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We discuss the current picture of the standard model scalar sector at strong coupling. We compare the
pattern observed in the scalar sector in perturbation theory up to two loops with the nonperturbative solution
obtained by a next-to-leading ordemLexpansion. In particular, we analyze two resonant Higgs scattering
processessf_ﬂHHf’? andff—H—ZZWW. We describe the ingredients of the nonperturbative calcula-
tion, such as tachyonic regularization, higher ordét ibtermediate renormalization, and the numerical meth-
ods for evaluating the graphs. We discuss briefly the perspectives and usefulness of extending these nonper-
turbative methods to other theori¢$0556-282(199)03119-7

PACS numbegps): 12.38.Bx, 12.38.Lg

I. INTRODUCTION fairly simple, but not trivial model, where new perturbative
and nonperturbative solutions can be tested, in view of ap-
The possibility that electroweak symmetry is broken by aplying them to other, possibly more complicated theories.

strongly interacting scalar sector has received considerable

attention in the literature. Interesting scenarios were pro-

posed, such as the possibility of a Higgs boson coupled Il. HHGHER-ORDER PERTURBATION THEORY

strongly to vector bosons and to itsglf], and the formation

of a spectrum of bound states at a higher scale which would Here we briefly review the results available in perturba-

restore unitarity in scattering proces$@$ as well as tech- tion theory, for comparing them to the nonperturbative re-

nicolor scenario$3]. Also, phenomenological models were sults discussed in the following sections. The heavy Higgs

proposed for studying quantitatively the implications of boson decay modes discussed here are so far the main results

strong interactions in the electroweak symmetry breakingvailable at two loops. From these results, the two scatterig

sector, such as the BESS mo(ié]. _ amplitudes which we discuss in Sec. I1&f—H—f'f’
However, beyond the phenomenological models of stron%nd ff—-H—ZZ,WW, can be obtained quite triviall5].

interactions, an approach based on first principles was mis Apart f h g q fah Hi b
ing because of the lack of a nonperturbative solution and of _° partirom the main decay modes of a heavy Higgs boson

technical difficulties in extending perturbation theory in (tt, WW, Z2), also the high-energy limit of vector boson
higher-loop orders. Realistic calculations on a lattice ofscattering is known at the two-loop levgs]. The vector
physical processes involving the Higgs sector are still conboson scattering is known completely only at the one-loop
fronted with technical limitations set, among other issues, byevel [7]. This is due to the complexity of the diagrams in-
the size of the lattice. N expansions in the Higgs sector volved in a complete two-loop treatment. By using the exist-
were only performed at leading order, which is a rather pooing two- and three-point functions, some other scattering
approximation. Perturbation theory in the Higgs sector beprocesses of phenomenological interest can be defb&tl
yond one loop becomes very difficult because it involvesFor a discussion of the existing results concerning effects of
Feynman diagrams with massive internal lines and finite exenhanced electroweak strength in the standard model at two-
ternal momenta, for which already at two loops there are ndoop order, see, for instance, RE2).
general analytical solutions available. The existing calculations of leadingy radiative correc-
Recently, considerable progress has been made in undaiens in the standard Higgs sector at the two-loop level are
standing from first principles the nature of the standardbased on using the equivalence theorem in Landau gauge.
Higgs sector when its coupling becomes strong. This is du&his way radiative corrections involve only diagrams with
mainly to technical advances in massive higher-loop techscalars on the internal lines, so that the problem at hand
niques and in higher-order nonperturbativél Hxpansions. becomes much simpler. This procedure was proposed for the
In this paper we would like to discuss the perturbative andirst time in Ref.[10], where the one-loop correction to
nonperturbative aspects of this behavior at strong couplingHiggs boson decay into vector bosons was calculated in this
The major question which will be addressed by futureway.
experiments at the CERN Large Hadson CollideC) is The main decay modes of heavy Higgs bosons are into
how the electroweak symmetry is broken in nature. While itpairs of vector bosons and into top quark pairs. At leading
may or may not turn out to be actually broken by strong,order, these decay width are given by the following expres-
nonperturbative interactions, the Higgs sector remains aions:

0556-2821/99/6(11)/11400311)/$15.00 60 114003-1 ©1999 The American Physical Society



ADRIAN GHINCULOV AND THOMAS BINOTH PHYSICAL REVIEW D 60 114003

1.6
1.075 !
1.5
1.05
— 1.4
1.025 - ~
AN 1.3
200 400 600 800 1000 4200
1.2
0.975 \
0.95 \ 1.1
200 400 600 800 1000 1200 1400
a) b)

FIG. 1. The magnitude of the leadimg, radiative corrections to thb|—>tt_(a) and theH—ZZ,WW (b) decays. The plots show the

ratios of the decay widths at one lo¢golid line) and two loops(dashed lingto the tree level decay widths as a function of the on-shell
Higgs boson mass.
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The radiative corrections of enhanced electroweak strength up to two-loop order are given by the following multiplicative
factors[6]:
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Here ~1TeV. Note that the scheme ambiguities associated with

the two-loop result become substantial already for consider-
ably smaller values of the Higgs boson mgks|. Of course,

similar conclusions can be obtained from other scattering
processes apart from the decay modes. This behavior is in
is the quartic coupling of the scalar sector. agreement with well-established results regarding perturba-

