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Note on supersymmetric Yang-Mills thermodynamics
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The thermodynamics of supersymmetric Yang-Mills theories is studied by computing the two-loop correc-
tion to the canonical free energy and to the equation of state for theories with 16, 8, and 4 supercharges in any
dimension 4<d<10, and in two dimensions at finite volume. In the four-dimensional case we also evaluate
the first nonanalytic contribution in the ’t Hooft coupling to the free energy, arising from the resummation of
ring diagrams. To conclude, we discuss some applications to the study of the Hagedorn transition in string
theory in the context of Matrix strings and speculate on the possible physical meaning of the transition.
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I. INTRODUCTION

The study of the thermal properties of supersymme
Yang-Mills ~SYM! and superstring theories has received
boost@1–6# after the D-brane revolution@7#. More recently,
the conjecture by Maldacena of a duality between str
theory on anti–de Sitter~AdS! backgrounds and the large-N
limit of SYM theories@8,9# has further motivated the stud
of these issues in the hope that it could lead to a clarifica
of the mechanisms of confinement in non-Abelian gau
theories@10#.

Beyond its purely cosmological and/or phenomenologi
relevance, the study of SYM thermodynamics finds intere
ing applications in the study of near-extremal black ho
@11# and D-branes@12,13#. When looking at the effective
theory of coincident D-branes there are, generically, two
gimes associated with the values of the effective gauge c
plings gsQ ~Q being the number of coincident D-branes
the charges of the black hole!. WhengsQ,1 the field theory
limit is well described by a perturbative SYM theory livin
on the world volume of the D-brane. On the other ha
taking gsQ.1 the weakly coupled D-brane picture is n
appropriate any more. Using Maldacena’s conjecture, h
ever, it is possible to relate the field theory limit in th
nonperturbative regime~large ’t Hooft coupling! with a su-
pergravity computation on some background of the fo
AdSd3~spheres!. Corrections to the leading strong couplin
result of orderO(1/gsQ) are then associated with highe
dimensional terms~a8 corrections! in the supergravity effec-
tive action.

The study of the corrections to the leading results on b
sides~weak@14# and strong@15,16# coupling! has been done
for the conformalN54SYM theory ind54 and a tendency
in both curves to meet was detected~see, however,@17#!. In
this paper we will try to achieve a twofold objective. First,
compute the two-loop free energy of SYM theories with 1
8, and 4 supercharges in various dimensions. The first c
of theories are especially interesting because of their po
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tial application to nonconformal versions of the Maldace
conjecture@9#. Second, to obtain the first nonanalytic corre
tion in the ’t Hooft coupling, of orderO@(gYM

2 N)3/2#, to the
two-loop result in four-dimensional theories arising from t
resummation of ring diagrams. We will analyze also w
some detail the two-dimensional case, where the infrared
vergences will be handled by putting the system at fin
volume.

The physics of the high temperature string gas has be
recurrent issue in string theory~for a sample of papers from
the ‘‘golden age’’ of thermal strings see@18,19#!. In recent
years we have gained interesting insights about the phys
meaning of the Hagedorn divergence, in spite of the fact t
a full and detailed understanding of the problem seems to
still at large. Although this will not be the main subject o
this paper, we will try to discuss some aspects of the Ha
dorn transition that could be enlightened by our results
SYM thermodynamics. In particular we will use our study
the two-dimensional SYM theories to try to get some qua
tative information about the Hagedorn transition using M
trix strings as a nonperturbative definition of type-IIA supe
strings. In spite of being nonconclusive, we hope t
discussion will be helpful in shedding some light on such
confusing issue.

The present paper is organized as follows: in the n
section, the two-loop corrections to the thermal free ene
of SYM theories with 16, 8, and 4 supercharges will be co
puted in any dimension 4<d<10 using dimensional reduc
tion from the corresponding maximalN51 SYM theory. In
Sec. II C we compute the next correction to the two-loop fr
energy for SYM theories in four dimensions. Section II
will be devoted to the study of the two-dimensional case
finite volume. Finally, in Sec. III we will summarize th
conclusions and discuss some possible application of ou
sults to the study of the Hagedorn transition in Matrix stri
theory.

