PHYSICAL REVIEW D, VOLUME 60, 106010

Note on supersymmetric Yang-Mills thermodynamics
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The thermodynamics of supersymmetric Yang-Mills theories is studied by computing the two-loop correc-
tion to the canonical free energy and to the equation of state for theories with 16, 8, and 4 supercharges in any
dimension 4d=<10, and in two dimensions at finite volume. In the four-dimensional case we also evaluate
the first nonanalytic contribution in the 't Hooft coupling to the free energy, arising from the resummation of
ring diagrams. To conclude, we discuss some applications to the study of the Hagedorn transition in string
theory in the context of Matrix strings and speculate on the possible physical meaning of the transition.
[S0556-282199)08618-X

PACS numbgs): 11.25.Sq, 11.10.Wx, 11.30.Pb

[. INTRODUCTION tial application to nonconformal versions of the Maldacena
conjecturd 9]. Second, to obtain the first nonanalytic correc-
The study of the thermal properties of supersymmetridion in the 't Hooft coupling, of ordeO[(g%MN)w], to the
Yang-Mills (SYM) and superstring theories has received atwo-loop result in four-dimensional theories arising from the
boost[1-6] after the D-brane revolutiofv]. More recently, resummation of ring diagrams. We will analyze also with
the conjecture by Maldacena of a duality between stringsome detail the two-dimensional case, where the infrared di-
theory on anti—de SittefAdS) backgrounds and the largé- vergences will be handled by putting the system at finite
limit of SYM theories[8,9] has further motivated the study volume.
of these issues in the hope that it could lead to a clarification The physics of the high temperature string gas has been a
of the mechanisms of confinement in non-Abelian gaugeecurrent issue in string theoffor a sample of papers from
theories[10]. the “golden age” of thermal strings s¢&8,19). In recent
Beyond its purely cosmological and/or phenomenologicalyears we have gained interesting insights about the physical
relevance, the study of SYM thermodynamics finds interestmeaning of the Hagedorn divergence, in spite of the fact that
ing applications in the study of near-extremal black holesa full and detailed understanding of the problem seems to be
[11] and D-braneq12,13. When looking at the effective still at large. Although this will not be the main subject of
theory of coincident D-branes there are, generically, two rethis paper, we will try to discuss some aspects of the Hage-
gimes associated with the values of the effective gauge cowdorn transition that could be enlightened by our results on
plings gsQ (Q being the number of coincident D-branes or SYM thermodynamics. In particular we will use our study of
the charges of the black holaVheng,Q<1 the field theory the two-dimensional SYM theories to try to get some quali-
limit is well described by a perturbative SYM theory living tative information about the Hagedorn transition using Ma-
on the world volume of the D-brane. On the other handtrix strings as a nonperturbative definition of type-IlA super-
taking gsQ>1 the weakly coupled D-brane picture is not strings. In spite of being nonconclusive, we hope the
appropriate any more. Using Maldacena’s conjecture, howdiscussion will be helpful in shedding some light on such a
ever, it is possible to relate the field theory limit in this confusing issue.
nonperturbative regiméarge 't Hooft coupling with a su- The present paper is organized as follows: in the next
pergravity computation on some background of the formsection, the two-loop corrections to the thermal free energy
AdS; X (spheres Corrections to the leading strong coupling of SYM theories with 16, 8, and 4 supercharges will be com-
result of orderO(1/g.Q) are then associated with higher puted in any dimension€d=<10 using dimensional reduc-
dimensional term$a’ correctiong in the supergravity effec- tion from the corresponding maximal=1 SYM theory. In
tive action. Sec. Il C we compute the next correction to the two-loop free
The study of the corrections to the leading results on botlkenergy for SYM theories in four dimensions. Section IID
sides(weak[14] and strond 15,16 coupling has been done will be devoted to the study of the two-dimensional case at
for the conformal\V/=4SYM theory ind=4 and a tendency finite volume. Finally, in Sec. Ill we will summarize the
in both curves to meet was detect@ge, however,17]). In  conclusions and discuss some possible application of our re-
this paper we will try to achieve a twofold objective. First, to sults to the study of the Hagedorn transition in Matrix string
compute the two-loop free energy of SYM theories with 16,theory.
8, and 4 supercharges in various dimensions. The first class
of theories are especially interesting because of their poten- |I. TWO-LOOP FREE ENERGY OF SYM THEORIES

