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Skewed and double distributions in the pion and the nucleon
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We study the non-forward matrix elements of twist-2 QCD light-ray operators and their representations in
terms of skewed and double distributions, considering the pion as well as the nucleon. We point out the
importance of explicitly including all twist-2 structures in the double distribution representation, which natu-
rally leads to a “two-component” structure of the skewed distribution, with different contributions in the
regions|X|>¢/2 and|X|< &/2. We compute the skewed and double quark distributions in the pion at a low
normalization point in the effective chiral theory based on the instanton vacuum. Also, we derive the crossing
relations expressing the skewed quark distribution in the pion through the distribution amplitude for two-pion
production. Measurement of the latter in two-pion productioriry and y* N reactions could provide direct
information about the skewed as well as the usual quark-antiquark distribution in the pion.
[S0556-282(199)00423-3
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[. INTRODUCTION have been proposed. One can analyze the matrix element
assuming proportionality-z= & p- z, where the value of is

In so-called light-cone dominated hard scattering pro-determined by the kinematics of the scattering pro¢ess.
cesses the non-perturbative information entering the scattein DVCS it is related to the Bjorken variableThis leads to
ing amplitude is contained in matrix elements of certainthe so-called skewed distributiohgamilies of generalized
QCD light-ray operators between hadronic states. A wellparton distributions  depending explicitty on the
known example is inclusive deep-inelastic scattering, wheréskewedness” parametet, [2—6]. In another approach, pro-
in the asymptotic regime the cross section is determined bposed by Radyushkif4,5], one writes a spectral representa-
forward (diagonal matrix elements of twist-2 light-ray op- tion for the matrix element of the light-ray operator as an
erators in the target state, which have an interpretation asdependent function gb-z andr -z in terms of a so-called
parton distributions. More recently, factorization has beerdouble distribution. The skewed distribution for a given
proven for a large class of exclusive processes, namelyalue of ¢ is then obtained as a particular one-dimensional
deeply virtual Compton scatterin@VCS) and hard meson reduction of this two-variable distribution. The advantage of
production[1-9]. The amplitudes for these processes in-this approach is that it allows one to make statements about
volve non-forwardmore generally, non-diagonahatrix el-  the dependence of the skewed distribution on the skewedness
ements of light-ray operators between incoming and outgoparameterg.
ing hadron states, which can be represented by generalized The general structure of skewed and double distributions
parton distributions. Such matrix elements had been dis—their symmetries, limiting cases, possible singularities,
cussed earlier in the context of the non-local light-cone exetc.—is a problem of great theoretical and practical impor-
pansion[10].2 tance. This problem has two aspects. The distributions de-

Because of the presence of a non-zero momentum trangend, of course, on the behavior of the matrix elements of
fer, non-forward matrix elements of light-ray operators pos-the light-ray operators as functionspfz, andr-z. This is a
sess a much richer structure than the forward ones definindynamical question, which one can address from the point of
the familiar parton distributions. In the matrix element of aview of general invariance principles, or by calculations us-
generic light-ray operator{p—r/2j¢(—2z/2) ...¢(z/2)]p  ing some dynamical model. However, the properties of the
+r/2), with zZ2=0, both the momentum transfer, and the  distributions are also determined by the particular way in
average of initial and final momentg, in general have non- which one writes the spectral representation for the matrix
zero longitudinal(“plus” ) component with respect to the element. This concerns such things as e.g. the number of
light-cone direction defined by In a partonic language, one independent “twist-2 structures” one includes in the double
may express the momentum of the “active” parton in termsdistribution representation of the matrix element. A clear un-
of any linear combination op-z andr-z. Two approaches

. ) ) ’The term “skewed distribution” has been recommended as a
Permanent address: Petersburg Nuclear Physics Institute, 188388 mmon name for the “off-forward” distributions introduced by Ji

Gatchina, Leningrad District, Russian Federation. Email addresg? 3] and the “non-forward” distributions of Radyushkif4, 5],
maximp@tp2.ruhr-uni-bochum.de which differ in the definition of the parton momenta, see RBF.

"Email address: weiss@tp2.ruhr-uni-bochum.de for a detailed discussion. It encompasses also the “non-diagonal”

The evolution of so-called “non-forward parton ladders” has distributions parametrizing matrix elements between hadron states
also been considered in connection with the descriptioA°gfho- of different quantum numbers, as have been introduced e.g. to de-
toproduction at smalk [11]. scribe DVCS withN— A transitions[12].
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derstanding of both aspects of this problem is necessary fawo-pion distribution amplitude, which, by crossing, is re-
building realistic models for skewed distributions. lated to the skewed parton distribution in the pjd9,2Q. In
In this paper we investigate the structure of hadronic mathis paper we derive the explicit relation between the two
trix elements of twist-2 operators at a low normalizationfunctions, using dispersion relations to connect the regions of
point, using general principldsymmetries, crossing, ef@s  spacelike and timelike momentum transfers. In particular,
well as specific dynamical models, and consider the implicathis relation allows us to connect moments of the usual
tions for spectral representations in terms of skewed anguark/antiquark distribution in the pion to characteristics of
double distributions. We show that the standard definition Otjistribution amp"tudes of two-pion resonan([@]_ Given
the double distribution representation of Ref4,5] is not  the contributions that measurementsydfy— #° [21] have
always Compatible with the basic structure of the matrix el-made to our know|edge of the Sing]e_pion distribution amp"_
ementgat the very least, it implies severe singularities of thetyde, study of the procesg y— 2 could well be one of the
double distribution, and propose a complete representatiorcieanest ways to get information about the quark distribu-
which eXpIICItIy takes into account all twist-2 structures. Thetions in the pion — skewed as well as usual.
additional terms give rise to contributions to the skewed dis- The scale dependence of skewed and double distributions
tribution which are non-zero only in the region/2<X s described by generalized evolution equations, which com-
<§&/2, and thus naturally lead to a “two-component” form pine features of both the Dokshitser-Gribov-Lipatov-
of the skewed distribution, i.e., to essentially different func- Altarelli-Parisi (DGLAP) evolution for usual parton distribu-
tions in the two region$X|<&/2 and|X|>&/2. Such behav-  tions and the Efremov-Radyushkin-Brodsky-Lepage
ior was first observed in a model calculation of the flavor-eyolution[22] for meson distribution amplitudes. This prob-
singlet skewed distribution in the lardé: limit in Ref. [13].  |em has extensively been treated in the literature, see e.g.
We find it useful to consider in addition to the nucleon Refs. [3-5,10,11,23-25 We shall not be concerned with
matrix elements of twist-2 light-ray operators also the matrixthis aspect here, but rather focus on the structure of the dis-
elements between pion states. While hardly the target ofributions at a low normalization point, how they are con-
choice for actual DVCS experiments, the pion is interestingstrained by general principlesymmetries, crossing, elc.
from a theoretical point of view, for various reasons. First, itand how they can be estimated in dynamical models taking
allows one to avoid complications due to spin, and also itSnto account non-perturbative effects such as the dynamical
mass can be neglected. Second, the interactions of the pigjeaking of chiral symmetry, etc.
with external fields are described completely by the chiral Wwe shall proceed as follows. In Sec. Il we discuss the
Lagrangian, which makes it possible to derive certain sunproperties of non-forward hadronic matrix elements of
rules for the skewed distributions at a low normalizationtwist_z operators and their Spectra| representa’[ion from a
point from first principles. Finally, both the skewed and thegeneral point of view. In Sec. Il B, using the pion as the
double distribution in the pion at a low normalization point simplest example, we show the importance of explicitly in-
can be estimated in the lardés limit in the effective low-  cluding all twist-2 structures in the double distribution rep-
energy theory derived from the instanton vacuum of QCDresentation, and discuss the implications for skewed distribu-
[14]. This is a fully field-theoretic description of the pion, tions. The investigation is extended to nucleon matrix
which respects general properties such as crossing symmet&fements in Sec. Il C, with analogous conclusions. In Sec. Il
etc., and incorporates the consequences of the dynamic@le perform a model calculation of the non-forward pion ma-
breaking of chiral symmetry. The same approach has beefix elements and the corresponding skewed and double dis-
shown to give a realistic description of the quark/antiquarkiributions at a low normalization poinju(~ 600 MeV), using
distributions in the nucleortboth usual[15] and skewed the effective low-energy theory based on the instanton
[13]) as well as the pion distribution amplitud@6,17. In  vacuum. The results serve as an illustration for the general
fact, the results of our calculation of the skewed and doublgjiscussion in Sec. II. In Sec. IV we discuss the relation of the
distributions in the pion fully support our general conclu- skewed distribution in the pion to the two-pion distribution
sions concerning the need to modify the double distributioramplitude. The crossing relation is derived in explicit form
representation of Refs[4,5] and the "two-component” using moments. We use the crossing formula, together with
structure of the skewed distributidn. the dispersion relation for the invariant-mass dependence of
Another reason for our interest in the pion is the fact thatthe two-pion distribution amplitude, to relate moments of the
the process related to DVCS off the pion by crossing, namelyion parton distribution to parameters of the distribution am-
production of two pions iny* y collisions, can be measured plitudes of two-pion resonance wave functions. Our conclu-
at low invariant masseldl8]. This process is described by a sjions are summarized in Sec. V.
Appendix A gives a derivation of the generalized momen-
tum sum rule for the skewed distributions in the pion. In
3In the case of the nucleon the calculation of non-forward matrixAPPeNdix B we consider “resonance exchange” contribu-
elements is complicated by the parametric restrictions imposed oHONS to the non-forward matrix elements in the pion. A gen-
the different components of the nucleons’ momenta by theeral expression describing the contribution of the exchange
1/N,-expansion. While it is possible to compute within the standardof t-channel resonances of arbitrary spin is given. The results
1/N-expansion the skewed distributions in the nucleon in the paraprovide a simple dynamical explanation for the general prop-
metric rangeX, é~ 1/N, [13], it is difficult to get the double distri- erties of skewed and double distributions discussed in Sec.
bution in the nucleon in this approach; see Sec. Ill. 1.
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II. NONFORWARD MATRIX ELEMENTS pion, which already exhibits all features of interest to us
AND GENERALIZED PARTON DISTRIBUTIONS here, and generalize to the nucleon in Sec. Il C.

