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Path integral evaluation of D-brane amplitudes
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We extend Polchinski's evaluation of the measure for the one-loop closed string path integral to open string
tree amplitudes with boundaries and crosscaps embedded in D-branes. We explain how the non-Abelian limit
of near-coincident D-branes emerges in the path integral formalism. We give a careful path integral derivation
of the cylinder amplitude including the modulus dependence of the volume of the conformal Killing group.
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In this paper note we clarify some important issues stemKilling vectors, it is convenient to use uniformization theory
ming from the moduli dependence of the measure in th¢7] to choose a constant curvature gauge slice in the space of
open string path integral. We will be primarily interested in world-sheet metrics, and a parametrization of the moduli
open string tree amplitudes with multiple boundaries andspace of metrics that leaves the measure for moduli in its
crosscaps on D-branes. It will suffice for the discussion insimplest form[6]. This procedure will be explained in detail
this paper to consider the simplest configurationNof 1, for open string tree amplitudes in an accompanying paper
spatially separated, parallel, and statip-Branes, arrayed in [8]. For surfaces with the topology of a cylinder, the confor-
a spatial directiorX?® transverse to the brane volume. Upon mal Killing volume is a matter of concern. We follow the
setting the branes in relative motion in an orthogonal spatiaprocedure adopted ifi1] and retain the moduli dependence
direction, X24 also transverse to the brane volume, thein the fiducial world-sheet metric, as opposed to the world-
spacetime infrared limit of the amplitude has an interpretiorsheet coordinate intervals. A careful derivation of the moduli
as the exchange interaction Nf+1 Dp-branes[2]. In su- dependence of the conformal Killing volume then follows
persymmetric theory, its low energy effective description isfor surfaces of cylindrical topology. This procedure correctly
given by supergravity. recovers both the annulus amplitude with Neumann bound-

The spacetime ultraviolet limit of D-brane amplitudes re-aries, and the exchange amplitude for a pair of static
mains a puzzle in many respects. The low energy effectiv®-branes. The extension to the supersymmetric exchange
theory in this limit is known to be & (1)N*! Abelian gauge amplitude will be reported upon elsewhéd.
theory, with Goldstone bosons arising from the breaking of Let us begin by expressing the exchange amplitude be-
X% translational invariance. These appear at the first massiviveenN static bosonic D-branes as a conformally invariant
level in the open string spectrum. In the limit &f near-  path integral over world sheets. Surfacss(™® of type
coincident D-branes, a non-Abelian structure is found to(b,c) with b boundariesc crosscaps, ant handles, have
emerge[1,3-5, and the massless open string multiplet isEuler characteristiocc=2—2h—(b+c), and are weighted
enhanced fronN+1 singlets, each transforming as a Lor- by a factorgf,’,genin open string perturbation theory. To keep
entz vector on theg+ 1)-dimensional Minkowskian brane things simple, we will for the most part focus on the sum
volume, to a singlet plus th?-dimensional adjoint multip-  over orientable world sheets with boundaries, but no handles
let of U(N). The additional massless gauge bosons arisand/or crosscaps. In this case, the number of D-braNes,
from an enhanced background of zero length Dirichlet open=b+c, equals the number of boundaridés,We follow the
strings stretched between pairs @istinct near-coincident method of[10] and[11], extending to string world sheets
D-branes. The open strings have definite orientation, giving avith boundaries embedded in D-branes. The separation of
total of N(N— 1) distinct states. The non-Abelian states playparallel Dp-branes in a single spatial dimension orthogonal
an important role in studies of weak/strong coupling dualityto their world volume breaks the SO),Lorentz invariance
in string theory. It would be helpful to have a description of of the Minkowskian spacetime background to
their dynamicgirectly in the world-sheet formalism, beyond
that given by the low energy effective theory. In what fol- SA(1,p)xXSA0d—p).
lows, we will explain briefly how the non-Abelian limit of i . o )
near-coincident D-branes emerges in the world-sheet formal-€tyi be a @—p)-dimensional vector giving the location of
ism. We will also clarify issues relating to the moduli depen-the Ith D-brane. We have the boundary conditions:
dence of the measure in the path integral. A more detailed m m _
discussion of the physics of the ultraviolet limit of open O=Yr» 1=1...b; m=p+l...d
string theory is reserved for future wofR]. 1)

