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Path integral evaluation of D-brane amplitudes

Shyamoli Chaudhuri
Physics Department, Pennsylvania State University, University Park, Pennsylvania 16802

~Received 6 May 1999; published 25 October 1999!

We extend Polchinski’s evaluation of the measure for the one-loop closed string path integral to open string
tree amplitudes with boundaries and crosscaps embedded in D-branes. We explain how the non-Abelian limit
of near-coincident D-branes emerges in the path integral formalism. We give a careful path integral derivation
of the cylinder amplitude including the modulus dependence of the volume of the conformal Killing group.
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In this paper note we clarify some important issues ste
ming from the moduli dependence of the measure in
open string path integral. We will be primarily interested
open string tree amplitudes with multiple boundaries a
crosscaps on D-branes. It will suffice for the discussion
this paper to consider the simplest configuration ofN11,
spatially separated, parallel, and static, Dp-branes, arrayed in
a spatial directionX25 transverse to the brane volume. Upo
setting the branes in relative motion in an orthogonal spa
direction, X24, also transverse to the brane volume, t
spacetime infrared limit of the amplitude has an interpret
as the exchange interaction ofN11 Dp-branes@2#. In su-
persymmetric theory, its low energy effective description
given by supergravity.

The spacetime ultraviolet limit of D-brane amplitudes r
mains a puzzle in many respects. The low energy effec
theory in this limit is known to be aU(1)N11 Abelian gauge
theory, with Goldstone bosons arising from the breaking
X25 translational invariance. These appear at the first mas
level in the open string spectrum. In the limit ofN near-
coincident D-branes, a non-Abelian structure is found
emerge@1,3–5#, and the massless open string multiplet
enhanced fromN11 singlets, each transforming as a Lo
entz vector on the (p11)-dimensional Minkowskian bran
volume, to a singlet plus theN2-dimensional adjoint multip-
let of U(N). The additional massless gauge bosons a
from an enhanced background of zero length Dirichlet op
strings stretched between pairs ofdistinct near-coincident
D-branes. The open strings have definite orientation, givin
total of N(N21) distinct states. The non-Abelian states pl
an important role in studies of weak/strong coupling dua
in string theory. It would be helpful to have a description
their dynamicsdirectly in the world-sheet formalism, beyon
that given by the low energy effective theory. In what fo
lows, we will explain briefly how the non-Abelian limit o
near-coincident D-branes emerges in the world-sheet form
ism. We will also clarify issues relating to the moduli depe
dence of the measure in the path integral. A more deta
discussion of the physics of the ultraviolet limit of ope
string theory is reserved for future work@8#.

We begin by clarifying the measure in the open stri
path integral. The result follows rather simply from Polchi
ski’s evaluation of the one-loop closed string path integra
sum over surfaces with the topology of a torus@11#. For
surfaces with negative Euler character, with no conform
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Killing vectors, it is convenient to use uniformization theo
@7# to choose a constant curvature gauge slice in the spac
world-sheet metrics, and a parametrization of the mod
space of metrics that leaves the measure for moduli in
simplest form@6#. This procedure will be explained in deta
for open string tree amplitudes in an accompanying pa
@8#. For surfaces with the topology of a cylinder, the confo
mal Killing volume is a matter of concern. We follow th
procedure adopted in@11# and retain the moduli dependenc
in the fiducial world-sheet metric, as opposed to the wor
sheet coordinate intervals. A careful derivation of the mod
dependence of the conformal Killing volume then follow
for surfaces of cylindrical topology. This procedure correc
recovers both the annulus amplitude with Neumann bou
aries, and the exchange amplitude for a pair of sta
D-branes. The extension to the supersymmetric excha
amplitude will be reported upon elsewhere@9#.

Let us begin by expressing the exchange amplitude
tweenN static bosonic D-branes as a conformally invaria
path integral over world sheets. SurfacesM h

(b,c) of type
(b,c) with b boundaries,c crosscaps, andh handles, have
Euler characteristicx5222h2(b1c), and are weighted
by a factorgopen

2x in open string perturbation theory. To kee
things simple, we will for the most part focus on the su
over orientable world sheets with boundaries, but no hand
and/or crosscaps. In this case, the number of D-branesN
5b1c, equals the number of boundaries,b. We follow the
method of @10# and @11#, extending to string world sheet
with boundaries embedded in D-branes. The separation
parallel Dp-branes in a single spatial dimension orthogon
to their world volume breaks the SO(1,d) Lorentz invariance
of the Minkowskian spacetime background to

SO~1,p!3SO~0,d2p!.

