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Derivative expansion of quadratic operators in a general 't Hooft gauge
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A derivative expansion technique is developed to compute functional determinants of quadratic operators,
nondiagonal in spacetime indices. These kinds of operators arise in general 't Hooft gauge fixed Lagrangians.
Elaborate applications of the developed derivative expansion are prede31686-282(199)03318-4

PACS numbds): 11.27+4+d, 11.10.Wx

[. INTRODUCTION this case we have to deal with second order operators of the
form
A very powerful mathematical technique that is used in
many areas of theoretical physics is the heat kernel expan-
sion of a quadratic operator. It has become very significant

. . . whereD is the covariant derivative associated with the group
because it can help us calculate quantum corrections in quan-

tum field theories and in quantum gravity. zilrrSé?uertery andX a matrix in the same space with the group

The transition amplitudes are calculated in terms of per- The heat kernelK(x,x',t), (x represents a spacetime
turbation expansion. If the path integral has a saddle poirEomt andt a positive péra'méteris a quantity that helps to
then we can perform a functional Taylor expansion around ifjaa1 with the eigenvalues of the operatorulf(x) are the
and keep the terms up to second order. Saddle points are the - malized eigenfunctions of the operatar with corre-

solutions of the classical field equations which dominate th‘%ponding eigenvalues, , the heat kernel can be expressed
path integral. In this way we find the one loop corrections as;g

a function of the determinant of the quadratic fluctuations of
the quantum fields.

The derivative expansion presented here extends the work K(x,X", )= > up(x)Tup(x’)e ™, 2
of Moss, Toms, and Poletfl,2]. Their expansion is a modi- :

fication of the heat kernel asymptotic expansion. They ex-, . . . .
pand in powers of covariant derivatives. It is related with another useful quantity, the generalized

The derivative expansion method is very useful when Wefunctlon

want to evaluate one loop corrections, in cases where the
background field is not constant. This is indeed the situation L(x8)=2>, \;° 3
for the soliton solutions, as well for the tunneling rates where n
the instanton solution is a function of the Euclidean space ]
coordinates. Recently theories that predict nontopological the following way:
soliton solutions have attracted the interest. Similar expan-
sions need to be performed in order to study the fate of these {(x,8)= wadtts‘ YK (x,%,0)] (4
nontrivial time independent classical solutions when quan- ’ I'(s)Jo w
tum corrections are considergg-6].

A more general version of the derivative expansionfor s>d/2 (with space dimensiond). It can also continued
method is developed. This can deal with an extended numbemalytically ats=0. The above defined functioh&x,x’,t),
of operators, nondiagonal in spacetime indices, covering alf(x,s) are useful in computing one loop quantum corrections
the interesting ones in gauge field theories. The new formalsince the functional determinant of the relevant quadratic op-
ism can deal with all the gauge choices, in 't Hooft gaugeerator can be expressed as
fixing. It is thus very useful when we want to study the gauge
dependency of the various results.

A=—D2+X, (1)

®)

detn=]] r,= exp{—J d*x{'(x,0)

II. THE DERIVATIVE EXPANSION with

Heat kernel expansions and the similar derivative expan-

, . . di(x,s)
sions are useful when the background field or fields are not l'(x,0)=
homogeneous. In the conventional estimations of the first ds
guantum corrections, for example, in the one loop effective
action, we assume that the classical scalar figld vacuum The derivative expansion | closely follow, suggested in
expectation valugs constant. In the case that this is not true,Ref. [2], is based on a different expansion from that in Eq.
derivatives of the background field do not vanish resulting in(2). The expansion can be written in powers of covariant or
the appearance of extra kinetic terms in the Lagrangian. llordinary derivatives

(6)

s=0
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o where K(k,x’,t) is the following transformation of
UK O0x0) = (470 "2 A (xD), 7 KxX,1),

whereA;(x,t) is a function carrying derivatives ofX: The
derivative expansion is a local expansion which sums contri-
butions of a given number of derivatives to all orders con-
trary to the heat kernel expansion which sums different numwe also expand in powers of usual derivatives

ber of derivatives order by order and therefore has, in some

cases, worst infrared problems. These functiéi(,t) can

be computed using the heat kernel equation expanded in thK(k,x,t)=Ko(k,x,H) > as(kxt), ap=1, X=X X,
momentum space. The heat kernel equation " "

K(k,x’,t)=f d*xe K=K (x,x' 1), (10)

(13)
oK . . ) ]
AK=— i K (8 whereX, is the part of the quadratic terms carryintih order
derivatives or in other words thath order kinetic terms
can be written as while X, contains the mass termi§, is the part of the heat

kernel with no derivatives and,, is the part of the heat
. , ; kernel that carriesith order derivatives divided bl .
4,112 ' —ik(x=x") — _ ' 0
f X[k X (k) JK(x X", e 0= = K(k,x", 1) , We can now express the functioAs(x,t) in terms of the
(9 new defined functiona,,. From expression&’), (10) we get

> Ai(x,t)=(4m)d’2trf d4xf dM(k)K(k,x’,t)eik(x-X’>5(x—x’):An(x,t)=(4m)d’2f du(k) tKo(k,x,t)an(k,x,t)].

(12)
|
The next step is to develope an iterative scheme which wil 1
give the first terms of the expansion, in powers of covarian 5;k2—(1—§*1)kﬂk”+ 6;2 r—|X,#1___Mr5“1~ - M
or ordinary derivatives of the relevant operator. r=0t
XK (k,x",t)=—K(k,x",t), (14)
IIl. GENERALIZED METHOD where 8=/ k" is the transformeat”—x * We define
In the previous section we described the first common b R yo&on,
steps between the derivative expansion method developed P.=d,— kK" Q,=k,K", (19
previously[1,2], for operators of the formh = — V2+ X, and where
the generalized method presented here. The old method Is
not applicable in the case of some quadratic operators we K kY
encounter in gauge field theories. The reason is that in dif- RMRV= “2 ) (16)
ferent gauges than the Feynman one, we get operators of the k
following form: . .
It is obvious that
PO= P)\ V— PV =+ v— 5" ) 1
A=—5;V2+(1—§’1)VMVV+X5;. (13 Q=PLAN=0, PLtQu=0, (1

