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Derivative expansion of quadratic operators in a general ’t Hooft gauge
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A derivative expansion technique is developed to compute functional determinants of quadratic operators,
nondiagonal in spacetime indices. These kinds of operators arise in general ’t Hooft gauge fixed Lagrangians.
Elaborate applications of the developed derivative expansion are presented.@S0556-2821~99!03318-4#

PACS number~s!: 11.27.1d, 11.10.Wx
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I. INTRODUCTION

A very powerful mathematical technique that is used
many areas of theoretical physics is the heat kernel exp
sion of a quadratic operator. It has become very signific
because it can help us calculate quantum corrections in q
tum field theories and in quantum gravity.

The transition amplitudes are calculated in terms of p
turbation expansion. If the path integral has a saddle p
then we can perform a functional Taylor expansion aroun
and keep the terms up to second order. Saddle points ar
solutions of the classical field equations which dominate
path integral. In this way we find the one loop corrections
a function of the determinant of the quadratic fluctuations
the quantum fields.

The derivative expansion presented here extends the w
of Moss, Toms, and Poletti@1,2#. Their expansion is a modi
fication of the heat kernel asymptotic expansion. They
pand in powers of covariant derivatives.

The derivative expansion method is very useful when
want to evaluate one loop corrections, in cases where
background field is not constant. This is indeed the situa
for the soliton solutions, as well for the tunneling rates wh
the instanton solution is a function of the Euclidean sp
coordinates. Recently theories that predict nontopolog
soliton solutions have attracted the interest. Similar exp
sions need to be performed in order to study the fate of th
nontrivial time independent classical solutions when qu
tum corrections are considered@3–6#.

A more general version of the derivative expansi
method is developed. This can deal with an extended num
of operators, nondiagonal in spacetime indices, covering
the interesting ones in gauge field theories. The new form
ism can deal with all the gauge choices, in ’t Hooft gau
fixing. It is thus very useful when we want to study the gau
dependency of the various results.

II. THE DERIVATIVE EXPANSION

Heat kernel expansions and the similar derivative exp
sions are useful when the background field or fields are
homogeneous. In the conventional estimations of the
quantum corrections, for example, in the one loop effect
action, we assume that the classical scalar field~the vacuum
expectation value! is constant. In the case that this is not tru
derivatives of the background field do not vanish resulting
the appearance of extra kinetic terms in the Lagrangian
0556-2821/99/60~10!/106001~18!/$15.00 60 1060
n-
nt
n-

r-
nt
it
the
e
s
f

rk

-

e
he
n
e
e
al
n-
se
-

er
ll
l-

e
e

-
ot
st
e

,
n
In

this case we have to deal with second order operators of
form

D52D 21X, ~1!

whereD is the covariant derivative associated with the gro
symmetry andX a matrix in the same space with the grou
structure.

The heat kernelK(x,x8,t), (x represents a spacetim
point andt a positive parameter! is a quantity that helps to
deal with the eigenvalues of the operator. Ifun(x) are the
normalized eigenfunctions of the operatorD, with corre-
sponding eigenvaluesln , the heat kernel can be express
as

K~x,x8,t !5(
n

un~x!†un~x8!e2lnt. ~2!

It is related with another useful quantity, the generalizedz
function

z~x,s!5(
n

ln
2s ~3!

in the following way:

z~x,s!5
1

G~s!
E

0

`

dtts21tr@K~x,x,t !# ~4!

for s.d/2 ~with space dimensionsd). It can also continued
analytically ats50. The above defined functionsK(x,x8,t),
z(x,s) are useful in computing one loop quantum correctio
since the functional determinant of the relevant quadratic
erator can be expressed as

detD5)
n

ln5 expF2E d4xz8~x,0!G ~5!

with

z8~x,0!5
dz~x,s!

ds U
s50

. ~6!

The derivative expansion I closely follow, suggested
Ref. @2#, is based on a different expansion from that in E
~2!. The expansion can be written in powers of covariant
ordinary derivatives
©1999 The American Physical Society01-1
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tr@K~x,x,t !#5~4pt !2d/2(
i

Ai~x,t !, ~7!

whereAi(x,t) is a function carryingi derivatives ofX: The
derivative expansion is a local expansion which sums con
butions of a given number of derivatives to all orders co
trary to the heat kernel expansion which sums different nu
ber of derivatives order by order and therefore has, in so
cases, worst infrared problems. These functionsAi(x,t… can
be computed using the heat kernel equation expanded in
momentum space. The heat kernel equation

DK52
]K

]t
52K̇ ~8!

can be written as

E d4x@k21X~k,x!#K~x,x8,t !e2 ik(x2x8)52K̇~k,x8,t ! ,

~9!
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where K(k,x8,t) is the following transformation of
K(x,x8,t),

K~k,x8,t !5E d4xe2 ik(x2x8)K~x,x8,t !. ~10!

We also expand in powers of usual derivatives

K~k,x,t !5K0~k,x,t !(
n

an~k,x,t !, a051, X5(
n

Xn ,

~11!

whereXn is the part of the quadratic terms carryingnth order
derivatives or in other words thenth order kinetic terms
while X0 contains the mass terms.K0 is the part of the hea
kernel with no derivatives andan is the part of the hea
kernel that carriesnth order derivatives divided byK0.

We can now express the functionsAn(x,t) in terms of the
new defined functionsan . From expressions~7!, ~10! we get
(
i

Ai~x,t !5~4pt !d/2 trE d4xE dm~k!K~k,x8,t !eik(x2x8)d~x2x8!⇒An~x,t !5~4pt !d/2E dm~k! tr@K0~k,x,t !an~k,x,t !#.

~12!
nd
The next step is to develope an iterative scheme which
give the first terms of the expansion, in powers of covari
or ordinary derivatives of the relevant operator.

III. GENERALIZED METHOD

In the previous section we described the first comm
steps between the derivative expansion method develo
previously@1,2#, for operators of the formD52¹21X, and
the generalized method presented here. The old metho
not applicable in the case of some quadratic operators
encounter in gauge field theories. The reason is that in
ferent gauges than the Feynman one, we get operators o
following form:

D52dm
n ¹21~12j21!¹m¹n1Xdm

n . ~13!

The material below is a generalization of the derivative
pansion method in order to handle the quadratic operator
’t Hooft gauge fixing. We avoid describing in great detail t
derivation of the various expressions. The reason is that
algebra is too lengthy to be presented.

The heat kernel equation of the above operator can
written in the momentum space, after a Taylor expansion
X(k,x), in powers of x2x8[xm2x8m around X(k,x8), as
follows:
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Fdm
n k22~12j21!kmkn1dm

n (
r 50

`
1

r !
X,m1 . . . mr

dm1•••dmr G
3K~k,x8,t !52K̇~k,x8,t !, ~14!

wheredm5 i ]/]km is the transformedxm2x8m. We define

Pm
n 5dm

n 2 k̂mk̂n, Qm
n 5 k̂mk̂n, ~15!

where

k̂mk̂n5
kmkn

k2
. ~16!

It is obvious that

PQ[Pm
l Ql

n50, Pm
n 1Qm

n 5dm
n . ~17!