In the above expressions, the strength of the coupling ofive unitarity violation in vector boson scattering at the tree
the scalar sector is parametrized by the on-shell Higgs bosggye| [12].

massmy , which is defined by the on-shell renormalization The point where the perturbative expansion blows up de-
condition REPj(s=mf)]=0. We plot the correction factors pends on the expansion parameter and, therefore, on the
given by Eqgs(2) in Fig. 1. One can see that for both correc- renormalization scheme. So far, the two-loop results men-
tion factors the two-loop correction becomes as large as thgoned above were translated into the modified minimal sub-
one-loop correction fom,, about 1 TeV(1.1 TeV forH  traction schemeNIS) [11] and the pold5,13] renormaliza-

—ff and 930 GeV fortH —-WW,ZZ). Even if the higher- tion schemes for processes at the Higgs boson mass energy
loop corrections are not yet known, this pattern suggests thaicale, in the hope that perturbation theory may show better
the radiative corrections blow up strongly aroumd convergence properties in certain schemes. An overall con-

(9 my)?
4’7me
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clusion of these studies is that thdS scheme diverges Was proposed in Refdl15, 16, 17, which is based on a
somewhat sooner and has larger scheme uncertainty than th@urent expansion around the physical pole. Within pertur-
on-shell scheme, while the pole scheme appears to haW&tion theory, this solves the problem in a fundamental way
slightly better convergence properties than the on-shefnd applies conS|stent!y to all orders in pe.rturbatlon theory.
scheme. For a more refined discussion of the scheme arf{nother approach which was proposed is to use gauge-
gauge dependence, see Ha#] mvarlant pinch technlqug self-energies in the Dyson summa-
While the existing higher-order perturbative results in thetion. For phenomenological purposes only, other approaches
scalar sector are consistent with a strong blowup of radiativé® treat resonant amplitudes were proposed in the literature,
corrections at abouny,~1 TeV, this fact appears somehow which amount to special resummations of low-order results

puzzling if one considers that the quartic coupling of thel18]. Such special resummations may be easier to use in
scalar sector, certain phenomenological applications, such as Monte Carlo

(MC) event generators. At the same time they are less fun-

g my\? damental theoretically—some of them still contain unphysi-
A= prp cal higher-order terms or apply only to tree level or one-loop
W calculations.
is only of order 0.4 fomy~1 TeV. Therefore, within perturbation theory resonant amplitudes

From the perspective of the nonperturbative solution to bd€duireé some care for a consistent treatment—for instance,
discussed in the following section, the reason for this behav2/0ng the lines of Refd.16, 17. The 1N solution provides
ior is the Higgs boson mass saturation effect. Because of tridtomatically a correct treatment of resonant amplitudes be-
dynamics of the scalar sector, the on-shell Higgs boson mag&Uuse it is an all-order solution in the loop expansion, and no
is not a good parametrization of the quartic coupling forSPecial treatment is necessary. . _
values larger tham,~ 1 TeV. However, as will be shown However, the I solution still has some residual ambi-
in the following section, at the fundamental level, the scala9Uity which can be related to the triviality problem and to
sector is perfectly well defined at higher values of the quartig?©SSiPle nondecoupling effects from a hidden heavy sector.
coupling. Well-behaved, unitary solutions can be obtained' €chnically, this appears in the tachyonic regularization. Per-

for various processes by using nonperturbative methods. turbation theory is used at an intermediary stage in the usual
1/N treatment, but perturbation theory does not determine the

solution uniquely. This is the physical origin of the ambigu-

I NONPERTURBATIVE 1/'N SOLUTION ity entailed in the tachyonic regularization.

The 1N expansion aims at a nonperturbative solution in
order to avoid the problems of perturbation theory at large A. 1/N combinatorial rearrangement and diagrammatics

coupling. Perturbation theory ceases to be a satisfactory so-

. e : We start with the usual Lagrangian ofC{N)-symmetric
lution when radiative corrections blow up already at lower- grang HN)-sy

loop orders and the renormalization scheme ambiguity is Sglgma model:
large that the result becomes unreliable. 1 ul No
The 1N approach is free of these problems because all L= andboa"d)o— 7@3— m(b“,

radiative corrections of all loop orders are explicitly summed
up. The idea is to treat the Higgs sector as an 1,2 N
O(N)-symmetric sigma model, wheié=4 for the standard Po=(0. %0 1b0)- G
model, and to expand inl/instead of the quartic coupling.

