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Scattering in anti—de Sitter space and operator product expansion
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We develop a formalism to evaluate generic scalar exchange diagrams in anti—de Sittey, (Aa8vant
for the calculation of four-point functions in AdS conformal field the@@FT) correspondence. The result may
be written as an infinite power series of functions of cross ratios. Logarithmic singularities appear in all orders
whenever the dimensions of involved operators satisfy certain relations. We show that the, Ad$litude
can be written in a form recognizable as the conformal partial wave expansion of a four-point functioryin CFT
and identify the spectrum of intermediate operators. We find that, in addition to the contribution of the scalar
operator associated with the exchanged field in thejAd$iagram, there are also contributions of some other
operators which may possibly be identified with two-particle bound states iy AdShe CFT, interpretation
also provides a useful way to “regularize” the logarithms appearing in AdSmplitude.
[S0556-282(199)03018-0

PACS numbes): 11.25.Hf 04.65+e, 11.25.Mj, 11.25.Pm

[. INTRODUCTION a four-point function may be expanded in terms of conformal
partial waves, e.g., whery,, X3,—0, as ans-channel ex-
There has been a recent revival of interest in the conneghange,
tion between largéN Yang-Mills theory[1] and string theory
[2] following the conjecturd3] that there is an exact corre- (O, (X1)Oj,(X2)0;,(X3)O; (X4))
spondence[4,5] between type-1IB superstring theory on
anti-de Sitter (Ad9XS; and N=4 super-Yang-Mills e
theory in four dimensiongsee alsd6]). T2
Under this proposal, correlation functions &t 4 super-
Yang-Mills (SYM) theory with gauge group SN) in the  Alternatively, we can also write the four-point function in
largeN and large 't Hooft coupling limit can be obtained by terms oft- or u-channel exchanges in the limit,, X,3—0
evaluating scattering amplitudes of type-11B supergravity onor x;3, X,,— 0. If the algebra1.1) is complete and associa-
AdS;XSs. Some “model” and “realistic” two-point and tive, all channels of exchange are equivalent.
three-point functions have been computed 7r-15. Since We would like to examine whether a four-point function
the structures of two- and three-point functions are severelgalculated from the scattering amplitude in Ad$ can be
restricted by conformal symmetry, in many cases the comwritten in the form of Eq(1.2) as we take the corresponding
putations amount to fixing the overall constants. Four-pointimits in cross ratios. A positive answer would be a confir-
functions can be arbitrary functions of cross ratios and thusnation of the assumption of a closed algektal), which
encode more dynamical information. Recently some effort$iitherto has been only known to hold in two dimensions.
have been made in this directiph6—22 aiming to under- And we could further extract important nonperturbative in-
stand more about the nonperturbative dynamicsAéf4  formation about CFJ by identifying the spectra of interme-
SYM theory. diate operators in each channel. In the caséVef4 SYM
Considering ad-dimensional conformal field theofy, theory in the largeN and largeg®N limit, knowledge of
(CFTy), we shall assume that there exists a closed operatdour-point functions would help us answer questions such as
algebra, which is a strong version of the Wilson operatof16—18§:
product expansion, (1) DoesN'=4 SYM theory in the largeN and largeg®N
limit have a closed algebrd..1)?
(2) If yes, what is the spectrum of operators? In particular,
_ (0 — k do chiral operators, which are in one-to-one correspondence
Gi00;(0)= Ek: Cij()0K(0). .3 with type-IIB supergravity modes on Ag8S, form a com-
plete set?
In this paper, we shall make some preliminary progress in
Here the summation is over all operators and their coordinatanswering these questions. In particular, we shall find indi-
derivatives, an(!:ikj arec-number functions. From Ed1.1), cations that there are operators in the spectrum which corre-
spond to two-particle bound states in AdS.
One of the obstacles in the computation of realistic four-
*E-mail address: hong.liu@ic.ac.uk point functions inV/=4 SYM theory has been the difficulty
Though our prime interest i&=4SYM theory, most of our dis- in evaluating exchange diagraff in AdS spacdsee Fig.
cussion will apply to any-dimensional conformal field theory ap- 1(a)], which involve very complicated integrals. Here we
pearing in Adg.,-CFT, correspondence. present a formalism to address this problesee alsd19)),

(X12)C

i5i

(X32)(0j(X2) Oj(X4)). (1.2
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FIG. 1. Exchange and contact diagrams in AdS \ and\; are At -
dimensions of the conformal operators corresponding to the fields 1Ay sthy
in the diagrams.

lar fields of arbitrary mass needed to evaluate generic four-
point functions. The result is written as a single inverse Mel-
lin integral so that the analytic properties of the amplitudes
become transparent. In particular, for the exchange diagran
of Fig. 1(a), in the limitx,,, x3,— 0 the scattering amplitude | L]
can be written as a contour integral

providing explicit formulas for AdS integrals involving sca-

FIG. 2. Poles and the contour of E¢L.3). There are three

At Aat A sequences of poleg1) s=(\;+\,)/2+n (represented by solid
s)\:f dsF( = 2_S>r s 74 ) circles; (2) s=(\3+\4)/2+n (circles; (3) s=\/2+n (crosses
c 2 2 wheren=0,1,2 ... .

XF(E—S)H(S,n,f), (1.3 poi_nt_fun_ctions will in_general sati_sfy Eq$1.4) or (1.5.
2 This implies that logarithms are universally present.

We then proceed to investigate whether the amplitude we
where¢ and  are independent cross ratios drds a func-  find can be written as the conformal partial wave expansion
tion of complex variables and &, 7. In Eqg. (1.3) we have (CPWB Eq. (1.2). The Mellin integral representatiof.3),
only explicitly written down thel” functions which generate in which our results are presented, turns out to be particularly
poles inside the contousS, can then be evaluated by the convenient to identify them witls-channel operator product
calculus of residues and written as a sum of residues of thexpansion(OPE) exchanges in CRJl. The contribution of
integrand at three infinite pole sequendsee Fig. 2 We  each pole sequence in E€L.3 can be identified with the
find that logarithms of cross ratios, first fourld8] in  CPWE Eq.(1.2) of a conformal operator: the value of a pole
leading-order expansion of some contact diagrams, arise georresponds to the scale dimension of a spin-0 descehdant
nerically whenever the poles in E€L.3) merge into double (we shall call it a subprimay while the residue at the pole

poles or triple poles, i.e., when may be identified with the CPWE contribution of a subset of
descendants associated with the subprimary. The pattern may
AtAa—A3— Ay or)\l+ A=A or7\3+ Ng—N integer be presented diagrammatically as in Fig. 3.
2 2 2 —Integer. The first diagram on the right-hand side corresponds to

(1.4  the exchange of a scalar primary operator of dimensipn
which may be interpreted as the operatae shall call it
They appear in all orders of the series. In particular, theD,) related to the exchanged field in AgS by AdS-CFT
contribution from a triple pole will contain a part propor- correspondence. This result was expected earli¢d 7 on

tional to the basis of indirect considerations. Here we identify the con-
5 tributions of all the descendents &f, and show that their
(In X12X34) relative OPE coupling$l.l) are consistent with those re-

X13Xod| | quired by conformal symmetry. The second and third dia-

gram on the right-hand side correspond to the exchanges of
Similarly, it can be shown in contact diagrapsee Fig. 1b)]  operators of dimensions;+\A, and A3+ X4, respectively

logarithms occuf18] when (which we shall call0,, andO3,4). However, in these cases,
there are some mismatches in the identifications. In Fig. 3 we
NitAo—A3—Ng . have used dotted lines in intermediate states to distinguish
- integer. (1.5

In N=4 SYM theory, the dimensions of the chiral fields 2t might still happen that when we add up all the diagrams con-
are protected by supersymmetry and take integer valuegibuting to a four-point function, logarithms will cancel.
Since in type-lIB supergravity on AdS S, all vertices are Here we mean an S@(2) descendant. A spin-0 descendant takes
SU (4) singlets, the scattering diagrams associated with fourthe form (9?)"O, whereO is the primary and? is the Laplacian.
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FIG. 3. s-channel OPE interpretation of an exchange diagram.

