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Scattering in anti–de Sitter space and operator product expansion

Hong Liu*
Theoretical Physics Group, Blackett Laboratory, Imperial College, London SW7 2BZ, United Kingdom

~Received 1 February 1999; published 25 October 1999!

We develop a formalism to evaluate generic scalar exchange diagrams in anti–de Sitter (AdS)d11 relevant
for the calculation of four-point functions in AdS conformal field theory~CFT! correspondence. The result may
be written as an infinite power series of functions of cross ratios. Logarithmic singularities appear in all orders
whenever the dimensions of involved operators satisfy certain relations. We show that the AdSd11 amplitude
can be written in a form recognizable as the conformal partial wave expansion of a four-point function in CFTd

and identify the spectrum of intermediate operators. We find that, in addition to the contribution of the scalar
operator associated with the exchanged field in the AdSd11 diagram, there are also contributions of some other
operators which may possibly be identified with two-particle bound states in AdSd11 . The CFTd interpretation
also provides a useful way to ‘‘regularize’’ the logarithms appearing in AdSd11 amplitude.
@S0556-2821~99!03018-0#

PACS number~s!: 11.25.Hf 04.65.1e, 11.25.Mj, 11.25.Pm
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I. INTRODUCTION

There has been a recent revival of interest in the conn
tion between large-N Yang-Mills theory@1# and string theory
@2# following the conjecture@3# that there is an exact corre
spondence@4,5# between type-IIB superstring theory o
anti–de Sitter (AdS5!3S5 and N54 super-Yang-Mills
theory in four dimensions~see also@6#!.

Under this proposal, correlation functions ofN54 super-
Yang-Mills ~SYM! theory with gauge group SU~N! in the
large-N and large ’t Hooft coupling limit can be obtained b
evaluating scattering amplitudes of type-IIB supergravity
AdS53S5. Some ‘‘model’’ and ‘‘realistic’’ two-point and
three-point functions have been computed in@7–15#. Since
the structures of two- and three-point functions are seve
restricted by conformal symmetry, in many cases the co
putations amount to fixing the overall constants. Four-po
functions can be arbitrary functions of cross ratios and t
encode more dynamical information. Recently some effo
have been made in this direction@16–22# aiming to under-
stand more about the nonperturbative dynamics ofN54
SYM theory.

Considering ad-dimensional conformal field theory,1

(CFTd), we shall assume that there exists a closed oper
algebra, which is a strong version of the Wilson opera
product expansion,

Oi~x!Oj~0!5(
k

Ci j
k ~x!Ok~0!. ~1.1!

Here the summation is over all operators and their coordin
derivatives, andCi j

k arec-number functions. From Eq.~1.1!,

*E-mail address: hong.liu@ic.ac.uk
1Though our prime interest isN54SYM theory, most of our dis-

cussion will apply to anyd-dimensional conformal field theory ap
pearing in AdSd11-CFTd correspondence.
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a four-point function may be expanded in terms of conform
partial waves, e.g., whenx12, x34→0, as ans-channel ex-
change,

^Oi 1
~x1!Oi 2

~x2!Oi 3
~x3!Oi 4

~x4!&

5(
j

Ci 1i 2
j ~x12!Ci 3i 4

j ~x34!^Oj~x2!Oj~x4!&. ~1.2!

Alternatively, we can also write the four-point function i
terms oft- or u-channel exchanges in the limitx14, x23→0
or x13, x24→0. If the algebra~1.1! is complete and associa
tive, all channels of exchange are equivalent.

We would like to examine whether a four-point functio
calculated from the scattering amplitude in AdSd11 can be
written in the form of Eq.~1.2! as we take the correspondin
limits in cross ratios. A positive answer would be a confi
mation of the assumption of a closed algebra~1.1!, which
hitherto has been only known to hold in two dimension
And we could further extract important nonperturbative
formation about CFTd by identifying the spectra of interme
diate operators in each channel. In the case ofN54 SYM
theory in the large-N and large-g2N limit, knowledge of
four-point functions would help us answer questions such
@16–18#:

~1! DoesN54 SYM theory in the large-N and large-g2N
limit have a closed algebra~1.1!?

~2! If yes, what is the spectrum of operators? In particul
do chiral operators, which are in one-to-one corresponde
with type-IIB supergravity modes on AdS53S5, form a com-
plete set?

In this paper, we shall make some preliminary progress
answering these questions. In particular, we shall find in
cations that there are operators in the spectrum which co
spond to two-particle bound states in AdSd11 .

One of the obstacles in the computation of realistic fo
point functions inN54 SYM theory has been the difficulty
in evaluating exchange diagrams@5# in AdS space@see Fig.
1~a!#, which involve very complicated integrals. Here w
present a formalism to address this problem~see also@19#!,
©1999 The American Physical Society05-1
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providing explicit formulas for AdS integrals involving sca
lar fields of arbitrary mass needed to evaluate generic fo
point functions. The result is written as a single inverse M
lin integral so that the analytic properties of the amplitud
become transparent. In particular, for the exchange diag
of Fig. 1~a!, in the limit x12, x34→0 the scattering amplitude
can be written as a contour integral

Sl5E
C
dsGS l11l2

2
2sDGS l31l4

2
2sD

3GS l

2
2sDH~s,h,j!, ~1.3!

wherej andh are independent cross ratios andH is a func-
tion of complex variables and j, h. In Eq. ~1.3! we have
only explicitly written down theG functions which generate
poles inside the contour.Sl can then be evaluated by th
calculus of residues and written as a sum of residues of
integrand at three infinite pole sequences~see Fig. 2!. We
find that logarithms of cross ratios, first found@18# in
leading-order expansion of some contact diagrams, arise
nerically whenever the poles in Eq.~1.3! merge into double
poles or triple poles, i.e., when

l11l22l32l4

2
or

l11l22l

2
or

l31l42l

2
5 integer.

~1.4!

They appear in all orders of the series. In particular,
contribution from a triple pole will contain a part propo
tional to

S lnUx12x34

x13x24
U D 2

.

Similarly, it can be shown in contact diagrams@see Fig. 1~b!#
logarithms occur@18# when

l11l22l32l4

2
5 integer. ~1.5!

In N54 SYM theory, the dimensions of the chiral field
are protected by supersymmetry and take integer val
Since in type-IIB supergravity on AdS53S5, all vertices are
SU ~4! singlets, the scattering diagrams associated with fo

FIG. 1. Exchange and contact diagrams in AdSd11 : l andl i are
dimensions of the conformal operators corresponding to the fi
in the diagrams.
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point functions will in general satisfy Eqs.~1.4! or ~1.5!.
This implies that logarithms are universally present.2

We then proceed to investigate whether the amplitude
find can be written as the conformal partial wave expans
~CPWE! Eq. ~1.2!. The Mellin integral representation~1.3!,
in which our results are presented, turns out to be particul
convenient to identify them withs-channel operator produc
expansion~OPE! exchanges in CFTd . The contribution of
each pole sequence in Eq.~1.3! can be identified with the
CPWE Eq.~1.2! of a conformal operator: the value of a po
corresponds to the scale dimension of a spin-0 descend3

~we shall call it a subprimary!, while the residue at the pole
may be identified with the CPWE contribution of a subset
descendants associated with the subprimary. The pattern
be presented diagrammatically as in Fig. 3.

The first diagram on the right-hand side corresponds
the exchange of a scalar primary operator of dimensionl,
which may be interpreted as the operator~we shall call it
Ol) related to the exchanged field in AdSd11 by AdS-CFT
correspondence. This result was expected earlier in@17# on
the basis of indirect considerations. Here we identify the c
tributions of all the descendents ofOl and show that their
relative OPE couplings~1.1! are consistent with those re
quired by conformal symmetry. The second and third d
gram on the right-hand side correspond to the exchange
operators of dimensionsl11l2 and l31l4 , respectively
~which we shall callO12 andO34). However, in these cases
there are some mismatches in the identifications. In Fig. 3
have used dotted lines in intermediate states to disting

2It might still happen that when we add up all the diagrams c
tributing to a four-point function, logarithms will cancel.

3Here we mean an SO(d,2) descendant. A spin-0 descendant tak
the form (]2)nO, whereO is the primary and]2 is the Laplacian.

s

FIG. 2. Poles and the contour of Eq.~1.3!. There are three
sequences of poles:~1! s5(l11l2)/21n ~represented by solid
circles!; ~2! s5(l31l4)/21n ~circles!; ~3! s5l/21n ~crosses!,
wheren50,1,2, . . . .
5-2
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FIG. 3. s-channel OPE interpretation of an exchange diagram.
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them from the first diagram. Although we have found co
tributions from operators having the same quantum numb
as the complete set of descendants of a primary operato
dimensionl11l2 ~andl31l4), the relative OPE couplings
~1.1! between the primary and descendants seem to be in
sistent with those required by conformal symmetry.4 The
OPE couplings of these descendant operators have a pec
pattern suggesting the mismatch may be due to some mi
among different operators. But we have not been able
make it precise in this paper.

Similarly the contact diagram Fig. 1~b! may be repre-
sented in terms ofs-channel exchanges as in Fig. 4 and t
identifications are also not complete in the sense as desc
in exchange case.