Performing the derivative expansion approximation we find

) ) o o from Eq. (14), at zero order
The material below is a generalization of the derivative ex-

pansion method in order to handle the quadratic operators irkoze—[(P;+§—1Q;)k2+ 5;X0]t:(Peszt_’_Qeff_lkzt)eont'

't Hooft gauge fixing. We avoid describing in great detail the (18)
derivation of the various expressions. The reason is that the
algebra is too lengthy to be presented. Ko can further be written in terms of the eigenvalugs of

The heat kernel equation of the above operator can bgye matrixX, and the matriced;, which are defined by

written in the momentum space, after a Taylor expansion of
X(k,x), in powers ofx—x'=x“—x"*around X(k,x'), as _ 2
follows: Xo= 2 mT;. (19
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Using expressiolil8), a recursion equation can be obtained

. 1 2 2
__ =T o~ (my—m)t
&n 0<r+s<n Z] r! T'Xs”ul"'“fTJe J
xD#1 .. Dtra,_,_s, (20)
where
A p v J vp v op vp
D :5M|%_FM:5M5 —F’u . (21)

The connection term is

[P=TP=2ikPt(P+¢1Q)—iPP#(1—el ¢ DK

—iQPP(—1+el~1re DKy (22)
where
po=pro_Tn (23)
Koke

The following relations are very helpful to proceed further
into the algebra of the iterative scheme.
Zeroth order:

PP=P, QQ=Q. (24)
First order:
PP*P+PPP=P?, t[PPP]=tr[P?]=0. (25
Second order:
2 1
t[PPP 7= PPP”, t[PPPP 7= FPPU’ (26)
also
2
tr[P*]=0, t{PP*"]=— EF>P<’, t{PP?PP]=0.
(27)
Terms includingQ are
Pr=-Q*, P?r"=-Q"7, (29
and
1
tfQP*]=0, t|{QP'PP'”]=EPP”,
(o8 2 (o8
tr[QP* ]=EPP , (29
1
t[PP QP 7]= EPW' t QP QP ?]=0. (30
For the terms containing we find that
2
tr PTPT]= — 4kPk t%(trP) — E pro
x{cosik?(—1+ & Ht]—1}, (31

PHYSICAL REVIEW D 60 106001

1 ]
W PI77] =21 577t (tP) =i pro[ek - 1]

1 -
+i EP”"[ekz(’“g RSN (32
for the matrixQ
2

t QI PI7]= — 4kPkt2E~ 2~ 2 pro

x{cosik?(—1+ ¢ Ht]—-1}, (33
. . 1 2 -1
QI F7]=2i 8 7t& 1 +i EPP”[ek (=& 0t-1]

i L papelte g (34)

k? '

The recursion Eq(20), leads to an iterative scheme with
which we can evaluate the first terms in powers of ordinary
derivatives of the heat kernel. In the first iteration we get

- 2 2 2 2
a;=T", TiXo,T;eM M= T,X,T;em m
[ 1]

(39
and after an integration from=0 tot=c we find
a1=2ikP(P+§’1Q)iEj Tixoyijfij—iEj TiX,T;9;
—i(P—Q)P"’iEJ TiXo,Tidi
» PPPg[m?+(1- £ 1k?]
e TXoeTi] _qpogime—(1-¢ b))
(36)
where
2 J 2 2 2
f(m9)=f;(t)=—=g;t), m=mi—my, (37
Jm
g(m?)=g;;(t)=m"2(e™~1). (38)

The lengthy evaluation of the second teamis described in
Appendix B.

Finally after considerable cancellations, we find through
the expression Eq12) that for a 't Hooft gauge fixing the
first terms of the derivative expansion are

Ao=(4mt)¥2(trP+ £92)K (1), tr(T)e ™1, (39)
where

K(t):f du(k)e . (40)
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The termA; does not contribute in the effective action, in our case, because leads to a total divergence:

A,/ (4mt)d2=—

2 -
%tz(trPJr g*“d’Z)Z tr(TiVMV“XOTi)Ki(t)—gtEi tr(T,V VX THIK () —KE(1)]

+(rP+ & I2)K (1) 2 tr(TiV ,XoT;VAXT)) 7755 (1) + g[R(t) —K®(1)]
1]

X 25 r(TiV ,XoT; VAXoTi) xij (1) + K (1) (trP+ £92) X tr(Ty X, T; X, Ti) xi (1)
i [

(1) + i (1)

OOIN

ZJ tr(TiV ,XoT; VEXoT))

where
Ki(t)=fx du(ke e mM=K(t)e ™, (42
Ri(t)=f:dﬂ(k)%e—kzte—m?tzk(t)e—m?t, 43)
and
A t—Efd k) K 6 (t
ij()—2 el —m2+k2(1—§*1) ij (1)
fd,u() k2(1 0, (@
-2
Mu(t) fd;“( k) 2+k2(1 & l)[{:”(t) gjl(t)]

-2

+3ifd K [0 £(0)]
2 m2 M m2+k2(1—§‘1) glj §J| )
(45

-4

1
Vij(t)zzf du(k) [— &)+ ¢i(D]

—mP+KA(1-&71)

+3J‘d |()k;‘1 (D=5t
2 m( m2+k2(1—§’1)[§”( g]l( 1,

(46)
also
l 2
7']I](t):_m 6 1+6m4t2)(e mlt—e mjt)
1 a2 2,
_Em t(e"Mit+e™ MY 47

3
5 1

, 41
Vlj(t) 4y

1
xij(0)=— 3 m"2t(eMi—e ). (48)
In the case where=,

n..(t)—it3 M ()= Etz -t (49)

The above results in the Feynman gaggel, reduce to the
respective expressions, in R¢2]. We should ignore the
spacetime indices if the operators do not carry such indices,
otherwise we should take them into account, assuming that
the traces in the respective equations in [R&fare also over
spacetime indices.

The above developed expansion formulas can also be
given in a different and more lengthy in our case form, using
the covariant derivativeP , instead of the simple derivatives
V.. The above expansion can be carefully transformed in
the covariant form in a similar way with that proposed in

Ref.[2].

