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Second order QCD corrections toG„t˜Wb…
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Corrections ofO(as
2) to the decay of the top quark into aW boson and a bottom quark are calculated. The

method is based on an expansion of the top quark propagator for small external momentumq as compared to
the top quark massMt . The physical pointq25Mt

2 is reached through Pade´ approximations. The described
method allows us to take effects induced by a finiteW boson mass into account. The numerical relevance of the

result is discussed. Important crosschecks against recent results for the decay rateb→ul n̄ and the two-loop
QED corrections tom decay are performed.@S0556-2821~99!04421-5#

PACS number~s!: 14.65.Ha, 12.38.Bx
o
ot
rd

os

re

d

a
e
.

-

eV

to

n

-
ul
pe
tri

a

ach

on-
ut-

m-
p

and

es

ex-
s in
p-
e to
her

is

cal
IV

si
o

I. INTRODUCTION

The top quark is so far the heaviest observed particle
the standard model of elementary particle physics. Its t
width G t is to a good approximation proportional to the thi
power of its mass and is much larger thanLQCD, the typical
scale of nonperturbative effects in QCD. Therefore it is p
sible to treat the top quark almost as a free particle and
apply perturbative methods to evaluate the quantum cor
tions to its decay process@1#.

In the minimal standard model the dominant decay mo
of the top quark is the one into a bottom quark and aW
boson. It is important to predict the corresponding dec
width accurately in order to be sensitive to exotic process
which may occur in supersymmetric models, for example

The first order QCD corrections have been evaluated
analytical form some time ago@2# and amount to approxi
mately210%. The electroweak corrections are small@3# and
turn out to be'2% for a Higgs boson mass around 100 G
~see, e.g.,@4#!.

The expected precision for measurements ofG t by a fu-
turee1e2 machine such as the next linear collider~NLC! is
of the same order of magnitude as the corrections ofO(as)
@4#. This makes it desirable to control also the next-
leading corrections induced by the strong interaction.

In fact, the QCD corrections ofO(as
2) have already been

considered in@5#. This calculation was based on an expa
sion of the vertex diagrams in the quantities 12Mb

2/Mt
2 and

123Mb
2/Mt

2 , respectively. Although this expansion param
eter is not small at all, the approach led to reliable res
after including many terms into the analysis, choosing pro
variables, and carefully investigating potentially large con
butions.

The aim of this paper is, on the one hand, to have

*Permanent address: Institute for Nuclear Research, Rus
Academy of Sciences, 60th October Anniversary Prospect 7a, M
cow 117312, Russia.
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independent check of the results of@5#, using a rather
complementary method. On the other hand, our appro
will allow us to additionally account for a finiteMW boson
mass.

The method presented in this paper is as follows. In c
trast to@5# we compute propagator-type diagrams contrib
ing to the top quark self-energy with external momentumq
in terms of an expansion aroundq2/Mt

250. Some sample
diagrams are pictured in Fig. 1. The imaginary part co
bined with the wave function renormalization of the to
quark and evaluated at the physical pointq25Mt

2 directly
leads to the decay rate. It arises from cuts where theW bo-
son, the bottom quark and, at higher orders, also gluons
other light quarks are involved. The limitq2→Mt

2 is taken
after performing a Pade´ approximation. The results forMW
50 will be shown to be in perfect agreement with the on
of @5# which justifies both the method of@5# and the one of
the present paper. The subleading terms inMW

2 turn out to be
numerically small.

The calculation once again demonstrates the power of
pansion techniques and their computer implementation
multiloop calculations. The analyticity properties of the a
proximated function guarantee reasonable convergenc
the exact result, especially if the obtained series is furt
subject to advanced methods such as Pade´ approximation.

The paper is organized as follows: In Sec. II the method
described. In Sec. III, the results obtained atO(as) are dis-
cussed in more detail. The comparison with the analyti
result demonstrates the reliability of our method. Section
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FIG. 1. Sample diagrams for the top quark self energy.
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deals with the computation of the second order QCD corr
tions where also the effects of a finiteW boson mass are
taken into account. Important crosschecks with recent res
for G(b→ul n̄) and G(m→enmn̄e) are carried out in Sec
IV E.

II. METHOD OF THE CALCULATION

The exact evaluation of the Feynman diagrams contrib
ing to G(t→Wb) at order as

2 is currently not available.
However, it is promising to apply the methods of asympto
expansion~see, e.g.,@6# and references therein! in the limit

Mt
2@q2@MW

2 @Mb
250. ~1!

For the O(as) corrections in the limitMW50, a similar
approach has already been used in@7#. There it was possible
to resum the series atq25Mt

2 which reproduces the analyt
cal result. AtO(as

2), however, instead of an explicit resum
mation we will perform a Pade´ approximation in order to
reach the physical pointq25Mt

2 @8,9#.
Before going into details, let us introduce the notatio

The inverse quark propagator is denoted by

@SF
0~q!#215 i @mt

0~12SS
0!2q” ~11SV

0 !#. ~2!

Both SS
0 andSV

0 are functions of the external momentumq
and the bare massmt

0 of the top quark. In our case the
further depend on the bare strong coupling constantas

0 and
the W boson massMW , and are proportional to the Ferm
coupling constant,GF . SF

0 will become finite after renormal
izing the parametersmt

05Zm
OSMt andas

05Zg
2as , and taking

into account the wave function renormalization:

SF
OS5

1

Z2
OS

SF
0 . ~3!