Performing the derivative expansion approximation we fi
from Eq. ~14!, at zero order

K05e2[( Pm
n

1j21Qm
n )k21dm

n X0] t5~Pe2k2t1Qe2j21k2t!e2X0t.
~18!

K0 can further be written in terms of the eigenvaluesmi
2 of

the matrixX0 and the matricesTi , which are defined by

X05( mi
2Ti . ~19!
1-2
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DERIVATIVE EXPANSION OF QUADRATIC OPERATORS . . . PHYSICAL REVIEW D 60 106001
Using expression~18!, a recursion equation can be obtain

ȧn52 (
0,r 1s<n

(
i , j

1

r !
TiXs,m1 . . . mr

Tje
2(mj

2
2mi

2)t

3D̂m1 . . . D̂mran2r 2s , ~20!

where

D̂r5dm
n i

]

]kr
2Gm

nr5dm
n dr2Gm

nr . ~21!

The connection term is

Gm
nr[Gr52ikrt~P1j21Q!2 iPP,r~12e(12j21)k2t!

2 iQP,r~211e(211j21)k2t!, ~22!

where

P,r[Pm
n,r5

]Pm
n

]kr
. ~23!

The following relations are very helpful to proceed furth
into the algebra of the iterative scheme.

Zeroth order:

PP5P, QQ5Q. ~24!

First order:

PP,r1P,rP5P,r, tr@PP,r#5tr@P,r#50. ~25!

Second order:

tr@P,rP,s#5
2

k2
Prs, tr@PP,rP,s#5

1

k2
Prs, ~26!

also

tr@P,rs#50, tr@PP,rs#52
2

k2
Prs, tr@PP,rPP,s#50.

~27!

Terms includingQ are

P,r52Q,r, P,rs52Q,rs, ~28!

and

tr@QP,r#50, tr@QP,rP,s#5
1

k2
Prs,

tr@QP,rs#5
2

k2
Prs, ~29!

tr@PP,rQP,s#5
1

k2
Prs, tr@QP,rQP,s#50. ~30!

For the terms containingG we find that

tr@PG ,rG ,s#524krkst2~ trP!2
2

k2
Prs

3$cosh@k2~211j21!t#21%, ~31!
10600
tr@PG ,rs#52idrst ~ trP!2 i
1

k2
Prs@ek2(12j21)t21#

1 i
1

k2
Prs@ek2(211j21)t21# ~32!

for the matrixQ

tr@QG ,rG ,s#524krkst2j222
2

k2
Prs

3$cosh@k2~211j21!t#21%, ~33!

tr@QG ,rs#52idrstj211 i
1

k2
Prs@ek2(12j21)t21#

2 i
1

k2
P,rs@ek2(j2121)t21#. ~34!

The recursion Eq.~20!, leads to an iterative scheme wit
which we can evaluate the first terms in powers of ordin
derivatives of the heat kernel. In the first iteration we get

ȧ15Gr(
i , j

TiX0,rTje
(mi

2
2mj

2)t2(
i , j

TiX1Tje
(mi

2
2mj

2)t

~35!

and after an integration fromt50 to t5` we find

a152ikr~P1j21Q!(
i , j

TiX0,rTj f i j 2(
i , j

TiX1Tjgi j

2 i ~P2Q!P,r(
i , j

TiX0,rTjgi j

1 i(
i , j

TiX0,rTjF PP,rg@m21~12j21!k2#

2QP,rg@m22~12j21!k2#
G ,

~36!

where

f ~m2![ f i j ~ t !5
]

]m2
gi j ~ t !, m25mi

22mj
2 , ~37!

g~m2![gi j ~ t !5m22~em2t21!. ~38!

The lengthy evaluation of the second termȧ2 is described in
Appendix B.

Finally after considerable cancellations, we find throu
the expression Eq.~12! that for a ’t Hooft gauge fixing the
first terms of the derivative expansion are

A05~4pt !d/2~ trP1jd/2!K~ t !(
i

tr~Ti !e
2mi

2t, ~39!

where

K~ t !5E dm~k!e2k2t. ~40!
1-3
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The termA1 does not contribute in the effective action, in our case, because leads to a total divergence:

A2 /~4pt !d/252
1

6
t2~ trP1j211d/2!(

i
tr~Ti¹m¹mX0Ti !Ki~ t !2

2

3
t(

i
tr~Ti¹m¹mX0Ti !@K̃ i~ t !2Ki

(j)~ t !#

1~ trP1j211d/2!K~ t !(
i , j

tr~Ti¹mX0Tj¹
mX0Ti !h i j ~ t !1

2

3
@K̃~ t !2K (j)~ t !#

3(
i , j

tr~Ti¹mX0Tj¹
mX0Ti !x i j ~ t !1K~ t !~ trP1jd/2!(

i , j
tr~TiX1TjX1Ti !x i j ~ t !

1
2

3 (
i , j

tr~Ti¹mX0Tj¹
mX0Ti !F tl i j ~ t !1m i j ~ t !

1
j

j21
n i j ~ t ! G , ~41!
es,
that
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Ki~ t !5E
2`

`

dm~k!e2k2te2mi
2t5K~ t !e2mi

2t, ~42!

K̃ i~ t !5E
2`

`

dm~k!
1

k2
e2k2te2mi

2t5K̃~ t !e2mi
2t, ~43!

and

l i j ~ t !5
1

2E dm~k!
k22

2m21k2~12j21!
u i j ~ t !

1
1

2E dm~k!
k22

m21k2~12j21!
u j i ~ t !, ~44!

m i j ~ t !5
1

2

1

m2E dm~k!
k22

2m21k2~12j21!
@z i j ~ t !2z j i ~ t !#

1
1

2

1

m2E dm~k!
k22

m21k2~12j21!
@z i j ~ t !2z j i ~ t !#,

~45!

n i j ~ t !5
1

2E dm~k!
k24

2m21k2~12j21!
@2z i j ~ t !1z j i ~ t !#

1
1

2E dm~k!
k24

m21k2~12j21!
@z i j ~ t !2z j i ~ t !#,

~46!

also

h i j ~ t !52m26S 11
1

6
m4t2D ~e2mi

2t2e2mj
2t!

2
1

2
m24t~e2mi

2t1e2mj
2t! ~47!
10600
x i j ~ t !52
1

2
m22t~e2mi

2t2e2mj
2t!. ~48!

In the case wherei 5 j ,

h i i ~ t !5
1

12
t3e2mi

2t, x i i ~ t !5
1

2
t2e2mi

2t. ~49!

The above results in the Feynman gaugej51, reduce to the
respective expressions, in Ref.@2#. We should ignore the
spacetime indices if the operators do not carry such indic
otherwise we should take them into account, assuming
the traces in the respective equations in Ref.@2# are also over
spacetime indices.

The above developed expansion formulas can also
given in a different and more lengthy in our case form, us
the covariant derivativesDm instead of the simple derivative
¹m . The above expansion can be carefully transformed
the covariant form in a similar way with that proposed
Ref. @2#.

Note that

for j51, K̃~ t !5K (j)~ t ! and l i j ~ t !5m i j ~ t !5n i j ~ t !50

and

for j50, K (j)~ t !50 and l i j ~ t !5m i j ~ t !5n i j ~ t !50.