II. TWO-LOOP FREE ENERGY OF SYM THEORIES

A. Supersymmetric Yang-Mills theories in various dimensions

In this section we will compute the next-to-leading co
tribution to the canonical free energy of supersymme
©1999 The American Physical Society10-1
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Yang-Mills theories with 16, 8, and 4 supercharges. In or
to keep the analysis general, we will start withN51 SYM in
D dimensions, whose dynamics is governed by the ac
@20#

S5E dDx TrF2
1

4gYM
2 FABFAB1 i c̄GADAcG ,

whereA,B50,...,D21 and both the gauge fields and spino
are in the adjoint representation ofU(N). We get theories
with different number of supercharges by choosing the
propriate value ofD for which that number #SC is maximal:

#SC516→Dmax510,

#SC58→Dmax56,

#SC54→Dmax54.

In addition, different conditions on fermions have to be im
posed in order to keep the number of bosonic and fermio
degrees of freedom equal. Thus, whenDmax510 fermions
have to be taken Majorana-Weyl, while forDmax56 and
Dmax54 they satisfy Weyl condition~actually in d54 we
can choose the fermions to be either Majorana or Weyl, b
conditions being equivalent@20#!. This ensures that the num
ber of physical bosonic and fermionic degrees of freed
will be equal toDmax22.

In general, however, we will be interested in SYM the
ries with #SC supercharges in dimensionsd<Dmax. This
theories can be obtained by dimensional reduction of
corresponding maximalN51 SYM theory inD5Dmax @20#.
Thus, we can parametrize anyd-dimensional SYM theory
with any number of supercharges by specifying bothd and
the maximal dimensionDmax from which it is obtained by
dimensional reduction. In this way, starting withDmax510 ~
N51 in d510) we getN51 in d58, N52 in d56, N
54 in d54, andN58 in d52. Starting instead withDmax
56 (N51 in d56) we will haveN52 in d54 andN54
in d52. Finally, if we takeDmax54 we can retrieveN52 in
d52 ~for odd dimensions 2n21 we have theN correspond-
ing to dimension 2n).

B. Two-loop free energy ford>4

With this in mind, we can proceed to compute the cano
cal free energy in perturbation theory for any supersymm
ric Yang-Mills theory characterized by (Dmax,d), by writing
down the contribution of vacuum Feynman diagrams ofN
51 in D5Dmax SYM and restricting internal momentum i
loops tod dimensions. That way we are able to keep track
the contribution of gauge bosons and scalars~as well as their
supersymmetric partners! without having to consider a large
number of diagrams.1 The final result, of course, will depen
on (d,Dmax).

1For example, using this trick one can get the result of Ref.@14#
by computing, instead of ten, only four two-loop Feynman d
grams.
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As a warmup exercise, we will compute the one-loop fr
energy density. In the maximalN51 theory we have three
diagrams, a bosonic loop, a fermionic loop and the gh
loop, which after multiplying by their corresponding dege
eracy factor respectively give~we use the notation of Ref
@21#!

F~b!1-loop5
1
2 N2DmaxX

~P!

@ddP# log P22 1
2 N2~Dmax22!

3X
$P%

@ddP# log P22N2
X

~P!

@ddP# log P2,

where by ~P! and $P% we represent, respectively, boson
~periodic! and fermionic~antiperiodic! boundary conditions
along the Euclidean time and the factor ofN2 is due to the
fact that all fields are in the adjoint representation ofU(N).
After a straightforward computation we arrive at

X

~P!

@ddP# log P2[
1

b
(
~vn!

E dd21p

~2p!d21 log~p21vn
2!

5L02
2G~d/2!

pd/2 z~d!b2d,

X

$P%

@ddP# log P2[
1

b
(
@vn#

E dd21p

~2p!d21 log~p21vn
2!

