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On the uniqueness of the expected stress-energy tensor in renormalizable field theories

L. L. Salcedo
Departamento de Fı´sica Moderna, Universidad de Granada, E-18071 Granada, Spain

~Received 12 March 1999; published 26 October 1999!

It is argued that the ambiguity introduced by the renormalization in the effective action of a four-
dimensional renormalizable quantum field theory is at most a local polynomial action of canonical dimension
four. The allowed ambiguity in the expected stress-energy tensor of a massive scalar field is severely restricted
by this fact.@S0556-2821~99!05920-2#

PACS number~s!: 04.62.1v, 11.10.Gh
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In a recent paper@1#, it has been rightly noted that Wal
axioms@2# allow for a much larger ambiguity in the expe
tation value of the renormalized stress-energy tensor for m
sive scalar particles than for massless ones. It was previo
assumed@2# that, as in the massless case@3#, in the massive
case the Wald axioms were also sufficient to completely
termine the expected stress-energy tensor as a function
the state and background metric~up to the usual two param
eter ambiguity! without the need of further physical inpu
The paper@1# clears up this misconception and so it is re
evant to the foundations of the point-splitting procedure
the massive case~see also@4#!.

In @1#, the expected stress-energy tensor was comp
for minimally coupled massive scalar fields in a nearly fl
spacetime using two different formalisms, but no enlar
ment in the ambiguity was actually found as compared to
massless case. In this Brief Report, we want to note that
result should not be surprising since, in addition to Wa
axioms, there are additional criteria which can be used
drastically reduce the ambiguity.

The problem of the ultraviolet ambiguities in quantu
field theory appears in flat as well as in curved spacetime
seems sensible to assume that the ultraviolet sector will
pend only on local properties of the spacetime manifold a
will not be affected by global topological aspects@5#. There-
fore we can restrict ourselves to spacetimes which are to
logically equivalent toRn ~this certainly covers the case o
nearly flat spaces!. The possibility of particle creation in
duced by a local curved region or even a different in and
vacuum due to different asymptotic metric tensors is not s
cific to curved spacetimes since these phenomena can
occur in the presence of suitable external fields in flat spa
time @6#. Another issue is that of the appropriate measure
the functional integration on the configuration space of
field to be quantized. General covariance requires it to
pend on the metric@7#; however, this is also not specific t
curved spaces; for instance, the axial anomaly for Dirac
mions implies that the fermion measure should depend
the background vector and axial field configurations@8#.
Therefore, for the assumed spacetime topologies, we ca
gard the quantum field theory as one on a flat spacetime
the metricgmn(x) playing the role of a particular kind o
background field and general covariance as a particular s
metry of the action~under simultaneous transformations
the quantum and background fields!.
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The problem of the appropriate functional measure is
fact completely equivalent to that of the ultraviolet ambig
ities introduced by the renormalization. On the one side,
measure is not entirely well-defined because of the ultrav
let divergences and their necessary renormalization, bu
the other side the measure cannot be completely arbitr
since that would amount to end up with a completely ar
trary action, unrelated to the original action of the theory.
practical point of view is to use perturbation theory~or other
expansions! in order to isolate the ultraviolet divergen
pieces. All contributions which are finite without regulariz
tion are naturally postulated to be free from ambiguities a
all acceptable renormalization prescriptions are required
reproduce those finite values. On the other hand, contr
tions which are divergent under any expansion are subjec
renormalization by subtraction of appropriate counterterm
Since finiteness does not fix the counterterms uniquely,
renormalized contributions become finite but not unique. T
requirement of finiteness allows for very general renorm
izations. The class of allowed regularizations can natura
be restricted by demanding that they should be indepen
on the background fields and parameters of the theory,
erwise the regularization would mask the dependence of
effective action and expectation values on these backgro
fields and parameters~e.g., we require a cutoff not to chang
under variations of the mass of the quantum field or
metric tensor!.