The identification of AdSd11 diagrams with CPWE also
sheds light on the appearance of logarithms. Conditions~1.4!
and ~1.5! are satisfied precisely when the quantum numb
~spin, scale dimensions, etc.! of certain descendants ofOl or
O12 or O34 become identical to one another. The OPE co
plings in Figs. 3 and 4 determined from Eq.~1.3! fall into the
following pattern: when the quantum numbers of desc
dants of different operators are degenerate, their contr
tions to the conformal partial wave expansion become id
tical and cancel one another. The results are given by t
derivatives, which contain logarithms. Thus by moving
finitesimally away from the degeneracy points~1.4! and~1.5!
in parameter space, we see that the relations in Figs. 3 a
provide a physically meaningful way to ‘‘regularize’’ loga
rithms.

Although our present analysis based on generic diagr
would not give a conclusive answer to the questions lis
earlier, it nevertheless provides a starting point for furth
study. The relation we find here between an arbitrary
change diagram in AdSd11 and CPWE appears to beuniver-
sal and should be helpful for understanding the general st
ture of AdS-CFT correspondence. Before having a comp
calculation of realistic four-point functions in a specifi
theory, it is probably premature to speculate about the
evance of operatorsO12 andO34 and the mismatches in the
CFTd identification. However, if their contributions are in
deed present in a realistic amplitude, it should imply t
existence of new operators in the spectrum not seen in
Lagrangian of supergravity. InN54 SYM theory they may
be written as double-trace operators, while in AdS5 super-

4In a CFTd , the OPE coupling~1.1! of a descendant is uniquel
determined by that of the primary.
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The plan of the paper is as follows. In Secs. II and III w

discuss the evaluation of scattering diagrams in AdSd11 . In
Sec. IV we review, for the convenience of comparing w
AdSd11 results, the conformal partial wave expansion
CFTd . In Sec. V we discuss the CFTd interpretation of
AdSd11 amplitude. We have included a number of appe
dixes. In Appendix A we describe briefly the subtleties
evaluation of integrals using Mellin transform and analy
continuation. Appendixes B and C are devoted to deta
evaluation of some integrals in the main text.

II. SCALAR EXCHANGE IN ANTI –DE SITTER SPACE

We consider tree-level scattering of four scalar fields
AdSd11 with massesmi , i 51, . . . ,4 byexchanging a scala
field of massm. According to AdS-CFT correspondence,
scalar fieldf i of massmi in AdSd11 corresponds to a scala
operatorFl i

in CFTd , with conformal dimensionl i5d/2

1Ami
21d2/45d/21n i . The scattering amplitude describe

in CFTd the contribution ofFl to the four-point function of
scalar operatorsFl i

, i 51, . . . ,4.
In this section, we shall take the interacting vertices to

of the form

L5f1f2f1f3f4f.

Scattering amplitudes resulting from more complicated v
tices involving derivatives and contact vertices will be d
cussed in next section.

As in @5# we use the Euclidean~half-space! metric,

ds25gmndumdun5
1

u0
2 ~du0

21dui
2!, i 51,2, . . . ,d.

~2.1!

The AdSd11 bulk indices will be denoted bym,n, . . . and
will take values 0,1, . . . ,d. The points in the bulk are la
beled byu,v,..., while those on the boundary byx,y,... .
We also use shorthand notationsu5(u0 ,uW ), x5(xW ) andxi j

2

5uxW i2xW j u2, uu2xi u25u0
21uuW 2xW i u2.

The scattering amplitude can then be written as
5-3
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FIG. 4. s-channel OPE interpretation of a con
tact diagram.
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Sl~x1 ,x2 ,x3 ,x4!

5E du0ddu

u0
d11

dv0ddv

v0
d11 Kl1

~u,x1!Kl2
~u,x2!

3G~u,v !Kl3
~v,x3!Kl4

~v,x4!, ~2.2!

whereKl i
(u,xi), i 51, . . . ,4 is thebulk-to-boundary propa-

gator @5# for field f i ,

Kl i
~u,xi !5cl iS u0

uu2xi u2
D l i

, cl i
5

G~l i !

pd/2G~n i !
~2.3!

andG(u,v) is the AdS bulk scalar propagator@23#,

G~u,v !5rt 2lFS l,n1
1

2
;2n11,t21D . ~2.4!

In Eq. ~2.4! F is a hypergeometric function and

r 5
G~l!

22l11pd/2

1

G~n11!
, t5

~u01v0!21~uW 2vW !2

4u0v0
.

To evaluate Eq.~2.2!, first we would like to get rid of the
cross term ofu0 andv0 in t in Eq. ~2.4!, which complicates
the integrals. This can be achieved by a quadra
transformation5 of the hypergeometric function in Eq.~2.4!,
after which the bulk propagator becomes

G~u,v !5
G~l!

2l11pd/2

1

G~n11!
q2lFS l11

2
,
l

2
;n11;

1

q2D ,

~2.5!

where

q5
u0

21v0
21uuW 2vW u2

2u0v0
.

10600
ic

Now we use the Mellin-Barnes representation of a hyp
geometric function

F~a,b;c;z!5
G~c!

G~a!G~b!

1

2p i E2 i`

i`

ds

3
G~a1s!G~b1s!

G~c1s!
G~2s!~2z!s ~2.6!

in Eq. ~2.5! and plug it into Eq.~2.2!. This gives us

Sl5C1

1

2p i E2 i`

i`

ds

3
G@~l11!/21s#G~l/21s!

G~n111s!
G~2s!~21!sJ~s!

~2.7!

with

J~s!5E du0ddu

u0
d11

dv0ddv

v0
d11 S u0

uu2x1u2D l1

3S u0

uu2x2u2D
l2S 2u0v0

u0
21v0

21uuW 2vW u2D l12s

3S v0

uv2x3u2D l3S v0

uv2x4u2D
l4

~2.8!

and

C15
1

4p~d11!/2 P i 51
4 cl i

.

J(s) still involves quite complicated integrals. We prese
its detailed evaluation in Appendix B. The result can be w
ten in terms of the cross ratios of the boundary points as
inverse Mellin-type integral~for notations see Appendix B!,
J~s!5C2

1

2p i EC
ds1j2s12D34/2GS l12

2
2s1DGS l34

2
2s1DFS D34

2
1s1 ,

D12

2
1s1 ;2s1 ;12

h

j D
3

G~l/21s2s1!

G@~l121 ẽ34!/21s2s1#

G~D34/21s1!G~D43/21s1!G~D12/21s1!G~D21/21s1!

G~2s1!
, ~2.9!

5The one we use here isF(a,b;2b;z)5(12z/2)2aF„1/2a,1/2(a11);b11/2;z2(22z)22
….
5-4
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whereh, j are cross ratios defined by

h5
ux13u2ux24u2

ux12u2ux34u2 , j5
ux14u2ux23u2

ux12u2ux34u2 , ~2.10!

and

C25
pd

4

G@~l121l342d!/2#G~s1 ẽ12/2!G~s1 ẽ34/2!

G~l1!G~l2!G~l3!G~l4!G~l12s!

3
2l12s

ux12ul121D34ux14uD122D34ux24uD212D34ux34u2l3
.

he

10600
The path of integrationC in Eq. ~2.9! ~see the last para
graph of Appendix B for a more precise description! is taken
to be parallel to the imaginarys1 axis and is deformed if
necessary to separate the poles of ascending sequences@e.g.,
those of G(l12/22s1)# from the poles of descending se
quences@e.g., those ofG(D12/21s1)# of the integrand.

Plugging the expression forJ into Eq. ~2.7!, using the
duplication formula forG functions

G~l12s!5
1

2p1/22l12sGS l11

2
1sDGS l

2
1sD ,

and regrouping the terms in the integrand, we find,
Sl5C3

1

2p i EC
ds1j2s12D34/2GS l12

2
2s1DGS l34

2
2s1DFS D34

2
1s1 ,

D12

2
1s1 ;2s1 ;12

h

j D

3
G~D34/21s1!G~D43/21s1!G~D12/21s1!G~D21/21s1!

G~2s1!
I 1 ~2.11!
nc-

n

with

I 15
1

2p i E2 i`

i`

ds G~2s!~21!s

3
G~ẽ12/21s!G~ ẽ34/21s!G~l/21s2s1!

G@s2s11~l121 ẽ34!/2#G~n111s!
.

~2.12!

I 1 is nothing but the Mellin-Barnes representation of t
generalized hypergeometric function3F2 @24#, which leads
to6

I 15
G~ẽ12/2!G~ ẽ34/2!

G~n11!

G~l/22s1!

G@2s11~l121 ẽ34!/2#

3 3F2S ẽ12

2
,
ẽ34

2
,
l

2
2s1 ;

l121 ẽ34

2
2s1 ,n11;1D .

~2.13!

6If necessary, the integration path in Eq.~2.12! should be de-
formed to separate the poless50,1, . . . from those poles in de-
scending series.
When the parameters of a generalized hypergeometric fu
tion 3F2(a,b,c;e, f ;z) satisfy the relatione1 f 5a1b1c
11, the series will be said to be Saalschutzian.7 It is easy to
check that the hypergeometric series in Eq.~2.13! is Saals-
chutzian. Saalschutz’s theorem states that3F2(a,b,c;e, f ;z)
satisfies

3F2~a,b,c;e, f ;1!

5
G~e!G~11a2 f !G~11b2 f !G~11c2 f !

G~12 f !G~e2a!G~e2b!G~e2c!
, ~2.14!

providede1 f 5a1b1c11 anda, b, or c is a negative in-
teger.

