to vanish at the end points,X56j/2.
7-11
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M. V. POLYAKOV AND C. WEISS PHYSICAL REVIEW D60 114017
X56j/2; this part reduces in the forward limit,j→0, to the
singlet quark distribution in the pion, Eq.~10!, which in this
approximation~keeping only the logarithmic divergence, n
glecting the form factors! would simply be given by

qs~x!5u~0,X,1!. ~53!

The result Eq.~52! is consistent with the generalized m
mentum sum rule, Eq.~12!. In our approach based on th
instanton vacuum the gluon distribution is parametrica
small, }(M r̄)2;( r̄/R̄)4, so the skewed quark distribution
Eq. ~52!, should saturate the sum rule at the low normali
tion point. Integrating Eq.~52! we observe that, indeed,

E
21

1

dX X HI 50~X,j!5
1

2 S 12
j2

4 D . ~54!

Equations~50!, ~51! and ~52! represent the result for th
skewed distribution obtained without taking into account
momentum dependence of the dynamical quark mass.
discontinuity atX56j/2 in the contribution~a! to HI 50

obtained in this approximation would violate the factoriz
tion of the DVCS amplitude, since the hard scattering ker
contains poles atX56j/2. However, as was shown in Ref
@13#, the momentum dependence of the dynamical qu
mass cannot be neglected for values ofX near6j/2, since in
this case the integral over transverse momenta is cut by
form factors already at momenta of orderM! r̄21. The
same mechanism makes the pion distribution amplitude v
ish at the end points@16#. In Fig. 4 we show the two contri
butions ~a! and ~b! to HI 50 obtained when taking into ac
count the form factorsF(]2) @we use the simple analyti
approximation of Eq.~24! of Ref. @16##. As expected, con-
tribution ~a! now vanishes atX56j/2, while the modifica-
tion of contribution~b!, which was continuous already with
out form factors, is only quantitative. The result for the to
distribution, HI 50, obtained including the form factors i
shown in Fig. 5. As can be seen,HI 50 is continuous atX
56j/2.

FIG. 5. The total isoscalar skewed quark distribution in the pi
HI 50(X,j), for j51, being the sum of the two contributions~a!
and~b! shown in Fig. 4. Dashed line: Result obtained neglecting
momentum dependence of the dynamical quark mass, cf. Eq.~52!.
Solid lines: Distribution obtained when including the form facto
F(]2). Due to the vanishing of contribution~a! at X56j/2 the
total distribution is continuous at these points.
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Finally, the result for the isovector skewed distribution
t→0 is

HI 51~X,j!5HI 51~X,j!(b)5u~21,X,1!, ~55!

which is an even function ofX, in agreement with
C-invariance.@In the forward limit this corresponds to a va
lence quark distribution in the pionqv(X)5u(0,X,1), cf.
Eq. ~10!, so comparing with Eq.~53! we see that in this
approximation~no form factors! the ‘‘sea’’ quark distribu-
tion in the pion is zero.# As in the case of contribution~b! to
the isoscalar distribution, inclusion of the form factorsF(]2)
does not change the result for the isovector skewed distr
tion in an essential way, except for forcing the distribution
vanish atX561.8

Some comments are in order concerning the calculatio
skewed and double distributions in the nucleon. In the lar
Nc limit the nucleon in the effective low-energy theory
characterized by a classical pion field~‘‘soliton’’ ! @30#.
Quantization of the translational and rotational zero mode
the framework of the 1/Nc-expansion gives rise to nucleo
states with definite momentum and spin/isospin quant
numbers. When applying this approach to the computatio
non-forward matrix elements of the type Eq.~1!, the standard
1/Nc-expansion implies that different components of the a
erage momentum,p, and momentum transfer,r, are of dif-
ferent order inNc @the nucleon mass isO(Nc), while the
momentum transfer in the Breit frame isO(Nc

0)]. While it is
possible to compute the skewed distribution, Eq.~9!, in the
parametric rangeX,j;1/Nc @13#, it is not possible to obtain
the matrix element Eq.~1! uniformly in the whole kinemati-
cal range necessary to restore the double distribution. In c
trast, in the case of the pion all components ofp and r are
O(Nc

0), making it possible to treatp andr on the same foot-
ing.