Zm
OS, Z2

OS, andZg denote the renormalization constants.Zm
OS

andZ2
OS will be taken in the on-shell scheme, whereasZg is

in the modified minimal subtraction (MS) scheme.Z2
OS is

defined by the condition

SF
OS~q!→ 2 i

M t2q”
1terms regular forq2→Mt

2 . ~4!

In our approach we are actually dealing with two differe
masses for the top quark in intermediate steps: an ‘‘extern
one (q2) and an ‘‘internal’’ one (Mt

2). Applying the optical
theorem, the decay rate of the top quark will therefore
written as

G~ t→Wb!5~2Mt Im@zSV
OS2SS

OS# !uz51 , ~5!

where
11401
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SS
OS5Z2

OSZm
OS~12SS

0!,

SV
OS5Z2

OS~11SV
0 ! ~6!

are functions of the variable

z5
q2

Mt
2 . ~7!

All relevant diagrams will be calculated in terms of expa
sions aroundz50, and the limitz→1 will be applied only in
the very end. Therefore, whileZm

OS can be taken atz51, we
also need to expressZ2

OS in terms of an expansion aroun
z50. This is most conveniently done by translating con
tion ~4! into

Z2
OS5S 11SV

012
d

dz
~Zm

OSSS
02SV

0 ! D 21

. ~8!

From ~5! and~6! it is clear that for our purpose it suffices t
know only the pure QCD corrections ofZ2

OS andZm
OS up to

O(as
2). For z51 these quantities were computed up to th

order in @10# and @11#, respectively.
Note that in a calculation where the quantities are eva

ated on shell, i.e., atq25Mt
2 , infrared singularities appear in

intermediate steps. In contrast, in Eq.~6! all functions on the
right-hand side~RHS! are defined through the expansion f
z→0 and thus are infrared safe.

At this point a comment on the extraction of the valu
for z51 is in order. Actually Eqs.~5! and~8! are not unique
as it is possible to derive slightly different equations forZ2

OS

andG(t→Wb), which differ by relative factors ofz. In the
limit z→1 all of them are equivalent. The results we o
tained by using two more variants of Eqs.~5! and ~8! are
consistent with the ones which will be discussed below. W
decided to use the formulas shown above because theO(as)
corrections are recovered with the highest accuracy.

In order to obtain reliable results it is necessary to eva
ate as many terms as possible in the expansion paramez.
The exact resummation of the series inz seems to be ex-
cluded. Instead, we apply a Pade´ approximation which
means that we reexpress the resulting polynomial in term
a rational function:

@m/n#~z!5
a01a1z1•••1amzm

11b1z1•••1bnzn
. ~9!

Its Taylor series is required to coincide with the origin
polynomial up to the orderm1n. For later convenience we
define the short hand notation@m/n#[@m/n#(1). Thestabil-
ity of the Pade´ approximants upon variation ofm andn will
indicate the uncertainty of the approximation~see below!.

In addition, it may be promising to apply a conform
mapping@8#
5-2
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SECOND ORDER QCD CORRECTIONS TOG(t→Wb) PHYSICAL REVIEW D 60 114015
z5
4v

~11v!2
~10!

and to perform the Pade´ approximation in the variablev.
The complexz plane is mapped into the interior of the un
circle in the v plane, and the relevant pointz51 goes to
v51. This conformal mapping is motivated by the observ
tion that the application of a Pade´ approximation relies
heavily on analytic properties. The function on the RHS
Eq. ~5! ~without the limit z→1) will develop a branch cu
along the realz axis starting fromz51. This branch cut is
mapped through Eq.~10! onto the unit circle. Thus by apply
ing Eq. ~10! we enlarge the range of convergence for t
terms we got in the limitz→0.

Since both methods described above appear to be ra
natural, any of them will be used to derive an estimate on
exact result. For convenience, let us denote the results
tained through Pade´ approximation in the variablez by ‘‘ z
Padés,’’ the ones where the Pade´ approximation is performed
in v by ‘‘ v Padés.’’ The central values and the estimate
uncertainty will be extracted from Pade´ results@m/n# with
m1n not too small andum2nu<2. The central value is
obtained by averaging the Pade´ results and the uncertainty i
given by the maximum deviation from the central value. T
error estimation is therefore rather conservative.

Some Pade´ approximants develop poles inside the u
circle (uzu<1 and uvu<1, respectively!. In general we will
discard such results in the following. In some cases, h
ever, the pole coincides with a zero of the numerator up
several digits accuracy, and these Pade´ approximations will
be taken into account for the estimation of the actual resu
To be precise: in addition to the Pade´ results without any
poles inside the unit circle, we will use the ones where
poles are accompanied by zeros within a circle of rad
0.01, and the distance between the pole and the physic
relevant pointq2/Mt

251 is larger than 0.1.
Concerning the dependence on the strong gauge pa

eter j in Eq. ~5!, it only drops out after summing infinitely
many terms in the expansion aroundz50 and settingz51.
Since we are only dealing with a limited number of term
our approximate results will still depend on the choice oj
even after takingz→1. It is clear that with extreme values o
j almost any number could be produced. Thus the ques
arises which value ofj should be assumed in order to arriv
at a reliable prediction forG(t→Wb).