From Eqs.~2.11! and~2.13!, we reach the final expressio
for Sl ,

7The hypergeometric series3F2(a,b,c;e, f ;z) converges when
uzu,1, also whenz51 provided that Re(e1f2a2b2c).0. Thus
we see a Saalschutzian series is convergent atz51.
5-5
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Sl5C
1

2p i EC
ds1j2s1GS l12

2
2s1DGS l34

2
2s1DGS l

2
2s1DFS D34

2
1s1 ,

D12

2
1s1 ;2s1 ;12

h

j D
3

G~D34/21s1!G~D43/21s1!G~D12/21s1!G~D21/21s1!

G@~l121 ẽ34!/22s1#G~2s1! 3F2S ẽ12

2
,
ẽ34

2
,
l

2
2s1 ;

l121 ẽ34

2
2s1 ,n11;1D ~2.15!

with

C5
1

8p3/2d

G@~l341l122d!/2#G~ ẽ12/2!G~ ẽ34/2!

G~n1!G~n2!G~n3!G~n4!G~n11!

1

ux12ul12ux14uD12ux24uD212D34ux23uD34ux34ul34
.

om

r
th

ic

ove

use
Thus we have been able to reduce Eq.~2.2! to a single
inverse Mellin-type integral in Eq.~2.15!, which may be
evaluated by choosing the appropriate contour in the c
plex s1 plane and the calculus of residues.

Let us consider thes-channel OPE limit wherex12, x34
are much smaller than other distances, i.e.,j,h@1 and 1
2h/j!1. In this case, we can take the integration pathC
over a contour enclosing the right half plane and the integ
is given by the sum of the residues of the integrand at
poles of ascending sequences.

On the right half plane we have three pole series wh
come fromG(l12/22s1), G(l34/22s1) andG(l/22s1), re-
spectively,

~1! s15
l

2
1n, m50,1,2, . . . ;

~2! s15
l12

2
1n, m50,1,2, . . . ; ~2.16!
10600
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~3! s15
l34

2
1n, m50,1,2, . . . .

We first consider the case that no pole series in the ab
coincide with one another, i.e., none ofe12/2, e34/2, and
(l122l34)/2 is an integer. Then we can writeSl as

Sl5 (
n50

`

Sn
~l!1 (

n50

`

Sn
~l12!

1 (
n50

`

Sn
~l34! ,

whereSn
(l12) , Sn

(l12) , andSn
(l34) are the contributions from the

nth pole in each series.

A. Series 1

Let us first look at the pole seriess15l/21n. In this case
the third parameter in3F2( ẽ12/2,ẽ34/2,2s1l/2;2s1(l12
1 ẽ34)/2,n11;1) becomes a negative integer and we can
the Saalschutz’s theorem~2.14! to get
3F2S ẽ12

2
,
ẽ34

2
,2n;2s1

l121 ẽ34

2
,n11;1D

5
G@~l121l342d!/22n#G~e12/2!G~e34/2!G~2n2n!

G~2n!G~e12/22n!G~e34/22n!G@~l121l342d!/2#

5~21!n
G~11n!G~e12/2!G~e34/2!

G@~l121l342d!/2#

G@~l121l342d!/22n#

G~e12/22n!G~e34/22n!G~11n1n!
, ~2.17!

where in the second identity we have used the relationG(x)G(12x)5p/ sinpx. Now plugging Eq.~2.17! into Eq.~2.15!, we
get

Sn
~l!5A~l!

j2n

n!

G~d1/21n!G~d2/21n!G~d3/21n!G~d4/21n!

G~l12n!G~n1n11!
FS d3

2
1n,

d1

2
1n;l12n;12

h

j D ~2.18!

with

A~l!5
1

8p3/2d

G~e12/2!G~e34/2!G~ ē12/2!G~ ē34/2!

G~n1!G~n2!G~n3!G~n4!

1

ux12ue12ux14ud1ux24uD212D34ux23ud3ux34ue34
.

Note thatG(2s) has residue (21)n21/n! at its poles5n.
5-6
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B. Series 2

In this case we haves15l12/21n, and

Sn
~l12!

5A~l12!
~21!n

n!
j2nGnFS l121D34

2
1n,l11n;l1212n;12

h

j D
3GS l342l12

2
2nD G@~l121D34!/21n#G@~l122D34!/21n#G~l11n!G~l21n!

G~l1212n!
~2.19!

with

A~l12!5
1

8p3/2d

G@~l341l122d!/2#

G~n1!G~n2!G~n3!G~n4!

1

ux14u2l1ux24uD212D34ux23ul121D34ux34ul342l12
~2.20!

and

Gn5
G~ẽ12/2!G~ ẽ34/2!G~2e12/22n!

G~ ẽ34/22n!G~n11! 3F2S ẽ12

2
,
ẽ34

2
,2

e12

2
2n;

ẽ34

2
2n,n11;1D

5 (
m50

`
1

m!

G~ẽ12/21m!G~ ẽ34/21m!G~m2e12/22n!

G~ ẽ34/22n1m!G~n111m!
. ~2.21!

By a transformation of3F2 @24#, Eq. ~2.21! can be written in a form symmetric underl→l̃ and given by a terminating serie

Gn52
1

~ ẽ12/2!~e12/2! 3F2S l121l342d

2
,1,2n;11

ẽ12

2
,11

e12

2
;1D

52
G~ẽ12/2!G~e12/2!

G@l121l342d/2# (
m50

n

~21!m
n!

~n2m!!

G@~l121l342d!/21m#

G~11 ẽ12/21m!G~11e12/21m!
. ~2.22!

The contribution from the poles in series~3! can be obtained from Eqs.~2.19!–~2.21! by exchanging 1, 2, and 3, 4.

C. Coinciding poles

Whene12/2, e34/2 or (l122l34)/2 become integers, the poles from different series in Eq.~2.16! may merge into double o
triple poles. For example, when (l122l34)/2 is an integer, apart from a finite number of them, all poles in series two and
in Eq. ~2.16! will merge into double poles, while the poles in the first series remain untouched. The contribution from a
pole is given by the derivative of the integrand of Eq.~2.15!. The expressions are quite complicated and we do not explic
write them down here. We simply note that there will be terms proportional to lnj as a result of]j2s/]s52 ln jj2s. If all
three parameters are integers, then apart from a finite number of simple and double poles all poles may merge into tr
and their contributions are given by the second derivative of the integrand of Eq.~2.15!. In these cases, among other thing
we will have terms proportional to (lnj)2 from the second derivative ofj2s.

We caution that in a certain range of parameters,3F2 in Eq. ~2.15! may develop zeros at the poles and the pole struc
may be different from what we naively read from Eq.~2.15!. This happens whene12/2 or e34/2 is a positive integer.8 As an
example let us takee12/25k11 with k>0 an integer. By a transformation@24# of generalized hypergeometric functions,3F2
in Eq. ~2.15! can be rewritten as

3F2S ẽ12

2
,
ẽ34

2
,
l

2
2s1 ;

l121 ẽ34

2
2s1 ,n11;1D

5
G@~l121 ẽ34!/22s1#

G~l12/22s1!G~11 ẽ34/2! 3F2S ẽ34

2
,11

l2d

2
1s1,12

e12

2
;11

ẽ34

2
,n11;1D . ~2.23!

Since 12e12/252k, 3F2( ẽ34/2,11(l2d)/21s1,12e12/2;11 ẽ34/2,n11;1) on theright-hand side of Eq.~2.23! is given by
a terminating series,

8The following discussion is partly motivated by the results in@25#, where simplifications in some expressions in this range of parame
have been observed. I would like to thank D. Freedman for correspondence regarding this issue.
106005-7
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3F2S ẽ34

2
,11

l2d

2
1s1,12

e12

2
;11

ẽ34

2
,n11;1D

53F2S ẽ34

2
,11

l2d

2
1s1 ,2k;11

ẽ34

2
,n11;1D

5
ẽ34

2

G~n11!

G@11~l2d!/21s1# (
m50

k
~21!mk!

m! ~k2m!!

G@11~l2d!/21s11m#

~ ẽ34/21m!G~n111m!
~2.24!

from which we can see that it is convergent and has no poles inside the contour in Eq.~2.15!.
Plugging Eq.~2.23! into Eq. ~2.15!, we get

Sl5
C

G~11 ẽ34/2!

1

2p i Ec
ds1j2s1GS l34

2
2s1DGS l

2
2s1DH~l,s1! 3F2S ẽ34

2
,11

l2d

2
1s1,12

e12

2
;11

ẽ34

2
,n11;1D ,

~2.25!

whereC is given below Eq.~2.15! andH(l,s1) is defined by

H~l,s1!5
G~D34/21s1!G~D43/21s1!G~D12/21s1!G~D21/21s1!

G~2s1!
FS D34

2
1s1 ,

D12

2
1s1 ;2s1 ;12

h

j D .
a

an

m

se

e

les

a

ion

a-

as
Naively, we may expect from Eq.~2.15! that there are double
poles ats15l12/21n, n50,1, . . . .However, Eq.~2.25! in-
dicates that they are actually simple poles. This result m
also be seen indirectly from Eqs.~2.18! and ~2.19!–~2.22!:
there is no singularity developed in either Eq.~2.18! or
~2.19! whene12/2 approaches a positive integer. In fact it c
be checked that the residue of the integrand of Eq.~2.25! at
a poles15l12/21n is equal to the sum of Eqs.~2.18! and
~2.19! at the corresponding pole. If furthere34/2 is an integer,
then from Eq.~2.25! the pole ats15l/21k111m5l12/2
1m5l34/21n ~m andn non-negative integers! is a double
pole instead of a triple pole. In particular, there are no ter
proportional to (lnj)2 here @25#. A similar analysis can be
applied whene34/2 is a positive integer.