Note that one can prove, in order to test the validity of t
developed expansion, that the derivative of the corrected
fective action with respect to thej parameter, evaluated a
j51, is zero. Thus small deviations from the Feynm
gauge leave the calculated corrected action invariant, as
should expect.

A. Landau gauge

The derivative expansion in the Landau gaugej50 re-
duces to the following equations:

A05~4pt !d/2~ trP!K~ t !(
i

tr~Ti !e
2mi

2t, ~50!
1-4
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A2 /~4pt !d/252
1

6
t2~ trP!(

i
tr~Ti¹m¹mX0Ti !Ki~ t !

2
2

3
t(

i
tr~Ti¹m¹mX0Ti !K̃ i~ t !

1~ trP!K~ t !(
i , j

tr~Ti¹mX0Tj¹
mX0Ti !h i j ~ t !

1
2

3
K̃~ t !(

i , j
tr~Ti¹mX0Tj¹

mX0Ti !x i j ~ t !

1K~ t !~ trP!(
i , j

tr~TiX1TjX1Ti !x i j ~ t !. ~51!

B. Finite temperature corrections

In some stages of the early Universe evolution, we of
expect the particles to be in thermal equilibrium. Therefor
field F can be in contact with this heat bath. The result
that it gets a temperature dependent mass. Since we dea
an ensemble of particles in thermal equilibrium, the ba
ground state in which we perform calculations is no long
the ground state of the Hamiltonian but a thermal bath
temperatureT. To study this situation is essential to use
statistical quantity, the finite temperature effective poten
V(F,T). This is the free energy density associated with
F field. At TÞ0 quantum statistics is equivalent to Eucli
ean quantum field theory in a space which is periodic w
period b51/T along the ‘‘imaginary time’’ axis. Thus we
can write the partition functionZ as

Z5(
F

^F~x!,t50ue2bHuF~x!,t50&

}E D@F#expH E
0

b

dtE d3xLJ , ~52!

where the integral is periodic with period depending on
kind of statistics the particles obey

bosons:f~t50,x!5f~t5b,x!, ~53!

fermions:c~t50,x!52c~t5b,x!. ~54!

The fields here represent ensemble of particles in lo
thermal equilibrium. These thermal averages vary o
space. The short discussion we had, implies that the inte
measure, in momentum space, becomes

E dm~k! f ~ki ,k0!→ (
n52`

`

b21E d3k

~2p!3
f S ki ,

2pn1sp

b D ,

~55!

wheres50 for bosons ands51 for fermions. We need to
calculate now thez8(x,0) function in order to find the one
loop corrections through the expression Eq.~5!. Thez8(x,s)
can be written as the sum of termszn8(x,s) with different
numbern of derivatives.
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zn8~x,s!5
1

G~s!
E

0

`

dtts21tr@K0an#. ~56!

The above expression together with the developed exp
sion, see Eqs.~39!, ~41!, contains all the information neede
to find quantum corrections at finite temperature. The o
loop contribution, at finite temperature, is given by the fo
lowing expression:

G (1)5
1

TE d3xF2
1

2
z8~x,0!G . ~57!

It is straightforward to find, but lengthy to present, the te
perature corrected expansion in ’t Hooft gauge. In the pre
ous work@2# the temperature corrected expansion was giv
in Feynman gauge while here is given, for comparison,
Landau gauge. The way we can calculate this expansion
bosons and fermions is described in Appendix A:

z28~x,0!5~ trP!(
i

tr@Ti¹m¹mX0Ti #r i8~0!

1(
i

tr@Ti¹m¹mX0Ti #r̃ i8~0!

1~ trP!(
i j

tr@Ti¹mX0Tj¹
mX0Ti #h i j8 ~0!

1(
i j

tr@Ti¹mX0Tj¹
mX0Ti #x̃ i j8 ~0!

1~ trP!(
i j

tr@TiX1TjX1Ti #x i j8 ~0!. ~58!

The new functions, we introduce, are given below, in t
high temperature (m/T,1) regime and for bosons:

r i8~0!.2
T

48p
mi

21 , ~59!

r̃ i8~0!.2
T

6p
mi

21 , ~60!

h i j8 ~0!.
T

192p

4~mi
21mj

2!

mimj~mi1mj !
3

, ~61!

x i j8 ~0!.
T

8p
~mi1mj !

21, ~62!

x̃ i j8 ~0!.
T

12p

1

mimj
~mi1mj !

21. ~63!

One should note here that the finite temperature effec
action is not well defined because of the nonanalytic beh
ior of the two point functions involved. This problem be
comes manifest from the different results we get, taking d
ferent order of zero limits of the four external momenta@7# .
However it can give a correct approximate estimation of
1-5
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critical temperature. As far as the nature of the transition
concerned, something that would be crucial for the cosm
logical electroweak phase transition@8#, the various pro-
posed improved methods do not seem to agree@9#.

IV. SCALAR ELECTRODYNAMICS

In this section we will apply as an example, the derivat
expansion method we just described, in the toy mode
scalar electrodynamics. For loop corrections of this mo
see Refs.@10,11#.

The Lagrangian can be written as the sum of the phys
and the ghost contributions.

L5Lphys1Lghost. ~64!

This model just has a charged scalar field and an electrom
netic one:

Lphys52~DmF!~DmF!* 2m2FF* 2
1

4
l~FF* !2

2
1

4
FmnFmn2

1

2j
~]mAm2jqfclf1!,2 ~65!

where

F5
1

A2
~fcl1f11 if2! . ~66!

The U~1! covariant derivative is

Dm5]m1 iqAm ~67!

and the electromagnetic tensor

Fmn5]mAn2]nAm . ~68!

Since we want to find the quadratic part of the Lagrang
we expand Eq.~65! and drop total divergences. We get

Lquadr52
1

2
]mf1]mf12

1

2 S m21
3

4
lfcl

2 Df1
22

1

2
]mf2]mf2

2
1

2 S m21
1

4
lfcl

2 1jq2fcl
2 Df2

2

2
1

2
@~12j21!Am]m]nAn

2Amdm
n ]l]lAn1q2fcl

2 AmAm#

22iqf2Am]mfcl1 c̄@2]m]m1jq2fcl
2 #c. ~69!

It can be written as

Lquadr52
1

2
hn

TDm
n hm1 c̄Dghostc, ~70!

where

hn
T5~An f1 f2! ~71!
10600
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Dm
n 5S Dm(A)

n 0 X1m

0 D11
f 0

X1
n 0 D22

f
D . ~72!

The off diagonal entries are the nonzero kinetic terms

X1m52iq]mfcl . ~73!

The fluctuation operators are

Df52¹21Xf ~74!

with

Xf5S m21
3

4
lfcl

2 0

0 m21
1

4
lfcl

2 1jq2fcl
2
D . ~75!

The gauge field operator is

Dm(A)
n 52dm

n ¹21~12j21!¹m¹n1q2fcl
2 dm

n ~76!

and the ghost one

Dgh52¹21jq2fcl
2 . ~77!

So the quantities we need for the formalism of the derivat
expansion are

X05S dm
n m1

2 0 0

0 m2
2 0

0 0 m3
2
D , ~78!