A. Supersymmetric Yang-Mills theories in various dimensions

*Email address: vazquez@wins.uva.nl, In this section we will compute the next-to-leading con-
M.Vazquez-Mozo@phys.uu.nl tribution to the canonical free energy of supersymmetric
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Yang-Mills theories with 16, 8, and 4 supercharges. In order
to keep the analysis general, we will start wkf=1 SYM in
D dimensions, whose dynamics is governed by the action  ~=«
[20] o~ @ + + @

1 _
——FasF B+iyl Dy,

S=J’ dPx Tr| —
49ym

) ) FIG. 1. Feynman diagrams contributing to the two-loop canoni-
whereA,B=0,...D—1 and both the gauge fields and spinorscy) free energy. Solid lines represent fermions, wavy lines gauge
are in the adjoint representation bf(N). We get theories posons, and dashed lines Faddeev-Popov ghosts.
with different number of supercharges by choosing the ap-

propriate value ofD for which that number & is maximal: As a warmup exercise, we will compute the one-loop free

energy density. In the maximal’=1 theory we have three
diagrams, a bosonic loop, a fermionic loop and the ghost
loop, which after multiplying by their corresponding degen-
eracy factor respectively giveve use the notation of Ref.

#SC: 16— Dmax: 10,

#5c=8—Dnax=6,

=4 Dna=4. [21)
_1pn2 d 2_1pn2 _
In addition, different conditions on fermions have to be im- F(B)1-to0p=2 N Dmayi[d PJlog P"— 3 N*(Dmax—2)
posed in order to keep the number of bosonic and fermionic P

degrees of freedom equal. Thus, whey,,,=10 fermions g .
have to be taken Majorana-Weyl, while f@,,.,=6 and Xi [d°PJlogP—N i
Dmax=4 they satisfy Weyl conditioactually ind=4 we {P} (P)
can choose the fermions to be either Majorana or Weyl, bot
conditions being equivalef®0]). This ensures that the num-
ber of physical bosonic and fermionic degrees of freedo
will be equal toD,5—2.

In general, however, we will be interested in SYM theo
ries with #;c supercharges in dimensiors<D,,,. This

[d9P]log P?,

K}vhere by (P) and {P} we represent, respectively, bosonic
(periodig and fermionic(antiperiodi¢ boundary conditions

"};\Iong the Euclidean time and the factorNf is due to the
fact that all fields are in the adjoint representatiorgiN).

" After a straightforward computation we arrive at

theories can be obtained by dimensional reduction of the 1 d9-1p
corresponding maximal/=1 SYM theory inD= D, [20]. i [d?P]log P2=— D, f ﬁlog(p%wﬁ)
Thus, we can parametrize amydimensional SYM theory kS B oy J (2m)

with any number of supercharges by specifying batand oI (di2)

the maximal dimensiorD,,,, from which it is obtained by
dimensional reduction. In this way, starting with,,,,=210 (
N=1 in d=10) we getN=1 in d=8, N=2 ind=6, N/
=4 ind=4, and V=8 in d=2. Starting instead wittD,,,,
=6 (N=1 ind=6) we will have N=2 ind=4 andN=4
in d=2. Finally, if we takeD,,,x=4 we can retrievéV=2 in

A0 77d/2 g(d)ﬂ_d,

ddflp
>

1
52 —(ZW)d,llog(pzwﬁ)

i‘, [d9P]log P?=
{P}

d=2 (for odd dimensions 2— 1 we have theV correspond- 2T°(d/2)
ing to dimension B). =Ag+ —g— (1-21"9 () g~
a