them from the first diagram. Although we have found con-gravity they may be identified with two-particle bound states.
tributions from operators having the same quantum numbers The plan of the paper is as follows. In Secs. Il and Il we
as the complete set of descendants of a primary operator discuss the evaluation of scattering diagrams in AdS In
dimension\; + X, (@and\3+\,), the relative OPE couplings Sec. IV we review, for the convenience of comparing with
(1.1) between the primary and descendants seem to be incopds, . ; results, the conformal partial wave expansion in
sistent with those required by conformal symmétrfhe  CFT,. In Sec. V we discuss the CETinterpretation of
OPE couplings pf these Qescendant operators have a pe.Cl.J|iAlan+l amplitude. We have included a number of appen-
pattern suggesting the mismatch may be due to some mixingiyes '|n Appendix A we describe briefly the subtleties in

among different operators. But we have not been able 1@ a1yation of integrals using Mellin transform and analytic

make it precise in this paper. , continuation. Appendixes B and C are devoted to detailed
Similarly the contact diagram Fig.(t) may be repre- g q1yation of some integrals in the main text.
sented in terms o$-channel exchanges as in Fig. 4 and the

identifications are also not complete in the sense as described
in exchange case.
The identification of Adg, ; diagrams with CPWE also

sheds light on the appearance of logarithms. Conditjtr We consider tree-level scattering of four scalar fields in
and (1.5 are satisfied precisely when the quantum numberads,, ; with massesn;, i=1, . .. ,4 byexchanging a scalar
(spin, scale dimensions, etaf certain descendants @, or  field of massm. According to AdS-CFT correspondence, a
O,, or Og,4 become identical to one another. The OPE cou-calar fieldg; of massm; in AdS,. ; corresponds to a scalar

plings in Figs. 3 and 4 determined from E@.3) fallinto the  operator®, in CFTy, with conformal dimension\;=d/2
following pattern: when the quantum numbers of descen-, JmZ+d%/4=d/2+ v;. The scattering amplitude describes
dants of different operators are degenerate, their contribu- o . .
. ! . . 1n CFTy the contribution of®, to the four-point function of
tions to the conformal partial wave expansion become iden- S
. ; scalar operator®d, , i=1,...,4.
tical and cancel one another. The results are given by their ] ] i ] ) )
derivatives, which contain logarithms. Thus by moving in- In this section, we shall take the interacting vertices to be
finitesimally away from the degeneracy poifis4) and(1.5  Of the form
in parameter space, we see that the relations in Figs. 3 and 4
provide a physically meaningful way to “regularize” loga-
rithms. L=d1¢20+ P3dad.
Although our present analysis based on generic diagrams
would not give a conclusive answer to the questions listed _ _ _ _
earlier, it nevertheless provides a starting point for furtherScattering amplitudes resulting from more complicated ver-
study. The relation we find here between an arbitrary extices involving derivatives and contact vertices will be dis-
change diagram in AdS, and CPWE appears to bmiver- ~ cussed in next section. _ .
saland should be helpful for understanding the general struc- As in [5] we use the Euclideathalf-spacg metric,
ture of AdS-CFT correspondence. Before having a complete
calculation of realistic four-point functions in a specific
theory, it is probably premature to speculate about the rel- _ , 1 2 2 .
evance of operatoi®,, andO3, and the mismatches in their ds*=g,,du"du —u—g(du0+dui ), 1=12,...4.
CFT, identification. However, if their contributions are in- (2.
deed present in a realistic amplitude, it should imply the
existence of new operators in the spectrum not seen in the
Lagrangian of supergravity. IW=4 SYM theory they may The AdS;.; bulk indices will be denoted by, ... and
be written as double-trace operators, while in AdBper- il take values 0,1....,d. The points in the bulk are la-
beled byu,v,..., while those on the boundary byy,... .
We also use shorthand notatioms (ug,U), x=(X) andxizj
“In a CFTy, the OPE coupling1.1) of a descendant is uniquely =|X;—X;/?, u—x|2=uj+|a—%|2.
determined by that of the primary. The scattering amplitude can then be written as

Il. SCALAR EXCHANGE IN ANTI —DE SITTER SPACE
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AL he M M '
= Mthy + Agthy FIG. 4. s-channel OPE interpretation of a con-
tact diagram.
>\2 ;‘-3 )\'2 )\3 )"2 }\-3
S\ (X1,X2,X3,X4) Now we use the Mellin-Barnes representation of a hyper-

geometric function
f d Uoddu dVOddV

Ky, (u,x) Ky (u,x I'(c 1 (i
_d_uo+1 _d_vo+1 A, (UX1) Ky (U, X2) F(a’b;C;Z):ﬁz_ﬂ.if_i ds
XG(U, V), (V. X3) Ky, (V,Xa), (2.2 Fatr(brs)
. . ————I'(—9s)(—2)° (2.6
WhereICAi(u,xi), i=1,..., 4 is thebulk-to-boundary propa- I'(c+s)

gator([S] for field ¢;, in Eq. (2.5 and plug it into Eq(2.2). This gives us

K B Ug A - 1—‘I()\I) 23 1 i
NUX) =G| i) 0 T Iy (2.3 S)\=Clmf ds
i
andG(u,v) is the AdS bulk scalar propagatf®23], T[(A+1)/2+S]T(\/2+5) .
1 T(v+1+s) F(=s)(=1)(s)
Y -, -1
G(u,v)=rt " *F[ \,v+ 2,2v+ 1t (2.9 2.7
In Eq. (2.4) F is a hypergeometric function and with
T'(\) 1 (Ug+Vo)?+(T—V)? J(S):J d“gddu dngdV( Uo 2)”1
TRy 4ugvo ' up™ o™ L ju=xl
N A+2

To evaluate Eq(2.2), first we would like to get rid of the ><< Yo ) 2 2UgVo ) o
cross term ofu, andvy in t in Eq. (2.4), which complicates lu—x,?) | ug+ve+|d—vl|?
the integrals. This can be achieved by a quadratic A5 rg
transformation of the hypergeometric function in E(R.4), | Yo ) Vo 2.9
after which the bulk propagator becomes IV—=xa?] ||v—x4?

ORI L CONN S D I S and
(V)= 1 o5 ) @ 2 2Vt 1,
(2.5 Ci=g@rorlli-16

where

J(s) still involves quite complicated integrals. We present
its detailed evaluation in Appendix B. The result can be writ-
) ten in terms of the cross ratios of the boundary points as an
2UgVo inverse Mellin-type integraffor notations see Appendix)B

ug+va+|i—vl|?

1 e Ao N34 Agg Ay i

— _ S1—Agy2 e e —oa . . !

J(s) C2277i fcdslg 1723 F( 5 S, F( 5 sl>F 5 +54, 5 +51;25;;1 £
y I'(A2+s—s;) I'(Az/2+$) T (Ayyf2+5) T (A 102+ 51) T (Apy/2+S:) 29
F[(R12+E34)/2+S—51] F(Zsl) ! ( ' )

5The one we use here B(a,b;2b;z)=(1—2/2)"2F(1/2a,1/2(@+1);b+ 1/2;7%(2— 2) ~?).
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where », £ are cross ratios defined by The path of integratio® in Eq. (2.9) (see the last para-
graph of Appendix B for a more precise descripjigtaken

_ | X197 X242 _ |X14?[X25/? 21 to be parallel to the imaginarg, axis and is deformed if
= |x12|2|x34|7’ - |x12|2|x34|2' (2.10 necessary to separate the poles of ascending seqyenges

those of I'(\12/2—s;)] from the poles of descending se-
and guencede.g., those of (A ;,/2+s,)] of the integrand.
Plugging the expression far into Eq. (2.7), using the
duplication formula forl" functions
79 TN 1o+ Ngq— d)/2]T (s+€1/2) T (S+7E34/2)

274 TOWTOIT ()T (AT (A +25)

(N +2s)= ! M2y M (s
oN+2s ( S)_ﬁ? 2 s 2 S|
x |X1o M2t Bagx | 127 Badx, [ A21~ Badx, [PA3” and regrouping the terms in the integrand, we find,
1 A A A A
= —81—Agg2p| M2 N34 234 212 e g1
S\ C327-ri fcdslg F( 5 sl)F( 5 S1 F 5 +5q, 5 +51;25;1 £
I'(A3/2+51) T (A g2+ 5)) (A 1/2+51) [ (Apy/2+S;)
X [ (2.11
I'(2s;)
|
with When the parameters of a generalized hypergeometric func-

tion sF,(a,b,c;e,f;z) satisfy the relatione+f=a+b+c
+1, the series will be said to be SaalschutZidnis easy to
check that the hypergeometric series in Egj13 is Saals-
chutzian. Saalschutz’s theorem states #fai(a,b,c;e,f;z)
satisfies

— 1 1 S
I1_2_7Ti inoods I'(—=s)(—1)

T(15/24 S)T (2342+S)T (N2+5— ;)
T[S—S1+ (Aot €a/2]T(v+1+5)

(212 sFo(a,b,c;e,f;1)

I, is nothing but the Mellin-Barnes representation of the
generalized hypergeometric functigif, [24], which leads _Terd+a-fH)ra+b-f)ra+c-1) (2.14
to® r(1-f)(e-a)l'(e—b)l'(e—c) ' '

