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Remarks on the quantum modes of the scalar field on AdSd11 spacetime

Ion I. Cotăescu
The West University of Timis¸oara, V. Pârvan Ave. 4, RO-1900 Timis¸oara, Romania

~Received 1 March 1999; published 26 October 1999!

The problem of the quantum modes of the scalar free field on anti–de Sitter~AdS! backgrounds with an
arbitrary number of space dimensions is considered. It is shown that this problem can be solved by using the
same quantum numbers as those of the nonrelativistic oscillator and two parameters which give the energy
quanta and, respectively, the ground-state energy. This last one is known to be just the conformal dimension of
the boundary field theory of the AdS-conformal field theory~CFT! conjecture. The obtained normalized energy
eigenfunctions represent a new result which corrects that of Burgess and Lu¨tken. @S0556-2821~99!08520-3#

PACS number~s!: 04.62.1v
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The recent interest in the propagation of quantum sc
fields on anti–de Sitter~AdS! spacetime is due to the discov
ery of the AdS conformal field theory correspondence@1#.
One of the central points here is the relation between
field theory on the (d11)-dimensional AdS (AdSd11)
spacetime and the conformal field theory on
d-dimensional Minkowski-like boundary (Md). There are se-
rious arguments that the local operators of the confor
field theory onMd correspond to the quantum modes of t
scalar field on AdSd11 @2#. Actually, for d53 @3,4# as well
as for anyd @5# it is proved that the conformal dimension
boundary field theory is equal with the ground-state ene
on AdSd11 @2#. Moreover, it is known that the energy spe
trum is discrete and equidistant@5#, its quanta wavelength
being just the hyperboloid radius of AdSd11.

In these conditions the scalar field on AdSd11 can be seen
as the relativistic correspondent of the nonrelativistic h
monic oscillator ind-space dimensions. This means that t
quantum modes of the relativistic field may be labeled by
same quantum numbers as those of the nonrelativistic o
lator, namely the radial and the angular quantum numbers
the case ofd53 we know that this is true@3,6# but for d
.3, the definition and the role of the angular quantum nu
ber are not completely elucidated. This is the motive for o
comment on this subject. Our aim is to present here the
finitive form of the normalized wave functions of the regul
@4,5# scalar modes on AdSd11, in terms of the above-
mentioned quantum numbers~and natural units with\5c
51). Moreover, we establish the formula of the degree
degeneracy of the energy levels.

The AdSd11 spacetime is the hyperboloidhABZAZB

5R2 of radiusR51/v in the (d12)-dimensional flat space
time of coordinatesZ21, Z0, Z1, . . . , Zd and metrichAB

5diag(1,1,21, . . . ,21), A, B521,0,1, . . .d. On AdSd11

we consider the static chart where the coordinatesxm, m
50,1,. . . ,d, i.e., the timex05t and the Cartesian space c
ordinatesx[(x1, x2, . . . ,xd), are defined such thatZ21

5R secvr cosvt, Z05R secvr sinvt and Z
5R tanvr (x/r ), with r 5uxu. Then, in the generalized
spherical coordinates,r ,u1 , . . . ,ud21, commonly related to
the Cartesian ones@8#, the metric is given by the line elemen
@3,5#
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ds25hABdZAdZB5sec2 vr S dt22dr22
1

v2
sin2 vr du2D ,

~1!

where du2 is the usual line element on the sphereSd21.
Since r PDr5@0,p/2v), the whole space domain isD
5Dr3Sd21. We remind the reader that the time of AdSd11
must satisfytP@2p/v,p/v) while tP(2`,`) defines the
universal covering spacetime of AdSd11 (CAdSd11) @3#.

The one-particle quantum modes of the scalar quan
field f of massM, minimally coupled with the gravitationa
field, are given by the particular solutions of the Klei
Gordon equation

1

Ag
]m~Ag gmn]nf!1M2f50, g5udet~gmn!u. ~2!

These may be either square integrable functions or distr
tions onD. In both cases they must be orthonormal~in the
usual or generalized sense! with respect to the relativistic
scalar product@7#

^f,f8&5 i E
D

ddxAgg00f* ]J0f8. ~3!