At O(as) the whole calculation can be performed for a
bitrary gauge parameter without any difficulties. This allo
for a detailed study of the residualj dependence. AtO(as

2)
only the first few terms could be evaluated for generaj
which does not allow for extensive studies. In order to arr
at a reasonable number of terms in the expansion arouz
50 it is necessary to setj to some definite value from th
very beginning. The behavior of the diagrams atO(as) will
serve as an indication for the optimal choice of this value
the analysis atO(as

2).
Concerning the electroweak gauge parameterjW , all re-

sults that will be quoted in the following have been obtain
in unitary gauge, where theW propagator is given by
11401
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DW~p!5
2 i

MW
2 2p2 S 2gmn1

pmpn

MW
2 D . ~11!

Nevertheless, the leading terms inMW have also been com
puted in an arbitrary covariant gauge. They are obtained
replacing theW boson by a Goldstone boson with the prop
gator simply given by

DF~p!5
2 i

jWMW
2 2p2 ——→

MW→0 i

p2 . ~12!

The independence ofjW is then manifest already at thi
point.

III. FIRST ORDER QCD CORRECTIONS

In this section we will investigate theO(as) corrections
and compare the exact result@2# to the approximation ob-
tained by the method described above. It is convenien
decompose the decay rate of the top quark into aW boson
and a bottom quark in the following way:

G~ t→bW!5G0FA(0)1
as

p
CFA(1)1S as

p D 2

A(2)1•••G ,
~13!

where G05GFMt
3uVtbu2/(8pA2), A(0)5123MW

4 /Mt
4

12MW
6 /Mt

6 , CF54/3, andVtb is the Cabibbo-Kobayashi
Maskawa~CKM! matrix element fort→b transitions. The
running couplingas is defined with six active flavors.

The one-loop correction is known in analytical form sin
quite some time@2#. Expanded in terms ofMW /Mt it reads

A(1)5
5

4
2

p2

3
1

3

2

MW
2

Mt
2

1
MW

4

Mt
4 S 261p22

3

2
ln

Mt
2

MW
2 D

1
MW

6

Mt
6 S 46

9
2

2

3
p21

2

3
ln

Mt
2

MW
2 D 1OS MW

8

Mt
8 D . ~14!

The approximationMW50 induces an error of roughly 22%
This reduces to approximately 4% if the quadratic mass c
rections are included and is completely negligible if all t
terms displayed in Eq.~14! are taken into account.

For clarity, let us apply our method to these lowest ord
terms and see how the results compare toA(0) and A(1)

above. WhileA(0) is reproduced exactly, the imaginary pa
of the small-momentum expansion for the two-loop@O(as)#
diagrams~an example is shown in Fig. 1! reads
5-3
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Aexp
(1) 52

19

12
2

29

144
z2

23

240
z22

61

1200
z32

151

5040
z42

449

23520
z52

13

1008
z62

827

90720
z72

529

79200
z8

1jS 5

12
2

7

48
z2

1

16
z22

3

80
z32

43

1680
z42

3

160
z52

29

2016
z62

23

2016
z72

49

5280
z8D

1
MW

2

Mt
2z

F3

2
1

1

18
z2

1

72
z22

7

600
z32

7

900
z42

23

4410
z52

17

4704
z62

47

18144
z72

31

16200
z8G

1
MW

4

Mt
4z2 F1

4
1

13

3
z2

383

720
z22

79

720
z32

313

8400
z42

403

25200
z52

557

70560
z62

151

35280
z72

2477

997920
z8

1jS 5

4
2

5

2
z1

37

80
z21

3

16
z31

61

560
z41

41

560
z51

179

3360
z61

137

3360
z71

239

7392
z8D

1 l tWS 3

4
2

9

4
z2

3

4
j1

3

4
zj D G1OS MW

6

Mt
6 D , ~15!

TABLE I. z Padés for A(1)uMW50 for different values ofj. The first column indicates the number of terms
in z from ~15! that were used as input.

Input P.A. j522 j521 j521/2 j50 j51/2 j51 j52

6 @3/2# 22.111 — 22.058 22.023 21.990 21.957 21.893
6 @2/3# 22.112 22.052 22.058 22.023 21.990 21.963 21.887

7 @4/2# 22.121 — 22.058 22.027 21.999 21.972 21.919
7 @3/3# 22.120 — 22.058 (!)22.025 22.008 21.980 21.928
7 @2/4# 22.126 — 22.058 22.027 22.000 21.979 21.912

8 @4/3# 22.117 — — 22.033 22.011 21.990 21.949
8 @3/4# 22.117 21.694 22.058 22.033 22.011 21.993 21.948

9 @5/3# 22.112 22.063 (!)22.059 22.034 22.016 21.998 21.963
9 @4/4# 22.105 22.061 (!)22.059 22.034 22.040 22.001 21.967
9 @3/5# 22.114 22.064 (!)22.059 22.034 22.016 22.001 21.961

Exact: 22.040
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with l tW5 ln Mt
2/MW

2 . ~The coefficient ofzn will be called the
‘‘ nth moment’’ in the following.! Note that the factors 1/z
and 1/z2 in front of the quadratic and quartic terms inMW

are irrelevant for the subsequent Pade´ procedure.
The procedure described above is applied to each co

cient of MW
2 /Mt

2 separately. As already noted,Aexp
(1) still de-

pends on the QCD gauge parameter,j, appearing in the
gluon propagatori (2gmn1jqmqn/q2)/(q21 i e). Thus also
the Pade´ approximations@m/n# will show a dependence o
j. It is clear that for large absolute values ofj the quantities
@m/n# get dominated by them and any predictive power
lost. In Table I severalz Padés are evaluated for the leadin
order coefficient (MW50). The gauge parameter is varie
from j522 to j512. Pade´ results which develop poles fo
uzu<1 are in general represented by a dash. However, i
11401
fi-

s

n

approximate cancellation with a zero from the numera
takes place~see the discussion above!, they are marked by a
star (!). The exact result is reproduced with a fairly hig
accuracy for almost all values ofj under consideration. Nev
ertheless, the value forj50 is closest to the exact result, an
the variation of the Pade´ approximants appears to be ve
small for this particular choice ofj. Based on this observa
tion, we decide to perform the three-loop analysis by sett
j50. This has the additional advantage that the evalua
of the Feynman diagrams is much simpler than for nonz
values ofj.