Let us consider the non-forward matrix elements of
) _ ] twist-2 light-ray operatorgnormalized at some scalg) be-
To begin, we would like to discuss some general properyyeen one-pion states. Due to isospin invariance, the matrix

ties of non-forward hqdronic matri>§ ele_ments of QCD light- g1ements of the flavor-singlet and non-singlet quark opera-
ray operators and their representation in terms of skewed angd.s are of the forrh

double distributions. We start with the simplest case, the

A. Skewed vs. double distributions: the pion

28°M'=%(p-z,r-zt),

2ie3°M ' =Y(p-zr-z;1). @

— 1.
< T (p—r/2)| y(— Z/Z): 7-°] z[—2/2,2/2] 1/1(2/2)‘ m(p+ r/2)> = [
Throughout the following the isoscalar and isovector parts of matrix elements in the pion will be understood to be defined as
in Eq. (1); the isospin decomposition will often not be explicitly written. Here 1 afdre flavor matrices; we consider the

SU(2) flavor group. Furthermorey is the quark fieldz, a light-like distance #=0), andz= y*z, . Finally, [ —2/2,2/2]
denotes the path-ordered exponential of the gauge (igldse factorin the fundamental representation

—1/2
[—z/2,z/2]EPexr{if dt z*A,(tz)|, (2

1/2

which is required by gauge invariance; the path here is along the light-like direztibhe matrix element of the correspond-
ing twist-2 gluon operator is defined as

22w (p—112)|F ,P(—212)[ - 2/22I2]F , (212)| 7P (p+1/2)) = 25" M C(p-Z,1 - Z;1), )

whereF ,, denotes the gluon field, and the phase factor is in  Skewed distributionsln principle, the matrix elements
the adjoint representation. Egs.(1), (3) can be considered as functions of the invariants

In Egs.(1) and(3) the dynamical information is contained p-z andr -z as independent variables, defined in the physical
in scalar functionsM ' =% and M ©, which depend on the region. However, in the amplitude for hard processes such as
dimensionless invariants-z andr - z, as well as ort=r2. DVCS off the pion the matrix elements enter with some
From the mass shell conditionp£r/2)?=m? it follows fixed ratio ofr-z andp-z,

m

that
r-z=ép-z, (7)
p-r=0,
(4 which is dictated by the kinematics of the process; for in-
, t stance, in DVCS¢ is related to the Bjorken variable—(1
p?=mZ— R <¢/2<1) [2-5. This suggests to define a *“one-

dimensional” spectral representation of the matrix elements

sot is the only independent dimensionful invariant. In then the form

physical regiort<0. In the following we consider the mass-
less limit, m,—0. We note thaG-parity (or, equivalently,
time reversal invariangaequires that

M'=p-zr-z=¢p-z;t)

=2p-zJ’1 dXe XPzqI=01(x &), ®
M'=%p-zr-2)=M"'"%-p-z,—r-2), -1

M'=Yp-zr-2)=— M"Y —p-z—r-2), ®) where H'=%X(X, ;1) are called the skewed quark distribu-

tions in the pion(the definition of the gluon distribution is
¢ analogous The limits =1 for the integral over the param-

for samet; the symmetry of M € is the same as that o ) !
Y y eter X follow from rather general consideratiof3-5|. One

M'=0In fact, using in addition Hermitean conjugation one
obtains a stronger symmetry relating the functions with
——r-z and samep-z [26]:

4From Eq.(1) the matrix elements in charge eigenstates are ob-

M'=%Yp.zr-2)=M'""Yp.z,—r-2); (6)  tained in the usual way|7%)=|7%), |7*)=(|7')=i|7?))/\2.
Note that the neutral pion has no non-singlet matrix element due to
this will be discussed in detail in Sec. Il B. C-invariance.
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can also give an explicit expression fidr Introducing a dimensionless light-like vectar, and settingz= rn, one can invert
Eg. (8) and obtain2,13]

25abH'°(X,§;t)} 1(dr

. — 1].
2t =L(X £ty | "2 ZeTXp'“<Wa(p—r/Z)‘w(—rn/Z)[TC]n [—Tn/2,7n/2]¢//(7n/2)wb(p+r/2)>, (9)

and similarly for the gluon distribution. The symmetry prop- 1 0. e 1 &2
erty Eq.(5) requiresH' = to be an odd function oX, H'=* f dXXH™"+H ](X,S;t=0)=§< 1- Z)' (12)
to be even. From the stronger symmetry E§). it follows -t

that the skewed distribution is an even functionédr any The isovector skewed distribution in the pion is normalized
X [6]. This can also be inferred from the symmetry properties ISov w Istribution 1 pion | 12

of the double distributiongsee below [26]. to the pion electromagnetic form factor. For anry0,

The skewed distributions possess a simple partonic inter- 1
pretation, the character of which depends on the relatiofi of f dX H' =YX, &t)=F&™t). (13
to the skewedness parametér,see Refs[3-6,2§ for de- -1

tails. For X>¢/2 and X< —&/2 the skewed quark distribu-
tions describe the amplitude for emission and reabsorption of Double distributions Alternatively to the skewed distri-
a quark/antiquark in the infinite-momentum frame, and thusgution, Eq. (8), one can try to formulate a ‘“two-
have properties analogous to the usual quark/antiquark dislimensional” spectral representation of the matrix element
tribution functions. For— &2<X<&/2, on the other hand, Edg. (1), as a function ofr-z and p-z as independent vari-
they have the character of distribution amplitudes for theables. In the spirit of Ref§4,5] we could write for the pion
creation of a quark/antiquark pair. One may thus expect thenatrix elements a spectral representation in terms of a single
behavior of these functions to be quite different in the twofunction of two variables in the form
regions.

In particular, in the forward limit of the matrix element,
r—0 andé—0, the skewed quark distributions reduce to the
usual quark/antiquark distributions in the pion:

1 )
M ':Ovl(p-z,r-z;t)=2p-zf dx e Pz

-1

1-1x] :
XJ dye—lyr-z/ZFI:O,l(X,y;t)'

1=0 0 :E _p(— _ = (1-[x])
H(X,6=0:1=0)= 5[ 8(X)as(X) — (= X)ad = X) ],

10 (14)

I1=1 Nt — _ _ _
H'=1(X,£=0;t=0)= 6(X)qy(X) + 8(— X)qy( — X), where the functiong'=° are called double distributiors.

where g4 X),q,(X) correspond, respectively, to the singlet Here the range of the variablesy is limited to[4,5]

(quark plus antiquaskand valencgquark minus antiquajk

distributions in a physical pion: —1sx<1,
Q) =[U-+U] 5= (X)=[d+d] () —(=bd=y=1-Ix,
=[u+u],o(X)=[d+d]o(X), see Fig. 1. The property E¢6) implies that[26]
(11 B B
GO0 == [U=U],= ()= F[d=d],~(X). R0y =F8 00 —yit). (15

The moments of the skewed distribution, Eg), are 1€ skewed distribution, Eq(8), is obtained as a one-
given by non-forward matrix elements of local twist-2 spin- dimensional “section” of this two-variable function, impos-
N operators in the pion, which are parametrized by generalNd & particular “skewedness’¢:
ized form factors. On general grounds, the non-forward ma-
trix elements of the spilN operators are irreducible ramk- fl dXJllxl dy 8(X—x—y&l2)F' =04 x,y:t)
tensors constructed from the momemptandr, so the mo- -1 —(1-|x) 7
ments of Eq.(9) are polynomials of degree at madstin ¢ —o1
[27]; see also Refd6,28|. In particular, the second moment =H " (X, 61). (16)
of the isoscalar skewed distribution is related to the form
factor of the QCD energy-momentum tend@. For the
pion this form factor att=0 can be computed from first  Swe consider here the “modified” double distribution of RE5],
principles using the chiral Lagrangi&see Appendix A and  which is appropriate for the symmetric choice of the momenta of
one obtains a generalized momentum sum rule for the piorthe incoming and outgoing pion in E¢f).
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y incompatible with general features of the dependence of the
isoscalar matrix element, E@L), onp-z andr -z, and insist-

ing on it one would incur severe singularities in the double
distribution.