Let yI be a (d2p)-dimensional vector giving the location o
the I th D-brane. We have the boundary conditions:

X(I )
m 5yI

m , I 51, . . . ,b; m5p11, . . . ,d
~1!

n(I )
a ]aX(I )

m 50, m50, . . .p,

where n̂I is an inward pointing normal to theI th boundary
circle, CI , I 51, . . . ,b. The relative locations of the
D-branes are assumed to be fixed. In the T-dual picture,
©1999 The American Physical Society07-1
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yI correspond to Wilson lines wrapped around the comp
dual coordinates,X̃, of the critical bosonic open string theor
compactified on a (d2p)-dimensional torus@2#.

The exchange amplitude can be expressed as a Poly
path integral@10# over orientable Riemann surfaces,M,
with boundaries,CI , I 51, . . . ,b, embedded in paralle
Dp-branes:

A5E @ddX#@ddg#

Vol@Diff 3Weyl#
expS2F 1

4pa8
E

M
d2jAggab]aX]bX

1Sren@g;n0 ,m0 ,l0
(I )#G .D , ~2!

on which we must impose the boundary conditions in E
~1!. The bare action includes all local, renormalizable, ter
necessary to ensure exact conformal invariance of the
integral. Thus,Sren includes bulk, and boundary, cosmolog
cal constants, plus a term proportional to the Euler cha
teristic of the surface:

Sren5
n0

2p F1

2EM
d2jAgRg1(

I 51

b R
CI

dskG
1m0EM

d2jAg1(
I 51

b

l0
(I ) R

CI

ds. ~3!

The renormalization constants,@n0 ,m0 ;l0
(I )#, will be can-

celled in the critical spacetime dimension by divergent co
terterms originating in the Weyl anomaly of the measu
The factor in square brackets in Eq.~3! is a topological in-
variant equal to the Euler characteristic, 2px, from the
Gauss-Bonnet theorem, andk̂ is the geodesic curvature o
the boundary. The gauge fixed path integral in Eq.~2! is
required to be exactly invariant under conformal reparame
zations of the surface including boundaries. We will use t
as a guiding principle in determining the measure for
path integral.

Let CI denote theI th boundary circle with parametriza
tion unspecified; we refer to this as aphysical boundary
circle. Recall that an arbitrary boundary metric, also kno
as an einbein,e(l), can be brought to a constant by a re
arametrization,l→ f (l), wherel is the circle variable, 0
<l<1, and the only coordinate invariant property of t
circle, CI , is its physical length, l I5*0

1dle(l). Let

ĝab(j;t) denote a world-sheet metric with fixed conform
class characterized by moduli,t, with corresponding ein-

bein, êI(l; l I)5Aĝ(j;t)uCI
, on the I th boundary circle.

Physics requires us to sum over all world sheets linking
physical boundary circles in the path integral. We will ma
this gauge fixing procedure on world-sheet metrics expl
below.

We begin with the integration over coordinate embe
dings,XM(j), with a fixed fiducial metric,ĝab(j;t i), on the
world sheet, and fixed einbeins on the boundary circlesêI

5AĝuCI
, for all I 51, . . . ,b. The metric in the tangent spac
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for small variations, (dXm,dXm), m5p11, . . . ,d, m
50, . . . ,p, is required to be reparametrization invarian
Normalizing the Gaussian integral over infinitesimal var
tions to unity, we can factor out and perform the integrati
over constant modesdX0

m5dXm2dX8m, m50, . . .p, where
the primes denote nonconstant modes@11#. Since we fix the
location of the branes in the Dirichlet directions, there are
constant modes to be integrated over. We regulate the in
red divergence coming from the integration overp11 non-
compact directions parallel to the brane volume by putt
the system in a box of volumeVp11:

)
m50

p E @ddX0#5Vp11 . ~4!

For the Dirichlet directions, we change basis to theb
21 distances,uyI2yJu, IÞJ, and the center of mass,yc.m.,
each a (d2p)-dimensional vector. For spatially separat
branes, we must include the contribution to the classical
tion, T(IJ) , for every IÞJ, from open strings stretched be
tween the (IJ)th pair of branes. Thus, the static exchan
amplitude only depends upon the distances between bra
We can integrate over the center of mass of the brane c
figuration to obtain the volume of the orthogon
(d2p)-dimensional Dirichlet space,Vd2p .