For definiteness, let us consider a single quantum sc
field f(x) with Lagrangian densityL(x). More general
cases are discussed below. In generalL(x) will depend on
some parametersl i ~such as masses, coupling constants a
spectroscopic factors! and background fields,Li(x). Without
loss of generality we can include the parametersl i into the
set of Li(x) since they can be seen as scalar backgro
fields which happen to take a constant configuration. Mo
over, we can assume that all background fields~including the
parameters! couple linearly to local operators depending
f and its derivatives. For instance, the Lagrangian densit
a minimally coupled scalar field

L~x!5 1
2 A2g~gmn]mf]nf2m2f2! ~1!

can be seen as a particular case of the more general the

L~x!5 1
2 Hmn]mf]nf2 1

2 Gf2 ~2!
©1999 The American Physical Society02-1
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whereHmn(x) and G(x) are arbitrary independent extern
fields; at the end of the calculation they can be particulari
to their values in Eq.~1!.

It is standard to describe the properties of the quan
field f(x) using the effective actionG@f,L# @9#. The effec-
tive action is a finite quantity from which derive all reno
malized Green functions, i.e., all expectation values. It w
be sufficient for us to use the quantityW@L# defined as
G@f,L# evaluated at its minimum with respect tof. This is
equivalent to the logarithm of the partition functional in th
absence of external currents,*@df(x)#eiS[f] . The quantity
W@L# is also frequently referred to as the effective acti
and provides the expectation values of operators couple
the external fields. For instance, the expectation value of
stress-energy tensorTmn is given by the functional variation
of W with respect togmn . Conservation ofTmn follows if W
is a scalar under general coordinate transformations@10#. Let
us remark that the renormalization of the effective act
introduces ambiguities in this quantity but no further am
guities appear in the extraction of the expectation val
since this is done through differentiation or minimizatio
~diagrammatically this only involves tree level graphs!.

After these general considerations, let us come to the
sue of the allowed ambiguity introduced by the renormali
tion. We begin by considering the scalar field without se
interaction in Eq.~2!. The Lagrangian density is quadrat
and, after integration by parts, it can be rewritten asL(x)
5 1

2 fAf, where A is a second order differential operat
depending on the external fields. As is well known, the
fective action is formally given byW@H,G#5 1

2 i Tr log(A).
This is a formal expression which is ultraviolet divergent a
so requires renormalization. To do perturbation theory,
Lagrangian is separated as

L~x!5 1
2 hmn]mf]nf2 1

2 m0
2f21 1

2 dHmn]mf]nf2 1
2 dGf2

~3!

Diagrammatically, 1
2 i Tr log(A) corresponds to one-loo

graphs where the fieldf runs in the loop with massm0
2 and

with any number of insertions of the external fieldsdHmn(x)
anddG(x). In order to find the dependence on the fielddG
of the allowable ambiguities, some standard diagramm
results can be applied@11#. All diagrams with a sufficiently
large number of insertions ofdG ~depending on the space
time dimension! are ultraviolet convergent. This is becau
each new insertion implies a new propagator line ther
decreasing the degree of divergence of the graph. This
plies that all pieces in the effective action with a sufficien
large power ofdG are ultraviolet finite. Therefore, the dive
gent part is a polynomial in the external fielddG. Likewise,
taking derivatives with respect to the external momenta c
ried bydG(x) also increases the convergence and eventu
the graphs become convergent. This implies that their div
gent component is a polynomial in the external momenta
dG(x). Equivalently, the divergent contribution to the effe
tive action functional contains a finite number of partial d
rivatives of thedG(x). ~More precisely, it is a polynomial in
the operators]m acting ondG.!
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The polynomial character of the dependence ondG of the
divergences also follows easily from the formal express
1
2 i Tr log(A), without resorting to perturbation theory, since
is clear that after a sufficient number of functional deriv
tives with respectdG, there will be a sufficient number o
powers ofA in the denominator so that the expression b
comes fully ultraviolet convergent. The argument also a
plies to the dependence onm0

2, since taking a derivative with
respect to the mass also increases the convergence.~Note
that this kind of arguments assumes that the regulariza
does not depend on the parameters to be varied.!