In order to obtain information about the behavior of the
functions M(p-zr-zt), Eq. (), it is useful to consider
instead of Eq.(1) the more general matrix element of the
non-local vector operatdisospin components are defined in
analogy to Eq(1)]

1

(m(p—r12)[ Y~ 2I2) y [ — 2/2,212](2I2)| (P +1/2))

FIG. 1. The range of the variablesandy in the double distri- =M,(p.r,2) (18)
bution, Eq.(14). The reduction to the skewed distributidt(X, £), "
is achieved by integrating the double distribution over the kne  fom which the matrix element Eq1) is obtained by con-
+yél2=X, cf. Eq.(16), shown here for the case that-£/2 (thick  yraction with the light-cone vectoz”. On general grounds,
line). this matrix element can be parametrized(fs both | =0

. . . - . . and 1)
This reduction process is illustrated in Fig. 1. In particular, in

the forward limit the usual quark-antiquark distribution is M, (p,r,2)=2p,G+r,G|+termez,,, (19)
recovered as
whereG and G are generalized form factors depending on
fl‘x dy F=0(X.y:t=0) p-zr-z andt. The terms proportional ta, vanish upon
—(1-1X]) y Y= contraction withz* and do not contribute to the twist-2 part
of the matrix element, E¢1). The term proportional to,, ,
_ however, does contribute to E@.). In fact, it is the presence
=2L00aX)=0(=X)a(=X)] (D ,fihis structure which causes trouble in the double distribu-
tion representation of the isoscalar matrix element, (E4).
and similarly for the isovector component, cf. Ed0). In the limit z—0 the operator in Eq(19) reduces to the
The main reason for interest in a double distribution repJocal vector current, which is conserved. This implies that
resentation is the possibility to relate skewed distributiong5|(z=0)=0 for all t, i.e., the matrix element is “trans-
with different values of¢é. With certain assumptions about verse” (xp,). However, the non-local operator wig¥ 0 is
the behavior of the double distribution a number of state-generally not conserved, so there is no reasonGpto be
ments about the skewed distributions follow immediatelyzero forz+#0. Actually, current conservation is only a suffi-
from the reduction formula, Eq16); see Refs[4,5] for an  cient condition forG to be zero, not a necessary one. For
extensive discussion. For instance, if the double distributiorz=0 one obtainsG =0 already from time reversal invari-
were continuous everywhere on its region of suppgege ance and the Hermiticity of the local current operator. Ap-
Fig. 1), the skewed distribution would be a continuous func-plying the same symmetry transformations to the non-local
tion of x and£. The double distribution is also convenient for operator, one finds that for the isoscalar matrix element
model building, since any model of the double distribution,

when inserted in the reduction formula, produces skewed G %p-zr-zt)=G'"%p-z,—r-z),
distributions satisfying the polynomiality condition for the (20
momentg4,5,26,28. However, in order to be practically rel- Gf‘ 0(p zZ,r-z,t)= —G (p zZ,—r-zt).

evant, such applications require understanding of the general
behavior of the double distributions, in particular, of their In the local case-z=0, andG| % would be zero identically

possible singularities. in t. However, in the general case# 0, there is again no
reason forGH 0 to be zero.
B. Trouble with double distributions The presence of a “Iongitudinal”O(rM) part of the vec-

tor matrix element, Eq(19), means that the matrix element
M'=9 obtained by contracting E¢19) with z*, contains in
taddition to thep- z-term a piece with prefactar- z,

When discussing properties of double distributigssch
as their singularitiesone should keep in mind that the be-
havior of these functions is determined by the behavior o

the matrix element, Eq1), as a function op-z andr -z, as M'=%p-zr-z,t)=p-zG~%p-zr-zt)
well as by the particular way in which one writes the spectral
representation for it. This concerns, in particular, the number +r- zG (p z,r-z,t). (21

of independent “twist-2 structures” one takes into account

in the decomposition of the matrix element. We shall argudn particular, since general@” 90, M does not vanish in
now that it is not always adequate to represent the pion northe limit p-z—0 andr -z#0:

forward matrix element in the form of Eq14), as a double

spectral integral with a single prefactqy;z. This form is M'=%(p-z—0r-z#0t)#0. (22
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One can easily see that this implies that the matrix elemergible to include the - z-term in a double distribution repre-
M'=% cannot be represented in the form E@4) with a  sentation of the form Eq14) staying within the usual class
non-singular double distributionF'=°(x,y). Suppose of generalized functions.

F'=9%x,y) were non-singular in its range of support. It It is important to mention that the difficulties noted here
would then define the matrix element on the left-hand sidelo not concern the representation of the matrix element
(LHS) as an analytic function of the variablesz andr-z,  through a skewed distribution, E@). In this case one writes
which could be continued to a poifin the unphysical re-  the representation of the matrix element under the condition
gion) wherep-z=0, butr-z#0. At this point the right-hand .= ¢p. 7, with ¢ fixed. In particular, repeating the above
side (RHS of Eqg. (14) vanishes because of the prefactorargument and taking in E8) the limit p-z—0 we would

P-2z, but not the matrix IeI:eOment on the LHS, cf. H2).  hoy also have - z— 0, so that both LHS and RHS of E()
Clearly, this implies thaf"~"(x,y) must be singular, in one would vanish, and there is no need f8t=° to be singular.

way or another. . . 2
. . ince there are man vant in le distribution
What would be the character of these singularities? Try- Since there are many advantages in a double distributio

ing to absorb ap-z-independent piece in the integral Eq representation of the non-forward matrix elements, it is
(14) would amount to finding an integral representation Ofworthwhlle to think how Eq(14) could be modified to allow

Up-z in the form for a double spectral repre;entation in terms of _standard gen-
eralized function. The origin of the problems with the form
1 1 _ Eq. (14) is that the matrix element does not go to zero in the
Dz fﬁldx e P (x), (23 |imit p-z—0, Eq.(22). One possibility would be to simply
omit the prefactop-z in Eq. (14); however, this would re-
with f(x) some generalized function. Assuming that the in-sult in a functionF'=°(x,y) which does not reduce to the
tegral on the RHS can be continued joz—0, one con- usual parton distribution in the forward limit—0, cf. Eq.
cludes that no Mellin moments of the functié(x) exist. In  (17), and would not be useful for model building. Alterna-
particular, this means that the singularity fi(x) cannot be tively, one could add to Eq14) a term not vanishing in the
of delta-function type(We shall return to this point beloy. limit p-z—0. Minimally, this could be a term depending
Thus, we conclude that, although the two contributions toonly onr -z, which can be represented by a one-dimensional
M'=%in Eq. (21) are not structurally distinct, it is not pos- spectral integral:

1 ) 1—|x| ) 1 )
M':O(p'z,r.z;t)=2p'zf dx e"Xp'ZJ y dy e Y Z2F1=0(x yit) + r~zf dy e V" Z2D(y;t). (24
-1 —-x) -1

The functionsF' =°(x,y;t) andD(y;t) are uniquely defined F'=0(x,y)=F'=%(x, —y),
if we understand the first term to be a representation of (25)
M'=%p-zr-zt)-M'=%0r-zt), the second of D(y)=—D(-y):

M'=9(0r-z1), i.e., as a “subtraction term.” The explicit

factor r-z in front of the second term is natural since i.e., the behavior with respect yo— —y of the new function
M'=9(0r.z—0)=0. The support oD is limited to —1 D(y) is opposite to that of the usual double distribution, Eq.
<y<1, i.e., this function has the character of a distribution(15).

amplitude. Time reversal invariance and Hermiticity, Eq. The skewed distribution which follows from the new rep-
(20), require that(samet) resentation Eq(24) is now the sum of two contributions:

B 1 1-|x| - 2X
H"O(X,g;t)=f de dy 8(X—x—y&l2)F'=0(x,y;t) + sgr(é)D(?;t>. (26)
-1

—(1-1x))

Note that both contributions are even functionsépfin ac-  substituting in Eq(24) r - z= ép- z and changing the integra-
cordance with the general symmetry of the skewed distribution variable to&y/2. Since the support dD is limited to
tion following from Eq.(6). The first piece follows the usual —1<y=<1 this contribution to the skewed distribution is
reduction formula, Eq(16), and is generally non-zero in the present only for— &/2<X<¢/2. Thus, the need to include
entire range—1<X<1. The second piece is obtained by the “subtraction term” in the double distribution representa-
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connection with resonance exchange contributions to the
non-forward nucleon matrix elemerits,28]. We already ar-
gued above that the purez-terms in the isoscalar pion ma-
trix element, cf. Eq(22), cannot be described by delta func-
tion type contributions toF'=%(x,y). It is interesting to
verify this at the level of the reduction formula, E®6).
Could delta function contributions ©'=°(x,y) mock up the
structure of theD-term inH'=%? A term inF'=%(x,y) of the
form &8(x) ¢(y) would give a contribution to the skewed dis-
tribution H'=%« ¢(2X/£)/|£|, which is ruled out because

. . 1=0 : - -
FIG. 2. Schematic representation of resonance exchange contfd ~ must at the same time be oddXnand even in. One

butions to the non-forward matrix element of the twist-2 operator in
the pion, Eq{1). The upper blob denotes the distribution amplitude
of the spind resonance, EqB2).

thus has to turn to derivatives @(x). A term &’ (x)x(y)
would give a contributiord' =%csgn(¢) x' (2X/£)/ &2, which

can be non-zero but cannot describe the contribution gener-
ated byD(y) in Eq. (26) (consider for example the forward

tion naturally leads to a skewed distribution with essentiallylimit). This argument can easily be extended to any deriva-

different behavior in the region¥|<¢/2 and in|X|>¢/2.