The solution is then valid independently of the strength of From th|§ Lagrang@n one can in prlnc_:lple derive dlrgctly
a perturbative expansion for Green functions and classify the

the coupling—the quality of the approximation depends o . . . ;
the value ofN. Also, it is completely free of renormalization nFeynman diagrams according to their order N 1However,

- é)eyond leading order the combinatorics becomes very com-
plicated. In order to perform explicit calculations beyond
leading order, it is useful to perform a rearrangement of per-
I%urbation theory. A useful trick for doing this was proposed

in Ref.[19]. It consists of adding a nondynamical term to the
glagrangian:

renormalization scheme and still obtain the same result.
Another interesting nonperturbative feature of thid &k-
pansion of the sigma model is the finiteness of wave functio
renormalization constants. This is a property of the exac
nonperturbative solution and was checked at next-to-leadin
order (NLO) in 1/N. However, the renormalization of the

, : Stile 3N No 2
coupling constants is ultraviolet divergent. Lo=L1+— ( Xo— —(1)(2)— ,U«g)
As an extra bonus, the N/solution provides naturally a 2\ 6N
consistent treatment of resonant scattering amplitudes. This 1 3N 3M2N
was known as a long-standing issue in perturbation theory. =—g ®,9"®,— —quag+ —Xg— —OX0+ const.
The essence of the problem is that around a resonance one 2 2N Mo
has to perform a Dyson summation, which in perturbation (4)

theory at any finite order introduces incomplete higher-order
contributions which are unphysical. In gauge theories this This involves the introduction of an unphysical auxiliary
leads to gauge-dependent results. A solution to this problerfield y. As one can see, the equation of motion fois just
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an equation of constraint, and therefore the physical spect/N expansion. A somewhat different approach is presented
trum and the dynamics of the model remain unchanged. Thi Ref.[21]. It leads to the same final result, since this is an
effect of this trick is that the Feynman rules are changedall-order solution in the coupling constant. The counterterm
Namely, the quartic couplings are eliminated. The only verstructure is intimately related to the numerical methods
tices left are trilinear, and involve onefield and two physi-  which we use to calculate the diagrams involved. We refer to
cal scalars. This simplifies enormously the combinatorics oRef. [21] for a detailed discussion of these technical aspects.
Feynman graphs in higher orders. _ Renormalization is performed in principle order by order
We note that some other rearrangement schemes with dify, perturbation theory. However, for performing actual cal-
ferent properties were discussed for t§N)-symmetric o, ations of higher order in IV, it is of advantage to group
sigma model in Ref[20]. To our best knowledge, these .o nterterms of various loop orders and which are of the

schemes were '.‘Ot applied SO far in actual calculations. same 1N order into the same W counterterm. We define
In the following we describe the counterterm structure ]
the 1IN counterterms as follows:

which is used for performing renormalization at NLO in the

3_ 3+A)\—3+5)\<°)+ ! SN+ O !
No A DY N NZ)
Spo__V° 1+At)= v 14 = 5t+0|
i 1 1 _
$o=mZ=m| 1+ 0Z,+0| 5| |. i=1..N-1,
N 1 1
by=0Z,+\Nv=0 1+ 6Z,+0| 3 +Nv,
A 1 2 1
Xo=XZ,TXx+At,=x 1+N52X +W5IX+(’) N2 5)

Here we already used the fact that the tadpole and wave function renormalization counterterms do not receive contributions at
leading order in M. We also note that although two tadpole counterterms are presteand ot , they are related through
the gap equatiofi22]—for instance, by requesting that the leading order ground state congitidhbe preserved in higher
orders, wherey is the vacuum expectation value of thefield in the spontaneously broken phase.

At this point it is useful to note that since the two Lagrangeans of &)and(4) are equivalent, a linear combination will
also describe the same physics. This observation can be exploited for performing Bogolobov-Parasivk-Hepp-Zimmermann
(BPHZ) renormalization in a more elegant way, as will be explained in the following. Beyond leading ordeN i i&/
advantageous to work with a linear combination of the potential parts of Lagranggaarsd £,. Keeping only the contri-
butions relevant for next-to-leading order calculations, we consider in fact the following Lagrangian:

2
1+ =62, SN+2

1+252
— 57 N

N

3
Tt 5>\<0>) 524

N (3 1
+X2?r—+5)\(0)+ N

+%(0"’u0')(07’“0') X

1
£3=§(ﬁﬂﬁ')(ﬁ“ﬁ')

VNv| 1+ ! 82 +6Z L 72+ o —Vza‘t L 1+ ! 6Z,+26Z Lo 1+ ! 6Z,+26Z
XNV 1+ 5 (8Z,+ 6Z,) | = 5 (7°+ 0%) 5 Oty = 5 X7 N (9Zx =) | T X0 N (92 o)
—V_3 St [+ on 0|5 1 Lottt a6z, |+ Sy [ANVZOR+ (7224 o+ 27202+ A Nver( 72+ 02
o N XY x5 5N Y N2[ Voot (Tt o o vo(m+o9)].

(6)

Here K is in principle a completely arbitrary constant. We an O(1/N) counterterm. We will choose the actual value of
have the freedom to choose it so that actual calculations arne so that the renormalization procedure is more transparent
more convenient. We will considés to be of order 1 inthe at NLO in the 1N expansion.

