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On the uniqueness of the expected stress-energy tensor in renormalizable field theories
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It is argued that the ambiguity introduced by the renormalization in the effective action of a four-
dimensional renormalizable quantum field theory is at most a local polynomial action of canonical dimension
four. The allowed ambiguity in the expected stress-energy tensor of a massive scalar field is severely restricted
by this fact.[S0556-282(99)05920-2
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In a recent papel], it has been rightly noted that Wald The problem of the appropriate functional measure is in
axioms[2] allow for a much larger ambiguity in the expec- fact completely equivalent to that of the ultraviolet ambigu-
tation value of the renormalized stress-energy tensor for madties introduced by the renormalization. On the one side, the
sive scalar particles than for massless ones. It was previousfjeasure is not entirely well-defined because of the ultravio-
assumed?] that, as in the massless cd48% in the massive let divergences and their necessary renormalization, but on
case the Wald axioms were also sufficient to completely dethe other side the measure cannot be completely arbitrary,
termine the expected stress-energy tensor as a functional 8fnce that would amount to end up with a completely arbi-
the state and background metfig to the usual two param- (rary action, unrelated to the original action of the theory. A
eter ambiguity without the need of further physical input. Practical point of view is to use perturbation thedoy other
The papef[1] clears up this misconception and so it is rel- expansions in order to isolate the ultraviolet divergent

evant to the foundations of the point-splitting procedure inPieces. All contributions which are finite without regulariza-
the massive cas@ee alsd4]) tion are naturally postulated to be free from ambiguities and

In [1], the expected stress-energy tensor was compute | acceptable renormalization prescriptions are required to

- ; ) . eproduce those finite values. On the other hand, contribu-
for minimally coupled massive scalar fields in a nearly flat

tions which are divergent under any expansion are subject to

spacetime using two different formalisms, but no enlargeyq,majization by subtraction of appropriate counterterms.

ment in the ambiguity was actually found as compared 10 th&j e finiteness does not fix the counterterms uniquely, the
massless case. In this Brief Report, we want to note that thignormalized contributions become finite but not unique. The
result should not be surprising since, in addition to Waldrequirement of finiteness allows for very general renormal-
axioms, there are additional criteria which can be used tgzations. The class of allowed regularizations can naturally
drastically reduce the ambiguity. be restricted by demanding that they should be independent
The problem of the ultraviolet ambiguities in quantum on the background fields and parameters of the theory, oth-
field theory appears in flat as well as in curved spacetime. lerwise the regularization would mask the dependence of the
seems sensible to assume that the ultraviolet sector will deeffective action and expectation values on these background
pend only on local properties of the spacetime manifold andields and parametefg.g., we require a cutoff not to change
will not be affected by global topological aspeffg. There- under variations of the mass of the quantum field or the
fore we can restrict ourselves to spacetimes which are topdwetric tensor.
logically equivalent toR" (this certainly covers the case of  For definiteness, let us consider a single quantum scalar
nearly flat spaces The possibility of particle creation in- field ¢(x) with Lagrangian densityC(x). More general
duced by a local curved region or even a different in and ougases are discussed below. In genel@t) will depend on
vacuum due to different asymptotic metric tensors is not spesSOme parametens; (such as masses, coupling constants and
cific to curved spacetimes since these phenomena can al§pectroscopic factorand background fields,;(x). Without
occur in the presence of suitable external fields in flat spacdoss of generality we can include the parametgrinto the
time [6]. Another issue is that of the appropriate measure foset of Li(x) since they can be seen as scalar background
the functional integration on the configuration space of théields which happen to take a constant configuration. More-
field to be quantized. General covariance requires it to deover, we can assume that all background fi¢idsluding the
pend on the metri€7]; however, this is also not specific to parametenscouple linearly to local operators depending on
curved spaces; for instance, the axial anomaly for Dirac fer< and its derivatives. For instance, the Lagrangian density of
mions implies that the fermion measure should depend oa minimally coupled scalar field
the background vector and axial field configuratidids.
Therefore, for the a_\ssumed spacetime topologies, we can re- L£(x)=1 \/__g(gm&#(qus_ m2¢2) 1)
gard the quantum field theory as one on a flat spacetime with
the metricg,,,(x) playing the role of a particular kind of
background field and general covariance as a particular sy
metry of the action(under simultaneous transformations of
the quantum and background fields L(X)=5H""d,¢d,¢—3G¢? 2