B. Two-loop free energy ford=4

Ay is a regularized vacuum energy that will cancel after

With this in mind, we can proceed to compute the canonimming all contributions. The total result for the one-loop

cal free energy in perturbation theory for any supersymmet..o energy is thus
ric Yang-Mills theory characterized by[X,,.x,d), by writing

down the contribution of vacuum Feynman diagrams\6f 2I(d/2)
=1 in D="Dpa SYM and restricting internal momentum in ~ F(8)1-100p= — 7172—§(d)(1—2_d)(73max— 2)N?B~d.
loops tod dimensions. That way we are able to keep track of 2.1)

the contribution of gauge bosons and scalasswell as their

supersymmetric partngraithout having to consider a larger  Next we obtain the two-loop corrections with this result.
number of diagram&The final result, of course, will depend Thus, we must sum the contributions of the four Feynman
on (d, Dyay)- diagrams of Fig. 1 corresponding t&=1 SYM in D
=Dmax Where internal momenta is restricted to a
d-dimensional space-timéone of whose directions is the
IFor example, using this trick one can get the result of Ref] ~ compactified Euclidean timeProceeding this way and after
by computing, instead of ten, only four two-loop Feynman dia-Some algebra we find the contribution of each independent
grams. diagram(using the Feynman—'"t Hooft gauge
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2 temperature free energy is well behaved in the ultraviolet.
' This is a consequence of the fact that the ultraviolet region in
the thermal integrals is effectively cutoff for momemqta T
and therefore the temperature dependent part of the ampli-
j: qdp tudes is, to a great extent, insensitive to ultraviolet ambigu-
[Pl =3 ities. Of course, divergences should have been taken care of
(P} in the zero temperature sector by an appropriate cutoff in
) momentaA (although some protected observables, like the
)£ |

Fi=3 gYMN (i [ddp] p2
(P)

Fa= %1 g\z(MNa(Dmax_ 2)Tr 1{ P2

—2(1‘, [ddP]

{P}

vacuum energy, will be finite due to supersymmgtiy that
case, consistency will requIrB<A.
To get an analytical expression for the free energy we can

2
evaluate the integrals appearing in E2.3) for generic val-
F3= 7 9omN*Dryaf Drmax— 1)( i [dP] 53 p? ) , ues of the dimensicn
P
1)2 d-1 2—d_—(d-1)/2
Fa= =3 N> (D= 1)(i [ddP]§> : b Ny 27w {(d—2)r(d—2)p% "
P (2m%tw, TI[(d-1)/2] :

Here Trl is the dimension of the spinors of the maximal
SYM theory which in all the cases under study£1 in
Dmax=10,6,4) equald,,o—2. Using this fact we can add all
the above contributions and find the following expression for (2m)T1
the two-loop free energy density:

f(ﬁ)z-loop: 4l g\Z(MNS(Dmax_ 2)2

dd- 1 n . 22-d_—(d=1)12
3—

=(1-2 )F[(d—l)/Z]

xg(d—Z)r(d—z)ﬁz-d.

1 1\? After substituting in Eqs(2.3) and (2.2) we obtain
x(i [ddP]—z—i [ddP]—z) . 9= ‘
) P* # P

The integrals appearing between brackets contain both the

(2.2 22747(d-2)

w4V (d—1)/2]

F(B)2-1o0p= 9emN*| (Dinax—2)

zero and finite temperature part &{3),.,0p- They can be - 2 o
easily computed by performing the sum first to give X(1=-2°"9I'(d=2)| p" =,

% [ddp]i_fﬂi+fﬂNp

P P? (2m)971 2w, 2m* ! wy’ which together with the one-loop contribution can be written

as
(4P = d'p 1 f d"*p n,
T P2 2m¥ 2w, ) 2mT ey’ ra2)
@3 Ap=-NB" [—dv—g(d)(l 279 (Drax=2)

wherew,=p andN,, n, are the Bose-Einstein and Fermi-

—d
Dirac distribution functions, respectively, 2279¢(d-2)

(Pmax=2) @120 (g=1)/2]