1/N expansion. Thus the potential part 6§ is regarded as The Feynman rules can be read out directly from the
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(N —1)a0(s) = Q _________ + counterterm In the expressions above, apart from the expected Higgs
pole, one notices the presence of a tachyonic pole. It appears
at an energy= —Atz, which is given by the following tran-

FIG. 2. The leading order bubble diagram. !
scendental equation:

above expression. Within this diagrammatical rearrangement 2 2

; . . % 1 A; 3
of the sigma model, counting powers ofN\NLin multiloop ————logl — |+ —=0. 9
diagrams is straightforward: closed Goldstone loops contrib- Af 3272 w?l N

ute a factorN, while xx propagators give a il factor, and

mixed yo propagators contribute {N. At the same time, The tachyon scale\, differs from the Landau scalé

the absence of quartic couplings at the tree level reduces ,ue“sﬂz”‘ by a shift of ordervzlAf.

considerably the number of possible topologies. The leading order tachyon is a well-known difficulty of
For these reasons, for a given process and a given order the 1N nonperturbative treatment of the sigma model. From

1IN, it is easy to write down the Feynman graphs of all loopthe technical point of view, it induces causality violating

orders. As will become clear from the discussion of two- andeffects in the theory. As long as one is concerned only with

three-point functions, there is always a finite number of multhe leading order, one can try to make sense of the result by

tiloop topologies, where one can only insert chains of onetimiting its validity to an energy range considerably smaller

loop bubbles in theyy and yo propagators without increas- than the tachyon scale. However, there is no such easy way

ing the 1N order of the graph. out for calculations beyond leading order because the
We emphasize that this combinatorial rearrangement ofachyon appears then in loops.

the sigma model is quite crucial. It is possible to calculate One way to circumvent this is by making the assumption

explicitly nonperturbative processes in the Higgs sector prethat the tachyon indicates the triviality of the theory. This

cisely because the combinatorial rearrangement enables ogets a limit for the validity of the N result at high energy.

to write down explicitly and in a manageable way the dia-At some energy scale new physics sets in. This scale is pre-

grams of all loop orders, without truncating the perturbativesumably of the order of the tachyon scale, but not necessarily

expansion. equal or lower. Then an obvious treatment is to introduce a

cutoff in the loop integration§23]. This is then interpreted

as a model of nondecoupling effects from an unknown heavy

) ] ) ) ) sector. However, in this approach the momentum cutoff has
It is straightforward to derive the two-point functions of 4 pe |ower than the tachyon scale, which is necessary for

the theory at leading order in N/ This was done, for in-  computational purposes only and is not motivated physically.

stance, in Ref[19]. The only diagram involved is the one- aiso, a loop momentum cutoff spoils the gauge invariance of

loop bubble diagram shown in Fig. 2. One finds the follow-he gauged model. It also introduces quadratic dependences

B. Tachyonic regularization

ing leading order propagators: on the cutoff scale, and these are known in effective theories
) not to be directly related to heavy boson mass effects—
D, (s)= : actually counterexamples were found in the literature in two-

7 s—m&(s)’ loop calculationg24].

We use a different treatment of the tachyonic pi@8],
1 ismi(s) which is more convenient for higher-order calculations in the
()= — ———, 1/N expansion. We subtract the tachyon minimally at its
o Nv? s—m?(s) pole, which means using the following propagators instead
of those of Eqs(7):

D

1 im%s
et Dw<s>=i[ T
S—M*(S) S+Af
i is [ m?(s kA2
Dwiwj(s):_5ij ) (7) D, (S)=— (s) + t ,
s Xx NvZ|s—m?(s) s+A?
where i m2(s) KAtz
D, (s)= + , 10
v2 V2 xo(S) JINv [s—m%(s)  s+AZ (10
m*(s) = = —. (8
3 3 1 Stipy where
—+a9%s) ———=log| — —
N N 327 M
1
o . . o K= —— (1D)
Here &(9(s)= a9(s) + 609 is the ultraviolet finite part of 1+ AZ/32722
the self-energy diagram of Fig. 1, andis the subtraction
scale. is the residuum of the tachyonic pole.
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The justification of the tachyonic regularization intro- o) = e <[’]> ________ R {:} _________ R <l:€' ,,,,,,,,,
duced above is the following. Green functions—such as the 2 Ve A A Y
two-point functions above—are calculated in thsl BHxpan-
sion starting with the perturbative expansion in the coupling " A """"" ! A """""
constanix of the coefficients of the N expansion. Then all . ' o W:Mg
Feynman graphs of all loop orders which contribute to a ‘¥ = Tt e
given order in IN are calculated explicitly and summed up. b Y
Since the IN coefficient is only known as a power series in "9 = = o 'iiW
\ to start with, it will be determined by its perturbative ex- a . G
pansion up to a function aof, which vgnishes ideqtically in iR = —u—
perturbation theory, of the type'®. Since the residuum of P S
the tachyon is such a function whose perturbative expansion - ... g:::? -
vanishes, its presence cannot be taken seriously as a predic- ——
tion of the theory and as an indication that the theory is ill | C ®
defined. While thex¢* theory is widely believed to be  ~#" = e
trivial, the tachyon in the N expansion is certainly not a : o
rigorous proof thereof. Sinel) = F< * E"[N””:[ " FSQ.E

