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Gauge invariance of the one-loop effective action of the Higgs field in the SU„2… Higgs model

Jürgen Baacke* and Katrin Heitmann†

Fachbereich Physik, Universita¨t Dortmund, D-44221 Dortmund, Germany
~Received 2 June 1999; published 27 October 1999!

The one-loop effective action of the Abelian and non-Abelian Higgs models has been studied in various
gauges, in the context of instanton and sphaleron transition, bubble nucleation, and most recently in nonequi-
librium dynamics. Gauge invariance is expected on account of Nielsen’s theorem if the classical background
field is an extremum of the classical action, i.e., a solution of the classical equation of motion. We substantiate
this general statement for the one-loop effective action, as computed using mode functions. We show that in
the gauge-Higgs sector there are two types of modes that satisfy the same equation of motion as the Faddeev-
Popov modes. We apply the general analysis to the computation of the fluctuation determinant for bubble
nucleation in the SU~2! Higgs model in the ’t Hooft gauge with general gauge parameterj. We show that due
to the cancellation of the modes mentioned above, the fluctuation determinant is independent ofj.
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I. INTRODUCTION

The effective potential of gauge theories has been con
ered extensively as it is of interest for the phase structur
these theories, and in particular for the discussion of ph
transitions and the associated bubble nucleation rates@1–6#.
More generally the effective action appears when compu
fluctuation corrections to the sphaleron@7–10# and instanton
@11# transition rates in such theories.

It is well known that the effective potential is gauge d
pendent except for the region around the extrema of the
fective action, where Nielsen’s theorem states that the ga
dependence should disappear@12#. This has been verified in
various cases@13–15#. In addition to the static extrema suc
as the minima and maxima of the effectivepotentialNiels-
en’s theorem more generally applies to the extrema of
effectiveaction, i.e., to the extremal, classical paths in co
figuration space, such as the bubble and sphaleron actio
has been verified@16#, using the gradient expansion, that f
the leading orders in the coupling the quantum correction
the bubble nucleation rate are gauge independent. Exac
merical computations are based on the analysis and num
cal computation of mode functions in the background of
classical solution. Such computations are quite demand
numerically, as well as algebraically and analytically, so
general the authors just used one particular gauge, suc
e.g., the ’t Hooft Feynman gauge and a concise discussio
gauge independence is lacking.

We have recently analyzed the evolution equations fo
Higgs condensate and the gauge and Higgs field fluctuat
in the SU~2! Higgs model, in one-loop approximation@17#.
Here again the question of gauge dependence arises an
not yet been analyzed. For the Abelian Higgs model, a ga
invariant formalism has been developed, which, howev
has not yet been implemented numerically@18,19#.

We consider here the SU~2! Higgs model with an isosca
lar Higgs background field. Such a configuration plays a c
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tral role in the discussion of the electroweak phase transit
Its finite temperature effective potential has been discus
extensively, and it has been used to predict the rate of bu
nucleation in a first order phase transition@1–6#.

The plan of the paper is as follows. In Sec. II we pres
the basic equations, and we expand the Lagrangian in
classical and a second order fluctuation part. In Sec. III
present the equations of motion without gauge-fixing, and
the ’t Hooft background gauge for arbitrary gauge parame
j. We show that there are two types of modes, the ga
modes and the gauge-fixing modes that satisfy the s
equations of motion as the Faddeev-Popov ghosts, if
classical background field satisfies its equation of moti
This observation is the clue for a reduction of the mo
equations into equations for the physical degrees of freed
and into equations whose functional determinant is cance
by the Faddeev-Popov one. This reduction depends on
system under consideration. Here we demonstrate the ca
lation of the unphysical modes for the fluctuation determ
nant which determines the fluctuation corrections to bub
nucleation, in the SU~2! Higgs model. We briefly introduce
the model and its fluctuation operator in Sec. IV. T
coupled gauge-Higgs system is analyzed in the partial-w
reduced equations in Sec. V. After some suitable transfor
tions the system is reduced to a triangular form, with t
consequence that the fluctuation determinant can be c
puted from the diagonal part. Thereby the cancellat
against the Faddeev-Popov contributions to the fluctua
determinant is demonstrated explicitly. We present so
conclusions in Sec. VI.

