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Probing the WWg vertex at hadron colliders
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We present a new, model independent method for extracting bounds for the anomalousgWW couplings
from hadron collider experiments. At the partonic level we introduce a set of three observables which are

constructed from the unpolarized differential cross section for the processdū→W2g by appropriate convo-
lution with a set of simple polynomials depending only on the center-of-mass angle. One of these observables
allows for the direct determination of the anomalous coupling usually denoted byDk, without any simplifying
assumptions, and without relying on the presence of a radiation zero. The other two observables impose two
sum rules on the remaining three anomalous couplings. The inclusion of the structure functions is discussed in

detail for bothpp̄ and pp colliders. We show that, whilst forpp̄ experiments this can be accomplished
straightforwardly, in thepp case one has to resort to somewhat more elaborate techniques, such as the binning
of events according to their longitudinal momenta.@S0556-2821~99!01523-4#

PACS number~s!: 13.40.Gp, 13.85.Ni, 14.70.Bh, 14.70.Fm
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I. INTRODUCTION

The importance of hadron colliders concerning the m
surement of the trilinear gauge self-couplings has alre
been exemplified by the direct verification of the existence
such vertices throughWg as well asWZ production at the
Fermilab Tevatron@1#. The bounds on the anomalous co
plings so obtained have only recently been surpassed by
CERNe1e2 collider LEP2 measurements@2#. The advent of
the Large Hadron Collider~LHC! at CERN is expected to
improve the situation further, because of its high luminos
and energy reach. A significant advantage of hadron collid
in this context is the fact that the couplings of the photon a
the Z boson to theW boson can be probed independen
through separate processes. Taking also into account th
the sub-process level the center-of-mass energy varies,
may also study the form-factor structure of the couplin
thus furnishing important information, complementary
that obtained from the lepton colliders.

In this paper we extend to hadron collider experiment
model-independent method proposed for the extraction
bounds on the anomalous couplings at LEP2@3#. This
method is based on constructing appropriate projection
the differential cross section@4#, which lead to a set of nove
observables; the latter are related to the anomalous coup
by means of simple algebraic equations. The experime
determinations of these observables can in turn be use
order to impose bounds simultaneously on all anomal
couplings, without having to resort to model-dependent re
tions among them, or invoke any further simplifying assum
tions.

Given the advantages mentioned above, the generaliza
of this method to the case of hadron colliders is certai
interesting, but is by no means obvious, even at the theo
ical level. The crucial difference is that at hadron collide
the center-of-mass energy of the sub-processes is not fi
0556-2821/99/60~11!/113007~9!/$15.00 60 1130
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and the effects of the structure functions must be includ
The detailed study reveals however that, due to a very p
ticular dependence of the differential cross-section on
center-of-mass angle, the method can in fact be applied. A
result, one obtains a set of three algebraic equations rela
the four unknown couplings. In particular, one can direc
extract the value for theDk anomalous form-factor,without
having to assume the absence of other anomalous coupl

The paper is organized as follows: In Sec. II we pres
explicit results of the partonic differential cross-section f
the prototype processdū→W6g, using the most genera
WWg vertex allowed from Lorentz andU(1)EM invariance.
This process has received significant attention in the lite
ture @5–9#, mainly due to the presence of the radiation ze
in its differential cross-section@10,11#. In Sec. III we define
a set of observables, which depend explicitly on the vario
anomalous couplings, and can be experimentally extrac
through the convolution of the differential cross-section w
appropriately constructed polynomials of cosu, the center-
of-mass scattering angle. In Sec. IV we present an elem
tary discussion of the statistical properties of these obs
ables. In Sec. V we turn our attention to the realistic case
pp and pp̄ collisions, and address the complications th
arise due to the inclusion of the structure functions. Fina
in Sec. VI we present our conclusions.

II. THE PROCESS dū˜W2g IN THE PRESENCE
OF ANOMALOUS COUPLINGS

We consider the processd(pd)ū(pu)→W2(p2)g(q),
shown in Fig. 1. All momenta are incoming i.e.pd1pu
1p21q50, and the square of center-of-mass energy,s, is
given bys5p1

25(pd1pu)25(p21q)2. We work in the nar-
row width approximation where theW is assumed to be
strictly on shell,p2

25MW
2 ; the inclusion ofW off-shellness

effects is known to give very small contributions@7#.
©1999 The American Physical Society07-1



by

e

x

al

tex;
ne-
on,

s.