T(€/2)T (€342) (N 2-s,)
Y T(w+1) T'[—s;+ (N o+ E30)/2]

providede+f=a+b+c+1 anda, b, or c is a negative in-

€12 €34 N NpptEg _ teger.
><3F2 _1_1__5]_1 _Sl,V+l,l . . .
2'2'2 2 From Egs(2.11) and(2.13), we reach the final expression
(2.13 for S, ,
81f necessary, the integration path in E@.12 should be de- "The hypergeometric seriesF,(a,b,c;e,f;z) converges when
formed to separate the poles=0,1, ... from those poles in de- |z|<1, also whenz=1 provided that Ref+f—a—b—c)>0. Thus
scending series. we see a Saalschutzian series is convergentdt.
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1 s N1o A
S}\:CZ_ﬂ'iJCdSlg i 7—81 r 7—81 r E_Sl

Az A n
F( 5 +5q, > +51i251;1—g

[ (Ag)2+5)T(Asgf2+ 51T (A1)/2+5) T (Apy/2+S:) €12 €31 A Niot €3
= | =5 = 5—S —=——s;,v+1;1| (2.15
T[N gt és0)/2—5,]T(257) 2'2'2 2

with

_ 1 TLvaathp— d)/2]1(€15/2)I'(€342) 1

879 T (vl (v)T(wx)T ()T (r+1) X1 12X 212 x50 P21 B3 x5 234 x| M 34"
|
Thus we have been able to reduce E22) to a single Nag

inverse Mellin-type integral in Eq(2.15, which may be (3)s=—-+n, m=012....
evaluated by choosing the appropriate contour in the com-
plexs; plane and the calculus of residues. We first consider the case that no pole series in the above

Let us consider the-channel OPE limit where&;,, X34 coincide with one another, i.e., none efJ/2, e3,/2, and

are much smaller than other distances, i&»>1 and 1  (\;,—\3,)/2 is an integer. Then we can wrif} as
— 7yl é<1. In this case, we can take the integration p@th

over a contour enclosing the right half plane and the integral °° N N
is given by the sum of the residues of the integrand at the S\= nZO S+ 2 sh2 4 2 S
poles of ascending sequences.

On the right half plane we have three pole series whic (A2 «(A12) (N30
come fromI' (N 15/2—s;), I'(A34/2—s;) andl' (A /2—s,), re- n/vheres Sy 7 andSy
spectively,

are the contributions from the
nth pole in each series.

A A. Series 1
(1)s;==+n, m=0,1,2...; ) ) )
2 Let us first look at the pole seriss=\/2+n. In this case
\ the third parameter ingF,(€15/2:€342,—S+N/2;—s+ (N1
_M2 _ ) +€34)/2,v+1;1) becomes a negative integer and we can use
(2)$1 2 N, m=012...; (216 the Saalschutz’s theore(@.14) to get

€10 €34 Nipt€sy

3F2 7,7,—&—8—!— 2
~ TLON 2t N3g—d) 12— n]T' (€102 (€342)1'(—n—v)
P(=v)I'(€12= )T (€342—N)I[(N 1o+ N34~ d)/2]

T(1+ )T (€42)T (€342) T[(Ayo+Nas—d)/2—n]
T[(Agt hag—d)72]  T(e1d2— )T (ex2—MT(1+n+v)’

,wv+1;1

=(-1" (2.1

where in the second identity we have used the reldfiog I' (1 —x) = #/ sinwx. Now plugging Eq(2.17) into Eq.(2.15, we
get

£ T (8,124 N)T( 8,12+ )T ( 852+ n)T(5,/2+n) 8, 7
(M) — AN 2 _= _ L
SM=AN T 2T TS F 2+n 2+n SEUTES (219
with
(\ 1 T(ed2)T (e342)T (€142)T (€342) 1
A L T T r r €12 51 A1~ A3y 3 €34°
™ (v (v)T'(v3)[(vy) X212 12| X14] *2|X24] X239 2|34

Note thatl'(—s) has residue {1)""/n! at its poles=n.
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B. Series 2
In this case we have;=\,,/2+n, and
—-1)" Niot+A
S()‘lz)=A("12)(—)§‘“GnF 2 AN 2n1— o
n n! 2 &
Yo P PN ot A2+ NI [(N o= Agg)/2+ 0T (N1 +n) (N +n)
XTI -n (2.19
2 T (Aot 20)
with
1 T[(\agthp—d)/2] 1
(N9 —
AT 8 T (v1)L (1)L (v3)T (v4) [X1q 2 1|Xpq 2217 234 x g 1127 B3 x 5[ N34~ M2 (220
and

T (& /2T (€342)T(— €1d2—n) (”6_12 €4 €12 € 11
N T(ead2—mI(vt1) ¥ 22T M
B i 1 T(&1/2+m)T(E42+m)T(Mm—e/2—n)

= T(€3/2—n+m)T(v+1+m)

(2.29

By a transformation ofF, [24], Eq.(2.21) can be written in a form symmetric underX and given by a terminating series

_ 1 Nt Ag—d DERCTN Y
G~ T (e A T 2 ’1’—“’1+771+7,1)
_ TN o b TIOugt ha—d)/2+m]
= T e 2] % Y i T2 (L ez (2.22

The contribution from the poles in seri€3) can be obtained from Eq§2.19—(2.21) by exchanging 1, 2, and 3, 4.

C. Coinciding poles

When €42, €342 or (\1,— \34)/2 become integers, the poles from different series in(E4.6) may merge into double or
triple poles. For example, when {,— \3,)/2 is an integer, apart from a finite number of them, all poles in series two and three
in Eq. (2.16 will merge into double poles, while the poles in the first series remain untouched. The contribution from a double
pole is given by the derivative of the integrand of E&.15. The expressions are quite complicated and we do not explicitly
write them down here. We simply note that there will be terms proportional fas a result ob¢™ 5/ ds=—1In ££75. If all
three parameters are integers, then apart from a finite number of simple and double poles all poles may merge into triple poles
and their contributions are given by the second derivative of the integrand d¢R2H®. In these cases, among other things,
we will have terms proportional to (I§? from the second derivative af ®.

We caution that in a certain range of parametgFs, in Eq. (2.15 may develop zeros at the poles and the pole structure
may be different from what we naively read from Eg.15. This happens wher;,/2 or €342 is a positive integet.As an
example let us take;./2=k+ 1 with k=0 an integer. By a transformati¢84] of generalized hypergeometric functions;,
in Eg. (2.15 can be rewritten as

€10 €34 N Nipt€ss
3k 7,7,5—51;7—31,1/4-1;1
F(N 12t €34)/2— 5] €y AN—d €1, s
= A sl 1 — 151 ,
TONg2— sl (12502 > 2 2 M 7 tsulm 5t 5wt il 2.23

Since 1- €142= —k, 3F,(€34/2,1+ (N —d)/2+5;,1— €142;14+€34/2,v+1;1) on theright-hand side of Eq(2.23 is given by
a terminating series,

8The following discussion is partly motivated by the result§af], where simplifications in some expressions in this range of parameters
have been observed. | would like to thank D. Freedman for correspondence regarding this issue.
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€34, A—d €12 €3 _
3F2(7,1+ T+Sl,1— 7,14‘ 7,1/4‘1,1

2 2

% A—d C
:SFZ(%‘,H—+sl,—k;1+i‘,y+1;1

k

| Fa T(v+1) (—1)™K! T[1+(\—d)/2+s,+m]

T2 IF1+\—=d)/24+ 5] m=o ml(k—m)! (Ez4/2+m)'(v+1+m) (229
from which we can see that it is convergent and has no poles inside the contour (i E5j.
Plugging Eq.(2.23 into Eq.(2.15), we get
C 1 o[ N34 A €3 A— €12 €
_ - S o o o . o7 .
SA_F(1+'E34/2) 2 i fcdslg 1F( 2 Sl)r(z Sl)H()\vsl) 3F2( 2 11+ 2 +Sl!1 2 ,1+ 2 ,V+1,1 y
(2.25
whereC is given below Eq(2.15 andH(\,s;) is defined by
I'(Agd2+51)T(Aygf2+ )T (A1/2+51) T (Ayy/2+S A A
H(\,sy) = (Asd DI (A4 DT (A DI (Agy 1)F ﬂ+51,_12+51;251§1_2 .
I'(2s;) 2 2 3