II. FLUCTUATION LAGRANGIAN AND MODE
EQUATIONS

The Lagrangian of the SU~2! Higgs model reads

L52
1

4
Fmn

a Famn1
1

2
~DmF!†~DmF!2V~F†F!,

~2.1!

with the field strength tensor
©1999 The American Physical Society37-1
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Fmn
a 5]mAn

a2]nAm
a 1geabcAm

b An
c , ~2.2!

and the covariant derivative

Dm[]m2 i
g

2
Am

a ta. ~2.3!

The potential has the form

V~F†F!5
l

4
~F†F2v2!2. ~2.4!

We will assume in the following a classical field~conden-
sate!:

F~x!5H~x!S 0

1D , ~2.5!

its space-time dependence is not further specified here
time-independent, metastable, radially symmetric configu
tion will be relevant for bubble nucleation, a spatially h
mogenous time dependent field describes a nonequilibr
situation, as considered in Ref.@17#. The fluctuations around
this space-time dependent condensate are parametrized

F~x!5@H~x!1h~x!1 i tafa~x!#S 0

1D , ~2.6!

with the isoscalar Higgs modeh(x) and the would-be Gold-
stone fieldsfa(x), a51•••3. As there is no classical gaug
field, we have

Aa
m~x!5aa

m~x!. ~2.7!

The Lagrangian can then be split into a classical part

Lcl~x!5
1

2 F]mH]mH2
l

4
~H22v2!2G ~2.8!

and a fluctuation Lagrangian. The part of first order in t
fluctuating field vanishes, if the classical equation of mot

h H1l~H22v2!H50 ~2.9!

is fulfilled. The part of second order in the fluctuations rea

L (2)5
1

2 H 2]man
a]maa

n1]man
a]naa

m1
g2

4
H2am

a aa
m

1]mfa]mfa1g]mHaa
mfa2gHam]mfa

2l~H22v2!fafa1]mh]mh2l~3H22v2!h2J .

~2.10!

In the one-loop approximation we do not have to consi
higher order terms. The gauge-fixing term, in the ’t Ho
background gauge is given by

L gf
(2)52

1

2j
FaFa ~2.11!
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with the gauge conditions

Fa5]maa
m1jeHfa , ~2.12!

the Faddeev-Popov Lagrangian is

LFP5
1

2 H ]mha]mha2j
g2

4
H2hahaJ . ~2.13!

III. GAUGE MODE AND GAUGE-FIXING MODE

Before discussing the fluctuation operator for a spec
physical setting we specify here the unphysical degrees
freedom in the gauge field and would-be Goldstone se
whose cancellation against the Faddeev-Popov modes
lead to a gauge invariant fluctuation determinant. The fl
tuation operator of the isoscalar Higgs modeh(x) is gauge
invariant from the outset.

We arrange the gauge field fluctuationsaa
m and the

would-be Goldstone fieldswa in a (411) column vector

ca5H aa
m

fa
J . ~3.1!

We start with the equations of motion obtainedwithout the
gauge-fixing term. The differential operator~fluctuation op-
erator! governing the mode evolution then takes the form

M5H 2S h1
g2

4
H2D dm

n 1]n]m 2
g

2
]nH1

g

2
H]n

2g]mH2
g

2
H]m h1l~H22v2!

J .

~3.2!

The mode equations are the same for alla51,2,3,

Mca50. ~3.3!

An infinitesimal gauge transform is given by

ca
g~x!5H ]m

g

2
H~x!J f a~x!. ~3.4!

These modes satisfy the mode equation~3.3! if H(x) satisfies
the classical field equation~2.9!. The latter condition is cru-
cial. It arises from the mode equation forwa , the one for the
vector potentials is fulfilled trivially.

If the gauge mode is substituted into the gauge condit
one finds

~Fa!g5Fh1j
g2

4
H2~x!G f a , ~3.5!

the differential operator on the right-hand side~RHS! is just
7-2
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the Faddeev-Popov operator. So, if the gauge mode is
serted into the Lagrangian, the gauge-fixing term conta
the Faddeev-Popov operatorsquared. It is very suggestive
that the contribution of this squared operator to the effec
n
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action, i.e., to the log det of the fluctuation operator, is ca
celled by twice the log det of the Faddeev-Popov operato

If the gauge-fixing term is included the fluctuation oper
tor takes the form
Mf5H 2S h1
g2

4
H2D dm

n 1S 12
1

j D ]n]m 2g]nH

2g]mH h1l~H22v2!1
g2

4
jH2

J . ~3.6!
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If we apply the fluctuation operator to the gauge mode, a
use the classical equation of motion, we obtain

Mfca
g~x!5H 2

1

j
]m

g

2
H~x!

J Fh1j
g2

4
H2~x!G f a~x!

5MFPf a~x!. ~3.7!