;

n

os
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TheS-matrix element for the process we study is given

^dūuW2g&5Tmbeg
m~q!eW2

b
~p2!, ~2.1!

whereeg
m(q) andeW2

b (p2) are the polarization vectors of th
photon and theW, respectively, and the amplitudeTmb is the
sum of three pieces,

Tmb5Ts
mb1Tt

mb1Tu
mb , ~2.2!

whereTs , Tt and Tu denote thes, t and u channels contri-
butions, respectively. They are given by the following e
pressions:

Tt
mb5S iegQd

A2
D v̄ugbPL

1

p” d1q”
gmud ,

Tu
mb5S iegQū

A2
D v̄ugm

1

p” u1q”
gbPLud , ~2.3!

Ts
mb5S 2 ieg

A2
D Ja

W2S 1

p1
22MW

2 D Gmab~q,p1 ,p2!,

where Ja
W2

5 v̄ugaPLud PL5 1
2 (12g5), Qū52Qd52 2

3 ,
and we have neglected any quark mixing effects.Gmab de-
notes theWWg vertex; it is written as the sum of the usu
standard model pieceG0

mab , and an anomalous pieceGan
mab :

i.e.

Gmab~q,p1 ,p2!5G0
mab~q,p1 ,p2!1Gan

mab~q,p1 ,p2!.
~2.4!

The canonical pieceG0
mab is given by

G0
mab~q,p1 ,p2!5~p12p2!mgab12qbgam22qagmb,

~2.5!

where the relations p1
aJa

W2
50, qmeg

m(q)50, and
p2beW2

b (p2)50 have been used. The anomalous pieceGan
mab

reads1

1Since we only consider thegWW vertex and no confusion ca
arise between the corresponding couplings of theZWW vertex we
suppress any super~sub!scriptsg from all form-factors.

FIG. 1. Diagrams contributing to the processdū→W2g. The
blob at the vertex indicates the presence of anomalous three-b
couplings.
11300
-

Gan
mab~q,p1 ,p2!5

l

MW
2 ~p22p1!mqaqb1~Dk1l!qbgam

2S Dk1
1

r
l Dqagmb

1F k̃2S 11r

2r D l̃G«mabrqr

2
l̃

2MW
2 @~p22p1!meabrsqr~p22p1!s

1s~r21!emabr~p22p1!r# ~2.6!

wherer[MW
2 /s. The anomalous couplingsDk, l, k̃, andl̃

parametrize the deviations from the standard model ver
they are form-factors which must be evaluated at the ki
matical point relevant for the reaction under considerati
i.e.

z[z~p1
25s,p2

25MW
2 ,q250!, ~2.7!

wherez stands for any of the four aforementioned coupling
The anomalous vertex given above is the most generalgWW
vertex compatible with Lorentz andU(1) gauge invariance
it has been derived from the interaction Lagrangian

1

e
LgWW5~ ig1Wln

† WlAn1H.c.!

1 ikWl
†WnFln1 i

l

MW
2

Wrl
† Wn

lFnr

1
g4

MW
2

Wl
†Wn~]l]rFrn1]n]rFrl!

2S g5

MW
2

elnrsWl
†]rWn]tFts1H.c.D

1 i k̃Wl
†WnF̃ln1 i

l̃

MW
2

Wrl
† Wn

lF̃nr, ~2.8!

whereWm is theW2 field, Am is the photon field, the field
strength tensors are all Abelian, and given byWmn5]mWn

2]nWm, Fmn5]mAn2]nAm, F̃mn5 1
2 emnrsFrs , and Dk

[k21. The reason why the form-factorsg1 , g4, andg5 do
not appear inGan

mab is that by gauge-invarianceg1 is forced
to be fixed at the valueg1(p1

2 ,p2
2 ,q2)51, whereasg4 andg5

to be proportional~in momentum space! to q2, and thus to
vanish in our case of an on-shell photon@7–9,12,13#.

It is straightforward to verify that the full vertexGmab

satisfies the elementary Ward identity

qmGmab~q,p1 ,p2!5~p2
2gab2p2

ap2
b!2~p1

2gab2p1
ap1

b!,

~2.9!

on
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PROBING THEWWg VERTEX AT HADRON COLLIDERS PHYSICAL REVIEW D60 113007
a fact which guarantees the electromagnetic gau
invariance of the entire amplitude, i.e.qmTmb50.

