
PHYSICAL REVIEW D, VOLUME 60, 114003
Testing nonperturbative techniques in the scalar sector of the standard model
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We discuss the current picture of the standard model scalar sector at strong coupling. We compare the
pattern observed in the scalar sector in perturbation theory up to two loops with the nonperturbative solution
obtained by a next-to-leading order 1/N expansion. In particular, we analyze two resonant Higgs scattering

processessf f̄→H→ f 8 f̄ 8 and f f̄→H→ZZ,WW. We describe the ingredients of the nonperturbative calcula-
tion, such as tachyonic regularization, higher order 1/N intermediate renormalization, and the numerical meth-
ods for evaluating the graphs. We discuss briefly the perspectives and usefulness of extending these nonper-
turbative methods to other theories.@S0556-2821~99!03119-7#

PACS number~s!: 12.38.Bx, 12.38.Lg
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I. INTRODUCTION

The possibility that electroweak symmetry is broken by
strongly interacting scalar sector has received consider
attention in the literature. Interesting scenarios were p
posed, such as the possibility of a Higgs boson coup
strongly to vector bosons and to itself@1#, and the formation
of a spectrum of bound states at a higher scale which wo
restore unitarity in scattering processes@2#, as well as tech-
nicolor scenarios@3#. Also, phenomenological models we
proposed for studying quantitatively the implications
strong interactions in the electroweak symmetry break
sector, such as the BESS model@4#.

However, beyond the phenomenological models of stro
interactions, an approach based on first principles was m
ing because of the lack of a nonperturbative solution and
technical difficulties in extending perturbation theory
higher-loop orders. Realistic calculations on a lattice
physical processes involving the Higgs sector are still c
fronted with technical limitations set, among other issues,
the size of the lattice. 1/N expansions in the Higgs secto
were only performed at leading order, which is a rather p
approximation. Perturbation theory in the Higgs sector
yond one loop becomes very difficult because it involv
Feynman diagrams with massive internal lines and finite
ternal momenta, for which already at two loops there are
general analytical solutions available.

Recently, considerable progress has been made in un
standing from first principles the nature of the stand
Higgs sector when its coupling becomes strong. This is
mainly to technical advances in massive higher-loop te
niques and in higher-order nonperturbative 1/N expansions.
In this paper we would like to discuss the perturbative a
nonperturbative aspects of this behavior at strong coupli

The major question which will be addressed by futu
experiments at the CERN Large Hadson Collider~LHC! is
how the electroweak symmetry is broken in nature. While
may or may not turn out to be actually broken by stron
nonperturbative interactions, the Higgs sector remain
0556-2821/99/60~11!/114003~11!/$15.00 60 1140
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fairly simple, but not trivial model, where new perturbativ
and nonperturbative solutions can be tested, in view of
plying them to other, possibly more complicated theories

II. HIGHER-ORDER PERTURBATION THEORY

Here we briefly review the results available in perturb
tion theory, for comparing them to the nonperturbative
sults discussed in the following sections. The heavy Hig
boson decay modes discussed here are so far the main re
available at two loops. From these results, the two scatt

amplitudes which we discuss in Sec. III C,f f̄→H→ f 8 f̄ 8

and f f̄→H→ZZ,WW, can be obtained quite trivially@5#.
Apart from the main decay modes of a heavy Higgs bos

(t t̄ , WW, ZZ!, also the high-energy limit of vector boso
scattering is known at the two-loop level@6#. The vector
boson scattering is known completely only at the one-lo
level @7#. This is due to the complexity of the diagrams i
volved in a complete two-loop treatment. By using the exi
ing two- and three-point functions, some other scatter
processes of phenomenological interest can be derived@5,8#.
For a discussion of the existing results concerning effects
enhanced electroweak strength in the standard model at
loop order, see, for instance, Ref.@9#.

The existing calculations of leadingmH radiative correc-
tions in the standard Higgs sector at the two-loop level
based on using the equivalence theorem in Landau ga
This way radiative corrections involve only diagrams wi
scalars on the internal lines, so that the problem at h
becomes much simpler. This procedure was proposed for
first time in Ref. @10#, where the one-loop correction t
Higgs boson decay into vector bosons was calculated in
way.

The main decay modes of heavy Higgs bosons are
pairs of vector bosons and into top quark pairs. At lead
order, these decay width are given by the following expr
sions:
©1999 The American Physical Society03-1
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G
H→t t̄

~ tree!
5

3g2

32p

mHmt
2

mW
2 S 124

mt
2

mH
2 D 3/2

,

GH→W1W2
~ tree!

5
g2

64p

mH
3

mW
2 S 124

mW
2

mH
2 D 1/2S 124

mW
2

mH
2 112

mW
4

mH
4 D ,

GH→Z0Z0
~ tree!

5
g2

128p

mH
3

mW
2 S 124

mZ
2

mH
2 D 1/2S 124

mZ
2

mH
2 112

mZ
4

mH
4 D . ~1!