From straightforward power counting@11# it follows that,
as a function ofm0

2 anddG, the divergent component in th
effective action functional is a local polynomial construct
with m0

2, dG(x) and its derivatives, of canonical dimensio
at most four~or more generally, of canonical dimension
most D in D-dimensional field theories!. The canonical di-
mension refers to that carried bym0

2, and the fielddG(x) and
its derivatives. The total mass dimension~of the effective
action density ambiguity! is four and comes, in addition
from the derivatives ofHmn(x) and from possible further
dimensionful parameters~with non-negative mass dimen
sion, as we will see! introduced by the renormalization pro
cedure. The divergent components are canceled by ad
new terms to the action. After such a renormalization,
effective action is finite, but not unique. The renormalizati
leaves an ambiguity which is again a local polynomial inm0

2

and dG(x) and its derivatives of canonical dimension
most four. Therefore, two mathematically acceptable v
sions of the renormalized effective action will differ at mo
by a local polynomial of dimension four. This is necessary
they are to coincide in their ultraviolet finite componen
This latter requirement is natural since such ultraviolet fin
components can be computed without any regularization
hence have a unique and well-defined value.

The previous discussion implies that ambiguities of t
form considered in@1#, such as very general functions o
R/m2 (R being the scalar curvature!, although allowed by
Wald axioms, cannot actually appear. Only polynomials
m2 may appear. This is because takingn derivatives with
respect tom2 in the effective action yields~the connected
part of! the expectation value of@*dx4A2g f2(x)#n, which
is a completely ultraviolet finite quantity whenn.2 and
hence free from ambiguities. However, two versions of
effective actions differing by an arbitrary function ofm2

would yield different result for̂ @*dx4A2g f2(x)#n&c and
so at most one these effective actions could be accept
@12#.

As it stands, the unique requirement of having a cons
tent ultraviolet finite component permits a rather large am
guity in the effective action. This allows in particular addin
terms containing new parameters or even external fields
present in the original Lagrangian. For instance, one
choose to renormalize the theory in such a way that the
fective action depends onm0

2 and dG(x) as independen
variables, although the Lagrangian was only a function
G(x)5m0

21dG(x), or introduce a mass scale even if th
underlying theory is massless@13#. Usually, the choice of
2-2
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renormalization is restricted in order to preserve the sym
tries in the Lagrangian. When no such choice is available
symmetry is anomalously broken by the quantization.

Next, let us analyze the dependence of the allowed am
guities on the fieldHmn(x). The difference with the previou
case of the fielddG is that Hmn is coupled to an operato
containing two derivatives off(x). In the Feynman rules in
momentum space, this translates to two momenta for e
insertion ofHmn and so, higher orders inHmn are no longer
necessarily ultraviolet convergent@14#. It is still true, how-
ever, that taking a sufficient number of derivatives with
spect to the external momenta carried byHmn yields a ultra-
violet convergent integral, therefore, the allowed ambigu
in the effective action will contain no more than four deriv
tives of Hmn ~more precisely, the ambiguity will be a poly
nomial, at most of degree four, on the operator]m acting on
Hmn).

Since covariance under general coordinate transfor
tions is a symmetry free from anomalies it is natural to ren
malize the theory imposing this symmetry. This restricts
class of effective actions so that they are scalars under
transformations, and thus the possible ambiguities within
restricted class of effective actions are also scalars. Co
quently the ambiguity in the effective action will depend
Hmn(x) only through the Riemann tensor~as follows, for
instance, from using Riemann coordinates!. More precisely,
the allowed ambiguities will be of the formA2g times a
function of the Riemann tensor and the scalarG(x)/A2g,
and their covariant derivatives. The dependence onG/A2g
has already been discussed, and is a local polynomia
dimension at most four. The dependence on the Riem
tensor is highly restricted by the fact that there can be at m
four derivatives of the metric tensor@15#. For instance, for
the massive scalar field of Eq.~1!, and assuming that no new
dimensional parameters are introduced by the renorma
tion, the ambiguity will contain only the terms@9# m4, m2R,
R2, Rmn