The appearance of the logarithm in coinciding pole ca
can be summarized as follows:

~i! Only one ofe12/2, e34/2 or (l122l34)/2 is an integer:
~ii ! (l122l34)/2 is an integer: lnj associated with the

double poles ats15l34/21n,
~iii ! e12/2 or e34/2 is a positive integer: all poles ar

simple poles, no logarithm,
10600
y

s

s

~iv! e12/2 or e34/2 is zero or a negative integer: lnj asso-
ciated with the double poles ats15l/21n.

~v! e12/2, e34/2, and (l122l34)/2 are all integers:
~vi! At least one ofe12/2 ande34/2 is positive: except for

a finite number of simple poles, all poles are double po
with ln j.

~vii ! e12/2 and e34/2 are zero or negative: except for
finite number of them, all poles are triple poles with (lnj)2.

III. SCATTERING AMPLITUDES
FROM GENERIC VERTICES AND CONTACT TERMS

Scattering amplitudes from more complicated interact
vertices such asf]mf1]mf2 andfDv]mf1Dv]mf2 can be
reduced to Eq.~2.2! and contact-type interactions by integr
tion by part@17# or field redefinitions@14#. For example, the
amplitude resulting from verticesf]f1]f2 andff3f4 can
be written as@da anddb denote the integration measures
in Eq. ~2.2!#
E da db ]K1 ]K2 G~x,y! K3K4

5
1

2 E da db @]2~K1K2!2]2K1K22]2K2K1# G~x,y! K3K4

52
1

2 E da db K1K2K3K41
1

2
~m22m1

22m2
2!E da db K1K2 G~x,y! K3K4 . ~3.1!
5-8
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Note the coefficient of the second term 1/2(m22m1
22m2

2) is
precisely the ratio between coefficients of^FlFl1

Fl2
& cal-

culated from two types of interactionsf]f1]f2 andff1f2
@10#.

In general we can consider the following Lagrangian
scalar fields:

L5
1

2
~]f i !

21
1

2
mi

2f i
21Ai jk

~0!f if jfk1Ai jk
~1!f iD

mf jDmfk

1¯1Ai jk
~n!f iD

~n!f jD
~n!fk , ~3.2!

whereD (m)f i is defined by

D ~m!f i5D $m1
Dm2

¯Dmm} f i . ~3.3!

The $ % in Eq. ~3.3! denotes that the indices are symmetriz
and traces are removed.9 For the purpose of tree-level four
particle scattering we can eliminate those vertices with
rivatives by a field redefinition

f i5f i81Bi jk
~0!f j8fk81¯1Bi jk

~n21!D ~n21!f j8D
~n21!fk8 .

~3.4!

B’s in Eq. ~3.4! can found by plugging Eq.~3.4! into Eq.
~3.2! and setting to zero the coefficients of the cubic deri
tive vertices. The resulting Lagrangian can be written as

L5
1

2
~]f i8!21

1

2
mi

2~f i8!21l i jkf i8f j8fk8

1contact vertices of quartic or higher order.~3.5!

For example forn52 in AdSd11 , B’s can be found to be
@14#,

Bi jk
~1!5

1

2
Ai jk

~2! , Bi jk
~0!5

1

2
Ai jk

~1!1
1

4
Ai jk

~2!~mi
22mj

22mk
212d!

and

l i jk5Ai jk
~0!1Bi jk

~0!~mi
22mj

22mk
2!2

2

d11
mj

2mk
2Bi jk

~1! .

~3.6!

Thus for generic interactions, the scattering amplitude
be written as

Al5Sl1S~4!, ~3.7!

where Sl is given by Eq.~2.15! with normalized vertices
~3.6! andS(4) is given by quartic vertices in Eq.~3.5!.

9We can useD2f5m2f1¯ to reduce terms containing traces
indices to lower order terms. Similarly the commutators of deri
tives @Dm ,Dn#}R also reduce to lower order terms, whereR is the
constant curvature.
10600
f
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Let us now look at the contribution from contact term
We observe that by repeatedly using the identity@Jmn(x)
5dmn22xmxn/uxu2#,

DmKl i
~u,xi !DmKl j

~u,xj !

5cl i
cl j

u0
2]mS u0

uu2xi u2D l i

]mS u0

uu2xj u2D l j

5l il jKl i
~u,xi !Kl j

~u,xj !Jm0~u2xi !Jm0~u2xj !

5l il jKl i
~u,xi !Kl j

~u,xj !

22n in j xi j
2 Kl i11~u,xi !Kl j 11~u,xj !, ~3.8!

andD2Kl i
5mi

2Kl i
we can put a generic quartic contributio

into a sum of terms without derivatives,

Sc5E du0ddu

u0
d11 Kl1

~u,x1!Kl2
~u,x2!Kl3

~u,x3!Kl4
~u,x4!

5P icl i
E du0ddu

u0
d11 S u0

uu2x1u2D
l1S u0

uu2x2u2D
l2

3S u0

uu2x3u2D l3S u0

uu2x4u2D
l4

. ~3.9!

Thus it is enough to look at Eq.~3.9!.
Contact contributions~3.9! in AdSd11 have been dis-

cussed before in@8# and@18# ~see also@20#!. In particular in
@18# it was pointed out that whenl125l34 the leading term
in the short distance limitx12, x34→0 is given by a logarith-
mic contribution. Here we give a more thorough analysis
the analytic properties of Eq.~3.9!, presenting the result in a
way suitable for our later discussion of its CFTd interpreta-
tion.

In Appendix C, we show that similarly to the exchang
amplitude, the contact contribution~3.9! can also be written
as an inverse Mellin integral,

Sc5Cc

1

2p i EC
dsj2sGS l12

2
2sDGS l34

2
2sD

3FS D34

2
1s,

D12

2
1s;2s;12

h

j D
3

G~D34/21s!G~D43/21s!G~D12/21s!G~D21/21s!

G~2s!

~3.10!

with

-
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Cc5
1

2p3d/2

G@~l121l342d!/2#

G~n1!G~n2!G~n3!G~n4!

3
1

ux12ul12ux14uD12ux24uD212D34ux23uD34ux34ul34
,

where the integration pathC should be understood in th
same sense as that in Eq.~2.9! @see the remark below Eq
-
f t
-
t

n

of

in

ie

t o
os
fo

to

10600
~2.9!#. Thus in thes-channel limith, j@1, Eq.~3.10! can be
written as

Sc5 (
n50

`

Scn
~l12!

1 (
n50

`

Scn
~l34! ,

where
Scn
~l12!

54A~l12!
~21!n

n!
j2nFS l121D34

2
1n,l11n;l1212n;12

h

j D
3GS l342l12

2
2nD G@~l121D34!/21n#G@~l122D34!/21n#G~l11n!G~l21n!

G~l1212n!
, ~3.11!
the
f
ua-

The

n-

b-

n

nc-
and Scn
(l34) can be obtained from Eq.~3.11! by taking 1, 2

→3,4. NoteA(l12) in the above is given by Eq.~2.20! and
except for the extraGn in Eq. ~2.19!, Eq. ~3.11! is almost
identical to Eq.~2.19!.

When (l122l34)/2 is an integer, except for a finite num
ber of poles, the two ascending simple-pole sequences o
integrand in Eq.~3.10! will merge into a double-pole se
quence. Again as in the case of exchange amplitude,
double-pole contribution will contain lnj. In particular,
whenl125l34 all ascending poles become double poles a
the leading contribution contains a lnj.

Note that since Eq.~3.9! is symmetric under exchanges
its four boundary propagators, its expansion in theu-channel
limit x13, x24→0 can be obtained by exchanging 2 and 3
Eqs.~3.10! and ~3.11! andj→j/h andh→1/h.

IV. FOUR-POINT FUNCTIONS AND CONFORMAL
PARTIAL WAVE EXPANSION IN CFT

To seek a CFTd interpretation of the AdSd11 amplitudes
discussed in the last two sections, in this section we rev
the conformal partial wave expansion~CPWE! approach to
the calculation of four-point functions in CFT@26,27# ~for a
review see @28,29#, see also @30# for some recent
discussions10!.

In CFTd , the states generated by acting by a produc
the conformal operators on the vacuum can be decomp
into a direct sum of irreducible representations of the con
mal group

F1~x1!F2~x2!u0&5(
k
E ddx Q12k~xux1 ,x2!uk,x&,

~4.1!

10I would like to thank A. Petkou for bringing these references
my attention.
he

he

d

w

f
ed
r-

wherek sums over all the irreducible representations in
Hilbert space and statesuk,x&5Fk(x)u0& span the space o
an irreducible representation of the conformal group. Eq
tion ~4.1! can be further lifted into an operator equation,

F1~x1!F2~x2!5(
k
E ddx Q12k~xux1 ,x2!Fk~x!,

~4.2!

understood as a relation between correlation functions.
summation in Eq.~4.2! is over primary fields~nonderiva-
tives! only and the integration over all space effectively i
corporated the contribution of their SO(d,2) descendants
~fields with derivatives!. The short-distance OPE can be o
tained from Eq.~4.2! in small ux12u limit by expanding the
integrand in terms ofx12x2 . When F’s are orthogonal to
each other, it can be seen from Eq.~4.1! that theQ’s are
given by the amputated three-point functions.

