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Corrections ofO(ai) to the decay of the top quark intoVel boson and a bottom quark are calculated. The
method is based on an expansion of the top quark propagator for small external momegwompared to
the top quark masM,. The physical poing?=M? is reached through Padgproximations. The described
method allows us to take effects induced by a filit@oson mass into account. The numerical relevance of the
result is discussed. Important crosschecks against recent results for the dedmy»wl@ and the two-loop
QED corrections tqu decay are performedS0556-282(199)04421-5

PACS numbd(s): 14.65.Ha, 12.38.Bx

I. INTRODUCTION independent check of the results f6], using a rather
complementary method. On the other hand, our approach
The top quark is so far the heaviest observed particle oWill allow us to additionally account for a finit#,, boson

the standard model of elementary particle physics. Its totalnass.
width T, is to a good approximation proportional to the third ~ The method presented in this paper is as follows. In con-
power of its mass and is much larger thagcp, the typical trast to[5] we compute propagator-type diagrams contribut-
scale of nonperturbative effects in QCD. Therefore it is posiNd 10 the top quark self-energy with external momenigm
sible to treat the top quark almost as a free particle and t#) terms of an expansion arourgf/M{=0. Some sample
apply perturbative methods to evaluate the quantum corrediagrams are pictured in Fig. 1. The imaginary part com-
tions to its decay proceg4]. bined with the wave function renormalization of the top

. . . 2 .
In the minimal standard model the dominant decay modélua’k and evaluated at the physical poirft=M; directly
of the top quark is the one into a bottom quark andva leads to the decay rate. It arises from cuts whereVthigo-
boson. It is important to predict the corresponding decay’©" the bottom quark and, at higher orders, a|239 gluons and
width accurately in order to be sensitive to exotic processeLther light quarks are involved. The limif—M¢ is taken

which may occur in supersymmetric models, for example. &ftér performing a Padapproximation. The results fdvl

The first order QCD corrections have been evaluated i .0 Will P& shown to be in perfect agreement with the ones

analytical form some time agi®] and amount to approxi- of [5] which justifies both the m_ethod @5]_ and the one of
mately — 10%. The electroweak corrections are smajland the present paper. The subleading termmﬁg turn out to be

turn out to be~2% for a Higgs boson mass around 100 Geyumerically small. .
(see, e.g.[4]). The calculation once again demonstrates the power of ex-

pansion techniques and their computer implementations in
multiloop calculations. The analyticity properties of the ap-
proximated function guarantee reasonable convergence to
the exact result, especially if the obtained series is further
subject to advanced methods such as”Ramfgroximation.

The paper is organized as follows: In Sec. Il the method is
described. In Sec. lll, the results obtainedXta) are dis-
cussed in more detail. The comparison with the analytical
result demonstrates the reliability of our method. Section IV

The expected precision for measurementd pby a fu-
turee*e” machine such as the next linear colliddi_C) is
of the same order of magnitude as the correction® @t)

[4]. This makes it desirable to control also the next-to-
leading corrections induced by the strong interaction.

In fact, the QCD corrections cﬁ)(ag) have already been
considered irf5]. This calculation was based on an expan-
sion of the vertex diagrams in the quantities M2/M? and
1-3M2/M?2, respectively. Although this expansion param-
eter is not small at all, the approach led to reliable results w w
after including many terms into the analysis, choosing proper t E: : ¢ t t
variables, and carefully investigating potentially large contri-
butions.

The aim of this paper is, on the one hand, to have an , , E; ,
*Permanent address: Institute for Nuclear Research, Russial w/d/s/c/ ¢
Academy of Sciences, 60th October Anniversary Prospect 7a, Mos-
cow 117312, Russia. FIG. 1. Sample diagrams for the top quark self energy.
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deals with the computation of the second order QCD correc-

tions where also the effects of a finit boson mass are
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S95-787051-39),

taken into account. Important crosschecks with recent results

for F(b—>u|7) and F(,u—>evM;e) are carried out in Sec.
IVE.

Il. METHOD OF THE CALCULATION

The exact evaluation of the Feynman diagrams contribut-

ing to I'(t—Wb) at ordera§ is currently not available.

SVS=Z9%(1+3)) 6)
are functions of the variable
q2
VAS W (7)

t

However, it is promising to apply the methods of asymptoticAll relevant diagrams will be calculated in terms of expan-

expansionsee, e.g.[6] and references thergim the limit

MZ>q?>ME>M2=0. (1)
For the O(«g) corrections in the limitM\y=0, a similar
approach has already been used7h There it was possible
to resum the series af= Mt2 which reproduces the analyti-
cal result. AtO(ag), however, instead of an explicit resum-
mation we will perform a Padapproximation in order to
reach the physical poirg?=M? [8,9].

Before going into details, let us introduce the notation.
The inverse quark propagator is denoted by

[SP(a)] *=i[mP(1-3)—4(1+Z))]. 2
Both 32 and 3}, are functions of the external momentum
and the bare masm? of the top quark. In our case they
further depend on the bare strong coupling consténand
the W boson massvly,, and are proportional to the Fermi
coupling constaniGe . S,(l will become finite after renormal-
izing the parametensy’=Z3M, and a2=Z>as, and taking
into account the wave function renormalization:

1

OS_
SF - OS .
Z;

€)
Z3®, Z9°, andZ, denote the renormalization constar#§>
andZ3®° will be taken in the on-shell scheme, wher@sis

in the modified minimal subtractionMS) schemeZz$® is
defined by the condition

(4)

+terms regular forg?—M?2.