5L01
2G~d/2!

pd/2 ~12212d!z~d!b2d.

L0 is a regularized vacuum energy that will cancel af
summing all contributions. The total result for the one-lo
free energy is thus

F~b!1-loop52
2G~d/2!

pd/2 z~d!~1222d!~Dmax22!N2b2d.

~2.1!

Next we obtain the two-loop corrections with this resu
Thus, we must sum the contributions of the four Feynm
diagrams of Fig. 1 corresponding toN51 SYM in D
5Dmax where internal momenta is restricted to
d-dimensional space-time~one of whose directions is th
compactified Euclidean time!. Proceeding this way and afte
some algebra we find the contribution of each independ
diagram~using the Feynman–’t Hooft gauge!:

-

FIG. 1. Feynman diagrams contributing to the two-loop cano
cal free energy. Solid lines represent fermions, wavy lines ga
bosons, and dashed lines Faddeev-Popov ghosts.
0-2
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F15 1
4 gYM

2 N3SX
~P!

@ddP#
1

P2 D 2

,

F25 1
4 gYM

2 N3~Dmax22!Tr 1H SX
$P%

@ddP#
1

P2 D 2

22SX
$P%

@ddP#
1

P2 D SX
~P!

@ddP#
1

P2 D J ,

F35 1
4 gYM

2 N3Dmax~Dmax21!SX
~P!

@ddP#
1

P2 D 2

,

F452 3
4 gYM

2 N3~Dmax21!SX
~P!

@ddP#
1

P2 D 2

.

Here Tr1 is the dimension of the spinors of the maxim
SYM theory which in all the cases under study (N51 in
Dmax510,6,4) equalsDmax22. Using this fact we can add a
the above contributions and find the following expression
the two-loop free energy density:

F~b!2-loop5
1
4 gYM

2 N3~Dmax22!2

3SX
~P!

@ddP#
1

P22X
$P%

@ddP#
1

P2 D 2

.

~2.2!

The integrals appearing between brackets contain both
zero and finite temperature part ofF(b)2-loop. They can be
easily computed by performing the sum first to give

X

~P!

@ddP#
1

P2 5E dd21p

~2p!d21

1

2vp

1E dd21p

~2p!d21

Np

vp

,

X

$P%

@ddP#
1

P2 5E dd21p

~2p!d21

1

2vp
2E dd21p

~2p!d21

np

vp
,

~2.3!

wherevp5p andNp , np are the Bose-Einstein and Ferm
Dirac distribution functions, respectively,

Np5
1

ebvp21
, np5

1

ebvp11
.

The first thing to be said about Eq.~2.2! is that the zero
temperature~ultraviolet divergent! contribution cancels ou
between the bosonic and the fermionic integral. This is ju
consequence of supersymmetry since the vacuum en
should not be corrected at zero temperature if supersymm
is to be preserved by the vacuum@22#. This is the reason why
this cancellation occurs not only for the conformalN54,
SYM4 (Dmax510) @14#, but for all SYM theories under
study.

Notice that although all SYM theories in dimensio
higher than four are nonrenormalizable, the two-loop fin
10601
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temperature free energy is well behaved in the ultravio
This is a consequence of the fact that the ultraviolet region
the thermal integrals is effectively cutoff for momentap@T
and therefore the temperature dependent part of the am
tudes is, to a great extent, insensitive to ultraviolet ambi
ities. Of course, divergences should have been taken ca
in the zero temperature sector by an appropriate cutof
momentaL ~although some protected observables, like
vacuum energy, will be finite due to supersymmetry!. In that
case, consistency will requireT,L.

To get an analytical expression for the free energy we
evaluate the integrals appearing in Eq.~2.3! for generic val-
ues of the dimension2

E dd21p

~2p!d21

Np

vp
5

222dp2~d21!/2

G@~d21!/2#
z~d22!G~d22!b22d,

E dd21p

~2p!d21

np

vp
5~12232d!