Applying Eq. ~4.1! to a four-point function we find

W1234~x1 ,x2 ,x3 ,x4!5^0uF1~x1!F2~x2!F3~x3!F4~x4!u0&

5(
k
E ddx ddy Q12k~x1 ,x2ux!

3Wk~x2y! Qk34~yux3 ,x4!, ~4.3!

whereWk(x2y)5^0uFk(x)Fk(y)u0&.
In the following, we shall look at the contribution of a

intermediate scalar operatorFl ~with dimensionl! to the
four-point function of four scalar operatorsFl i

, i

51, . . . ,4 ~with dimensionsl i respectively!,

Sl5E ddx ddy Qll1l2
~x1 ,x2ux!Wl~x2y!Qll3l4

~yux3 ,x4!.

~4.4!

In the Euclidean signature, the two- and three-point fu
tions are given by
5-10
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Gl~x2y!5^Fl~x!Fl~y!&5
c

ux2yu2l ,

Gll1l2
~x,x1 ,x2!5^Fl~x!Fl1

~x1!Fl2
~x2!&

5 f ll1l2
All1l2

~x,x1 ,x2!,

Gll3l4
~x,x3 ,x4!5^Fl~x!Fl3

~x3!Fl4
~x4!&

5 f ll3l4
All3l4

~x,x3 ,x4!,

where functionAabc(x,y,z) is defined by

Aabc~x,y,z!5
1

ux2yua1b2cuz2yuc1b2aux2zua1c2b .

The normalization constantsc andf will be taken to be those
given by AdS calculations@10#,11 i.e.,

c5
G~l!

pd/2G~n!
~2l2d!,
10600
f ll1l2
5

G~e12/2!G~ ẽ12/2!G~d1/2!G~d2/2!

2pdG~n1!G~n2!G~n!
, ~4.5!

and a similar expression forf ll3l4
obtained fromf ll1l2

by

taking 1, 2→3,4.
In the Minkowski signature, due to the spectrality cond

tion, it is more convenient to work in momentum spac
where the two- and three-point functions are given by

W~p!52 i DiscG~p!upd52 ip0

5
2p

G~11n!G~2n!
u~p0!u~2pMin

2 !G~p!upd52 ip0,

~4.6!

W~pux1 ,x2!52 i Disc~pux1 ,x2!upd52 ip0, ~4.7!

whereG(p) andG(pux1 ,x2) are Euclidean two- and three
point functions in momentum space
G~p!5cE ddy e2 ip•y
1

uyu2l 5c
pd/2G~2n!

22nG~l!
p2n,

Gll1l2
~pux1 ,x2!5E ddye2 ip•yGll1l2

~y,x1 ,x2!5 f ll1l2

2pd/2

G~d1/2!G~d2/2!

1

x12
e12 S p2

4x12
D n/2

3E
0

1

du uD12/21d/421~12u!D21/21d/421e2 ip•@ux11~12u!x2#Kn@Au~12u!p2x12
2 #. ~4.8!

The amputated three-point functionQ can then be found to be

Qll1l2
~pux1 ,x2!5Wl

21~p!Wll1l2
~pux1 ,x2!5c21f ll1l2

2nG~l!G~11n!

G~d1/2!G~d2/2!

p2n

x12
l122d/2

3E
0

1

du uD12/21d/421~12u!D21/21d/421e2 ip•@ux11~12u!x2#I n@Au~12u!p2x12
2 #. ~4.9!

In Eqs.~4.8! and ~4.9! Kv and I v are modified Bessel functions.
Plugging Eqs.~4.6! and ~4.9! into Eq. ~4.4!, we have, in momentum space with the Minkowskian signature,

Wl5
1

2pd E ddpQll1l2
* ~pux1 ,x2!Wl~p!Qll3l4

~pux3 ,x4!. ~4.10!

The integrals in Eq.~4.10! were explicitly computed in@26# and the result can be written as an inverse Mellin integral,

11Here the normalization for three-point functions is given by the interaction vertexf1f2f3 in AdSd11 . When considering more
complicated vertices, an additional normalization factor~3.6! should be taken into account.
5-11



ones

e

d

.

HONG LIU PHYSICAL REVIEW D 60 106005
Wl5c21f ll1l2
f ll3l4

G~l!G~11n!

G~d1/2!G~d2/2!G~d3/2!G~d4/2!

1

ux12ue12ux14ud1ux24uD212D34ux23ud3ux34ue34

3
1

2p i E2 i`

i`

ds~2j!2sG~2s!
G~d1/21s!G~d2/21s!G~d3/21s!G~d4/21s!

G~l12s!G~n1s11!
FS d3

2
1s,

d1

2
1s;l12s;12

h

j D ,

~4.11!

wherej andh are cross ratios defined in Eq.~2.10! and the Mellin integral should be understood in the same sense as the
in the previous sections. Again whenh j.1, Eq. ~4.11! can be written as an expansion:

Wl5
1

8p3/2d

G~e12/2!G~e34/2!G~ ẽ12/2!G~ ẽ34/2!

G~n1!G~n2!G~n3!G~n4!

1

ux12ue12ux14ud1ux24uD212D34ux23ud3ux34ue34

3 (
n50

`
1

n!
j2n

G~d1/21n!G~d2/21n!G~d3/21n!G~d4/21n!

G~l12n!G~n1n11!
FS d3

2
1n,

d1

2
1n;l12n;12

h

j D . ~4.12!

We notice that Eq.~4.12! agrees precisely with Eq.~2.18! including the numerical coefficient.

V. CFTd INTERPRETATION OF AdS d11 AMPLITUDES

In previous sections, we have managed to express all our results as inverse Mellin integrals and whenj,h.1 write them
in terms of inverse power series ofj, h as a sum of residues of the integrand. When the pole sequences in Eqs.~2.16! and
~3.10! do not coincide with one another, in all cases@see Eqs.~2.18!, ~2.19!, and~3.11!# the contribution from a pole sequenc
can be written in a similar pattern as the CPWE expression~4.12!

(
n50

`

anH~L12n!, ~5.1!

where each term in the summation is given by the residue at the pole 1/21n. In Eq. ~5.1!, an are numerical coefficients an
H is a function defined by

H~a!5
1

ux12ul122aux14ua1D12ux24uD212D34ux23ua1D34ux34ul342a

3
G~D12/21a/2!G~D21/21a/2!G~D34/21a/2!G~D43/21a/2!

G~a!
FS D34

2
1

a

2
,
D12

2
1

a

2
; a; 12

h

j D . ~5.2!

In Eq. ~4.12!,

an5
1

8p~3/2!d

G@~l122L!/2#G@~l342L!/2#G@~l121L2d!/2#G@~l341L2d!/2#

G~n1!G~n2!G~n3!G~n4!

1

G~n11!G~L2d/21n11!
. ~5.3!

The contact amplitude~3.9! may be written as

Sc5Sc
~l12!

1Sc
~l34! , ~5.4!

whereSc
(l12) , Sc

(l34) are of the form of Eq.~5.1! with L5l12, l34. For Sc
(l12) ,

an5
1

2p3d/2

G@~l121l342d!/2#

G~n1!G~n2!G~n3!G~n4!

~21!n

G~n11!
GS l342l12

2
2nD ~5.5!

with those ofSc
(l34) given by Eq.~5.5! with l12↔l34. Similarly, the exchange amplitude~2.2! can be written in terms of Eq

~5.1! with L5l, l12, l34,

Sex5S~l!1S~l12!1S~l34!, ~5.6!

wherean
(l) are the same as those of CPWE~5.3! and
106005-12
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an
~l12!

5
1

8p3d/2

G@~l121l342d!/2#

G~n1!G~n2!G~n3!G~n4!

~21!n

G~n11!
GS l342l12

2
2nDGn ~5.7!

with Gn given by Eq.~2.21! or ~2.22!. an
(l34) may be obtained from Eq.~5.7! with 1, 2 and 3, 4 exchanged.

To have a more precise picture of what we have found so far, we would like to understand the physical meaning of t
and the residues of each pole. For this purpose, let us go back to the contribution of a primary operatorFL to the operator
algebra~4.2!,

Fl1
~x1!Fl2

~x2!5E ddx QLl1l2
~xux1 ,x2!FL~x!, ~5.8!

where

QLl1l2
~xux1 ,x2!5E ddp eip•xQLl1l2

~pux1 ,x2!, ~5.9!

andQLl1l2
(pux1 ,x2) is given by Eq.~4.9!. For simplicity we will look at the analytic continuation of Eq.~4.9! to Euclidean

space.12 Plugging Eqs.~4.9! and ~5.9! into Eq. ~5.8!, we find that@31#

Fl1
~x1!Fl1

~x2!5 (
n50

`

bn

1

x12
l122L22n E

0

1

du ud1/21n21~12u!d2/21n21eux12•]FL
~n!~x2!