Naively, we may expect from E@2.15 that there are double (iv) €15/2 or €342 is zero or a negative integer: fasso-

poles ats;=\1,/2+n, n=0,1, ... .However, Eq(2.29 in-  ciated with the double poles at=\/2+n.
dicates that they are actually simple poles. This result may (v) €,4/2, €342, and ( ;,— \3,)/2 are all integers:
also be seen indirectly from Eq&2.18 and (2.19—(2.22: (vi) At least one ofe;,/2 andes,/2 is positive: except for

there is no singularity developed in either E@.18 or g finite number of simple poles, all poles are double poles
(2.19 whene; /2 approaches a positive integer. In fact it canith In ¢,
be checked that the residue of the integrand of @5 at (Vi) €14/2 and es4/2 are zero or negative: except for a

a poles;=\,/2+n is equal to the sum of Eq$2.18 and  finite number of them, all poles are triple poles with &R
(2.19 at the corresponding pole. If furthes,/2 is an integer,

then from Eq.(2.29 the pole ats;=A/2+k+1+m=N\,2
+m=N\34/2+n (M andn non-negative integerss a double
pole instead of a triple pole. In particular, there are no terms
proportional to (Irg)?> here[25]. A similar analysis can be
applied whenes, /2 is a positive integer. ) ) . . i

The appearance of the logarithm in coinciding pole cases Scattering amplitudes from more complicated interaction
can be summarized as follows: vertices such agd, ¢,9" ¢, and ¢D,d,$1D, " ¢, can be

(i) Only one Ofe;5/2, €342 OF (\1,— N34)/2 is an integer;  reduced to Eq(2.2) and contact-type interactions by integra-

(i) (A\;o—\30)/2 is an integer: Iné associated with the tion by part[17] or field redefinitiond 14]. For example, the

IIl. SCATTERING AMPLITUDES
FROM GENERIC VERTICES AND CONTACT TERMS

double poles as;=A\34/2+n, amplitude resulting from vertice$d¢,9¢p, and ¢ psh, can
(iii) €2 or €32 is a positive integer: all poles are be written agda anddg denote the integration measures as
simple poles, no logarithm, in Eq. (2.2)]

f da dB (9/C1 ﬁKzG(X,y) K:3K:4
1
=5 f da dB[*(K1Kp) — 9*K1kCo— 07KoKa] G(X,Y) KKy

1 1
=—§f dad,BICllCleglC4+E(mz—mf—mg)f dadB KK, G(X,y) KaKy. (3.1
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Note the coefficient of the second term T m3—m3) is Let us now look at the contribution from contact terms.
precisely the ratio between coefficients(df, @, @, ) cal- ~We observe thag by repeatedly using the idenidy,,(x)
culated from two types of interactiorsip,d¢, andgpp,p, = 8= 2XMX"1|X|7],

[10].

In general we can consider the following Lagrangian OfD”IC)\i(u,xi)DMIC}\j(u,xj)

scalar fields:
L= 3 (3007 + 5 mEd+ AL iy bt AL SD S D, by e o2y [ Mo |, [ Yo M
2 2 j i j Hp C)‘ic)‘Juoa"“(|u—xi|2> ﬂﬂ(lu_xﬂz)
+'"+Ai(jnk)¢iD(”)¢jD(")¢ka (3.2 =MM’CM(U,Xi)/ij(U,Xj)Jﬂo(U—Xi)JMo(U—Xj)
whereD(M ¢, is defined by = NN (U)K (U,%)
D™¢=Dy, D, "D, ybi. (3.3 — 20w K 41 (UX) K a(U,X)), (3.9

The{} in Eqg. (3.3 denotes that the indices are symmetrized

and traces are remové&d-or the purpose of tree-level four-

particle scattering we can eliminate those vertices with deandD?K, =m{K, we can put a generic quartic contribution
rivatives by a field redefinition into a sum of terms without derivatives,

bi= i + Bi(j?z(ﬁj’ bt Tt Bi(jnkil)D(nil)QSj, DYy 2
4
34 duyd?u

B's in Eq. (3.4 can found by plugging Eq(3.4) into Eq. Se= ud*t Fona (X0 Ko, (U Xp) Koy (Ui X3) Ko (U Xa)

(3.2 and setting to zero the coefficients of the cubic deriva-

. . . . . d
tive vertices. The resulting Lagrangian can be written as 11 f duod U( Uo )M< Uo )AZ
=1LiCy, d+1 12 Y
1 1 Ug lu=—x4] lu—xy|
L=5(9¢])7+ SME(H)) >+ \ijk ] b] by U M up |
N T2 72 (3.9
Ju=xg|*) \u=x4|

+ contact vertices of quartic or higher ordef3.5)

For example fom=2 in AdS;,,, B's can be found to be Thus itis enough to look at E¢3.9. _
[14], Contact contributions3.9) in AdS;., have been dis-

cussed before if8] and[18] (see alsq20]). In particular in
1 1 1 [18] it was pointed out that wheR,,= A 34 the leading term
Bi(jlk)ZEAi(jzk) : Bi(j()l()ZEAi(jll()+ ZAi(jzk)(miz_ m?—mg+2d) in the short distance limit;,, x3,—0 is given by a logarith-
mic contribution. Here we give a more thorough analysis of
the analytic properties of E¢3.9), presenting the result in a
way suitable for our later discussion of its GFihterpreta-
tion.
Nij= Al + B (m? —m?—mf) — ——=m’mZBj}) . In Appendix C, we show that similarly to the exchange
(3.6 amplitude, the contact contributidB.9) can also be written
' as an inverse Mellin integral,

and

Thus for generic interactions, the scattering amplitude can

be written as 1 N12 N34
Sczccﬁf dsésr 7—5 r ?—S
A =S, +8%, (3.7) ©
N . . . Aszg Agp - n
where S, is given by Eq.(2.15 with normalized vertices xXF 7+S'7+S’ZS'1_E
(3.6) and S is given by quartic vertices in EG3.5).
T (Asyf2+ )T (A 42+ S)T(A 12+ S)T(Apy/2+5)
X
I'(2s)
SWe can us®?¢=m?¢+- - to reduce terms containing traces of (3.10

indices to lower order terms. Similarly the commutators of deriva-
tives[D,,D,]«R also reduce to lower order terms, whétés the
constant curvature. with
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1 T[(N o+ Nga—d)/2] (2.9]. Thus in thes-channel limity, £>1, Eq.(3.10 can be
CC_ 2,”_3d/2 F(vl)F( Vz)F( V3)F( V4) written as
X ! - (N 12) S (N
oy e o e P e P L So= >S4+ 2 S,

where the integration patti should be understood in the
same sense as that in E@.9) [see the remark below Eq. where

-1 N+ A
Siﬁ12)=4A<Mz>(n—')§—”F(%+n,xl+n;xlz+2n;1—g
Nas— A\ I[N+ Az)2+NnT[(No—Asp)/2+n]T (N +n) (A5 +n
XF 34 12_n [( 12 34) ] [( 12 34) ] ( 1 ) ( 2 ), (311)
2 T'(Nppt2N)

and 5&34) can be obtained from Eq3.11) by taking 1, 2 Wherek sums over all the irreducible representations in the

—.3,4. NoteA®1 in the above is given by Eq2.20 and  Hilbert space and statdk,x)=®(x)|0) span the space of

except for the extraG, in Eq. (2.19, Eq. (3.1D) is almost  &n irreducible representation of the conformal group. Equa-
identical to Eq.(2.19. " ' tion (4.1) can be further lifted into an operator equation,

When (A\1,—\34)/2 is an integer, except for a finite num-
ber of poles, the two ascending simple-pole sequences of the _ d
integrand in Eq.(3.10 will merge into a double-pole se- (Dl(xl)q)Z(XZ)_Ek: fd X Qua(X]xe. %) ().
guence. Again as in the case of exchange amplitude, the 4.2
double-pole contribution will contain Ir¢. In particular,
whenh 1,=\ 3, all ascending poles become double poles andinderstood as a relation between correlation functions. The
the leading contribution contains a summation in Eq.(4.2) is over primary fields(nonderiva-
Note that since E¢3.9) is symmetric under exchanges of tives) only and the integration over all space effectively in-
its four boundary propagators, its expansion intkehannel corporated the contribution of their S@@) descendants
limit x,3, X,,—0 can be obtained by exchanging 2 and 3 in(fields with derivatives The short-distance OPE can be ob-
Egs.(3.10 and(3.11) andé— &/ » and p— 1/7. tained from Eq.(4.2) in small |x, limit by expanding the
integrand in terms ok;—X,. When®’s are orthogonal to
each other, it can be seen from Hd.1) that theQ's are
IV. FOUR-POINT FUNCTIONS AND CONFORMAL given by the amputated three-point functions.
PARTIAL WAVE EXPANSION IN CFT Applying Eq. (4.1) to a four-point function we find

To seek a CFJ interpretation of the Ad$ ; amplitudes W —(0|® ® o ® 0
discussed in the last two sections, in this section we review 1234 X1:X2: X3, Xa) = (0] 1(X1) P2(x2) L3(X5) Pa(x4)|0)

the conformal partial wave expansig@PWE approach to do

the calculation of four-point functions in CHR6,27 (for a :; j d d% QX1 ,X2|X)
review see [28,29, see also[30] for some recent

diSCUSSionjé)). XWk(X_y) Qk34(y|X3,X4), (43)