222dp2~d21!/2

G@~d21!/2#

3z~d22!G~d22!b22d.

After substituting in Eqs.~2.3! and ~2.2! we obtain

F~b!2-loop5gYM
2 N3F ~Dmax22!

222dz~d22!

p~d21!/2G@~d21!/2#

3~12222d!G~d22!G2

b422d,

which together with the one-loop contribution can be writt
as

F~b!52N2b2dH 2G~d/2!

pd/2 z~d!~1222d!~Dmax22!

2gYM
2 NF ~Dmax22!

222dz~d22!

p~d21!/2G@~d21!/2#

3~12222d!G~d22!G2

b42d1O@~gYM
2 N!2#J .

~2.4!

2Actually, the fermionic integral can be written in terms of th
bosonic one using

2

e2bvp21
5

1

ebvp21
2

1

ebvp11
which is just a realization of the well-known relation between t
one-loop free energy of a bosonic and a fermionic quantum fi
F fer(b)5Fbos(b)22Fbos(2b) @23#.
0-3



is
e

e
g

o

-
b
i
i

la
a
ra
to
th
ol

ai

e

r-

r-

l
-

al-

ver-
ms.

ur-
ion

e-
ding

lf-

se
op

ff
h
a

n-
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Incidentally, the two-loop correction to the free energy
always positive ford.1, so it always tends to increase th
~negative! one-loop contribution.

From Eq.~2.4! we see explicitly how corrections to th
one-loop result come in powers of the ’t Hooft couplin
gYM

2 N which is kept fixed in the large-N limit. Since in d
dimensions the Yang-Mills coupling constantgYM

2 has di-
mension of (energy)42d, the condition for the perturbative
expansion to be reliable is the effective dimensionless c
pling at a given temperature to be small

geff
2 5gYM

2 Nb42d!1.

Notice that ford.4, for which the SYM theory is nonrenor
malizable, perturbative corrections to the free energy will
governed by a small parameter in the low temperature lim
corresponding to the fact that the theory is well behaved
the infrared. Actually, higher order corrections to formu
~2.4! have better and better infrared behavior as we incre
the order in perturbation theory. At the same time the ult
violet divergences worsen in the zero temperature sec
while in the temperature-dependent part of the amplitude
ultraviolet behavior is smoother due to the presence of B
zmann factors that effectively cutoff momenta beyond
scale of order3 T.

From the two-loop canonical free energy we can obt
the corrections to the equation of state of SYMd . We first
compute the canonical entropy densityS(T) as a function of
the temperature and invert it up to terms of ord
O@(gYMN)2# to obtain

T~S!5S S
N2F0d D 1/~d21!

1gYM
2 N

~2d24!F1

d~d21!F0

3S S
N2F0d D ~d23!/~d21!

1O@~gYM
2 N!2#,

where the numerical coefficientsF0 , F1 are defined from
the free energy Eq. ~2.4! by F52F0N2Td

1(gYM
2 N)N2F1T2d24. Now we can substitute into the inte

nal energy densityE5F1TS with the result

E5~d21!F0N2S S
N2F0d D d/~d21!F11~gYM

2 N!
F1

~d21!F0

3S S
N2F0d D ~d24!/~d21!G1O@~gYM

2 N!2#.

3The better ultraviolet behavior of the temperature-dependent
tor of the theory does not guarantee its finiteness in higher lo
for example, the free energy of SYM10 is ultraviolet divergent at
three loops as can be seen by thermal averaging the one-loop e
tive action, which contains aF4 term that scales quadratically wit
the ultraviolet cutoff. The resulting thermal averaged divergent p
is of orderO@(gYM

2 N)2# @16#, as corresponds to a three-loop co
tribution. I thank A. Tseytlin for pointing this out to me.
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C. The d54 case

We will now concentrate our attention on the fou
dimensional case. Takingd54 in Eq. ~2.4! we find

F~b!d5452 1
8 N2b24~Dmax22!