Note that

for =1, K(t)=K®(t) and \;(t)=uij(t)=v;;(1)=0
and

for =0, K@(t)=0 and \jj(t)=pu;j(t)=w;;(t)=0.

Note that one can prove, in order to test the validity of the
developed expansion, that the derivative of the corrected ef-
fective action with respect to thé parameter, evaluated at
¢=1, is zero. Thus small deviations from the Feynman
gauge leave the calculated corrected action invariant, as one
should expect.

A. Landau gauge

The derivative expansion in the Landau gaugeO re-
duces to the following equations:

Ao=(4mt)Y2UrPYK (1), tr(T))e ™, (50)

106001-4
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1 1 (-
d2_ _ — ) ) . ’ - _ s—
A,/ (4mt)d2= 6t2(trP) §i‘, tr(T;V . V4XoT)K;(1) £H(x,s) F(S)fo dtts™ [ Kya,]. (56)

The above expression together with the developed expan-
sion, see Eq939), (41), contains all the information needed
to find quantum corrections at finite temperature. The one
loop contribution, at finite temperature, is given by the fol-
lowing expression:

2 .
— 32 T(TV, VX THK()

+(trPYK (1) 2 tr(TyV ,XoT;VAXoT;) 75 (1)
1)

1 ’
~50(x0)|. (57

Wl N

- 1
+—K(t)i2j tr(TiV ,XoT; VAXoT)) xij (1) r<1>=?f d*x

It is straightforward to find, but lengthy to present, the tem-
+K(O)(trP) X tr(TiX T X, T xij (). (5) perature corrected expansion in 't Hooft gauge. In the previ-
o ous work[2] the temperature corrected expansion was given
o ) in Feynman gauge while here is given, for comparison, in
B. Finite temperature corrections Landau gauge. The way we can calculate this expansion for
In some stages of the early Universe evolution, we ofterPosons and fermions is described in Appendix A:
expect the particles to be in thermal equilibrium. Therefore a
f|eld_d> can be in contact with this heat bath. The result is gé(x,0)=(trP)Z [T,V ,.V#XoT 1p/ (0)
that it gets a temperature dependent mass. Since we deal with i
an ensemble of particles in thermal equilibrium, the back-
ground state in which we perform calculations is no longer + >t T,V ,V4X,Ti]p! (0)
the ground state of the Hamiltonian but a thermal bath at i L i
temperaturel. To study this situation is essential to use a
statistical quantity, the finite temperature effective potential +(trp)z T,V ,XoT;V#XoTi17/,(0)
V(P,T). This is the free energy density associated with the i
® field. At T#0 quantum statistics is equivalent to Euclid-
ean quantum field theory in a space which is periodic with +> [T,V XoTjV"XoTi];(i'-(O)
period B=1/T along the “imaginary time” axis. Thus we i a !
can write the partition functio as

+(trP) Xt TiX,T; X, Tilx}; (0). (58)
z=2 (B(x),t=0e” | (x),t=0) '
¢ The new functions, we introduce, are given below, in the

8 high temperaturerf/ T<1) regime and for bosons:
ocf D[@]eXp[f drf d3x£], (52
0 T
’ __ _ m-1

where the integral is periodic with period depending on the
kind of statistics the particles obey

~ T —
bosons(7=0X)=¢(7=4.%), (53 pi(O)==g m ", (60
fermionsir=0x)= = (=) (64 T 4(mi+m?)
7i(0)= (61)

The fields here represent ensemble of particles in local 1927 mymy(my+m;)®’

thermal equilibrium. These thermal averages vary over

space. The short discussion we had, implies that the integral , T _q
measure, in momentum space, becomes xij(0)= g(miﬂnj) ' (62
| dutor » g o ( 2mneeT = L
K ' = (2m)3 B ' Xij(o)zmm(mi+mj) . (63

55

9 One should note here that the finite temperature effective
wheres=0 for bosons ang=1 for fermions. We need to action is not well defined because of the nonanalytic behav-
calculate now the’(x,0) function in order to find the one ior of the two point functions involved. This problem be-
loop corrections through the expression Ex). The ' (X,s) comes manifest from the different results we get, taking dif-
can be written as the sum of terng§(x,s) with different  ferent order of zero limits of the four external momefita.
numbern of derivatives. However it can give a correct approximate estimation of the
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critical temperature. As far as the nature of the transition isand
concerned, something that would be crucial for the cosmo-

logical electroweak phase transitigB], the various pro- A;(A) 0 Xy
posed improved methods do not seem to afgde AZ: 0 A(fl 0 | (72

XY 0 A2

IV. SCALAR ELECTRODYNAMICS 1 22

In this section we will apply as an example, the derivativeThe off diagonal entries are the nonzero kinetic terms
expansion method we just described, in the toy model of

scalar electrodynamics. For loop corrections of this model X1, =209, e - (73
see Refs[10,11]. , . The fluctuation operators are
The Lagrangian can be written as the sum of the physical
and the ghost contributions. A,=—-V2+X (74)
¢ ¢
L= Ephys'*' ﬁghost- (64) with
This model just has a charged scalar field and an electromag- , 3.,
netic one: mot g A 0
[,phySZ—(DMqJ)(D”(IJ)*—,LL2<IJCI)*—Z)\((P(I)*)Z 0 wl+ Z)\¢§|+§q2¢§|

1 1 The gauge field operator is
G PP g (A - Eadad).? (69 a9 P

Ar=—8V2+(1-¢ HV, V' +a?pg8;,  (76)

where
and the ghost one
1
@ZE(¢C.+ brt+idh) . (66) Agh=—V2+ {0263 (77
) o So the quantities we need for the formalism of the derivative
The LKl) covariant derivative is expansion are
D,=d,+igA, (67) simi 0 0
and the electromagnetic tensor Xo= 0O m; 0|, (78)
2
F=0,A,—d,A,. (68) 0 0 mj
Since we want to find the quadratic part of the Lagrangian 0 0 Xy
d Eq(65) and drop total di . Wi t
we expand Eq(65) and drop total divergences. We ge X,=| 0 0 0], (79
X{ 0 0