The radiative corrections of enhanced electroweak strength up to two-loop order are given by the following multip
factors@6#:

GH→t t̄5G
H→t t̄

~ tree! F11lS 13

8
2

p)

4 D2l2~0.5102362.531024!G
5G

H→t t̄

~ tree!
@110.264650l2~0.5102362.531024!l2#,

GH→W1W2,Z0Z05GH→W1W2,Z0Z0
~ tree! F11lS 19

8
1

5p2

24
2

3)p

4 D1l2~0.9710368.231024!G
5GH→W1W2,Z0Z0

~ tree!
@110.350119l1~0.9710368.231024!l2#. ~2!

FIG. 1. The magnitude of the leadingmH radiative corrections to theH→t t̄ ~a! and theH→ZZ,WW ~b! decays. The plots show th
ratios of the decay widths at one loop~solid line! and two loops~dashed line! to the tree level decay widths as a function of the on-sh
Higgs boson mass.
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Here

l5S g

4p

mH

mW
D 2

is the quartic coupling of the scalar sector.
In the above expressions, the strength of the coupling

the scalar sector is parametrized by the on-shell Higgs bo
massmH , which is defined by the on-shell renormalizatio
condition Re@PHH

21(s5mH
2 )#50. We plot the correction factor

given by Eqs.~2! in Fig. 1. One can see that for both corre
tion factors the two-loop correction becomes as large as
one-loop correction formH about 1 TeV~1.1 TeV for H

→ f f̄ and 930 GeV forH→WW,ZZ). Even if the higher-
loop corrections are not yet known, this pattern suggests
the radiative corrections blow up strongly aroundmH
11400
of
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;1 TeV. Note that the scheme ambiguities associated w
the two-loop result become substantial already for consid
ably smaller values of the Higgs boson mass@11#. Of course,
similar conclusions can be obtained from other scatter
processes apart from the decay modes. This behavior
agreement with well-established results regarding pertu
tive unitarity violation in vector boson scattering at the tr
level @12#.

The point where the perturbative expansion blows up
pends on the expansion parameter and, therefore, on
renormalization scheme. So far, the two-loop results m
tioned above were translated into the modified minimal s
traction scheme (MS) @11# and the pole@5,13# renormaliza-
tion schemes for processes at the Higgs boson mass en
scale, in the hope that perturbation theory may show be
convergence properties in certain schemes. An overall c
3-2
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clusion of these studies is that theMS scheme diverges
somewhat sooner and has larger scheme uncertainty tha
on-shell scheme, while the pole scheme appears to h
slightly better convergence properties than the on-s
scheme. For a more refined discussion of the scheme
gauge dependence, see Ref.@14#

While the existing higher-order perturbative results in t
scalar sector are consistent with a strong blowup of radia
corrections at aboutmH;1 TeV, this fact appears someho
puzzling if one considers that the quartic coupling of t
scalar sector,

l5S g

4p

mH

mW
D 2

,

is only of order 0.4 formH;1 TeV.
From the perspective of the nonperturbative solution to

discussed in the following section, the reason for this beh
ior is the Higgs boson mass saturation effect. Because o
dynamics of the scalar sector, the on-shell Higgs boson m
is not a good parametrization of the quartic coupling
values larger thanmH;1 TeV. However, as will be shown
in the following section, at the fundamental level, the sca
sector is perfectly well defined at higher values of the qua
coupling. Well-behaved, unitary solutions can be obtain
for various processes by using nonperturbative methods

III NONPERTURBATIVE 1/ N SOLUTION

The 1/N expansion aims at a nonperturbative solution
order to avoid the problems of perturbation theory at la
coupling. Perturbation theory ceases to be a satisfactory
lution when radiative corrections blow up already at low
loop orders and the renormalization scheme ambiguity is
large that the result becomes unreliable.

The 1/N approach is free of these problems because
radiative corrections of all loop orders are explicitly summ
up. The idea is to treat the Higgs sector as
O(N)-symmetric sigma model, whereN54 for the standard
model, and to expand in 1/N instead of the quartic coupling
The solution is then valid independently of the strength
the coupling—the quality of the approximation depends
the value ofN. Also, it is completely free of renormalizatio
scheme ambiguities. One can work in any intermedi
renormalization scheme and still obtain the same result.

Another interesting nonperturbative feature of the 1/N ex-
pansion of the sigma model is the finiteness of wave func
renormalization constants. This is a property of the ex
nonperturbative solution and was checked at next-to-lead
order ~NLO! in 1/N. However, the renormalization of th
coupling constants is ultraviolet divergent.

As an extra bonus, the 1/N solution provides naturally a
consistent treatment of resonant scattering amplitudes.
was known as a long-standing issue in perturbation the
The essence of the problem is that around a resonance
has to perform a Dyson summation, which in perturbat
theory at any finite order introduces incomplete higher-or
contributions which are unphysical. In gauge theories t
leads to gauge-dependent results. A solution to this prob
11400
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was proposed in Refs.@15, 16, 17#, which is based on a
Laurent expansion around the physical pole. Within pert
bation theory, this solves the problem in a fundamental w
and applies consistently to all orders in perturbation theo
Another approach which was proposed is to use gau
invariant pinch technique self-energies in the Dyson summ
tion. For phenomenological purposes only, other approac
to treat resonant amplitudes were proposed in the literat
which amount to special resummations of low-order resu
@18#. Such special resummations may be easier to use
certain phenomenological applications, such as Monte C
~MC! event generators. At the same time they are less f
damental theoretically—some of them still contain unphy
cal higher-order terms or apply only to tree level or one-lo
calculations.