SPS(q)—

t

In our approach we are actually dealing with two different

masses for the top quark in intermediate steps: an “external’

one @2 and an “internal” one (\/Itz). Applying the optical

sions aroun@= 0, and the limiz— 1 will be applied only in
the very end. Therefore, whilg,> can be taken a=1, we
also need to expresas® in terms of an expansion around
z=0. This is most conveniently done by translating condi-
tion (4) into

-1

d
285 1439+ 2 (Z3%8-37) t:)

From (5) and(6) it is clear that for our purpose it suffices to
know only the pure QCD corrections @ andZ3° up to
O(ag). Forz=1 these quantities were computed up to this
order in[10] and[11], respectively.

Note that in a calculation where the quantities are evalu-
ated on shell, i.e., a?= Mtz, infrared singularities appear in
intermediate steps. In contrast, in Ef) all functions on the
right-hand sidgRHS) are defined through the expansion for
z—0 and thus are infrared safe.

At this point a comment on the extraction of the values
for z=1 is in order. Actually Eqs(5) and(8) are not unique
as it is possible to derive slightly different equations
andI'(t—Wb), which differ by relative factors of. In the
limit z—1 all of them are equivalent. The results we ob-
tained by using two more variants of Eq$) and (8) are
consistent with the ones which will be discussed below. We
decided to use the formulas shown above becaus®(heg)
corrections are recovered with the highest accuracy.

In order to obtain reliable results it is necessary to evalu-
ate as many terms as possible in the expansion parameter
The exact resummation of the serieszrseems to be ex-
cluded. Instead, we apply a Padgproximation which
means that we reexpress the resulting polynomial in terms of
a rational function:

apgtagz+---+anz"

m/n](z)= .
Lm/niz) 1+byz+---+b,2"

(C)

Its Taylor series is required to coincide with the original

theorem, the decay rate of the top quark will therefore bepolynomial up to the ordem-n. For later convenience we

written as

I(t—Whb)=(2MIm[2S)%-S2%)) -1, (5)

where

define the short hand notatipm/n]=[m/n](1). Thestabil-
ity of the Padeapproximants upon variation of andn will
indicate the uncertainty of the approximatitsee below.

In addition, it may be promising to apply a conformal

mapping[8]
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=— 1 Dw(p)=+7—>| —9 V+—z—)- 11
z (1t a)? (10 w! M2,—p2 #TME,

and to perform the Padapproximation in the variable. ) )

The complexz plane is mapped into the interior of the unit Nevertheless, the leading termshh, have also been com-
circle in the w plane, and the relevant poizt=1 goes to puted inan arbitrary covariant gauge. They are obtained by
w=1. This conformal mapping is motivated by the observa-"éPlacing thew boson by a Goldstone boson with the propa-
tion that the application of a Padapproximation relies 9ator simply given by

heavily on analytic properties. The function on the RHS of

Eqg. (5) (without the limitz—1) will develop a branch cut

along the reak axis starting fromz=1. This branch cut is —i Mw—0

mapped through Eq10) onto the unit circle. Thus by apply- Do(p)= EuMZ—p? o2’ (12)

ing Eq. (10) we enlarge the range of convergence for the whlw=P

terms we got in the limiz—0.

Since both methods described above appear to be rathgf,s jndependence of,, is then manifest already at this
natural, any of them will be used to derive an estimate on the Ji.
exact result. For convenience, let us denote the results ob-
tained through Padepproximation in the variable by *z
Pads,” the ones where the Pa@@proximation is performed
in by “w Pades.” The central values and the estimated
uncertainty will be extracted from Padesults[ m/n] with In this section we will investigate th®(«) corrections
m+n not too small andm—n|<2. The central value is and compare the exact res(iff] to the approximation ob-
obtained by averaging the Padisults and the uncertainty is tained by the method described above. It is convenient to
given by the maximum deviation from the central value. Thedecompose the decay rate of the top quark in\¥ &oson
error estimation is therefore rather conservative. and a bottom quark in the following way:

Some Padeapproximants develop poles inside the unit
circle (|zZl<1 and|w|=<1, respectively. In general we will
discard such results in the following. In some cases, how- w
ever, the pole coincides with a zero of the numerator up to  T'(t—bW)=T, A+ —SCFA(1)+
several digits accuracy, and these Pagproximations will ™
be taken into account for the estimation of the actual results.
To be precise: in addition to the Padesults without any
poles inside the unit circle, we will use the ones where the B 3n, (2 0)_ -
poles are accompanied by zeros within a circle of radiué"’here6 Fﬁo_GFMt|th| /(8”‘@)' AT=1-3My/M;
0.01, and the distance between the pole and the physicalr'glew/'VI » Cp=4/3, andVy, is the Cabibbo-Kobayashi-
relevant pointqZ/Mt2=1 is larger than 0.1. asl_<awa(CKl_VI) ma_ltrlx e_IemenF fort_—>b t_ransmons. The

