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Probing the WW vertex at hadron colliders

Joannis Papavassiliou
Theory Division, CERN, CH-1211 Geneva 23, Switzerland

Kostas Philippides
Department of Physics, University of Durham, Durham DH1 3LE, United Kingdom
(Received 15 July 1999; published 8 November 1999

We present a new, model independent method for extracting bounds for the anom@ldMscouplings
from hadron collider experiments. At the partonic level we introduce a set of three observables which are
constructed from the unpolarized differential cross section for the prahessw ™y by appropriate convo-
lution with a set of simple polynomials depending only on the center-of-mass angle. One of these observables
allows for the direct determination of the anomalous coupling usually denotédcbwithout any simplifying
assumptions, and without relying on the presence of a radiation zero. The other two observables impose two
sum rules on the remaining three anomalous couplings. The inclusion of the structure functions is discussed in
detail for both pﬁ and pp colliders. We show that, whilst fopF experiments this can be accomplished
straightforwardly, in thgpp case one has to resort to somewhat more elaborate techniques, such as the binning
of events according to their longitudinal momert80556-282(99)01523-4

PACS numbe(s): 13.40.Gp, 13.85.Ni, 14.70.Bh, 14.70.Fm

[. INTRODUCTION and the effects of the structure functions must be included.
The detailed study reveals however that, due to a very par-
The importance of hadron colliders concerning the meaticular dependence of the differential cross-section on the
surement of the trilinear gauge self-couplings has alreadgenter-of-mass angle, the method can in fact be applied. As a
been exemplified by the direct verification of the existence ofesult, one obtains a set of three algebraic equations relating
such vertices throughVy as well aswZ production at the the four unknown couplings. In particular, one can directly
Fermilab Tevatrorf1]. The bounds on the anomalous cou- extract the value for th& « anomalous form-factosyithout
plings so obtained have only recently been surpassed by tH¥Ving to assume the absence of other anomalous couplings.
CERNe*e™ collider LEP2 measuremenf&]. The advent of The paper is organized as follows: In Sec. Il we present
the Large Hadron CollidefLHC) at CERN is expected to explicit results of the partonic differential cross-section for
improve the situation further, because of its high luminositythe prototype procesdu—W=y, using the most general
and energy reach. A significant advantage of hadron collider¥/ Wy vertex allowed from Lorentz and (1)gy invariance.
in this context is the fact that the couplings of the photon and' NiS Process has received significant attention in the litera-
the Z boson to theW boson can be probed independently i€ [5-9], mainly due to the presence of the radiation zero
through separate processes. Taking also into account that iy its differential cross-sectiofil0,11]. In Sec. Il we define

the sub-process level the center-of-mass energy varies, offeSet of observables, which depend explicitly on the various

-’ _ahomalous couplings, and can be experimentally extracted
may also study the form-factor structure of the couplings . . ' ) ;
T ) : through the convolution of the differential cross-section with
thus furnishing important information, complementary toa ropriately constructed polynomials of @bshe center-
that obtained from the lepton colliders. bprop y POy

In thi 4 to had llid . of-mass scattering angle. In Sec. IV we present an elemen-
n this paper we extend to hadron collider experiments g,y giscussion of the statistical properties of these observ-
model-independent method proposed for the extraction ofpjes |n Sec. V we turn our attention to the realistic cases of

bounds on the anomalous couplings at LEFR. This p and pﬁ collisions, and address the complications that

tmhetg_cf)fd IS ?alsed on cor:_scE;llJ]ctmk? ﬁplpr%p{late p:on;:ctlon? Cﬁrise due to the inclusion of the structure functions. Finally,
€ difrerential Cross sectiqr], which 'ead o a SeLoTnovel 5, goc v e present our conclusions.