In CFTy4, the states generated by acting by a product of
the conformal operators on the vacuum can be decompos&thereW,(x—y) =(0|®(x)®(y)|0).
into a direct sum of irreducible representations of the confor- |n the following, we shall look at the contribution of an

mal group intermediate scalar operatdr, (with dimension)\) to the
four-point function of four scalar operatorsb)\i, i

=1,...,4(with dimensions\; respectively,
2,009,00/0)= 3 | 4% Quaxlxs x5 k¥,
(4.) Sx:f dx d%y Qi (X1, X2l X)Wy (X—Y) Quxpn,(¥[X3,Xa)-

(4.4

109 would like to thank A. Petkou for bringing these references to  In the Euclidean signature, the two- and three-point func-
my attention. tions are given by
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B o | T(ed2T (21427 (8,/2)T(8,12)
G)\(X_y)_<q)}\(x)(b)\(y)>_w2_! f)\)\l)\z_ 27TdF(V1)r(V2)F(V) ’ (45)
G, (X Xa, X2) = (@A (X) P, (X1) P, (X2)) and a similar expression fdy, ,, obtained fromf,, ,, by

taking 1, 2-3,4.
In the Minkowski signature, due to the spectrality condi-
_ tion, it is more convenient to work in momentum space,
Gingh,(XiX3,Xg) = (DA (X) D (X3) D)\ ,(X4)) where the two- and three-point functions are given by

= Fap A, (XX, X)),

= FanAag, (X X3.Xa), o
W(p)=—i DiscG(p)|pd=—ipo

where functionA,,«(X,Y,2) is defined by

2m 0 2
1 Zmﬂ(p ) 6(— Pytin) G(P) | pa= —ipo,
AlpdX,Y,2)= = - —5 -
abc( y ) |X_y|a+b c|z_y|c+b a|X_Z|a+c b (4.6)
The normalization constantsandf will be taken to be those o
given by AdS calculation10],* i.e., W(p|xy,Xp) = —i Disa(p|x1,Xp)|pd= —jpo,  (4.7)
I'(\) whereG(p) and G(p|x;,X,) are Euclidean two- and three-
C= 7 () (2A=d), point functions in momentum space
|
_ 1 w2 (—v)
= d —1p-y. — 2v
G(p) Cfd ye |y|2)\ c 221}1’*()\) p=,
2’7le2 1 p2 vl2
_ dy, a—ip- _ il
Gwz(plxl,Xz)—f dye P yGM\l)\z(yaxle2)_f)\)\l)\zl"(gl/z)l"(gz/z) ng(m(lz)
1 .

X jo du uA12/2+d/4—1(1_ u)A21/2+d/4—le—|p~[uxl+(1—u)XZ]KV[ /u(l_ u)pZXiZ‘I. (48)

The amputated three-point functiéhcan then be found to be
. . 2’V (2+v) p 7
lexz(plxl,XzFWx (p)Wmlxz(leaXz):C f""l"ZF(51/2)F(52/2) x}l\éfdlz
1 .

X J’O du uA1212+d/4—l(1_ U)A21/2+d/4—1e—|p~[uxl+(l—u)x2]| V[ /u(l_ u)p2X212]_ (49)

In Egs.(4.8) and (4.9 K, andl, are modified Bessel functions.
Plugging Eqs(4.6) and(4.9) into Eq. (4.4), we have, in momentum space with the Minkowskian signature,
1 d *
Wy=5_3 | d PQx x,(PIX1,X2) Wy (P) Quan,(PIX3,Xa). (4.10

The integrals in Eq(4.10 were explicitly computed if26] and the result can be written as an inverse Mellin integral,

MHere the normalization for three-point functions is given by the interaction veptes,¢; in AdSy. ;. When considering more
complicated vertices, an additional normalization fa¢®6) should be taken into account.
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Woeelf ot TOOT(1+v) 1
N O T (5 2 T (82 T (5512)T (8412) [X1l %1 P Xopd] 52 324 ) 23] Xigg] 24
1 (= [(8,/2+ )T (8,124 5)T (8324 S)[(8,/2+s) (85 & n
P &S — o3 21 ) L
"2 J—ioodS( & T(=s) T\ +25)T(v+s+1) Flg tsig tsiit2sii- 2,
(4.1

where¢ and 7 are cross ratios defined in E@.10 and the Mellin integral should be understood in the same sense as the ones
in the previous sections. Again whené>1, Eq.(4.11) can be written as an expansion:

_ 1 I (€1d2)T (€342 T (€142)T (€34/2) 1
»ogiA F(v) I (vo)(v3)[(vy) [ X121 12X 14| 72| Xpq] 22 234 X 5] 3] X 3| 34
1 T(8/2+ (824 T (8524 T (8,240) (85 &y o
X2 oré T+ 2mT (v +nt 1) Flgtngrmakzni-2). (419

We notice that Eq(4.12 agrees precisely with Eq2.18 including the numerical coefficient.

V. CFT4 INTERPRETATION OF AdS 4,1 AMPLITUDES

In previous sections, we have managed to express all our results as inverse Mellin integrals agdnahkmwrite them
in terms of inverse power series éf » as a sum of residues of the integrand. When the pole sequences if2HEds.and
(3.10 do not coincide with one another, in all cagese Eqs(2.18), (2.19, and(3.11)] the contribution from a pole sequence
can be written in a similar pattern as the CPWE expresgiai?)

©

> aH(A+2n), (5.1

where each term in the summation is given by the residue at the polenl/d Eq. (5.1), a, are numerical coefficients and
H is a function defined by

1
H a)= — a - a —a
(@) [X120"127 % x4 T A1 x5 B2 B3 g * T B3d x5 3
PA 24+ al2)T (A /24 al2)T (A3 2+ al2)T (A 42+ l2) [ A A
(A122+ al2)T(Apy/2+ al2)I' (A 342+ al2) ' (A4d a)Fﬁ+a Az @ w1 5.2
T(a) 2 202 "2 g
In Eq. (4.12,
. 1 T[(No=A)/2IT[(Nga— A)I2IT[ (N 12+ A —d)/2]T[ (N g4+ A —d)/2] 1 5.3
N ggldad I'(v)T (v)T(v3)T(vy) I'(n+)I'(A—d/2+n+1)"
The contact amplitud€3.9) may be written as
S, =502 4 a9 (5.4)
Wheresglz), Sg‘“) are of the form of Eq(5.1) with A=X\1,, \34. For 8812),
1 P[(N ot hgq=d)/2] (=1)" _ (Ngg=Npp
an=5_3dan -n (5.5
2732 T (y )T (vo) T (v3)[(vg) T(n+1) 2

with those ofsf:““) given by Eq.(5.5 with X\ 1~ \3,4. Similarly, the exchange amplitud2.2) can be written in terms of Eq.
(51) W|th A:)\, )\]_21 )\34,

Sex= SN+ 82 4 Shad) (5.6)
wherea" are the same as those of CPW&E3) and
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a(}\lz):

1 F[(NptAg—d)/2]  (=1)" ()\34_7\12_
n 8732 T (v)I'(v2)[(v3)I (vg) T(n+1)

. n) G 5.7
with G, given by Eq.(2.2) or (2.22. af])‘?"‘) may be obtained from Ed5.7) with 1, 2 and 3, 4 exchanged.
To have a more precise picture of what we have found so far, we would like to understand the physical meaning of the poles

and the residues of each pole. For this purpose, let us go back to the contribution of a primary @pgradidhe operator
algebra(4.2),

D), (X)) Py, (X2) = f A% Qi (XIXg , X2) P 5 (%), (5.9
where
Quanpn,(X[X1,X2) = f d’p €°*Qx p,(PIX1,X2), (5.9

and QAMAZ(p|x1,x2) is given by Eq.(4.9). For simplicity we will look at the analytic continuation of E@L.9) to Euclidean
space"? Plugging Eqgs(4.9) and(5.9) into Eq. (5.8), we find that{31]

q))\l(xl)q))\l(XZ): HZO bnx)\lz—A—Zn fo du u§1/2+n—1(1_ u)52/2+n—leux12ﬁcb5\n)(xz)
- 12