We begin by clarifying the measure in the open string N()%aX{,=0, x=0,...p,
path integral. The result follows rather simply from Polchin- R
ski’'s evaluation of the one-loop closed string path integral, avheren, is an inward pointing normal to theh boundary
sum over surfaces with the topology of a tofusl]. For circle, C,, I=1,...b. The relative locations of the
surfaces with negative Euler character, with no conformaD-branes are assumed to be fixed. In the T-dual picture, the

0556-2821/99/6(10)/1060075)/$15.00 60 106007-1 ©1999 The American Physical Society



SHYAMOLI CHAUDHURI PHYSICAL REVIEW D 60 106007

y, correspond to Wilson lines wrapped around the compacior small variations, 6X™ 6X*), m=p+1,...d, u

dual coordinatesX, of the critical bosonic open string theory =0, - - - P, IS required to be reparametrization invariant.
compactified on ad— p)-dimensional torug2]. Normalizing the Gaussian integral over infinitesimal varia-
The exchange amplitude can be expressed as a Polyakd9"s to unity, we can factor out and perform the integration
path integral[10] over orientable Riemann surfacesq, ~ OVer constant modesXy=6X*—5X"*, u=0,...p, where
with boundaries,C,, 1=1,... b, embedded in parallel the primes denote nonconstant mofigs|. Since we fix the
Dp-branes: location of the branes in the Dirichlet directions, there are no

constant modes to be integrated over. We regulate the infra-

[doX][ddg] 1 red divergence coming from the integration oyetr 1 non-
A=fmex;{— 47m,j d2¢/gg?Pd,X dpX compact directions parallel to the brane volume by putting
y M the system in a box of volumé, ,:
+ Sred 95 v0, 0. 1G] ) 2 i
) ’ [T | 1doXe]=Vpes. (@
=

on which we must impose the boundary conditions in Eq. . L .

(1). The bare action includes all local, renormalizable, terms FOr the Dirichlet directions, we change basis to the
necessary to ensure exact conformal invariance of the path L distancesly,—y,|, 1#J, and the center of masg, ,,
integral. ThusS,e, includes bulk, and boundary, cosmologi- €&¢h @ ¢—p)-dimensional vector. For spatially separated
cal constants, plus a term proportional to the Euler characbranes* we must include the contribution to the classical ac-

teristic of the surface: tion, T3y, for everyl #J, from open strings str.etched be-

tween the [J)th pair of branes. Thus, the static exchange
1 b amplitude only depends upon the distances between branes.
_f d2§\/§Rg+ 2 § dSK:| We can integrate over the center of mass of the brane con-
2) M =1 J¢ figuration to obtain the volume of the orthogonal

Vo

en: 277_

b (d—p)-dimensional Dirichlet space/q_, .
n d2 I NO jg ds. 3 Performing the G_aussm_m integrations over zero modes in
'LLOJM 3 |§=:1 0 C ® the Neumann directions gives the normalization of the mea-
sure for nonconstant modes:

The renormalization constantfyg,uo; "], will be can-
celled in the critical spacetime dimension by divergent coun-
terterms originating in the Weyl anomaly of the measure.

The factor in square brackets in E®) is a topological in-
variant equal to the Euler characteristicsr, from the _ =
q 772 :{(4772a1) IJ dZé,-\/a

Gauss-Bonnet theorem, andis the geodesic curvature on
the boundary. The gauge fixed path integral in E2). is ) ) o o o
required to be exactly invariant under conformal reparametriWith the analogous integration in the Dirichlet directions nor-
zations of the surface including boundaries. We will use thighalized to unity{11]. We can expand the infinitesimal non-

L LT - iati M i
as a guiding principle in determining the measure for theconstant variationsgX'™, in a complete set of harmonic
path integral. functions satisfying the appropriate boundary condition on

Let C, denote thelth boundary circle with parametriza- the C_| . Then the Gau_ssian integrations over co_ordinate em-
tion unspecified; we refer to this as ghysical boundary beddings can be straightforwardly performed with the result
circle. Recall that an arbitrary boundary metric, also known (p+1)/12
as an einbeing(\), can be brought to a constant by a rep- Vd+1(4772a’)‘(p+1)’2ex;{ _;J Tu) J d2¢ é)