Let us now discuss the subleading terms inMW
2 . Table II

lists several Pade´ approximations for the coefficients o
(MW

2 /Mt
2)n (n50,1,2) in the case ofA(1). j has been set to

zero, as it is suggested by the discussion above. For e
5-4
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coefficient, the Pade´ approximations have been performed
the variablez as well as in the variablev. Thez andv Padés
are indicated by az and anv, respectively, in the second lin
of Table II. This notation will be used throughout the pap
The z Padés for the values of the (MW

2 /Mt
2)0 term coincide

with those forj50 of Table I, of course. Concerning th
power-suppressed terms, again the higher order Pade´ ap-
proximants agree with the exact results to an impressive
curacy. The logarithm of Eq.~14! is reproduced exactly afte
taking into account the first two terms in the expansion~15!
and settingz51.

Also for the power-suppressed terms an analysis conc
ing the j dependence has been performed. While the q
dratic terms inMW do not depend onj at all @see Eq.~15!#,
the results for the terms of orderMW

4 /Mt
4 become signifi-

cantly worse oncej is different from zero. This also suppor
the choice of Feynman gauge at three loops.

Taking only those results of Table II into account whe
eight or more input terms enter we may finally deduce
approximation for theO(as) corrections to the decay rat
@we adopt the notation22.035(4)[22.03560.004, etc.#:

A(1)522.035~4!11.501~2!
MW

2

Mt
2

1
MW

4

Mt
4 S 3.8700~5!2

3

2
ln

Mt
2

MW
2 D 1•••. ~16!

The agreement of Eq.~16! with the exact results quoted i
the last line of Table II obviously supports the underlyi
method.

In the three-loop case we could obtain the sma
momentum expansion up toz7 for MW50 and up toz6 for
the coefficients ofMW

2 /Mt
2 and theMW

4 /Mt
4 . Therefore, the

final number at three-loop level will be based on Pade´s built
out of seven and eight moments for the leading term, and

TABLE II. Padéapproximations for the leading and the powe
suppressed terms ofA(1), computed forj50.

MW
0 MW

2 MW
4

Input P.A. z v z v z v

6 @3/2# 22.023 22.022 1.506 1.508 3.875 —
6 @2/3# 22.023 22.051 — 1.548 3.878 —

7 @4/2# 22.027 (!)22.009 (!)1.507 (!)1.518 3.871 —
7 @3/3# (!)22.025 22.035 — 1.501 3.872 —
7 @2/4# 22.027 22.040 — 1.507 3.874 —

8 @4/3# 22.033 22.035 1.502 1.502 3.870 —
8 @3/4# 22.033 22.035 — 1.502 3.870 —

9 @5/3# 22.034 22.039 1.502 1.500 3.870 —
9 @4/4# 22.034 (!)22.035 1.502 (!)1.501 3.870 —
9 @3/5# 22.034 22.037 1.502 1.499 3.870 —

Exact: 22.040 1.500 3.870
11401
.

c-

n-
a-

r

-

ix

and seven moments for the subleading terms inMW . At
O(as) this reduced number of input terms changes the re
from the one in~16! to

A(1)522.03~2!11.51~4!
MW

2

Mt
2 1

MW
4

Mt
4 S 3.874~4!2

3

2
ln

Mt
2

MW
2 D

1••• ~17!

which is a bit worse than~16!, but still sufficiently accurate.
This suggests that the number of available moments at o
as

2 should be sufficient to arrive at a reasonable estimate

IV. SECOND ORDER QCD CORRECTIONS

Let us use the experience gained in the previous sectio
obtain predictions forG(t→Wb) at orderas

2 .

A. General remarks

It is convenient to decompose the decay rate accordin
the color structure:

A(2)5CF
2AA

(2)1CACFANA
(2)1CFTnlAl

(2)1CFTAF
(2) ,

~18!

where in QCD the color factors are given byCF54/3, CA
53, andT51/2. nl is the number of massless quark flavo
and will be set tonl55 in the end.AA

(2) corresponds to the
Abelian part already present in QED,ANA

(2) represents the
non-Abelian contribution, andAl

(2) andAF
(2) denote the cor-

rections involving a second fermion loop with massless a
massive quarks, respectively. In Fig. 1 a representative dia
gram for each function is pictured. The expansion in terms
MW

2 /Mt
2 of the individual contributions toA(2) will be writ-

ten as

Ai
(2)5Ai

(2)uMW501
MW

2

Mt
2 Ai

(2)uM
W
2 1

MW
4

Mt
4 Ai

(2)uM
W
4 1•••,

~19!

with i 5A, NA, l , and F. Note thatAl
(2)uMW50 is known

analytically @12# and serves as a welcome check for o
method.