2 Rmn, and the Gauss-Bonnet density~which being a
topological term does not contribute to the stress-energy
pectation value nor to the semiclassical field equation!.
More generally, if the renormalization introduces new
mensionful parameters, dimensional counting allows furt
terms of the formM4, m2M2, andM2R @9#.

The previous considerations completely cover the cas
scalar fields without self-interaction. They can be extend
to the case of arbitrary renormalizable theories with scal
spin-1/2 fermions and gauge fields, as follows.

As is well-known, the effective actionW@L# comes from
adding all one-particle-irreducible graphs with any numb
of insertions of the external fields and without external le
~that is, legs of the quantum fields!. The quantum fields run
on the propagators corresponding to internal lines in
graph. Each of these legless Feynman graphs has a su
cial degree of divergence as well as possible subdivergen
It is a standard result of renormalization theory@11# that the
renormalization procedure is such that all subdivergen
have already been removed due to counterterms of lo
order than the graph under consideration. Thus, only the
10750
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perficial or overall divergence needs to be canceled.~This
holds in fact for all Feynman graphs, with or without legs!

When the theory is perturbatively renormalizable there
only a finite number of operators in the renormalized L
grangian, coming from operators in the bare Lagrangian p
possibly new operators introduced as counterterms.~In fact,
and up to symmetries, all local polynomial operators of c
nonical dimension at most four will appear.! The correspond-
ing parameters, such as masses and coupling constants
not fixed by the renormalization procedure but in princip
they can be fixed to their experimental values. Thus we w
not count them for the possible ambiguity in the effecti
action. ~Note that for case considered before of quant
fields without self-interaction these parameters need no
renormalized.!

Thus when computing the legless graphs of the effec
actionW@L# in a renormalized theory, it is only necessary
cancel the overall divergence. Again, power-counting ar
ments show that for a renormalizable theory the correspo
ing counterterms are local polynomial operators of canon
dimension at most four, constructed with the external fie
and their derivatives. This holds for all external fields exce
gmn(x) because the metric tensor couples to the kinetic
ergy operator@and so new insertions ofgmn(x) do not in-
crease the convergence#. The dependence on the metric te
sor is restricted by general covariance, which require
dependence only through the Riemann tensor and its cov
ant derivatives and with canonical dimension at most fou

For the effective actionG@f,L#, the previous argument
hold as well. The effective action comes from graphs wh
may contain external legs of the quantum fields. After t
theory has been renormalized only the overall diverge
needs to be cured and for renormalizable theories this in
duces terms which are local polynomials and of canon
dimension at most four, constructed with the quantum fie
the external fields~or the Riemann tensor! and their covari-
ant derivatives.

Two final comments are in order. First, in self-interacti
theories there can be ambiguities of purely nonperturba
origin which would not leave a trace at the perturbative le
and so they are not covered by the present analysis. Th
the case of the renormalon ambiguities introduced by Bo
resummation of the perturbative series in nonasymptotic
free theories such aslf4 or quantum electrodynamics@16#.
Second, it should be noted that the stress-energy tenso
fined as the variation of the effective action is the consist
one. In fermionic theories it is also useful to consider n
stress-energy tensors obtained from the consistent one
addition of local polynomial terms~in order not to modify its
finite, unambiguous, part! which do not necessarily come a
the variation of local polynomial terms in the effective a
tion. This allows to obtain the covariant stress-energy ten
which is not consistent but it is covariant under loc
Lorentz-frame transformations@17#.

This work was supported in part by funds provide
by Spanish DGICYT grant no. PB95-1204 and Junta
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