So far we have explored the consequences of the presen
of “longitudinal” terms in the matrix element Eq19), or of
property Eq.(22), from a general point of view, arguing that
there is no reason for such contribution to be zero. In Sec. Il

tive of §(x). Thus, we conclude that the term generated by
BXy) in Eq. (24) represents a genuine separate structure
which cannot be obtained from delta function contributions
to F'=%(x,y).® We remark that in the resonance exchange
model of Appendix B, exchange of even-spin resonances

we perform a model calculation of the pion matrix elementsgenerally contributes to bot(y) and to delta function

at a low normalization point in the effective chiral theory

terms inF'=(x,y), cf. Eq.(B4). Spin-0(“sigma meson’)

based on the instanton vacuum, which shows that such ternexchange is special in that it contributes onlyx¢y).
in the matrix element do indeed appear, and lead to the Another simple way to see the incompleteness of the pa-

“two-component” form of the skewed distribution described
above.

The regionp-z—0 andr - z# 0 implied in the limit in Eq.
(22) corresponds to values ¢§>2, which are not physi-
cally accessible in DVCS. However, using crossing invari-
ance one can relate the functigr(p- z,r - z) in the unphysi-
cal region, Eq.(22), to the matrix element for two-pion
production by a light-ray operator in thphysicalregion(see
Sec. V). The latter can be measuréelg. iny* y— 7 and
v*N— N reaction$ and is generally non-zero, providing
additional evidence for the presence rofz-terms and the
property Eq.(22).

A simple dynamical explanation for the origin of

rametrization Eq(14) is to consider thé\-th moment of the
isoscalar skewed distribution,

fl dX XNTIH!'=O(X, £,1),
-1

which on general grounds must be a polynomial of defjee
in £ [6,27,28. One can easily see that the skewed distribu-
tion obtained from Eq(16) with the restricted ansatz for the
double distribution, Eq(14), produces a polynomial at most
of degreeN—2. In the complete representation, Eg4), it

is precisely the contribution of the second termD(y),
which gives rise to théN-term in the moment oH'=9, cf.

r-z-terms in the isoscalar pion matrix element can be found=g. (26). This is particularly important in the case of the
by considering “resonance exchange” contributions to thesecond momentN=2: The generalized momentum sum
matrix element, in the spirit of the vector dominance modelrule, Eq. (12), requires a&-term in the second moment,

for the pion electromagnetic form fact¢29]. By this we
mean “factorized” contributions to the matrix element in

which is impossible to get from E@14).
In the amplitude for hard exclusive processes such as

which the pion and the light-ray operator communicate byDVCS the skewed distribution is convoluted with a hard
t-channel exchange of a resonance characterized by a twistszattering kernel which is singular =+ £/2 [2-5]. For

distribution amplitude, as are shown schematically in Fig. 2

this integral to existi.e., for factorization to holdit is im-

In Appendix B we derive a general formula describing theportant that the skewed distribution be continuousXirat
contribution resulting from the exchange of a resonance ofhese points. Assuming that the first term on the RHS of Eq.

arbitrary spin to the pion matrix element. In particular, we
show there that the property E@2) of the isoscalar matrix

element is naturally obtained from exchange of even-spin

isoscalar resonances. Far from being a complete dynamic
description of the non-forward matrix element, this phenom
enological model helps to develop an intuitive understandin
of why the structures described above appear.

The double distributior' =°(x,y) in Eq. (24) is a gener-
alized function which may contain delta function type singu-
larities. Such terms in the double distributigim the re-
stricted ansatz Eq(14)] were studied by Radyushkin in

(26) is continuous, this would be satisfied if

D(y;t)—-0 (y—=1). (27
al

We shall see below that it is indeed reasonable to expect that
(y;t) satisfies this property, reminiscent of a meson distri-

ution amplitude. Model calculations of the matrix elements

81t is amusing to note that, rather than a derivativesok) this
term represents, in a sense, an “integral” &), cf. Eq. (23).
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in the effective chiral theory based on the instanton vacuuntq. (14) consistent with Eq(22). For some purpose&.g.

and in a “resonance exchange” model give rise to functionscrossing symmetpyit could be convenient to have a repre-

satisfying Eq.(27). sentation which is symmetric with respect pez andr - z.
The representation E¢R4) is the minimal modification of One could write

1 ) 1-|x] .
M ':O(p-z,r-z):2p-zJ71dx e"Xp'Zf(llxl)dy e YA2EI=0(x v)

! i 1= iyr-z/2=1=0
+r~zjldxe""”f(lX)dye'yr' Fim(x,y). (28

The two functionsF'=% and F|~° would be uniquely terms” of the kind in Eq.(24) are required. This is because
determined if we defined them as the spectral representa\'~! is odd inp-z for any r-z and t[as follows from
tion of the generalized form factor6'=%(p-z,r-zt) and combining Eq.(5) and Eq.(6)], and thus

G| °(p-zr-zt) of the vector operator, Eq19).” Again,

Eqg. (20) requires that M'=Yp-z—0yr-2#01)—0. (31)

F'=0%x,y)=F'=%(x,—y), In the resonance exchange model this property is again easily
(29)  understood; it follows from the fact that isovector two-pion
- - resonances have odd spin, see in Appendix B.
F‘l‘ O(X,Y):—Fh O(X,_y). p EB:fl) pp
In terms of these new functions the skewed distribution
would now be given by the reduction formula E46) with C. The nucleon

We now turn to non-forward matrix elements in the
& nucleon. By a simple extension of the arguments offered in
F(xy)—Fxy)+5F(xy). (B0 the previous subsection for the pion, we show that also in the
case of the nucleon the double distribution representation of
Note that bottF andF| are generalized functions which may Refs. [4,5,28 should be modified to take into account all
contain delta-function singularities. possible twist-2 structures.
Finally, let us note that for the isovector pion matrix ele- The object of interest now is the nucleon matrix element
ment, M '=1, the original form of the double distribution of the twist-2 light ray operator of Eq1). Again we distin-
representation, Eq(14), works fine, and no “subtraction guish the isoscalar and isovector matrix elements:

25T3Té/\/l':°(>\’,)\;p-z,r~z;t)

(7)1, M TN N2z, 32

<N(p—r/2),T§,)\’ E(—Z/Z)[ Tlc]i [—z/2,z/2]z,b(z/2)N(p+r/2),T3,)\> =[2

whereT3, T4 denote the isospin projectiof ¢, T;= = 1/2 for proton/neutron The only difference to the pion is that now the
functions M '=%1 depend also on the helicities of the incoming (and outgoing X') nucleon. In analogy to the pion, Eq.
(19), let us consider also the matrix element of the more basic light-ray operatoryyitfthe isospin decomposition is
analogous to Eq(32) and not writter,

"strictly speaking, we have no general proof that a double spectral representation for the form3actdS) exists. At least in our model
calculations in Sec. Il and Appendix B we shall encounter only contributions to the matrix element which can be representéd8y Eq.
with F,F| having at most delta function singularities.
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(N(p—r/2),\'[ih(—2I2) )yl —212,212](ZI2)IN(p+1/2) N )= M, (N, \;p,r,2), (33

which on general grounds can be parametrizedf@sboth ~ Actually, here the three structures are not independent. Using
=0 and 1) the well-known identity

U'Up,=2M\U"y,U+iU’a,,Ur", (36)

M,=U"| y,G1+ 50— o Ol Gt LG T }U
(34 we could rewrite the third term as a linear combination of the

first two. In this way we would arrive atl €0,1):

whereU’'=U(p—r/2,\"),U=U(p+r/2,\) are the nucleon :

spinors, ando,,=(i/2)[ vy, ,y,]. We have not written ex- M \p-zr-zt)=U"| 2G,+ ! ———q,,2"G,|U
plicitly terms which vanish upon contraction wigf and do

not contribute to the twist-2 pafsuch asz,,,o,,z"). Here (37
G1,G,,G| are generalized form factors depending on
p-zr-z, andt. In the limit of a local operatorz—0, G;
and G, reduce to the usual Dirac form factors for the
vector current, ands;—0 because of current conservation.

where

However, as in the case of the pion, fo# 0 the termer , is 6,=G,+2—Gy,
generally non-zeroi#0. p-z
Contracting Eq(34) with z* we obtain the twist-2 matrix (38

element, Eq(32) (for bothI=0 and 1):

— |~ i
M\ \;p-zr-zt)=U"|zG,+ W(rwz“rsz

N A decomposition of the form Ed37) was assumed in Refs.