X15S 0 0 X1m

0 0 0

X1
n 0 0

D , ~79!

with masses

m1
25q2fcl

2 , m2
25m21

3

4
lfcl

2 ,

m3
25m21

1

4
lfcl

2 1jq2fcl
2 . ~80!

The projection matrices are

T15S 1 0 0

0 0 0

0 0 0
D , T25S 0 0 0

0 1 0

0 0 0
D ,

T35S 0 0 0

0 0 0

0 0 1
D . ~81!
1-6



ng

o

an-

DERIVATIVE EXPANSION OF QUADRATIC OPERATORS . . . PHYSICAL REVIEW D 60 106001
Since now the matrixX is

X5S dm
n m1

2 0 X1m

0 m2
2 0

X1
n 0 m3

2
D ~82!

it is trivial to see that here we should introduce the followi
definitions:

Pm
n 5S Pm

n 0 0

0 1 0

0 0 1
D 5Pm

n T11T21T3 , ~83!

Qm
n 5S Qm

n 0 0

0 0 0

0 0 0
D 5Qm

n T1 . ~84!

It is obvious thatPm
n andQm

n satisfy similar expressions t
Pm

n andQm
n :

Pm
l Ql

n50, Pm
n 1Qm

n 5dm
n T11T21T3 , ~85!
10600
Pm
l Pl

n5Pm
n , Qm

l Ql
n5Qm

n . ~86!

The important expressions are

tr@PG ,rs#52idrst@ tr~P!T11T21T3#

2 i
1

k2
P,rsT1@ek2(12j21)t21#

1 i
1

k2
P,rsT1@ek2(211j21)t21# ~87!

while for the matrixQm
n ,

tr@QG ,rG ,s#524krkst2j22T12
2

k2
P,rsT1

3$cosh@k2~211j21!t#21%. ~88!

Proceeding as before, the first terms of the derivative exp
sion are
A05~4pt !d/2K~ t !(
i

tr~Ti !e
2mi

2t~d i1trP1d i21d i31d i1jd/2!, ~89!

A2 /~4pt !d/252
1

6
t2(

i
tr~Ti¹m¹mX0Ti !~d i1trP1d i21d i31d i1j211d/2!Ki~ t !

2
2

3
t(

i
tr~Ti¹m¹mX0Ti !d i1@K̃ i~ t !2Ki

(j)~ t !#1K~ t !(
i

tr~Ti¹mX0Ti¹
mX0Ti !Fd i1trP1d i21d i3

1d i1j211d/2 Gh i i ~ t !

1
2

3
@K̃~ t !2K (j)~ t !#(

i , j
tr~Ti¹mX0Tj¹

mX0Ti !d i1x i j ~ t !1K~ t !(
i , j

tr~TiX1TjX1Ti !~d i11d j 1!

3@ trP1jd/2#x i j ~ t !1
2

3 (
i , j

tr~Ti¹mX0Tj¹
mX0Ti !F tl i j ~ t !1m i j ~ t !

1
j

j21
n i j ~ t ! G d i1 . ~90!
c-

n

The only nonzero combinations are

T1]mX0T1]mX0T15~]mm1
2!2T1 ,

T2]mX0T2]mX0T25~]mm2
2!2T2 ,

T3]mX0T3]mX0T35~]mm3
2!2T3 , ~91!

and

T1X1T3X1T1524q2]mfcl]
nfclT1 ,
T3X1T1X1T3524q2]mfcl]
nfclT3 ~92!

T1]m]mX0T15]m]mm1
2T1 , T2]m]mX0T25]m]mm2

2T2 ,

T3]m]mX0T35]m]mm3
2T3 . ~93!

Now we can calculate for this model, the one loop effe
tive action with nonconstant background fieldfcl . One can
choose a value forj and proceed further. Results are know
in Feynman gauge@10,11#, so we will present the results in
Landauj50 gauge:
1-7
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A0 /~4pt !d/25~d i1trP1d i21d i3!K~ t !(
i

tr~Ti !e
2mi

2t

53K1~ t !1K2~ t !1K2~ t !, ~94!

A2 /~4pt !d/252
1

6
t2(

i
tr~Ti¹m¹mX0Ti !~d i1trP1d i21d i3!Ki~ t !2

2

3
t tr~T1¹m¹mX0T1!K̃1~ t !

1K~ t !(
i , j

tr~Ti¹mX0Ti¹
mX0Ti !~d i1trP1d i21d i3!h i i ~ t !1

2

3
K̃~ t ! tr~T1¹mX0T1¹mX0T1!x11~ t !

1K~ t !(
i , j

tr~TiX1TjX1Ti !@~d i11d j 1!trP#x i j ~ t !. ~95!

In four dimensions we have that

K~ t !5E
2`

`

dm~k!e2k2t5
1

16p2t2
, ~96!

K̃~ t !5E
2`

`

dm~k!
1

k2
e2k2t5

1

16p2t
. ~97!

Using the values of some usefulz8(m2,p,s) functions we calculated in Appendix A, and the above integrals, we can find
one loop action including the kinetic terms of the background field. We get

z28~x,0!5@fclfcl9 1~fcl8 !2#F 7

12p2
q2 lnS m1

2

mR
D 2

1

64p2
l lnS m2

2

mR
D

2
1

192p2
l lnS m3

2

mR
D G1@fcl

2 ~fcl8 !2#F 7

12p2
q4

1

m1
2

1
3

256p2
l2

1

m2
2

1
1

768p2
l2

1

m3
2

G
2~fcl8 !2

q2

4p2F 2@L~m3
2!2L~m1

2!#

~m1
22m3

2!2
2

3

~m1
22m3

2!
F2m1

21m1
2 lnS m1

2

mR
2 D G

1
3

~m1
22m3

2!
F2m3

21m3
2 lnS m3

2

mR
2 D G G ~98!

and

z08~x,0!5
1

16p2
@3L~m1

2!1L~m2
2!1L~m3

2!#, ~99!

where

L~m2!5z8~m2,22,0!5
1

2
m4F3

2
2 lnS m2

mR
2 D G . ~100!

Finally, the one loop corrections to the tree action are kinetic terms

G2
(1)5E d4xF2

1

2
z2

8~x,0!G ~101!

and potential terms

G0
(1)5E d4xF2

1

2
z0

8~x,0!G . ~102!
106001-8
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In Feynman gauge the results look different, i.e., there is aj dependence,

z28~x,0!5@fclfcl9 1~fcl8 !2#F 1

3p2
q2 lnS m1

2

mR
D 2

1

64p2
l lnS m2

2

mR
D

2
1

192p2
~l14q2! lnS m3

2

mR
D G1@fcl

2 ~fcl8 !2#F 1

3p2
q4

1

m1
2

1
3

256p2
l2

1

m2
2

1
1

768p2
~l14q2!2

1

m3
2

G
2~fcl8 !2

q2

p2F 3@L~m3
2!2L~m1

2!#

4~m1
22m3

2!2
2

1

~m1
22m3

2!
F2m1

21m1
2 lnS m1

2

mR
2 D G

1
1

~m1
22m3

2!
F2m3

21m3
2 lnS m3

2

mR
2 D G G ~103!
c,

s
ve
ch
ly

th
th

ec
a
se

c-

th is

t

-

while the ghost contribution is

z
2

8(ghost)
~x,0!5@fclfcl9 1~fcl8 !2#F q2

48p2
lnS m1

2

mR
D G

1@fcl
2 ~fcl8 !2#F q4

48p2

1

m1
2G ~104!

and

z08~x,0!5
1

16p2
@4L~m1

2!1L~m2
2!1L~m3

2!#, ~105!

z
0

8(ghost)
~x,0!5

1

16p2
L~m1

2!. ~106!