_9\2(MN

1 1

Ny=—F—>, Np=—Fp5—- 2

Poeft—1t TP efoetd ><<1—22—d>r<d—2)} B+ OL(GMN?T |-

The first thing to be said about E¢.2) is that the zero

temperatureg(ultraviolet divergent contribution cancels out
between the bosonic and the fermionic integral. Thisisjusta
consequence of supersymmetry since the vacuum energy
should not be corrected at zero temperature if supersymmetry?Actually, the fermionic integral can be written in terms of the
is to be preserved by the vaculig?]. This is the reason why bosonic one using

(2.9

this cancellation occurs not only for the conformfl=4, 2 1 1
SYM, (Dma=10) [14], but for all SYM theories under ehor—1" -1 P+l
study. which is just a realization of the well-known relation between the

Notice that although all SYM theories in dimension one-loop free energy of a bosonic and a fermionic quantum field,
higher than four are nonrenormalizable, the two-loop finiteF . (8) =Fp.dB) — 2Fn.d 28) [23].
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Incidentally, the two-loop correction to the free energy is C. The d=4 case
always positive ford>1, so it always tends to increase the  \ye will now concentrate our attention on the four-
(negativé one-loop contribution. _ dimensional case. Taking=4 in Eq. (2.4 we find
From Eq.(2.4) we see explicitly how corrections to the
one-loop result come in powers of the 't Hooft coupling F(B)g—a=—3 N2B8 4 Dpax—2)
g%MN which is kept fixed in the larg&t limit. Since ind 2
. . _ . . .- 7T
d|meq5|ons the Yanngllls coupl'lpg constag},, has d! % - 3_2(Dmax_2)g$MN _ 2.5
mension of (energy) ¢, the condition for the perturbative

expansion to be reliable is the effective dimensionless cou-
pling at a given temperature to be small As a check, we can evaluate Eg.4) for the superconformal

N=4 SYM, theory, which is obtained by dimensional re-
02— g2, N1, duction of V=1 in SYMyq (i.e., Dya=10) to give
20-4 w1 2
Notice that ford> 4, for which the SYM theory is nonrenor- F(B)w-a=—NB (F_ ZgYMN
malizable, perturbative corrections to the free energy will be
governed by a small parameter in the low temperature limitywhich indeed agrees with the result of Rif4]. In the equa-
corresponding to the fact that the theory is well behaved ittion of state, the loop correction just results in a renormal-
the infrared. Actually, higher order corrections to formulaization of the overall numerical factdthis also happens in
(2.4) have better and better infrared behavior as we increasine nonconformal caseB,,,=6,4)
the order in perturbation theory. At the same time the ultra-
. . . 4/3 2

violet divergences worsen in the zero temperature sector, T 3 gymN SHaN (23
while in the temperature-dependent part of the amplitude the n=a= oz | |\ N
ultraviolet behavior is smoother due to the presence of Bolt-
zmann factors that effectively cutoff momenta beyond a Generically, the next contribution to E(R.4) is naively
scale of ordet T. given by three-loop diagrams of ordé][(g%MN)z]. How-

From the two-loop canonical free energy we can obtairever in four dimensions, as it happens in Q{Z2,21], at the
the corrections to the equation of state of SYMNe first  three-loop level there are already uncanceled infrared diver-
compute the canonical entropy densfiffT) as a function of gences that have to be cured by summing over ring diagrams.
the temperature and invert it up to terms of orderThis gives a nonanalytiof order O[(g2,,N)*?]) contribu-

2

O[(gymN)?] to obtain tion to the free energy, representing a mild failure of pertur-
bation theory due to the infrared ambiguities. The evaluation