The squared unpolarized amplitude for the process
given by

(
sū ,sd

(
lg ,lW

u^dūuTuW2g&u2

5 (
sū ,sd

TmbPmm8~q!Qbb8~p2!Tmb
† , ~2.10!

where the sum onsū , sd runs over all possible helicities o
the incoming quarks,Qbb8 is the polarization sum of theW,
given by

Qbb8~p2!52gbb81
p2

bp2
b8

MW
2

, ~2.11!

andPmm8(q) the polarization sum of the photon, given by

Pmm8~q!52gmm81
hmqm81hm8qm

hq
2h2

qmqm8

~hq!2
,

~2.12!

wherehm is an arbitrary four-vector, analogous to a gaug
fixing parameter. By virtue of the Ward identity of Eq.~2.9!
satisfied byGmab all dependence onhm disappears from the
righ-hand side~RHS! of Eq. ~2.10!.

The unpolarized color averaged differential cross-sec
in the center-of-mass frame is given by

S ds

dxD5
1

3 S 12r

32psD (
sū ,sd

(
lg ,lW

u^dūuTuW2g&u2 ~2.13!

wherex[cosu, andu is the scattering angle of the photo
relative to the incoming anti-quark in the center-of-ma
frame of the two partons, or equivalently, the producedW
and g. The differential cross-section is the sum of tw
pieces:

S ds

dxD5S ds0

dx D1S dsan

dx D . ~2.14!

The standard contribution (ds0/dx) corresponds to the cas
where all anomalous couplings are set equal to zero, and
been studied extensively in the literature@5–9#. In particular
it exhibits a radiation zero atx521/3:

ds0

dx
5S 1

3D e2g2

128p

1

s~12r!

~x11/3!2@~11r!21~12r!2x2#

12x2
.

~2.15!

The anomalous contribution (dsan/dx) is given by
11300
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S dsan

dx D5C~s!Fs1~s!P1~x!1S 1

2r Ds2~s!P2~x!

1S 1

4r2D s3~s!P3~x!G , ~2.16!

C~s!5S 1

3D e2g2

256p

~12r!

s
, ~2.17!

where

P1~x!5x13x2,

P2~x!51, ~2.18!

P3~x!512x2,

and

s1~s!52
2

3
Dk,

s2~s!5~Dk1l!21~ k̃1l̃ !2, ~2.19!

s3~s!52~l21l̃2!2r@~Dk2l!21~ k̃2l̃ !2#

12r2~Dk21k̃2!.

The expression given in Eq.~2.16! applies also to the proces
ud̄→W1g, with the only difference that, in that case, th
scattering angle is defined between the incoming quark
the photon. Our result agrees with previous calculatio
which considered onlyDk @5#, or both theDk and l cou-
plings @6#.

It is well known that, due to the presence of the termsr21

andr22, the cross-section of Eq.~2.16! would grossly vio-
late unitarity at high energies,s→`, r→0, if the anomalous
couplings were considered to be constants, independents.
Therefore, in analogy to nuclear form-factors, one traditio
ally assumes ans-dependence of the form@8#

z~s,MW
2 ,0!5

z0

~11s/L2!n
. ~2.20!

From the explicit expression of the cross-section we see
the choicesn51/2 for Dk, k̃, and n51 for l, l̃ would
suffice in order for the square brackets in Eq.~2.16! to ap-
proach a constant asr→0; then the cross section woul
decrease like 1/s due to the flux factor inC(s). The scaleL
is assumed to be of the same order of magnitude as the s
characterizing the new physics responsible for the anoma
couplings.

We note that the couplingl contributes only quadrati-
cally in the cross section. We have no simple explanation
this fact, which seems to be characteristic to the spec
7-3
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JOANNIS PAPAVASSILIOU AND KOSTAS PHILIPPIDES PHYSICAL REVIEW D60 113007
process. Of course theC, P violating couplingsk̃,l̃ can only
contribute quadratically. Thus, if the anomalous couplin
are small enough (<1023) so that for certain center of mas
energies all quadratic terms could be neglected as unobs
able, then any deviation would be a direct measuremen
Dk. This is however not the case for typical Tevatron a
LHC energies; therefore, quadratic terms must be kep
general, and are typically of the same order, or even la
than the linear one.