=n20 b,F,, (5.10

whereb, are numerical factors and we have defined opera- (ii) In both exchange and contact amplitudes, the contri-
tors, butions from a pole ak //2+n (or A34/2+n) agree exactly
with that of a subprimary operator with dimension,
®X1)(X2):(&2)H¢A(X2)i n=0,12..., (511 +2r_1 (Ngat 2r_1)_ and its diagonal descendants. But_ the nu-
merical coefficient$5.7) and (5.5 at each pole are different
] ] ) ] ) from that predicted by CPWE5.3), in particular, in the ex-
which we will call subprimary operatorsi0 is primary.  change amplitude the coefficient involves a somewhat com-
To reach Eq(5.10, we have used the series expansion forplicated factorG, Eq. (2.2).
the Bessel functiorf, in Eq. (5.10 denotes the contribution The above identification of Eq¢5.4) and (5.6) in terms
to OPE from a subprimary operatdr(A”) and its diagonal
descendants. By diagonal descendants we mean the states in

weight diagram diagonally generated from a subpriniage A
Fig. 5. We may now interpret that each pole in E¢.11) A5 . o »
represents the dimension of a subprimary and the residue at
the pole corresponds to the contribution of the subprimary Aed o /' o
and its diagonal descendants.
By comparing Eqgs(5.6) and(5.4) with CPWE (5.1) and A+3 |- e o~
(5.3), we see that for the case of noncoinciding poles:
(i) S™ in exchange amplitudé.6), which arises from the Av2 = e
first pole sequenck/2+n in Eq.(2.16 agrees precisely with na .,/
the result from conformal partial wave expansi@nl?), in- *
cluding the overall numerical coefficient. This indicates that N
S™ has a CFJ interpretation in terms of exchange of a
primary operator of dimension. | | | | | |

FIG. 5. Weight diagram for S@(2) representatiorD(\,0).
2This is not completely the right thing to do, because theThe horizontal axid represents the set of indices for SIP(sub-
Minkowski signature integration over momenta involves the spec-group, and the perpendicular axis represents the scale dimension. A
trality conditionsp,>0, p><0, in which case the expressions are subprimary is a state lying on the line with=0. The states con-
rather complicated. For illustrative purpose, we shall use a Euclidnected to a subprimary by dotted lines are descendants diagonally
ean expression. generated from the subprimary.
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7‘«1 }\.1 7\,4
X1 / \ X4 \/ \/
\Q 7\-.;/ \ i i

o ] = e + FEoN
o /\ M M /\ A

of exchanges of subprimary operators also cast light on thderivatives fill an irreducible representation of the conformal
conditions(1.4) and (1.5 for the occurrence of logarithms, group. Although we have found in Eq&.4) and (5.6) the
which are satisfied precisely when subprimaries of differentontributions from a complete set of subprimary operators of
operators become degenerate. dimensions\ 1, and\ g4, their relative OPE coefficienid..1)

For example, consider a contact diagram with,;{ are not consistent with those required by conformal symme-
—\34)/2=k and k a positive integer. The dimension;,  try, in other words, these subprimaries do not seem to fill the
+2n of a subprimary operata®{} of O, will then be the ~same irreducible multiplets.
same as that of the subprima®$"™ . In addition, the It is probably not surprising that we do not find a com-
quantum numbers of all the diagonal descendants generat®£te CFT identification in Eqs(5.4) and(5.6). After all, we
from O{) and O™ will be identical (see Fig. 5 To see &€ only looking at a generic diagram in AdS, which
this more explicitly, let us move slightly off the degeneracy Nardly makes too much sense before we specify a particular
point, i.e., consider\;,=Ag+2k+2e where 0<e<1. theory and add up all the diagrams contributing to a realistic

Then Eq.(5.5 may be written agbelow we will omit the gmplitude. The (_ancouragirjg message seems.to be that We are
overall constant indeed able to find a relation between an arbitrary scattering

diagram and OPE, which indicates some kind of universality
1 between a theory in AdS, and CFT,.

It is not clear at the present time how much we see here
will survive in the final expression of a realistic amplitude, in
particular, whether operatof3;, and O3, will have a con-
sistent CFT interpretation when we add up all the diagrams.
Let us now consider what these operators could be if their

Ay

FIG. 6. t-channel OPE interpretation of a con-
tact diagram.

a12:(_1)k ™
n sinew I'(n+1)I'(1+n+k+e¢)’

where we have used'(x)I'(1—x)=/sinxm. Equation
(5.4 may be written as

k=1 _qyn contributions do survive in the final expression. A clue
Se= >, Y I'(k—n+e)H(Ags+2n) comes from the consideration of free theory, where the op-
¢ o n! erator product expansion takes the fofsee, e.9.[32)]),
(Y Ghen & | T(mT DT (1+ mrkT o) ADBW)=A)B(w)+:A(D)B(w):, (6.
H(\3a+2m+ 2k)

(5.12 where the first term on the right-hand side denotes a contrac-
' ' tion and A(z)B(w): stands for a normal-ordered operator
whose explicit form can be obtained from a Taylor expan-
As we takee to zero, the conflicting contributions fro@{®  sion,
andO{]"* in the square bracket become degenerate and the - ow)
result is given by their derivatives ovet which contain . o _ k
logarithms. The above discussion suggests that by turning on AZ)B(W) '_kz'o k! (FAB)(W).
a very smalle at degeneracy points, E¢5.12) provides a ) ) )
useful way to “regularize” logarithms. !n free theory the conformal dimension foA(z)B(w): is
Since a contact diagram is symmetric under exchanging?StAa+Ag. Thus naturally we may expect th@, andOg,
its external legs, it$ or u-channel expansion can be simply Should be the counterparts 0Dy O,,: and 0, O, : in
obtained by taking 2-4 or 23 in Egs.(5.4) and(5.5. For  interacting theory. INnNV=4 super-Yang-Mills theory with
example, it can be represented as-channel exchange in gauge group SW), O;, and O3, may be interpreted as
CFTy as in Fig. 6. double-trace operators, i.e., operators of typEdTr F2(x).
Since we do not see a continuous spectrum of dimensions in
V1. DISCUSSIONS Egs.(5.6) and(5.4), we would expecO;, andO3, to corre-
spond in Adg,; to two-particle bound states of
We note that conformal symmetry imposes strong restricsupergravity/string theory. This is consistent with the expec-
tions on the coefficient@!‘j in Eq. (1.2); that of the primary tation[33] that, to lowest order in N, there cannot be any
determines those of their descendants. The structure of Eqsvo-particle cut in Yang-Mills four-point functions.
(5.10 and(4.12), including the numerical coefficients, in Finally, we note that since Eq$5.5 and (5.7) involve
Eqg. (5.3 andb, in Eq.(5.10 in the summation, are uniquely dimensions of other operatofs.g.,A and\3,), it suggests a
fixed up to an overall constant by the fact tlg and its  possibility that the mismatch in our OPE identification may

'm+1-e)I'(1+m+Kk)
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be due to certain underlying mixing and interaction between I'(c) 1 (i
different operators at the subprimary level. Moreover, when  F(a,b;c;z)= T(a)r(b) Z_mf

e—0, the pattern indicated in E¢5.12) for the degeneracy
of subprimaries strongly reminds us of the behavior of a I'(a+s)I'(b+s)

7ioc

two-level system. Similarly, by examining the exchange am- T(cts) F(—s)(—2)°
plitudes(5.6) and(5.5), we also find that the pattern near the
degeneracy points is rather like a three-state system. (A3)
Takingb=c in Eq. (A3) we get
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APPENDIX A:  MELLIN TRANSFORMATION AND |=f ~dsh(s)J(s), J(s)zf dx*f(x).  (A6)
ANALYTIC CONTINUATION cie
Here we give a brief introduction to the Mellin transfor-  Normally, Mellin transform(A1), (A2) is not as conve-
mation and how to use it to evaluate integréls. nient as Fourier or Laplace transform as it requires the func-
The Mellin transform of a functiog(x) is tions to be transformed have reasonably “good behaviors”

both at zero and infinity to ensure the existence of the strip
- where the transform can be defined. But for those functipns
h(s):f dx g(x)xs~ L. (A1) in Eg.(Al) which have a convenient power series expansion
0 (such as hypergeometric functioniglellin representation is
more powerful since the indices and the coefficients of the
If the set of convergence of the integfall) has a nonempty €xpansion are represented by the poles and the correspond-
interior «<Re@)<B and h(s) is analytic in this strip, we ing residues of(s) in the complexs plane.
can have the inverse Mellin transformation, Let us look at a simple example,

1 [(c+iw | = wdxx”‘l(1+x)_“(x+t)_”. (A7)
g(X)ZZ_ﬂ-iL_im h(s)x™°ds (A2) jo

The integral is defined when R§&0, Re(u+p—v)>0, and
for all ¢ such thate<c< g. argt)<<z which we assume is the case. For convenience we

Some well-known integral representations of higher tranWill also take[t|<1. The result of Eq(A7) is well known,
scendental functions can be interpreted(iaserse Mellin ~ 9iven by a hypergeometric function,

transforms, for example, =t PB(v, o v+ p)F (v pt pil—t),  (A8)

N - (" -1 1 whereB(v,u—v+p) is a B function.
F(s)= fo dxx*""e™*, T(s){(s)= fo dxx (e =1)", Here we would like to reproduce the result by using the
Mellin transformation technique of EqA6). For the mo-

ment we first assume R®E0. Note that from Eq(A4),
and the Mellin-Barnes representation of a hypergeometric
function, 11 (e Sy—p-s

(x+1) F(p) 27 J’Hw dsT'(p+s)I'(—s)t3 ,
(A9)
13 would like to thank T. W. B. Kibble, F. G. Leppington, and A.