The one loop corrections to the tree action are the kineti

G2
(1)5E d4xF2

1

2
z2

8~x,0!1z
2

8(ghost)
~x,0!G , ~107!

and potential terms

G0
(1)5E d4xF2

1

2
z0

8~x,0!1z
0

8(ghost)
~x,0!G . ~108!

The j dependence of both the kinetic and potential term
profound. This dependence should cancel out for a gi
solution that extremises the effective corrected action. Su
solution is the bubble one which is known only numerical

V. FULL ELECTROWEAK MODEL

In order to convince the reader for the power and
range of applicability of the described method we present
evaluation of second order derivative terms for the full el
troweak theory, around a nonconstant background sc
field. Recent works, performing derivative expansions,
the Weinberg angle to zero@12–14#, in order to simplify the
group structure of the quadratic operator.
10600
is
n
a

.

e
e
-
lar
t

The classical Lagrangian for the Higgs field in the ele
troweak model is given by

Ls52~DF!†~DF!1m2F†F2l~F†F!2, ~109!

with F the following SU(2) doublet:

F5
1

A2
S w11 iw2

w31 iw4
D . ~110!

Gauge covariant derivatives will be written in the form

Dm5¹m2
i

A2
gAmaTa, ~111!

where

Ta5sa for a51,2,3,

Ta5tI for a54. ~112!

The first three generators are Pauli matrices and the four
equal to the unit matrixI multiplied by the tangent of the
Weinberg angle@15,16#. The SU(2) coupling isg and the
U(1) oneg8.

t5
g8

g
. ~113!

Group indices will be raised with the metric 2dab and low-
ered with the metric12 dab . We focus on one real componen
f,

F̂5
1

A2
S 0

f D , ~114!

and calculate the effective actionG@f#.
The effective action will be expanded in powers of\, b

and ¹f. First of all the effective Lagrangian including de
rivative terms up to second order can be expressed as@17#
1-9
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L52
1

2
Z~f,T!~¹f!22V~f,T!. ~115!

The \ expansion takes the form

Z~f,T!511Z(1)~f,T!, ~116!

V~f,T!52
1

2
m2f21

1

4
lf41V(1)~f,T!. ~117!

The radiative corrections to the effective potential are w
known up to this order@18,19#. In the region of the potentia
where tunnelling is important the effective Higgs mass
small and the radiative corrections are dominated by the v
tor bosons and the top quark@20,21#.

A. Zero temperature

We use an improved method for calculating the effect
action which includes a quadratic source@22#. This adds a
term

k52f21V8~f! ~118!

to the Higgs masses, making them positive, but does
change the vector boson mass terms. At order\, the effec-
tive action is given by

G@f#5
1

2
log detDb2 log detDgh2

1

2
log detD f

2
1

2
tr~Db

21k!, ~119!

whereDb is the fluctuation operator for the boson fields,Dgh
for the ghosts andD f for the fermion fields.

The gauge is fixed by the ’t HooftRj gauge fixing func-
tional F. We will use

Fa5¹•Aa1
i

A2
jg~F̂†TaF2F†TaF̂!. ~120!

The gauge-fixing Lagrangian is

Lg f52
1

2j
FaF a. ~121!

The cross term of the gauge-fixing termig(]mAam)F†TaF̂

cancels a part of the cubic term 2ig(]mF†)TaF̂ Aam that
appears from the kinetic term with the covariant derivativ
of the scalar fields, after the symmetry breaking.

The quadratic term of the electroweak Lagrangian can
written as

Lquad5
1

2
hTDbh2 c̄Dghc, ~122!

where

hT5~A1
m A2

m A3
m A4

m w1 w2 w3 w4! ~123!
10600
ll

s
c-

e

ot

s

e

and

Db[Dm(b)
n 5S Dm(A)

n X1m

X1
n Df

D . ~124!

The off diagonal entries are the extra kinetic terms. The fl
tuations operators are

Df52¹21Xf , ~125!

DA[Dm(A)
n 52dm

n ¹21~12j21!¹m¹n1dm
n XA ,

~126!

Dgh52¹21jXA . ~127!

Let us work out to find the scalar quadratic term. The sca
quadratic part of the gauge fixing term becomes

j

16
g2F ~0f!TaS w11 iw2

w31 iw4
D ~0f!TaS w11 iw2

w31 iw4
D

2~0f!TaS w11 iw2

w31 iw4
D ~w12 iw2w32 iw4!TaS 0

f D
2~w12 iw2w32 iw4!TaS 0

f D ~0f!TaS w11 iw2

w31 iw4
D

1~w12 iw2w32 iw4!TaS 0

f D ~w12 iw2w32 iw4!

3TaS 0

f D G
5

2j

4
g2@f2w1

21f2w2
21~11t2!f2w4

2#.

Therefore

X0(b)5
]2V

]f i]f j
2

j

4
g2@f2w1

21f2w2
21~11t2!f2w4

2#

5~3lf22m2!d331~lf22m2!~d111d221d44!

2
j

4
g2f2@d111d221~11t2!d44#

1k~d111d221d331d44! ~128!

the value ofk is

k52lf21m2. ~129!

Thus the eigenvalues are

m5
25m6

25
1

4
jg2f2, m7

252lf2,

m8
25

1

4
jg2~11t2!f2. ~130!
1-10
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There are more eigenvalues ofX0, coming from XA .
They can be evaluated in the same way from the quadr
interaction terms with the gauge fieldsAm :

m1
25m2

25
1

4
g2f2, m3

25
1

4
g2~11t2!f2, m4

250.

~131!

It is easy to see that theTi matrices of the expansion, Eq
~19! are

T15S 1 0 0 0

0 0 0 0

0

0 0 0 0

0 0 0 0

0 0

D ,

T25S 0 0 0 0

0 1 0 0

0

0 0 0 0

0 0 0 0

0 0

D ,

T45T35S 0 0 0 0

0 0 0 0

0

0 0 1 2t

0 0 2t t2

0 0

D 1

11t2
, ~132!

T55S 0 0

0 0 0 0

0 0 0 0

0

0 0 0 0

0 0 0 1

D .

T65S 0 0

0 0 0 0

0 0 0 0

0

0 0 0 0

0 0 0 1

D .
10600
tic

T75S 0 0

0 0 0 0

0 0 0 0

0

0 0 0 0

0 0 0 1

D .

T85S 0 0

0 0 0 0

0 0 0 0

0

0 0 0 0

0 0 0 1

D . ~133!

The ghost quadratic part is given by the matrixXgh ,

Xgh5j~m1
2T11m2

2T21m3
2T3!. ~134!