observables; the latter are related to the anomalous couplings

by means of simple algebraic equations. The experimental

determinations of these observables can in turn be used in Il. THE PROCESS du—W~y IN THE PRESENCE

order to impose bounds simultaneously on all anomalous OF ANOMALOUS COUPLINGS

couplings, without having to resort to model-dependent rela- _

tions among them, or invoke any further simplifying assump- We consider the procesd(pg)u(p,)—W(p2) ¥(a),

tions. shown in Fig. 1. All momenta are incoming i.@q+py
Given the advantages mentioned above, the generalizatiohP,+d=0, and the square of center-of-mass enewgyis

of this method to the case of hadron colliders is certainlygiven bys= p2=(pg+ Pu)?=(p,+0q)2. We work in the nar-

interesting, but is by no means obvious, even at the theoretow width approximation where th& is assumed to be

ical level. The crucial difference is that at hadron collidersstrictly on shell,p3=M3,; the inclusion ofW off-shellness

the center-of-mass energy of the sub-processes is not fixedffects is known to give very small contributiofig|.
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FIG. 1. Diagrams contributing to the proced;EHW’ y. The

blob at the vertex indicates the presence of anomalous three-boson

couplings.

The S'matrix element for the process we study is given by

(dulW~™y)=THEek(q) ey (py), (2.0)

wheree’;(q) and eev_(pz) are the polarization vectors of the
photon and th&V, respectively, and the amplitude? is the
sum of three pieces,

THA=THP L THBL THE (2.2

whereT,, T, and T, denote thes, t andu channels contri-

butions, respectively. They are given by the following ex-

pressions:
iegQy 1
TILB: P Uy,
t ( \/E)u?’;; Lpdﬂq)’ﬂd
iegQy 1
TILLJL'B \/E ) U‘}/p,p +qyﬁPLud, (2.3
u
—ieg 1
T4P= N )JZV (p )F” A(q,p1.P2),
1
where J\cly\F:Vu'yaPLud PL=3(1-vs), Qu=2Q4=-3%,

and we have neglected any quark mixing effe€t$*# de-
notes theW Wy vertex; it is written as the sum of the usual
standard model pieces*#, and an anomalous pie¢&*”
i.e.

F”““ﬂ(q,pl,pz)=F6‘“B(q,p1.pz>+F§ﬁﬁ(q,p1,pz)-(2 .

The canonical piec€4*# is given by

T5*2(,p1,p2) = (P1—P2) L9+ 20Pge+ — Zq“g”ﬁ(, 5
2,

where the relations leW_—O q.€5(9)=0, and
ngfw (p2) =0 have been used. The anomalous piﬁgéﬂ
reads

ISince we only consider thgWW vertex and no confusion can
arise between the corresponding couplings of ZNéW vertex we
suppress any supsubscriptsy from all form-factors.
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aﬁ A B B
en"(4,p1,P2) =— (P2— P1)*q*a”+ (Ax+N)gPg**
MW
Ax+ 1)\ aguB
K a“g
~ [1+p\~
_ wapBp
+| k 2p \le a,
) )He“PPog,( )o
€
2Mw —P1 qp(P2—P1

+s(p—1)e**PP(p—py),] (2.6

wherep=M?3/s. The anomalous couplingsk, \, x, andx

parametrize the deviations from the standard model vertex;
they are form-factors which must be evaluated at the kine-
matical point relevant for the reaction under consideration,
ie.

M&.q%=0), 2.7

wherez stands for any of the four aforementioned couplings.
The anomalous vertex given above is the most genahalVv
vertex compatible with Lorentz and(1) gauge invariance;

it has been derived from the interaction Lagrangian

z=z(pi=s,p3=

1 ; T N AV
gﬁnyWW:(lngAVW A +HC)

A
+i kW W, M +i M—ZWZAWQF”"

w
9a it A v N
+ = WIW, (8" d,FP"+ "9, F™)
Ile
- gz POW 9, W, 07F ,+ H.c.
Ile
TN BAY A RYY. =
HIRWIW, M+ — WL WA, (2.9
MW

whereW* is the W™ field, A* is the photon field, the field
strength tensors are all Abelian, and given\l"= g*W"
—"WH, FHU=grAT—g"A", Frr=3e4"PF  and Ak
=x—1. The reason why the form-factogs, g4, andgs do
not appear in"“*# is that by gauge-invarianag, is forced
to be fixed at the valug,(p?,p3,9%) =1, whereag), andgs
to be proportionalin momentum spagdeto g2, and thus to
vanish in our case of an on-shell photoh-9,12,13.