Therefore, within perturbation theory resonant amplitud
require some care for a consistent treatment—for instan
along the lines of Refs.@16, 17#. The 1/N solution provides
automatically a correct treatment of resonant amplitudes
cause it is an all-order solution in the loop expansion, and
special treatment is necessary.

However, the 1/N solution still has some residual amb
guity which can be related to the triviality problem and
possible nondecoupling effects from a hidden heavy sec
Technically, this appears in the tachyonic regularization. P
turbation theory is used at an intermediary stage in the u
1/N treatment, but perturbation theory does not determine
solution uniquely. This is the physical origin of the ambig
ity entailed in the tachyonic regularization.

A. 1/N combinatorial rearrangement and diagrammatics

We start with the usual Lagrangian of aO(N)-symmetric
sigma model:

L5
1

2
]nF0]nF02

m0
2

2
F0

22
l0

4!N
F0

4,

F0[~f0
1,f0

2,...,f0
N!. ~3!

From this Lagrangian one can in principle derive direc
a perturbative expansion for Green functions and classify
Feynman diagrams according to their order in 1/N. However,
beyond leading order the combinatorics becomes very c
plicated. In order to perform explicit calculations beyon
leading order, it is useful to perform a rearrangement of p
turbation theory. A useful trick for doing this was propos
in Ref. @19#. It consists of adding a nondynamical term to t
Lagrangian:

L25L11
3N

2l0
S x02

l0

6N
F0

22m0
2D 2

5
1

2
]nF0]nF02

1

2
x0F0

21
3N

2l0
x0

22
3m0

2N

l0
x01const.

~4!

This involves the introduction of an unphysical auxilia
field x. As one can see, the equation of motion forx is just
3-3
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an equation of constraint, and therefore the physical sp
trum and the dynamics of the model remain unchanged.
effect of this trick is that the Feynman rules are chang
Namely, the quartic couplings are eliminated. The only v
tices left are trilinear, and involve onex field and two physi-
cal scalars. This simplifies enormously the combinatorics
Feynman graphs in higher orders.

We note that some other rearrangement schemes with
ferent properties were discussed for theO(N)-symmetric
sigma model in Ref.@20#. To our best knowledge, thes
schemes were not applied so far in actual calculations.

In the following we describe the counterterm structu
which is used for performing renormalization at NLO in th
e
a

11400
c-
e
.
-

f

if-

1/N expansion. A somewhat different approach is presen
in Ref. @21#. It leads to the same final result, since this is
all-order solution in the coupling constant. The counterte
structure is intimately related to the numerical metho
which we use to calculate the diagrams involved. We refe
Ref. @21# for a detailed discussion of these technical aspe

Renormalization is performed in principle order by ord
in perturbation theory. However, for performing actual c
culations of higher order in 1/N, it is of advantage to group
all counterterms of various loop orders and which are of
same 1/N order into the same 1/N counterterm. We define
the 1/N counterterms as follows:
utions at

r

ll
ermann
3

l0
5

3

l
1Dl[

3

l
1dl~0!1

1

N
dl1OS 1

N2D ,

3m0

l0
52

v2

2
~11Dt ![2

v2

2 F11
1

N
dt1OS 1

N2D G ,
f0

i 5p iZp[p iF11
1

N
dZp1OS 1

N2D G , i 51,...,N21,

f0
N5sZs1ANv[sF11

1

N
dZs1OS 1

N2D G1ANv,

x05xZx1x̂1Dtx[xS 11
1

N
dZxD1

v2

N
dtx1OS 1

N2D . ~5!

Here we already used the fact that the tadpole and wave function renormalization counterterms do not receive contrib
leading order in 1/N. We also note that although two tadpole counterterms are present,dt anddtx , they are related through
the gap equation@22#—for instance, by requesting that the leading order ground state conditionx̂50 be preserved in highe
orders, wherex̂ is the vacuum expectation value of thex field in the spontaneously broken phase.

At this point it is useful to note that since the two Lagrangeans of Eqs.~3! and~4! are equivalent, a linear combination wi
also describe the same physics. This observation can be exploited for performing Bogolobov-Parasivk-Hepp-Zimm
~BPHZ! renormalization in a more elegant way, as will be explained in the following. Beyond leading order in 1/N it is
advantageous to work with a linear combination of the potential parts of LagrangeansL1 andL2 . Keeping only the contri-
butions relevant for next-to-leading order calculations, we consider in fact the following Lagrangian:

L35
1

2
~]mpW !~]mpW !F11

2

N
dZpG1

1

2
~]ms!~]ms!F11

2

N
dZsG1x2

N

2 H 3

l
1dl~0!1

1

N Fdl12S 3

l
1dl~0!D dZxG J

2xsANvF11
1

N
~dZx1dZs!G2

1

2
~pW 21s2!

v2

N
dtx2

1

2
xpW 2F11

1

N
~dZx12dZp!G2

1

2
xs2F11

1

N
~dZx12dZs!G

2s
v3

AN
dtx1xv2F S 3

l
1dl~0!D dx1

1

2
dt1

1

2N
dtdZxG1

K

N2 @4Nv2s21~pW 2!21s412pW 2s214ANvs~pW 21s2!#.