Concerning the dependence on the strong gauge pararfinning couplinga, is defined with six active flavors.
eter ¢ in Eq. (5), it only drops out after summing infinitely _The one—k_)op correction is k_nown in analyucal_form since
many terms in the expansion around 0 and setting=1.  duite some timg2]. Expanded in terms dfl /My it reads
Since we are only dealing with a limited number of terms,
our approximate results will still depend on the choicetof

Ill. FIRST ORDER QCD CORRECTIONS

2
sl a@y ...
77_ 7

(13

even after taking— 1. It is clear that with extreme values of 5 72 3 M2 4 3 2
& almost any number could be produced. Thus the question AM=—_— — 4 — L [ e —In—t)
arises which value of should be assumed in order to arrive 4 3 2 Mt2 f 2 \2/\/
at a reliable prediction fol' (t—Wb). 6 ) 8

At O(«as) the whole calculation can be performed for ar- n M_W 4_6_ sz zln& Lol =W (14)
bitrary gauge parameter without any difficulties. This allows mMei9 3 3 2 8 '

for a detailed study of the residuéldependence. AtD(ag)
only the first few terms could be evaluated for genefal
which does not allow for extensive studies. In order to arriveThe approximatiom,= 0 induces an error of roughly 22%.
at a reasonable number of terms in the expansion araund This reduces to approximately 4% if the quadratic mass cor-
=0 it is necessary to sét to some definite value from the rections are included and is completely negligible if all the

very beginning. The behavior of the diagramsQta) will terms displayed in Eq.14) are taken into account.
serve as an indication for the optimal choice of this value in  For clarity, let us apply our method to these lowest order
the analysis aO(a?). terms and see how the results compareAt® and AD

Concerning the electroweak gauge paraméigr all re-  above. WhileA©® is reproduced exactly, the imaginary part
sults that will be quoted in the following have been obtainedof the small-momentum expansion for the two-Id@ «.) |
in unitary gauge, where thé/ propagator is given by diagrams(an example is shown in Fig) teads
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TABLE I. z Pads forA(1)|MW:0 for different values o€. The first column indicates the number of terms
in z from (15) that were used as input.

Input PA. §=-2  §g=-1 E=—1/12 £=0 £=1/2 =1 £=2
6 [32] -—2111 — —2.058 —2.023 —-1.990 -1.957 —1.893
6 [2/3] —2.112 —2.052 —2.058 —2.023 —-1.990 -1.963 —1.887
7 [4/2] —2.121 — —2.058 —-2.027 -1.999 —1972 —1.919
7 [3/3] —2.120 — —2.058 (*)—2.025 —2.008 -1.980 —1.928
7 [2/14] —2.126 — —2.058 —2.027 —-2.000 -1979 -—1.912
8 [4/3] —2.117 — — —2.033 —2.011 —1.990 —1.949
8 [3/4] —2.117 —1.694 —2.058 —2.033 —2.011 —1.993 —1.948
9 [5/3] —2.112 -2.063 (*)-2.059 —2.034 —-2.016 —1.998 —1.963
9 [4/4] —-2.105 -—2.061 (*)-2.059 —2.034 —-2.040 —2.001 —1.967
9 [3/5] —2.114 —2.064 *-2.059 —2.034  —2016 —2.001 —1.961
Exact: —2.040
A(”:—E)—ﬁz— Ezz_ 61 S 151 i 449 S5 13 5 827 1 529 e
exp 12 144" 240 1200° 5040 23520° 1008~ 907200 79200
5 7 1 3 43 3 29 23 49
+El == —7—- — 2 ~ 3_ T A T 5 6_ 7_ 8
¢ 127287 16° 80° 1680° 160° 2016° 2016 52802)
2
My §+i _izz_lzs_l . 283 5 17 S5 47 7 31
MZz[2 18" 72 600° 900~ 4410 4704° 18144 16200
My [1 13 383, 79 , 313 , 403 . 557 151 _ 2477
—t 57— 5552 5577 7" — z°— z°— -
M#2|4 3% 720" T 720°  Ba00" ~ 25200° 70560° 35280° 99792
. 5 +37 2, 3, 61, 41 5, 179 6, 137 7, 239
€27 277807 " 167 T 560° " 560° ' 3360° ' 3360° | 7392
+1 39,3 + +0 Miy 15
W Z_ZZ—Zf 4Z§ M_? , (15

with | w=In M%M3,. (The coefficient ok" will be called the
“nth moment” in the following) Note that the factors 1/
and 1#£2 in front of the quadratic and quartic terms My

approximate cancellation with a zero from the numerator
takes placdsee the discussion abgy¢hey are marked by a
star (x). The exact result is reproduced with a fairly high