B. Zamolodchikov for discussions related to the content of thiswhere —Re(p)<<c<0. Plugging the above expression into
appendix. Eq. (A7), we get
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i \i
----- ! ! FIG. 7. Pole structures and
! 0 ‘ 0 ‘ contours. (@ Re(w)>Re®)
o o o] o ? i E ..... o) =) =] =) ? ‘ 3 >Re@)>0: (b) Re@)>Re(]j)
_p—p,+v i % X X X X - E i )‘( X X X X 3 >REQ,L)>0
| |
a b
1 1 ([c+i= < path in Eq.(A10) into a smaller strip mdx-Re(u+p—7v),
' T(p) 2mi fc—ioc dsT'(pts)I'(=9)t —Re(p)]<c<min[0,Ref—p)]. It is clear that in this refined
strip there is indeed no ambiguity to define the integral and
% L again we get the desired result. See Fitp) for the pole
X fo dXX'7PTSTH(1+x) M structure and the contour for the case: i}eRe@)>Re(uw)
>0.
1 1 jcﬂw o
_— dsfT(p+s)I'(—s
T () 27 Jooin (pts)I'(—s) 3. Re(W)>0, Re(v), Re(p)>0 and others
Now the convergent conditiofA1l) can no longer be
X(v=p=9)I'(utp—v+s), (A10)  satisfied. There is an overlap between the ascending poles
) ) from I'(v—p—s) and descending poles froli(u+p—v
and the convergence of theintegral requires +s) and there does not exist a uniform strip that the inverse
Mellin integral (A10) is well defined. In this case we can
—Re(u+p—v)<Re(s)<Rgv—p). (All)  define the integral by analytic continuation from the conver-

gent region ofw. It is clear that as we vary continuously
Since thex integral in Eq.(A10) has generated new pole from ;>0 to x<0, the only way to avoid the sudden jump
sequences in the complexplane, we have to check that they qf the value of integral by crossing the poles frdtfy+ p
will not cause any ambiguity in carrying the inverse-Mellin _,, | 5) is to deform the integration path so that it still sepa-

integral in the second line of E¢A10). rates the descending and ascending pole sequé¢seed-ig.
8(a)].
1. Re(w)>Re(v)>Re(p)>0 It is obvious that by repeating the above procedure of

eforming the path of EqA10) [see Fig. &)] we can ana-
Mically continue the integralA7) to arbitrary complex val-
ues ofu, v, p except for some discrete surfaces in the space
of u, v, pwhere one or more of, u andv, u+ p— v become
nonpositive integers. In these cases there are coincidences
between the ascending poles and descending poles and it is
no longer possible to separate them. The analytic continua-
tion breaks down at these surfaces. The pathology,a

In this case, it is easy to check that there is no overla
between descending and ascending pole sequences and
new pole sequences sit outside the strifRe(p)<<c<0
[which means the convergence conditighll) is trivially
satisfied, where the inverse Mellin transforfA9) is de-
fined. Thus there is no ambiguity in defining the integral in
Eq. (A10) and we can take the integral around a contGur
which consists of the path in E§A10) and encloses the )
right half plane. See Fig.(@ for the pole structure and the = _K» k=0,1,2.... may beattributed to the method we are
contour. Sincdt|<1 the contribution from part of the con- UYSINd [see Eq.(A9)],™" while at v, u+p—v=—k, kk
tour other than Eq(A10) vanishes and Eq(AL0) can be =Q,1_,2 ... the analytm con_t|nuat|on truly breaks down
written by the calculus of residues as the sum of the residugSimilar to the poles if” functions.

of the integrand at the poles=0,1, ... ands=v—p+n,
n=0,1,... . It iseasy to see the sum gives us EA48). APPENDIX B: DETAILED EVALUATION OF J

Here we present the details of the calculation leading
2. Re(W), Re(v), Re(p)>0 from Eq. (2.9 to Eq. (2.9. To avoid making formulas too

In this case, there is still no overlap between descending
and ascending pole sequences, but there are poles sitting in-
side the strip—Re(p)<<c<0 if u<v or v<p, which seems  4wnen u, p=—k, k=0,1,2..., (1+X) * or (x+t) * be-
to cause ambiguity in the choice ofn Eq. (A9) as they may  comes a finite series and can be expanded directly to evaluate the
enclose different poles inside the strip. However, the converintegral. The result can be expressed in terms of the terminating
gent condition(A11) requires that we squeeze the integrationseries of hypergeometric functions.
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o o o o of | L e o o o o)
e ey e e e i FIG. 8. Pole structure and ana-
o~ 7 o lytic continuation. (a) Re()
..... o o o 39 o 6 0 oI >Re()>0, Rew)<O0; (b) general

values of parameters.

long, we will suppress the prefactofeumerical constants — §,=\+A,, 6,=N+A,;, S3=N+Az,, 5,=N+Ay3,
and powers of;;) of the integrals and give their final ex- L o o
pression only at the end. We use the following definitions: §;=N+A,, 8,=N+A,;, 03=N+Ag,, S4=N+Ays.

5 d J(s) in Eq. (2.8 can be further simplified by applying the
A=d—\, v=A— 5 Vi=\i— X i=1,...,4, inversion trick[10]: setx,=0, then use a simultaneous in-
version of the external coordinates and the integration vari-
B ~ abIes,uM—>uM/|u|2, vM—>vM/|v|2, X=X/ 1|%|%, i=1, 2, 3,
Nij=NitNj, Ajj=Ni—Nj, €;=\jj—\, & =\jj—A\, after whichJ becomes
(B1)
|
J(S): 2)\+25 j dUOddU dVOddV Ug M Ug A2
Xallxa P 2lxgl 3 ) ug™ vgTt Lu=xgl?) \Ju=xg[?
UoVo A+2s Vo A3 "
2 2 =_ 2 12 \7 (BZ)
ug+vg+|i—v| v —x3|
Using
I'(A o
; ' f dp p* e 7, (B3)
0

we can rewrite Eq(B2) as
J(s)= J; dp1dp2dpzdp pﬁlflpgflpgflp“zsflf dugd i dvody ugiz 2ty car2emt

2 2
x e (PPt Plog™ (VT PalVo exp{ — py| G — X} |*— po| U= X5|? — p| G — V5| >~ p3 V — X3|%}.
Integrating ovem,, v, we get®

€102+s

1 )234/2+S

) 1
N1 Ap—1 Ag—1 _
J(s)= fO dp,dp,dpzdp pll p22 P33 p>\+23 1(—

pitpatp pstp

x || da v exst— pula— 2 pola 53l pla— V17— polv - 537

Now we use the following expression:

5The convergence ofiy, v, integrals requires Ré(,+2s)>0 and Ré&,+2s)>0. Since Ref)~0, the convergence conditions are
indeed satisfied with;, A>d/2.
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2
f § > ) |92 2 PipiXi)
d%G exp — ja=x%t=<=—| expf ———=——
p{ - P ' J 2.pi 2.pi
to integrate over,Vv, which leads to
B 1 €2+s 1\ €aq2+s
J(S):f do-dp,dpadp ot tpr2 e N +2s-1
, dpadpzdpsdp py® “p3* pg” Tp ot patp et p
X( 1 )d’ze p{_ ppzp3|X53|2+pplp3|X13|2+plpz(ps+p)lxiz|2]
pa(p1tpatp)tp(pitpz) pa(p1tpatp)tp(pitpz) ’
where|x/;| =X/ —X{|.
Let pi—pp;, 1=1,2,3 and integrate over,
s 1 €1o2+s 1 ;34/2+S
3 S):f dodoadoapt T2t he 1
( o dpadp2dpapy™ “py" Tpgt 3 1+ ps
1 (A o+ Aggl2

X[(p1+p2)(1+ p3) + pg]M12aa D2

P2P3| X33 °+ p1palXid®+ p1pa(pat 1)[x1y?

Note that the convergence of thentegral requires\,+ Az,>0.
Now we define new variableg, =ou, p,=o0(1—u), p3=p, and

[xid?

S Ixgd® T Ixid

n
after which the integrals become
1 ~
J(S):f du u(A127A34)/271(1_u)(A217A34)/271J' dO’dp 0_()\127A34)/271(1+0_)7512/275
0

Xp)\3,l(1+p)7}34/2—5(0_+p+Up)()\12+A34*d)/2[0_(1+p)+pz]_(>\12+A34)/2.