3F p2

6
2

1

32
~Dmax22!gYM

2 NG . ~2.5!

As a check, we can evaluate Eq.~2.4! for the superconforma
N54 SYM4 theory, which is obtained by dimensional re
duction ofN51 in SYM10 ~i.e., Dmax510) to give

F~b!N5452N2b24S p2

6
2

1

4
gYM

2 ND ,

which indeed agrees with the result of Ref.@14#. In the equa-
tion of state, the loop correction just results in a renorm
ization of the overall numerical factor~this also happens in
the nonconformal casesDmax56,4)

EN545
p2

2 S 3

2p2 D 4/3S 11
gYM

2 N

2p2 DS4/3N2~2/3!.

Generically, the next contribution to Eq.~2.4! is naively
given by three-loop diagrams of orderO@(gYM

2 N)2#. How-
ever in four dimensions, as it happens in QCD@24,21#, at the
three-loop level there are already uncanceled infrared di
gences that have to be cured by summing over ring diagra
This gives a nonanalytic„of orderO@(gYM

2 N)3/2#… contribu-
tion to the free energy, representing a mild failure of pert
bation theory due to the infrared ambiguities. The evaluat
of this term is essentially equivalent to dressing theA0

a and
scalar propagators in loops by introducing the effect of D
bye screening and thermal mass for the scalars. To lea
order in the ’t Hooft coupling, the electric~Debye! mass can
be easily computed from the static limit of the one-loop se
energy to give

mel
2[ lim

pW→0

P00
aa~0,pW !

5 1
4 ~Dmax22!gYM

2 NT21O@~gYM
2 N!2#, ~2.6!

while for the scalars we have

mf
2 [ lim

pW→0

Paa~0,pW !

5 1
8 ~Dmax22!gYM

2 NT21O@~gYM
2 N!2#, ~2.7!

In order to obtain theO@(gYM
2 N)3/2# terms in the free

energy we use the technique of Ref.@21#, and rewrite the
original Lagrangian density as

LSYM4
5S LSYM4

1
1

2
mel

2 Tr A0
2dp0,01

1

2
mf

2 (
i 51

ns

Tr f i
2D

2
1

2
mel

2 Tr A0
2dp0,02

1

2
mf

2 (
i 51

ns

Tr f i
2, ~2.8!

c-
s;

ec-

rt
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wheref i are thens5Dmax24 adjoint scalars in the theor
and the electric mass only affects to the zero-frequency c
ponent of theA0

a field ~cf. @24#!. The strategy now is to trea
the last two terms as a perturbation to the Lagrangian den
between brackets. This results in a reorganization of per
bation theory in which the ring-diagram contribution can
easily evaluated.

The first thing will be to compute again the one-loop fr
energy density, including now the effect of the masses in
Lagrangian equation~2.8! and, at the same time, adding ne
one-loop diagrams containing vertices associated with
counterterms. Expanding the results up to orderO@(gYM

2 N)2#
we find4

F~b!1-loop
resum5F~b!1-loop1

1

24p
N2T@mel

3 1~Dmax24!mf
3 #

1O@~gYM
2 N!2# ~2.9!

with F(b)1-loop given by Eq.~2.1!. Proceeding similarly with
the two-loops diagrams of Fig. 1, we obtain

F~b!2-loop
resum5F~b!2-loop2

1

8p
N2T@mel

3 1~Dmax24!mf
3 #

1O@~gYM
2 N!2#.

So we are left with the following final result for the ‘‘21
2-

loop’’ contribution to the free energy density

F~b!2~1/2!-loop52
1

12p
N2T@mel

3 1~Dmax24!mf
3 #

~2.10!

where the values of the thermal masses are given by
~2.6! and ~2.7!. It is important to notice that this term i
always negative for all 4<Dmax<10.

The only thing left now will be to add Eq.~2.10! to the
two-loop result~2.5!. In particular, doing so for the supe
conformalN54, SYM4 and evaluating the numerical coe
ficients, we find (l2[gYM

2 N)

F~b!N5452N2T4@1.64520.250l210.234l31O~l4!#.