The tachyonic regularization is a way of making sense of
the 1N expansion in higher orders without making any ex- FIG. 3. Infinite sums of multiloop Feynman diagrams which
plicit assumption about whether the theory is trivial or not.contribute in next-to-leading order inN/to the two- and three-
When we use the minimal tachyon subtraction scheme ofoint functions of theD(N) sigma model. The blob on propagators
Egs. (10), we merely use the freedom to add a functiondenotes the summed-up leading order propagators. Note thatithe
which vanishes in perturbation theory for restoring the caupropagator at leading order inNis a free propagator. One of the
sality of the theory. If one further takes the view that thegraphs above is shown in expanded form in Fig. 4.
theory is trivial and wants to include nondecoupling effects o
from a heavy sector, such effects can be superimposed ov& Self-energy graph in Fig. 4.
the whole calculations. This could be done, for instance, by The graphs involvedA;, B, C;, D;, E;, F;, andT, are
superimposing an explicit momentum cutoff or by introduc- " general ultraV|oIe_t dlvergent._ Since our strategy is to cal-
ing higher-dimension operators. We note that our tachyoni€ulate them numerically, we first subtract the divergences
regularization does not require the scale of new physics to b@nd subdivergences of these graphs. An inspection of the
strictly under the tachyon scale. On the contrary, the naivé@ynman diagrams which compose each graph of Fig. 3 re-
momentum cutoff treatment of the tachyon pole requires ayeals that the ultraviolet dlvergences are polyﬂomlgl, just as
cutoff scale strictly under the tachyon scale for technical realfl they were usual Feynman diagrams, and in spite of the
sons. infinite number of loops involved. We define in Figs. 5, 6,

and 7 a set of ultraviolet-subtracted grapghs B;, C;, D;,

E,, andF;. They are finite and thus can be calculated by
direct numerical integration.

The numerical evaluation of the ultraviolet finite, sub-

Beyond leading order in ¥, actual calculations have to tracted graphs is done by using a numerical method for the
be performed numerically because in general the multiloogalculation of massive three-loop Feynman diagrd26.
diagrams involved are not manageable analytically. ThisThis method reduces all subtracted graphs to a two-
brings about some technical complications related to thelimensional integral representation. After an appropriate ro-
treatment of ultraviolet divergences in conjunction with nu-tation of the integration path in the complex plane, these
merical integration. two-dimensional integrals can be evaluated numeri¢aby.

A useful observation is that the final result in theN1/ The subtracted graphs are used further for calculating
expansion is free of any renormalization scheme ambiguityphysical amplitudes. Here we consider the scattering pro-
This is because it is exact at all orders in the coupling congessesff—H-—f'f’ and ff—H—ZZWW. Phenomeno-
stant. This leaves us the freedom of working in any intermeiggically, they are important as a Higgs boson production
diate renormalization scheme at our convenience, since th@echanism at a possible muon collider. Also the heavy
final result is independent of that. This can be best eXplOiteqj-”ggS effects in these Scattering processes are related to

C. Nonperturbative two- and three-point functions at NLO
and scattering amplitudes

to simplify to some extent the numerical work. those in the gluon fusion process, which is the main Higgs
The graphs needed for the calculation of all two- and

three-point functions of the theory at next-to-leading order in o

1/N are shown in Fig. 3. In addition to the two- and three- ‘.- . g Qx

point graphs, there is also one tadpole graph which is needed  i4i(s)= - <| b -------- = XX O O

for the determination of the tadpole countertesiy. Each R P O

graph is in fact a sum of multiloop Feynman graphs which
are all of the same order inN/and of various orders in the FIG. 4. Multiloop diagrams with three-loop topology which
coupling constank. This is shown explicitly for one particu- contribute to theyy propagator in next-to-leading order.
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boson production mechanism at the LHC. ) = e 4.D VVVVVVVV o ™1
To start with, we consider the matrix element for the fer- . Lol
mion scattering process —H—f'f’ at Iea_ding order in the PR J'D _______ b % N overall subtraction
fermion mass. Then the correction to tHéf vertex is given * ==
simply by the ratio of the wave function renormalization s = - {:} ......... o {:} .......
factorsZ,/Z .., because true vertex diagrams are of higher
order in the fermion mass. The calculation reduces essenidys) = ol ® oo - AAAAAAAAA
tially to evaluating the Higgs propagator. Up to the overall
factor from the tree level Yukawa couplings, the amplitude is S ? ......... —  overall subtraction

given by the following expression, where we included the
relevant counterterms in addition to the pur® Thultiloop iAy(s) =
graphs of Fig. 3:

©
<

1 — e e M F2X e ED -------- — overall subtraction
M= , . \
1 idss) = | e E— ) —
s—m?(s) 1_N f1(s) q‘:}’ @
- Q} ,,,,,,,, PR -
2 2
m v FIG. 5. Definition of the subtractegy self-ener raphs. The
— 2 X gy grap
fa(s)= v2 () + 6N +2 m(s) 0L, +8Kag(s) symbol ¢ indicates the differentiation with respect to the external
momentum of the box.
+2a0(8)0Zy | + 2] 7(8) = 02, ~ 8K ao(s)] 8Z,=C1(0)+Cy(0) +2By(0)arg( u>—0),  (13)
v? S and also we note the identity
+———|B(s)—6t,+8K+2—d6Z_|. (12
m?(s) X v? 8t =B,(0)— By(0). (14)

One can easily see in the above expression that one could Then the actual multiloop W graphs froma, B, and y
have done without a wave function renormalization for thecOmbine with the counterterms and give precisely the sub-
unphysical y field and, also, without theK counterterm tracted multiloop graph#,, B;, andC; defined in Figs. 5
which was introduced in Eg6) only for convenience pur- and 6:
poses. It can be seen easily that these terms cancel out trivi-
ally in the expression above. In fact, since there is no Higgs
external leg in the process considered, it is also unnecessary
to introduce a wave function renormalization for tindield.

As we discussed in Sec. Il A, these counterterms are only vZ o[, s—m?(s)
introduced for convenience. If one cancels out these spurious + mz—(s) B(s)—2 T(5Zo_ 6Zz) |-
terms in the expression above, one is left with a sum of
multiloop diagrams which are individually ultraviolet diver-

gent. Since the whole expression is a physical quantity, th%

ultraviolet divergences cancel out among the multiloop dia- Ictually, thehflnlte terrlm 620_5277) mhthls expressmré sim-
grams. However, the actual cancellation pattern is not verfyY Means that one has to subtract the momentum derivative

transparent because of the complexity of the diagrams. Be-

m(s) .
fi(s)= T[Q(SH SN+ 2%(s)

(15

cause we need to calculate théNlgraphs numerically, we L By(s) = s _ e _
need the expressions to be ultraviolet convergent. At the T g
same time it is very complicated to extract the ultraviolet 2z, - st’ _ P
divergences and subdivergences from the graphs of Fig. 3 as T ol
1/e poles, as is done in usual Feynman diagrams. In more iBGi) = {:fmw o {i;
complicated processes, such as three- and four-point pro-
cesses, the cancellation is even more mvolvgd. o) = e q:l’“w” o 4%

The K and 6Z, counterterms serve as vehicles of the ul- / Nl
traviolet cancellations among the multiloop diagrams. For o <] R Te]
this purpose we assign to these two counterterms the follow- d \id
ing expressions: D) = “\.J* R ]

3
_ 1 FIG. 6. Definition of the subtractedo, yo, and# self-energy
K=—~2B5(0),
4 graphs.
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izbi(s) = Ww“: - w:‘
ivvﬁﬁl(g - { - ,_
ighl) = om;f'[ B wf[_

. S A 3
= oL -
. Ll
o 4 E R E
ol L

FIG. 7. Definition of the subtracted vertex graphs.

of diagramD (s) from diagramB(s), rather than the deriva-
tive of B,(s), as defined in Fig. 6. The finite contribution
S\ which is left in Eq.(15) simply reminds us that for

specifying the strength of the coupling of the theory, a massio

scale needs to be given along with the value\oA shift in
S\ can be absorbed into a shift in the subtraction pgpint
As such,s)\" can be shifted to zero.

Along the same lines, the following expression is ob-
tained for the amplitude of théf —H—ZZ, WW scattering
process:

1
™ m(s) 1_Nf2
ww— )
1
N s—m?(s)| 1— —f4(s)
N
m?(s) _ A v2
fi(s)= Z a(5)+27(5)+m2—(s)
. —m?(s) }
X|B(8)=2——5—(62,=0Zy) .
m?(s) _ A ) vi o
fa(s)= Z a(s)+ 7(8)—¢(S)—m2—(s)n(8)- (16)

All quantities involved in this expressio#, 3, ¥, %, and
¢, are sums of the subtracted graphs defined in Figs. 4, 5,

and 7. They can be calculated directly by numerical integra
tion [25,21].

D. Saturation effect

The shape of the Higgs resonance can be obtained no
perturbatively in the quartic Higgs coupling at next-to-
leading order in the N expansion by evaluating numerically
the expressions foM; and My given in the previous
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FIG. 8. The line shape of the Higgs resonance in the scattering
processe$f —H—f'f’ andff —H—ZZ WW. We marked the po-
sition of the maxima of the resonandsslid line for the 1N result
and dashed line for the perturbative result at two 19ops