Ud-1) , (2d=4)F of this term is essentially equivalent to dressing &fand
T(S)= (W) +09vm dd-1)7, scalar propagators in loops by introducing the effect of De-

bye screening and thermal mass for the scalars. To leading

( S )“’3)’(”1) order in the 't Hooft coupling, the electri®ebye mass can

“\NZF4d Fod +0[(g5mN)?], be easily computed from the static limit of the one-loop self-
energy to give
where the numerical coefficientg,, F; are defined ;rodm m2= lim [133(0,p)
the free energy Eq. (24 by F=—-FNT 50
+(g2uN)N2F, T?97% Now we can substitute into the inter- , ,
nal energy densitf= 7+ TS with the result =7 (Dmax—2)9ymuNT?+ O[(97uN)?], (2.6)
di(d—1) P while for the scalars we have
=(d—1) FN? 5 1+ (g%uN)
£=(d=17% (sz-"od) (@) (417, mZ= lim 11230 5)
S\ (@-a/d-1) , p—0
. _szod) *OLgwN: =} (Do 2GuNT+OL(G3NZ, 27)

In order to obtain the®[(g2,N)*?] terms in the free
energy we use the technique of RE21], and rewrite the
3The better ultraviolet behavior of the temperature-dependent se®riginal Lagrangian density as
tor of the theory does not guarantee its finiteness in higher loops;
for example, the free energy of SYlis ultraviolet divergent at 1 Ns
three loops as can be seen by thermal averaging the one-loop effec- Lsym, =| Lsym, T —mg,TrASép ot = miZ Tr ¢i2
. . . . i . . 4 4 2 oY 2 %3
tive action, which contains B* term that scales quadratically with

the ultraviolet cutoff. The resulting thermal averaged divergent part 1 ng
is. of .orderO[(g\z(MN)Z] [1§], as co.rre.spon(.js to a three-loop con- _ —m§|TrA§5p - _miz Tr ¢in (2.9
tribution. | thank A. Tseytlin for pointing this out to me. 2 oY 2 %3
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where ¢; are theng="D,,,—4 adjoint scalars in the theory to decide whether there is a phase transition occurring at
and the electric mass only affects to the zero-frequency conmsome intermediate value of the 't Hooft coupling that pre-
ponent of theA field (cf. [24]). The strategy now is to treat cludes the extrapolation of supergravity physics into the
the last two terms as a perturbation to the Lagrangian densityauge theory domaifi7].
between brackets. This results in a reorganization of pertur-
bation theory in which the ring-diagram contribution can be
easily evaluated. D. SYM, thermodynamics on § X R

The first thlng will b.e to compute again the one-loop.free Whend=3 the analysis of the quantum corrections to the
energy density, including now the effect of the masses in the - o
Lagrangian equatiof2.8) and, at the same time, adding new one-lqop free energy has addltlonal_compllcatlons due_to the
one-loop diagrams containing vertices associated with th ard infrared divergences that afflict super-renormalizable

counterterms, Expanding the results up to o(dé(rg%MN)Z] theories. Fod=3, we see thc_at exp_ressmﬁﬁ.4) diverges be-
we find' cause of a(1) factor. In principle this can be cured, as usual,

by computing the thermal masses and inserting them into the
1 propagators, thus regularizing the low-momentum behavior
F(B) T toop=F(B)1-100pt ENZT[mgﬂL (Drmax—4)M3] of the Feynman integrals. However, in the three-dimensional
case the computation of the electric mass has to be done with
+ (’)[(g%MN)Z] (2.9 extra care, since the one-loop corrections to the propagators
are already infrared divergent. Thus, the electric mass has to
with F(B)1-100p 9iven by Eq.(2.1). Proceeding similarly with  pe evaluated self-consistentlyla Hartree-Fock29]. Any-

the two-loops diagrams of Fig. 1, we obtain way, we will not dwell in this case any further.
1 The two-dimensional case, on the other hand, is more
F(B)2100p=F(B) 2-100p~ S—WNZT[m§|+(DmaX— 4)m(3ﬁ] interesting from s_everal points of view. 1_'he one that will
concern us here is that=8, SYM, describes the world-
+O[(g%,N)?]. volume dynamics of Matrix stringg30], a nonperturbative

definition of type-lIA superstrings. Naively, Eq2.4) is ill
So we are left with the following final result for the 32  defined ford=2 due to the endemic infrared divergences of

loop™ contribution to the free energy density low-dimensional field theories. There are several ways in
1 which this divergence can be regularized. Here we will get
A e T N2TIM3+ (Do — 4)mS rid of the problem by puttlng the system in finite Boaf
(B)2(2-100p= ~ 17 N'TIMeit (Do 4) M} length L=27R. We will assume that the thermal wave-