X (Det' Ag) @ P2(Ndet Ay)~(P+172 (6)

p
H [déxl,u,]e—(]./&na')‘ﬁx"z
n=0

(p+1)/2

, ®

arametrization\ —f(\), where\ is the circle variable, 0
<\=<1, and the only coordinate invariant property of the
circle, C,, is its physical Iength,I|=f$d)\e(7\). Let
9an(&; 7) denote a world-sheet metric with fixed conformal where Det and Ndet denote the functional determinants
class characterized by moduli, with corresponding ein- evaluated, respectively, with Dirichlet and Neumann bound-
bein, é|()\§|l):\/6(§i7)|clv on the Ith boundary circle. ary condition on theC,. On the cylinder these functional
Physics requires us to sum over all world sheets linking th&l€terminants are identical,

physical boundary circles in the path integral. We will make The integration over world-sheet metrics is treated as in

this gauge fixing procedure on world-sheet metrics eXp”CitPolchinski’s evaluation of the measure for the one_—loop path
integral on the torugll], except that we specialize to a

We begin with the integration over coordinate embed_fiducial metric with constant curvature. The number of
moduli, n,,, and conformal Killing vectorsp., are as given

. M . - - . . ~ . 5
dings, X™(¢), with gflxed_ fldu_ual metricgap(&: 7i), or_1 t[]e by the Riemann-Roch theorem:xy&n.—n,. A specific
world sheet, and fixed einbeins on the boundary ciraes, choice of basis for quadratic differentials on the Riemann
= \/§|CI, foralll=1,... b. The metric in the tangent space surface corresponds to a specific parametrizatief], of
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conformally inequivalent metricg(&; 7). The real param- [d7]=Vgs1(27) e M4 724 ")~ (P2

eterst;, i=1,...n,, are the moduli of the Riemann sur- ey ( t (pt L))2

face, b of which can be related to the lengthk,, | % (J 2 A) m 1
=1,... b of the boundaries as measured by the fiducial .1:[1 dni| | d 5\/6 (detQap)

boundary metr_ic, \/E(f;ri).|q=é|_()\;l,). The r_emaining K [del( 2o 222 ©
2(b—3) moduli have a simple interpretation in terms of

lengths and angles parametrizing the shape of internal geo- Tq proceed further, we need an explicit parametrization of
desics on the constant curvature surface. The nonorientabl§e Riemann surface following global uniformization to
surface, M), can be obtained from the orientable surface,some region in the complex plane. An explicit parametriza-
Mpic0), With b+c boundaries, by “plugging”c holes  tion of this region, and the formulation of the eigenfunction
with crosscaps. The counting of moduli is straightforward inproplem, is a challenging problem for Riemann surfaces with
this gluing. Since the boundary of the crosscap is identified) + c=3 boundaries and/or crosscaps. We reserve that dis-
with the boundary of the hole up to a relative twist, we l0secyssijon for future work8]. The disk is a special case all by
the free length parameter for the geodesic boundary of thgself because it uniformizes to the unit circle with positive
hole, gaining an angle from the relative twist of crosscap tqgnstant curvature metric: it also has three conformal Killing
hole. Thus, for surfaces of negative Euler character with botRectors. Surfaces with cylindrical topology are of course
boundaries and crosscapg,=b-+c+2(b+c—3). Making  easiest in this respect since they can be conformally mapped
the appropriate extensions to the analysi1dff we obtain g 3 rectangle in the flat complex plane, and the eigenfunc-
the result: tion problems with either choice of boundary condition have
an explicit solution. The cylinder also has a conformal Kill-
45 . ing vector so it is helpful to treat it separately, as we do now.
89 B = , We will recover both the annulus diagram of open string
f m_)(zﬂ)(nc nm)lziﬂl dri(Det A)* theory with Neumann boundaries and the exchange ampli-
tude between a pair of static D-brar{&g.
5 \/r N2 —12 An arbitrary cylinder can be uniformized to a rectangle in
X d“¢vg (detQap) the complex plane with area:

X[de(£y)er(¢)NTH2 (7) . [
Azf d?o\g=t. (10)

The notation for the various factors in the Jacobian is aye choose a parametrization such that the rectangle is
follows. A, is the Laplacian acting on vector fields on the ponded by the unit intervals,<Oo'<1, 0O<o?<1. Then