[4,5], where a double distribution representation of the ma-
+r-zG)|U (35 trix element was proposed in the form
|
— . (1 . 1—|x] .
/\/l':O'l()\’,)\;p-z,r-z;t)=U’sz dx e*'Xp‘Zf " dy e Y Z2E1=01x y:t)
-1 —(1-|x])
[ — 1 . 1-[x| .
+ z“r”U’oMUf dx e*'Xp'Zf dy e VrZ2K!I=01(x y:t). (39
N -1 —(1-[x))

We see that in the isoscalar case this ansatz suffers from the Again we stress that there is no problem with a represen-
same problem as the simple ansatz for the double distributiotation of the matrix element Eq37) in terms of skewed
in the pion, Eq(14). Since in generaBH 20, the functions  distributions (see Refs.[2-5] for their definition in the
G'l 0 G' 0 in the reduced decomposition, E(B8), have nucleon. In this case the factons z/p-z incurred in elimi-
smgulantles of the type P/ z, which cannot be represented nating the r-z-term, Eq. (38), are replaced by the
by spectral integrals with usual generalized functions, as deskewednessg, which is a fixed external parameter.

scribed in the previous subsection. Thus, the conclusion is In analogy to the pion, Eq24), we suggest to modify the
the same as for the pion: Although the twist-2 contributionsspectral representation E9) by explicitly including the
from the “longitudinal” part («r,) of the vector matrix r-z-terms. A minimal variant would be to add a term de-
element are not structurally distinct from those from thepending only onr-z, in which one could absorb the
“transverse” part ¢<p,), one cannot obtain them from a p.z- independent part of the “longitudinal” term of ER1),
double distribution representation whose form is modeled on . zG O(p-z=0,r-2):

the “transverse” part.
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. 1 ) 1=1x| .
/\/l':O()\’,)\;pz,r~z;t)=U’sz dx e"Xp'ZJ y dy e Y Z2E1=0(x y:1)
—1 —(1-1x))

_ 1 . 1-[x| )
z”r”U’aWUL dx e"”"zji ) dy e Y Z2K!1=0(x y:t)
1 (1-1x))

MY

_ 1 )
+U’Ur-zJ dy e V72D (y;t). (40)
-1

Alternatively, one could directly work with the spectral rep- Refs.[15,16. An essential point is that the value of the dy-
resentation of the form factor&,,G, and G, as in the namical quark massy, is parametrically small compared to

representation E¢(28) for the pion. . the UV cutoff, p~1; their ratio is proportional to the packing
The skewed distribution in the nucleon resulting from the¢.. wtion of the instanton mediumM(p)2~ (p/R)*. Qualita-
full double distribution representation, E@0), again has a tively speaking this means that in leading order in this pa-

two-component” form, since the term witD (y) gives rise . yatar one is dealing with structureless constituent quarks;

to a contribution non-zero only _in the region §/2<X in particular, the gluon distribution appears only at order
<¢/2. (The corresponding reduction formulas can be ob-

= . T . =
tained by a trivial modification of the ones written in Refs. (Mp)®. At a technical level, working in leading order M

[4,5,28.) This explains the behavior of the isoscalar skewed"€ans retajning only the uItravipIet divergent part of the
distribution,H'=%, which was encountered in a model calcu- quark loop integrals computed with El1), absorbing the
lation in thé Iargé\l limit [13] ultraviolet divergence in the pion decay constdn,.

c .

The non-linear form of the coupling of the pion to the
quarks in Eq(41) is required by chiral invariance. Expand-

IIl. DISTRIBUTIONS IN THE PION FROM EFFECTIVE ing the exponential in powers of the pion field we obtain

CHIRAL DYNAMICS

- : : . [
For quantitative estimates of the non-forward matrix ele- @l s NF L — 1 4 — ysmd(X) 7
ments Eq.(1) and the skewed and double distributions one Fa
has to turn to model calculations. Here we compute these 1
quantities at a low normalization point in the low-energy ——— )T F ... (42)
effective field theory based on the instanton model of the 2F2

QCD vacuum. This effective theory incorporates the dy-

namical breaking of chiral symmetry, and provides a realisticThe effective theory contains a Yukawa-type quark-pion ver-

description of hadronic properties of the pion and nucleoriex as well as a two-pion quark vertex. Consequently, there
[14,30. Its content can be summarized in an effective actiord’€ in general two contributions to the matrix element of a

describing the interaction of a pion field with massive “con- twist-2 quark operator between pion states, corresponding to

stituent” quarks, in a way which is dictated by chiral invari- the diagramsa) and(b) of Fig. 3. The diagranta) of Fig. 3
ance: contributes only to the flavor-singlet matrix element, while
(b) contributes both in the flavor-singlet and non-singlet
A rn 27 iy PR F 5 case. The Feynman integrals can straightforwardly be com-
Seff:f d*xg(x)[id—MF(d%)e'”s "F(99)](X). puted introducing light-cone coordinates with respect to a

(41)
Here, 72 is the pion field, andF ,=93 MeV is the weak pion

decay constant. The dynamical quark mass generated in the
spontaneous breaking of chiral symmetry is momentum de-

pendent; the form factors(d%) are related to the instanton RAAN /' \\
zero modeg14]. They cut loop integrals at momenta of or- ’ *
der of the inverse average instanton sizel~600 MeV. (a) (b)

. The effective theory Eq41) has been dF."”VEd from the FIG. 3. Diagrams in the effective low-energy theory contribut-
Instantpn mOd?I Of_t_he _QCD vacuum. This allows for aning to the skewed quark distribution at a low normalization point.
unambiguous identification of the twist-2 QCD operatorsthe gashed lines denote the pion field, the solid lines the quark
with operators in the effective _theory. It is understood thatpropagator with the dynamical quark magisi— MF2(#2)]~%, and
the_QCD operators are normalized at a scale of the quder the filled circles the quark-pion vertices contained in the effective
=p 1~600MeV. The general framework for computing action, Eqs.(41) and (42), which include a form factoF (42) for
parton distributions and meson wave functions at a low noreach quark line. Diagrarfa) contributes only to the isoscalar dis-
malization point within this approach has been developed inribution, and vanishes in the forward limit-G0).
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vector n~z; see Refs[16,17,19 for details. The integral 1 -
over transverse momenta contains a logarithmic divergence @
which is cut by the form factors; (9%). More simply, one HXE ¢ X
may keep only the logarithmically divergent part of the dia- ANV 24
gram and absorb the logarithmic divergence in the pion de- 0
cay constant. It was shown in Refgl3,17 that this is a e
legitimate approximation except in the vicinity=+¢/2. BN
(We shall include the form factors in the calculation Iater.

In this approximation the contributions of diagran®
and (b) of Fig. 3 to the matrix elements, E@l), can be
computed analytically. For the isoscalar part we obtéom
simplicity we taket—0):

-1 &1 0 2 1

FIG. 4. The contributions from diagranis) and(b) (cf. Fig. 3
to the isoscalar skewed quark distribution in the pidh;9(X, &),
at a low normalization point, as functions ¥ for a value ofé¢
=1. (Here t=0). Dashed lines: Results obtained neglecting the
momentum dependence of the dynamical quark mass, cf.(Egs.
and (51). Solid lines: The corresponding contributions obtained
when including the form factors; (6?). Note that the contribution
from diagram(a) is non-zero only in the region £&/2<X<£/2. The
momentum dependence of the dynamical quark mass forces this
contribution to vanish at the end poind$= + £/2.

r-z r-z
—CO0S— + —sSin—
2 r-z 2

M'=%p-z,r-2)@=2j , (43

2 r-z
cosp-z—nsm—

M'=%p-z,r-2)P=2j 5

(44)

This matrix element vanishes in the limi-z—0, hence
there is no problem with representing it by a double distri-
bution in the form Eq14):

and the total result is

r-z
Ccosp-z—CoS——|. (45)

2

=0 . . =2]
M= (p-z,r-2)=2i FI=h(x,y) = 0(—1<x<1)8(y). (49

Here contributior(a) depends only on- z; due to the contact The corresponding skewed distributions may be computed
nature of the two-pion—quark vertex, E@?2), the average either using the results for the matrix elements, E43) and
momentump does not enter in the quark loop, see Fig. 3.(44), and the definition Eq8), or directly by computing the
This contribution vanishes in the forward limit-0. Note  RHS of Eq.(9); both ways lead to identical results. For the
that both contributions to the isoscalar matrix element, assoscalar part we find

well as their total, behave as described in Sec. Il: they do not
go to zero in the limitp-z—0,r-z#0, and thus cannot be
represented by a double distribution in the form Et¥).
Within the proposed new representation, E2f), which al-
lows for ap-z-independent part, the model result £45),
would correspond to