The differential operator appearing on the right hand sid
just the Faddeev-Popov operator

MFP5h1j
g2

4
H2~x!. ~3.8!

If f a is an eigenfunction of the Faddeev-Popov opera
MFPf a5vFP

2 f a , then the associated gauge mode satisfie

H 2j 0

0 1J Mfca
g5vFP

2 ca
g . ~3.9!

The factorj in the matrix multiplies the four gauge fiel
components. So the fluctuation operator modified by mu
plication with a constant matrix, has a class of eigenfu
tions with the same eigenvalues as the Faddeev-Popov
erator. In the effective action the modification by th
constant matrix is irrelevant, as one computes the ratio
tween the fluctuation determinants in the background fi
and in a standard vacuum configuration, to which the sa
arguments apply.

Now consider the gauge conditionFa . We introduce the
covector

uj5F]m ,j
g

2
H~x!G , ~3.10!

so that

Fa5ujfa . ~3.11!

Consider an arbitrary modeca . We then find, using again
the classical equation of motion,
d

is

r,

i-
-
p-

e-
d
e

ujH 2j 0

0 1J Mfca5Fh1j
g2

2
H2~x!Gujca5MFPFa .

~3.12!

Let ca
a now be an eigenmode of the modified fluctuati

operator with eigenvalueva
2 . Then this equation entails

ujva
2ca

a5~va
a!2F a

a5MFPF a
a . ~3.13!

So if the projection on the vectoruj is different from zero the
eigenvalue is simultaneously an eigenvalue ofMFP. We
thereby have a second class of modes on which the fluc
tion operator of the gauge-Higgs system has the same s
trum as the Faddeev-Popov operator. We call them gau
fixing modes. We have to make sure that this class of mo
obtained by a projection, is not empty, and not identical w
the gauge modes.

Obviously the modes on which the projectoruj yields
zero are those which satisfy the gauge condition, these
the ‘‘physical modes.’’ We know that out of the five compo
nents of the gauge-Higgs modesc only three are physical
they represent the spatial components of the massive g
field.

We next consider the action of the projector on the gau
eigenmodes. It is convenient to introduce a vectorv that
generates the gauge modes via

ca
g5vf a5H ]m

g

2
H~x!J f a . ~3.14!

We note that

ujv5h1j
g2

4
H2. ~3.15!

This implies that the gauge-fixing mode obtained by proj
tion of a gauge mode satisfies

Fa5ujca
g5ujvf a5Fh1j

g2

4
H2~x!G f a . ~3.16!

So if f a is an eigenfunction of the Faddeev-Popov opera
then the gauge-fixing mode generated from it does not r
7-3
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resent a new, independent mode. However, the gauge m
and the physical modes do not exhaust the Hilbert space
is based on five field degrees of freedom, and we are
that the projector does not give zero on the remaining s
space.

We have shown up to now, that for a background fie
satisfying the classical equation of motion there are t
classes of modes whose contribution to the effective ac
will be cancelled by the one of the Faddeev-Popov sec
We have not shown, thereby, that the remaining ‘‘physica
part of the gauge-Higgs sector becomes independent oj.
Furthermore, the way in which the modes are eliminated
technical matter, it depends on the structure of the ba
ground field, and on the problem under consideration. S
we want to illustrate the application of these general res
we have to consider specific models. We will here anal
the modes introduced above, and the cancellation of t
contribution to the fluctuation determinant, for the case
bubble nucleation in the SU~2! Higgs model.