are irrelevant for the subsequent Paulecedure. accuracy for almost all values gfunder consideration. Nev-
The procedure described above is applied to each coeffertheless, the value fégr=0 is closest to the exact result, and
cient of M3,/ M? separately. As already notedl)) still de-  the variation of the Padapproximants appears to be very
pends on the QCD gauge parametéy,appearing in the small for this particular choice of. Based on this observa-
gluon propagatoi (—g*”+ £9*q*/q?)/(g®+i€). Thus also tion, we decide to perform the three-loop analysis by setting
the Padeapproximationg m/n] will show a dependence on é=0. This has the additional advantage that the evaluation
&. Itis clear that for large absolute valueségfhe quantities of the Feynman diagrams is much simpler than for nonzero
[m/n] get dominated by them and any predictive power isvalues of¢.
lost. In Table | severat Pads are evaluated for the leading  Let us now discuss the subleading termsvig,. Table I
order coefficient M,=0). The gauge parameter is varied lists several Padeapproximations for the coefficients of
from £¢=—2 to ¢=+2. Padeesults which develop poles for (M3/M?)" (n=0,1,2) in the case oAY). ¢ has been set to
|z|<1 are in general represented by a dash. However, if amero, as it is suggested by the discussion above. For each
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TABLE II. Padeapproximations for the leading and the power- and seven moments for the subleading termsVi,. At
suppressed terms @), computed fort=0.

O( ) this reduced number of input terms changes the result
from the one in(16) to

MY, M2, My,

Input P.A. z w z w z o W M2, My, 2

AM=—2032)+1.514) — +— | 3.8744)— = In—n
6 [3/2] -2023 -—2022 1506 1.508 3.875 — M{ o MY 2 My
6 [2/3] —2.023 —2.051 — 1.548 3.878 — ... 17)
7 [4/2] (*)_2-027 )-2.009 1507 V1518 3.871 — which is a bit worse thal(16), but still sufficiently accurate.
733 ®-2025 -2.035 — 1501 3872 — Thjs suggests that the number of available moments at order
7 [2/4] —2027 -2040 — 1507 3.874 — ,2should be sufficient to arrive at a reasonable estimate.
8 [4/3] —2.033 —2.035 1.502 1.502 3.870 —

IV. SECOND ORDER QCD CORRECTION
8 [3/4] —-2.033 —2.035 — 1.502 3.870 — SECO © QCD CO CTIONS
Let us use the experience gained in the previous section to
9 [5/3] —2.034 —2.039 1502 1500 3.870 — obtain predictions fol’(t—Wb) at orderaﬁ.
9 [4/4] —2.034 ™-2035 1502 1.501 3.870 —
Exact: —2.040 1.500 3.870

coefficient, the Padapproximations have been performed in

the variablez as well as in the variable. Thezandw Pads

It is convenient to decompose the decay rate according to
the color structure:

APD=C2A@D+ CACeAR+ CrTnAD+ CTAD, a9
18

are indicated by @ and anw, respectively, in the second line
of Table Il. This notation will be used throughout the paper
The z Pade for the values of theN3,/M?)° term coincide

with those foré=0 of Table |, of course. Concerning the

‘where in QCD the color factors are given Bt=4/3, Cp
=3, andT=1/2. n, is the number of massless quark flavors
and will be set ton;=5 in the end A{?) corresponds to the

power-suppressed terms, again the higher order Ragde

proximants agree with the exact results to an impressive a
curacy. The logarithm of Eq14) is reproduced exactly after

taking into account the first two terms in the expandib®)

C_

Abelian part already present in QEB\@ represents the
fion-Abelian contribution, and{?) andA) denote the cor-
rections involving a second fermion loop with massless and
massive quarks, respectively. In Fify a representative dia-

and settingz=1. . ram for each function is pictured. The expansion in terms of
Also for the power-suppressed terms an analysis concerr%lz /M? of the individual contributions t&\(®) will be writ-
ing the ¢ dependence has been performed. While the quat-e;/]VaSt

dratic terms inMy, do not depend og at all [see Eq(15)],
the results for the terms of ordéfy/M; become signifi- M2 M4
cantly worse oncé is different from zero. This also supports ~ A@=A®)|,, 4+ — DA+ —F APyt + - -,
the choice of Feynman gauge at three loops. W M wo My w
Taking only those results of Table Il into account where (19
eight or more input terms enter we may finally deduce our ) )
approximation for theD(ay) corrections to the decay rate With i=A, NA, I, andF. Note thatA}”|y o is known
[we adopt the notation-2.035(4 )= —2.035+0.004, etc|: analytically [12] and serves as a welcome check for our
method.
M\ZN Whereas aD(«,) the 't Hooft massu? drops out[see
A= —20354)+1.50%2) — Eq. (15)], it does appear a@(a?). We adopted the conven-
Mt tion u?=M? throughout the paper.

M4 3 2 There are 60 three-loop diagrams that contributd’ (b
+—\;V 3.870Q5) — —In—é +... (16) —Wb). The practical computation is done with the help of
M; 2 My the packageGEFICOM[13]. It usesQGRAF [14] for the gen-

eration of the diagrams arekp [15] for the application of
The agreement of Eq16) with the exact results quoted in the hard mass procedure. For more details, we refer to a
the last line of Table Il obviously supports the underlying recent review concerned with the automatic computation of

method.