IV. CROSSING AND THE TWO-PION DISTRIBUTION
AMPLITUDE

A. Two-pion distribution amplitude

An interesting feature of the pion is the fact that the qua
tity related to the skewed parton distribution by crossin
namely the two-pion distribution amplitude~DA!, can be
measured in two-pion production at low invariant mass
These 2pDA’s were introduced recently in the context of th
QCD description of the processg* g→2p @18#. We now
establish explicitly their relation to the skewed quark dist
butions in the pion. This will allow us to express th
t-dependence of the lowest moments of the skewed distr
tion in terms of form factors in the timelike region.

The two-pion DA’s are defined, in analogy to the skew
parton distribution, as the matrix elements of the twist-2 o
erators between the vacuum and a two-pion state:

8The valence quark distribution in the pion has also been stud
in the instanton vacuum in a somewhat different approach by D
okhov and Tomio@31#.
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outK pa~p1!pb~p2!Uc̄~2z/2!H 1
tcJ ẑ @2z/2,z/2#c~z/2!U0L 5P•zE

0

1

du ei (u21/2)P•zH 2dabF I 50~u,z,W2!

2i«abcF I 51~u,z,W2!.
~56!

The outgoing pions have momentap1 ,p2, andP[p11p2 is the total momentum of the final state. The generalized DA’s,
~56!, depend on the following kinematical variables: the quark momentum fraction with respect to the total momentum
two-pion state,z; the variablez[(z•p1)/(z•P) characterizing the distribution of longitudinal momentum between the
pions, and the invariant mass of the two-pion system,W25P2. Also, an explicit representation of the DA can be written
analogy to Eq.~9! @the isospin decomposition is analogous to Eq.~56!#

F~u,z,W2!5
1

2E dt

2p
e2 i t(u21/2)p•n

out̂ p~p1!p~p2!uc̄~2tn/2!n̂ @2tn/2,tn/2#c~tn/2!u0&, ~57!
-

on

in

a

ow

in

-

A

n

oft.

-

wheren}z is a dimensionless light-like vector.
From C-parity one derives the following symmetry prop

erties~we do not write the argumentW2):

F I 50~u,z!52F I 50~12u,z!5F I 50~u,12z!,
~58!

F I 51~u,z!5F I 51~12u,z!52F I 51~u,12z!.

The first moment of the isovector (I 51) two-pion DA is the
pion e.m. form factor in the time-like region,

E
0

1

du F I 51~u,z,W2!5~2z21!Fp
e.m.~W2!, ~59!

and thus scale-independent@Fp
e.m.(0)51#. For the isoscalar

(I 50) part, however, we have the normalization conditi
@20,32#

E
0

1

du~2u21!F I 50~u,z,W2!522M2
(p)z~12z!Fp

EMT~W2!,

~60!

whereM2
(p) is the momentum fraction carried by quarks

the pion at the given scale, andFp
EMT(W2) is the form factor

of the quark part of the energy momentum tensor, norm
ized to Fp

EMT(0)51. In Ref. @20# this form factor was esti-
mated in the instanton model of the QCD vacuum at l
two-pion invariant mass:

Fp
EMT~W2!511

NcW
2

48p2Fp
2

1 . . . . ~61!

It is useful to expand the two-pion DA simultaneously
eigenfunctions of the ERBL evolution equation@22# @Gegen-
bauer polynomialsCn

3/2(2u21)] and in partial waves of the
produced two-pion system@Legendre polynomials, or Ge
genbauer polynomialsCl

1/2(2z21)]. Generically this de-
composition is of the form@20#:
11401
l-

F~u,z,W2!56u~12u! (
n50

`

(
l 50

n11

Bnl~W2!

3Cn
3/2~2u21!Cl

1/2~2z21!, ~62!

wheren runs over even~odd! and l over odd~even! integers
for the isovector~isoscalar! DA, cf. Eq. ~58!. The normaliza-
tion condition Eq.~59! requires thatB01

I 51(W2)5Fp
e.m.(W2).