It is straightforward to verify that the full vertek#*#
satisfies the elementary Ward identity

q.**#(q,p1,P2) = (P39°"— p3p5) — (P1g“’—piph),
(2.9
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a fact which guarantees the electromagnetic gauge- doan 1
invariance of the entire amplitude, i.@:T,;=0. dx )=C(S) o1(S)P1(x)+ 2—) o,(S)Py(X)
The squared unpolarized amplitude for the process is P
given by 1
+ F) o3(8)P3(X) |, (2.19
_ P
2 3 [duTw )
u-Sd Ny Aw 242
e‘g” (1-p)
C®)= )25&7 s (2.17
=2 TuP (@Q (pa)T)s, (210
v where
where the sum o, sq runs over all possible helicities of )
the incoming quarksQ g, is the polarization sum of they, P1(x)=x+3x%,
given by
Po(x)=1, (2.18
P2 pg 2
QPP (pp)=—gPF '+ —>, (2.1 Ps(x)=1—X2,
w
and
and P”““'(q) the polarization sum of the photon, given by )
o(8)=— §AK,
) ) wat' + i gt rok'
PMM(q):_gMM+17q 7" 4q _nzqqz,
7 (70) 7a(8)= (Ak+N)2+ (R +%)2, (2.19

(2.12
where 5, is an arbitrary four-vector, analogous to a gauge- ag(s)=2()\2+7\2)—p[(AK—)\)2+(7<—X)2]
fixing parameter. By virtue of the Ward identity of E@.9
satisfied byl'#*# all dependence om,, disappears from the
righ-hand sidgRHS) of Eq. (2.10.

The unpolarized color averaged differential cross-sectio
in the center-of-mass frame is given by
.54 A plings[6].

do\ 1
dx/ 3
It is well known that, due to the presence of the tepms
wherex=cos6, and ¢ is the scattering angle of the photon andp™?, the cross-section of E¢2.16 would grossly vio-
relative to the incoming anti-quark in the center-of-masdate unitarity at high energies—, p—0, if the anomalous
frame of the two partons, or equivalently, the produd®d couplings were considered to be constants, independest of
and y. The differential cross-section is the sum of two Therefore, in analogy to nuclear form-factors, one tradition-
pieces: ally assumes as-dependence of the forfig]
do) do? N do@"
dx) | dx dx |-

The standard contributiordg®/dx) corresponds to the case From the explicit expression of the cross-section we see that
where all anomalous couplings are set equal to zero, and h&e choicesn=1/2 for Ak, k, andn=1 for \, X would

been studied extensively in the literat§ife-9]. In particular ~ suffice in order for the square brackets in E2.16 to ap-
it exhibits a radiation zero at=—1/3: proach a constant as—0; then the cross section would

decrease like $/due to the flux factor irC(s). The scaleA
is assumed to be of the same order of magnitude as the scale
characterizing the new physics responsible for the anomalous
couplings.

We note that the coupling contributes only quadrati-
cally in the cross section. We have no simple explanation of
this fact, which seems to be characteristic to the specific

+2p%(AK?*+K?).