It is interesting to notice that the term linear inDk does
not distort the appearance of the radiation zero atx521/3,
for arbitrary values ofDk. The radiation zero is washed ou
only due to the quadratic anomalous terms, which reduc
to a dip. Since the quadratic coefficients ofl are much larger
than those ofDk, due to the pre-factor (1/4r2) in front of s3
in Eq. ~2.16!, the cross section is extremely sensitive to no
standardl values in the neighborhood of the radiation ze

We also notice that the quadratic terms are comple
symmetric under (Dk,l)↔(k̃,l̃). Furthermore the coeffi-
cient in front of Dk is independent of the energy. Thus
experimental analyses where the fitting is carried out by
lowing one of the anomalous couplings to differ from zero
a time, thel and l̃ distributions as well as other relate
bounds would be identical. The same would be true forDk

andk̃, if the term linear inDk were negligible; this could be
the case at high energies, ifDk is not very small (Dk
.1022).

III. PROJECTING OUT THE ANOMALOUS COUPLINGS

In this section we show how one can extract experime
values for the quantitiess1 , s2, and s3, defined in Eq.
~2.19!. This will furnish a system of three independent alg
braic equations involving the four unknown gauge couplin

To accomplish this, one first notices that the polynomi
Pi(x) constitute a linearly-independent set; their Wronsk
W(Pi) is simplyW(Pi)52. One may then construct a set
three other polynomials,P̃i(x), which are orthonormal to the
Pi(x), i.e. they satisfy

E
21

1

P̃i~x!Pj~x!dx5d i j . ~3.1!

These polynomials are2

P̃1~x!5
3

2
x,

P̃2~x!52
3

4
2

9

2
x1

15

4
x2, ~3.2!

2Of course this set is not uniquely determined; here we derive
set with the lowest possible degree inx.
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P̃3~x!5
15

8
1

9

2
x2

45

8
x2.

It is important to observe that the polynomialsPi(x) and
Pĩ(x) are independentof the ~sub!-process energys. This is
to be contrasted to the equivalent set of polynomials obtai
in the context of the processe1e2→W1W2 @3#, which de-
pend explicitly on the~fixed! s. As we will explain in Sec. V
the s-independence of the polynomialsPĩ(x) is crucial for
the applicability of the proposed method to the realistic c
of pp̄ andpp scattering, where the structure functions mu
be included.

By means of the polynomialsP̃i(x) one may then invert
Eq. ~2.19!, and project out the individuals i as follows:

s1~s!5C21~s!E
21

1

dxS dsan

dx D P̃1~x!,

s2~s!52rC21~s!E
21

1

dxS dsan

dx D P̃2~x!,

~3.3!

s3~s!54r2C21~s!E
21

1

dxS dsan

dx D P̃3~x!.

In order to extract the experimental valuess i
exp for the ob-

servabless i we simply substitute in the left-hand side of E
~3.3! the experimental value (dsexp

an /dx) given by

S dsexp
an

dx D 5S dsexp

dx D2S ds0

dx D . ~3.4!

We notice from Eq.~2.19! that s1
exp would determinedi-

rectly the experimental value forDk, without any assump-
tions on the size of the other three couplings. The remain
two equations involvings2

exp ands3
exp can then be used a

sum rules, in order to impose experimental constraints on
three remaining couplingsl, k̃, andl̃.

In the case when experimental cuts restrict the ang
region from @a,b# instead of@21,1# appropriate orthonor-
mal polynomialsP̃i(x) can still be easily constructed, b
requiring

E
a

b

P̃i~x!Pj~x!dx5d i j . ~3.5!

Their closed form reads

P̃i~x!5ci01ci1x1ci2x2, i 51,2,3 ~3.6!

with

c10536D~a314a2b14ab21b3!,

c115248D~4a217ab14b2!,
e

7-4
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PROBING THEWWg VERTEX AT HADRON COLLIDERS PHYSICAL REVIEW D60 113007
c125180D~a1b!,

c20523D@3a4112a3~31b!

1~10136b13b2!~b214ab!

12a2~5172b115b2!#,

c21536D@a314a2~41b!1b~5116b1b2!