plings. The next-to-leading orderN/results are very close
to the two-loop perturbation theory line shapes gy up to
about 800—900 GeV. The agreement confirms the consis-
tency of the 1IN approach in higher orders and establishes
that the next-to-leading order is an excellent approximation.
At higher quartic coupling a saturation effect sets in. The
maximum of the resonance does not shift towards higher
energy; the resonance only becomes wider. To make this
effect clearer, we extract some mashl (,) and width
(I'peal Vvariables from the position and height of the reso-
nance in fermion scattering. The definition of the variables
M peak@ndI’,eq¢is the following. We determined numerically
the position and height of the maximum of the resonance.
Then M peq and I' e @are the mass and width of a Breit-
igner resonance which has the same height and position of
e peak. Of course, the actual Higgs line shapes are not
exactly of Breit-Wigner type. HoweveM eq and I e de-
scribe reasonably well the main features of the resonance.
We compare in Fig. 9 th#l peq I pea relation with the per-
turbative result. Of course, one is free to choose any other
parametrization of the resonance, but tMgc,. and I' peax
variables which we use here are sufficient for comparing
with perturbation theory.
As one can see in Fig. 8, the saturation effect is present in

section. These two scattering processes are the main produte ff—H—Z2Z,WW scattering process as well, at a com-
tion and decay modes for the Higgs boson at a possible mugparable energy. The precise maximum position of the peak is
collider. Also these processes are related to Higgs boson pr@rocess dependent because the resonance shape is deformed

duction by gluon fusion8]. This is the main production
mechanism at hadron colliders such as the LHC.
We give in Fig. 8 the resulting line shapes of the Higgs

by the energy dependence of different contributions, such as
the vertex corrections in this case. A universal way of pa-
rametrizing the saturation effect would be by using the pole

resonance. One feature of these line shapes is that they agneass and width of the Higgs particle. Extracting this in the

remarkably well with the perturbative results for low cou-

next-to-leading M approach is numerically more difficult
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— _ OF OTHER THEORIES: 1/N QED
FIG. 9. The saturation effect in thEf —H—f'f’ scattering.

The mass and width variabled e, and I' ez are related to the In this section we would like to comment briefly on the
position and height of the Higgs resonance as explained in the texperspectives of extending this kind of nonperturbative meth-
ods to solving other field theories of physical interest.
because the subtracted\lgraphs need to be continued into  \we already mentioned that the applicability of the non-
the second Riemann sheet for solving the pole equation. Thiserturbative 1IN expansion, especially in higher orders, de-
is not available yet. _ pends crucially on the particular theory under consideration.
We note that the two-loop perturbative curves feature &ne needs to arrange the perturbative expansion of the
saturation effect as well, with a saturation mass quite close tgheory in such a way that the various loop contributions can
the 1IN curves. However, saturation appears only at the tWope sorted out by powers ofid/in a manageable way, so that
loop level. In the saturation zone the radiative correctiongne graphs of all loop orders can be explicitly calculated and
appear to blow up. In addition, the three-loop correction isg;;mmed up for a given order ofNL/
not known so far. For these reasons, perturbative evidence gych a theory, where the rearrangement of perturbation
for the saturation effect is considerably less reliable than theneory is straightforward, is ordinary QED. QED can be seen
1N treatment, which is valid independently of the strengthyg g example where theNL/expansion works poorly be-
of the coupling. _ o cause the value dfl is too small. QED can be organized as
The saturation effect provides more insight into the way, 1N expansion by introducindl species of electrons and at
perturbation theory breaks down and radiative correctiong,a same time dividing the gauge coupling ¥y. Then one
blow up in the Higgs sector. The dramatical failure of per-goq.q immediately that the counting of powers dfl Pro-
eeds similarly as in the case of the sigma model. Ordinary
QED is recovered in the limiN=1. One expects the con-
. . . l/ergence of the N expansion to be poor because of the
Less violent problems can show up in the form of considers ;e of the expansion parameter.
able scheme ambiguities of the results. At the same time, \y/a show in Fig. 10 the Feynman diagrams which contrib-
however, it is puzzling that at the 1 TeV scale the quartic s 1 the anomalous magnetic moment of the electron in

coupling is numerically not exceedingly large yet. The quarg,qing order of M. They are the same diagrams discussed
tic coupling only becomes of the order of unity when the.

X . in Ref. [27] in the context of the large order behavior of
tree-level on-shell Higgs mass is of the order of 1.5 TeV.qep ‘e refer to this work for details on the calculation of

Na';/elg’ tt.h's Itsh Wher(;: onetvyoulltzj exp?ﬁt heavy pr?blem: tfr?rthe contributions to the anomalous magnetic moment due to
petr urt_a |onff E;;O?r/] 0 Sei m.t' rom | € perspe_lghlve 0 ese diagrams. The equivalent of the tachyonic regulariza-
saturation €fiect, Iné expianation IS clear now. 1h€ mass n in the O(N)-symmetric sigma model is the subtraction

the Higgs poson 1S not a good exp.ansmn.parameter beyoq the loop momentum integration of the diagrams of Fig. 10
the saturation point. In the saturation region the mass doe(§f a term of the typee!™, which vanishes in perturbation

not increase when the coupling' is enhanced. n fact, th‘f“heory, as discussed in RdR7]. Note that because of the
width of the resonance as a function .Of t_he mass Is a Oloubl‘?/'alue of the coupling constant, in QED the Landau pole is at
valued function. The existence of this singular point results, very-high-energy scale

in a blowup Of. radiative corrections l_::eyond this point. '_I'h|s The perturbative results for the anomalous magnetic mo-
suggests that it may be possible to improve the behavior %ent of the electron up to four loops d28]

the perturbative expansion by choosing an expansion param-

eter more appropriate than the on-shell mass, but we did not

investigate this point any further. a1-100p= 0.5,
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ay.100p= — 0.328478965, may prevent one from obtaining the desired accuracy. Then
the 1N expansion is expected to be a better alternative be-

ag.jp0p= 1.181241, cause it is free of scheme ambiguities and the solution is
valid for strong coupling as well.