Further defineg=p/(1+ p), so that
1 e 1 -
‘]:f du U(Alz—A34)/2—1(1_ u)(A21—A34)/2—lf do_f dt 0_()\12—A34)/2—1(1+ 0_)—512/2—5
0 0 0
Xt)\3—1(1_t)54/2+s—1(0,+t)()\12+A34—d)/2(0,+tZ)—()\12+A34)/2.

Our next step is to use the inverse Mellin transformation (&d,),

1
1+x

“ 11
“T(a) 2w

ﬁw dsT'(—s)['(a+s)x®

in (o+1tz) 1272392 in Eq. (B6). Then theo-t part of the integrals in EqB6) becomes

Az

1 (i 1o+ <
_ _ e o8 —sp— (Mot Agy/2
o ﬁixdsll“( sl)F( 5 +s;|z Jq

with
0 1 -
lef dO_J dtt()\34—)\12)/2—51—1(1_t)54/2/+S—10_()\12—A34)/2/+sl—l(1+o_)—612/2—S(O_+t)()\12+A34—d)/2.
0 0

After o integration we get
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Nio—Agy €12
J;=B| s+ T,s—sl—7
1 = _
xf dt to4/2/s71(1 —t)(Naathipmd)2-1p %12+s,sl+ MZTAM;S+%J :
0

Notice that the power ihcoincides with the third parameter of the hypergeometric function inside the integral. In this case the
integration ovett can be done very easily and we get

_ PL(AgatNgp=d)/2] T[s1+ (N 1p— A3g)/2]T'(S— 51— €12)/2I[ (N34~ N 12)/2— 54 ]

R W [(s— 5,142 (89
Plugging Eq.(B9) back into Eqs(B8), (B6) and rearranging the integrals
1 [i= Niot Az, N1o—Azg| [N3g— g
J(s)—CzﬁJlimdle(—sl)F TJrsl '\ s;+ 5 r 5 S
I'(s—s;—€142) (1 7 £\ TS (M2t Aggl2
(Aqp—Ag2—101 _ 1\ (Ap—Agpl2—1 S
T(s—s, +2a2) Jo QU U 2 20 T(Amwmen B a0+ (B19)

The integral in the second line gives us a hypergeometric function and the final expressibis fave shifteds; by s;
+N12—81),

1 A A A A
—C— —s;—Aggop| 212 As4 234 212, o og 17
J(s) C22wi fcdgg F( 5 sl>1“ 5 s |F > +54, > +51;25;;1 z
><1“(A34/2+sl)l“(A43/2+51)1“(A12/2+sl)l“(A21/2+sl) IF'(N2+s—s;) B11
I(2s)) [Tt szt s—sg] (81D
Now restorex, by takingx;—x;— x4, i=1,2,3. 7 and ¢ defined in Eq(B5) become the cross ratios
B |X14— X34 B |X19 %[ X24® _ 54— X34? _ |X14 %[ X25|®
=1 _<orz2_ 2 2 e _gr 12 2 2- (B12)
[R14=X5d®  [X12]%| X34 |X14=X54%  [X12]% X34

Finally, the prefactoC, is given by

I TN o+ N3y d)/2]T (5+€1/2) T (5+7%34)/2 AR
274 TODTIDTAITAHYT(A+25)  [xgq 127 Baqxy 8127 Badxy [ 3217 Baqxg |23

We note that it can be checked that the integrals in interWhen parameters are outside the range of (B4.3), some
mediate steps from EdB2) to (B11) are convergent only integrals in intermediate steps may not be convergent and
when the parameters satisfy the following conditions:can only be defined by analytic continuation. Further there

[Rel)~0], are overlaps between the ascending and descending pole se-
guences in EqB11) and there does not exist a uniform strip
81 8 83 85  NpptAss  AagtAgs in which the Mellin integral can be well defined. In this case
=>0,—5—>0, >0. (B13)  we can define the integral in EB11) by analytic continu-

2222 2 ation by deforming the integration pathso that it separates

. the ascending and descending poles. In Appendix A we have
For the abovg range of parameters thefe is no overlap b%’lven a detailed discussion of this procedure in a simpler
tW?e” ascending and de_scendlng po_les in(B4.1) and_ the example. The whole discussion can be applied to this more
s, integral can be unambiguously defined by squee@®p ., hjicated case without change. We note that when some

determined by the convergence of the intermediate inte)gral%oleS from ascending and descending series coincide with

the integration patld to lie inside the strip: one another, e.g., if one or more Ok 6+ As)/2, (\as
*A)/2,6/2,i=1,...,4 arenonpositive integers, there is
A_12 A_21 &1 &1 <Re(sy)<min| ~ )‘_12 El no way to separate the ascending and descending poles. The
2222 ! 2227 analytic continuation breaks down at these points.
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APPENDIX C: EVALUATION OF CONTACT CONTRIBUTION

Here we would like evaluate E3.9). Again we will suppress the prefactor of the integrals most of the time and follow the
notations defined in EqB1).

As in Appendix B, using Eq(B3) and integrating oveu,, we get

1
— 4 Ai—1 = _ In_w.12
Sc_f I_1dpip; (p1+p2+p3+p4)(”12“34d)lzf duexr{ Z pil0—Xi|
4
1 i<j2:1 pipilxi|?
= | A ,dppt expl| ———F—|, (CY
f T (pyt ot pat pg) Mzt red” p1tpatpstps

where in the second line we have used EB4). Now let p/=p;(p1+p,+ps+ps) V2 and note that detp;/ip])
_2(24 10i )4

1 T[Oupthag—di2]
S = 3 T )T ()T (v) T ()

K(N1,A2,M3,X4), (C2

where we have included the numerical prefactor Knid defined by

. 4
-1
K()\l,)\z,)\s,M):J’O dp1dp2dpzdp,Ilip;! eXF{—sz_l piplxij|?

(C3
SinceK has translational invariance, we can take=0. Definingp/ = p;|x;|%, i=1,2,3, we find that
4
2 plpj|XIJ| 1+Pz+P3)+ 2 P| |Xi,j|21
wherexj; =X/ —X| andx =X; /|xi|2. Then in terms ofp (we omit primes orp; below) andx, , J becomes
K= ! FHS dpip’i "t exp —pa(prtpatps)— X pipilXi|?
|x1|2"1|x2|2*2|x3|2"3 o 11 pip; Pap1T P27 P3 5Ly PiPjIXij
3
I'(\y) f _1 1
2_.d ——————exg — ipil |2 C4
|X |2)‘1|X2|2)‘2|X3|2)‘3 i=1 PlP. (p1+ pat pa)e i<j2=l P|PJ| IJ| (C4
Now let ps=a, p1=ap, p,=avy,
nglfl,y)\zfla}\lfrAMfl
K:f dadpdy RV exr — a®(BIx1d*+ ¥Ixpd*+ BYIX1d?)]
Jr ﬁ)\lfl,y)\zfl 1
= | dBdy 7 7 7 : (CH
(14 B+ 7)) [ BIx1d*+ y|x5q*+ Bry|xig 2] Mez* 23072
Further letB=ou, y=0(1—u) and define,
N I
xid?" ° Ixg?T T 1mu
after whichK becomes
1 o
K= fo du U(Alz—A34)/2—1(1_u)(A21—A34)/2—1j0 do O,(Alz—A34)/2—1(1+0_)—)\4(0_+Z)—()\12+A34)/2_ (C6)

The o integral above is nothing but the familiar integral representation of a hypergeometric function.
We now restore,, after which¢ and » become the cross ratios defined in B812). Including the prefactor of the integral,
we get the final expression fdx,
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K 1T (AT (NH)TL(N 12— Agg)2]T[(A12F Agg)/2] 1
2 I[(N 2t N34)/2] | g9 127 834 x| 1127 B3 x5, 2217 B3 x| 23
NiotAzy Np—=Agg NpptAzg 1

1
(Aqo—Agpl2— (1 _ 1\ (Ap1—Aga)/2—1,—Agy =
xfoduu (1-u) 2 F( R T R T R S b (C7)

Alternatively, we may use the Mellin-Barnes representation for a hypergeometric function

r 1 (i
F(a,b;c;1—2)= © iJ’,- ds ZI'(—s)['(c—a—b—s)I'(a+s)['(b+s)

I'(a)['(b)T(c—a)l(c—b) 27

in Eqg. (C7), and then integrate over In this form S, can be written as

1 [ Ngptiw A A
Sc:CCﬁj " dsé ST 712—5)1“ i‘—S)F

Npo—i® 2

Agy Ay n
7+S,7+S,28,1— E

| L(80/2+ ST (Adf2+ ST (A 2+ T (8/2+5)

I'(2s) (C8)
with
1 I[Nt Nga—d)/2] 1
Co= 232 T (w)T(v2)T (v3)T(v4) [X12" 17 X142 12 X0 2217 B34 X0 23 X34 *34"
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