nfan be seen as a particular case of the more general theory
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whereH#”(x) and G(x) are arbitrary independent external  The polynomial character of the dependences@nof the
fields; at the end of the calculation they can be particularizediivergences also follows easily from the formal expression
to their values in Eq(1). 3i Trlog(A), without resorting to perturbation theory, since it
It is standard to describe the properties of the quantunis clear that after a sufficient number of functional deriva-
field ¢(x) using the effective actio[¢,L] [9]. The effec-  tives with respecG, there will be a sufficient number of
tive action is a finite quantity from which derive all renor- powers ofA in the denominator so that the expression be-
malized Green functions, i.e., all expectation values. It will ;omes fully ultraviolet convergent. The argument also ap-

ltle stﬁicienlt fordus to use the qugr?tiW[L] deﬁ_rllﬁq 85 plies to the dependence anf, since taking a derivative with
[#,L] evaluated at its minimum with respect o This is respect to the mass also increases the convergéNcee

equivalent to the logarithm of the pa”'its'&r]‘ functional n the that this kind of arguments assumes that the regularization
absence of external currentf,d¢(x)]e't?!. The quantity d d d h b ied
WIL] is also frequently referred to as the effective action oes not depend on the parameters to e_vane )

From straightforward power countifd1] it follows that,

and provides the expectation values of operators coupled to . 2 : :
the external fields. For instance, the expectation value of thgfsf a I_unctlotr) Of?o art1.d 5G|’.the Idlvelrger;t comlptl)nent ;n tr;e d
stress-energy tensdr,, is given by the functional variation efiective action functional 1s a focal polynomial constructe

of W with respect tag,, . Conservation off ,, follows if W with m%, 6G(x) and its derivatives, of can'onicall dime.nsion
is a scalar under general coordinate transformafio@s Let &t Most four(or more generally, of canonical dimension at
us remark that the renormalization of the effective action™oStD in D-dimensional field theorigs The canonical di-
introduces ambiguities in this quantity but no further ambi-mension refers to that carried by, and the field5G(x) and
guities appear in the extraction of the expectation valuedS derivatives. The total mass dimensicf the effective
since this is done through differentiation or minimization @ction density ambiguityis four and comes, in addition,
(diagrammatically this only involves tree level graphs from the derivatives oH*”(x) and from possible further
After these general considerations, let us come to the isdimensionful parametergwith non-negative mass dimen-
sue of the allowed ambiguity introduced by the renormalizaSion, as we will segintroduced by the renormalization pro-
tion. We begin by considering the scalar field without self-cedure. The divergent components are canceled by adding
interaction in Eq.(2). The Lagrangian density is quadratic "€W terms to the action. After such a renormalization, the
and, after integration by parts, it can be rewritten{g)  €ffective action is _flnlte,_but_not unique. The renorm_ahz_atlon
=1pA¢, whereA is a second order differential operator €aves an ambiguity which is again a local polynomiafrif
depending on the external fields. As is well known, the ef-and 6G(x) and its derivatives of canonical dimension at
fective action is formally given byV[H,G]= i Trlog(A). ~ most four. Therefore, two mathematically acceptable ver-
This is a formal expression which is ultraviolet divergent andsions of the renormalized effective action will differ at most

so requires renormalization. To do perturbation theory, thdy @ local polynomial of dimension four. This is necessary if
Lagrangian is separated as they are to coincide in their ultraviolet finite components.