Note thatXgh and has no spacetime indices.
The matrixX1 is determined from the kinetic terms in th

Lagrangian. There is the following kinetic term:

2
i

A2
g~¹mf!Ama~01!TaS w11 iw2

w31 iw4
D

5
2 i

A2
g~¹mf!F Am1~w11 iw2!1Am2~ iw12w2!

1Am3~2w32 iw4!1Am4~ tw31 i tw4!
G

and also this

i

A2
g~¹mf!~w12 iw2w32 iw4!AmaTaS 0

1D
5

i

A2
g~¹mf!F Am1~w12 iw2!1Am2~2 iw12w2!

1Am3~2w31 iw4!1Am4~ tw32 i tw4!
G .

Thus we get

X1[X1m52A2g¹mfTk , ~135!

where

Tk51
0 1 0 0

1 0 0 0

0 0 0 21

0 0 0 t

0 1 0 0

1 0 0 0

0 0 0 0

0 0 21 t

2 . ~136!
1-11



w
we

e
ng

VASILIOS ZARIKAS PHYSICAL REVIEW D 60 106001
We have presented so far, for pedagogical reasons, ho
calculate explicitly the various matrices. In summary,
first separate off any derivative terms already present inX,
X5X01X1. The eigenvalues ofX0 are the squared particl
massesmi

2 . Projection matrices onto the accompanyi
eigenspaces are denoted byTi .

As in the previous chapter we can define newPm
n andQm

n

in
xt

ug
fo
a

10600
tothat satisfy similar expressions toPm
n andQm

n :

Pm
l Ql

n50, Pm
n 1Qm

n 5dm
n ~T11T21T31T4!

1T51T61T71T8 . ~137!

One now can easily guess that the expansion is
A05~4pt !d/2K~ t !(
i

tr~Ti !e
2mi

2tF (
j 51

4

d i j ~ trP1jd/2!1(
j 55

8

d i j G , ~138!

A2 /~4pt !d/252
1

6
t2(

i
tr~Ti¹m¹mX0Ti !F (

j 51

4

d i j ~ trP1j211d/2!1(
j 55

8

d i j GKi~ t !2
2

3
t(

i
tr~Ti¹m¹mX0Ti !

3(
j 51

4

d i j @K̃ i~ t !2Ki
(j)~ t !#1K~ t !(

i
tr~Ti¹mX0Ti¹

mX0Ti !F (
j 51

4

d i j ~ trP1j211d/2!1(
j 55

8

d i j Gh i i ~ t !

1
2

3
@K̃~ t !2K (j)~ t !# (

i , j
tr~Ti¹mX0Tj¹

mX0Ti !(
k51

4

d ikx i j ~ t !1K~ t !(
i , j

tr~TiX1TjX1Ti !

3 (
k51

4

~d ik1d jk!@ trP1jd/2#x i j ~ t !1
2

3 (
i , j

tr~Ti¹mX0Tj¹
mX0Ti !F tl i j ~ t !1m i j ~ t !

1
j

j21
n i j ~ t ! G (

k51

4

d ik . ~139!
It is also plain to compute

tr@Ti]m]mX0Ti #5]m]mmi
2 ,

tr@Ti]mX0Tj]
mX0Ti #5d i j ~]mmi

2!2 ~140!

while the nonzero terms of( i j tr@TiX1TjX1Ti # are

tr@T1X1T6X1T1#5tr@T2X1T5X1T2#5tr@T5X1T2X1T5#

5tr@T6X1T1X1T6#52g2~]mf!2,

tr@T3X1T8X1T3#5tr@T4X1T8X1T4#5tr@T8X1T3X1T8#

5tr@T8X1T4X1T8#52g2~11t2!~]mf!2.

~141!

From this point on, we can directly calculate Eqs.~138!,
~139! and after some trivial algebra we finally compute, as
the previous chapter, the one loop corrections from the e
kinetic and potential terms, Eqs.~107!, ~108! at zero tem-
perature and in ’t Hooft gauge.

B. High temperature limit

As an example we present the results in Landau ga
(m5

25m6
25m8

250). Masses and temperature corrections
the boson sector are given below. The vector boson m
corrections which include only daisy type rings@20# are
ra

e
r
ss

mW8
2

5m5
2~T!5m6

2~T!5
1

8
g2T21

1

16
g2~11t2!T21

1

2
l2T2,

~142!

mW
2 5m1

2~T!5m2
2~T!5m1

21
5

6
g2T2, ~143!

mZ8
2

5m8
2~T!5

1

8
g2T21

1

16
g2~11t2!T21

1

2
l2T2,

~144!

mH
2 5m7

2~T!5m7
21

1

8
g2T21

1

16
g2~11t2!T21

1

2
l2T2,

~145!

mg
25m4

2~T!

5
1

2
@M22AM424~m1

2p11p1p21t2m1
2p2!#,

~146!

mZ
25m3

2~T!

5
1

2
@M21AM424~m1

2p11p1p21t2m1
2p2!#,

~147!

with
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M25m1
21p11p21t2m1

2 , ~148!

where the relevant polarization tensors are given by@20#,

p15pU(1)5
1

6
t2g2T2, p25pSU(2)5

5

6
g2T2.

~149!

It is straightforward now to calculate theZ(1)(f,T) contri-
bution to the action, from the modified Eq.~58! in the spirit
of Eqs.~138! and ~139!, using the results in Eqs.~140! and
~141!. The fields contribute

Z(1)~f,T!52z285~]mmW8!
2

1

24p

T

mW8

1~]mmZ8!
2

1

48p

T

mZ8

1~]mmH!2
1

48p

T

mH

1~]mmW!2
11

24p

T

mW
1~]mmg!2

11

48p

T

mg

1~]mmZ!2
11

48p

T

mZ
2g2~]mf!2

3F 2

mW1mW8

1
11t2

mZ1mZ8

1
11t2

mg1mZ8
G 3T

2p
.

~150!

We also present, for comparison, the kinetic term in Fe
man gauge. It is given by

Z(1)~f,T!52z28
(phys)12z28

(gh) , ~151!

where the physical fields contribute

z28
(phys)5~]mmW8!

2
T

48p

22

mW8

1~]mmZ8!
2

T

48p

21

mZ8

1~]mmW!2
T

48p

28

mW
1~]mmH!2

T

48p

21

mH

1~]mmZ!2
T

48p

24

mZ
1g2~]mf!2

3F T

p

1

mW1mW8

1
T

2p
~11t2!

1

mZ1mZ8
G

~152!

while the ghost fields give

z28
(gh)5~]mmW!2

T

48p

22

mW
1~]mmZ!2

T

48p

21

mZ
.

~153!

Note that the ring corrections are the appropriate for t
gauge choice.
10600
-

s

Fermions do not contribute at this order. The advantag
using the ring corrected masses is that we get finite resul
small values of the scalar fieldf @12,13#. The negativity of
the Z(1), which is a signal of the breakdown of the pertub
tion theory happens for smaller value off compared with
the previous results@12,13#. If we use the conventional ap
proach of calculating the effective action, without includin
a quadratic source, then we recover the expression in
@12#, using the plasma mass terms and settingt50.