~6!
of
rent

the
Here K is in principle a completely arbitrary constant. W
have the freedom to choose it so that actual calculations
more convenient. We will considerK to be of order 1 in the
1/N expansion. Thus the potential part ofL2 is regarded as
re
an O(1/N) counterterm. We will choose the actual value
K so that the renormalization procedure is more transpa
at NLO in the 1/N expansion.

The Feynman rules can be read out directly from
3-4
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above expression. Within this diagrammatical rearrangem
of the sigma model, counting powers of 1/N in multiloop
diagrams is straightforward: closed Goldstone loops cont
ute a factorN, while xx propagators give a 1/N factor, and
mixed xs propagators contribute 1/AN. At the same time,
the absence of quartic couplings at the tree level redu
considerably the number of possible topologies.

For these reasons, for a given process and a given ord
1/N, it is easy to write down the Feynman graphs of all lo
orders. As will become clear from the discussion of two- a
three-point functions, there is always a finite number of m
tiloop topologies, where one can only insert chains of o
loop bubbles in thexx andxs propagators without increas
ing the 1/N order of the graph.

We emphasize that this combinatorial rearrangemen
the sigma model is quite crucial. It is possible to calcul
explicitly nonperturbative processes in the Higgs sector p
cisely because the combinatorial rearrangement enables
to write down explicitly and in a manageable way the d
grams of all loop orders, without truncating the perturbat
expansion.

B. Tachyonic regularization

It is straightforward to derive the two-point functions
the theory at leading order in 1/N. This was done, for in-
stance, in Ref.@19#. The only diagram involved is the one
loop bubble diagram shown in Fig. 2. One finds the follo
ing leading order propagators:

Dss~s!5
i

s2m2~s!
,

Dxx~s!5
1

Nv2

ism2~s!

s2m2~s!
,

Dxs~s!5
1

ANv

im2~s!

s2m2~s!
,

Dp ip j
~s!5

i

s
d i j , ~7!

where

m2~s!5
v2

3

l
1â~0!~s!

[
v2

3

l
2

1

32p2 logS 2
s1 ih

m2 D . ~8!

Here â (0)(s)[a (0)(s)1dl (0) is the ultraviolet finite part of
the self-energy diagram of Fig. 1, andm is the subtraction
scale.

FIG. 2. The leading order bubble diagram.
11400
nt

-

es

in

d
l-
-

of
e
-
ne

-
e

-

In the expressions above, apart from the expected Hi
pole, one notices the presence of a tachyonic pole. It app
at an energys52L t

2, which is given by the following tran-
scendental equation:

v2

L t
22

1

32p2 logS L t
2

m2D 1
3

l
50. ~9!

The tachyon scaleL t differs from the Landau scaleLL

5me48p2/l by a shift of orderv2/LL
2.

The leading order tachyon is a well-known difficulty o
the 1/N nonperturbative treatment of the sigma model. Fro
the technical point of view, it induces causality violatin
effects in the theory. As long as one is concerned only w
the leading order, one can try to make sense of the resu
limiting its validity to an energy range considerably smal
than the tachyon scale. However, there is no such easy
out for calculations beyond leading order because
tachyon appears then in loops.

One way to circumvent this is by making the assumpt
that the tachyon indicates the triviality of the theory. Th
sets a limit for the validity of the 1/N result at high energy.
At some energy scale new physics sets in. This scale is
sumably of the order of the tachyon scale, but not necessa
equal or lower. Then an obvious treatment is to introduc
cutoff in the loop integrations@23#. This is then interpreted
as a model of nondecoupling effects from an unknown he
sector. However, in this approach the momentum cutoff
to be lower than the tachyon scale, which is necessary
computational purposes only and is not motivated physica
Also, a loop momentum cutoff spoils the gauge invariance
the gauged model. It also introduces quadratic depende
on the cutoff scale, and these are known in effective theo
not to be directly related to heavy boson mass effect
actually counterexamples were found in the literature in tw
loop calculations@24#.