Riemann surface, related to the scalar Laplacian by the ideRpe moduli dependence is restricted to the flat world-sheet
tity: (Ap)=—068Ag— VIV +V Ve (detQq) M2 is the  metric:

contribution to the Jacobian from the constant modes of the

vector Laplacian. The matriceg,, i=1,... n, are deter- ds?=(dot)2+t3(da?)?, (1)
mined by the moduli dependence of the fiducial metric,

(&) ab=0abi— 39a50°“Gcq; - Thus, given an explicit form andt also corresponds to the length of the cylinder. The
for the constant curvature metric with dependencegmeal  complete set of eigenfunctions of the scalar Laplacian on this
moduli parameters manifest, the measure for the path intedomain are simply the circular functions of two variables,
gral is completely determined. In the critical spacetime di-(¢,0?). The length of the cylindet, is a Euler-Lagrange
mension, the integration over the volume of the group ofparameter appearing in the effective action. Note that for the
reparametrizations continuously connected to the identityspecial case of the cylinder, renormalizations of the bulk and
Diff o X Weyl, can be straightforwardly performed leaving the boundary cosmological constants are not independent. The
result on the left-hand side of E(B). For surfaces withlf  cylinder has a single conformal Killing vector,, which
+c¢)=3, the contribution from the conformal Killing vectors contributes to the path integral a<Il matrix with determi-

is to be dropped from this expression singe=0. nant, (2r/detQ,,)*?=(2=7/t)? The measure for moduli

Thus, the expression for the gauge fixed path integratan pe computed from the matrix, Z)(ab:@ab,t

takes the form —20.0%%9cq, - It takes diagonal form on the cylindefy,
=—1h, {,,=t, and has determinant, (dg°Z,,)Y?=1k.
By a reparametrization of the world sheet, the unit normal
A:f [dr]exr{ - T,J)(Det’Al)l’z(Det’AO)‘(d‘p)’Z and unit tangent vectors at both boundary circleg, C,,
N can be chosen to lie along the{,o*) grid. The Neumann
o+ determinant is composed from the basis of periodic functions
* (Ndetag)~(P*D%, ®) nonvanishing on the boundary?=0, 1:

(1) 1 2\ _ 2ngmict 2
where the normalized measure for mod[tis], is given by Wy iny(07,07) =TT cognyma”), (12)
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with —co<n;=<o0, andn,>0. The Dirichlet determinant is %
composed from the orthogonal basis of periodic functions A(Y):f

Tvd+1(4772a')_(p+1)/2t(P+1)/2
vanishing on the boundary: o

_ " (y2 . _
(2) 1 2 2nymiot o 2 xer (Hmy /t)[n(l/Zt)] “ (18
w(nl,nz)(()' ,0%)=e M sin(n,mo?), (13
A change of variabless=1/2t, in the integral gives the
once again, with-oo<n, <, andn,>0. Either choice of €quivalent form:
basis satisfies a completeness relation on the cylinder. ds
Substitutingn.= Np= 1lin Eg.(lO) for the measurd,dr], Aly)= J Vg, ,(872a’s) " (PHDR2
we recover the familiar result: oS

% e—(llzwa’)(yzs)[ n(is)] 24 (19)
f [dr]= f ? Vgs1(4m?a’) (PHORZEH2 (14
which can be compared with the expression for the exchange
amplitude between static bosonigpranes obtained in the
operator formalisn(2]. The variables corresponds to the
length of the boundary. By setting=d, we recover the
A(y):fﬂvdﬂ(dmza,)(pﬂ),zt(pﬂ),z cyIinder_ampIitude_ of open string theory with _N_eumann
t boundaries in a single Chan-Paton state, as originally ob-
tained in[13]. This is also consistent with the result from the

and the gauge fixed path integral takes the form

_ ’ 2 , _ . .
x e~ (WAme) [ Det' Ag] 2, (15  method of image$§14], which can be used to relate the cyl-
inder and torus amplitudes.
where we have substitutett1=24 for the critical string, We now return to the puzzle mentioned in the