VI. FINAL REMARKS

We developed this expansion method to cover fluctuat
operators appearing from a general ’t Hooft gauge fixin
The superiority of these gauges is discussed in Ref.@23#.

The aim of this work is to provide a powerful derivativ
expansion method that can be used easily by other resea
ers in a wide range of Lagrangians. An important feature
this derivative expansion method is that it can handle co
plicated gauge groups. We applied as an example
method in theSU(2)3U(1) group structured model.

There is also another usefulness of the proposed met
Quantum corrections to soliton solutions can be found app
ing the developed derivative expansion technique.

As we have already pointed out the finite temperat
results are only indicative and performed for testing t
method. The nonanalyticity of Feynman amplitudes at h
temperatures make the derivative expansion not well defi
@7#. Widely accepted improved results still are missing.
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APPENDIX A: USEFUL INTEGRALS AND EXPANSIONS

Let us define the following integrals in momentum spa

K~ t !5E
2`

`

dm~k!e2k2t ~A1!

and

Ki~ t !5K~ t !e2mi
2t. ~A2!

One can then prove that

E
2`

`

dm~k!k0k0e2(k21mi
2)t5

1

2t S 11b
]

]b DKi~ t ! ~A3!

and more general forn50,1,2 . . .

E
2`

`

dm~k!~k0!2n12e2(k21mi
2)t

5
1

2t F ~2n11!1b
]

]bG E
2`

`

dm~k!~k0!2ne2k2t, ~A4!

where
1-13
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k25 k̄21k0
2 . ~A5!

k̄ is the spatial part of the vectork. The one loop corrections
can be expressed in terms of the zeta function defined be

z i~x,p,s![z i~p,s!5
1

G~s!
E

0

`

dttp1s21E dm~k!e2(k21mi
2)t,

~A6!

where thei subscript inz i(p,s) does not represent derivativ
but the index associated with the massmi . The following
recursion relation helps to relate the above function w
z i(0,s):

z i~p11,s!52
]

]mi
2
z i~p,s!. ~A7!

The value ofz i8(0,s) at s50 is defined by analytic continu
ation. Performing a high temperature expansion (m/T
,,1) we recover the well known free energy density of
ensemble of bosons or fermions. For bosons we find

z i8~0,0!.
p2

45
T42

mi
2

12
T21

mi
3

6p
T1

mi
4

32p2
lnS mR

T2 D
2

1

384p4
zR~3!

mi
6

T2. ~A8!

and for fermions

z i8~0,0!.
27

8

p2

45
T41

mi
2

24
T21

mi
4

32p2
lnS mR

T2 D
2

7

384p4
zR~3!

mi
6

T2
. ~A9!

Now we will evaluate the functionx̃ i j8 (0) for bosons, defined
below using the previous formulas.

x̃ i j8 ~0!52
m22

3

d

dsF 1

G~s!
mR

2sE dtts21t~e2mi
2t

2e2mj
2t!E dm~k!k22e2k2tG

s50

52
m22

3
2@z i8~2,0!2z j8~2,0!#

52
2

3
m22F T

8p
mi

212
T

8p
mj

21G
5

T

12p

1

mi1mj

1

mimj
. ~A10!

In the same way we will calculate the functionr̃ i8(0)
~bosons!. We always try to rewrite it, using the recursio
equations, in terms ofz i8(0,0).
10600
w,

h

r̃ i8~0!52
2

3

d

dsF 1

G~s!
mR

2sE dtts21te2mi
2t

3E dm~k!k22e2k2tG
s50

. ~A11!

It contains the following integral:

I 5E
2`

`

dm~k!k22e2k2t

5 (
n52`

`

4pe2k0
2t

1

b~2p!3E0

`

dk̄k̄2
1

k̄21k0

e2 k̄2t.

~A12!

The integral in the last equation can be evaluated,

E
0

`

dk̄k̄2
1

k̄21k0

e2k2t5
1

2
Ap

t
2

p

2
k0etk0

2
@12F~Atk0!#,

where

F~x!5
2

Ap
e2x2

(
l50

`
2lx2l11

~2l11!!!

is the probability integral. It is also true that

I 05E
0

`

dk̄k̄2e2 k̄2t5
1

4t
Ap

t
.

Combining all together we get

I 5 (
n52`

` F4pe2k0
2t

1

b~2p!3
2tI 024p

1

b~2p!3

p

2 S 2pn

b D G
1 (

n52`

`

4p
1

b~2p!3

p

2
k0F~Atk0!

⇒I 52tE
2`

`

dm~k!e2( k̄21k0
2)t

1 (
n52`

`
4p

b~2p!3

p

2
k0

2

Ap
e2k0

2t

3 (
l50

` 2lt (2l11)/2k0
2l11

~2l11!!!

52tE
2`

`

dm~k!e2( k̄21k0
2)t1 (

l50

`
2ltl11

~2l11!!!
4t

3E
2`

`

dm~k!k0
2l12e2( k̄21k0

2)t. ~A13!

We can proceed further using Eq.~A4!,
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I 52tK~ t !1 (
l50

`
2l12tl12

~2l11!!!

1

~2t !l11

3F S ~2l11!1b
]

]b D •••S 11b
]

]b D GK~ t !. ~A14!

Finally

r̃ i8~0!52
4

3
z i8~2,0!

2
4

3 (
l50

`
@~2l11!1b~]/]b!#•••@11b~]/]b!#

~2l11!!!

3z i8~2,0!

52
T

6p

1

mi
2

1

6p

1

mi
(
l50

`

3
@~2l11!1b~]/]b!#•••@11b~]/]b!#

~2l11!!!
T

52
T

6p

1

mi
. ~A15!

So far we ignored the renormalization scale in the z
function for simplicity. A useful definition for zero tempera
tures is the following function:

z~m2,p,s!5
1

G~s!
mR

22pE
0

`

dttp1s21e2(m2/mR
2)t.

~A16!

From the definition of the Gamma functions we can find t

z~m2,0,s!5
1

G~s! S m2

mR
2 D 2s

G~s!

⇒z8~m2,0,s!52S m2

mR
2 D 2s

lnS m2

mR
2 D

⇒z8~m2,0,0!52 lnS m2

mR
2 D . ~A17!

It is obvious from the analogous recursion equation to
~A7! that

z8~m2,1,0!5
1

m2
. ~A18!

We also can get
10600
a

t

.

z~m2,21,s!5
1

G~s!
mR

2 ts21

s21
e2(m2/mR

2)tu0
`

1
1

G~s!
m2E

0

`

dt
ts21

s21
e2(m2/mR

2)t

5
1

s21
m2z~m2,0,s!⇒z8~m2,21,0!

52m21m2 lnS m2

mR
2 D . ~A19!

In the same way

z~m2,22,s!5
1

s22
m2z~m2,21,s!⇒z8~m2,22,s!

52
1

~s22!2
m2z~m2,21,s!

1
1

s22
m2z8~m2,21,s!

⇒z8~m2,22,0!

5
1

2
m4F3

2
2 lnS m2

mR
2 D G . ~A20!