We use a different treatment of the tachyonic pole@25#,
which is more convenient for higher-order calculations in t
1/N expansion. We subtract the tachyon minimally at
pole, which means using the following propagators inste
of those of Eqs.~7!:

Dss~s!5 i F 1

s2m2~s!
2

k

s1L t
2G ,

Dxx~s!5
is

Nv2 F m2~s!

s2m2~s!
1

kL t
2

s1L t
2G ,

Dxs~s!5
i

ANv
F m2~s!

s2m2~s!
1

kL t
2

s1L t
2G , ~10!

where

k5
1

11L t
2/32p2v2

~11!

is the residuum of the tachyonic pole.
3-5
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The justification of the tachyonic regularization intr
duced above is the following. Green functions—such as
two-point functions above—are calculated in the 1/N expan-
sion starting with the perturbative expansion in the coupl
constantl of the coefficients of the 1/N expansion. Then al
Feynman graphs of all loop orders which contribute to
given order in 1/N are calculated explicitly and summed u
Since the 1/N coefficient is only known as a power series
l to start with, it will be determined by its perturbative e
pansion up to a function ofl, which vanishes identically in
perturbation theory, of the typee1/l. Since the residuum o
the tachyon is such a function whose perturbative expan
vanishes, its presence cannot be taken seriously as a pr
tion of the theory and as an indication that the theory is
defined. While thelf4 theory is widely believed to be
trivial, the tachyon in the 1/N expansion is certainly not a
rigorous proof thereof.

The tachyonic regularization is a way of making sense
the 1/N expansion in higher orders without making any e
plicit assumption about whether the theory is trivial or n
When we use the minimal tachyon subtraction scheme
Eqs. ~10!, we merely use the freedom to add a functi
which vanishes in perturbation theory for restoring the c
sality of the theory. If one further takes the view that t
theory is trivial and wants to include nondecoupling effe
from a heavy sector, such effects can be superimposed
the whole calculations. This could be done, for instance,
superimposing an explicit momentum cutoff or by introdu
ing higher-dimension operators. We note that our tachyo
regularization does not require the scale of new physics to
strictly under the tachyon scale. On the contrary, the na
momentum cutoff treatment of the tachyon pole require
cutoff scale strictly under the tachyon scale for technical r
sons.

C. Nonperturbative two- and three-point functions at NLO
and scattering amplitudes

Beyond leading order in 1/N, actual calculations have t
be performed numerically because in general the multilo
diagrams involved are not manageable analytically. T
brings about some technical complications related to
treatment of ultraviolet divergences in conjunction with n
merical integration.

A useful observation is that the final result in the 1N
expansion is free of any renormalization scheme ambigu
This is because it is exact at all orders in the coupling c
stant. This leaves us the freedom of working in any interm
diate renormalization scheme at our convenience, since
final result is independent of that. This can be best explo
to simplify to some extent the numerical work.

The graphs needed for the calculation of all two- a
three-point functions of the theory at next-to-leading orde
1/N are shown in Fig. 3. In addition to the two- and thre
point graphs, there is also one tadpole graph which is nee
for the determination of the tadpole countertermdtx . Each
graph is in fact a sum of multiloop Feynman graphs wh
are all of the same order in 1/N and of various orders in the
coupling constantl. This is shown explicitly for one particu
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lar self-energy graph in Fig. 4.
The graphs involved,Ai , Bi , Ci , Di , Ei , Fi , and T, are

in general ultraviolet divergent. Since our strategy is to c
culate them numerically, we first subtract the divergen
and subdivergences of these graphs. An inspection of
Feynman diagrams which compose each graph of Fig. 3
veals that the ultraviolet divergences are polynomial, just
if they were usual Feynman diagrams, and in spite of
infinite number of loops involved. We define in Figs. 5,
and 7 a set of ultraviolet-subtracted graphsÂi , B̂i , Ĉi , D̂ i ,
Êi , and F̂ i . They are finite and thus can be calculated
direct numerical integration.

The numerical evaluation of the ultraviolet finite, su
tracted graphs is done by using a numerical method for
calculation of massive three-loop Feynman diagrams@26#.
This method reduces all subtracted graphs to a tw
dimensional integral representation. After an appropriate
tation of the integration path in the complex plane, the
two-dimensional integrals can be evaluated numerically@25#.

The subtracted graphs are used further for calcula
physical amplitudes. Here we consider the scattering p
cessesf f̄→H→ f 8 f̄ 8 and f f̄→H→ZZ,WW. Phenomeno-
logically, they are important as a Higgs boson product
mechanism at a possible muon collider. Also the hea
Higgs effects in these scattering processes are relate
those in the gluon fusion process, which is the main Hig

FIG. 3. Infinite sums of multiloop Feynman diagrams whi
contribute in next-to-leading order in 1/N to the two- and three-
point functions of theO(N) sigma model. The blob on propagato
denotes the summed-up leading order propagators. Note that thpp
propagator at leading order in 1/N is a free propagator. One of th
graphs above is shown in expanded form in Fig. 4.

FIG. 4. Multiloop diagrams with three-loop topology whic
contribute to thexx propagator in next-to-leading order.
3-6
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boson production mechanism at the LHC.
To start with, we consider the matrix element for the fe

mion scattering processf f̄→H→ f 8 f̄ 8 at leading order in the
fermion mass. Then the correction to theH f f̄ vertex is given
simply by the ratio of the wave function renormalizatio
factorsZs /Zp , because true vertex diagrams are of high
order in the fermion mass. The calculation reduces es
tially to evaluating the Higgs propagator. Up to the over
factor from the tree level Yukawa couplings, the amplitude
given by the following expression, where we included t
relevant counterterms in addition to the pure 1/N multiloop
graphs of Fig. 3:

Mf f̄5
1

s2m2~s!F12
1

N
f 1~s!G ,

f 1~s!5
m2~s!

v2 Fa~s!1dl12
v2

m2~s!
dZx18Ka0

2~s!