1 1 ) 3 5\ o 1
‘Cquadr:_iaﬂd’l&'uqsl_z M +Z)\¢cl ¢l_§a,u¢2&lu¢2

with masses

2

2 E 2 2 2) 2
M +4)\¢C|+§q ¢C| ¢2 m§=q2¢>§|, m§:M2+ Z)\(f)a,
1
_E[(l_g_l)AMa"aVA" TPTCNY 2
m3=u +Z)\¢cl+§q2¢cl- (80
— A8 9\ A, 02 PoARA,]

. — 5 .2 The projection matrices are
—2iq oA 3, o+ C[— %9, + Eq g ]c. (69

i 1 0 O 0 0 O
It can be written as
7,={0 0 0}, T,={0 1 Of,
1 _
ﬁquadr=—§nIAZ77“+cAghosp, (70) 0 0O 0 0 O
0 0
where
m=(A, ¢1 ¢ (72) 0 1
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i i i ATV — AN@V — v
Since now the matriX is IIY=II;, ©,0;=0,. (86)
o’m? 0 X . .
w1 u The important expressions are

Xx=| 0 m5 0 (82)
XY 0 m§ tr[ [T P7]=2i 8°t[ tr(P) T+ To+ T3]
it is trivial to see that here we should introduce the following —i ip,pg-l- [ek2(17§*1)t_ 1]
definitions: k2 !
P 0 O 1
® 2 -1
) ) +i—PPoT [T E 1 8
M= 0 1 0|=PiT+T,+Ts, (83 2 il 1 @7
0O 0 1
while for the matrixG);,
Q; 0O 0
®’=| 0 0 0|=Q'T,. (84) 2
" # tr{ O PT7]= — 4kPkot?E 2T — —PPT
0 0 0 il ] & Ty % 1

It is obvious thatHl’; and @; satisfy similar expressions to x{coshk?(—1+ & Ht]—1}. (88)
P, andQ,:

Ny , b Proceeding as before, the first terms of the derivative expan-
Hp,®)\:0’ HIL+M:5MT1+T2+T3’ (85) sion are

Ap= (4wt)d’2K(t)2 tr(Ti)e’mizt(ﬁiltrP+ Sipt+ 8i3+ 8,1692),
I

(89
1
Agl(4mt) 9=~ thEi tr(TiV . VAXT)(8iatrP+ S+ Sig+ 8,16 1 2K (1)
2 - 5i1trP+ 5i2+ 5i3
—3 L2 TV, XoT) 8l Ki() = KO+ KO 2 TV, XoTi VA XeTo)| 5,61 M)
I
2 = (é)
+§[K(t)_K (t)]iEj tr(TiVMXOTjVMXOTi)éilXij(t)+K(t)iEj tr(TiX, T X, Ti)(Si1+ 1)
5 A (1) + w5 ()
X[trP+ 92y (D) + = 2 tr(TyV ,XoT; V4XoT)) ¢ Si1. (90)
31 + —v;; (1)
=
|
The only nonzero combinations are TaX T X Ta= —4q2f9#¢c|(9V¢c|T3 (92)

_ 2\2

T2, XoT10"XoTy = (0#my)"Ty, T10,0*XoT1=0,0*m2Ty,  Tpd,0"XoT,=a,0"maT,,
_ 2\2

T20,XoT20*XoTo=(#m3)"T>, Tgaﬂa#xngzaMa“mng. (93

T30, XoT30"XoT3= (9#m3)?T3, (91) Now we can calculate for this model, the one loop effec-

tive action with nonconstant background field, . One can

and choose a value fof and proceed further. Results are known

in Feynman gauggl0,11], so we will present the results in

T X1 T3X,T1=—40%9, 019" beiT1, Landaué=0 gauge:

106001-7
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Aol (47t) 4= (8,,trP + 8,4 85K (1) D, tr(T))e ™
|
dr2 1 2 m 2 " 1%
A2/(477t) :_gt EI tr(T,VMV XOTl)(5,1trP+ 5|2+ 5|3)K|(t)_§t tr(TlV#V XOTl)Kl(t)
2.
+K(t)i§j: tr(T;V  XoTi VAXoTi) (8i1trP + 8o+ 6i3) ;i () + §K(t) tr(T,V , XoT1V#XoT1) x1a(t)
K02 (T X TX T 81+ 8P (1). (95)

i

In four dimensions we have that

K(t)= fﬁwd,u(k)e*kztz e (96)
~ » 1 1
K(t)= deu(k)PGKZI: M (97

Using the values of some usefil(m?,p,s) functions we calculated in Appendix A, and the above integrals, we can find the
one loop action including the kinetic terms of the background field. We get

7 m3 1 m3 7 1 3 1
q2In<—l)— )\In(—z) a4t —+ SN
, , | .| 127 MR| 64 MR o o127t mp 2567%  mj
{5(X,0)=[bcidci+ (de)”] 2 tlda(de)?]
1 m; 1,1
- n| — + A —
19272 MR 7687 m3
2[L(m2)—L(m?)] 3 2
P 23 22l T2 2 —mi+m;In =
;2 4 (m3—m3) (mi—m3) MR
~(66)*—— , (98)
47 3 2, 2|
———| —m3+m3In| —
(mi—m3) KR
and
' 1 2 2 2
{o(x,00= ——[3L(m3) +L(m3)+L(m3)], (99
1672
where
1 m?
L(m®)=¢'"(m?,—-2,0)==m* =—In| — | |. (100
2 2 ,U«z
R
Finally, the one loop corrections to the tree action are kinetic terms
(1) 4 1,
5= | d* = 5£5(x.0) (101)
and potential terms
(1) 4 1,
L= | d' =5 o(x.0)|- (102
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In Feynman gauge the results look different, i.e., there §sd@pendence,