Whereas atO(as) the ’t Hooft massm2 drops out@see
Eq. ~15!#, it does appear atO(as

2). We adopted the conven
tion m25Mt

2 throughout the paper.
There are 60 three-loop diagrams that contribute toG(t

→Wb). The practical computation is done with the help
the packageGEFICOM @13#. It usesQGRAF @14# for the gen-
eration of the diagrams andEXP @15# for the application of
the hard mass procedure. For more details, we refer t
recent review concerned with the automatic computation
Feynman diagrams@6#. The application of the methods o
asymptotic expansion according to Eq.~1! reduces the prac
tical computation either to massless three-loop propaga
type diagrams or to products of one- and two-loop integra
In the latter case either vacuum graphs or again mass
two-point functions appear. The integrals have been p
5-5
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TABLE III. Padé results atO(as
2) for MW50.

Al
(2) AF

(2) AA
(2) ANA

(2)

Input P.A. z v z v z v z v

6 @3/2# 2.600 2.889 20.06359 — 2.971 — 27.637 28.238
6 @2/3# 2.600 2.994 20.06359 20.06464 2.972 — 27.639 28.400

7 @4/2# 2.633 2.920 20.06360 — 3.041 3.818 27.710 28.212
7 @3/3# (!)2.592 2.926 20.06360 — 3.140 — 27.781 28.218
7 @2/4# 2.636 2.956 20.06359 — 3.046 — 27.719 28.306

8 @4/3# 2.695 (!)2.907 20.06360 — 3.146 — 27.820 (!)28.232
8 @3/4# 2.696 2.832 20.06360 — 3.146 — 27.820 28.254

9 @5/3# 2.708 2.881
9 @4/4# 2.707 2.892
9 @3/5# 2.708 2.902

Exact: 2.859
ge
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formed with the help of the packagesMINCER @16# and
MATAD @17# based on the symbolic manipulation langua
FORM @18#. The results forSS

0 andSV
0 defined in Eqs.~5! and

~8! at three loops are quite lengthy and therefore not lis
here. They can be obtained from the authors upon reque

B. The limit M W50

This section is concerned with the second order QCD c
rections where the mass of theW boson is neglected. In thi
limit a comparison with @5# can be performed. The
MW-suppressed corrections will be discussed in the su
quent section. As already noted,AA,exp

(2) (z) and ANA,exp
(2) (z)

were computed up toz7 in the case of a masslessW boson in
Feynman gauge which corresponds to eight input terms
the Pade´ approximations.

The fermionic pieces,Al ,exp
(2) andAF,exp

(2) , do not depend on
the QCD gauge parameter and are of simpler structure
AA,exp

(2) and ANA,exp
(2) . For the light-fermion contribution we

thus could evaluate nine terms in the expansion arounz
50 for the leading term inMW .

In Table III the results are displayed. Thez Padés for AF
(2)

converge very quickly whereas most of thev Padés develop
poles foruvu<1. As a result we infer
11401
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AF
(2)uMW50520.06360~1!, ~20!

which coincides with the one quoted in@5#. Note, however,
that the magnitude ofAF

(2) is rather small.
Al

(2) behaves similar to theO(as) corrections. As ex-
pected, the more terms of the expansion inz are included, the
better agreement with the exact result is observed. Furt
more, bothz Padés andv Padés lead to compatible numeri
cal values from which, including the seventh and eighth m
ment ~‘‘input 8’’ and ‘‘input 9’’ in Table III !, the following
result is deduced:

Al
(2)uMW5052.8~1!. ~21!

The error is around 4% and thus roughly as large as the
in @5#, where the result reads 2.85(7). Using only the sixth
and seventh moment one ends up with

Al
(2)uMW5052.8~2!, ~22!

where the error is 7%. The result of Eqs.~21! and ~22! can
also be compared with the exact number@12# which reads
2.859 . . . .
29
4

89

86
01
02
47
TABLE IV. j dependence ofAA
(2)uMW50.

Input P.A. j522 j521 j521/2 j50 j51/2 j51 j52

3 @2/0# 2.790 2.425 2.305 2.226 2.189 2.194 2.3
3 @1/1# 2.780 — 2.685 2.508 2.518 2.632 3.25
3 @0/2# 2.787 2.432 2.329 2.280 2.293 2.375 2.7

4 @3/0# 2.849 2.501 2.397 2.341 2.332 2.369 2.5
4 @2/1# (!)2.624 3.268 2.810 2.713 2.725 2.816 3.2
4 @1/2# (!)2.705 3.320 2.810 2.721 2.739 2.827 3.2
4 @0/3# 2.847 2.517 2.433 2.411 2.455 2.572 3.0
5-6
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TABLE V. j dependence ofANA
(2)uMW50.

Input P.A. j522 j521 j521/2 j50 j51/2 j51 j52

3 @2/0# 27.894 26.953 26.571 26.248 25.984 25.779 25.547
3 @1/1# 28.202 27.455 27.176 26.954 26.783 26.655 26.515
3 @0/2# 28.078 27.243 26.924 26.669 26.476 26.340 26.219

4 @3/0# 28.117 27.262 26.915 26.623 26.385 26.202 25.997
4 @2/1# 28.335 27.670 27.417 27.212 27.051 26.930 26.802
4 @1/2# 28.346 27.690 27.440 27.236 27.075 26.956 26.834
4 @0/3# 28.241 27.493 27.209 26.984 26.813 26.691 26.580
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Let us now turn to the Abelian and non-Abelian par
Like in the one-loop case, the expansion inz is gauge depen
dent for these contributions. Motivated by the observatio
of Sec. III, the analysis will be performed by settingj50
from the very beginning. For non-zero values ofj some
lower-order Pade´ approximants will be presented at the e
of this section.