12a0~s!dZpG12@g~s!2dZx28Ka0~s!#

1
v2

m2~s!
Fb~s!2dtx18K12

s

v2 dZpG . ~12!

One can easily see in the above expression that one c
have done without a wave function renormalization for t
unphysical x field and, also, without theK counterterm
which was introduced in Eq.~6! only for convenience pur-
poses. It can be seen easily that these terms cancel out
ally in the expression above. In fact, since there is no Hi
external leg in the process considered, it is also unneces
to introduce a wave function renormalization for thes field.

As we discussed in Sec. III A, these counterterms are o
introduced for convenience. If one cancels out these spur
terms in the expression above, one is left with a sum
multiloop diagrams which are individually ultraviolet dive
gent. Since the whole expression is a physical quantity,
ultraviolet divergences cancel out among the multiloop d
grams. However, the actual cancellation pattern is not v
transparent because of the complexity of the diagrams.
cause we need to calculate the 1/N graphs numerically, we
need the expressions to be ultraviolet convergent. At
same time it is very complicated to extract the ultravio
divergences and subdivergences from the graphs of Fig.
1/e poles, as is done in usual Feynman diagrams. In m
complicated processes, such as three- and four-point
cesses, the cancellation is even more involved.

The K anddZx counterterms serve as vehicles of the
traviolet cancellations among the multiloop diagrams. F
this purpose we assign to these two counterterms the foll
ing expressions:

K52
1

4
B2~0!,
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dZx5C1~0!1C2~0!12B2~0!a0~m2→0!, ~13!

and also we note the identity

dtx5B1~0!2B2~0!. ~14!

Then the actual multiloop 1/N graphs froma, b, and g
combine with the counterterms and give precisely the s
tracted multiloop graphsÂi , B̂i , and Ĉi defined in Figs. 5
and 6:

f 1~s!5
m2~s!

v2 @â~s!1dlfin#12ĝ~s!

1
v2

m2~s!
F b̂~s!22

s2m2~s!

v2 ~dZs2dZp!G .

~15!

Actually, the finite term (dZs2dZp) in this expression sim-
ply means that one has to subtract the momentum deriva

FIG. 5. Definition of the subtractedxx self-energy graphs. The
symbol ] indicates the differentiation with respect to the extern
momentum of the box.

FIG. 6. Definition of the subtractedss, xs, andpp self-energy
graphs.
3-7
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of diagramD(s) from diagramB1(s), rather than the deriva
tive of B1(s), as defined in Fig. 6. The finite contributio
dlfin which is left in Eq. ~15! simply reminds us that for
specifying the strength of the coupling of the theory, a m
scale needs to be given along with the value ofl. A shift in
dlfin can be absorbed into a shift in the subtraction pointm.
As such,dlfin can be shifted to zero.

Along the same lines, the following expression is o
tained for the amplitude of thef f̄→H→ZZ,WW scattering
process:

MWW5
m2~s!

ANv

12
1

N
f 2

s2m2~s!F12
1

N
f 1~s!G ,

f 1~s!5
m2~s!

v2 â~s!12ĝ~s!1
v2

m2~s!

3F b̂~s!22
s2m2~s!

v2 ~dZs2dZp!G ,

f 2~s!5
m2~s!

v2 â~s!1ĝ~s!2f̂~s!2
v2

m2~s!
ĥ~s!. ~16!

All quantities involved in this expression,â, b̂, ĝ, ĥ, and
f̂, are sums of the subtracted graphs defined in Figs. 4,
and 7. They can be calculated directly by numerical integ
tion @25,21#.

D. Saturation effect

The shape of the Higgs resonance can be obtained
perturbatively in the quartic Higgs coupling at next-t
leading order in the 1/N expansion by evaluating numerical
the expressions forMf f̄ and MWW given in the previous
section. These two scattering processes are the main pro
tion and decay modes for the Higgs boson at a possible m
collider. Also these processes are related to Higgs boson
duction by gluon fusion@8#. This is the main production
mechanism at hadron colliders such as the LHC.

We give in Fig. 8 the resulting line shapes of the Hig
resonance. One feature of these line shapes is that they a
remarkably well with the perturbative results for low co

FIG. 7. Definition of the subtracted vertex graphs.
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plings. The next-to-leading order 1/N results are very close
to the two-loop perturbation theory line shapes formH up to
about 800–900 GeV. The agreement confirms the con
tency of the 1/N approach in higher orders and establish
that the next-to-leading order is an excellent approximati

At higher quartic coupling a saturation effect sets in. T
maximum of the resonance does not shift towards hig
energy; the resonance only becomes wider. To make
effect clearer, we extract some mass (Mpeak) and width
(Gpeak) variables from the position and height of the res
nance in fermion scattering. The definition of the variab
MpeakandGpeakis the following. We determined numericall
the position and height of the maximum of the resonan
Then Mpeak and Gpeak are the mass and width of a Brei
Wigner resonance which has the same height and positio
the peak. Of course, the actual Higgs line shapes are
exactly of Breit-Wigner type. However,Mpeak andGpeak de-
scribe reasonably well the main features of the resona
We compare in Fig. 9 theMpeak-Gpeak relation with the per-
turbative result. Of course, one is free to choose any o
parametrization of the resonance, but theMpeak and Gpeak
variables which we use here are sufficient for compar
with perturbation theory.