and the relation between vector and scalar Laplaciansntroduction—the emergence of non-Abelian structure in the
(Det'A;)Y2=Det' A, which holds on the cylinder. The clas- world-sheet picture, in the limit of near-coincident D-branes.
sical contribution to the action is from open strings stretchedd\ simple non-Abelian configuration with an interesting low
between the branes. energy description is that of a single probe-D-brane, spatially
The functional determinants on the cylinder can be evaludistant from a pair of near-coincident D-branes. It can be
ated directly following the analysis in the appendix of Ref. given a world-sheet description as follows. Consid@aats
[11]. The eigenmodes of the scalar Laplacian with zero Di-surface: an orientable Riemann surface with boundaries on
richlet boundary conditiond7(o)|,2—0,=0, are composed three D-branes, with boundari€;, C; on near-coincident
from the basis functions in Eq14), and the unregulated D-branes. The low-energy effective theory on the brane vol-
determinant is therefore the infinite product: ume is a SU(2)XU(1)]XU(1) non-Abelian gauge theory.
A generic pants surface can be mapped to a simply con-
nected domain as follows. Pick a base point on the surface,
: (16)  z, and cut along paths joining, to the three boundaries.
The resulting surface can be mapped te-@y-sided poly-
gon, a simply connected domain in the complex plane. For a

0ﬁ;onstant curvature pants surface, Witk — 1, this gives a
polygon in the upper half plane with hyperbolic metfid,

and the joining paths can be chosen as geodesics on the
surface. Going around the polygon once, we can label the
sedges:

41 n2
2 2
t—2< n1t2+ Z

Det,AOZ H

nq,No

with the restrictions,—o<n;<o, n,>0. Equivalently, we
could compute the product over eigenmodes of the vect
Laplacian with zero Dirichlet condition, i.e., the variations
77a(0'1)|02=0’1=0. This gives the unrestricted produeto
=n;<ow, —wo=n,=<x, with then;=n,=0 term subtracted
out. The required scalar determinant is obtained by taking it
square rooff11,12. The result for the determinant of the

scalar Laplacian with Dirichlet condition on the cylinder is (F1,51,52.12,57,53.,13,53,51), (20
12
[12] where ther; are the images of th€; upon mapping to the
o complex plane. The images of the base point lie at the inter-
(Det’A0)1’2=(2t)1’2e*2”“12]_[ (1—e 4" sections of adjacent pairs of joining curves; ,Ei+1), i
n=1 =1,...,3,taken in cyclic order. Notice that the location of
the base pointvithin the surface is arbitrary, but the limit of
=(2t)Y?5(2it)=n(i/2t), (170  the mapping when the base point approaches any boundary is

singular, the domain contains a cusp on its boundary, and the
where we have used a modular transformation in the variabl@rdinary properties of function theory on the domain have to
t to obtain the second equality. From E$3) we have an be suitably modified to take into account the cusp.
identical answer for the Neumann determinant. Substituting What is the shape of the world-sheets that contribute to
in Eq. (16), the static amplitude between parallepibranes the singular limit of this mapping? Consider the case #at
is given by the expression lies on boundanC;, and the pair, $3,53), is shrunk to zero
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length. Now the boundary lengthk,, correspond to open near-coincident branes. Such a pants surface can be mapped
string proper times. Recall that the inverse lengdtli;  to the complex plane by cutting along ontyo joining

=1/, of a cylinder can be interpreted, through open-closecurves, with the base poimt on the boundarCCs;. The ap-
string world-sheet duality, as the proper time of a propagatpare”t mismatch in the counting of moduli is a}ccounted for
ing closed string exchanged between a pair of D-bréggs by the presence of the cusp, in agreement with the Gauss-
A singular pants surface can be given a surprisingly simplg’onnet and Riemann-Roch theorems.

int tai in the | f closed stri ’ Function theory on the resulting domain has to be modi-
Interpretation In he€ language of closed string ~propergq g by extending the analysis of the eigenfunction problem

times.” The singular world sheet can be visualized as &g gomains with a cusp, a particular instance of a domain
closed string emitted by D-branB;, which propagates with an isolated singular poirftl5]. We will reserve that
smoothly towards D-bran®, . In addition,D; emits a closed discussion for future work8].

string which propagates for a vanishingly short proper time,

l;23;, before being absorbed by D-brabg. Consider the This research was supported in part by NSF grant PHY-
limit when boundaryC, approaches bounda®s, as with  97-22394,
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