The expression given in EQR.16 applies also to the process
ud—W™*y, with the only difference that, in that case, the
scattering angle is defined between the incoming quark and
the photon. Our result agrees with previous calculations

2 which considered onlhA « [5], or both theAx and\ cou-
) 23 Tl 213

Zy

2 —
Z(s, MW,O) = m

(2.14 (220

(U (L4 p)*+ (1= p)™X]
1-x?

do® [1)e’g® 1
dx  |3/1287 s(1—-p)
(2.15

The anomalous contributiord¢-2"/dx) is given by
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process. Of course th@, P violating couplings«,N can only 15 9 45
contribute quadratically. Thus, if the anomalous couplings -
are small enough<10~3) so that for certain center of mass

energies all quadratic terms could be neglected as unobseriki-is important to observe that the polynomighs(x) and

able, th.en. any deviation would be a diregt measurement @j(x) areindependenof the (Sub_process energy. This is
Ak. This is however not the case for typical Tevatron andi be contrasted to the equivalent set of polynomials obtained
LHC energies; therefore, quadratic terms must be kept i the context of the process e —W*W~ [3], which de-
general, and are typically of the same order, or even largesend explicitly on thefixed) s. As we will explain in Sec. V

than the linear one. . = . .
o . . . the ssindependence of the polynomial%(x) is crucial for
It is interesting to notice that the term linear M does g 4njicanbility of the proposed method to the realistic case

not distort the appearance of the radiation zeraat—1/3, . .
for arbitrary values oA k. The radiation zero is washed out of pp andpp scattering, where the structure functions must
y Re included.

only due to the quadratic anomalous terms, which reduce s .
to a dip. Since the quadratic coefficients\ofire much larger By means of the polynomialB;(x) one may then invert
than those of «, due to the pre-factor (14#) in frontof o3 EQ.(2.19, and project out the individuat; as follows:
in Eq. (2.16), the cross section is extremely sensitive to non-
standard\ values in the neighborhood of the radiation zero. Y [de®
- : o01(s)=C H(s) | dx| ——]Pi(x),
We also notice that the quadratic terms are completely 1 dx

symmetric under £ «,\)< (x,\). Furthermore the coeffi-

cient in front of Ak is independent of the energy. Thus in 1 doan\ _
experimental analyses where the fitting is carried out by al- o-z(s)=2pC’1(s)f dx( d )Pz(x),
lowing one of the anomalous couplings to differ from zero at -1 X

a time, thex and X distributions as well as other related

bounds would be identical. The same would be trueXar

(3.3

- 1 d an -
andx, if the term linear inA k were negligible; this could be 03(5):4p2c*1(s)f dx L) P3(x).
the case at high energies, X« is not very small A« -1 dx
>10"?). :
) In order to extract the experimental valueS*® for the ob-
servablesr; we simply substitute in the left-hand side of Eq.
IIl. PROJECTING OUT THE ANOMALOUS COUPLINGS (3.3 the experimental valued@ey,/dx) given by

In this section we show how one can extract experimental

0
values for the quantitiesr;, o,, and o3, defined in Eq. (dang _[9oexp _(di) (3.4)
(2.19. This will furnish a system of three independent alge- dx dx dx /)’ '

braic equations involving the four unknown gauge couplings. _ exp o

To accomplish this, one first notices that the polynomials We notice from Eq(2.19 thato ;™" would determinedi-
P;(x) constitute a linearly-independent set; their Wronskianrectly the experimental value fok «, withoutany assump--
W(P;) is simplyW(P;)=2. One may then construct a set of tions on the size of the other three couplings. The remaining

U ) ions i i eXP exp
three other polynomial®;(x), which are orthonormal to the WO €quations involvingr;™ and 03" can then be used as

P,(x), i.e. they satisfy sum rules, in order to impose experimental constraints on the
three remaining couplings, x, andX.
In the case when experimental cuts restrict the angular

1 . . = . g
f BL(X)P(X)dx=4, . 3.1) region from[g,b]:nstead of[_ 1,1 approprlate orthonor
-1 mal polynomialsP;(x) can still be easily constructed, by
requiring
These polynomials afe )
a
~ -3
P1(x)= EX’ Their closed form reads
39 s, Pi(X)=Cjp+Ciix+Cix%, 1=1,23 (3.6
PZ(X)__Z_EX_l— ZX s (32) with