1a~5128b14b2!#, ~3.7!

c225230D@61a2118b1b212a~912b!#,

c3056D@18a31~5118b!~4a1b!b1a2~5172b!#,

c315236D@16a21b~5116b!1a~5128b!#,

c325180D~113a13b!,

where

D[~a2b!25. ~3.8!

As a check one may verify that the choicea521 and b
51 in Eq. ~3.7! reproduces the set given in Eq.~3.2!.

IV. STATISTICAL PROPERTIES
OF THE s i OBSERVABLES

In this section we will present an elementary study of
basic statistical properties of thes i observables introduced i
the previous section. In particular we will compute their co
relations, using simple assumptions about the distribution
the anomalous couplings. For convenience, in this section
introduce the following uniform notation:

z1[Dk, z2[l, z3[k̃, z4[l̃. ~4.1!

To study the correlations of thes i observables we will
that assume each of the couplingszi obeys independently a
normal~Gaussian! probability distribution, with meanm i and
varianced i

2 , i.e.

pi~zi ,m i ,d i
2!5

1

d i~2p!1/2
expF2

~zi2m i !
2

2d i
2 G . ~4.2!

Then, the expectation valuês i& of the observables i is
given by

^s i&5)
j 51

4 E
2`

1`

@dzj #pjs i , ~4.3!

the corresponding covariance matrix by

Vi j 5^s is j&2^s i&^s j&, ~4.4!

and the correlationsr i j by
11300
e
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r i j 5
Vi j

Vii
1/2Vj j

1/2
. ~4.5!

We will next assume that the Gaussian distribution
peaked around the standard model values of the coupli
i.e. m i50, and will use the elementary results

E
2`

1`

@dzi #pi
(0)zi50,

~4.6!

E
2`

1`

@dzi #zi
2pi

(0)5d i
2 , E

2`

1`

@dzi #zi
4pi

(0)5
3

4
d i

4 ,

wherepi
(0)[pi(zi ,0,d i

2). After a straightforward calculation
we obtain the following expressions for the variousVi j :

V115
4

9
d1

2 ,

V1250,

V1350,

~4.7!

V2254d1
2d2

21
1

2
d1

41
1

2
d2

414d3
2d4

21
1

2
d3

41
1

2
d4

4 ,

V33522r~d2
41d4

4!1
1

2
r2~8d1

2d2
21d1

41d2
418d3

2d4
21d3

4

1d4
4!22r3~d1

41d3
4!12r4~d1

41d3
4!12~d2

41d4
4!,

V235
1

2
r~8d1

2d2
22d1

42d2
418d3

2d4
22d3

42d4
4!1r2~d1

41d3
4!

1d2
41d4

4 .

Evidently, the only non-zero correlation isr 23. By vary-
ing the value of the corresponding variancesd i one can study
the limits where some of the couplings are excluded on
grounds of certain discrete symmetries. For example,
choosingd3 and d4 very small compared tod1 and d2 we
approach the limit where theC and P symmetries are indi-
vidually respected by the anomalous couplings. The ot
interesting parameter to vary is of course the center-of-m
energys. In Table I we display some characteristic cases

We see that, with the exception of relatively low energi
the values ofr 23 are rather reasonable, and they tend to
crease as the sub-process energys increases.

V. INCLUSION OF THE STRUCTURE FUNCTIONS

The analysis presented so far is valid at the partonic le
and the quarks appearing in the initial state were assume
be in their center-of-mass frame. In reality the initial sta
are protons and anti-protons, a fact which introduces t
7-5
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additional complications. First, the final state can be reac
by different combinations of partons, which are not in th
center-of-mass any more, but carry momentum fractionsxa
and xb of the corresponding parent hadrons. This is tak
into account by introducing structure functions. Second,
partonic center-of-mass frame has to be reconstructed f
the data on an event by event basis. However, not all k
matical information on the final state particles is availab
since the finalW boson decays to a lepton and an~unob-
served! neutrino. Although the transverse momentum of t
neutrino is identified with the missing transverse moment
of the event, its longitudinal momentum can only be det
mined with a twofold ambiguity by constraining the lepto
neutrino pair invariant mass to equal theW mass@8,9#. Using
the fact that, at least at the Tevatron, theW boson is highly
polarized, one can arrive at the correct choice with a succ
rate of 73%@14#.