IV. BUBBLE NUCLEATION IN THE SU „2… HIGGS MODEL

Bubble nucleation occurs in the SU~2! Higgs model if the
phase transition from the symmetric high temperature ph
to the broken symmetry phase at low temperature is
order. It has been considered as providing a possible me
nism for baryogenesis, a possibility ruled out by the pres
lower limit for the Higgs mass. Still the model is of interes
in particular it can be studied in lattice simulations for suf
ciently low Higgs masses. The phase transition is descri
~see, e.g., Ref.@20#!, by the three-dimensional high
temperature action

Sht5
1

g3~T!2E d3xF1

4
Fi j Fi j 1

1

2
~DiF!†~DiF!1Vht~F†F!

1
1

2
A0S 2DiDi1

1

4
F†FDA0G . ~4.1!

Here the coordinates and fields have been rescaled as@8#

xW→ xW

gv~T!
, F→v~T!F, A→v~T!A. ~4.2!

The vacuum expectation valuev(T) is defined as

v2~T!5
2D

lT
~T0

22T2!. ~4.3!

T0 is the temperature at which the high-temperature poten
Vht changes its extremum atF50 from a minimum atT
.T0 to a maximum atT,T0. The temperature depende
coupling of the three-dimensional theory is defined as

g3
2~T!5

gT

v~T!
. ~4.4!

We use the standard parameters
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D5~3mW
2 12mt

2!/8v0
2 , ~4.5!

E53g3/32p, ~4.6!

B53~3mW
4 24mt

4!/64p2v0
4 , ~4.7!

T0
25~mH

4 28v0
2B!/4D, ~4.8!

lT5l23S 3mW
4 ln

mw
2

aBT2
24mt

4 ln
mt

2

aFT2D Y 16p2v0
4 .

~4.9!

We use in the following a somewhat different rescaling,
troduced in@21,22#, based on the secondary minimum of th
high-temperature potential which occurs at

ṽ~T!5
3ET

2l
1AS 3ET

2l D 2

1v2~T!. ~4.10!

The high-temperature potential then takes the form

Vht~F†F!5
lT

4g2 H ~F†F!22e~T!~F†F!3/2

1F3

2
e~T!22GF†FJ ~4.11!

with

e~T!5
4

3 S 12
v~T!2

ṽ~T!2D . ~4.12!

The standard formula@23–27# for the bubble nucleation
rate is given by

G/V5
v2

2p
S S̃

2p
D 3/2

exp~2S̃! J 21/2. ~4.13!

Here S̃ is the high-temperature action, Eq.~4.1!, minimized
by a classical minimal bubble configuration~see below!, J is
the fluctuation determinant which describes the next-
leading part of the semiclassical approach and which will
defined below; its logarithm is related to the one-loop effe
tive action by

Seff
12 l5

1

2
ln J. ~4.14!

Finally v2 is the absolute value of the unstable mode f
quency.

The classical bubble configuration is described by a v
ishing gauge field and a real spherically symmetric Hig
field H(r )5uFu(r ) which is a solution of the Euler-
Lagrange equation

2H9~r !2
2

r
H8~r !1

dVht

dH~r !
50 ~4.15!
7-4
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with the boundary conditions

lim
r→`

H~r !50 and H8~0!50. ~4.16!

We expand the gauge and Higgs fields around this cla
cal configuration via

Wm
a ~x!5am

a ~x!,

F~x!5@H~r !1h~x!1tafa~x!#S 0

1D , ~4.17!

wheream
a ,h and fa are the fluctuating fields, denoted co

lectively by w i .
If the action is expanded with respect to the fluctuat

fields, the first order term vanishes ifH(r ) satisfies the clas
sical equation of motion~4.15!. The second order part de
fines the fluctuation operator via

S(2)5
1

g̃3
2~T!

E d3x
1

2
wmMmnwn . ~4.18!

The fluctuation determinantJ appearing in the rate formul
is defined by1

J5
detM
detM 0

, ~4.19!

whereM0 is the fluctuation operator obtained by expandi
around a spatially homogenous classical field that is a m
mum of effective potential. The gauge conditions for t
three-dimensional theory read

Fa5]maa
m1

j

2
Hfa50. ~4.20!

The total gauge-fixed actionSt is obtained from the high-
temperature action by adding to it the gauge-fixing action

SGF5
1

g̃3
2~T!

E d3x
1

2j
FaFa , ~4.21!

the corresponding Faddeev-Popov action reads

SFP5
1

g̃3
2~T!

E d3xh†S 2D1j
H2~r !