1 m? 1 m3 1,1 3 1
—q? In(—l)— )\In(—2> —q*=+ SN —
, ., ;| 37 MR)  64m? MR | 3™ mi 256m° m;
$H(X,0)=[eidpci+ (e ] m2 tLoa(be)?] 1
- N +4q? In(—g) + N +4q2)2—
192772( ) MR 768772( ) m3
3[L(M))—L(m))] 1 2. oM
PR | —mi+miln| —
9 4(mf—m3)? (mi—mj3) MR
| —mi+miin| —
(m7—mj) MR
|
while the ghost contribution is The classical Lagrangian for the Higgs field in the elec-
troweak model is given by
"(ghos) sl @ (mi
& (X0 =[dcideit (de)?] 18 2 n L=—(DD)T(DD)+p?dTd—N(®TD)2, (109
T
g 1 with @ the following SU(2) doublet:
+[a(Pe)| —— —2] (104 .
487T ml 1 (pl+|(P2
=— L (110
and V2 \ @sties
Gauge covariant derivatives will be written in the form
Lo(x,0)= T [AL(MY) + L(m)) +L(m3)]. (105 i
D,=V,— —0gA,.T? (112
M M na
0= L)) (109 N
x,0) = m?).
£ 16m2 =t where
The one loop corrections to the tree action are the kinetic, T?=¢* for a=1,2,3,
1, '(ghosy | Ta=tl for a=4. 112
rO- [ - a0+, (x0)|. (107 (2
) ) The first three generators are Pauli matrices and the fourth is
and potential terms equal to the unit matrix multiplied by the tangent of the
) ) Weinberg angld15,16. The SU(2) coupling isg and the
1, ’(ghost) !
rg”:f d% - 50+, (x0|. oy UY(L)oneg.

The ¢ dependence of both the kinetic and potential terms is t (113
profound. This dependence should cancel out for a given
solution that extremises the effective corrected action. Such &roup indices will be raised with the metric?® and low-

solution is the bubble one which is known only numerically. gred with the metrié 8,,. We focus on one real component

¢1
V. FULL ELECTROWEAK MODEL
In order to convince the reader for the power and the ®:i< O>, (114
range of applicability of the described method we present the V2\ ¢

evaluation of second order derivative terms for the full elec-

troweak theory, around a nonconstant background scaland calculate the effective actidi ¢].

field. Recent works, performing derivative expansions, set The effective action will be expanded in powersfaf 8
the Weinberg angle to zefd2-14, in order to simplify the andV ¢. First of all the effective Lagrangian including de-
group structure of the quadratic operator. rivative terms up to second order can be expressddds
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1 ) and
L==5Z2(¢T)I(VP)"=V(g,T). (119
AY Xy
. Ap=AY = B T (124
The 7 expansion takes the form w(b) Xy A,
Z(¢.T)=1+ZD(9,T), (118 The off diagonal entries are the extra kinetic terms. The fluc-
tuations operators are
V(B.T) = = 3 u2d2+ A V(B T). (117
' 2H P g o Ay=—V2+X,, (125
The radiative corrections to the effective potential are well Ap=A" = —8"V2+(1—E HV V' + 8" Xa,
known up to this ordef18,19. In the region of the potential A a a a (126)
where tunnelling is important the effective Higgs mass is
small and the radiative corrections are dominated by the vec- Agn=—VZ+£X,. (127

tor bosons and the top quafk0,21].
Let us work out to find the scalar quadratic term. The scalar

A. Zero temperature quadratic part of the gauge fixing term becomes
We use an improved method for calculating the effective b b
action which includes a quadratic souf@®]. This adds a 592{(0(1,)1- FITE2) gyt T2
16 & gt +i
term P3Py P31y
k=—¢ 1V’ 118 P1tie; _ _ 0
¢ V(#) (118 —(09)T, oatio (@1—I¢2¢3—I¢4)Ta(¢)
to the Higgs masses, making them positive, but does not 3 4
change the vector boson mass terms. At ordethe effec- ( ) 00T 0)(0¢)Ta o1 tigs
i ion is ai —(@p—i —i .
tive action is given by P17 1P20371¢y) 15 & o3 tios
I'[¢]= L log detA,—log detA ! log detA
[41= 7 log det,—log detig,— 5 log detA, +HermigesieaTa| | (91710205100
!t tr(A; k) (119 0
2 b D XT? é

whereAy, is the fluctuation operator for the boson fields, :

for the ghosts and; for the fermion fields. S 0 b20%+ BRo2 4 (1+12) h202
The gauge is fixed by the 't HooR, gauge fixing func- g G1o7et ¢Teat (1) 470l

tional F. We will use

Therefore
i R -
Foa=V-Ag+ —£g(OT, - DT, D). (120 VA 5 ) 5
V2 xo(b):—t9¢i5¢j _Zgz[¢2¢1+¢2¢2+(1+t2)¢2¢4
The gauge-fixing Lagrangian is = (3N 2 — 12) Szt (N P2 — u2) (8114 oot Bas)
1 &
Lgi=-— 2_§fafa' (12D - Zgngz[ 811+ Syt (1+12) 844
The cross term of the gauge-fixing teiig(d,A%)®'T,d +K( 011+ Szt 533+ 044) (128

cancels a part of the cubic termig®d,®")T,d A®* that
appears from the kinetic term with the covariant derivative
of the scalar fields, after the symmetry breaking.

The quadratic term of the electroweak Lagrangian can be

S:[he value ofk is

k=—N¢?+ u?. (129

written as Thus the eigenvalues are
Cavad 2 7 g7~ CAghc (122 1
quad=7 77 Ap7~ CAgnC, mg=mg=7£9%¢7, mi=2n47,
where
2_1 2 2\ 42
7'=(AY AL AL AL o1 e @3 @) (123 Mem 0TS 190