As compared to the fermionic contributions, the spre
among thez Padés andv Padés is significantly larger. More-
over, the numbers for the two approaches are less compa
with each other. Nevertheless, following the previously
troduced strategy for the extraction of the central value
the error, we obtain

AA
(2)uMW5053.2~6!, ~23!

ANA
(2)uMW50528.0~3!. ~24!

The ~fairly conservative! errors are larger than the ones
the results in@5#, which read 3.5(2) and28.10(17), respec-
tively. The numbers, however, are consistent. At this po
we have confirmed the results of@5# with a completely inde-
pendent method. Our calculation can therefore serve a
important crosscheck.

Because of the complexity of the intermediate expressi
it was impossible to evaluate eight terms in the expansion
small z using a general gauge parameter. In this case,
managed to compute the expansions forAA

(2) and ANA
(2) only

up to terms ofO(z3). In Tables IV and V the gauge param
eter is varied betweenj522 andj512. ForAA

(2) the error
bars of Eq.~23! are conservative enough to cover even m
of the values of Table IV. The stability ofANA

(2) against varia-
tions ofj is also satisfactory, although many of the values
11401
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Table V are not compatible with~24!. However, this could
be traced to the low number of input terms in Table V.

C. Subleading terms inM W

Let us now turn to the power-suppressed terms of or
(MW

2 /Mt
2)n (n.0). Both for the O(MW

2 /Mt
2) and

O(MW
4 /Mt

4) contribution seven terms in the expansion inz
could be evaluated.

1. Quadratic terms in MW

The resulting Pade´ values for the quadraticMW terms are
listed in Table VI. The light-fermion contribution is ver
stable and the maximal deviation from the central va
amounts to roughly 10%. Like in the caseMW50, the Pade´
approximants forAF

(2)—both inv andz—exhibit an impres-
sive convergence.

For the Abelian and non-Abelian contribution most of t
v Padés develop poles insideuvu<1. In addition, while the
z Padés for ANA

(2) are very smooth, forAA
(2) there are only two

of them without poles withinuzu<1. However, all the poles
of the otherzPadés approximately cancel against zeros in t
numerator. All relevant numbers are highly consistent.

Therefore, the numbers in Table VI lead us to the follo
ing results:

AA
(2)uM

W
2 522.73~6!,

ANA
(2)uM

W
2 53.356~3!,
TABLE VI. Padéresults for theO(as
2) coefficients atO(MW

2 /Mt
2).

Al
(2) AF

(2) AA
(2) ANA

(2)

Input P.A. z v z v z v z v

6 @3/2# — 21.016 0.09766 0.09769 (!)22.721 — 3.358 —
6 @2/3# (!)21.013 20.9459 0.09766 0.09769 22.747 — 3.358 —

7 @4/2# 20.9737 20.9773 0.09766 0.09764 (!)22.677 22.794 3.353 —
7 @3/3# 20.9758 20.9676 0.09766 — (!)22.677 — 3.354 —
7 @2/4# 20.9652 21.122 0.09766 0.09764 22.770 — 3.356 —
5-7
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Al
(2)uM

W
2 521.0~1!,

AF
(2)uM

W
2 50.09766~3!. ~25!

2. Quartic terms in MW

In Table VII the Pade´ approximations for the quartic
terms in MW are listed. The conformal mapping seems
spoil the convergence property here, as allv Padés develop
poles within the unit circle. Moreover, in contrast to the co
stant and quadratic corrections, for theMW

4 terms it turns out
that variations of Eqs.~5! and~8! ~see the discussion in Se
II ! lead to results which lie outside the error interval obtain
from the numbers of Table VII. So the final numbers for t
MW

4 terms should only be considered as estimates on t
order of magnitude. They will be presented below, with
artificially increased error of about 50%.

While the leading two terms inMW do not contain loga-
rithms of MW , the coefficients ofMW

4 develop linear loga-
rithms of MW

2 /Mt
2 . For A(1) the coefficient of this logarithm

is exactly reproduced by the first two terms in the Tay
expansion aroundz50 after settingz51; the higher order
terms in z vanish ~a similar behavior for the logarithmic
terms has already been observed in@19#!. The phenomenon
of a truncated series inz for this coefficient also appears fo
Al ,exp

(2) and AF,exp
(2) . According to the discussion above, th

strongly suggests that the logarithms ofMW are exactly re-
covered after settingz51. While for Al

(2) one arrives at
7/4 lnMt

2/MW
2 for the term under consideration, it sums up

zero forAF
(2) .

For the Abelian and non-Abelian parts, the series inz for
the coefficients of theMW

4 /Mt
4 ln Mt

2/MW
2 term does not seem

to be truncated, but the Pade´ analysis turns out to be ver
stable. It can be found in Table VIII.

Finally, the results for the quartic contributions inMW
4

read

AA
(2)uM

W
4 54.5~2.2!10.7~1!ln

Mt
2

MW
2

,

ANA
(2)uM

W
4 52.4~1.2!23.62~1!ln

Mt
2

MW
2

,

TABLE VII. Padé results for the O(as
2) coefficients at

O(MW
4 /Mt

4).

Al
(2) AF

(2) AA
(2) ANA

(2)

Input P.A. z v z v z v z v

6 @3/2# 21.290 — 0.1474 — — — 2.364 —
6 @2/3# 21.291 — (!)0.1384 — (!)4.606 — 2.448 —

7 @4/2# (!)21.268 — 0.1479 — (!)4.460 — 2.489 —
7 @3/3# (!)21.278 — 0.1477 — (!)4.461 — 2.459 —
7 @2/4# 21.305 — 0.1489 — — — 2.460 —
11401
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Al
(2)uM

W
4 521.3~7!1

7

4
ln

Mt
2

MW
2

,

AF
(2)uM

W
4 50.15~5!. ~26!