Feynman diagram§6]. The application of the methods of

In the three-loop case we could obtain the small-asymptotic expansion according to Ef) reduces the prac-
momentum expansion up @ for My,=0 and up toz® for
the coefficients oM3/M? and theMy,/M¢ . Therefore, the
final number at three-loop level will be based on Padeilt
out of seven and eight moments for the leading term, and siswo-point functions appear. The integrals have been per-

tical computation either to massless three-loop propagator-
type diagrams or to products of one- and two-loop integrals.
In the latter case either vacuum graphs or again massless
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TABLE lIl. Paderesults atO(«?2) for My=0.

AP AP AR AR

Input  P.A. z () z () z [0} z )
6 [3/2] 2.600 2.889 —0.06359 — 2971 — —7.637 —8.238
6 [2/3] 2.600 2.994 —0.06359 —0.06464 2972 — —7.639 —8.400
7 [4/2] 2.633 2.920 —0.06360 — 3.041 3.818 —7.710 —8.212
7 [3/3] ™)2.592 2.926 —0.06360 — 3140 — -—7.781 —8.218
7 [2/4] 2.636 2.956 —0.06359 — 3.046 — —7.719 —8.306
8 [4/3] 2.695 (%2907 -0.06360 — 3146 — —7.820 (-8.232
8 [3/4] 2.696 2.832 —0.06360 — 3146 — —7.820 —8.254

9 [5/3] 2.708 2.881

9 [4/4] 2.707 2.892

9 [3/5] 2.708 2.902
Exact: 2.859

formed with the help of the packagesNCER [16] and A®|y _o=-0.063601), (20)
MATAD [17] based on the symbolic manipulation language W
FORM [18]. The results fo&.§ and=.y, defined in Eqs(5) and | 1k coincides with the one quoted [if]. Note, however,

(8) at three loops are quite lengthy and therefore not Iisteqhalt the magnitude oA is rather small
: E .
here. They can be obtained from the authors upon request. Al(z) behaves similar to th®©(a) corrections. As ex-

pected, the more terms of the expansiom are included, the
B. The limit My,=0 better agreement with the exact result is observed. Further-
This section is concerned with the second order QCD cornore, bothz Pade gnd@ Padc_s lead to compatible fumert-
rections where the mass of th boson is neglected. In this Cal values from which, including the seventh and eighth mo-
limit a comparison with [5] can be performed. The ment(llnput 8" and “input 9” in Table IIl'), the following
My-suppressed corrections will be discussed in the subsé-esu“ is deduced:
quent section. As already noted), (z) and AL ., (2)
were computed up t2’ in the case of a massle¥gboson in
Feynman gauge which corresponds to eight input terms for
the Padeapproximations. The error is around 4% and thus roughly as large as the one
The fermionic piece%fzgxpandA(pzéxp, do not depend on in [5], where the result reads 2(85. Using only the sixth
the QCD gauge parameter and are of simpler structure tha@nd seventh moment one ends up with
AR),, and AQ) .., For the light-fermion contribution we @
thus could evaluate nine terms in the expansion araund AZl,=0=2.82), (22
=0 for the leading term M, .
In Table Ill the results are displayed. Th®ads forA(Fz) where the error is 7%. The result of Eq21) and(22) can
converge very quickly whereas most of thePads develop  also be compared with the exact numipg2] which reads
poles for|w|<1. As a result we infer 28®... .

AP, -0=2.81). (21)

TABLE IV. ¢ dependence oA{|y, o

Input P.A. E=-2 E=-1 E=—1/2 =0 =112 =1 =2
3 [2/0] 2.790 2.425 2.305 2.226 2.189 2.194 2.329
3 [1/1] 2.780 — 2.685 2.508 2.518 2.632 3.254
3 [0/2] 2.787 2.432 2.329 2.280 2.293 2.375 2.789
4 [3/0] 2.849 2.501 2.397 2.341 2.332 2.369 2.586
4 [2/1] (*)2.624 3.268 2.810 2.713 2.725 2.816 3.201
4 [1/2] (*)2.705 3.320 2.810 2.721 2.739 2.827 3.202
4 [0/3] 2.847 2.517 2.433 2.411 2.455 2.572 3.047
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TABLE V. ¢ dependence oAy, _o.

Input ~ P.A.  E=-2 E=—1  £=-112 =0 £=1/2 =1 =2
3 [2/0] -7.894 —6.953 —-6571 —6.248 —5984 5779 —5547
3 [1/1] -8202 —7.455 -7.176 —6.954 —6.783 —6.655 —6.515
3 [0/2] -8078 —7.243 —-6.924 -6.669 —6.476 —6.340 —6.219
4 [3/0] -8117 -7.262 —6.915 -6.623 —6.385 —6.202 —5.997
4 [2/1]] -8335 —7.670 —7.417 —-7.212 -7.051 —6.930 —6.802
4 [1/2] —-8346 —7.690 —7.440 -7.236 —7.075 —6.956 —6.834
4 [0/3] —8241 —7.493 -7.209 —6.984 —6.813 —6.691 —6.580