Performing the Gaussian integrations over zero mode
the Neumann directions gives the normalization of the m
sure for nonconstant modes:

)
m50

p E @ddX8m#e2(1/4pa8)udX8u2

5F ~4p2a8!21E d2jAĝG (p11)/2

, ~5!

with the analogous integration in the Dirichlet directions no
malized to unity@11#. We can expand the infinitesimal non
constant variations,dX8M, in a complete set of harmoni
functions satisfying the appropriate boundary condition
the CI . Then the Gaussian integrations over coordinate e
beddings can be straightforwardly performed with the res

Vd11~4p2a8!2(p11)/2expS 2(
IÞJ

TIJD S E d2jAĝD (p11)/2

3~Det8 D0!2(d2p)/2~Ndet8 D0!2(p11)/2, ~6!

where Det and Ndet denote the functional determina
evaluated, respectively, with Dirichlet and Neumann bou
ary condition on theCI . On the cylinder these functiona
determinants are identical.

The integration over world-sheet metrics is treated as
Polchinski’s evaluation of the measure for the one-loop p
integral on the torus@11#, except that we specialize to
fiducial metric with constant curvature. The number
moduli, nm , and conformal Killing vectors,nc , are as given
by the Riemann-Roch theorem: 3x5nc2nm . A specific
choice of basis for quadratic differentials on the Riema
surface corresponds to a specific parametrization,@t i #, of
7-2
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conformally inequivalent metricsĝ(j;t i). The real param-
eterst i , i 51, . . .nm , are the moduli of the Riemann su
face, b of which can be related to the lengths,l I , I
51, . . . ,b of the boundaries as measured by the fiduc

boundary metric,Aĝ(j;t i)uCI
5êI(l; l I). The remaining

2(b23) moduli have a simple interpretation in terms
lengths and angles parametrizing the shape of internal
desics on the constant curvature surface. The nonorient
surface,M(b,c) , can be obtained from the orientable surfa
M(b1c,0) , with b1c boundaries, by ‘‘plugging’’c holes
with crosscaps. The counting of moduli is straightforward
this gluing. Since the boundary of the crosscap is identifi
with the boundary of the hole up to a relative twist, we lo
the free length parameter for the geodesic boundary of
hole, gaining an angle from the relative twist of crosscap
hole. Thus, for surfaces of negative Euler character with b
boundaries and crosscaps,nm5b1c12(b1c23). Making
the appropriate extensions to the analysis of@11# we obtain
the result:

E @ddg#

Vol@Diff 3Weyl#
→~2p!(nc2nm)/2)

i 51

nm E dt i~Det8 D1!1/2

3S E d2jAĝD nm/2

~detQab!
21/2

3@det„~zk!e f~z l !
e f
…#1/2. ~7!

The notation for the various factors in the Jacobian is
follows. D1 is the Laplacian acting on vector fields on th
Riemann surface, related to the scalar Laplacian by the id
tity: (D1)c

d52dc
dD02¹d¹c1¹c¹

d. (detQab)
21/2 is the

contribution to the Jacobian from the constant modes of
vector Laplacian. The matrices,z i , i 51, . . . ,nm are deter-
mined by the moduli dependence of the fiducial metr
(z i)ab5ĝab,i2

1
2 ĝabĝ

cdĝcd,i . Thus, given an explicit form
for the constant curvature metric with dependence onnm real
moduli parameters manifest, the measure for the path i
gral is completely determined. In the critical spacetime
mension, the integration over the volume of the group
reparametrizations continuously connected to the iden
Diff 03Weyl, can be straightforwardly performed leaving t
result on the left-hand side of Eq.~8!. For surfaces with (b
1c)>3, the contribution from the conformal Killing vector
is to be dropped from this expression sincenc50.

Thus, the expression for the gauge fixed path integ
takes the form

A5E @dt#expS 2(
IÞJ

TIJD ~Det8D1!1/2~Det8D0!2(d2p)/2

3~N det8D0!2(p11)/2, ~8!

where the normalized measure for moduli,@dt#, is given by
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@dt#5Vd11~2p!(nc2nm)/2~4p2a8!2(p11)/2

3)
i 51

nm

dt i S E d2jAĝD „nm1(p11)…/2

~detQab!
21/2

3@det„~zk!e f~z l !
e f
…#1/2. ~9!