- o L[ & §2X
H'=0(X, &) >——§a<—§<x<§)?, (50)

- _1 3
H' O(X,g)“’)—z{—a( —l<X<-3

1
1=0 —Trpl— _ 2X
FI=0xy) =5 [0(— 1<x<0)~ 6(0<x<1)]4(y), w —§<x<§ —+a(§<x<1”;
(46) ¢
(51)
1 .
D(y)= E[—a(—1<y<0)+6(0<y<1)], the total result is
1=0 —
H (x,g)——[—9(—1<x<——)+0(—<x<1”.
where #(a<X<b) is unity if a<X<b and else zero. That 2 2 2
F'=% here is proportional to a delta function ynshould be (52

seen as an artifact of keeping only the logarithmically d|ver-.|.he functions are shown in Figs. 4 anddashed lines One

gent piece; this would change when retaining finite terms agees that the contribution from diagrae, Eq. (50), is non-

t#0. . . . .
. . zero only in the region— &R2<X<¢/2. It is absent in the
_)g?se result for the isovector matrix element, Efj), att forward limit, r—0. Note that this contribution to the

skewed distribution is discontinuous K at + £/2; this be-
havior will be modified when taking into account the mo-

M'"=Yp-zr-2)=M""Yp-zr-2)P=4 sinp-z.
(48)

mentum dependence of the dynamical quark mass, see be-
low. The contribution from diagrantb) is continuous at
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1 - Finally, the result for the isovector skewed distribution at
t—0is
H=xE) / o
o H'ZHX 6 =H""Y(X,§P=0(-1<X<1), (55
L\ / which is an even function ofX, in agreement with
C-invariance[In the forward limit this corresponds to a va-
1 ! lence quark distribution in the piom,(X) = #(0<X<1), cf.

1o 0 1 Eqg. (10), so comparing with Eq(53) we see that in this
approximation(no form factor$ the “sea” quark distribu-
FIG. 5. The total isoscalar skewed quark distribution in the pion,tion in the pion is zerd.As in the case of contributiob) to
H'=9(X,£), for £=1, being the sum of the two contributioia)  the isoscalar distribution, inclusion of the form factés??)
and(b) shown in Fig. 4. Dashed line: Result obtained neglecting thedoes not change the result for the isovector skewed distribu-
momentum dependence of the dynamical quark mass, cfi3j.  tion in an essential way, except for forcing the distribution to
Solid lines: Distribution obtained when including the form factors, vanish atX=+1 2
F(4%). Due to the vanishing of contributiofe) at X=+¢/2 the Some comments are in order concerning the calculation of
total distribution is continuous at these points. skewed and double distributions in the nucleon. In the large-
N, limit the nucleon in the effective low-energy theory is
X==x{/2; this part reduces in the forward limg—0, tothe  characterized by a classical pion fieldlsoliton” ) [30].
singlet quark distribution in the pion, EGLO), which in this  Quantization of the translational and rotational zero modes in
approximationkeeping only the logarithmic divergence, ne- the framework of the N_-expansion gives rise to nucleon

glecting the form factojswould simply be given by states with definite momentum and spin/isospin quantum
numbers. When applying this approach to the computation of
g X)=6(0<X<1). (53  non-forward matrix elements of the type Ed), the standard

1/N¢-expansion implies that different components of the av-

The result Eq(52) is consistent with the generalized mo- €rage momentunp, and momentum transfer, are of dif-
mentum sum rule, Eq(12). In our approach based on the ferent order inN¢ [the nucleon mass i©(N.), while the
instanton vacuum the gluon distribution is parametricallymomentum transfer in the Breit frame@(Ng)]. While it is
small, M(MF)ZN(F/ﬁ)4’ so the skewed quark distribution, possible _to compute the skeweq _dlstrlbutlon_, B, in the_
Eq. (52), should saturate the sum rule at the low normalizaParametric rang&, £~ 1/N. [13], it is not possible to obtain

tion point. Integrating Eq(52) we observe that, indeed, the matrix element Eq1) uniformly in the wholg kinemati-
cal range necessary to restore the double distribution. In con-

. L P trastb in the case of the pion all componentspadindr are
=0 B O(N), making it possible to tregt andr on the same foot-

J,ldXXH (x,g)—2<1 4>. (54) ing.

Equations(50), (51) and (52) represent the result for the V. CROSSING AND THE TWO-PION DISTRIBUTION
skewed distribution obtained without taking into account the AMPLITUDE
momentum dependence of the dynamical quark mass. The
discontinuity atX=*£/2 in the contribution(a) to H'=°
obtained in this approximation would violate the factoriza- An interesting feature of the pion is the fact that the quan-
tion of the DVCS amplitude, since the hard scattering kernetity related to the skewed parton distribution by crossing,
contains poles aX= =+ £/2. However, as was shown in Refs. namely the two-pion distribution amplituddA), can be
[13], the momentum dependence of the dynamical quarkneasured in two-pion production at low invariant masses.
mass cannot be neglected for valueXafear+ ¢/2, sincein  These 2rDA’s were introduced recently in the context of the
this case the integral over transverse momenta is cut by th@CD description of the procesg* y— 2 [18]. We now
form factors a|ready at momenta of 0rdM’<;_1. The establish eXpllCltly their relation to the skewed quark distri-
same mechanism makes the pion distribution amplitude varRutions in the pion. This will allow us to express the
ish at the end pointEl6]. In Fig. 4 we show the two contri- t-dependence of the lowest moments of the skewed distribu-
butions (a) and (b) to H'=° obtained when taking into ac- tion in terms of form factors in the timelike region.
count the form factord=(5%) [we use the simple analytic ~ The two-pion DA’s are defined, in analogy to the skewed
approximation of Eq(24) of Ref.[16]]. As expected, con- Parton distribution, as the matrix eIements_ of the twist-2 op-
tribution (a) now vanishes ak=+ /2, while the modifica- ~rators between the vacuum and a two-pion state:
tion of contribution(b), which was continuous already with-
out form factors, is only quantitative. The result for the total
distribution, H'=°, obtained including the form factors is  ®The valence quark distribution in the pion has also been studied
shown in Fig. 5. As can be seeH,~° is continuous aiX in the instanton vacuum in a somewhat different approach by Dor-
=+¢/2. okhov and Tomid31].

A. Two-pion distribution amplitude
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25%°d'=0(u, £, W?)

2i 2% =L(u, ¢, WA). (56)

0ut< w3(py) m2(Py) Z(—Z/Z)[ jc]i [—2/2,2/2] zp(z/2)o> = P'ZJ:dU é(ul/Z)P.z{

The outgoing pions have momergda, p,, andP=p;+ p, is the total momentum of the final state. The generalized DA'’s, Eq.
(56), depend on the following kinematical variables: the quark momentum fraction with respect to the total momentum of the
two-pion statez the variablel=(z-p,)/(z- P) characterizing the distribution of longitudinal momentum between the two
pions, and the invariant mass of the two-pion systé¥i=P2. Also, an explicit representation of the DA can be written in
analogy to Eq(9) [the isospin decomposition is analogous to Ex)]

1(dr . — .
D(u,{, W) =3 f s—e AR a(py) m(pa) |y — Ti2)n [ = /2, mI2]Y(mi2)|0), (57)
|
wherenoz is a dimensionless light-like vector. © n+l
From C-parity one derives the following symmetry prop- O (u, L, W3)=6u(l—u)>, > By (W?)
n=0 =0

erties(we do not write the argumew?):
xC¥2u-1)Cl(2¢-1), (62
'O, )=-d'""%1-u,0)='"%u,1- ),
(58) wheren runs over evertodd) andl over odd(ever) integers
- - - for the isovectoKisoscalay DA, cf. Eq. (58). The normaliza-
' Hu,H=0'""(1-u,H=-0'""Hu,1-0. tion condition Eq.(59) requires thaBp; *(W?) =F&™(W?).
Note that the asymptotic form of the isovector two-pion DA
The first moment of the isovectol € 1) two-pion DA is the is given by[19]
pion e.m. form factor in the time-like region,

DlgmfU,{, W) =6u(1—-u)(2—DFS™(W?). (63
1
I=1 2\ — _ e.m 2
fo du®™H(u, ¢, WH= (20— DR HWS), (59 In Ref. [20] certain soft-pion theorems for the two-pion

DA were proven, which apply in the regiods-0 or {—1
and thus scale-independdi®™(0)=1]. For the isoscalar andW2—0, where one of the produced pions becomes soft.

ko

(1=0) part, however, we have the normalization condition!n the isovector casel 1) they relate the two-pion DA to
[20,37 the DA of one piong.(u):

1 q)lzl(u,gzl,w2zo):_q)|:1(u’§:0,W2:0):¢ﬂ_(u)’
f du(2u—1)¢>':O(U,§,W2): _ZM(ZW)g(l_f)FEMT(WZ), (64)
0