Note that the asymptotic form of the isovector two-pion D
is given by@19#

Fasymp
I 51 ~u,z,W2!56u~12u!~2z21!Fp

e.m.~W2!. ~63!

In Ref. @20# certain soft-pion theorems for the two-pio
DA were proven, which apply in the regionsz→0 or z→1
andW2→0, where one of the produced pions becomes s
In the isovector case (I 51) they relate the two-pion DA to
the DA of one pion,fp(u):

F I 51~u,z51,W250!52F I 51~u,z50,W250!5fp~u!,
~64!

while in the the isoscalar case (I 50) one obtains

F I 50~u,z51,W250!5F I 50~u,z50,W250!50.
~65!

The theorem Eq.~64! allows to relate the expansion coeffi
cients of the isovector two-pion DA, Eq.~62!, at W250,
with those of the pion DA,

fp~u!56u~12u!F11 (
n even

an
(p)Cn

3/2~2u21!G ; ~66!

the relation takes the form

an
(p)5 (

l 51

n11

Bnl
I 51~W250!. ~67!
7-13
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M. V. POLYAKOV AND C. WEISS PHYSICAL REVIEW D60 114017
B. Crossing relation

By crossing, the matrix element defining the two-pion DA, Eq.~57!, is related to the one appearing in the definition of t
skewed distribution, Eq.~9!. This allows one to express the moments of the skewed parton distribution in terms o
expansion coefficients of the two-pion DA, Eq.~62!. This relation takes the form:

E
21

1

dX XN21HI~X,j;t !5 (
n50

N21

(
l 50

n11

Bnl
I ~ t !S j

2D N

Cl
1/2S 2

j D E
0

1

du 6u~12u!~2u21!N21Cn
3/2~2u21!. ~68!

One immediately notes that the RHS is a polynomial of degree~at most! N in j, i.e., the polynomiality condition for the
skewed distribution~see Sec. II A and Ref.@6#! is satisfied. Since only theBnl with n odd ~even! are non-zero in the isoscala
~isovector! case, the skewed distribution is an odd~even! function inX, in agreement withG-parity, Eq.~5!. Also, note that due
to the restrictions in the values ofl, cf. Eq. ~62!, H is an even function ofj for both I 50 and 1, as it should be.

To prove the relation Eq.~68!, we consider the expression for theN-th moment of the skewed distribution as a non-forwa

matrix element of a local spin-N, twist-2 operator (¹J[¹W 2¹Q ):

E
21

1

dX XN21H~X,j,t !5~2p•n!2N^p~p1r /2!uc̄n•g~n•¹J !N21cup~p2r /2!&. ~69!

The N-th moments of the two-pion DA, Eq.~57!, is given by the vacuum to two-pion matrix element of the same lo
operator. Substituting the double expansion, Eq.~62!, we obtain

E
0

1

du~2u21!N21F~u,z,W2!5@~p11p2!•n#2N^p~p1!p~p2!uc̄n•g~n•¹J !N21cu0&

5 (
n50

N21

(
l 50

n11

Bnl
I @~p11p2!2#Cl

1/2S n•~p22p1!

n•~p21p1! D E0

1

du 6u~12u!~2u21!N21Cn
3/2~2u21!.

~70!

The matrix elements of the local operators are related to each other by the usual crossing symmetry,

^p8uc̄n•g~n•¹J !N21cup&5^p,2p8uc̄n•g~n•¹J !N21cu0&. ~71!
d
tiv

e

he

n

q
o

e

ing
~In this shorthand expression, both sides are regarde
functions of the pion four-momenta, defined in the respec
physical regions, and analytic continuation is implied.! Using
this relation with Eqs.~69! and~70! we obtain Eq.~68!. Note
that on the RHS of Eq.~68! the coefficientsBnl(t) are taken
at negative argument (t,0), whereas in the expansion of th
two-pion DA, Eq.~62!, they are defined for positiveW2. The
corresponding analytic continuation can be accomplis
with help of dispersion relations~see Ref.@20# for details!,