This latter requirement is natural since such ultraviolet finite
0 L 2,0 1 ) . 5 components can be computed without any regularization and
LX)=37""0,$d,¢—3mMyp"+ 360", $d,¢— 356G hence have a unique and well-defined value.
©) The previous discussion implies that ambiguities of the
form considered in1], such as very general functions of
Diagrammatically, i Trlog(A) corresponds to one-loop R/M* (R being the scalar curvaturealthough allowed by
graphs where the fieleh runs in the loop with massi3 and ~ Wald axioms, cannot actually appear. Only polynomials in
with any number of insertions of the external fielig#*(x) ~ ™" May appear. This is because takinglerivatives with
and 5G(x). In order to find the dependence on the fiéld respect tom* in the effective action yieldsthe connected
of the allowable ambiguities, some standard diagrammati®art o the expectation value ¢ff dx*\—g $#%(x)]", which
results can be appligd 1]. All diagrams with a sufficiently is @ completely ultraviolet finite quantity whem>2 and
large number of insertions afG (depending on the space- hence free from ambiguities. However, two versions of the
time dimensioh are ultraviolet convergent. This is because€ffective actions differing by an arbitrary function af®
each new insertion implies a new propagator line therebyvould yield different result fox[ fdx*\'—g ¢?(x)]"). and
decreasing the degree of divergence of the graph. This ins0 at most one these effective actions could be acceptable
plies that all pieces in the effective action with a sufficiently [12].
large power of5G are ultraviolet finite. Therefore, the diver- ~ As it stands, the unique requirement of having a consis-
gent part is a polynomial in the external fied6. Likewise, tent ultraviolet finite component permits a rather large ambi-
taking derivatives with respect to the external momenta carguity in the effective action. This allows in particular adding
ried by 6G(x) also increases the convergence and eventuall{erms containing new parameters or even external fields not
the graphs become convergent. This implies that their diverPresent in the original Lagrangian. For instance, one can
gent component is a polynomial in the external momenta ofhoose to renormalize the theory in such a way that the ef-
5G(x). Equivalently, the divergent contribution to the effec- fective action depends omj and 5G(x) as independent
tive action functional contains a finite number of partial de-variables, although the Lagrangian was only a function of
rivatives of theSG(x). (More precisely, it is a polynomial in  G(x) = m§+ 6G(x), or introduce a mass scale even if the
the operators,, acting onéG.) underlying theory is massle$43]. Usually, the choice of
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renormalization is restricted in order to preserve the symmeperficial or overall divergence needs to be cance(@this
tries in the Lagrangian. When no such choice is available théolds in fact for all Feynman graphs, with or without legs.
symmetry is anomalously broken by the quantization. When the theory is perturbatively renormalizable there is
Next, let us analyze the dependence of the allowed ambienly a finite number of operators in the renormalized La-
guities on the field*"(x). The difference with the previous grangian, coming from operators in the bare Lagrangian plus
case of the field5G is that H*” is coupled to an operator possibly new operators introduced as countertefinstact,
containing two derivatives of(x). In the Feynman rules in and up to symmetries, all local polynomial operators of ca-
momentum space, this translates to two momenta for eadhonical dimension at most four will appegfhe correspond-
insertion ofH#” and so, higher orders iIH*” are no longer ing parameters, such as masses and coupling constants, are
necessarily ultraviolet convergeftt4]. It is still true, how-  not fixed by the renormalization procedure but in principle
ever, that taking a sufficient number of derivatives with re-they can be fixed to their experimental values. Thus we will
spect to the external momenta carriedHby” yields a ultra-  not count them for the possible ambiguity in the effective
violet convergent integral, therefore, the allowed ambiguityaction. (Note that for case considered before of quantum
in the effective action will contain no more than four deriva- fields without self-interaction these parameters need not be
tives of H#” (more precisely, the ambiguity will be a poly- renormalized.
nomial, at most of degree four, on the operatgracting on Thus when computing the legless graphs of the effective
HAY). actionW[ L] in a renormalized theory, it is only necessary to
Since covariance under general coordinate transformasancel the overall divergence. Again, power-counting argu-
tions is a symmetry free from anomalies it is natural to renorments show that for a renormalizable theory the correspond-
malize the theory imposing this symmetry. This restricts theng counterterms are local polynomial operators of canonical
class of effective actions so that they are scalars under sugtimension at most four, constructed with the external fields
transformations, and thus the possible ambiguities within thi@nd their derivatives. This holds for all external fields except
restricted class of effective actions are also scalars. Cons@,,,(X) because the metric tensor couples to the kinetic en-
quently the ambiguity in the effective action will depend onergy operatofand so new insertions aj,,(x) do not in-
H#”(x) only through the Riemann tenscas follows, for crease the convergencdhe dependence on the metric ten-
instance, from using Riemann coordinatédore precisely, sor is restricted by general covariance, which requires a
the allowed ambiguities will be of the forof—g times a  dependence only through the Riemann tensor and its covari-
function of the Riemann tensor and the scaB(x)/\/—g, ant derivatives and with canonical dimension at most four.
and their covariant derivatives. The dependencé&og—g For the effective actioi’[¢,L ], the previous arguments
has already been discussed, and is a local polynomial dtold as we'II. The effective action comes from graphs which
dimension at most four. The dependence on the Riemanf@y contain external legs of the quantum fields. After the
tensor is highly restricted by the fact that there can be at mogh€ory has been renormalized only the overall divergence
four derivatives of the metric tensgt5]. For instance, for needs to be cured and for renormalizable theories this intro-
the massive scalar field of Efl), and assuming that no new duces terms which are local polynomials and of canonical
dimensional parameters are introduced by the renormaliz&limension at most four, constructed with the quantum fields,
tion, the ambiguity will contain only the terni§] m*, m?r,  the ext(_erngl fieldgor the Riemann tenspand their covari-
R?, R R“’, and the Gauss-Bonnet densityhich being a ant derivatives.