For a pp̄ collider the total cross-section for the proce
pp̄→W2gX, reads@5#

dspp̄~S,x!

dx
5(

u,d
E

0

1E
0

1

dxadxbf d/p~xa ,s! f ū/ p̄~xb ,s!

3
dsdū~s,cosu1!

d cosu1
1(

u,d
E

0

1E
0

1

dxadxb

3 f ū/p~xa ,s! f d/ p̄~xb ,s!
ds ūd~s,cosu2!

d cosu2
,

~5.1!

where S is the square of thepp̄ center-of-mass energy,S
5(pp1pp̄)2, xa and xb are the fractional longitudinal mo
menta of the quarks inside the proton, 0<xa,b<1, and s
5xaxbS is the squared center-of-mass energy of the s
process. In the above equationu denotes a genericup-type
quark (u,c,t), while d a genericdown-type quark (d,s,b).

TABLE I. The correlationr 23 as a function of the center-of
mass energys, for various choices of the parametersd i .

As(GeV) 100 200 300 500 1000

r 23 0.93 0.50 0.40 0.35 0.32

d1
25d2

2>d3
25d4

2

As(GeV) 100 200 300 500 1000

r 23 0.92 0.44 0.32 0.25 0.23

d1
252d2

2510d3
2510d4

2

As(GeV) 100 200 300 500 1000

r 23 0.91 0.40 0.27 0.21 0.18

d1
253d2

2550d3
2550d4

2
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The double sum runs over all possible combinations ofup

and down quarks (ūd, ūs, c̄d, . . . ) which give rise to the
desired final stateW2g, and for which the correspondin
structure functions are not negligible.dsdū denotes the situ-

ation where thed quark originates from the proton and theū
from the anti-proton beam; in that case valence-quark st
ture functions are involved for both quarks.ds ūd denotes the
reverse situation; now both structure functions involve s
quarks and are equal. We define theWg center-of-mass
anglex5cosuc.m. , to be the angle between the photon a
the anti-proton beam. Thus, the angle involved indsdū is
u15uc.m. , while in ds ūd it is u25p2uc.m. , or cosu15x
and cosu252x. Clearly, we have thatds ūd(s,x)5dsdū(s,
2x).

Notice that if the structure function weight
f (xa ,s) f (xb ,s) multiplying each term were the same, the
all terms linear inx would cancel in Eq.~5.1!; in such a case

the polynomial P1(x)→ P̄1(x)53x2, a fact which would

render the set of polynomialsP̄1(x), P2(x), P3(x) linearly
dependent, thus reducing the usefulness of the propo
method. This is however not the case, since the first term
the RHS of Eq.~5.1! originates from the valence quarks in
side the proton and anti-proton, whereas the second t
comes from the sea-quarks. The sea-quark contributio
significantly smaller than that of the valence-quarks, a f
which is appropriately encoded in the form of the corr
sponding structure functions, convoluted with the above
ementary processes. One could therefore, to a good app
mation, omit this term. If, nonetheless, such a term were
be kept, the necessary procedure would be as follows: S
ds ūd(s,x)5dsdū(s,2x), it follows from Eq.~2.16! and Eq.
~2.18! that ds ūd(s,x) is a linear combination ofP2(x),
P3(x), and P̂1(x)5P1(2x)53x22x. The next step is to
write P̂1(x) as a linear combination ofP1~x!, P2(x), and
P3(x), i.e.

P̂1~x!52P1~x!16P2~x!26P3~x!, ~5.2!

after which the quantitiess1 , s2, and s3 will be simply
modified by small corrections.

Omitting for simplicity such corrections from sea-quark
and keeping only the (ūd) term in the sum on the RHS, Eq
~5.1! becomes

dspp̄~S,x!

dx
5E

0

1E
0

1

dxadxbf d/p~xa! f ū/ p̄~xb!
ds ūd~s,x!

dx
,

~5.3!

and its deviation from the canonical value due to the anom
lous gauge boson couplings is given by
7-6
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dspp̄
(an)

~S,x!

dx
5E

0

1E
0

1

dxadxbf d/p~xa! f ū/ p̄~xb!
ds ūd

(an)
~s,x!

dx

5E
0

1E
0

1

dxadxbf d/p~xa! f ū/ p̄~xb!C~s!Fs1~s!P1~x!1S 1

2r~s! Ds2~s!P2~x!1S 1

4r2~s!
D s3~s!P3~x!G .