Bnl
I ~ t !5 (

k50

N21
tk

k!

dk

dtk
Bnl

I ~0!1
tN

p E
4mp

2

`

ds
tand l

I~s! ReBnl
I ~s!

sN~s2t2 i0!
,

~72!

whered l
I(s),(I 50,1) are thepp scattering phase shifts i

the isospin 0 and 1 channels.
Let us see the implications of the crossing relation, E

~68!, for the lowest moments of the skewed distribution. F
the first moment of the isovector distribution we have
11401
as
e

d

.
r

E
21

1

dX HI 51~X,j;t !5B01~ t !5Fp
e.m.~ t !, ~73!

whereFp
e.m.(t) is the pion electromagnetic form factor in th

spacelike region, in agreement with Eq.~13!. For the second
moment of the isoscalar distribution we obtain, substitut
the explicit form of the Gegenbauer polynomials inj/2:

E
21

1

dX XHI 50~X,j,t !5
3

5 FB10~ t !
j2

4
1B12~ t !

122j2

8 G .
~74!

At t50, using the soft-pion theorem, Eq.~65!, which implies
B10(0)1B12(0)50, we get

E
21

1

dX X HI 50~X,j;t50!5
9

10
B12~0!S 12

j2

4 D . ~75!
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SKEWED AND DOUBLE DISTRIBUTIONS IN THE PION . . . PHYSICAL REVIEW D60 114017
If we substitute the valueB12(0)55/9, which was computed
in Ref. @20# within the instanton vacuum model, we obta
precisely the generalized momentum sum rule, Eq.~12!.

C. Application to quark/antiquark distributions in pion

A particularly interesting application of the crossing re
tion, Eq.~68!, is the forward limit,t50 andj50, where the
skewed distributions reduce to the usual quark/antiquark
tributions, cf. Eq.~10!. The quark/antiquark distributions ar
known with fair accuracy from parametrizations ofpN
Drell-Yan and other data@33#. Equation~68! relates the mo-
ments of the quark/antiquark distributions in the pion to
expansion coefficientsBnl at t50, which can in principle be
measured in two-pion production at low invariant mas
@20#. The relation takes the form@cf. Eq.~10!#

MN
(p)[E

0

1

dX XN21H qv~X!

2qs~X!
J 5ANH BN21,N

I 51 ~0! N odd,

BN21,N
I 50 ~0! N even,

~76!

where theAN are numerical coefficients which can be det
mined from Eq.~68!: A151, A259/5,A356/7,A455/3, etc.
For the lowest moments Eq.~76! implies B01

I 51(0)5M1
(p)

51, which corresponds to the normalization condition E
~59!, and B12

I 50(0)55/9M2
(p) , which corresponds to Eq

~60!.9

A non-trivial relation is obtained forN53. Using Eq.~76!
and the soft-pion theorem for the isovector two-pion DA, E
~64!, we can determine the coefficientB21(0) describing the
deviation of the isovector two-pion DA from its asymptot
form, cf. Eq.~63!. One finds

B21
I 51~0!5a2

(p)2
7

6
M3

(p), ~77!

wherea2
(p) is the expansion coefficient for the pion DA, E

~66!. This relation is model independent and can be used
consistency check for model calculations.

Computation of the valence quark distribution in the pi
in the effective theory based on the instanton vacuum~see
Sec. III! gives a value ofM3

(p)50.25.@In this calculation the
instanton-induced form factorsF(]2) have been taken into
account.# The second moment of the pion DA has been co
puted in the same approach in Ref.@17#, a2

(p)50.062; this
small value is consistent with the CLEO measurements@21#.
Substituting these results in Eq.~77! we obtainB21

I 51(0)5
20.22, which agrees with the result of a direct calculation
the instanton vacuum in Ref.@20#.10 Thus, we see that the
results obtained from the effective theory based on the
stanton vacuum are consistent with the relation Eq.~77!.

9To see this one needs to use the soft-pion theorem for the
calar two-pion DA, Eq.~65!.

