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Remarks on the quantum modes of the scalar field on Ad§g ; spacetime
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The problem of the quantum modes of the scalar free field on anti—-de @iti& backgrounds with an
arbitrary number of space dimensions is considered. It is shown that this problem can be solved by using the
same quantum numbers as those of the nonrelativistic oscillator and two parameters which give the energy
guanta and, respectively, the ground-state energy. This last one is known to be just the conformal dimension of
the boundary field theory of the AdS-conformal field the@@T) conjecture. The obtained normalized energy
eigenfunctions represent a new result which corrects that of Burgess akehLi50556-282(199)08520-3

PACS numbegps): 04.62+v

The recent interest in the propagation of quantum scalar 1
fields on anti—de SittefAdS) spacetime is due to the discov-  ds*=7xgdZ"dZ°=sec wr| dt*—dr’——sir’ wr d 02) ,
ery of the AdS conformal field theory correspondefté w
One of the central points here is the relation between the @

field theory on the ¢+ 1)-dimensional AdS (Ad$.1) \heredg? is the usual line element on the sphes& L.

spacetime and the conformal field theory on itSSince reD,=[0.7/20), the whole space domain i®
d-dimensional Minkowski-like boundaryM ¢). There are se-  _ ><Sd‘1r We ,remind’ the reader that the time of AdS
rious arguments that the local operators of the conformallnusrt satisfyt e [ — 7/ w, 7/ w) while t e (— o, defines the
field theory onM4 correspond to the quantum modes of the ;i ersal covering spacetime of AdS (CAdS,. ) [3].

scalar field on Adg, ; [2]. Actually, for d=3 [3,4] as well The one-particle quantum modes of the scalar quantum
as for anyd [5] it is proved that the conformal dimension in field ¢ of massM, minimally coupled with the gravitational

boundary field theory is equal with the ground-state energyie|d, are given by the particular solutions of the Klein-
on AdSy;, [2]. Moreover, it is known that the energy spec- Gordon equation

trum is discrete and equidistaf], its quanta wavelength
being just the hyperboloid radius of AgS,. 1

In these conditions the scalar field on Ad$ can be seen 7%( Vo g"79,4)+M?¢=0, g=|delg,,)|. 2
as the relativistic correspondent of the nonrelativistic har- 9

monic oscillator ind-space Q|r.ne_n5|_ons. This means that thP“I'hese may be either square integrable functions or distribu-
quantum modes of the relativistic field may be labeled by th ions onD. In both cases they must be orthonorial the

same quantum numbers as those of the nonrelativistic osci jsual or generalized senswith respect to the relativistic
lator, namely the radial and the angular quantum numbers. 1Bealar produci7]

the case ofd=3 we know that this is tru¢3,6] but for d

>3, the definition and the role of the angular quantum num- -

ber are not completely elucidated. This is the motive for our <¢,¢'>=iJ d9%/gg®¢* dpeb”. 3
comment on this subject. Our aim is to present here the de- °

finitive form of the normalized wave functions of the regular
[4,5] scalar modes on AdS;, in terms of the above-
mentioned quantum numbefand natural units withh =c
=1). Moreover, we establish the formula of the degree o

The spherical variables of Eq2) can be separated by
using generalized spherical harmonhrfg(’ﬁ(x/r). These are
]pormalized eigenfunctions of the angular Lalpace operator

(8],
degeneracy of the energy levels.
The AdS,; spacetime is the hyperboloidj,gZ”Z8 — A /) =1(1+d—2) Y& Y(x/r) 4)
o2 ) B ) . ) sYi eN) )
=R of radiusR=1/w in the (d+ 2)-dimensional flat space-
time of coordinatez *, Z° Z*', ..., Z% and metricyag  corresponding to eigenvalues depending on #mgular
=diag(1,1;-1,...,-1),A,B=-1,0,1...d. On AdS;;1  quantum numbelrwhich takes the values 0,1,2. . [8]. The

we consider the static chart where the coordinates x  notation () stands for a collection of quantum numbers giv-
=0,1,...,d, i.e., the imex°=t and the Cartesian space co- ing the multiplicity of these eigenvalugs],

ordinatesx=(x%, x?, ... ,x%), are defined such thaz !

=R secwr cosot, Z°=Rsecwr sinwt and z (I+d=3)!