The spherical variables of Eq.~2! can be separated b
using generalized spherical harmonics,Yl (l)

d21(x/r ). These are
normalized eigenfunctions of the angular Lalpace opera
@8#,

2DSYl (l)
d21~x/r !5 l ~ l 1d22! Yl (l)

d21~x/r !, ~4!

corresponding to eigenvalues depending on theangular
quantum numberl which takes the values 0,1,2, . . . @8#. The
notation (l) stands for a collection of quantum numbers g
ing the multiplicity of these eigenvalues@8#,

g l5~2l 1d22!
~ l 1d23!!

l ! ~d22!!
. ~5!

We start with~positive frequency! particular solutions of en-
ergy E,
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fE,l (l)
(1) ~ t,x!;~cotvr !(d21)/2RE,l~r !Yl (l)

d21~x/r !e2 iEt,
~6!

and we denotee5E/v andm5M /v ~i.e., e5E/\v andm
5Mc2/\v in the usual units!. Then, after a few manipula
tions, we find the radial equation

F2
1

v2

d2

dr2
1

2s~2s21!

sin2 vr
1

2p~2p21!

cos2 vr
GRE,l5e2RE,l

~7!

where

2s~2s21!5S l 1
d

2
21D 2

2
1

4
, 2p~2p21!5m21

d221

4
.

~8!

Hereby, we obtain the radial functions

RE,l~r !;sin2s vr cos2pvr

3FS s1p2
e

2
,s1p1

e

2
,2s1

1

2
,sin2vr D ~9!

in terms of the Gauss hypergeometric function@9#. RE,l has a
good physical meaning only whenF is a polynomial selected
by a suitable quantization condition since otherwiseF is
strongly divergent forr→p/2v. Therefore, we introduce th
radial quantum numbernr @5# and impose

e52~nr1s1p!, nr50,1,2, . . . . ~10!

In addition, we choose the boundary conditions of the re
lar modes@4,5# given by the positive solutions of Eqs.~8!,
i.e., 2s5 l 1(d21)/2 and 2p5k2(d21)/2, where

k5Am21
d2

4
1

d

2
~11!

is just the conformal dimension of the field theory onMd @2#.
We note that Eq.~10! is the quantization condition on
CAdSd11 while the AdSd11 one requiresk to be an integer
number, too@3#.
10750
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The last step is to define themain quantum number,n
52nr1 l , which takes the values, 0,1,2, . . . , giving the en-
ergy levelsEn5v(k1n). If n is even thenl 50,2,4, . . . ,n,
while for odd n we havel 51,3,5, . . . ,n. In both cases we
can demonstrate that the degree of degeneracy of the
En is

gn5(
l

g l5
~n1d21!!

n! ~d21!!
. ~12!

Now it remains only to express Eq.~9! in terms of Jacobi
polynomials and to normalize them to unity with respect
Eq. ~3!. The final result is

fn,l (l)
(1) ~ t,x!5Nn,l sinl vr cosk vrPnr

( l 1d/221, k2d/2)~cos 2vr !

3Yl (l)
d21~x/r !e2 iEnt, ~13!

where

Nn,l5v (d21)/2F nr ! G~nr1k1 l !

G~nr1 l 1d/2!G~nr1k112d/2!G
1/2

.

~14!

We specify that our result coincides with those of Re
@3,4,6# for d53 but in the general case of anyd this is
similar ~up to notations! to that of Ref.@5# only for l 50,
while for lÞ0 the first index of the Jacobi polynomial an
the normalization factor are different.

The parameterk we use instead ofM could play an im-
portant role in the supersymmetry and shape invariance
the radial problem as well as in the structure of the dyna
cal algebra. The argument is that the radial problems
arbitrary d are of the same nature as that withd51, for
which we have recently shown thatk determines the shape o
the relativistic potential and, in addition, represents the m
mal weight of the irreducible representation of its so~1,2!
dynamical algebra@10#.
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