C10=36D(a*+4a’b+4ab’+b%),

20f course this set is not uniquely determined; here we derive the
set with the lowest possible degreexn c= —48D(4a’+ 7ab+4b?),
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C12: 18®(a+ b),

C,o= —3D[3a*+12a%(3+b)
+(10+ 36b+ 3b?)(b%+4ab)
+2a%(5+72b+ 15?)],

Cc,;=36D[a%+4a%(4+b)+b(5+16b+b?)
+a(5+28b+4b?)], (3.7
Cp,=—30D[6+a%+18+b?+2a(9+2b)],
C30=6D[18a%+ (5+18b)(4a+b)b+a?(5+72b)],
C3=—36D[16a’+b(5+ 16b)+a(5+280)],

C3,=180D(1+3a+3b),
where
D=(a—b) 5. (3.9

As a check one may verify that the choiee=—1 andb
=1 in Eq. (3.7 reproduces the set given in E@.2).

IV. STATISTICAL PROPERTIES
OF THE o; OBSERVABLES

PHYSICAL REVIEW D60 113007

ij _Vﬁ/zvjlj/Z' :

We will next assume that the Gaussian distribution is
peaked around the standard model values of the couplings,
i.e. u;=0, and will use the elementary results

| Trazinz-o
(4.6
3
f_ [dz]z’p{V= &7, f [dz]zp("=7 6,

wherep(®=p;(z,0,6°). After a straightforward calculation
we obtain the following expressions for the variods:

4
Rt

V=
V1,=0,

V15=0,
(4.7)

1, 1 1, 1
Vop=468285+ E5‘1‘+ 55§+45§5§+ E5‘3‘+ 551,

In this section we will present an elementary study of the 1
basic statistical properties of tlag observables introduced in  V33=—2p( 54+ 54) +
the previous section. In particular we will compute their cor-
relations, using simple assumptions about the distribution of
the anomalous couplings. For convenience, in this section we
introduce the following uniform notation:

p2(8528%+ 855+ 53+88282+ 55

+ 63)—2p3(6‘1‘+ 83)+2p*(81+ 83) +2(55+ 83),

1
Vos= EP(85§5§_ 81— 83+ 88555 83— 53 + p*( 51+ &3)

Z;=Ak, Z,=\, Z3=k, Z;=N\. 4.1

+ 655+ 65

Evidently, the only non-zero correlation lis;. By vary-

To study the correlations of the; observables we will
that assume each of the couplingsobeys independently a

normal(Gaussiahprobability distribution, with meam; and
variances?, i.e.

1 (z—w)?
Pi(Zi i, 80) = &(Z—W)meXF{ - 2—5?

Then, the expectation valu@r;) of the observabler; is
given by

4.2)

4
<0'i>:j1:[1 f_w[dzj]PjUi' (4.3

the corresponding covariance matrix by

Vij=(aio;) = (oi){0j),

and the correlations;; by

4.9

ing the value of the corresponding variané&®ne can study
the limits where some of the couplings are excluded on the
grounds of certain discrete symmetries. For example, by
choosingé; and 6, very small compared té; and §, we
approach the limit where th€ and P symmetries are indi-
vidually respected by the anomalous couplings. The other
interesting parameter to vary is of course the center-of-mass
energys. In Table | we display some characteristic cases.

We see that, with the exception of relatively low energies,
the values of 5 are rather reasonable, and they tend to de-
crease as the sub-process enesgycreases.