4 Dh. ~4.22!

The fluctuation operator is obtained from the total actionSt
5Sht1SGF1SFP. The fluctuation operator, and along with
the fluctuation determinant, decomposes under partial w
expansion into fluctuation operators for fixed angular m
mentum. It is these that we will consider in the following

1We omit some sophistications related to zero and unsta
modes.
10503
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The background field is isoscalar, so the isospin indea
just results in multiplicity factors, we will omit it in the fol-
lowing. The scalar fieldsh(x),fa(x),h(x), and a0(x) are
expanded with respect to the spherical harmonicsYl

m( x̂), the
partial wave mode functions are denoted
f h

l (r ), f f
l (r ), f h

l (r ), and f 0
l (r ). The vector spherical harmon

ics x̂Yl
m,r¹Yl

m , andLW Yl
m are used for expanding the spa

components of the gauge fields via

a~x!5(
lm

S f a
l ~r !

Al ~ l 11!
r¹Yl

m1 f b
l ~r !x̂Yl

m

1
f c

l ~r !

Al ~ l 11!
x3¹Yl

mD . ~4.23!

The fluctuation operator is block diagonal. In the followin
we consider just one partial wave and omit the superscripl.
We denote the partial wave reduction of the fluctuation o
erator M by M l , we omit the superscript, however. Th
componentsf h(r ), f h(r ), f c(r ), and f 0(r ) are decoupled, the
operator has the form

Mnn52
d2

dr2
2

2

r

d

dr
1

l ~ l 11!

r 2
1mn

21Vm~r !. ~4.24!

The masses aremh5m05mc50 and mh5mH with the
Higgs mass

mH
2 5

lT

4g2
~3e24!. ~4.25!

The potentials are V0(r )5Vc(r )5H2(r )/4, Vh(r )
5jH2(r )/4 and

Vh~r !5
lT

4g2
@12H2~r !26eH~r !#. ~4.26!

The Faddeev-Popov fluctuations are fermionic and two-f
degenerate, as usual.

The modesf a , f b , and f f are coupled. The nonvanishin
components of the fluctuaion operator are

Maa~r !52
d2

dr2
2

2

r

d

dr
1

l ~ l 11!

jr 2
1

H2~r !

4
, ~4.27!

Mbb~r !52
1

j S d2

dr2
1

2

r

d

dr D 1
l ~ l 11!12/j

r 2

1
H2~r !

4
, ~4.28!le
7-5



a
La
rm

e
to

on

lti

ke
ia

ld
ral

rical

ial

ns
d

-

a-
ns.

-

sub-
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Mff~r !52
d2

dr2
2

2

r

d

dr
1

l ~ l 11!

r 2
1j

H2~r !

4
1mH

2

1
l

g2 FH2~r !2
3

4
eH~r !G , ~4.29!

Mab~r !52
Al ~ l 11!

jr 2 F21~12j!r
d

drG ,
~4.30!

Mba~r !52
Al ~ l 11!

jr 2 F11j2~12j!r
d

drG ,
~4.31!

Mbf~r !5Vfb~r !52H8~r !. ~4.32!

The fluctuation operator of this coupled system is hermite
as it should, because it arises from the variation of a
grangian. The asymmetry suggested by the explicit fo
arises from integrations by parts.

The gauge parameterj only occurs in the coupled system
and for the Faddeev-Popov modes. The cancellation of thj
dependence will have to occur between these two sec
They will be analyzed in the next section.

V. ANALYSIS OF THE FLUCTUATION OPERATOR

In analyzing the gauge dependence we will have to c
sider the coupled system of the modesf a , f b , and f f , i.e.,
the radial mode functions for angular momentuml. In anal-
ogy to Sec. III we consider the fluctuation operator mu
plied from the left by a constant matrix diag(j,j,1). The
eigenvalue problem for the fluctuation operator then ta
the form of the three differential equations for the rad
mode functions for angular momentuml:

2 f a92
2

r
f a81

l ~ l 11!

jr 2
f a1

H2~r !

4
f a2

Al ~ l 11!

jr 2

3@2 f b1~12j!r f b8#5
v2

j
f a , ~5.1!

2
1

j S f b91
2

r
f b8D1

l ~ l 11!12/j

r 2
f b1

H2~r !