To proceed further, we need an explicit parametrization
the Riemann surface following global uniformization
some region in the complex plane. An explicit parametriz
tion of this region, and the formulation of the eigenfunctio
problem, is a challenging problem for Riemann surfaces w
b1c>3 boundaries and/or crosscaps. We reserve that
cussion for future work@8#. The disk is a special case all b
itself because it uniformizes to the unit circle with positiv
constant curvature metric; it also has three conformal Killi
vectors. Surfaces with cylindrical topology are of cour
easiest in this respect since they can be conformally map
to a rectangle in the flat complex plane, and the eigenfu
tion problems with either choice of boundary condition ha
an explicit solution. The cylinder also has a conformal Ki
ing vector so it is helpful to treat it separately, as we do no
We will recover both the annulus diagram of open stri
theory with Neumann boundaries and the exchange am
tude between a pair of static D-branes@2#.

An arbitrary cylinder can be uniformized to a rectangle
the complex plane with area:

A5E d2sAĝ5t. ~10!

We choose a parametrization such that the rectangle
bounded by the unit intervals, 0<s1<1, 0<s2<1. Then
the moduli dependence is restricted to the flat world-sh
metric:

ds25~ds1!21t2~ds2!2, ~11!

and t also corresponds to the length of the cylinder. T
complete set of eigenfunctions of the scalar Laplacian on
domain are simply the circular functions of two variable
(s1,s2). The length of the cylinder,t, is a Euler-Lagrange
parameter appearing in the effective action. Note that for
special case of the cylinder, renormalizations of the bulk a
boundary cosmological constants are not independent.
cylinder has a single conformal Killing vector,h0, which
contributes to the path integral a 131 matrix with determi-
nant, (2p/detQab)

1/25(2p/t)1/2. The measure for modul
can be computed from the matrix, (z)ab5ĝab,t

2 1
2 ĝabĝ

cdĝcd,t . It takes diagonal form on the cylinder,z11
521/t, z225t, and has determinant, (detzabzab)

1/251/t.
By a reparametrization of the world sheet, the unit norm

and unit tangent vectors at both boundary circles,C1 , C2,
can be chosen to lie along the (s2,s1) grid. The Neumann
determinant is composed from the basis of periodic functi
nonvanishing on the boundary,s250, 1:

c (n1 ,n2)
(1) ~s1,s2!5e2n1p is1

cos~n2ps2!, ~12!
7-3
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SHYAMOLI CHAUDHURI PHYSICAL REVIEW D 60 106007
with 2`<n1<`, andn2.0. The Dirichlet determinant is
composed from the orthogonal basis of periodic functio
vanishing on the boundary:

c (n1 ,n2)
(2) ~s1,s2!5e2n1p is1

sin~n2ps2!, ~13!

once again, with2`<n1<`, andn2.0. Either choice of
basis satisfies a completeness relation on the cylinder.

Substitutingnc5nm51 in Eq.~10! for the measure,@dt#,
we recover the familiar result:

E @dt#5E dt

t
Vd11~4p2a8!2(p11)/2t (p11)/2, ~14!

and the gauge fixed path integral takes the form

A~y!5E dt

t
Vd11~4p2a8!2(p11)/2t (p11)/2

3e2(1/4pa8)(y2/t)@Det8D0#212, ~15!

where we have substitutedd21524 for the critical string,
and the relation between vector and scalar Laplacia
(Det8D1)1/25Det8D0, which holds on the cylinder. The clas
sical contribution to the action is from open strings stretch
between the branes.

The functional determinants on the cylinder can be eva
ated directly following the analysis in the appendix of R
@11#. The eigenmodes of the scalar Laplacian with zero
richlet boundary condition,dh(s1)us250,150, are composed
from the basis functions in Eq.~14!, and the unregulated
determinant is therefore the infinite product:

Det8D05 )
n1 ,n2

F4p2

t2 S n1
2t21

n2
2

4 D G , ~16!

with the restrictions,2`<n1<`, n2.0. Equivalently, we
could compute the product over eigenmodes of the ve
Laplacian with zero Dirichlet condition, i.e., the variation
ha(s1)us250,150. This gives the unrestricted product,2`
<n1<`, 2`<n2<`, with then15n250 term subtracted
out. The required scalar determinant is obtained by taking
square root@11,12#. The result for the determinant of th
scalar Laplacian with Dirichlet condition on the cylinder
@12#

~Det8D0!1/25~2t !1/2e22pt/12)
n51

`

~12e24npt!