106001-10
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There are more eigenvalues &, coming from X,. 0 0
They can be evaluated in the same way from the quadratic 000 0
interaction terms with the gauge fields, :
T 0 0 0
;=
2 2 1 242 2 1 2 2\ 42 2 0
mi=m;=,9 ¢, mz=49 (1+t9)¢°, m;=0. 0
(13D 000 1
It is easy to see that tHE matrices of the expansion, Eq. 0 0
(19) are 0 0
0 T 0 0 133
=| o (133
T 0 0 0 0 1
1o 0 ’
0 0 The ghost quadratic part is given by the matiy;,
0 0 X gn= £(M2T,+ 2T, +m2Ty). (134)
0 0 0 O Note thatXy, and has no spacetime indices.
0 1 The matrixX, is determined from the kinetic terms in the
Lagrangian. There is the following kinetic term:
0
TZZ y i +
0 i P11
- —g(V,¢9)A (01)T? .
0 \/Eg wP)Aua P3tie,
0 0 _ . .
o oV ) Ap(@itiea) +A (o1~ @)
T2 T A (@3 ia) FA (teg it
00 0 0 2 w3(— 3= 1@g) A u(testite,)
0 0 0 O and also this
T,=T = 132 i 0
= = , | . .
%o 0 1 -t 1+t2 EQ(V,&)(%—I¢2¢3—I¢4)AﬂaTa(1)
0 0 —t t?
0 0 i oV .6) Ap(er—iga) A (—Te1— @)
V27 T AL~ estiea) T A u(tes—ites) ]
0 0
00 0 O Thus we get
T5: 0000 xlEXl,u: - \/Egv,ud)-rk! (135)
0 .
000 0 where
0 0 0 1 01 0 O
1 00
0 0 0 0 0 -1
0 0 0 T 0 0 O 136
0 00O “1o 1 0 o (13
Te=| o ' 10 0 0
0 0 0 0 O
0 0 0 -1t
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We have presented so far, for pedagogical reasons, how that satisfy similar expressions B, andQy, :
calculate explicitly the various matrices. In summary, we

first separate off any derivative terms already preserX,in 1,07=0, IM’+0"=48"(T;+T,+Ta+T,)
X=Xo+ X;. The eigenvalues oX, are the squared particle a a ”
massesm?. Projection matrices onto the accompanying +Ts+Te+T7+Tg. (137

eigenspaces are denoted By
As in the previous chapter we can define nidy and® One now can easily guess that the expansion is

IN

8
Ao=(4mt) 2K (1)) tr(Tj)e” 2 trP+gd’2)+§) 5”}, (138

4 8

2 S(trP+ &~ 1+d’2)+2 8

1
Az/(4wt)d’2=—gt2§i‘, tr(T;V ,V#XoT)) Ki(t)— t}i‘, tr(T;V ,,V#XoT)

7;i (1)

4 4 8
xEl & [Ki()—KEOM]+K0) X tr(TiV#XOTiV”“XOTi)[Zl 8ij(rP+ §—1+d/2)+25 8
J= i i= i=

2 ¢
+ 3RO -KIO] 2 TV, XTVAXT) 2 Sixij (DK (1) 2 1(TXaTjX,T)
1] = 1)

4 NG (D) + i (D) ] 4

2
X D (St S)[IrP+ &2 xi (D + 2 2 t(TiV ,XoT;VAX,T)) 3 > Sk (139
k=1 31 + = 1v,,(t) k=1

It is also plain to compute 5 ) ) 1,, 1, gy 1o,
mW,zmS(T)sz(T)=§g T +Eg (1+t9)T +§)\ T4,

t Tid,0"XoTi]=d,9"m?, (142)
tr[ T;9,XoT;9*XoTi]= 6, (9#m?)? 140 5
[ iCuN0'j 0 I] Ij( |) ( ) m\z,\,sz(T)zmg(T)szJrgngz, (143)
while the nonzero terms af;; tr[ T; X, T; X, T;] are
2 _ 2 _ 1 2712 1 2 2\T12 1 212
[T X TeXa T =t ToX  TsX  To] =t TsX  ToX1 Ts] mz,—mg(T)—gg T T 169 (A+HT"+ 2™ i
—tr[ TeX, T2 X, To] = 2029 )% (144
2 2 2 2712 2\T12 1 212
tr[TaX TgXa T3] =t TaX  TeX T4 =t TgX 1 T3X; Tg] mi=m3(T)=mz+ 89 T +_9 2(1+9)T SN
=t TgX 1 T4X  Tg]=2092(1+t2)(9*p)>. (149
(141 m’=mj(T)
From this point on, we can directly calculate E¢$38), ) 4 5 —
(139 and after some trivial algebra we finally compute, as in - E[M —M*—4(miml+ mla2+t?mim2)],
the previous chapter, the one loop corrections from the extra
kinetic and potential terms, Eq§107), (108 at zero tem- (146)

perature and in 't Hooft gauge.
=m3(T)

B. High temperature limit

1
, = Z[M2+ yM*—4(miml+ mlm2+t2mim2)],
As an example we present the results in Landau gauge 2

(mé=m2=m3=0). Masses and temperature corrections for (147)
the boson sector are given below. The vector boson mass
corrections which include only daisy type ring20] are with
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M2=mZ+ 71+ w2+1t°m3, (148

where the relevant polarization tensors are giveri2f},

5
T2= Wsu(z)zggz-rz.
(149

1
ml= Wu(l)zgtzngz,

It is straightforward now to calculate th&Y)(¢,T) contri-
bution to the action, from the modified E(8) in the spirit
of Egs. (138 and (139, using the results in Eq$140 and
(141). The fields contribute

T

1
ZM($,T) == 5= (a"my)? 247
W’

1+t2 | 3T
m,+my | 27
(150

2 1+t2
+

mw+ mwl

mz+ mzl

We also present, for comparison, the kinetic term in Feyn-

man gauge. It is given by

ZW($,T)= = P20, (151
where the physical fields contribute
T -2 -1
L (PYS)— (g )2 e —— 4 (9 My )2 ——
52 ( W ) 48’77 mW’ ( Z 48’77 mz,
gz T8, T L
(0"mw)” 78 oy (0 )487-rm_H
+(9#mz)? o 4+g2(<?"¢)2
2’ 487 my
T 1 T 1
X|— ————t — (1 +t)——
T my+ My T on mz+my
(152
while the ghost fields give
T -2 -1
1(gh) — ( gm 2 J—
L8N = (0 my)® e+ (04 mg)* g
(153

PHYSICAL REVIEW D 60 106001

Fermions do not contribute at this order. The advantage of
using the ring corrected masses is that we get finite result for
small values of the scalar field [12,13. The negativity of
the Z(M), which is a signal of the breakdown of the pertuba-
tion theory happens for smaller value @f compared with
the previous resultgl2,13. If we use the conventional ap-
proach of calculating the effective action, without including
a quadratic source, then we recover the expression in Ref.
[12], using the plasma mass terms and settiad.