4
f b2

Al ~ l 11!

jr 2

3@~11j! f a2~12j!r f a8#2H8~r ! f f5
v2

j
f b , ~5.2!

2 f f9 2
2

r
f f8 1

l ~ l 11!

r 2
f f1mH

2 f f1j
H2~r !

4
f f

1
l

g2 FH2~r !2
3

4
eH~r !G f f2H8~r ! f b5v2f f .

~5.3!
10503
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In view of the general arguments of Sec. III we now shou
identify the gauge and the gauge-fixing modes. A gene
gauge transformation is parametrized by a functionx(x). It
can be expanded into partial waves with respect to sphe
harmonics, the radial mode function is denoted byf x(r ). The
gauge mode then takes the form

f a
g~r !5Al ~ l 11! f x~r !,

f b
g~r !5 f x8~r !, ~5.4!

f f
g ~r !52

H~r !

2
f x~r !.

The partial wave amplitude of the gauge-fixing modeF is
obtained from the general definition

F~x!5¹a~x!1j
H~r !

2
f~x!. ~5.5!

This equation is expanded into partial waves. The rad
mode function of the modeF then reads

f F~r !5 f b8~r !1
2

r
f b~r !2

Al ~ l 11!

r
f a~r !1j

H~r !

2
f f~r !.

~5.6!

It can be checked, using the basic differential equatio
~5.1!–~5.3! and the differential equation for the backgroun
field ~4.15!, that the modef F satisfies the differential equa
tion for the Faddeev-Popov modes

2 f FP9 2
2

r
f FP8 1

l ~ l 11!

r 2
f FP1j

H2~r !

4
f FP5v2f FP.

~5.7!

Likewise, if the gauge functionf x(r ) satisfies this differen-
tial equation then the mode functionsf n

g generated from it via
Eq. ~5.4!, satisfy the basic differential equations~5.1!–~5.3!.
This is as to be expected from the general arguments.

We now try to separate the system of differential equ
tions by introducing a suitable set of new mode functio
We first eliminate the modef a(r ) in favor of f F(r ),

f a~r !52r
f F~r !1 f b8~r !12 f b~r !2~j/2!H~r ! f f~r !

Al ~ l 11!
.

~5.8!

As mentioned abovef F(r ) satisfies

2 f F9 2
2

r
f F8 1

l ~ l 11!

r 2
f F1j

H2~r !

4
f F5v2f F . ~5.9!

Having eliminatedf a(r ) in this way it cannot be used any
more as gauge mode, for which nowf b(r ) is a possible
candidate, however, one cannot use a simple algebraic
stitution. We introduce the new mode functionf g(r ), analo-
gous tox(r ), and eliminatef b(r ) with the substitution
7-6
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f b~r !5
d

dr
f g~r !. ~5.10!

We make the two other amplitudes gauge invariant by de
ing

f̃ f~r !5 f f~r !1
H~r !

2
f g~r !, ~5.11!

f̃ F~r !5 f F~r !1v2f g~r !. ~5.12!

The latter equation follows from the general relation~3.16!.
We now have to find the equation of motion for the amp
tude f g(r ). In view of its close relation to the gauge functio
x(r ) we make the ansatz

2 f g92
2

r
f g81

l ~ l 11!

r 2
f g1j

H2~r !

4
f g5v2f g1R~r !.

~5.13!

We insert the substitutions into the differential equatio
~5.2!, ~5.3!, and ~5.9! for the amplitudesf b(r ), f f(r ), and
f F(r ), respectively. We find, after some algebra, the equa

1

r

d

dr
r 2R~r !5

1

2r

d

dr
r 2@jH~r ! f̃ f~r !2 f̃ F~r !#

1
1

2 F d

dr
H~r ! f̃ f~r !2H~r !

d

dr
f̃ f~r !G

1
1

j

d

dr
f̃ F~r ! ~5.14!

as a consistency condition forR. It can be solved readily

R~r !5
j

2
H~r ! f̃ f~r !2 f̃ F~r !1

1

2r 2E0

r

dr8r 82FH8~r 8! f̃ f~r 8!

2H~r 8! f̃ f8~r 8!1
2

j
f̃ F8 ~r 8!G . ~5.15!