Next terms in the perturbative expansion in four dime
sions will be of orderO(l4) andO(l4logl) and can be also
evaluated using the strategy employed in@21# or up to order
O(l5) using @25,26#. However, finite temperature perturb
tion theory is expected to break down at orderO@(gYM

2 N)3#
@27#. Since this failure of perturbation theory is associa
with the infrared sector of the theory, supersymmetry is
expected to solve the problem or even improve the situat
As in QCD @26,28# some kind of nonperturbative analys
will be needed in order to compute higher orders. Actua
the general structure of the series inl is important in trying

4The trick of dimensional reduction is no longer useful here
cause the thermal mass distinguishes between scalar and gaug
son propagators. Thus we have to compute all diagrams separ
10601
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to decide whether there is a phase transition occurring
some intermediate value of the ’t Hooft coupling that pr
cludes the extrapolation of supergravity physics into
gauge theory domain@17#.

D. SYM2 thermodynamics on SL
13R

Whend<3 the analysis of the quantum corrections to t
one-loop free energy has additional complications due to
hard infrared divergences that afflict super-renormaliza
theories. Ford53, we see that expression~2.4! diverges be-
cause of az~1! factor. In principle this can be cured, as usu
by computing the thermal masses and inserting them into
propagators, thus regularizing the low-momentum behav
of the Feynman integrals. However, in the three-dimensio
case the computation of the electric mass has to be done
extra care, since the one-loop corrections to the propaga
are already infrared divergent. Thus, the electric mass ha
be evaluated self-consistentlyà la Hartree-Fock@29#. Any-
way, we will not dwell in this case any further.

The two-dimensional case, on the other hand, is m
interesting from several points of view. The one that w
concern us here is thatN58, SYM2 describes the world-
volume dynamics of Matrix strings@30#, a nonperturbative
definition of type-IIA superstrings. Naively, Eq.~2.4! is ill
defined ford52 due to the endemic infrared divergences
low-dimensional field theories. There are several ways
which this divergence can be regularized. Here we will g
rid of the problem by putting the system in finite box5 of
length L52pR. We will assume that the thermal wave
lengths of the fundamental fields are much smaller than
global length of the boxb!L and restrict our analysis to th
sector without Wilson lines~the ‘‘long strings’’ that charac-
terize the Matrix string phase!. Once this is done, the only
change in the computation of Feynman diagrams is that c
tinuous space momentum is discretized in units of 1/R and
the momentum integrals have to be replaced by disc
sums

X @d2P#→ 1

L (
nPZ

1

b (
vm

~2.11!

where the second sum is, as usual, over integer or h
integer Matsubara frequencies depending on the bosoni
fermionic character of the propagating field.

In the one-loop approximation the relevant bosonic a
fermionic determinants have been already computed in@31#
and the resulting one-loop free energy density can be ca
terms of modular functions

-
bo-
ly.

5Actually, if we take thed→2 limit in expression~2.4! we obtain
a finite result with a two-loop correction independent of the te
perature. However, since dimensional regularization is not relia
in dealing with infrared divergences we will not follow this proc
dure.
0-5
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M. A. VÁ ZQUEZ-MOZO PHYSICAL REVIEW D60 106010
F~b,L !1-loop52
1

Lb
N2~Dmax22!logF u4@0u i ~L/b!#

h3@ i ~L/b!# G
;

b!L
2

p

4
~Dmax22!N2b22.

In computing the bosonic determinant, and in order to ke
the argument of the logarithm dimensionless, we have ad
a b-independent counterterm. In the infinite volume lim
L→` we recover the one-loop result obtained in Sec. II

Let us now go to the two-loop case. To compute the c
tribution to the free energy density we can use formula~2.2!
provided we substitute the integration by the sum accord
to Eq. ~2.11!. After doing so, we find
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where we have made use of the Epstein zeta function@32#
and F(m,n) represents the quadratic form betwe
the square brackets. It is interesting to notice here t
the resultingregular zeta function arises as the differenc
of two singular zeta functions withz~1!-like divergences
which cancel out. This is again due to the no
renormalization of the vacuum energy for supersymme
theories.