5 (
n50

`

bnFn , ~5.10!
ra

fo

te

e
ar

a
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wherebn are numerical factors and we have defined ope
tors,

FL
~n!~x2!5~]2!nFL~x2!, n50,1,2, . . . , ~5.11!

which we will call subprimary operators (n50 is primary!.
To reach Eq.~5.10!, we have used the series expansion
the Bessel function.Fn in Eq. ~5.10! denotes the contribution
to OPE from a subprimary operatorFL

(n) and its diagonal
descendants. By diagonal descendants we mean the sta
weight diagram diagonally generated from a subprimary~see
Fig. 5!. We may now interpret that each pole in Eq.~4.11!
represents the dimension of a subprimary and the residu
the pole corresponds to the contribution of the subprim
and its diagonal descendants.

By comparing Eqs.~5.6! and ~5.4! with CPWE ~5.1! and
~5.3!, we see that for the case of noncoinciding poles:

~i! S(l) in exchange amplitude~5.6!, which arises from the
first pole sequencel/21n in Eq. ~2.16! agrees precisely with
the result from conformal partial wave expansion~4.12!, in-
cluding the overall numerical coefficient. This indicates th
S(l) has a CFTd interpretation in terms of exchange of
primary operator of dimensionl.

12This is not completely the right thing to do, because t
Minkowski signature integration over momenta involves the sp
trality conditionsp0.0, p2,0, in which case the expressions a
rather complicated. For illustrative purpose, we shall use a Euc
ean expression.
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~ii ! In both exchange and contact amplitudes, the con
butions from a pole atl12/21n ~or l34/21n) agree exactly
with that of a subprimary operator with dimensionl12
12n (l3412n) and its diagonal descendants. But the n
merical coefficients~5.7! and~5.5! at each pole are differen
from that predicted by CPWE~5.3!, in particular, in the ex-
change amplitude the coefficient involves a somewhat co
plicated factorGn Eq. ~2.21!.

The above identification of Eqs.~5.4! and ~5.6! in terms

-

-

FIG. 5. Weight diagram for SO(d,2) representationD(l,0).
The horizontal axisl represents the set of indices for SO(d) sub-
group, and the perpendicular axis represents the scale dimensio
subprimary is a state lying on the line withl 50. The states con-
nected to a subprimary by dotted lines are descendants diago
generated from the subprimary.
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FIG. 6. t-channel OPE interpretation of a con
tact diagram.
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of exchanges of subprimary operators also cast light on
conditions~1.4! and ~1.5! for the occurrence of logarithms
which are satisfied precisely when subprimaries of differ
operators become degenerate.

For example, consider a contact diagram with (l12
2l34)/25k and k a positive integer. The dimensionl12

12n of a subprimary operatorO12
(n) of O12 will then be the

same as that of the subprimaryO34
(k1n) . In addition, the

quantum numbers of all the diagonal descendants gene
from O12

(n) and O34
(k1n) will be identical ~see Fig. 5!. To see

this more explicitly, let us move slightly off the degenera
point, i.e., consider,l125l3412k12e where 0,e,1.
Then Eq.~5.5! may be written as~below we will omit the
overall constant!,

an
125~21!k

p

sinep

1

G~n11!G~11n1k1e!
,

where we have usedG(x)G(12x)5p/ sinxp. Equation
~5.4! may be written as

Sc5 (
n50

k21
~21!n

n!
G~k2n1e!H~l3412n!

1~21!k
p

sinep (
m50

` F H~l3412m12k12e!

G~m11!G~11m1k1e!

2
H~l3412m12k!

G~m112e!G~11m1k!G . ~5.12!

As we takee to zero, the conflicting contributions fromO12
(m)

andO34
(m1k) in the square bracket become degenerate and

result is given by their derivatives overe, which contain
logarithms. The above discussion suggests that by turnin
a very smalle at degeneracy points, Eq.~5.12! provides a
useful way to ‘‘regularize’’ logarithms.

Since a contact diagram is symmetric under exchang
its external legs, itst- or u-channel expansion can be simp
obtained by taking 2↔4 or 2↔3 in Eqs.~5.4! and~5.5!. For
example, it can be represented as at-channel exchange in
CFTd as in Fig. 6.

VI. DISCUSSIONS

We note that conformal symmetry imposes strong rest
tions on the coefficientsCi j

k in Eq. ~1.1!; that of the primary
determines those of their descendants. The structure of
~5.10! and ~4.12!, including the numerical coefficientsan in
Eq. ~5.3! andbn in Eq. ~5.10! in the summation, are uniquel
fixed up to an overall constant by the fact thatFL and its
10600
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derivatives fill an irreducible representation of the conform
group. Although we have found in Eqs.~5.4! and ~5.6! the
contributions from a complete set of subprimary operators
dimensionsl12 andl34, their relative OPE coefficients~1.1!
are not consistent with those required by conformal symm
try, in other words, these subprimaries do not seem to fill
same irreducible multiplets.

It is probably not surprising that we do not find a com
plete CFTd identification in Eqs.~5.4! and~5.6!. After all, we
are only looking at a generic diagram in AdSd11 , which
hardly makes too much sense before we specify a partic
theory and add up all the diagrams contributing to a reali
amplitude. The encouraging message seems to be that w
indeed able to find a relation between an arbitrary scatte
diagram and OPE, which indicates some kind of universa
between a theory in AdSd11 and CFTd .

It is not clear at the present time how much we see h
will survive in the final expression of a realistic amplitude,
particular, whether operatorsO12 and O34 will have a con-
sistent CFTd interpretation when we add up all the diagram
Let us now consider what these operators could be if th
contributions do survive in the final expression. A clu
comes from the consideration of free theory, where the
erator product expansion takes the form~see, e.g.,@32#!,

~6.1!

where the first term on the right-hand side denotes a cont
tion and :A(z)B(w): stands for a normal-ordered operat
whose explicit form can be obtained from a Taylor expa
sion,

:A~z!B~w!ª(
k50

`
~z2w!k

k!
~]kAB!~w!.

In free theory the conformal dimension for :A(z)B(w): is
just lA1lB . Thus naturally we may expect thatO12 andO34
should be the counterparts of :Ol1

Ol2
: and :Ol3

Ol4
: in

interacting theory. InN54 super-Yang-Mills theory with
gauge group SU(N), O12 and O34 may be interpreted as
double-trace operators, i.e., operators of type TrF2 Tr F2(x).
Since we do not see a continuous spectrum of dimension
Eqs.~5.6! and~5.4!, we would expectO12 andO34 to corre-
spond in AdSd11 to two-particle bound states o
supergravity/string theory. This is consistent with the exp
tation @33# that, to lowest order in 1/N, there cannot be any
two-particle cut in Yang-Mills four-point functions.

Finally, we note that since Eqs.~5.5! and ~5.7! involve
dimensions of other operators~e.g.,l andl34), it suggests a
possibility that the mismatch in our OPE identification m
5-14
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be due to certain underlying mixing and interaction betwe
different operators at the subprimary level. Moreover, wh
e→0, the pattern indicated in Eq.~5.12! for the degeneracy
of subprimaries strongly reminds us of the behavior o
two-level system. Similarly, by examining the exchange a
plitudes~5.6! and~5.5!, we also find that the pattern near th
degeneracy points is rather like a three-state system.
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APPENDIX A: MELLIN TRANSFORMATION AND
ANALYTIC CONTINUATION

Here we give a brief introduction to the Mellin transfo
mation and how to use it to evaluate integrals.13

The Mellin transform of a functiong(x) is

h~s!5E
0

`

dx g~x!xs21. ~A1!

If the set of convergence of the integral~A1! has a nonempty
interior a,Re(s),b and h(s) is analytic in this strip, we
can have the inverse Mellin transformation,

g~x!5
1

2p i Ec2 i`

c1 i`

h~s!x2sds ~A2!

for all c such thata,c,b.
Some well-known integral representations of higher tr

scendental functions can be interpreted as~inverse! Mellin
transforms, for example,

G~s!5E
0

`

dx xs21e2x, G~s!z~s!5E
0

`

dx xs21~ex21!21,

and the Mellin-Barnes representation of a hypergeome
function,

13I would like to thank T. W. B. Kibble, F. G. Leppington, and A
B. Zamolodchikov for discussions related to the content of t
appendix.
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F~a,b;c;z!5
G~c!

G~a!G~b!

1

2p i E2 i`

i`

3ds
G~a1s!G~b1s!

G~c1s!
G~2s!~2z!s.

~A3!

Taking b5c in Eq. ~A3! we get

F~a,b;b;z!5~12z!2a5
1

G~a!

1

2p i E2 i`

i`

3dsG~a1s!G~2s!~2z!s. ~A4!

Generally, to evaluate an integral

I 5E dx g~x! f ~x!, ~A5!

we can first plug into Eq.~A5! the inverse Mellin transform
~A2! of g(x), then do thex integral and finally inverse-
Mellin transform back

I 5E
c2 i`

c1 i`

ds h~s!J~s!, J~s!5E dx xsf ~x!. ~A6!

Normally, Mellin transform~A1!, ~A2! is not as conve-
nient as Fourier or Laplace transform as it requires the fu
tions to be transformed have reasonably ‘‘good behavio
both at zero and infinity to ensure the existence of the s
where the transform can be defined. But for those functiong
in Eq. ~A1! which have a convenient power series expans
~such as hypergeometric functions! Mellin representation is
more powerful since the indices and the coefficients of
expansion are represented by the poles and the corresp
ing residues ofh(s) in the complexs plane.

Let us look at a simple example,

I 5E
0

`

dxxn21~11x!2m~x1t !2r. ~A7!