As one can see in Fig. 8, the saturation effect is presen
the f f̄→H→ZZ,WW scattering process as well, at a com
parable energy. The precise maximum position of the pea
process dependent because the resonance shape is def
by the energy dependence of different contributions, such
the vertex corrections in this case. A universal way of p
rametrizing the saturation effect would be by using the p
mass and width of the Higgs particle. Extracting this in t
next-to-leading 1/N approach is numerically more difficul

FIG. 8. The line shape of the Higgs resonance in the scatte

processesf f̄→H→ f 8 f̄ 8 and f f̄→H→ZZ,WW. We marked the po-
sition of the maxima of the resonances~solid line for the 1/N result
and dashed line for the perturbative result at two loops!.
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because the subtracted 1/N graphs need to be continued in
the second Riemann sheet for solving the pole equation.
is not available yet.

We note that the two-loop perturbative curves featur
saturation effect as well, with a saturation mass quite clos
the 1/N curves. However, saturation appears only at the tw
loop level. In the saturation zone the radiative correctio
appear to blow up. In addition, the three-loop correction
not known so far. For these reasons, perturbative evide
for the saturation effect is considerably less reliable than
1/N treatment, which is valid independently of the streng
of the coupling.

The saturation effect provides more insight into the w
perturbation theory breaks down and radiative correcti
blow up in the Higgs sector. The dramatical failure of pe
turbation theory at around 1 TeV is well established by t
level unitarity violations@12#. Higher-order radiative correc
tions blow up at a similar scale, as was discussed in Sec
Less violent problems can show up in the form of consid
able scheme ambiguities of the results. At the same ti
however, it is puzzling that at the 1 TeV scale the qua
coupling is numerically not exceedingly large yet. The qu
tic coupling only becomes of the order of unity when t
tree-level on-shell Higgs mass is of the order of 1.5 Te
Naively, this is where one would expect heavy problems
perturbation theory to set in. From the perspective of
saturation effect, the explanation is clear now. The mas
the Higgs boson is not a good expansion parameter bey
the saturation point. In the saturation region the mass d
not increase when the coupling is enhanced. In fact,
width of the resonance as a function of the mass is a dou
valued function. The existence of this singular point resu
in a blowup of radiative corrections beyond this point. Th
suggests that it may be possible to improve the behavio
the perturbative expansion by choosing an expansion pa
eter more appropriate than the on-shell mass, but we did
investigate this point any further.

FIG. 9. The saturation effect in thef f̄→H→ f 8 f̄ 8 scattering.
The mass and width variablesMpeak and Gpeak are related to the
position and height of the Higgs resonance as explained in the
11400
is

a
to
-
s
s
ce
e

y
s

-
e

II.
-
e,
c
-

.
r
e
of
nd
es
e
e-
s

of
m-
ot

IV. NONPERTURBATIVE SOLUTIONS
OF OTHER THEORIES: 1/ N QED

In this section we would like to comment briefly on th
perspectives of extending this kind of nonperturbative me
ods to solving other field theories of physical interest.

We already mentioned that the applicability of the no
perturbative 1/N expansion, especially in higher orders, d
pends crucially on the particular theory under considerati
One needs to arrange the perturbative expansion of
theory in such a way that the various loop contributions c
be sorted out by powers of 1/N in a manageable way, so tha
the graphs of all loop orders can be explicitly calculated a
summed up for a given order of 1/N.

Such a theory, where the rearrangement of perturba
theory is straightforward, is ordinary QED. QED can be se
as an example where the 1/N expansion works poorly be
cause the value ofN is too small. QED can be organized a
a 1/N expansion by introducingN species of electrons and a
the same time dividing the gauge coupling byAN. Then one
sees immediately that the counting of powers of 1/N pro-
ceeds similarly as in the case of the sigma model. Ordin
QED is recovered in the limitN51. One expects the con
vergence of the 1/N expansion to be poor because of t
value of the expansion parameter.

We show in Fig. 10 the Feynman diagrams which contr
ute to the anomalous magnetic moment of the electron
leading order of 1/N. They are the same diagrams discuss
in Ref. @27# in the context of the large order behavior
QED. We refer to this work for details on the calculation
the contributions to the anomalous magnetic moment du
these diagrams. The equivalent of the tachyonic regular
tion in theO(N)-symmetric sigma model is the subtractio
in the loop momentum integration of the diagrams of Fig.
of a term of the typee1/a, which vanishes in perturbation
theory, as discussed in Ref.@27#. Note that because of th
value of the coupling constant, in QED the Landau pole is
a very-high-energy scale.

The perturbative results for the anomalous magnetic m
ment of the electron up to four loops are@28#

a1-loop50.5,

xt.