10The slight numerical difference with the result quoted in R
@20#, B21

I 51(0)'20.20, is due to different approximations used
treating the form factorsF(]2).
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This is an extremely non-trivial check, since it shows th
this approach preserves the soft-pion theorems~i.e., chiral
invariance! as well as crossing symmetry.

We note that the value ofM3
(p)50.25 obtained from the

instanton vacuum is somewhat larger than that of the G
parametrization at the low normalization point@33#, M3

(p)

50.16, and in good agreement with the value extracted fr
QCD sum rules with non-local condensates by Belits
M3

(p)'0.29 @34#.
When thepp phase shifts in Eq.~72! in the isovector

channel are approximated by exchange of ‘‘elementa
resonances (r,r8, . . . ), it becomes possible to express t
expansion coefficients of the isovector two-pion DA in term
of the moments of the distribution amplitudes of the res
nances~see Ref.@20# for details!. Keeping only the dominan
contribution fromr exchange in Ref.@20# was obtained the
relation

a2
(r)5B21

I 51~0!e2CMr
2
, ~78!

where the coefficientC was estimated in the instanto
vacuum,C'0.6 GeV22. In this approximation Eq.~77! be-
comes

a2
(r)eCMr

2
5a2

(p)2
7

6
M3

(p) . ~79!

Apart from the value ofC, which does not influence the sig
of the LHS, this relation is again model independent, and
can use it as a test for models of resonance DA’s. We alre
noted that the instanton vacuum predictsB21

I 51(0)'20.2,
and thus a negative value fora2

(r) , which is consistent with
Eq. ~79! because of the small value fora2

(p) obtained in this
approach; see above. This result fora2

(r) is in contradiction to
the results of QCD sum rule calculations, both in the st
dard approach@35# and with non-local condensates@36#,
which obtained positive values. Reference@35# reported a
value ofa2

(r)50.1860.1. However, this calculation appea
to be consistent with Eq.~79!, since a comparable sum rul
calculation ofa2

(p) @37# arrives at a relatively large value o
a2

(p)'0.44, so that Eq.~79! is satisfied if one substitutes, sa
the value forM3

(p) from the GRV parametrization@33#, or a
slightly larger one. On the other hand, QCD sum calculatio
with non-local condensates give a significantly smaller va
for the second moment of the pion DA; Ref.@38# estimates
a2

(p)50 . . . 0.15; see also Ref.@39#. M3
(p) was estimated in a

QCD sum rule calculation with non-local condensates in R
@34#, M3

(p)'0.29. This could indicate that in the calculatio
of a2

(r) in Ref. @36#, which quotes a value of 0.0860.02, the
error margin could be somewhat larger than estimated.

V. CONCLUSIONS

In this paper we have investigated the structure of n
forward matrix elements of light-ray operators at a low no

s-
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M. V. POLYAKOV AND C. WEISS PHYSICAL REVIEW D60 114017
malization point, and their representations in terms
skewed and double distributions. Our principal conclusion
that the skewed distribution generally has a ‘‘tw
component’’ structure, i.e., that one is dealing with ess
tially different functions in the ‘‘quark/antiquark distribu
tion’’ region, X.j/2,X,2j/2, and the ‘‘meson distribution
amplitude’’ region,2j/2,X,j/2. This follows naturally
from the double distribution representation of the matrix
ement if one explicitly includesall twist-2 structures in the
double distribution representation. We have shown that
contributions resulting from the ‘‘longitudinal’’ (}r m)
twist-2 structure cannot be obtained from delta funct
terms in the conventional double distribution, which ha
previously been discussed by Radyushkin@5,28#.

This conclusion concerning the behavior of the skew
distribution at a low normalization point does not depend
any assumptions about the details of the non-perturba
dynamics at low scales. In fact, we have found qualitativ
similar behavior in two different dynamical models:~i! the
low-energy effective theory based on the instanton vacu
and~ii ! a generic meson exchange model. Moreover, the
cessity to include terms}r m in the decomposition of the
non-forward matrix element Eq.~19! is revealed by crossing
invariance, which relates these terms to the matrix elem
for production of two pions.