(2.10 lengths of the fundamental fields are much smaller than the

where the values of the thermal masses are given by qu_lobal length of the boyd<<L and restrict our analysis to the

(2.6) and (2.7). It is important to notice that this term is Sector without Wilson linegthe “long strings” that charac-
always negative for all 4D, <10 terize the Matrix string phageOnce this is done, the only

The only thing left now will be to add Eq2.10 to the change in the computation of Feynman diagrams is that con-
two-loop result(2.5). In particular, doing so for the super- inuous space momentum is discretized in units & ahd
conformal \'=4, SYM, and evaluating the numerical coef- the momentum integrals have to be replaced by discrete
ficients, we find §£2=g2,N) sums

F(B) ea= — N2T 1.645-0.2502+ 0.234 3+ O(\%)]. j: [d2p]_>% >is (2.1

nez om

Next terms in the perturbative expansion in four dimen-
sions will be of orde®(A*) andO(\*log\) and can be also

evaluated using the strategy employed2d] or up to order  where the second sum is, as usual, over integer or half-
O(\°) using[25,26. However, finite temperature perturba- integer Matsubara frequencies depending on the bosonic or
tion theory is expected to break down at ord¥r(gZ,,N)3]  fermionic character of the propagating field.

[27]. Since this failure of perturbation theory is associated In the one-loop approximation the relevant bosonic and
with the infrared sector of the theory, supersymmetry is nofermionic determinants have been already computd@lh
expected to solve the problem or even improve the situatiorand the resulting one-loop free energy density can be cast in
As in QCD [26,28 some kind of nonperturbative analysis terms of modular functions

will be needed in order to compute higher orders. Actually,

the general structure of the seriesNis important in trying

SActually, if we take thed— 2 limit in expressior(2.4) we obtain
a finite result with a two-loop correction independent of the tem-
“The trick of dimensional reduction is no longer useful here be-perature. However, since dimensional regularization is not reliable
cause the thermal mass distinguishes between scalar and gauge bodealing with infrared divergences we will not follow this proce-
son propagators. Thus we have to compute all diagrams separateljure.
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1, 6,[0[i(L/B)] where we have made use of the Epstein zeta fundian
f(B,L)l-mop:—mN (Dmax—2)log [(L/B)] and ®(m,n) represents the quadratic form between
g the square brackets. It is interesting to notice here that
the resultingregular zeta function arises as the difference
o Z(D _2)N2B2 of two singular zeta functions with{(1)-like divergences
pea AT ' which cancel out. This is again due to the non-

renormalization of the vacuum energy for supersymmetric
In computing the bosonic determinant, and in order to keegheories.
the argument of the logarithm dimensionless, we have added Actually, the zeta function in Eg2.12) can be written
a p-independent counterterm. In the infinite volume limit itself in terms of ordinary modular functionsee the first
L—o we recover the one-loop result obtained in Sec. Il B. article in[32]), so at the end we can write
Let us now go to the two-loop case. To compute the con-
tribution to the free energy density we can use form@la)

provided we substitute the integration by the sum according 1 0,(0[iL/28)
to Eq.(2.11). After doing so, we find = 2 N3 N2 2| o T
q( :D 9 f(B-L)Z—Ioops ngMN (Dmax 2) |Og[ 77(iL/2,3) }
¥ e ! 2p1t
d“P ——i d°P]—
<P>[ G {P}[ G N R N(Dae 275 2.1
1 , 47°m2  Am2n2]-1 B<L5_769YM (Drmax )? (213
-2 (Y
LB mn L (2B)
_ iz 00 (2) 2.12 in such a way that one arrives at the following expression for
LB |0 3 * the (1+2)-loop free energy density

1 0,0[L/B)] 1 , 0,(0[iL/28) ,
FB,L)=— RNZ{(Dmax_ 2)log W} - W(Dmax_ 2)2(9YMN)(LB)|092[W} +0O[(g3uN)?]