FIG. 10. Diagrams which contribute to the anomalous magn
moment of the electron in leading order of the 1/N expansion.
3-9
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a2-loop520.328478965,

a3-loop51.181241,

a4-loop521.557, ~17!

and their contribution to the anomalous magnetic momen
Snan(a/p)n.

By numerical integration one can calculate the LO con
bution in the 1/N expansion to the anomalous magnetic m
ment of the electron. The result isaLO 1/N50.001161494.
The first few terms in the loop expansion of this result ar

a1-loop
LO 1/N50.5,

a2-loop
LO 1/N50.015687421,

a3-loop
LO 1/N50.002558524,

a4-loop
LO 1/N50.000876865,

a5-loop
LO 1/N50.000470905,

a6-loop
LO 1/N50.000344687,

a7-loop
LO 1/N50.000318119,

a8-loop
LO 1/N50.000352804,

a9-loop
LO 1/N50.000455370,

a10-loop
LO 1/N50.000668824,

a11-loop
LO 1/N50.001099482,

a12-loop
LO 1/N50.001997590,

a13-loop
LO 1/N50.003971440, ~18!

such that their contribution to the anomalous magnetic m
ment isSnan

LO 1/N(a/p)n. The numbers above agree with th
results given in Ref.@27#.

By comparing the LO 1/N result (aLO 1/N

50.001161494) with perturbation theory, one sees that
is only marginally different from the one-loop perturbativ
result ~0.0011614098!. Comparing the perturbative expan
sion of the LO 1/N result @Eqs. ~18!# and the perturbation
theory result@Eqs. ~17!#, it can be seen that the LO 1/N
Feynman diagrams are not numerically the main contribu
from higher-loop orders in perturbation theory.

This shows that the usefulness of the 1/N expansion ver-
sus perturbation theory depends crucially on the value oN
and of the coupling constant. IfN is large enough, the othe
diagrams appearing in higher-order perturbation theory
sides those included in the leading term in the 1/N expansion
will be suppressed by powers of 1/N. This way the 1/N
expansion can converge faster than perturbation theory
the coupling constant is large, perturbation theory starts
diverge already at low orders and the scheme ambigu
11400
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may prevent one from obtaining the desired accuracy. T
the 1/N expansion is expected to be a better alternative
cause it is free of scheme ambiguities and the solution
valid for strong coupling as well.

Therefore it is not surprising that the 1/N expansion
works so well in heavy Higgs boson physics, whereN54
andl is of order 1.

Extending these computational tools in the case of n
Abelian gauge theories is very difficult because of the pr
ence of trilinear and quartic couplings of the gauge boso
In the case of QCD the topological structure of the grap
which appear in the 1/Nc expansion is known@29#, but so far
they could not be calculated explicitly in four dimension
The well-known solution of QCD in two dimensions@30#
was possible because in this case the quartic and trilin
couplings are absent, which reduces the types of topolo
of Feynman graphs appearing in higher-loop orders.

V. CONCLUSIONS

We investigated in some detail the scalar sector of
standard model at strong coupling. For doing this we u
both perturbation theory up to two-loop order and a nonp
turbative treatment within the next-to-leading order 1/N ex-
pansion. With these approaches we treated the main he
Higgs boson decay modes as well as two scattering proce
where the Higgs line shape can be observed,f f̄→H→ f 8 f̄ 8
and f f̄→H→ZZ,WW. These two scattering processes a
the mains-channel production modes of the Higgs boson
muon colliders and can also be related to the heavy Hi
boson effects in the gluon fusion process, which is the do
nant production mechanism at the LHC@8#.

The results show in all cases a very good agreement
tween perturbation theory and the 1/N expansion up to 800–
900 GeV. They confirm the existence of a Higgs mass sa
ration effect in both scattering processes analyzed, wh
seems to be a general feature of resonant Higgs boson
cesses. The nonperturbative mass saturation value is jus
der 1 TeV for both processes. As a preliminary study ba
on perturbation theory has shown, it is expected that
nonperturbative mass saturation effect will play an import
role in the experimental strategy for heavy Higgs bos
searches at the LHC.

A comparison of the nonperturbative behavior at stro
coupling to the pattern observed in perturbation theory
higher-loop orders suggests that radiative corrections in
scalar sector blow up very strongly at about 1 TeV main
because of the nonperturbative mass saturation effect, ra
than because of a genuinely strong coupling. As a resul
this dynamical effect, the mass of the Higgs boson, altho
widely used as a parametrization of the coupling in pheno
enological studies so far, is not an appropriate paramete
the saturation region.

On the theoretical side, we have shown that in the cas
theO(N)-symmetric sigma model, a reliable nonperturbati
solution can be obtained by using a higher-order 1/N expan-
sion, which is free of renormalization scheme ambiguit
and which is valid at strong coupling as well. We discuss
3-10
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the tachyonic regularization which we introduced for calc
lating higher orders in the 1/N expansion. We also discusse
the renormalization within the 1/N expansion in higher or-
ders.

Finally, we discussed briefly the applicability of suc
nonperturbative methods to other theories of phys
interest.
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l’Université de Savoie.
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