D. Results atO„as
2
…

In this subsection we finally present the numerical corr
tions for G(t→Wb) at O(as

2). Simply using the results de
rived above according to Eq.~13! and linearly adding the
errors one would certainly overestimate the total uncertain
It is more promising to add up the expansions inz for dif-
ferent color structures and to perform the Pade´ procedure
afterwards. The corresponding Pade´ approximations for the
caseMW50 are shown in Table IX. Table X contains th
MW-suppressed terms. The behavior is similar to the
proach where the individual color structures are treated se
rately. In the case of vanishingW boson mass, the Pad´
results both with and without conformal mapping are high
stable. For theMW

2 - andMW
4 - terms, however, many of thev

Padés develop poles inside the unit circle. The result w
deduce from Tables IX and X reads

A(2)5216.7~8!15.4~4!
MW

2

Mt
2

1
MW

4

Mt
4 S 11.4~5.0!27.3~1!ln

Mt
2

MW
2 D . ~27!

TABLE VIII. Padé results for the coefficient of
MW

4 /Mt
4 ln(MW

2 /Mt
2) for AA

(2) andANA
(2) .

AA
(2) ANA

(2)

Input P.A. z v z v

6 @3/2# 0.7811 — 23.614 —
6 @2/3# 0.7829 — 23.614 —

7 @4/2# 0.7334 — 23.626 —
7 @3/3# 0.7747 — 23.618 —
7 @2/4# 0.7594 — 23.622 —

TABLE IX. Padéresults forA(2)uMW50.

A(2)

Input P.A. z v

6 @3/2# 216.83 216.73
6 @2/3# 216.84 —

7 @4/2# 216.89 216.49
7 @3/3# 216.91 215.85
7 @2/4# 216.90 216.79

8 @4/3# 216.95 —
8 @3/4# 216.95 216.83
5-8
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The leading-order result is in very good agreement w
the one of@5# which reads216.7(5). Note again that the
error estimate for theMW

4 term is rather conservative.
Finally we are in the position to write down the decay ra

of the top quark up to orderO(as
2MW

4 /Mt
4). Using the exact

results at Born level and at orderas in combination with Eq.
~27! leads to

G~ t→bW!5G0F0.885222.220
as

p
215.6~1.1!S as

p D 2

1•••G
50.788~1!G0 , ~28!

where the valuesMt5175 GeV, MW580.4 GeV, and
as(Mt

2)50.11 have been assumed. ForMW50 the second
order QCD corrections amount to roughly 2%. Both at ord
as @see Eq.~14!# andas

2 theMW mass corrections ‘‘screen’
the leading order terms, i.e., they arise with negative s
Whereas the quadratic and quartic corrections atO(as) turn
out to be 16% and 3% with respect to the massless re
they amount to roughly 7% and 1% atO(as

2), respectively.
Using theO(as

2) relation betweenMt and theMS mass
mt(m) @11# one may express the result in terms ofmt
[mt(mt):

Ḡ~ t→bW!5Ḡ0H 123
MW

4

mt
4 12

MW
6

mt
6 1

as

p F1.2812
MW

2

mt
2

1
MW

4

mt
4 S 9.1622 ln

mt
2

MW
2 D 1•••G

1S as

p D 2F2.5~8!18.1~4!
MW

2

mt
2

1
MW

4

mt
4 S 18.6~5.0!24.6~1!ln

mt
2

MW
2 D 1•••G J

5Ḡ0F0.857611.98
as

p
15.0~1.2!S as

p D 2

1•••G
50.933~1!Ḡ0 , ~29!

where Ḡ05GFmt
3uVtbu2/(8pA2), as(mt

2)50.11, and mt

5165 GeV has been chosen. AtO(as) the exact result is

TABLE X. Padé results for the coefficients ofMW
2 /Mt

2 ,
MW

4 /Mt
4 , andMW

4 /Mt
4 ln Mt

2/MW
2 of A(2).

MW
2 MW

4 MW
4 ln(Mt

2/MW
2 )

Input P.A. z v z v z v

6 @3/2# (!)5.774 — — — 27.275 —
6 @2/3# 5.340 — — — 27.281 —

7 @4/2# 5.197 — 11.54 — 27.354 —
7 @3/3# 5.198 5.338 — — 27.304 —
7 @2/4# 5.280 — 11.21 — 27.319 —
11401
h

r
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lt,

used after the second equality sign. As expected, the con
gence of the perturbative series is better in this case tha
Eq. ~28!.

Let us finally compare the fullO(as
2) result with the

Brodsky-Lepage-MacKenzie~BLM ! @20# contributions.
They are obtained by replacing the number of light fermio

in Eq. ~18! by 2( 33
2 2nl) and neglecting contributions from

other color factors. The result reads

A(2),BLM5221.9217.7~8!
MW

2

Mt
2

1
MW

4

Mt
4 S 9.9~2!2

161

12
ln

Mt
2

MW
2 D . ~30!

For vanishingW boson mass the difference to the comple
order as

2 result amounts to roughly 24% and theO(MW
2 )

term is off by almost 50%. The order of magnitude for t
quartic term inMW is reproduced correctly, but the logarith
mic term differs from~27! by almost a factor of 2.