Let us now turn to the Abelian and non-Abelian parts.Table V are not compatible witf24). However, this could
Like in the one-loop case, the expansiorziis gauge depen- be traced to the low number of input terms in Table V.
dent for these contributions. Motivated by the observations
of Sec. Ill, the analysis will be performed by settige0
from the very beginning. For non-zero values €fsome C. Subleading terms inMy
lower-order Pada@pproximants will be presented at the end

of this section. {MZ/MH" (n>0). Both for the O(M§/M?) and

As compared to the fermionic contributions, the sprea 4 804 S . o
among thez Pades andw Pads is significantly larger. More- O(My/My) contribution seven terms in the expansionzin
%)uld be evaluated.

over, the numbers for the two approaches are less compatib
with each other. Nevertheless, following the previously in-
troduced strategy for the extraction of the central value and

Let us now turn to the power-suppressed terms of order

1. Quadratic terms in My,

the error, we obtain The resulting Padealues for the quadrati®,y, terms are
listed in Table VI. The light-fermion contribution is very
AP w,,~0=3.26), (23)  stable and the maximal deviation from the central value
amounts to roughly 10%. Like in the cabt,=0, the Pade
A2 my—0=—8.0(3). (24)  approximants foA?)—both in  andz—exhibit an impres-

sive convergence.

The (fairly conservative errors are larger than the ones of  For the Abelian and non-Abelian contribution most of the
the results irf5], which read 3.5(2) and-8.10(17), respec- o Pade develop poles insidgs|<1. In addition, while the
tively. The numbers, however, are consistent. At this pointz Pade for A{Z) are very smooth, foAl? there are only two
we have confirmed the results [&] with a completely inde-  of them without poles withinz|<1. However, all the poles
pendent method. Our calculation can therefore serve as asf the otherz Pade approximately cancel against zeros in the
important crosscheck. numerator. All relevant numbers are highly consistent.

Because of the complexity of the intermediate expressions Therefore, the numbers in Table VI lead us to the follow-
it was impossible to evaluate eight terms in the expansion foing results:
small z using a general gauge parameter. In this case, we
managed to compute the expansions A& and A2} only
up to terms o0fO(z%). In Tables IV and V the gauge param- AP)| 2 =—2.796),
eter is varied betweefi= —2 andé=+2. ForA{ the error W
bars of Eq.(23) are conservative enough to cover even most
of the values of Table IV. The stability &) against varia- @ .
tions of ¢ is also satisfactory, although many of the values of ANA MG~ 3.3563),

TABLE VI. Paderesults for theO(a?) coefficients aD(M3/M?2).

AP AR AR AR

Input  P.A. z ) z ) z 0} z )
6 [3/2] — —1.016 0.09766  0.09769 (*)—2.721 — 3.358 —
6 [2/3] ™-1.013 —0.9459 0.09766 0.09769 —2.747 — 3358 —
7 [4/2] -0.9737 —0.9773 0.09766 0.09764 *)—-2.677 -2.794 3353 —
7 [3/3] —0.9758 —0.9676 0.09766 — ) —-2.677 — 3.354 —
7 [2/4] —-0.9652 —1.122  0.09766 0.09764 —2.770 — 3.356 —
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TABLE VII. Pade results for the O(a?) coefficients at TABLE VIII. Pade results for the coefficient of
O(My/M7). M{/M{ In(M3,/M2) for AP and AZ).
AP AR AP AR AR AR
Input P.A. z ® z o z 1) zZ o Input P.A. z 1) z 1)
6 [3/2] -1.290 — 01474 — — — 2.364 — 6 [3/2] 0.7811 — -3.614 —
6 [2/3] —1.291 — (M0.1384 — (4,606 — 2.448 — 6 [2/3] 0.7829 — —3.614 —
7 [4/2] ®W-1.268 — 0.1479 — (4460 — 2.489 — 7 [4/2] 0.7334 — —3.626 —
7 [3B] W-1.278 — 0.1477 —(*4.461 — 2.459 — 7 [3/3] 0.7747 — —3.618 —
7 [2/4 -1.305 — 01489 — — — 2460 — 7 [2/4] 0.7594 — —3.622 —
APz =—1.01), 7 M2
M APys == 1.47)+5n ; ,
W
A(F2>|M3v =0.097663). (25) ,
AP)|ys =0.155). (26)

2. Quartic terms in My

In Table VII the Padeapproximations for the quartic D. Results atO(a?)
terms inM,y, are listed. The conformal mapping seems to In this subsection we fmally present the numerical correc-
spoil the convergence property here, asaalPade develop  tions for I'(t—Whb) at O(a?). Simply using the results de-
poles within the unit circle. Moreover, in contrast to the con-rived above according to Eq13) and linearly adding the
stant and quadratic corrections, for thi, terms it turns out  errors one would certainly overestimate the total uncertainty.
that variations of Eqe5) and(8) (see the discussion in Sec. It is more promising to add up the expansionszifor dif-
I) lead to results which lie outside the error interval obtainedferent color structures and to perform the Pamlecedure
from the numbers of Table VII. So the final numbers for theafterwards. The corresponding Paajgproximations for the
My, terms should only be considered as estimates on theraseM,,=0 are shown in Table IX. Table X contains the
order of magnitude. They will be presented below, with anMy-suppressed terms. The behavior is similar to the ap-
artificially increased error of about 50%. proach where the individual color structures are treated sepa-