=Rtanwr(x/r), with r=|x|. Then, in the generalized n=(2+d=2)} (d—2)1 (5)
spherical coordinates, 6, . . .,04_1, commonly related to

the Cartesian ond8], the metric is given by the line element We start with(positive frequencyparticular solutions of en-
[3,5] ergy E,
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¢(E+|)(}\)(t,x)~(cotwr)(d‘l)’zREJ(r)Y,d(}%(x/r)e‘iEt, The last step is to define thmain quantum numberp
' (6) =2n,+I, which takes the values, 0,1,2 ., giving the en-
ergy levelsE,= w(k+n). If nis even then=0,2,4...n,
and we denote=E/w andu=M/w (i.e.,e=E/fiw andu  while for oddn we havel=1,3,5 ... n. In both cases we
=Mc%hw in the usual units Then, after a few manipula- can demonstrate that the degree of degeneracy of the level

tions, we find the radial equation E, is
1 d?> 2s(2s—1) 2p(2p-1
I o I LG ) P (n+d-1)!
w?dr® s or cog wr ' ’ Y= 20 Y, = (12)
(7) | n: (d—l).
where Now it remains only to express E¢9) in terms of Jacobi
d 2 4 d2—1 polynomials and to normalize them to unity with respect to
2s(2s—1)=|1+ 5_1) 1 2p(2p—1)=pu?+ I Eqg. (3). The final result is
tS)

Hereby, we obtain the radial functions d)?ﬁzx)(t.x): Nn. sirf or cos wrpg'r+d/2—1'k—d’2)(cosQwr)

d-1 —iEt
Re (1)~ sirS wr cogPwr XYioy (X/r)e =, (13
€ € 1
XF|s+p—=,s+p+ =25+ =,sifwr| (9 Where
2 2 2
in terms of the Gauss hypergeometric functiéh Rg | has a NL = (@172 n! I(n +k+1) 2
good physical meaning only whehis a polynomial selected n! r'n,+1+d2)I'(n,+k+1-d/2)
by a suitable quantization condition since otherwises (19

strongly divergent for — 7/2w. Therefore, we introduce the

radial quantum number, [5] and impose We specify that our result coincides with those of Refs.

(10) [3,4,6] for d=3 but in the general case of am this is
similar (up to notations to that of Ref.[5] only for I=0,

In addition, we choose the boundary conditions of the reguwhile for I #0 the first index of the Jacobi polynomial and

lar modes[4,5] given by the positive solutions of Eqg8),  the normalization factor are different.

e=2(n,+s+p), n=012....

i.e., 2s=1+(d—1)/2 and p=k—(d—1)/2, where The parametek we use instead ol could play an im-
portant role in the supersymmetry and shape invariance of
/ d?> d the radial problem as well as in the structure of the dynami-
k=1 n +Z+§ 11 cal algebra. The argument is that the radial problems for

arbitrary d are of the same nature as that witl=1, for
is just the conformal dimension of the field theorydn [2]. which we have recently shown thiatletermines the shape of
We note that Eq.(10) is the quantization condition on the relativistic potential and, in addition, represents the mini-
CAdS;,; while the AdS.; one requirek to be an integer mal weight of the irreducible representation of it3(1s8)

number, tod 3]. dynamical algebr@l0].
[1] J. Maldacena, Adv. Theor. Math. Phy%.231(1998. [7] N. D. Birrel and P. C. W. DavieQuantum Fields in Curved
[2] E. Witten, Adv. Theor. Math. Phy®, 253(1998. Space (Cambridge University Press, Cambridge, England,
[3] S. J. Avis, C. J. Isham, and D. Storey, Phys. RevlD3565 1982.
(1978. [8] M. E. Taylor, Partial Differential EquationgdSpringer-Verlag,
[4] P. Breitenlohner and D. Z. Freedman, Ann. Ph§&Y.) 144, New York, 1996.
249 (1982. [9] M. Abramowitz and I. A. Stegurntilandbook of Mathematical
[5] C. P. Burgess and C. A.'ltken, Phys. Lett153B, 137(1985. Functions(Dover, New York, 1963
[6] D. J. Navarro and J. Navarro-Salas, J. Math. PBf.6006  [10] I. I. Cotéescu and G. Diganescu, J. Math. Phys8, 5505
(1996. (1997; 1. I. Cotaescu,ibid. 39, 3043(1998.

107504-2