E. Estimate for b˜ul n̄ and µ˜enµn̄e

As it was pointed out in@5,21#, the results for top decay
may be used also to estimate the QCD corrections to
semileptonic decay of the bottom quark. TheO(as

2) correc-
tions to this process have been obtained recently@22# by
computing four-loop on-shell diagrams. Nevertheless, us
the results of the previous sections we may also derive
approximation to this quantity, in this way verifying the co
sistency of the results of@22,5#, and the present paper.

The decay rate forb→ul n̄ can be expressed as

G~b→ul n̄ !5Gb
(0)1

as

p
CFGb

(1)1S as

p D 2

Gb
(2)1••• ~31!

with

TABLE XI. Estimates forGb
(1) using ~a! Eq. ~35!, and ~b! Eq.

~32! with the full integrand replaced by its expansion around sm
y. n is the order of the expansion iny that was used as input.

Gb
(1)/Gb

(0)

n ~a! ~b!

0 22.040 24.080
1 21.590 22.580
2 22.030 20.3333
3 21.495 20.9843
4 22.093 21.744
5 21.327 21.810
6 22.371 21.818
7 20.8998 21.818
8 23.071 21.816
9 0.2045 21.815

10 24.881 21.814
Exact: 21.810
5-9
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Gb
( i )52Gb

(0)E
0

1

dy A( i )~y!, Gb
(0)5

GF
2 uVubu2Mb

5

192p3
, ~32!

whereMb is the on-shell bottom quark mass andVub is the
CKM matrix element forb→u transitions. The relation to
the top decay rate is established throughA( i )(MW

2 /Mt
2)

[A( i ), with the A( i ) defined in Eq.~13!. Assuming that the
functions

Â( i )~y![
A( i )~y!

A(0)~y!
~33!

are smooth within 0,y,1, one may approximate them b
their first few terms in the expansion aroundy50:

Â( i )~y!5 (
n>0

~an
( i )1aL,n

( i ) ln y!yn, ~34!

which leads to

Gb
( i )52Gb

(0)(
n>0

S an
( i )E

0

1

dy A(0)~y!yn

1aL,n
( i ) E

0

1

dy A(0)~y!yn ln yD . ~35!

For example, in 0th approximation, one finds (aL,0
( i ) 50 for

i 50,1,2)

Gb
( i )5a0

( i )Gb
(0)5A( i )~0!Gb

(0) . ~36!

However, Â( i )(y) is not really smooth in general. In fac
Â(1)(y) has a singularity aty51 which spoils convergenc
of the expansion in y. On the other hand,A( i )(y)
5A(0)(y)Â( i )(y) itself is finite for y51. Thus, if a larger
number of terms iny is included, it is more promising to
directly use Eq.~32! and expand the full integrand aroun
smally. This is demonstrated in the case ofGb

(1) in Table XI
where both approaches are compared including success
higher powers iny.

One can see that the approach using Eq.~35! provides
reasonable estimates forn&4, where, on the other hand, th
results obtained by a naive expansion of the integrand in
~32! are unsatisfactory. Forn.4, however, the situation be
comes opposite: The more terms iny are included, the bette
is the approximation using the latter method. The meth
using Eq.~35! becomes very unstable.

TABLE XII. Estimates forGb
(2) . Same notation as in Table XI.

Gb
(2)/Gb

(0)

n ~a! ~b!

0 218.6 237.1
1 216.8 231.2
2 223.4 224.9
Exact @22#: 221.3
11401
ely
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The same procedure will now be applied atO(as
2). As

input we use the numbers of Eq.~27! and subtract the value
for Al

(2) as given in Eqs.~22!, ~25!, and~26!, multiplied by
CFT, according to the transition fromnl55 for top decay to
nl54 for bottom decay. Only the central values from the
equations will be used, the errors will be suppressed.
results are shown in Table XII. One can see that both
proaches lead to results that are fairly consistent with
exact number obtained in@22#.

Along the same line of reasoning we may derive an e
mate for theO(a2) corrections to the decay rate of th
muon. Applying the obvious modifications to the notation
Eqs. ~31! and ~32! and using the results of Eqs.~22!, ~25!,
and~26!, we find the numbers given in Table XIII. Only th
method according to Eq.~35! has been applied. Again thes
results agree nicely with the exact results obtained in@23#.

This agreement can be considered as a nontrivial chec
the results of@22,23# and the ones obtained in this paper.

V. CONCLUSIONS

In this work QCD corrections of orderas
2 to the decay of

the top quark into aW boson and a bottom quark have be
considered. Since the exact treatment of the contribu
Feynman diagrams is currently out of question, the calcu
tion has been reduced to the evaluation of moments.
physical limit is obtained via conformal mapping and Pa´
approximation. The existing results in the limit of a massle
W boson could be confirmed and new terms of orderMW

2 /Mt
2

and MW
4 /Mt

4 were obtained. Numerically it turns out tha
these power-suppressed terms are rather small. Assum
similar convergence properties concerningMW for the one-
and two-loop corrections we can conclude that theO(as

2)
corrections forG(t→Wb) are well under control, including
finite W-mass effects.

The approach used in this article for the evaluation of
diagrams can certainly be carried over to other interes
physical problems, e.g., semileptonic bottom quark decay
muon decay as indicated in Sec. IV E. In this paper the r
ability of the method has been demonstrated by a compar
with a completely different approach.
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(2)/Gm

(0)

n gg Elec Muon S

0 3.20 2.80 20.0636 5.94
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