This fixes the right hand side of Eq.~5.13! for f g(r ) which is
one of the basic ones for the new amplitudes. The equat
for the other amplitudes become

2 f̃ f9 2
2

r
f̃ f8 1

l ~ l 11!

r 2
f̃ f1H mH

2 1
l

g2 FH2~r !2
3

4
eH~r !G J f̃ f

5v2 f̃ f2
1

2
H~r ! f̃ F2

H~r !

4r 2 E0

r

dr8r 82FH8~r 8! f̃ f~r 8!

2H~r 8! f̃ f8 ~r 8!1
2

j
f̃ F8 ~r 8!G ~5.16!
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2 f̃ F9 2
2

r
f̃ F8 1

l ~ l 11!

r 2
f̃ F1j

H2~r !

4
f̃ F

5v2H 2j
H~r !

2
f̃ f2

1

2r 2E0

r

dr8r 82 FH8~r 8! f̃ f~r 8!

2H~r 8! f̃ f8 ~r 8!1
2

j
f̃ F8 ~r 8!G J . ~5.17!

Obviously, we have not succeeded in separating the sys
However, in this form the gauge and gauge-fixing modes
easy to identify. We see that with the choicef̃ f50 and f̃ F
50 the functionR(r ) vanishes and the differential equatio
for f g becomes the Faddeev-Popov equation again, wit
corresponding energy spectrum. Likewise, the combina
f F5 f̃ F1v2f g still satisfies Eq.~5.9! and has a Faddeev
Popov eigenvalue spectrum as well. However, we do not
another linearly independent combination of amplitudes
volving the amplitudef̃ f that would satisfy a differentia
equation independent ofj. So that part of the energy spec
trum that is not compensated by the Faddeev-Popov co
butions apparently still depends on the choice ofj.

Matters are different, however, if we evaluate the effe
tive action. This can be done using the fluctuation mode
v50, using a general theorem on fluctuation determina
@28#, generalized to coupled systems, that has been u
e.g., for computing the fluctuation corrections to bubb
nucleation@3#. It is based on the equation2

J~n![
det~M1n2!

det~M01n2!
5 lim

r→`

detf~n,r !

detf0~n,r !
. ~5.18!

Here M is the partial wave fluctuation operator as defin
previously, and the matrixf(n,r ) is an (n3n) matrix formed
by a fundamental system ofn linearly independentn-tuples
of solutions for a givenn, regular atr 50. The operatorM0
and the solutionsf0 refer to a trivial background field con
figuration, in the present case to the symmetric vacuum s
characterized byH(r )[0. It is understood, that both system
f and f0 are started, atr 50 with identical initial conditions.
Finally, the desired fluctuation determinant is given byJ
[J(0).

If we apply the theorem we only need the coupled syst
of differential equations forv5 in50, and then it decouples
in a triangular way. The right hand side of the equation
f̃ F vanishes entirely, the RHS of the differential equation
f̃ f only depends onf̃ F , while both f̃ f and f̃ F appear on the
RHS of the equation forf g . Furthermore, forf̃ F50, the
differential equation forf̃ f becomes independent ofj. We
can choose the following set of linearly independent so
tions: ~i! a gauge mode solutionf n

g with f̃ F
g[0 and f̃ f

g [0,
for which f g

g evolves in the same way as a pure Fadde

2For a short proof along the lines of Ref.@28# see Ref.@29#.
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Popov mode;~ii ! a ‘‘physical’’ solution f n
f with f̃ F

f[0; then

f̃ f
f evolves independently; it appears on the right hand s

of the differential equation forf g
f , which can be obtained by

using the Green function of the homogenous equation,
finally ~iii ! a gauge-fixing mode solutionf n

F , where f̃ F
F is

different from zero. Forn50 the RHS of Eq.~5.17! vanishes
and f̃ F evolves is a Faddeev-Popov mode. Both other am
tudes are different from zero in this case. Note that the s
ond type of solution is determined only modulo an arbitra
multiple of the first one, and the third one only modulo a
bitrary multiples of both other ones. This does not affect
determinant detf(0,r ), however.

The structure of the matrixf(0,r ) now is triangular and its
determinant is obtained from the diagonal elements as

detf~0,r !5 f g
g~0,r ! f̃ F

F~0,r ! f̃ f
f~0,r !5 f FP

2 ~0,r ! f̃ f
f~0,r !.