Actually, the zeta function in Eq.~2.12! can be written
itself in terms of ordinary modular functions~see the first
article in @32#!, so at the end we can write

F~b,L !2-loops5
1

4p2 gYM
2 N3~Dmax22!2 log2F u2~0u iL /2b!

h~ iL /2b! G
;

b!L

N2

576
gYM

2 N~Dmax22!2
L2

b2 ~2.13!

in such a way that one arrives at the following expression
the (112)-loop free energy density
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According to this expression, the natural effective dime
sionless coupling in the largeL limit is now
geff

2 5(gYM
2 N)L2. The analysis with be reliable whe

1@(gYM
2 N)L2@(gYM

2 N)b2. Again, the equation of state i
the two-dimensional case can be computed whenb!L, with
the result

E5
S2

pN2~Dmax22! F11
~Dmax22!

144p
gYM

2 NL2G . ~2.14!

III. CONCLUSIONS AND OUTLOOK: HAGEDORN
TRANSITION FROM SYM THERMODYNAMICS?

In the present paper, the thermodynamics of supers
metric Yang-Mills theories with 16, 8, and 4 supercharg
was studied in any dimensiond>4. We computed the two
loop correction to the free energy for these theories
found that it always has opposite sign to the leading~nega-
tive! one-loop result. In the four-dimensional case we a
evaluated the correction to the free energy arising from
resummation of the ring diagrams, using the technique
-

-
s

d

o
e
f

Ref. @21#, and found it to be negative. For lower dimension
(d<3) SYM theories, the computation is plagued with i
frared divergences that have to be regularized somehow.
studied in detail the two-dimensional case at finite volu
~to regularize these infrared divergences! in the high tem-
perature limit. Again we found a positive two-loop corre
tion which scales asT2 with an effective dimensionless cou
pling given bygYM

2 NL2.
Before closing, let us make some remarks on the poten

use of SYM thermodynamics in clarifying the issue of t
Hagedorn transition. On general grounds, one can expect
possible resolutions to the Hagedorn problem: either non
turbative effects drive the critical temperature to a maxim
reachable temperature for the system or new fundame
degrees of freedom appear at high energies, thus providi
picture for a phase transition~or a smooth crossover, depen
ing on the details of the dynamics!. Although at present there
are no clear evidences as to which one of the two alternat
is physically realized in string and/orM-theory, some results
@3,5# and our still incomplete knowledge of the theory see
to hint in the direction of the second one.

D-instanton corrections to the thermodynamical potent
0-6
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NOTE ON SUPERSYMMETRIC YANG-MILLS THERMODYNAMICS PHYSICAL REVIEW D60 106010
have been studied in@2# with the result that they do no
modify the critical behavior at the Hagedorn temperatu
More recently, the authors of Refs.@5# have included non-
perturbative semiclassical ingredients in the analysis of
physics of the Hagedorn transition at finite volume throu
the Horowitz-Polchinski correspondence principle@33#, get-
ting a picture in which the Hagedorn phase is bounded
high energies by a black hole phase. A similar situation
curs for a string gas on AdS backgrounds where, in the
nonical ensemble, the Hagedorn transition is ‘‘screened’’
the formation of an AdS black hole@4#.

A second approach to the problem would start with
nonperturbative formulation of string theory in terms
M-theoretic degrees of freedom, as it has been propose
@3#. Let us momentarily adhere ourselves to this latter p
and, starting with the nonperturbative definition of the typ
IIA superstring provided by Matrix strings@30#, study the
world-volume thermodynamics of type-IIA strings in the m
crocanonical ensemble. The world-volume theory is g
erned byN58 SYM2 with the Yang-Mills coupling constan
given by gYM

2 51/(gs
2a8), with gs the string coupling con-

stant. On the other hand, free field configurations are de
mined by the overall scalea8. In the infrared,E!gYM , the
physics is dominated by ‘‘long string’’ excitations along th
flat directions. It is in this regime in which Matrix string
reproduce, in the large-N limit, the multistring type-IIA en-
semble@30,6#. If the energy is increased, the system w
begin to be excited along nonflat directions as well. At en
gies E@gYM the potential terms in theN58 SYM2 theory
will behave as a small perturbation and the system will en
a perturbative regime. Thermodynamics there is well
fined, as we have seen from the previous analysis.