Our results concerning the general structure of n
forward matrix elements can serve as a basis for the c
struction of realistic parametrizations of skewed distrib
tions, satisfying all known requirements, and reproducing
phenomenologically known quark/antiquark and gluon dis
butions as well as the form factors of local operators in
appropriate limits. We plan to address this topic in a futu
publication. Whether or not the double distribution repres
tation, in its complete form, Eq.~24!, will prove to be a
useful tool for modeling skewed distributions remains
seen.

The crossing relations between the skewed quark distr
tion and the two-pion distribution amplitude derived here c
be used to obtain additional information about the qua
antiquark distribution in the pion from measurements
electroproduction of two pions ing* g and g* N reactions.
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This fundamental characteristic of the pion is up to now o
poorly known, since it can be measured directly only in ha
ronic pN reactions such as Drell-Yan production, where
enters always together with the~anti-! quark distributions in
the nucleon. In particular, two-pion production ing* g reac-
tions provides an opportunity to measure the distributions
the pion in a purely electromagnetic process.
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APPENDIX A: GENERALIZED MOMENTUM SUM RULE
FOR THE PION

In this appendix we give a derivation of the generaliz
momentum sum rule for the isoscalar skewed distribution
the pion, Eq.~12!, using the universal chiral Lagrangian.

The sum of the second moments of the skewed isosc
quark and gluon distributions is related to the form factors
the energy-momentum tensor@3#. The symmetric version of
the QCD EM-tensor is given by

Tmn5
1

2
c̄g$mi¹J n%c1Fm

raFrn
a 1

1

4
gmnFrsaFrs

a . ~A1!

The general form of its matrix element between pion state
^pa~p2r /2!uTmn~0!upb~p1r /2!&52dab@A~ t !pmpn1B~ t !~r mr n2r 2gmn!#, ~A2!

whereA(t) andB(t) are form factors (t[r 2); other structures are ruled out by energy-momentum conservation,]mTmn(x)
50. Expanding the non-local operators in Eqs.~1! and ~3! in the light-cone distance,z,

c̄~2z/2!ẑ@2z/2,z/2#c~z/2!5c̄~0!ẑc~0!1
1

2
zmznc̄~0!gm¹J nc~0!1 . . . ~A3!

zmznFm
ra~2z/2!@2z/2,z/2#Frn

a ~z/2!5zmznFm
ra~0!Frn

a ~0!1 . . . ~A4!
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and keeping in mind thatr •z5jp•z, one can easily show
that

E
21

1

dX X@HI 501HG#~X,j;t !5
1

2
@A~ t !1j2B~ t !#.

~A5!

At t→0 the matrix element of the energy-momentum te
sor between pion states can be computed from first p
ciples, since soft pion dynamics is described by the unive
chiral Lagrangian. From

Lsoft-pion5
Fp

2

4
tr@]mU†]mU#, ~A6!

where U(x)5exp@itapa(x)/Fp#, one obtains the canonica
energy-momentum tensor in the form

Tmn,soft-pion5
Fp

2

4
$2 tr@]mU†]nU#2gmn tr@]rU†]rU#%

5]mpa]npa2
1

2
gmn]rpa]rpa

1termsp4,p6 . . . . ~A7!

Note that to second order in derivatives this structure is
only one allowed by chiral symmetry; terms of the for
(]m]n2]2gmn)p2 would violate chiral invariance.11 The
energy-momentum tensor in the effective chiral theory
thus given completely by Eq.~A7! and must not be improved
@40#. Taking the matrix element of Eq.~A7! between pion
states att→0 we find @cf. Eq. ~A2!#

Asoft-pion~ t50!51,
~A8!

Bsoft-pion~ t50!52
1

4
.

Inserting this result into Eq.~A5! in the limit t→0 one ob-
tains the sum rule, Eq.~12!.

Finally, we note that there is an alternative way to der
the sum rule, Eq.~12!, by making use of the soft-pion theo
rems for the two-pion distribution amplitude, see Ref.@20#.