APPENDIX B: SECOND ORDER TERM

Here we compute the second order term in the general
derivative expansion. We get from Eq.~20! that

ȧ25q1r 1s1w, ~B1!

q5
1

2
~drGs2GrGs!(

i , j
TiX0,rsTje

(mi
2
2mj

2)t, r 5ȧ1a1 ,

~B2!

s52(
i , j

TiX0,rTjd
ra1e(mi

2
2mj

2)t,

w5Gr(
i , j

TiX1,rTje
(mi

2
2mj

2)t. ~B3!

What we want now to calculate is theAn functions from
Eq. ~12!. Thus we will calculate the functions
tr@K0(k,x,t)an(k,x,t)#. Since we are not interested for th
A1 term we will ignore it:
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tr@K0~k,x,t !q#52S 1

2
drs2

2

3
krkst D t2~ trP!

3(
i

tr~TiX0,rsTi !e
2k2te2mi

2t2j21

3S 1

2
drs2

2

3
j21krkst D t2

3(
i , j

tr~TiX0,rsTj !e
2j21k2te2mi

2t

1e2mi
2t(

i
tr~TiX0,rsTi !

1

k2
P,rs

3F 2t~e2k2t1e2j21k2t!

2
2j

k2~j21!
e2k2t

1
2j

k2~j21!
e2j21k2t

G . ~B4!

Integrating we found
10600
E dm~k! tr@K0~k,x,t !q#

52
1

6
t2~ trP!(

i
tr~Ti¹r¹rX0Ti !Ki~ t !

2
1

6
t2j211d/2(

i
tr~Ti¹r¹rX0Ti !Ki~ t !

2
2

3
t(

i
tr~Ti¹r¹rX0Ti !K̃ i~ t !

1
2

3
t(

i
tr~Ti¹r¹rX0Ti !Ki

(j)~ t ! ~B5!

where

Ki~ t !5E
2`

`

dm~k!e2k2te2mi
2t5K~ t !e2mi

2t, ~B6!

K̃ i~ t !5E
2`

`

dm~k!
1

k2
e2k2te2mi

2t5K̃~ t !e2mi
2t, ~B7!

and
Ki
(j)~ t !5K (j)~ t !e2mi

2t5E
2`

`

dm~k!F 2k2e2j21k2t

1
1

k4

4

~12j21!t
sinhS k2

2
~12j21!t De2 ~k2/2!(11j21)tG e2mi

2t. ~B8!

From the above definitions it is easy to check that

for j50, Ki
(j)~ t !50, ~B9!

for j51, Ki
(j)~ t !5K̃ i~ t !. ~B10!

From the second term ofȧ2 we get

tr@K0~k,x,t !r #524krksF tr~P!e2k2t

1j22e2j21k2tGSi , j
0 F t3

3
1

t2

2m2

2
1

m2
f ~m2!

G21

m2
e2mi

2t

1Zi , je
2k2tF t2g~m2!2g@k2~12j21!#

1g@m21k2~12j21!#
G21

m2
e2mi

2t

2Zi , je
2k2tF2t2g~m2!1g@2k2~12j21!#

1g@m21k2~12j21!#
G 21

m21k2~12j21!
e2mi

2t

2Zi , je
2j21k2tF2t1g~m2!1g@2k2~12j21!#

2g@m22k2~12j21!#
G21

m2
e2mi

2t

1Zi , je
2j21k2tF t1g~m2!2g@k2~12j21!#2

2g@m22k2~12j21!#
G 1

2m21k2~12j21!
e2mi

2t

1F tr~P!e2k2t

1e2j21k2tGSi , j
1 @ t2g~m2!#

21

m2
e2mi

2t1odd terms, ~B11!
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where

Zi , j5k22P,rsSi , j
0 5k22P,rs(

i , j
tr~TiX0,rTjX0,sTi !, ~B12!

Si , j
1 5(

i , j
tr~TiX1TjX1Ti !. ~B13!

The odd terms, proportional tokr do not survive after the integration:

E dm~k!tr@K0~k,x,t !r #5
2

t
@ tr~P!1j211d/2#Si , j

0 1

m2
Ki~ t !F t3

3
1

t2

2m2

2
1

m2
f ~m2!

G
1

2

3
Si , j

0 1

m2
K̃ i~ t !g~m2!~11j211d/2!1

2

3
Si , j

0 1

m2
K̃ i~ t !g~m2!F L i~m2,t !2L i~2m2,j21t !

1em2t@L i~2m2,t !2L i~m2,j21t !#
G

1
2

3
Si , j

0 @g~m2!1t#@2L i~m2,t !1L i~2m2,j21t !#

1
2

3
Si , j

0 j

j21 F L̃ i~m2,t !1L̃ i~2m2,j21t !

2L̃ i~m2,~22j21!t !2L̃ i@2m2,~2j2121!t#
G

1
2

3
Si , j

0 F 2Ni~m2,t !2Ni~2m2,j21t !

1em2t@Ni~m2,j21t !1Ni~2m2,t !#
G2

2

3
tSi , j

0 K̃ i~ t !
1

m2
1

2

3
tSi , j

0 Ki
(j)~ t !

1

m2

2@ tr~P!1jd/2#Si , j
1 1

m2
Ki~ t !@ t2g~m2!#, ~B14!

where

L i~m2,t !5E
2`

`

dm~k!k22
1

m21k2~12j21!
e2k2te2mi

2t, ~B15!

L̃ i~m2,t !5E
2`

`

dm~k!k24
1

m21k2~12j21!
e2k2te2mi

2t, ~B16!

Ni~m2,t !5E
2`

`

dm~k!k22
1

@m21k2~12j21!#2
e2k2te2mi

2t. ~B17!

We focus now on the third term ofȧ2,

tr@K0~k,x,t !s#52F tr~P!e2k2t

1j21e2j21k2tGSi , j
0 F t2

2
1

t

m2

2
1

m2
g~m2!

G21

m2
e2mi

2t

1~2e2k2t1e2j21k2t!Zi , j$2g~m2!1g@k2~12j21!#%
e2mi

2t

2m21k2~12j21!

1~2e2k2t1e2j21k2t!Zi , j$2g~m2!1g@2k2~12j21!#%
e2mi

2t

m21k2~12j21!
1odd terms ~B18!
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and after the integration

E dm~k!tr@K0~k,x,t !s#522@ tr~P!1j211d/2#Si , j
0 1

m2
Ki~ t !F t2

2
1

t

m2

2
1

m2
g~m2!

G
1

2

3
Si , j

0 j

j21 F22L̃ i~2m2,j21t !1L̃ i~2m2,t !1L̃ i@2m2,~2j2121!t#

1L̃ i@m2,~22j21!t#22L̃ i~m2,t !1L̃ i~m2,j21t !
G

1
2

3
Si , j

0 g~m2!FL i~2m2,t !2L i~2m2,j21t !

1L i~m2,t !1L i~m2,j21t !
G . ~B19!

The contribution of the fourth termw, of ȧ2 is zero because the trace gives a function proportional tokr.
Finally from Eq.~B5!, Eq. ~B14!, Eq. ~B19! after considerable cancellations, we find through the expression Eq.~12! that

in ’t Hooft gauge the first terms of the derivative expansion are given by expression Eqs.~39!, ~41!.
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