V. INCLUSION OF THE STRUCTURE FUNCTIONS

The analysis presented so far is valid at the partonic level,
and the quarks appearing in the initial state were assumed to
be in their center-of-mass frame. In reality the initial states
are protons and anti-protons, a fact which introduces two
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TABLE I. The correlationr,; as a function of the center-of- The double sum runs over all possible combinationsif

mass energy, for various choices of the parametets and down quarks U_da US, Ed, ...) which give rise to the
desired final stat&V~ vy, and for which the corresponding

Vs(Gev) 100 200 300 500 1000 structure functions are not negligibleo 4, denotes the situ-
M3 0.93 0.50 0.40 0.35 0.32 ation where thel quark originates from the proton and the
82=55=65= 55 from the anti-proton beam; in that case valence-quark struc-
ture functions are involved for both quarkkr,4 denotes the
Js(GeV) 100 200 300 500 1000 reverse situation; now both structure functions involve sea-
quarks and are equal. We define tiiéy center-of-mass
I3 0.92 0.44 0.32 0.25 0.23

anglex=cosé.,, to be the angle between the photon and
the anti-proton beam. Thus, the angle involvedding is
01=0;m , While in doy it is 8,=7— 0., , Or COSH;=X
Vs(Gev) 100 200 300 500 1000 and cog,=—x. Clearly, we have thatlogy(s,x)=dogy(s,
I3 0.91 0.40 0.27 0.21 018 N , , _
I S Notice that if the structure function weights
62=365=5055=5003 I
f(Xa,S)f(Xp,S) multiplying each term were the same, then
all terms linear inx would cancel in Eq(5.1); in such a case

the polynomial Pl(x)—>51(x)=3x2, a fact which would

additional complications. First, the final state can be reacheffnder the set of polynomial,(x), P5(x), P5(x) linearly
by different combinations of partons, which are not in theirdependent, thus reducing the usefulness of the proposed
center-of-mass any more, but carry momentum fractions Method. This is howev_e( not the case, since the first term on
and x,, of the corresponding parent hadrons. This is takerfh® RHS of Eq/(5.1) originates from the valence quarks in-
into account by introducing structure functions. Second, théide the proton and anti-proton, whereas the second term
partonic center-of-mass frame has to be reconstructed frofPmes from the sea-quarks. The sea-quark contribution is
the data on an event by event basis. However, not all kineSignificantly smaller than that of the valence-quarks, a fact
matical information on the final state particles is available Which is appropriately encoded in the form of the corre-
since the finalW boson decays to a lepton and amob- sponding structure functions, convoluted with the above el—.
served neutrino. Although the transverse momentum of thementary processes. One could therefore, to a good approxi-
neutrino is identified with the missing transverse momentunination, omit this term. If, nonetheless, such a term were to
of the event, its longitudinal momentum can only be deterPe kept, the necessary procedure would be as follows: Since
mined with a twofold ambiguity by constraining the lepton- doud(s,X) =daqy(s, —x), it follows from Eq.(2.16 and Eq.
neutrino pair invariant mass to equal femasg[8,9]. Using ~ (2.18 that doq(s,x) is a linear combination ofP;(x),
the fact that, at least at the Tevatron, teboson is highly  P3(x), and P;(x)=P;(—x)=3x?—x. The next step is to
polarized, one can arrive at the correct choice with a succesgyrite P,(x) as a linear combination oP;(x), P,(x), and
rate of 73%[14]. P4(x), i.e.

For app collider the total cross-section for the process
pp—W™ yX, reads5]

82=255=10565=10652

P1(X)=—P1(X)+6Py(x) —6P5(x), (5.2
do,(SX) 111
LS [ axdtaptea s 0.9 _ y A
ud Jo Jo after which the quantitiesr,, o5, and o3 will be simply
d cos6,) 1 modified by small corrections.
M E j J dx,dx;, Omitting for simpligity such corrections from sea-quarks,
d cosé, 0Jo and keeping only theud) term in the sum on the RHS, Eq.
- doy(s,cOS6,) (5.1) becomes
Xfu/p(xa,s)fd/ﬁxb,s)w,
(5.
dop(S,x) jlfl B doqy(s,x)
where S is the square of th@p center-of-mass energys dx  JoJo AXadXf arp(Xa) FurpX) = =
=(ppt pg)z, X, andx, are the fractional longitudinal mo- (5.3

menta of the quarks inside the protorn=g,,<1, ands

=XzX,S is the squared center-of-mass energy of the sub-

process. In the above equationdenotes a generigp-type  and its deviation from the canonical value due to the anoma-
quark (u,c,t), while d a genericdowntype quark ¢,s,b). lous gauge boson couplings is given by
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(a”’(s X) do®(s,x)

Oud
T dexadxbfd/p(xa)fuﬂxb) . dx

171
- || axantapra e

1 1
o1(s)P1(x)+ (m) 0,(S)P,(x) + ( m) 03(8)P3(X) |.