While the leading two terms i,y do not contain loga- rately. In the case of vanishing/ boson mass, the Pade
rithms of My, the coefficients oMy, develop linear loga- results both with and without conformal mapping are highly
rithms of M%/M?2. For A® the coefficient of this logarithm ~ stable. For thévi{- andMy,- terms, however, many of the
is exactly reproduced by the first two terms in the TaylorPade develop poles inside the unit circle. The result we
expansion around=0 after settingz=1; the higher order deduce from Tables IX and X reads
terms in z vanish (a similar behavior for the logarithmic
terms has already been observed i8]). The phenomenon
of a truncated series infor this coefficient also appears for
A@,, and AP, . According to the discussion above, this

My
AP)=—16.18)+5.44) W
t

strongly suggests that the logarithmsMf, are exactly re- Mﬁ, |\/|t2
covered after setting=1. While for A{®) one arrives at +W 1145.0 - 7.3 Do . (27)
7/41nM?/MZ, for the term under consideration, it sums up to t W

zero forA®).

For the Abelian and non-Abelian parts, the serieg far
the coefficients of thév},/M{ In MZ/MZ, term does not seem A2
to be truncated, but the Pad@alysis turns out to be very

TABLE IX. Paderesults forA®@[y _o

. Input P.A. z 1)
stable. It can be found in Table VIII.

Finally, the results for the quartic contributions My, 6 [3/2] —16.83 —-16.73

read 6 [2/3] —16.84 —
M2 7 [4/2] ~16.89 ~16.49
A e =4.52.2)+0.7(1)In—-, 7 [3/3] ~16.91 ~15.85
Mw 7 [2/4] —16.90 -16.79

2 M? 8 [4/3] ~16.95 —
A(N/llm;‘f2-4(1-2)—3-62(1)|nM—, 8 [3/4] -16.95 -16.83

W
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TABLE X. Pade results for the coefficients oM3/M?, TABLE XI. Estimates forI'{") using (a) Eq. (35), and (b) Eq.
My/M{, andM /M In M2/M3, of A3, (32) with the full integrand replaced by its expansion around small
y. nis the order of the expansion inthat was used as input.
M2, M, M, In(MZ/M3)
Input  P.A. z » z » z w INSUINS
6 [32] 5774 — — — =727 — " @ ®
6 [2/3] 5.340 — — — —7.281 — 0 —2.040 —4.080
1 —1.590 —2.580
7 [412] 5197 — 1154 — -7354 — 2 —2.030 —0.3333
7 [3/3] 5.198 5.338 — — —7.304 — 3 —1.495 —0.9843
7 [2/4] 5.280 — 11.21 — -7.319 — 4 —2.093 —1.744
5 —-1.327 —1.810
6 —2.371 —1.818
The leading-order result is in very good agreement with 7 —0.8998 —-1.818
the one of{5] which reads—16.75). Note again that the 8 —3.071 —1.816
error estimate for théy, term is rather conservative. 9 0.2045 —1.815
Finally we are in the position to write down the decay rate 10 —4.881 —1.814
of the top quark up to ordé®(a2My,/M¢). Using the exact Exact: ~1.810
results at Born level and at ordet, in combination with Eq.
(27) leads to

used after the second equality sign. As expected, the conver-

2 gence of the perturbative series is better in this case than in

o o
I'(t—=bW)=T| 0.8852- 2.220;3— 15.6‘(1.1)(?S +.-- Eq. (29).
Let us finally compare the fuID(aﬁ) result with the
=0.788 1), (28)  Brodsky-Lepage-MacKenzie(BLM) [20] contributions.

They are obtained by replacing the number of light fermions
Wherv32 the valuesM=175 GeV, My=80.4 GeV, and in Eq.(18) by —(¥-n,) and neglecting contributions from
as(M{)=0.11 have been assumed. Rdiy=0 the second other color factors. The result reads
order QCD corrections amount to roughly 2%. Both at order

ag [see Eq(14)] and a§ the My mass corrections “screen” M2
the leading order terms, i.e., they arise with negative sign. A)BM= _21 92+ 7-7(8)—\/2\/
Whereas the quadratic and quartic correction® ) turn t
out to be 16% and 3% with respect to the massless result, M 161 2
they amount to roughly 7% and 1% @{( «2), respectively. 4w 9.92)— —In—é ] (30)
Using theO(a?) relation betweerM, and theMS mass M 12" My
m;(x) [11] one may express the result in terms of
=my(m,): For vanishingW boson mass the difference to the complete
order o result amounts to roughly 24% and ti(M3)
o _[ ME  MS o 2 term is off by almost 50%. The order of magnitude for the
rt—=bw)=ry1-3—47+2—5+—|1.28+2— quartic term inM,y, is reproduced correctly, but the logarith-
my t My mic term differs from(27) by almost a factor of 2.
4 2
W m _ _
Tt 9.16-2 |nM_2 e E. Estimate for b—ulv and p—ew,v,
t W
) ) As it was pointed out if5,21], the results for top decay
" s [2 58)+8 1(4)M_W may be used also to estimate the QCD corrections to the
T ' ' mt2 semileptonic decay of the bottom quark. T@éag) correc-
4 2 tions to this process have been obtained recefB] by
Mw _ t computing four-loop on-shell diagrams. Nevertheless, using
- m; (18'6(5'0) 4'6(1“”% - J the results of the previous sections we may also derive an

approximation to this quantity, in this way verifying the con-
sistency of the results ¢22,5], and the present paper.