~5.4!
ro
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s
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a
the

the
een

the

he
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c-
t-
At this point we can repeat the same procedure for p
jecting out the anomalous couplings which has been p
sented in Sec. III. This is possible because the polynom
Pi(x) and the corresponding projective polynomialsP̃i(x)
do not depend on the sub-process energys. Writing Eq. ~5.4!
in the form

dspp̄~S,x!

dx
5(

i 51

3

S i~S!Pi~x! ~5.5!

with

S1~S![E
0

1E
0

1

dxadxbf d/p~xa! f ū/ p̄~xb!C~s!s1~s!,

S2~S![E
0

1E
0

1

dxadxbf d/p~xa! f ū/ p̄~xb!S C~s!

2r~s! Ds2~s!,

~5.6!

S3~S![E
0

1E
0

1

dxadxbf d/p~xa! f ū/ p̄~xb!S C~s!

4r2~s!
D s3~s!,

we see that the quantitiesS i may be extracted from the dif
ferential cross-section by means of the projective polyno
als P̃i(x). Their experimental valueS i

exp(S) are obtained
from

S i
exp~S!5E

21

1 Fdspp̄
(exp)

~S,x!

dx
2

dspp̄
(0)

~S,x!

dx
G P̃i~x!dx.

~5.7!

In order to place bounds on the unknown couplings from
values ofS i

exp(S) one will have to take into account the fa
that the couplings depend on the sub-process energys, i.e.
they are functions of the integration variablesxa andxb . For
example, assuming an energy dependence such as the
given in Eq.~2.20!, we have forDk ~with n51/2)

S1
exp~S!52

2

3
Dk0E

0

1E
0

1

dxadxbf d/p~xa! f ū/ p̄~xb!

3
C~xaxbS!

A11xaxbS/L2
. ~5.8!
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Thus, measuringS1 will determineDk0 as a function of the
arbitrary scaleL.

In the case of app collider such as the LHC, the proces
pp→W2gX proceeds only through sea-quark interactio
The corresponding differential cross-section reads

dspp~S,cosuc.m.!

d cosuc.m.
5(

u,d
E

0

1E
0

1

dxadxbf d/p~xa! f ū/p~xb!

3
dsdū

d cosu1
1(

u,d
E

0

1E
0

1

dxadxb

3 f ū/p~xa! f d/p~xb!
ds ūd

d cosu2
. ~5.9!

Both terms in the above sum contain the product of
valence-quark and a sea-quark distribution. This makes

rates ofpp cross sections lower than the relativepp̄ ones, a
fact which is compensated by the higher luminosities of
pp machines. Therefore, one important difference betw
Eq. ~5.1! and Eq.~5.9! is that, after setting again cosu15x
and cosu252x, the terms linear inx cancel in the latter.
Indeed, since the cross-section is symmetric inxa↔xb both
terms contribute with equal weight under the integral and
cross-section assumes the form

dspp~S,x!

dx
5(

u,d
E

0

1E
0

1

dxadxbf d/p~xa! f ū/p~xb!

3Fdsdū~s,x!

dx
1

dsdū~s,2x!

dx G . ~5.10!

As mentioned before, the absence of the linearx term would
render the set of polynomialsPi linearly dependent. To
avoid this we propose to follow the method of binning t
events according to their longitudinal momentum, which w
introduced in@15#. The basic point is to break the symmetri
ity of the *0

1*0
1dxadxb integration by imposing an asymme

ric constraint on the values ofxa andxb . Let us for example
impose the linear constraintxa2xb>d, with d,1. Then the
‘‘binned’’ differential cross-sectiondspp

(b)/d cosuc.m. reads
7-7
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dspp
(b)~S,cosuc.m.!

d cosuc.m.

5(
u,d

E
d

1E
0

12d
dxadxbf d/p~xa! f ū/p~xb!

dsdū

d cosu1

1(
u,d

E
d

1E
0

12d
dxadxbf ū/p~xa! f d/p~xb!

ds ūd

d cosu2
.

~5.11!

or, equivalently,

dspp
(b)~S,x!

dx

5(
u,d

E
d

1E
0

12d
dxadxbF f d/p~xa! f ū/p~xb!

dsdū~s,x!

dx

1 f ū/p~xa! f d/p~xb!
dsdū~s,2x!

dx G
5(

i 51

3

S i
(b)~S!Pi~x!, ~5.12!

with

S1
(b)~S![E

d

1E
0

12d
dxadxb@ f d/p~xa! f ū/ p̄~xb!