It is tempting to try to make some connection betwe
these two world-sheet regimes and the low and high ene
regimes in the target space string theory. At low energies
have perturbative type-IIA superstring theory that, in t
open space-time dimensions, we know is characterize
high energies by a negative specific heat phase. This n
tive specific heat phase is viewed as a breakdown of e
partition in energy, in the sense that most of the energy of
string ensemble is stored into one~or a small number! of
highly excited strings@18,19#. From the philosophy of
M-theory it seems quite reasonable to expect that if too m
energy is stored into a single string some transition to n
perturbative~maybe eleven-dimensional! physics should take
place, putting an end to the negative specific phase. Alte
tively, a black hole could be formed before the system lea
the string regime@5#. In any case, the final conclusion wou
be that the Hagedorn phase will be bounded by a new ph
into which the system will decay either via a smooth cro
over or a phase transition.

In the case at hand, however, it is not clear how to c
nect the world-volume theory with some kind of target p
ture. One of the difficulties lies in the fact that Matrix string
are formulated in the light-cone gauge, in which the spa
time interpretation is rather obscure. Nonetheless, one
naively argue that the negative specific heat phase at in
mediate energiesa821/2,E!gs

21a821/2 is bounded at high
energyE@gs

21a821/2 by a new phase with regular thermo
10601
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dynamics~i.e., positive specific heat! effectively described
by a perturbative two-dimensionalU(N) supersymetric
Yang-Mills theory with sixteen supercharges in the largeN
limit. If this were so, the transition between the low ener
string phase and the new high energy phase would
through a first-order phase transition across the unst
~negative specific heat! phase~cf. Carlitz in @18#!. The criti-
cal points would be determined by the Maxwell rule for t
entropy, provided the complete profile of the microcanoni
temperatureT(E) is known.

The space-time interpretation of such a phase is far fr
being straightforward. In the SYM2 perturbative regime@or
directly in the free limit gYM

2 ;(gs
2a8)21→0# the two-

dimensional action is that of sigma model in a ‘‘noncomm
tative’’ target space with matrix coordinatesXm

PAdj@U(N)#. Whether this indicates that the Hagedo
transition corresponds6 to the nucleation of noncommutativ
bubbles in a commutative space-time is something that
difficult to decide with our present knowledge of the theo
One of the problems to be clarified will be, for example, ho
the target space volume dependence of the extensive qu
ties emerges as a function ofN. In any case, we stress tha
this extrapolation of the world-sheet picture to space-ti
physics is very speculative, and should be tested by a
tailed computation. We hope to report on this elsewhere

In a sense, this picture can be regarded as dual to the
proposed in@3#. There, the Hagedorn transition is linked
the condensation of D0-branes and their low-energy dyn
ics will be U(N) super quantum mechanics with sixteen s
percharges. Both descriptions could in principle be related
performing aT-duality along the ninth dimension and inte
changing its role with theM-theory circle.

Note added. After this paper appeared in the LANL
hep-th archive, I learned directly from S.-J. Rey of his p
allel and independent work on SYM thermodynamics, par
which overlaps with the results presented here and that
later appeared in@34#. I would like also to thank A. Nieto
and A. Tseytlin for their interesting remarks on the first ve
sion of the article.
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6At least in those cases in which it is not preceded by the form
tion of black holes due to the corresponding principle. Actually,
can tune the string coupling constantgs , the volume and the tota
energy in such a way that the system avoids the correspondence
and thus we prevent the formation of black holes.
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