(5.9

At this point we can repeat the same procedure for proThus, measuring.; will determineA ko as a function of the
jecting out the anomalous couplings which has been prearbitrary scaleA.
sented in Sec. Ill. This is possible because the polynomials In the case of @p collider such as the LHC, the process
Pi(x) and the corresponding projective polynomi&lgx) pp— W~ yX proceeds only through sea-quark interactions.
donotdepend on the sub-process enesgWriting Eq.(5.4)  The corresponding differential cross-section reads
in the form

3

dapTS X) dopp(S,co80c m.) 101
SORIELIE 55 et =3 | | axdxan(x gt
with dogy Lt
Xdcos«91+uz,d fo fo dxadxy
11
El(S)EfO fo dXadXpf g/p(Xa) Fuip(Xp) C(S) o1(S), dogy

X fup(Xa) fd/p(xb)m- (5.9

( ))
S)= dXd X, g/p(X X S), . .
2A(9= f f a@XoTarp(Xa) furpl b)<2 (s) 72(9) Both terms in the above sum contain the product of a
(5.6 valence-quark and a sea-quark distribution. This makes the

rates ofpp cross sections lower than the relatipp ones, a
fact which is compensated by the higher luminosities of the
)03(3), pp machines. Therefore, one important difference between
Eqg. (5.1 and Eq.(5.9 is that, after setting again cés=x
and cod,=—X, the terms linear inx cancel in the latter.
Indeed, since the cross-section is symmetrigjn-x,, both
terms contribute with equal weight under the integral and the
cross-section assumes the form

C(s)
3(8)—f f andefd/p(Xa) u/_(Xb)< 2
4p“(s)
we see that the quantiti€s may be extracted from the dif-
ferential cross-section by means of the projective polynomi-
als P;(x). Their experimental valu&®*"(S) are obtained
from

da;%xp)(s,x) dcr( )(s x) |

Ix ix Pi(x)dx. dopp(SX)

(5.7

In order to place bounds on the unknown couplings from the
values of2*R(S) one will have to take into account the fact
that the couplings depend on the sub-process engrgg.
they are functions of the integration variablgsandx, . For
example, assuming an energy dependence such as the
given in Eq.(2.20, we have forA x (with n=1/2)

S 101
% p(S)—J_l 2 f f dXadXpf 4/p(Xa) Fuip(Xp)
d JoJo

dogi(s,X)  dogi(s,—X)
X ax + dx . (5.10

0%% mentioned before, the absence of the lineterm would
render the set of polynomial®; linearly dependent. To
avoid this we propose to follow the method of binning the
5 L _events accqrding to their Ilongit.udi'nal momentum, which was
3 (S)=— §AK0J f dXa % f ap(Xa) Fip(X) !ntroducedllr[115]. The_ basic pointis to bregk the symmetric-
0.Jo ity of the [5f5dx,dx, integration by imposing an asymmet-
ric constraint on the values af, andx, . Let us for example

C(XaXpS) _ (5.8) impose the linear constrair— x,= &, with §<1. Then the
V1+ XX, S/A2 “binned” differential cross- sectlordapp/d CoS6, , reads
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do(?)(S,cosb; m)
d cosé. .

