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Gauge invariance of the one-loop effective action of the Higgs field in the §B) Higgs model
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The one-loop effective action of the Abelian and non-Abelian Higgs models has been studied in various
gauges, in the context of instanton and sphaleron transition, bubble nucleation, and most recently in nonequi-
librium dynamics. Gauge invariance is expected on account of Nielsen’s theorem if the classical background
field is an extremum of the classical action, i.e., a solution of the classical equation of motion. We substantiate
this general statement for the one-loop effective action, as computed using mode functions. We show that in
the gauge-Higgs sector there are two types of modes that satisfy the same equation of motion as the Faddeev-
Popov modes. We apply the general analysis to the computation of the fluctuation determinant for bubble
nucleation in the S(2) Higgs model in the 't Hooft gauge with general gauge paramgt®#e show that due
to the cancellation of the modes mentioned above, the fluctuation determinant is indepenglent of
[S0556-282(99)06620-3

PACS numbsdis): 11.15.Kc, 12.15-y, 03.65.Sq

[. INTRODUCTION tral role in the discussion of the electroweak phase transition.
Its finite temperature effective potential has been discussed
The effective potential of gauge theories has been consicgextensively, and it has been used to predict the rate of bubble
ered extensively as it is of interest for the phase structure ofiucleation in a first order phase transitidin-6].
these theories, and in particular for the discussion of phase The plan of the paper is as follows. In Sec. Il we present
transitions and the associated bubble nucleation fateg]. ~ the basic equations, and we expand the Lagrangian into a
More generally the effective action appears when computinglassical and a second order fluctuation part. In Sec. IIl we
fluctuation corrections to the sphalergh-10] and instanton ~ Present the equations of motion without gauge-fixing, and in
[11] transition rates in such theories. the 't Hooft background gauge for arbitrary gauge parameter
It is well known that the effective potential is gauge de-¢. We show that there are two types of modes, the gauge
pendent except for the region around the extrema of the efodes and the gauge-fixing modes that satisfy the same
fective action, where Nielsen's theorem states that the gaugeduations of motion as the Faddeev-Popov ghosts, if the
dependence should disapp&&®]. This has been verified in classical background field satisfies its equation of motion.
various Casesl3_1a. In addition to the static extrema such This observation is the clue for a reduction of the mode
as the minima and maxima of the effectipetential Niels- ~ equations into equations for the physical degrees of freedom
en’s theorem more generally applies to the extrema of th@nd into equations whose functional determinant is cancelled
effective action i.e., to the extremal, classical paths in con-Py the Faddeev-Popov one. This reduction depends on the
figuration space, such as the bubble and sphaleron actions.System under consideration. Here we demonstrate the cancel-
has been Veriﬁeﬂl6], using the gradient expansion' that for lation of the UnphySical modes for the fluctuation determi-
the |eading orders in the Coup“ng the quantum corrections t@ant which determines the fluctuation corrections to bubble
the bubble nucleation rate are gauge independent. Exact ngucleation, in the S{2) Higgs model. We briefly introduce
merical computations are based on the analysis and numeffle model and its fluctuation operator in Sec. IV. The
cal computation of mode functions in the background of thecoupled gauge-Higgs system is analyzed in the partial-wave
classical solution. Such computations are quite demandinggduced equations in Sec. V. After some suitable transforma-
numerically, as well as algebraically and analytically, so intions the system is reduced to a triangular form, with the
genera| the authors just used one particu|ar gauge, such @nsequence that the fluctuation determinant can be com-
e.g., the 't Hooft Feynman gauge and a concise discussion gfuted from the diagonal part. Thereby the cancellation
gauge independence is lacking. against the Faddeev-Popov contributions to the fluctuation
We have recently analyzed the evolution equations for &leterminant is demonstrated explicitly. We present some
Higgs condensate and the gauge and Higgs field fluctuatiorg@nclusions in Sec. VI.
in the SU2) Higgs model, in one-loop approximatida7].
Here again the question of gauge dependence arises and has || FLUCTUATION LAGRANGIAN AND MODE

not yet been analyzed. For the Abelian Higgs model, a gauge EQUATIONS
invariant formalism has been developed, which, however, ) )
has not yet been implemented numericdll,19. The Lagrangian of the S@) Higgs model reads