@4-100p= — 1.557, 7 Therefore it is not surprising that the NL/expansion

works so well in heavy Higgs boson physics, whéte 4

and their contribution to the anomalous magnetic moment igind\ is of order 1.
S pan(alm)". Extending these computational tools in the case of non-

By numerical integration one can calculate the LO contri-Abelian gauge theories is very difficult because of the pres-
bution in the 1N expansion to the anomalous magnetic mo-ence of trilinear and quartic couplings of the gauge bosons.
ment of the electron. The result &°'N=0.001161494. |n the case of QCD the topological structure of the graphs
The first few terms in the loop expansion of this result are which appear in the N, expansion is knowfi29], but so far
they could not be calculated explicitly in four dimensions.
The well-known solution of QCD in two dimensiorf80]
LO N was possible because in this case the quartic and trilinear
83700p — 0.015687421, couplings are absent, which reduces the types of topologies
of Feynman graphs appearing in higher-loop orders.

LOI/N _
a1—Ioop _0'5'

a550an = 0.002558524,

23500p = 0-000876865, V. CONCLUSIONS
ag_ololo/g=0.000470905, We investigated in some detail the scalar sector of the
standard model at strong coupling. For doing this we used
agﬂolo’g‘=0.000344687, both perturbation theory up to two-loop order and a nonper-
turbative treatment within the next-to-leading ordeX ¥x-
a%ﬁolég‘zo.000318119, pansion. With these approaches we treated the main heavy
Higgs boson decay modes as well as two scattering processes
ag oan = 0.000352804, where the Higgs line shape can be obsenfdd,H—f'f’
Lo 1N and ff—-H—ZZ,WW. These two scattering processes are
8g.100p — 0.000455370, the mains-channel production modes of the Higgs boson at
Lo 1N muon colliders and can also be related to the heavy Higgs
a10.j0op— 0-000668824, boson effects in the gluon fusion process, which is the domi-
nant production mechanism at the LHE].
ajs? oop= 0.001099482, The results show in all cases a very good agreement be-
tween perturbation theory and theNléxpansion up to 800—
a5y joop=0.001997590, 900 GeV. They confirm the existence of a Higgs mass satu-
ration effect in both scattering processes analyzed, which
a&?_ﬂo’o’“pz 0.003971440, (18)  seems to be a general feature of resonant Higgs boson pro-

cesses. The nonperturbative mass saturation value is just un-

such that their contribution to the anomalous magnetic moder 1 TeV for both processes. As a preliminary study based
ment is3 ,ak® *N(«/m)". The numbers above agree with the on perturbation theory has shown, it is expected that the
results given in Ref[27]. nonperturbative mass saturation effect will play an important

By comparing the LO M result @©°™ role in the experimental strategy for heavy Higgs boson
=0.001161494) with perturbation theory, one sees that thisearches at the LHC.
is only marginally different from the one-loop perturbative A comparison of the nonperturbative behavior at strong
result (0.0011614098 Comparing the perturbative expan- coupling to the pattern observed in perturbation theory in
sion of the LO 1N result[Egs. (18)] and the perturbation higher-loop orders suggests that radiative corrections in the
theory result[Egs. (17)], it can be seen that the LON/ scalar sector blow up very strongly at about 1 TeV mainly
Feynman diagrams are not numerically the main contributiolbecause of the nonperturbative mass saturation effect, rather
from higher-loop orders in perturbation theory. than because of a genuinely strong coupling. As a result of

This shows that the usefulness of thé&l xpansion ver- this dynamical effect, the mass of the Higgs boson, although
sus perturbation theory depends crucially on the valubl of widely used as a parametrization of the coupling in phenom-
and of the coupling constant. N is large enough, the other enological studies so far, is not an appropriate parameter in
diagrams appearing in higher-order perturbation theory bethe saturation region.
sides those included in the leading term in thid &kpansion On the theoretical side, we have shown that in the case of
will be suppressed by powers ofNL/ This way the I  the O(N)-symmetric sigma model, a reliable nonperturbative
expansion can converge faster than perturbation theory. Bolution can be obtained by using a higher-ordé¥ ékpan-
the coupling constant is large, perturbation theory starts tsion, which is free of renormalization scheme ambiguities
diverge already at low orders and the scheme ambiguitieand which is valid at strong coupling as well. We discussed

114003-10
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the tachyonic regularization which we introduced for calcu-
lating higher orders in the il expansion. We also discussed

the renormalization within the I/ expansion in higher or-
ders.
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