77 2p-2 1 2 2
~ _Z(DmaX_Z)N B 1- 144W(Dmax_2)gYMNL .
B<L

According to this expression, the natural effective dimen-Ref.[21], and found it to be negative. For lower dimensional
sionless coupling in the largeL Ilimit is now (d=3) SYM theories, the computation is plagued with in-
02=(g%yN)L% The analysis with be reliable when frared divergences that have to be regularized somehow. We
1>(g$MN)L2>(g§MN)ﬁ2_ Again, the equation of state in studied in detail the two-dimensional case at finite volume

the two-dimensional case can be computed wBefl, with ~ (to regularize these infrared divergencés the high tem-

the result perature limit. Again we found a positive two-loop correc-
tion which scales a$? with an effective dimensionless cou-
2 (Dpa=2) , pling given by_g\z(MNLZ. _
E= TNZ(Dros2) 1+ 147 gymNL?|. (2.19 Before closing, let us make some remarks on the potential
max use of SYM thermodynamics in clarifying the issue of the
Hagedorn transition. On general grounds, one can expect two
lIl. CONCLUSIONS AND OUTLOOK: HAGEDORN possible resolutions to the Hagedorn problem: either nonper-
TRANSITION EROM SYM THERMODYNAMICS? turbative effects drive the critical temperature to a maximum

reachable temperature for the system or new fundamental

In the present paper, the thermodynamics of supersymdegrees of freedom appear at high energies, thus providing a
metric Yang-Mills theories with 16, 8, and 4 superchargespicture for a phase transitiqor a smooth crossover, depend-
was studied in any dimensiaf=4. We computed the two- ing on the details of the dynamicslthough at present there
loop correction to the free energy for these theories andre no clear evidences as to which one of the two alternatives
found that it always has opposite sign to the leadingga- s physically realized in string and/dd-theory, some results
tive) one-loop result. In the four-dimensional case we alsd3,5] and our still incomplete knowledge of the theory seem
evaluated the correction to the free energy arising from theo hint in the direction of the second one.
resummation of the ring diagrams, using the technique of D-instanton corrections to the thermodynamical potentials
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have been studied if2] with the result that they do not dynamics(i.e., positive specific heptffectively described
modify the critical behavior at the Hagedorn temperatureby a perturbative two-dimensional(N) supersymetric
More recently, the authors of Ref] have included non- Yang-Mills theory with sixteen supercharges in the lalye-
perturbative semiclassical ingredients in the analysis of théimit. If this were so, the transition between the low energy
physics of the Hagedorn transition at finite volume throughstring phase and the new high energy phase would be
the Horowitz-Polchinski correspondence principB3], get-  through a first-order phase transition across the unstable
ting a picture in which the Hagedorn phase is bounded afnegative specific heaphase(cf. Carlitz in[18]). The criti-
high energies by a black hole phase. A similar situation oc¢a| points would be determined by the Maxwell rule for the
curs for a string gas on AdS backgrounds where, in the Cagnropy, provided the complete profile of the microcanonical
nonical en_semble, the Hagedorn transition is “screened” by[emperatureT(E) is known.

the formation of an AdS black holel]. The space-time interpretation of such a phase is far from

A second.approach t(.) the proplem would.start with aLbeing straightforward. In the SYMperturbative regimeor
nonperturbative formulation of string theory in terms of .