VI. FINAL REMARKS

We developed this expansion method to cover fluctuation
operators appearing from a general 't Hooft gauge fixing.
The superiority of these gauges is discussed in R&i.

The aim of this work is to provide a powerful derivative
expansion method that can be used easily by other research-
ers in a wide range of Lagrangians. An important feature of
this derivative expansion method is that it can handle com-
plicated gauge groups. We applied as an example this
method in theSU(2) X U(1) group structured model.

There is also another usefulness of the proposed method.
Quantum corrections to soliton solutions can be found apply-
ing the developed derivative expansion technique.

As we have already pointed out the finite temperature
results are only indicative and performed for testing the
method. The nonanalyticity of Feynman amplitudes at high
temperatures make the derivative expansion not well defined
[7]. Widely accepted improved results still are missing.
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APPENDIX A: USEFUL INTEGRALS AND EXPANSIONS

Let us define the following integrals in momentum space:

K(t)=fo du(k)e Kt (A1)
and
Ki(tH)=K(t)e ™. (A2)
One can then prove that
1
f du(K)kokoe <k2+m>t—2 (1+,8&,8)Ki(t) (A3)

and more general fan=0,1,2 . ..

foc dM(k)(k0)2n+2ef(k2+mi2)t

T2t

(2n+D)+B-5 U du(k)(ko)2e ™, (A4)

Note that the ring corrections are the appropriate for this

gauge choice.

where
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k?=k>+ k2. (A5) _2d{ 1 J o1 mit
k is the spatial part of the vectér The one loop corrections
can be expressed in terms of the zeta function defined below, % f dM(k)k*Ze*kzt (ALD)
1 d 5. 2 s=0
: =7 - pts—1 —(k“+m)t
LixpS)=2i(p.s) F(S)J'O dtt fd'“(k)e ' It contains the following integral:
(A6)
. o - | = d (k)k~2e~ K
where the subscript inf;(p,s) does not represent derivative _du
but the index associated with the mass. The following
recursion relation helps to relate the above function with i 2 —, 2
i(0,9): = 4e "o f dkke= e
gl( S) n=—ow 3(277)3 0 k2+ ko
d (A12)
Gi(ptls)=——=/(p.s). (A7)
am;

The integral in the last equation can be evaluated,

The value ofZ{ (0,s) ats=0 is defined by analytic continu-
ation. Performing a high temperature expansiom/T mdk_kZ 1 e E\/E— zk [ 1— @ Vtk
. W) € - 2 t 2 0€ [ ( O)]!
<< 1) we recover the well known free energy density of an k“+ko
ensemble of bosons or fermions. For bosons we find

where
2 m2 m3 4
{/(0,0)= 5 Th= T2+ oo T+ —Lin| 25 e
6w 3272 | T2 P(x)=—e XD —
iy Jm S (2aan+ 1)
 Zean ——¢r(3) T2 (A8) s the probability integral. It is also true that
and for fermions IO:I dkk2e— Pt = jt\/i
-7 ? 4 m2 2 mi“ MR
£i(0,0)= 5 s T ﬁT + 32| 72 Combining all together we get
6 - 2 (27N
M | = 4me kot 2tlo— 77——(—)
- 3847T4§R(3)§- (A9) n;w B2m?® ° B2m3 2\ B
Now we will evaluate the functioﬁi’j(O) for bosons, defined Z 47-, ! ko @ (\tko)
below using the previous formulas. n=-—o
3 (0)= d Jd s—1f(@— Mt ” —(K2+KD)t
Xi(0)= - T~ 3 as|T(g#R ) A e :"Zth_wd“(k)e °
—m?t 2,k o
—e J)fd,u(k)k e N E A 7Tk 2 &
- e o
o e p2m?® 2 m
m—2
=— 320520~ (20)] . = oMM DI
) - - &0 (2a+ 1)l
= — _m_2 —m._l— —m._1
3 8m ! 8m !
w Y M+
T 1 1 =2tf du(k)e K rkoty > —— At
- S (A10) —w =0 (2x+1)!!
127 mi+mj mimj
B - oN+2,— (K2+KD)t
In the same way we will calculate the functigr (0) X f,wd’“(k)ko € o (A13)
(bosong. We always try to rewrite it, using the recursion
equations, in terms of; (0,0). We can proceed further using E@\4),
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«© 2)\+2t)\+2 1 ) 1 5 tS—l o2
= m,—1S8)=—=—— e~ (MTugt|®
' ZtK(t)“L;o (2N + D)1 (pp)h+t 4 ) I(s)#Rs—1 lo
g (2H1)+Ba> (l+ a”K(t) (A14) R L
| .. — . — (M up)t
B B Te™ JO dto—e R
Finally 1
_ 2 2 v
_ 4 s— M ¢(m%,08)=¢"(m%,—1,0)
pi (0)=— §§i (2,0)
2
© =-—m?’+m?In| — |. (A19)
4 > [(2N+1)+B(aldp)]---[1+ B(aldB)] uA
350 (2N + 1)1
In the same way
X {{(2,0) )
. g(mz,—2,5)=—Zng(mz,—1,3):>§’(m2,—2,s)
T 1 11 ST
- 6rm 67 m; b
1 2 2
== ;m°¢(m%,—1.9)
X[(2>\+1)+B(ﬁ/&ﬂ)]'-'[1+ﬁ(8/ﬁﬁ)]T (s—2)
(2 + 1)1
21 2
=T emm (A15)
={'(m?,-2,0)
So far we ignored the renormalization scale in the zeta
function for simplicity. A useful definition for zero tempera- 5
tures is the following function: _ lm“ 3 nl ) (A20)
2 2 u?
R
{(m?,p,s)= —1 M_szmdttp”‘le‘(mz’M@‘
o I'(s) i 0 . APPENDIX B: SECOND ORDER TERM

(A16)
Here we compute the second order term in the generalized

From the definition of the Gamma functions we can find thatderivative expansion. We get from E@0) that