(60 while in the the isoscalar casé=f0) one obtains
WhereM(z’T) is the momentum fraction carried by quarks in
the pion at the given scale, afg""(W?) is the form factor ®'=0(u,¢=1W2=0)=d'=%(u,¢=0W2=0)=0.
of the quark part of the energy momentum tensor, normal- (65)
ized to FEMT(0)=1. In Ref.[20] this form factor was esti-
mated in the instanton model of the QCD vacuum at lo

S : } “The theorem Eq(64) allows to relate the expansion coeffi-
two-pion invariant mass:

cients of the isovector two-pion DA, Ed62), at W?=0,
with those of the pion DA,

2
Cc

487%F2

FEMT(W2) =1+ + ... (62)

b.(W=6u(l-u)|1+ > a{’Cy¥2u-1)|; (66
neven
It is useful to expand the two-pion DA simultaneously in
eigenfunctions of the ERBL evolution equati?] [Gegen-

bauer polynomial€?(2u—1)] and in partial waves of the the relation takes the form

produced two-pion systerflLegendre polynomials, or Ge- nt1
genbauer polynomial¥%27—1)]. Generically this de- a™=S B'-l\W2=0 6
composition is of the forni20]: " I:Zl n ) (67)
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B. Crossing relation

By crossing, the matrix element defining the two-pion DA, ExY), is related to the one appearing in the definition of the
skewed distribution, Eq(9). This allows one to express the moments of the skewed parton distribution in terms of the
expansion coefficients of the two-pion DA, E§2). This relation takes the form:

3

N-1 n+1
;

fl dX XNTIHI(X, &)=, > BL(t)
-1 n=0 I=0

N 2 1
c%’2<3> | ausua-wu-1 etz (68)
0

One immediately notes that the RHS is a polynomial of degatanosj N in ¢, i.e., the polynomiality condition for the
skewed distributiorfsee Sec. Il A and Ref6]) is satisfied. Since only thB,,; with n odd (ever) are non-zero in the isoscalar
(isovectoy case, the skewed distribution is an déden function inX, in agreement witl-parity, Eq.(5). Also, note that due
to the restrictions in the values gfcf. Eq.(62), H is an even function of for both1=0 and 1, as it should be.

To prove the relation Eq68), we consider the expression for tNeth moment of the skewed distribution as a non-forward

matrix element of a local spil; twist-2 operator Y=V — V):

[ @x0 tHx£0 = 2p-m) Mrp+ 12 g v DN (- r/2)) (69)
-1

The N-th moments of the two-pion DA, Eq57), is given by the vacuum to two-pion matrix element of the same local
operator. Substituting the double expansion, &), we obtain

1 _ -
fo du(2u— )Nt (u, L, W?) =[(p1+p2)-n]~N(a(py) m(p2)|¥n- y(n- V)N~ 1y|0)

N—1 n+1
n-(p2—p1)) (*
_ I + 2 1/2( J _ _1\N—1~3/2 —1).
2 2 Bul(pitpo)?ICHA "] | dubu(i-w(2u-1)M e 2u-1)
(70)
The matrix elements of the local operators are related to each other by the usual crossing symmetry,
(p'[¢n-y(n- V)N Lylp)=(p,—p'[yn- »(n-V)""1y]0). (7D

(In this shorthand expression, both sides are regarded as 1

functions of the pion four-momenta, defined in the respective f dX H' =YX, &) =Bgy(t) =F (1), (73
physical regions, and analytic continuation is impljddsing -t

this relation with Eqs(69) and(70) we obtain Eq(68). Note

that on the RHS of Eq68) the coefficientd,(t) are taken whereFS™(t) is the pion electromagnetic form factor in the
at negative argument<€0), whereas in the expansion of the spacelike region, in agreement with E3). For the second
two-pion DA, Eq.(62), they are defined for positiv&/?. The  moment of the isoscalar distribution we obtain, substituting
corresponding analytic continuation can be accomplishethe explicit form of the Gegenbauer polynomialséi2:

with help of dispersion relationsee Ref[20] for detailg,

1 o 3 £ 12— &2
| _Ni:l tk gk | tN e tan5,'(s) ReBlm(S) Jl]_dx XH (x,g,t)—g Blo(t) Z+ Bio(t) :
Bnl(t)_k=0 EﬁBnI(O)'*’;J;mids SN(S—t—iO) ) (74)
(72)

At t=0, using the soft-pion theorem, E@5), which implies

where §/(s),(1=0,1) are therrr scattering phase shifts in B1o(0)+B1(0)=0, we get

the isospin 0 and 1 channels.

Let us see the implications of the crossing relation, Eq. L 9 5
(68), for the lowest moments of the skewed distribution. For J' dX X H=O(X,&t=0)= —512(0)( 1— f_) (79)
the first moment of the isovector distribution we have -1 > 10 4
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If we substitute the valuB,,(0)=5/9, which was computed This is an extremely non-trivial check, since it shows that
in Ref. [20] within the instanton vacuum model, we obtain this approach preserves the soft-pion theordi®s, chiral

precisely the generalized momentum sum rule, @4). invariance as well as crossing symmetry.
We note that the value d#1{™=0.25 obtained from the
C. Application to quark/antiquark distributions in pion instanton vacuum is somewhat larger than that of the GRV

parametrization at the low normalization poifi&3], M$™
=0.16, and in good agreement with the value extracted from
SQCD sum rules with non-local condensates by Belitsky,
M${™~0.29[34].

A particularly interesting application of the crossing rela-
tion, Eq.(68), is the forward limit,t=0 andé=0, where the
skewed distributions reduce to the usual quark/antiquark di
tributions, cf. Eq.(10). The quark/antiquark distributions are

known with fair accuracy from parametrizations afN When ther phase shifts in Eq(72) in the“isovector §
Drell-Yan and other dat83]. Equation(68) relates the mo- Cchannel are approximated by exchange of “elementary
ments of the quark/antiquark distributions in the pion to thef®Sonancesgp’, ... ), it becomes possible to express the

expansion coefficient8,, att=0, which can in principle be expansion coefficients of the isovector two-pion DA in terms

measured in two-pion production at low invariant masse®! the moments of the distribution amplitudes of the reso-
[20]. The relation takes the forficf. Eq(10)] nancegsee Ref[20] for detail9. Keeping only the dominant
contribution fromp exchange in Refl20] was obtained the
relation

1 A By-_in(0) N odd,
M&”)EfodxxN 1[ Y ]: N{

2q4(X) By 2n(0) N even,
(76)

where theAy are numerical coefficients which can be deter-yhere the coefficientC was estimated in the instanton
mined from Eq(68): A;=1,A,=9/5,A;=6/7,A,=5/3, etC.  \acuum,C~0.6 GeV 2. In this approximation Eq(77) be-
For the lowest moments Eq76) implies Bj;2(0)=M{™  comes
=1, which corresponds to the normalization condition Eg.
(59, and B}°(0)=5/9M{™, which corresponds to Eq. ;
(60).° aP)eMo=alm — —M§. (79)

A non-trivial relation is obtained foN= 3. Using Eq(76) 6
and the soft-pion theorem for the isovector two-pion DA, Eq.
(64), we can determine the coefficieBp;(0) describing the  Apart from the value of, which does not influence the sign
deviation of the isovector two-pion DA from its asymptotic of the LHS, this relation is again model independent, and we
form, cf. Eq.(63). One finds can use it as a test for models of resonance DA’s. We already
noted that the instanton vacuum predi@s; *(0)~—0.2,
and thus a negative value fak”, which is consistent with
Eq. (79) because of the small value faﬁ”) obtained in this
approach; see above. This resultagf) is in contradiction to
wherea$™ is the expansion coefficient for the pion DA, Eq. the results of QCD sum rule calculations, both in the stan-
(66). This relation is model independent and can be used as@ard approact{35] and with non-local condensat¢36],
consistency check for model calculations. which obtained positive values. Referen@&s] reported a

Computation of the valence quark distribution in the pionvalue ofa$’=0.18+0.1. However, this calculation appears
in the effective theory based on the instanton vacuse®  to be consistent with Eq79), since a comparable sum rule
Sec. Ilj gives a value oM{™ =0.25.[In this calculation the  calculation ofal™ [37] arrives at a relatively large value of
instanton-induced form factor§(°) have been taken into a{™~0.44, so that Eq(79) is satisfied if one substitutes, say,
account] The second moment of the pion DA has been com+pe value forM (™ from the GRV parametrizatiof83], or a
puted in the same approach in REE7], ay”=0.062; this  sightly larger one. On the other hand, QCD sum calculations
small value is consistent with the CLEO measuremf2ts  with non-local condensates give a significantly smaller value
Substituting these results in EZ7) we obtainB};*(0)=  for the second moment of the pion DA: RERS] estimates
—0.22, which agrees with the result of a direct calculation ing{™ =0 . .. 0.15; see also RdB39]. M{™ was estimated in a

the instanton vacuum in Ref20].'° Thus, we see that the QCD sum rule calculation with non-local condensates in Ref.
results obtained from the effective theory based on the inf34] M{™~0.29. This could indicate that in the calculation

stanton vacuum are consistent with the relation EAy). of a(zp) in Ref.[36], which quotes a value of 0.680.02, the
error margin could be somewhat larger than estimated.