The integral is defined when Re(n).0, Re(m1r2n).0, and
arg(t),p which we assume is the case. For convenience
will also takeutu,1. The result of Eq.~A7! is well known,
given by a hypergeometric function,

I 5tn2rB~n,m2n1r!F~m,n;m1r;12t !, ~A8!

whereB(n,m2n1r) is a b function.
Here we would like to reproduce the result by using t

Mellin transformation technique of Eq.~A6!. For the mo-
ment we first assume Re(r).0. Note that from Eq.~A4!,

~x1t !2r5
1

G~r!

1

2p i Ec2 i`

c1 i`

dsG~r1s!G~2s!tsx2r2s,

~A9!

where 2Re(r),c,0. Plugging the above expression in
Eq. ~A7!, we get

s
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FIG. 7. Pole structures and
contours. ~a! Re(m).Re(n)
.Re(r).0; ~b! Re(r).Re(n)
.Re(m).0.
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I 5
1

G~r!

1

2p i Ec2 i`

c1 i`

dsG~r1s!G~2s!ts

3E
0

`

dx xn2r2s21~11x!2m

5
1

G~r!G~m!

1

2p i Ec2 i`

c1 i`

ds tsG~r1s!G~2s!

3G~n2r2s!G~m1r2n1s!, ~A10!

and the convergence of thex integral requires

2Re~m1r2n!,Re~s!,Re~n2r!. ~A11!

Since thex integral in Eq.~A10! has generated new pol
sequences in the complexs plane, we have to check that the
will not cause any ambiguity in carrying the inverse-Mell
integral in the second line of Eq.~A10!.

1. Re„µ…>Re„n…>Re„r…>0

In this case, it is easy to check that there is no over
between descending and ascending pole sequences an
new pole sequences sit outside the strip2Re(r),c,0
@which means the convergence condition~A11! is trivially
satisfied#, where the inverse Mellin transform~A9! is de-
fined. Thus there is no ambiguity in defining the integral
Eq. ~A10! and we can take the integral around a contourC,
which consists of the path in Eq.~A10! and encloses the
right half plane. See Fig. 7~a! for the pole structure and th
contour. Sinceutu,1 the contribution from part of the con
tour other than Eq.~A10! vanishes and Eq.~A10! can be
written by the calculus of residues as the sum of the resid
of the integrand at the poless50,1, . . . ands5n2r1n,
n50,1, . . . . It iseasy to see the sum gives us Eq.~A8!.

2. Re„µ…, Re„n…, Re„r…>0

In this case, there is still no overlap between descend
and ascending pole sequences, but there are poles sittin
side the strip2Re(r),c,0 if m,n or n,r, which seems
to cause ambiguity in the choice ofc in Eq. ~A9! as they may
enclose different poles inside the strip. However, the conv
gent condition~A11! requires that we squeeze the integrati
10600
p
the

es

g
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path in Eq.~A10! into a smaller strip max@2Re(m1r2n),
2Re(r)#,c,min@0,Re(n2r)#. It is clear that in this refined
strip there is indeed no ambiguity to define the integral a
again we get the desired result. See Fig. 7~b! for the pole
structure and the contour for the case: Re(r).Re(n).Re(m)
.0.

3. Re„µ…>0, Re„n…, Re„r…>0 and others

Now the convergent condition~A11! can no longer be
satisfied. There is an overlap between the ascending p
from G(n2r2s) and descending poles fromG(m1r2n
1s) and there does not exist a uniform strip that the inve
Mellin integral ~A10! is well defined. In this case we ca
define the integral by analytic continuation from the conv
gent region ofm. It is clear that as we varym continuously
from m.0 to m,0, the only way to avoid the sudden jum
of the value of integral by crossing the poles fromG(m1r
2n1s) is to deform the integration path so that it still sep
rates the descending and ascending pole sequences@see Fig.
8~a!#.

It is obvious that by repeating the above procedure
deforming the path of Eq.~A10! @see Fig. 8~b!# we can ana-
lytically continue the integral~A7! to arbitrary complex val-
ues ofm, n, r except for some discrete surfaces in the sp
of m, n, r where one or more ofr, m andn, m1r2n become
nonpositive integers. In these cases there are coincide
between the ascending poles and descending poles and
no longer possible to separate them. The analytic contin
tion breaks down at these surfaces. The pathology atm, r
52k, k50,1,2, . . . may beattributed to the method we ar
using @see Eq. ~A9!#,14 while at n, m1r2n52k, kk
50,1,2, . . . the analytic continuation truly breaks dow
~similar to the poles inG functions!.

APPENDIX B: DETAILED EVALUATION OF J

Here we present the details of the calculation lead
from Eq. ~2.8! to Eq. ~2.9!. To avoid making formulas too

14When m, r52k, k50,1,2, . . . , (11x)2m or (x1t)2r be-
comes a finite series and can be expanded directly to evaluate
integral. The result can be expressed in terms of the termina
series of hypergeometric functions.
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FIG. 8. Pole structure and ana
lytic continuation. ~a! Re(r)
.Re(n).0, Re(m),0; ~b! general
values of parameters.
-
s:

e
n-
ari-
long, we will suppress the prefactors~numerical constants
and powers ofxi j ) of the integrals and give their final ex
pression only at the end. We use the following definition

l̃5d2l, n5l2
d

2
, n i5l i2

d

2
, i 51, . . . ,4,

l i j 5l i1l j , D i j 5l i2l j , e i j 5l i j 2l, ẽ i j 5l i j 2l̃,
~B1!
10600
d15l1D12, d25l1D21, d35l1D34, d45l1D43,

d̃15l̃1D12, d̃25l̃1D21, d̃35l̃1D34, d̃45l̃1D43.

J(s) in Eq. ~2.8! can be further simplified by applying th
inversion trick @10#: set x450, then use a simultaneous i
version of the external coordinates and the integration v
ables,um→um /uuu2, vm→vm /uvu2, xW i5xW i8/uxW i8u

2, i 51, 2, 3,
after whichJ becomes
e

J~s!5
2l12s

ux1u2l1ux2u2l2ux3u2l3 E du0ddu

u0
d11

dv0ddv

v0
d11 S u0

uu2x18u
2D l1S u0

uu2x28u
2D l2

3S u0v0

u0
21v0

21uuW 2vW u2D l12sS v0

uv2x38u
2D l3

v0
l4. ~B2!

Using

G~l!

zl 5E
0

`

dr rl21e2rz, ~B3!

we can rewrite Eq.~B2! as

J~s!5E
0

`

dr1dr2dr3dr r1
l121

r2
l221

r3
l321

rl12s21E du0duW dv0dvW u0
ẽ1212s21v0

ẽ3412s21

3e2~r11r21r!u0
2
e2~r1r3!v0

2
exp$2r1uuW 2xW18u

22r2uuW 2xW28u
22ruuW 2vW 2u22r3uvW 2xW38u

2%.

Integrating overu0 , v0 we get15

J~s!5E
0

`

dr1dr2dr3dr r1
l121

r2
l221

r3
l321

rl12s21S 1

r11r21r D ẽ12/21sS 1

r31r D ẽ34/21s

3E duW dvW exp$2r1uuW 2xW18u
22r2uuW 2xW28u

22ruuW 2vW u22r3uvW 2xW38u
2%.

Now we use the following expression:

15The convergence ofu0 , v0 integrals requires Re(ẽ1212s).0 and Re(ẽ3412s).0. Since Re(s);0, the convergence conditions ar
indeed satisfied withl i , l.d/2.
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E dduW expH 2(
i

r iUuW 2xW iU2J 5S p

(
i
r i
D d/2

expH 2

(
i , j

r ir j xi j
2

(
i
r i

J ~B4!

to integrate overuW ,vW , which leads to

J~s!5E
0

`

dr1dr2dr3dr r1
l121

r2
l221

r3
l321

rl12s21S 1

r11r21r D ẽ12/21sS 1

r31r D ẽ34/21s

3S 1

r3~r11r21r!1r~r11r2! D
d/2

expH 2
rr2r3ux238 u21rr1r3ux138 u21r1r2~r31r!ux128 u2

r3~r11r21r!1r~r11r2! J ,

whereuxi j8 u5uxW i82xW j8u.
Let r i→rr i , i 51,2,3 and integrate overr,

J~s!5E
0

`

dr1dr2dr3r1
l121

r2
l221

r3
l321S 1

11r11r2
D ẽ12/21sS 1

11r3
D ẽ34/21s

3@~r11r2!~11r3!1r3#~l12D342d!/2F 1

r2r3ux238 u21r1r3ux138 u21r1r2~r311!ux128 u2G ~l121D34!/2

.

Note that the convergence of ther integral requiresl121D34.0.
Now we define new variables,r15su, r25s(12u), r35r, and

h5
ux138 u2

ux128 u2
, j5

ux238 u2

ux128 u2
, z5

h

12u
1

j

u
, ~B5!

after which the integrals become

J~s!5E
0

1

du u~D122D34!/221~12u!~D212D34!/221E ds dr s~l122D34!/221~11s!2 ẽ12/22s

3rl321~11r!2 ẽ34/22s~s1r1sr!~l121D342d!/2@s~11r!1rz#2 ~l121D34!/2.