11We consider here the chiral limit,mp50. In case of a non-zero
pion mass the energy-momentum tensor receives a chiral-symm
breaking contribution proportional tomp

2 .
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APPENDIX B: RESONANCE EXCHANGE
CONTRIBUTIONS TO NON-FORWARD PION

MATRIX ELEMENTS

An interesting property of non-forward matrix elemen
of QCD operators is the possibility of ‘‘meson exchange
contributions. One may view the exchange of at-channel
resonance as a purely phenomenological model for the
trix elements at a low scale, in the spirit of the vector dom
nance picture for the pion and nucleon e.m. form fact
@29#. Also, at large-Nc , where QCD is believed to becom
equivalent to a theory of resonances, one may hope to e
tually construct a complete description of the pion mat
element of QCD operators in terms of resonance exchan

In this appendix we compute the contribution of th
t-channel exchange of a spin-J two-pion resonance to the
non-forward matrix element of the twist-2 operator in t
pion, Eq.~1!. Specifically, we want to show that exchange
isoscalar resonances~evenJ) gives rise to the behavior o
the matrix element stated in Eq.~22!.

The contribution to the pion matrix element of the ligh
ray operator, Eq.~19!, from an exchange of a resonance
spin J is given by the amplitude for the pion to emit th
resonance, the resonance propagator, and the matrix ele
for the resonance to be ‘‘absorbed’’ by the light-ray opera
~see Fig. 2!. The coupling of the resonance to the pion is
the form

^p~p2r /2!R~r ,J,l!up~p1r /2!&

5gRpppr1 . . . prner1 . . . rn

(l)* , ~B1!

with isospin structure analogous to that of Eq.~1!. Here
en1 . . . nn

(l) denotes the polarization tensor of the spin-J reso-

nance, and the coupling constant,gRpp , can be related to the
pp width of the resonance. The upper part of the diagram
Fig. 2 is the matrix element

^0uc̄~2z/2!ẑ @2z/2,z/2#c~z/2!uR~r ,J,l!&

5 f R~MR!J
en1 . . . nJ

(l) zn1 . . . znJ

~r •z!J21 E
21

1

dy e2 iyr •z/2fR~y!.

~B2!

Here,fJ(y) is a twist-2 distribution amplitude of the spin-J
resonance. Conservation of angular momentum implies t

E
21

1

dy ynfR~y!50 for H 0<n<J21 J odd,

1<n<J J even.
~B3!

Computing the diagram Fig. 2 we obtain for the resonan
contribution to Eq.~1!:

try
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M~p•z,r •z;t !R2exch5(
R

f RgRpp~MR!J

MR
22t

~21!JJ!

~2J21!!!
r •z PJS 2p•z

r •z D E
21

1

dy e2 iyr •z/2fR~y!, ~B4!
e
to
th

q.
w

or
n

where PJ is the Legendre polynomial of degreeJ, which
results from the contraction of the vectorsp and z with the
transverse projector

pr1 . . . prJzn1
. . . znJ(l

e (l)n1 . . . nner1 . . . rn

(l)* . ~B5!

In particular, in the limitp•z→0 the argument of the
Legendre polynomial in Eq.~B4! becomes zero. Sinc
PJ(0)50 for odd J we see that the exchange of isovec
~odd-J) resonances does not contribute to the value of
amplitude atp•z→0, in accordance with the property E
~5! of M I 51 discussed in Sec. II. In the isoscalar case, ho
ever, Eq.~B4! is non-zero. This is precisely the behavi
described in Eq.~22!, which makes a double distributio
en

. C

n
tio
ia

-

,

K.

11401
r
e

-

representation in the form Eq.~14! impossible. In fact, in the
modified representation ofM I 50(p•z,r •z;t), Eq.~24!, isos-
calar exchange leads to a contribution described by

D~y!R2exch

5 (
R

J even

f RgRpp~MR!J

MR
22t

~21!J/2@~J21!!! #2

~2J21!!!
fR~y!. ~B6!

From Eq.~B4! one sees that exchange of aJ50 resonance
~‘‘sigma meson’’! contributes only to ther •z-term in the
double distribution representation, Eq.~24!, and thus only to
D(y), while even-spin resonances withJ>2 contribute to
both FI 50(x,y) andD(y).
ett.
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