~5.19!

The same structure holds for the free solutions which hav
be started atr 50 with identical initial conditions, i.e., with
the same coefficients of the lowest powers ofr, as deter-
mined by the centrifugal barriers. We have considered
behavior atr 50 in detail and have verified that an approp
ate choice is possible.

The effective action is obtained by adding the logarith
of the various fluctuation determinants for all independ
systems, and for all partial waves. The onlyj dependence
occurs in the gauge and gauge-fixing modes of the cou
system, and for the two Faddeev-Popov modes. As th
compensate each other the total effective action become
dependent ofj.

For the practical computation this means that for
coupled system we just have to solve the integrodifferen
equation forf̃ f with f̃ F50, i.e.,

2 f̃ f9 2
2

r
f̃ f8 1

l ~ l 11!

r 2
f̃ f1H mH

2 1
l

g2 FH2~r !2
3

4
eH~r !G J f̃ f

5
H~r !

4r 2 E0

r

dr8r 82@H8~r 8! f̃ f~r 8!2H~r 8! f̃ f8 ~r 8!#.

~5.20!
From this derivation and discussion it is clear that t

gauge independence only holds for the effective action,
not for other physical quantities. The nondiagonal parts
the mode solutions still depend onj, so other expectation
values are affected by the gauge parameterj.

VI. CONCLUSION

We have given general arguments, based on the fluc
tion operator and the mode expansion, for the gauge in
pendence of the one-loop effective action, computed fo
background field which solves the classical equation of m
tion. There are various cases for which the one-loop effec
action, and its gauge independence, are of interest. It app
in particular in the corrections to quantum or thermal tunn
ing rates obtained in the semiclassical approximation. For
case of bubble nucleation the analysis of Sec. III fully a
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plies. We have verified in the partial wave mode equatio
@3#, that the system of these differential equations can
cast, at zero frequency, into a triangular form. A theorem
fluctuation determinants relates the fluctuation determin
to the asymptotic behavior asr→`, of a linearly indepen-
dent system of solutions regular atr 50. The matrix formed
by the n linearly independentn-tuples of solutions can be
cast into a triangular form as well, two of the diagonal e
ments evolve similar to the Faddeev-Popov modes. Th
contribution to the logarithm of the fluctuation determinant
cancelled by one of the Faddeev-Popov modes. The rem
ing diagonal elements are independent ofj. The final con-
clusion is that theexactone-loop correction to the nucleatio
rate is gauge independent. This goes beyond the resul
Ref. @16#, where a similar statement was derived for the lea
ing orders in the gauge coupling, using the gradient exp
sion. This latter publication is, in part, complementary to o
work: we have not considered the divergent parts and re
malization. Within our method@2,3# the divergent parts can
be separated analytically from the computation of the de
minants and take the form of ordinary Feynman graphs.
thej independence of the renormalized leading order con
butions, as established in Ref.@16#, closes our argument.

We should like to add a comment on the use of par
resummations. Indeed the high temperature effective po
tial ~4.11!, from which the classical solution is compute
already contains one-loop effects. This introduces so
double counting that has to be compensated for@11#. If the
resummation includes the coupled gauge-Higgs sector, thj
dependence is there from the outset and can disappear o
all higher-loop orders are summed up. One therefore ha
make sure that the high temperature resummation, that i
essential way determines the structure of the phase transi
takes into account transverse gauge loops and the isos
Higgs loop only. Then this modification of the ‘‘classical
Higgs potential does not interfere with our analysis.

It is not clear how far the conclusions obtained for t
special case considered here can be generalized to diffe
gauge theories, and to different physical systems. For
sphaleron@9#, and also for topologically nontrivial solution
in other models, as the instanton of the abelian Higgs mo
in (111) dimensions@11#, the application of the determi
nant theorem meets difficulties@30#: The contribution of the
s wave diverges and the compensation of this divergence
the sum over the higher partial waves requires a suita
regularization. It would be worthwhile to pursue this issu

Another system which should be investigated are
quantum fluctuations for the SU~2! Higgs model in nonequi-
librium dynamics @17#. Here the applicability is certainly
limited by the inclusion of the quantum back reaction on t
background field. This back reaction changes the class
equation of motion, while analogous changes of the quan
mode equations depend on the resummation.
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