Further definet5r/(11r), so that

J5E
0

1

du u~D122D34!/221~12u!~D212D34!/221E
0

`

dsE
0

1

dt s~l122D34!/221~11s!2 ẽ12/22s

3tl321~12t !d4/21s21~s1t !~l121D342d!/2~s1tz!2~l121D34!/2. ~B6!

Our next step is to use the inverse Mellin transformation Eq.~A4!,

S 1

11xD a

5
1

G~a!

1

2p i E2 i`

i`

dsG~2s!G~a1s!xs ~B7!

in (s1tz)2(l121D34)/2 in Eq. ~B6!. Then thes-t part of the integrals in Eq.~B6! becomes

1

2p i E2 i`

i`

ds1G~2s1!GS l121D34

2
1s1D z2s12~l121D34!/2J1 ~B8!

with

J15E
0

`

dsE
0

1

dt t~l342l12!/22s121~12t !d4/2/1s21s~l122D34!/2/1s121~11s!2 ẽ12/22s~s1t !~l121D342d!/2.

After s integration we get
106005-18
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J15BS s11
l122D34

2
,s2s12

e12

2 D
3E

0

1

dt td4/2/1s21~12t !~l341l122d!/221FS ẽ12

2
1s,s11

l122D34

2
;s1

d4

2
,t D .

Notice that the power int coincides with the third parameter of the hypergeometric function inside the integral. In this ca
integration overt can be done very easily and we get

J15
G@~l341l122d!/2#

G~l4!

G@s11~l122D34!/2#G~s2s12e12!/2G@~l342l12!/22s1#

G~s2s11 ẽ34/2!
. ~B9!

Plugging Eq.~B9! back into Eqs.~B8!, ~B6! and rearranging the integrals

J~s!5C2

1

2p i E2 i`

i`

ds1G~2s1!GS l121D34

2
1s1DGS s11

l122D34

2 DGS l342l12

2
2s1D

3
G~s2s12e12/2!

G~s2s11 ẽ34/2!
E

0

1

du u~D122D34!/221~12u!~D212D34!/221S h

12u
1

j

uD 2s12~l121D34!/2

. ~B10!

The integral in the second line gives us a hypergeometric function and the final expression forJ is ~we shifteds1 by s1
1l12→s1),

J~s!5C2

1

2p i EC
ds1j2s12D34/2GS l12

2
2s1DGS l34

2
2s1DFS D34

2
1s1 ,

D12

2
1s1 ;2s1 ;12

h

j D
3

G~D34/21s1!G~D43/21s1!G~D12/21s1!G~D21/21s1!

G~2s1!

G~l/21s2s1!

G@~l121 ẽ34!/21s2s1#
. ~B11!

Now restorex4 by takingxi→xi2x4 , i 51,2,3.h andj defined in Eq.~B5! become the cross ratios

h5
uxW148 2xW348 u2

uxW148 2xW248 u2 5
ux13u2ux24u2

ux12u2ux34u2 , j5
uxW248 2xW348 u2

uxW148 2xW248 u2 5
ux14u2ux23u2

ux12u2ux34u2 . ~B12!

Finally, the prefactorC2 is given by

C25
pd

4

G@~l121l342d!/2#G~s1 ẽ12/2!G~s1 ẽ34!/2

G~l1!G~l2!G~l3!G~l4!G~l12s!

2l12s

ux12ul121D34ux14uD122D34ux24uD212D34ux34u2l3
.

te

s

b

a

and
ere
e se-
ip
se

ave
ler
ore
me

with

s
. The
We note that it can be checked that the integrals in in
mediate steps from Eq.~B2! to ~B11! are convergent only
when the parameters satisfy the following condition
@Re(s);0#,

d1

2
,
d2

2
,
d3

2
,
d4

2
.0,

l126D34

2
.0,

l346D12

2
.0. ~B13!

For the above range of parameters there is no overlap
tween ascending and descending poles in Eq.~B11! and the
s1 integral can be unambiguously defined by squeezing~also
determined by the convergence of the intermediate integr!
the integration pathC to lie inside the strip:

maxFD12

2
,
D21

2
,
D34

2
,
D34

2 G,Re~s1!,minFl2 ,
l12

2
,
l34

2 G .
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When parameters are outside the range of Eq.~B13!, some
integrals in intermediate steps may not be convergent
can only be defined by analytic continuation. Further th
are overlaps between the ascending and descending pol
quences in Eq.~B11! and there does not exist a uniform str
in which the Mellin integral can be well defined. In this ca
we can define the integral in Eq.~B11! by analytic continu-
ation by deforming the integration pathC so that it separates
the ascending and descending poles. In Appendix A we h
given a detailed discussion of this procedure in a simp
example. The whole discussion can be applied to this m
complicated case without change. We note that when so
poles from ascending and descending series coincide
one another, e.g., if one or more of (l126D34)/2, (l34
6D12)/2, d i /2, i 51, . . . ,4 arenonpositive integers, there i
no way to separate the ascending and descending poles
analytic continuation breaks down at these points.
5-19



the

l,

HONG LIU PHYSICAL REVIEW D 60 106005
APPENDIX C: EVALUATION OF CONTACT CONTRIBUTION

Here we would like evaluate Eq.~3.9!. Again we will suppress the prefactor of the integrals most of the time and follow
notations defined in Eq.~B1!.

As in Appendix B, using Eq.~B3! and integrating overu0 , we get

Sc5E P i 51
4 dr ir i

l i21 1

~r11r21r31r4!~l121l342d!/2 E duW expF2(
i

r i uuW 2xW i u2G

5E P i 51
4 dr ir i

l i21 1

~r11r21r31r4!~l121l34!/2 expH 2

(
i , j 51

4

r ir j uxi j u2

r11r21r31r4

J , ~C1!

where in the second line we have used Eq.~B4!. Now let r i85r i(r11r21r31r4)21/2 and note that det(]ri /]rj8)
52(Si51

4 ri8)
4,

Sc5
1

p3d/2

G@~l121l34!2d/2#

G~n1!G~n2!G~n3!G~n4!
K~l1 ,l2 ,l3 ,l4!, ~C2!

where we have included the numerical prefactor andK is defined by

K~l1 ,l2 ,l3 ,l4!5E
0

`

dr1dr2dr3dr4P ir i
l i21 expF2 (

i , j 51

4

r ir j uxi j u2G . ~C3!

SinceK has translational invariance, we can takex450. Definingr i85r i uxi u2, i 51,2,3, we find that

(
i , j 51

4

r ir j uxi j u25r4~r181r281r38!1 (
i , j 51

4

r i8r j8uxi j8 u2,

wherexW i j8 5xW i82xW j8 andxW i85xW j /uxi u2. Then in terms ofr i8 ~we omit primes onr i below! andxi8 , J becomes

K5
1

ux1u2l1ux2u2l2ux3u2l3 E0

`

P i 51
3 dr ir i

l i21 expF2r4~r11r21r3!2 (
i , j 51

3

r ir j uxi j8 u2G
5

G~l4!

ux1u2l1ux2u2l2ux3u2l3 E0

`

P i 51
3 dr ir i

l i21 1

~r11r21r3!l4
expF2 (

i , j 51

3

r ir j uxi j8 u2G . ~C4!

Now let r35a, r15ab, r25ag,

K5E da d b dg
bl121gl221al121D3421

~11b1g!l4
exp@2a2~bux138 u21gux238 u21bgux128 u2!#

5E db dg
bl121gl221

~11b1g!l4

1

@bux138 u21gux238 u21bgux128 u2#~l121D34!/2 . ~C5!

Further letb5su, g5s(12u) and define,

h5
ux138 u2

ux128 u2
, j5

ux238 u2

ux128 u2
, z5

h

12u
1

j

u
,

after whichK becomes

K5E
0

1

du u~D122D34!/221~12u!~D212D34!/221E
0

`

ds s~l122D34!/221~11s!2l4~s1z!2~l121D34!/2. ~C6!

The s integral above is nothing but the familiar integral representation of a hypergeometric function.
We now restorex4 , after whichj andh become the cross ratios defined in Eq.~B12!. Including the prefactor of the integra

we get the final expression forK,
106005-20



SCATTERING IN ANTI–DE SITTER SPACE AND . . . PHYSICAL REVIEW D60 106005
K5
1

2

G~l3!G~l4!G@~l122D34!/2#G@~l121D34!/2#

G@~l121l34!/2#

1

ux12ul121D34ux14uD122D34ux24uD212D34ux34u2l3

3E
0

1

du u~D122D34!/22~12u!~D212D34!/221z2D34FS l121D34

2
,
l122D34

2
;
l121l34

2
;12

1

zD . ~C7!

Alternatively, we may use the Mellin-Barnes representation for a hypergeometric function

F~a,b;c;12z!5
G~c!

G~a!G~b!G~c2a!G~c2b!

1

2p i E2 i`

i`

ds zsG~2s!G~c2a2b2s!G~a1s!G~b1s!

in Eq. ~C7!, and then integrate overu. In this formSc can be written as

Sc5Cc

1

2p i El122 i`

l121 i`

dsj2sGS l12

2
2sDGS l34

2
2sDFS D34

2
1s,

D12

2
1s;2s;12

h

j D
3

G~D34/21s!G~D43/21s!G~D12/21s!G~D21/21s!

G~2s!
~C8!
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Cc5
1

2p3d/2

G@~l121l342d!/2#

G~n1!G~n2!G~n3!G~n4!

1

ux12ul12ux14uD12ux24uD212D34ux23uD34ux34ul34
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