topological term does not contribute to the stress-energy ex- WO final comments are in order. First, in self-interacting
pectation value nor to the semiclassical field equajions theories there can be ambiguities of purely nonperturbative

More generally, if the renormalization introduces new O”_origin which would not leave a trace at the perturbative level

mensionful parameters, dimensional counting allows furthefNd SO they are not covered by _the_ present analysis. This is
terms of the formM*, m2M2, andM?2R [9] the case of the renormalon ambiguities introduced by Borel

rpsummation of the perturbative series in nonasymptotically

The previous conS|der§1t|ons c_ompletely cover the case c%ree theories such as¢* or quantum electrodynamig46].
scalar fields without self-interaction. They can be extende :
econd, it should be noted that the stress-energy tensor de-

to the case of arbitrary renormalizable theories with ScalarS‘ﬁned as the variation of the effective action is the consistent

spin-1/2 fermions and gauge fields, as follows. - L .

As is well-known, the effective actiow[L] comes from one. In fermionic theories it is also useful to cgn3|der new
addina all one- arti,cle-irreducible raphs with an numberstress—energy tensors obtained from the consistent one by
Jing P grap y Sfaddition of local polynomial termgn order not to modify its
(that is, legs of the quantum fieldsThe quantum fields run nite, u_na_mblguous, parwmch_do not ne_cessarlly come as

the variation of local polynomial terms in the effective ac-

on the propagators corresponding to interal lines in th jon. This allows to obtain the covariant stress-energy tensor,
graph. Each of these legless Feynman graphs has a superf:

cial degree of divergence as well as possible subdivergence\ghiCh s not consistent .bUt It is covariant under local
It is a standard result of renormalization thediyl] that the orentz-frame transformatiorjd 7]

renormalization procedure is such that all subdivergences This work was supported in part by funds provided
have already been removed due to counterterms of lowdsy Spanish DGICYT grant no. PB95-1204 and Junta de
order than the graph under consideration. Thus, only the stAndaluca grant no. FQM0225.
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