2 f d/p~xb! f ū/ p̄~xa!#C~s!s1 ,

S2
(b)~S![E

d

1E
0

12d
dxadxbF f d/p~xa! f ū/ p̄~xb!

s2

2r

1 f d/p~xb! f ū/ p̄~xa!S s2

2r
16s1D GC~s!,

~5.13!

S3
(b)~S![E

d

1E
0

12d
dxadxbF f d/p~xa! f ū/ p̄~xb!

s3

4r2

1 f d/p~xb! f ū/ p̄~xa!S s3

4r2
26s1D GC~s!,

where we have used Eq.~5.2!. Similarly, the experimenta
values for theS i

(b)(S) will be given by

S i
(b,exp)~S!5E

21

1 Fdspp
(b,exp)~S,x!

dx
2

dspp
(b,0)~S,x!

dx G P̃i~x!dx.

~5.14!

In practice one should verify that the bounds for the anom
lous couplings obtained by applying the above procedure
11300
-
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not depend heavily on how the binning is carried out,
choosing, for example, different values ford, or different
functional forms for the asymmetric constraint imposed.

VI. CONCLUSIONS

In this paper we have presented a model-independ
method for extracting bounds on the anomalousgWW cou-
plings from pp and pp̄ experiments, using the processdū
→W2g as a prototype. At the partonic level this metho
gives rise to three observables, which depend explicitly
the various anomalous couplings through simple algeb
relations. These observables may be extracted from the
perimentally measured unpolarized differential cross-sec
for this process by means of a convolution with appropriat
constructed polynomials. These polynomials are quadr
functions of the center-of-mass angle only; most notab
they do not depend on the center-of-mass energy of
~sub!-process. One of these observables is linearly relate
Dk only; therefore, its measurement can furnish the exp
mental value of this quantity, without further assumptions
the values of the remaining couplings. The other two obse
able constitute a system of two equations for the remain
three anomalous couplings; thus they can be used as
rules, in conjunction with other possible observables, phy
cally motivated constraints, or model-inspired relations.

The generalization of the method to the realistic case
hadron colliders, where the initial particles are not parto
but protons or anti-protons, presents experimental and th
retical complications, which, however, can be overcom
From the experimental point of view, it is clear that in th
case of hadron colliders the center-of-mass frame for theWg
must be reconstructed; the ability to achieve this is of cou
crucial for the applicability of proposed method, given th
the latter relies heavily on the use of the center-of-mass s
tering angle. One way to accomplish this seems to be
following: The producedW is in general closely on-shell
and highly polarized; using the first fact, one can impose
constraintMW

2 5(pl1pn)2 to determine the longitudinal mo
mentum of the neutrino with a twofold ambiguity@9,7# ~the
transverse one is the missing transverse momentum of
event!, whereas the second fact guarantees that one can
lect the correct solution 73% of the time@14#. Thus, theW
momentum can be reconstructed, and from it the center
mass angle of the event may be deduced.

At the theoretical level the method carries over straig
forwardly from the partonic level to the case ofpp̄ colliders,
since the inclusion of the structure functions does not in
fere with any of the underlying assumptions. After the inc
sion of the structure functions one needs to assume a ce
functional dependence of the unknown form-factors on
sub-process energies, over which one integrates; this i
course a general limitation in this type of analysis, and is
particular to this method. On the other hand, in the case
pp colliders the structure functions conspire to eliminate
linear terms inx, a fact which invalidates one of the mai
assumptions, namely that the polynomialsPi(x) are linearly
independent. This may be circumvented if one considers
‘‘binned’’ instead of the usual differential cross-sectio
7-8
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which may be obtained by introducing an asymmetric c
straint among the longitudinal momenta appearing in the
guments of the structure functions@15#.

It would be interesting to study whether the analysis p
sented here carries over to the processdū→W2Z, which
would probe directly and separately the possible anoma
couplings appearing in theZWW vertex. Finally, we note
that these results can be easily translated to thee2g
hy

v

11300
-
r-

-

us

→W2ne process, which would be of interest for linear co
liders, if theeg option is realised.
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