5~2t !1/2h~2i t !5h~ i /2t !, ~17!

where we have used a modular transformation in the varia
t to obtain the second equality. From Eqs.~13! we have an
identical answer for the Neumann determinant. Substitu
in Eq. ~16!, the static amplitude between parallel Dp-branes
is given by the expression
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A~y!5E
0

`dt

t
Vd11~4p2a8!2(p11)/2t (p11)/2

3e2(1/4pa8)(y2/t)@h~ i /2t !#224. ~18!

A change of variables,s51/2t, in the integral gives the
equivalent form:

A~y!5E
0

`ds

s
Vd11~8p2a8s!2(p11)/2

3e2(1/2pa8)(y2s)@h~ is!#224, ~19!

which can be compared with the expression for the excha
amplitude between static bosonic Dp-branes obtained in the
operator formalism@2#. The variables corresponds to the
length of the boundary. By settingp5d, we recover the
cylinder amplitude of open string theory with Neuman
boundaries in a single Chan-Paton state, as originally
tained in@13#. This is also consistent with the result from th
method of images@14#, which can be used to relate the cy
inder and torus amplitudes.

We now return to the puzzle mentioned in th
introduction—the emergence of non-Abelian structure in
world-sheet picture, in the limit of near-coincident D-brane
A simple non-Abelian configuration with an interesting lo
energy description is that of a single probe-D-brane, spati
distant from a pair of near-coincident D-branes. It can
given a world-sheet description as follows. Consider apants
surface: an orientable Riemann surface with boundaries
three D-branes, with boundariesC2 , C3 on near-coincident
D-branes. The low-energy effective theory on the brane v
ume is a@SU(2)3U(1)#3U(1) non-Abelian gauge theory

A generic pants surface can be mapped to a simply c
nected domain as follows. Pick a base point on the surfa
z0, and cut along paths joiningz0 to the three boundaries
The resulting surface can be mapped to a29x-sided poly-
gon, a simply connected domain in the complex plane. Fo
constant curvature pants surface, withR̂521, this gives a
polygon in the upper half plane with hyperbolic metric@7#,
and the joining paths can be chosen as geodesics on
surface. Going around the polygon once, we can label
edges:

~r 1 ,s1 ,s̃2 ,r 2 ,s2 ,s̃3 ,r 3 ,s3 ,s̃1!, ~20!

where ther i are the images of theCi upon mapping to the
complex plane. The images of the base point lie at the in
sections of adjacent pairs of joining curves, (si ,s̃i 11), i
51, . . . ,3, taken in cyclic order. Notice that the location o
the base pointwithin the surface is arbitrary, but the limit o
the mapping when the base point approaches any bounda
singular; the domain contains a cusp on its boundary, and
ordinary properties of function theory on the domain have
be suitably modified to take into account the cusp.

What is the shape of the world-sheets that contribute
the singular limit of this mapping? Consider the case thatz0

lies on boundaryC3, and the pair, (s3 ,s̃3), is shrunk to zero
7-4
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length. Now the boundary lengths,l i , correspond to open
string proper times. Recall that the inverse length,l [12]

51/l , of a cylinder can be interpreted, through open-clos
string world-sheet duality, as the proper time of a propag
ing closed string exchanged between a pair of D-branes@2#.
A singular pants surface can be given a surprisingly sim
interpretation in the language of closed string ‘‘prop
times.’’ The singular world sheet can be visualized as
closed string emitted by D-braneD1 , which propagates
smoothly towards D-braneD2 . In addition,D3 emits a closed
string which propagates for a vanishingly short proper tim
l [23] , before being absorbed by D-braneD2 . Consider the
limit when boundaryC2 approaches boundaryC3, as with
,
.

10600
d
t-

le
r
a

,

near-coincident branes. Such a pants surface can be ma
to the complex plane by cutting along onlytwo joining
curves, with the base pointz0 on the boundaryC3. The ap-
parent mismatch in the counting of moduli is accounted
by the presence of the cusp, in agreement with the Ga
Bonnet and Riemann-Roch theorems.

Function theory on the resulting domain has to be mo
fied by extending the analysis of the eigenfunction probl
to domains with a cusp, a particular instance of a dom
with an isolated singular point@15#. We will reserve that
discussion for future work@8#.
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