M-theoretic degrees of freedom, as it has been proposed ﬁqrectly. in the .fre(.a limit g\sz_N(ggar) 1_.>0] “the two-

[3]. Let us momentarily adhere ourselves to this latter pattflimensional action is that of sigma model in a “noncommu-
and, starting with the nonperturbative definition of the type-ative” target space with matrix coordinatesx”

IIA superstring provided by Matrix stringE30], study the ~€Adj[U(N)]. Whether this indicates that the Hagedorn
world-volume thermodynamics of type-IIA strings in the mi- transition corresponfgo the nucleation of noncommutative
crocanonical ensemble. The world-volume theory is gov-bubbles in a commutative space-time is something that it is
erned byNV=8 SYM, with the Yang-Mills coupling constant difficult to decide with our present knowledge of the theory.
given by g\Z(M = 1/(g§a’), with g5 the string coupling con- One of the problems to be clarified will be, for example, how
stant. On the other hand, free field configurations are detethe target space volume dependence of the extensive quanti-
mined by the overall scale’. In the infrared E<gy,, the ties emerges as a function bf In any case, we stress that
physics is dominated by “long string” excitations along the this extrapolation of the world-sheet picture to space-time
flat directions. It is in this regime in which Matrix strings physics is very speculative, and should be tested by a de-
reproduce, in the largB-limit, the multistring type-IlA en-  tailed computation. We hope to report on this elsewhere.
semble[30,6]. If the energy is increased, the system will In a sense, this picture can be regarded as dual to the one
begin to be excited along nonflat directions as well. At enerproposed if3]. There, the Hagedorn transition is linked to
giesE>gyy the potential terms in th&/=8 SYM, theory  the condensation of DO-branes and their low-energy dynam-
W|” behaVe .a.S a Sma” perturbation a.nd. the System W|” entercs will be U(N) Super quantum mechanics with sixteen su-

a perturbative regime. Thermodynamics there is well depercharges. Both descriptions could in principle be related by

fined, as we have seen from the previous analysis. performing aT-duality along the ninth dimension and inter-
It is tempting to try to make some connection betweenchanging its role with thév-theory circle.

these two world-sheet regimes and the low and high energy \qie added After this paper appeared in the LANL

regimes in the target space string theory. At low energies Wﬂep_th archive, | learned directly from S.-J. Rey of his par-

have perturbgtlve type-llA superstring theory that, n tenatllel and independent work on SYM thermodynamics, part of
open space-time dimensions, we know is characterized a

high energies by a negative specific heat phase. This negwh|ch overlaps with the results presented here and that has

tive specific heat phase is viewed as a breakdown of equrfl”lter appeare_d in34]. I_ WOUId I|I_<e also to thank A. !\lleto

partition in energy, in the sense that most of the energy of thél_nd A. Tseytllr_1 for their interesting remarks on the first ver-

string ensemble is stored into orier a small numbgrof ~ Sion of the article.

highly excited strings[18,19. From the philosophy of

M-theory it seems quite reasonable to expect that if too much

energy is stored into a single string some transition to non- ACKNOWLEDGMENTS

perturbativelmaybe eleven-dimensiongihysics should take

place, putting an end to the negative specific phase. Alterna- It is a pleasure to thank R. Dijkgraaf, I. L. Egusquiza, R.

tively, a black hole could be formed before the system leaveEmparan, J. L. Mags, M. A. R. Osorio, M. Serone, M. A.

the string regim¢5]. In any case, the final conclusion would Valle-Basagoiti, E. Verlinde, H. Verlinde, and especially J.

be that the Hagedorn phase will be bounded by a new phade F. Barba for many interesting and useful discussions.

into which the system will decay either via a smooth cross-This work has been supported by thendamental Onder-

over or a phase transition. zoek van the MaterieFOM) Foundation and by a University
In the case at hand, however, it is not clear how to conof the Basque Country Grant UPV 063.310-EB187/98.

nect the world-volume theory with some kind of target pic-

ture. One of the difficulties lies in the fact that Matrix strings

are fqrmulated n the light-cone gauge, in which the space- bAt least in those cases in which it is not preceded by the forma-
time interpretation is rather obscure. Nonetheless, one cagy, of plack holes due to the corresponding principle. Actually, we
naively argue that the negative specific heat phase at intefap, tune the string coupling constant, the volume and the total
mediate energies’ " *2<E<g_ '’ 2is bounded at high energy in such a way that the system avoids the correspondence line
energyE>g_ '’ 2 by a new phase with regular thermo- and thus we prevent the formation of black holes.
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