1 (m?|° a,=q+r+s+w Bl
§(m2,0.5)=r—<—2 r(s) . | By
(s) KR
1 o o (m_27m_2)t i
25 [ q=5(&To=I*T )i§i) TiXo,oTjeM M), r=ajay,
:>g’(m2,0,s)=— — In — (B2)
MR MR
m? m?—md)t
={'(m?,00)=—In| —|. (A17) s=—2, TiXp,T;o"a,em M)t
MR b
It is obvious from the analogous recursion equation to Eq. > o
=T°r (m"—m{)t
(A7) that w=T % TiX,, Tjem ™, (B3)
1 . .
'(m?,1,0)= —. (A18) What we want now to calculate is thg, functions from
m? Eq. (12. Thus we will calculate the functions
tr Ko(k,x,t)a,(k,x,t)]. Since we are not interested for the

We also can get A; term we will ignore it:
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1 2
=57~ §kpk"t)t2(trP)

t Ko(k,x,t)gq]= —(2

X 3, tr(TiXg o Tie e mt— g1
]

X

1 2
—opo_ _ ¢ 1ppLo 2
AT kkt)t

. 2
X 2 (T Xo,e T ¢ Klemmit
1)

PHYSICAL REVIEW D 60 106001

J du(K) K o(k.x)q]

- %tz(trP)zi tr(T;V,VPXoT)K;(t)

1
— gt2§*1+d’22 tr(T,V VX THK; (1)

2 -
—3 2 TV, VP XeT)R (1)

1 2
e mtS (T X0 i) 5 P 32 TV, VP XeT)K() (B5)
: :
- —t(e‘k2t+e‘§7lk2t)' where
% e Ki(t)= f du(ke e M=K (t)e ™!,  (B6)
X k2(¢é—1) (B4) o
2¢ —1,2 ~ » 1 2 2~ 2
+———e & Kt Ki(t =f du(k) e Kle Mt=K(t)e ™!, (B7
| k-1 | i(t) - e )k2 (t) (B7)
Integrating we found and
_kze—gflkzt
A1) = kO(pya-mt_ | 2 —m?t
KO =K (t)e f_ocdﬂ(k) S smh(k— g le @i @ (B8)
k* (1-¢& Nt 2
From the above definitions it is easy to check that
for¢=0, K©(1)=0, (B9)
fore=1, KEt)=K;(1). (B10)
From the second term af, we get
2 t?
tr(P)e . 3 om? |-1 )
tr[ Ko(k,x,t)r]= —4kPk” C12,| S —e Mt
+§—ze—g K2t [ 2
- —f(m?)
m
L7 ek t—g(m?)—g[k*(1-¢™ 1] —_1 it
" +o[m?+k*(1—-¢™H] | m?
(2 k201 -1
B e T R e 1 e S
" +o[mP+kA(1-¢H]  JmP+k3(1-¢ Y
B e L PR B el )| o
o —glm?—k*(1-¢7Y)] m?
2y _ 201 _ e~ 1\7_
1z .e7§—1k2t t+g(m )2 g[': (1 é:l )] } 1 e—mizt
! —g[m?—k*(1-¢H]  |-m24+K2(1-¢7Y
tr(P)e <t -1
L [t—g(m?)]— e ™'+ odd terms (B11)
bl Siilt—g 2 ,
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where

=k ?Pros = k‘ZP"”iEJ tr(TiXo, TiXoo Ti). (B12)

SH=2 (TXTX,Ty). (B13)
1)

The odd terms, proportional & do not survive after the integration:

2 t?
2 3 om?
f d,u(k)tr[KO(k,x,t)r]=?[tr(P)+§‘1+d’2]S° —K () .
- —f(m?
m

Ai(mzat)_Ai(_ m2'§—1t)

20 1o o iam. 20 1o [
+ 3SR L+ 79+ 38R0 | s o A (mPe)]

+ 230 LM+t = A(m?, )+ A (—m? E71)]

2, & Ri(m2 0+ A, (—m2, &1t 1
+_ R
37METL —Ky(m?(2—¢ H—R[—m?,(2¢ 1-1)t]
2 “Ni(mAO)-Ni(-m* &) ] 2 1 2 1
< _ = Ko(t)— o = I
+ 3531 +em2t[Ni(m2,§flt)+Ni(_mZ,t)] 3tSYIK'(t) m2+ 3tS?,JK| (t) m2
1
—[tr(P>+§d’2]al,,-EK«t)[t—g(mzn, (B14)
where
) 1 2 >
(m2.1)= -2 = a—Kig-mt
Ai(m*,t) J,wd'u“(k)k m2+k2(1—§’1)e e , (B15)
A 2 1\ ” —4; — K2t —mizt
Ai(mt) f_wd,u(k)k m2+k2(1—§*1)e e , (B16)
N-(mz,t)=fw du(k)k=? ! e~ Kg—mit (B17)
| = [MP+Kk3(1-¢ ]2

We focus now on the third term cifz,

t2+ t
’ tr(P)e Kt 2 m? |1 2
tr.[KO( ,X,t)S]—Z +§71e7§—1k2t i) 1 , F !
- Eg(m )

- mizt

_ L2 _ 12 _
+(—e et N7 ({—g(m?) +g[kA(1-¢ 1)]}_m2+k2(1_§,1)
2
2 12 _ e~ Mt
+(—e Ktre ¢ Yz {—g(m?)+o[—KA(1-¢ l)]}m+odd terms  (B19)
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and after the integration

2t
1 2"
JdM(k)tr[Ko(k,x,t)s]=—2[tr(P)+g-1+d/2]sf{j—zKi(t)
m
—Eg(mz)
2o & [72M(=m g+ A mt )+ A [ (2467 - )t]
+_ —
37ME-L 4 Rm2 (22— & Ht]- 2K (mA ) + A (mP 1)

Ai(=m? ) = Aj(—m?, %)

+A (M2 )+ A (m2 ) | (B19)

2
+§Sﬁjg(m2)

The contribution of the fourth term, of a, is zero because the trace gives a function proportion&f to
Finally from Eq.(B5), Eq. (B14), Eqg. (B19) after considerable cancellations, we find through the expressiofilBqthat
in 't Hooft gauge the first terms of the derivative expansion are given by expressioi3@ps41).
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