al)=BY; 1(0)e°M, (78)

_ 7
B H(0)=a" — gM“T), 77

To see this one needs to use the soft-pion theorem for the isos-
calar two-pion DA, Eq(65). V. CONCLUSIONS

0The slight numerical difference with the result quoted in Ref.
[20], B,;1(0)~—0.20, is due to different approximations used in  In this paper we have investigated the structure of non-
treating the form factor& (42). forward matrix elements of light-ray operators at a low nor-
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malization point, and their representations in terms ofThis fundamental characteristic of the pion is up to now only
skewed and double distributions. Our principal conclusion ipoorly known, since it can be measured directly only in had-
that the skewed distribution generally has a “two- ronic 7N reactions such as Drell-Yan production, where it
component” structure, i.e., that one is dealing with essenenters always together with tiianti-) quark distributions in
tially different functions in the “quark/antiquark distribu- the nucleon. In particular, two-pion production 4 y reac-
tion” region, X> ¢/2 X< —¢/2, and the “meson distribution tions provides an opportunity to measure the distributions in
amplitude” region, — £/2<X<¢/2. This follows naturally the pion in a purely electromagnetic process.

from the double distribution representation of the matrix el-

ement if one explicitly includesll twist-2 structures in the

double distribution representation. We have shown that the ACKNOWLEDGMENTS
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invariance, which relates these terms to the matrix element
for production of two pions.
Our results concerning the general structure of non-APPENDIX A: GENERALIZED MOMENTUM SUM RULE

forward matrix elements can serve as a basis for the con- FOR THE PION

struction of realistic parametrizations of skewed distribu- |, this appendix we give a derivation of the generalized
tions, satisfying all known requirements, and reproducing theyomentum sum rule for the isoscalar skewed distribution in
phenomenologically known quark/antiquark and gluon distri-q pion, Eq.(12), using the universal chiral Lagrangian.
butions as well as the form factors of local operators in the  The sum of the second moments of the skewed isoscalar
appropriate limits. We plan to address this topic in a futureg,ark and gluon distributions is related to the form factors of

publication. Whether or not the double distribution represenyyq energy-momentum tensid]. The symmetric version of
tation, in its complete form, Eq(24), will prove to be a 4e QCD EM-tensor is given by

useful tool for modeling skewed distributions remains to
seen.
The crossing relations between the skewed quark distribu- 1 - ara | 1 vara
tion and the two-pion distribution amplitude derived here can T =5yl Vbt B R+ 79, FP7F .. (AD)
be used to obtain additional information about the quark/
antiquark distribution in the pion from measurements of
electroproduction of two pions ip* ¥ and y*N reactions. The general form of its matrix element between pion states is

(m(p=r12)[T,,(0)|m°(p+1/2)) =28 TA()P,P, +B)(r ,r,—r?g,,)], (A2)

whereA(t) andB(t) are form factors {=r?); other structures are ruled out by energy-momentum conservatidn,,(x)
=0. Expanding the non-local operators in E¢B. and(3) in the light-cone distance,

W(—2/2)Z] — 212,212 (212) = (0) Z4h(0) + %zﬂzVZ(O) yﬁ J(0)+ ... (A3)

2'2'F LU= 22)[ - 212,2I2]F; (2/2) = 2/'2"F ,P3(0)F},(0) + . .. (A4)
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and keeping in mind that-z=¢£p-z, one can easily show APPENDIX B: RESONANCE EXCHANGE
that CONTRIBUTIONS TO NON-FORWARD PION
MATRIX ELEMENTS

1 1 An interesting property of non-forward matrix elements
j dX X(H'=%+ HG](X,f;t)ZE[A(t)-Fng(t)]. of QCD operators is the possibility of “meson exchange”
-1 contributions. One may view the exchange ot-ehannel
(AS) resonance as a purely phenomenological model for the ma-
trix elements at a low scale, in the spirit of the vector domi-
nance picture for the pion and nucleon e.m. form factors
At t—0 the matrix element of the energy-momentum ten{29]. Also, at largeN., where QCD is believed to become
sor between pion states can be computed from first prinequivalent to a theory of resonances, one may hope to even-
ciples, since soft pion dynamics is described by the universalally construct a complete description of the pion matrix

chiral Lagrangian. From element of QCD operators in terms of resonance exchange.
In this appendix we compute the contribution of the
2 t-channel exchange of a spintwo-pion resonance to the
Lsoﬁ_pion:_wtr[ gyt 9,U1, (A6) npn-forward matri.x. element of the twist-2 operator in the
4 pion, Eq.(1). Specifically, we want to show that exchange of

isoscalar resonancdsvenJ) gives rise to the behavior of

the matrix element stated in E2).
where U(x)=exfi7(x)/F], one obtains the canonical ~ The contribution to the pion matrix element of the light-
energy-momentum tensor in the form ray operator, Eq(19), from an exchange of a resonance of
spin J is given by the amplitude for the pion to emit the
resonance, the resonance propagator, and the matrix element
o N N for the resonance to be “absorbed” by the light-ray operator
T v soft-pior=— 12 119,V 9,U] =g, t[#"U 9, U]} (see Fig. 2 The coupling of the resonance to the pion is of

the form

F2

=d,md,m— Egﬂyﬂpﬂaﬁp’ﬂa

—r2)R(r,J,\ +r/2
+termszt, 78 .. .. (A7) (m(p—r12)R( )|7T(p* )
coPp?

=ORarP" . .. pPrel) (B1)

Note that to second order in derivatives this structure is th%vith isospin structure analogous to that of H@). Here

only one allowed by chiral symmetry; terms of the form o ;

(2 ); ~o2g, Y wguld violatye chira)I/ invariancé The ef}l)___,,n denotes the polarization tensor of the spimeso-
mv y7a% . .

energy-momentum tensor in the effective chiral theory is"@nce, and the coupling constagi,,, can be related to the

thus given completely by E§A7) and must not be improved 77 quth of the resonance. The upper part of the diagram in

[40]. Taking the matrix element of EqA7) between pion Fig. 2 is the matrix element

states at—0 we find[cf. Eq. (A2)]

(O]9 —212)2 [~ 212212)¢(212)|R(r , I, \))
Asoft—pior(t =0)=1,
z"1

(A8) 6()\) R AC RS )
)I-1 Jlldy e VR ge(y).

= fp(Mg) '
(r-z

1
Bsof‘t-pion(t =0)=— Z (B2)

Here, ¢;(y) is a twist-2 distribution amplitude of the spih-

Inserting this result into EqA5) in the limit t—0 one ob-  yegonance. Conservation of angular momentum implies that
tains the sum rule, Eq12).

Finally, we note that there is an alternative way to derive
the sum rule, Eq(12), by making use of the soft-pion theo-

Osn<J-1 Jodd,
rems for the two-pion distribution amplitude, see H&0]. fl dy Y'ér(y)=0 for : ©
-1

1=n=<J Jeven.
(B3)

e consider here the chiral limity.=0. In case of a non-zero
pion mass the energy-momentum tensor receives a chiral-symmetfgomputing the diagram Fig. 2 we obtain for the resonance
breaking contribution proportional tm? . contribution to Eq.(1):
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ngRﬂ'ﬂ'(MR)J (_1)JJI <2pz
P;

1
L —iyr-z/2
M2t (20-1n '’ r.zUldyey $R(Y), (B4)

M(p'zyr'Z;t)RfexchZER:

where P; is the Legendre polynomial of degrele which  representation in the form E¢L4) impossible. In fact, in the
results from the contraction of the vectgrsandz with the  modified representation o¥1'=%(p-z,r - z;t), Eq.(24), isos-

transverse projector calar exchange leads to a contribution described by
Nvq...vn () D _
pPL. . 'ppJZV]_ 2y, > eMr1 nfpl -*--Pn' (B5) (Y)R—exch
ngRﬂ'ﬂ'(M R)J (_ 1)J/2[(\]_ 1)' ! ]2
_ _ - => ; ST %RY). (BO)
In particular, in the limitp-z—0 the argument of the JR_ Mg-t ( iy

Legendre polynomial in Eq(B4) becomes zero. Since

P;(0)=0 for oddJ we see that the exchange of isovector
(odd<J) resonances does not contribute to the value of thérom Eq.(B4) one sees that exchange ofla 0 resonance
amplitude atp-z—0, in accordance with the property Eq. (“sigma meson’) contributes only to the -z-term in the
(5) of M'=1 discussed in Sec. Il. In the isoscalar case, howdouble distribution representation, E84), and thus only to
ever, Eq.(B4) is non-zero. This is precisely the behavior D(y), while even-spin resonances wiff'=2 contribute to
described in Eq(22), which makes a double distribution both F'=%(x,y) andD(y).
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