The decay rate fob—ulv can be expressed as

2
I

— g ag
-~ FO[O.8576+ 1.8+ 5.0(1.2)( =

2

=0.9331)T,, (29 rd+... (31
@ ...

IR () B PR T C DU B
[(b—uly) =T+ —Cel{V+| —

where To=Grm3|V,p|%(87\2), ay(m?)=0.11, and m,
=165 GeV has been chosen. 8 «;) the exact result is  with
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TABLE XII. Estimates forl'(?). Same notation as in Table XI. TABLE XiIIl. Estimates forl'?). * yy” denotes the purely pho-
tonic corrections, “Elec” and “Muon” the ones involving electron
NSNS and muon loops, respectivelff:Elec” also includes real emission
n @ (b) of an electron-positron pair, of course.
0 —18.6 —-37.1 r®ro
w'tu
1 —-16.8 —312 n vy Elec Muon P
2 —23.4 —24.9
Exact[22]: 213 0 320 280  —00636 594
1 2.38 2.50 —0.0343 4.85
2 4.33 3.61 —0.0397 7.90
_ 1 _ GZ|V bleg Exact[23]: 3.56 3.22 —0.0364 6.74
rg)zzréo)f dy Ai(y), Féo):Fu—s, (32
0 1927

The same procedure will now be applied@fa?). As
whereM, is the on-shell bottom quark mass avig, is the  input we use the numbers of E@7) and subtract the values
CKM matrix element forb—u transitions. The relation to for A(®) as given in Eqs(22), (25), and (26), multiplied by
the top decay rate is established througH’(M3/M?)  CgT, according to the transition from =5 for top decay to
=A®, with the A" defined in Eq.(13). Assuming that the Nn;=4 for bottom decay. Only the central values from these

functions equations will be used, the errors will be suppressed. The
results are shown in Table Xll. One can see that both ap-
. AW (y) proaches lead to results that are fairly consistent with the

(I)(y)EA(O)(y) (33 exact number obtained ii22].

Along the same line of reasoning we may derive an esti-
mate for theO(a?) corrections to the decay rate of the
muon. Applying the obvious modifications to the notation of
Egs. (31) and(32) and using the results of Eq&2), (25),

_ _ and(26), we find the numbers given in Table XIIl. Only the
AD(y)=2 @V +al Iny)y", (34  method according to Eq35) has been applied. Again these
n=0 results agree nicely with the exact results obtaine28j.

This agreement can be considered as a nontrivial check of
the results 0f22,23 and the ones obtained in this paper.

are smooth within 82y<1, one may approximate them by
their first few terms in the expansion arouypet O:

which leads to

1
ri=2r@y ag)j dy AO)(y)y" V. CONCLUSIONS
n=0 0

In this work QCD corrections of order? to the decay of

the top quark into &V boson and a bottom quark have been

considered. Since the exact treatment of the contributing

Feynman diagrams is currently out of question, the calcula-

For example, in Oth approximation, one finds'{,=0 for  tion has been reduced to the evaluation of moments. The

i=0,1,2) ’ physical limit is obtained via conformal mapping and Pade
_ _ approximation. The existing results in the limit of a massless

r{=alr®@=a00)r. (36)  Whoson could be confirmed and new terms of oty M?

o and M{/M{ were obtained. Numerically it turns out that
However, A®)(y) is not really smooth in general. In fact, these power-suppressed terms are rather small. Assuming
AM)(y) has a singularity ay=1 which spoils convergence Similar convergence properties concernivg, for the one-
of the expansion iny. On the other hand,A()(y)  and two-loop corrections we can conclude that D)
=A@y AO)(y) itself is finite fory=1. Thus, if a larger ~corrections forl'(t—Wb) are well under control, including

number of terms iry is included, it is more promising to finite W-mass effects. _
directly use Eq.(32) and expand the full integrand around _ The approach used in this article for the evaluation of the

smally. This is demonstrated in the caseRﬁ” in Table x| diagrams can certainly be carried over to other interesting

where both approaches are compared including successivéiySical problems, e.g., semileptonic bottom quark decays or
higher powers iry. uon decay as indicated in Sec. IV E. In this paper the reli-

One can see that the approach using &%) provides ability of the method has been demonstrated by a comparison

reasonable estimates for 4, where, on the other hand, the With & completely different approach.
results obtained by a naive expansion of the integrand in Eq.
(32) are unsatisfactory. Far>4, however, the situation be-
comes opposite: The more termsyiare included, the better We would like to thank A. Czarnecki and K. Melnikov for
is the approximation using the latter method. The methodncouragement, numerous fruitful discussions, and providing
using Eq.(35) becomes very unstable. us with a copy of 7] before its publication. We are indebted

i 1
+af) f dy A9(y)y"In y) : (35
0
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