1-6 do Tdu
jf andefd/p(Xa)fu/p(Xb)dCOS&

Oud
dcos& '

3 ] o taptx)

(5.11
or, equivalently,
doP)(S,x)
dx
1-6 dogi(s,X)
f f ande fd/p(xa) u/p(Xb)d—
dog(s,—X)
+fU/p(Xa)fd/p(Xb)dT
3
=2 3M(5)P(x), (5.12
=1
with
b 1(1-6
0= [ | axdslfaptx fapon)
—farp(Xp) Fuip(Xa) 1C(s) o1,
(®) 1(1-6 oy
25 (S)EL fo dxadX, fd/p(Xa)fE/E(Xb)Z
+ farp(Xp) Flip(Xa) p+601) C(s),
(5.13
(®) 1(1-6 o3
23 (S)EL fo dxadx, fd/p(xa)fU/F(Xb)Ll_p2
+fd/p(xb) u/ixa)< _60'1) C(s),
4p?

where we have used E@5.2). Similarly, the experimental
values for thes(?(S) will be given by

dofp™P(8x)  dof?(Sx)]
dx dx

1
Ei(b’EXp)(S):j Pi(x)dx.
-1

(5.19
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not depend heavily on how the binning is carried out, by
choosing, for example, different values fér or different
functional forms for the asymmetric constraint imposed.

VI. CONCLUSIONS

In this paper we have presented a model-independent
method for extracting bounds on the anomalod§W cou-

plings from pp and pp experiments, using the proceds
—W~™y as a prototype. At the partonic level this method
gives rise to three observables, which depend explicitly on
the various anomalous couplings through simple algebraic
relations. These observables may be extracted from the ex-
perimentally measured unpolarized differential cross-section
for this process by means of a convolution with appropriately
constructed polynomials. These polynomials are quadratic
functions of the center-of-mass angle only; most notably,
they do not depend on the center-of-mass energy of the
(sub-process. One of these observables is linearly related to
Ak only; therefore, its measurement can furnish the experi-
mental value of this quantity, without further assumptions on
the values of the remaining couplings. The other two observ-
able constitute a system of two equations for the remaining
three anomalous couplings; thus they can be used as sum
rules, in conjunction with other possible observables, physi-
cally motivated constraints, or model-inspired relations.

The generalization of the method to the realistic case of
hadron colliders, where the initial particles are not partons
but protons or anti-protons, presents experimental and theo-
retical complications, which, however, can be overcome.
From the experimental point of view, it is clear that in the
case of hadron colliders the center-of-mass frame fok\the
must be reconstructed; the ability to achieve this is of course
crucial for the applicability of proposed method, given that
the latter relies heavily on the use of the center-of-mass scat-
tering angle. One way to accomplish this seems to be the
following: The producedW is in general closely on-shell,
and highly polarized; using the first fact, one can impose the
Constrainﬂ\/l\z,\,= (p;+p,)? to determine the longitudinal mo-
mentum of the neutrino with a twofold ambiguit9,7] (the
transverse one is the missing transverse momentum of the
even), whereas the second fact guarantees that one can se-
lect the correct solution 73% of the tinj@4]. Thus, thew
momentum can be reconstructed, and from it the center-of-
mass angle of the event may be deduced.

At the theoretical level the method carries over straight-

forwardly from the partonic level to the casemp colliders,
since the inclusion of the structure functions does not inter-
fere with any of the underlying assumptions. After the inclu-
sion of the structure functions one needs to assume a certain
functional dependence of the unknown form-factors on the
sub-process energies, over which one integrates; this is of
course a general limitation in this type of analysis, and is not
particular to this method. On the other hand, in the case of
pp colliders the structure functions conspire to eliminate the
linear terms inx, a fact which invalidates one of the main
assumptions, namely that the polynomiRi¢x) are linearly

In practice one should verify that the bounds for the anomaindependent. This may be circumvented if one considers the
lous couplings obtained by applying the above procedure dthinned” instead of the usual differential cross-section,
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which may be obtained by introducing an asymmetric con-——W" v, process, which would be of interest for linear col-
straint among the longitudinal momenta appearing in the arliders, if theey option is realised.
guments of the structure functioh5].
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