We consider here the §P) Higgs model with an isosca-
lar Higgs background field. Such a configuration plays a cen = ZFZVFEWJF E(DMCD)T(D"CD) _V(®D),
(2.1
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_ _ bcpb i iti
Fiv_‘?uAi a,,Ai-f—gea CA,LA(;: (2.20  with the gauge conditions
and the covariant derivative Fa=d,a5+EeHo,, (212
g . the Faddeev-Popov Lagrangian is
D,=d,—i EAMT . (2.3
The potential has the form 1 9
Lep=51Iuad" na= &7 H 1aa - (213
A
V(®TD)=—(dTd—v?)2, (2.4
4 ll. GAUGE MODE AND GAUGE-FIXING MODE
We will assume in the following a classical fie(donden- Before discussing the fluctuation operator for a specific
sate: physical setting we specify here the unphysical degrees of

freedom in the gauge field and would-be Goldstone sector
rb(x):H(x)( ) 2.5 whose cancellation against the Faddeev-Popov modes will
1)’ ' lead to a gauge invariant fluctuation determinant. The fluc-
tuation operator of the isoscalar Higgs mdug) is gauge
its space-time dependence is not further specified here. fvariant from the outset.
time-independent, metastable, radially symmetric configura- We arrange the gauge field fluctuationd and the
tion will be relevant for bubble nucleation, a spatially ho- would-be Goldstone fieldg, in a (4+1) column vector
mogenous time dependent field describes a nonequilibrium
situation, as considered in R¢L7]. The fluctuations around

this space-time dependent condensate are parametrized as ak
Vo= . (3.9
N .
O(X)=[H(X)+h(x)+i X , 2.6 . . . L
()=[HE)+NO) +HTade(0)]] 4 29 We start with the equations of motion obtaineéthout the

. i i gauge-fixing term. The differential operat@luctuation op-
with the isoscalar Higgs mode(x) and the would-be Gold-  grat0) governing the mode evolution then takes the form
stone fieldsp,(x), a=1---3. As there is no classical gauge

field, we have

2
_ 9" o)l o g _, g .
AL (X)=ag(x). (2.7) —| O+ g HE| 840", — S HFSHA
The Lagrangian can then be split into a classical part M= 9 L
_g&“H—EHﬂ’u D+)\(H -V )
A
Ld(x)zz ﬁMHo'?'U‘H—Z(HZ—VZ)Z (2.9 (3.2

. ] ] . The mode equations are the same foraafi1,2,3,
and a fluctuation Lagrangian. The part of first order in the

fluctuating field vanishes, if the classical equation of motion

OH+A(H?=v)H=0 (2.9 Mya=0. (33

_ i ) i An infinitesimal gauge transform is given by
is fulfilled. The part of second order in the fluctuations reads
(2) 1 a a 92 2,2 "
=] _ HaV vam 2 “
L 5 d,adtas+d,a50"ag+ 7 H a,ay PI(x) = gH( ) £.(%). (3.9
—H(x
2
+‘%‘ﬁaaﬂd’a""g&MHalaL(ﬁa_gHaM‘?/j'(ﬁa
These modes satisfy the mode equati®s) if H(x) satisfies
—N(HZ2=V?)¢apa+d,hd*h—\(3HZ—Vv?)h?}. the classical field equatiof2.9). The latter condition is cru-
cial. It arises from the mode equation fgy, the one for the
(2.10  vector potentials is fulfilled trivially.
If the gauge mode is substituted into the gauge condition
In the one-loop approximation we do not have to considepne finds
higher order terms. The gauge-fixing term, in the 't Hooft

background gauge is given by 2

D+§%H2(x)

(fa)g: fa, (3.5

1
LO=-—F.F, (2.1

o —  2¢ the differential operator on the right-hand sidRHS) is just
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the Faddeev-Popov operator. So, if the gauge mode is ingction, i.e., to the log det of the fluctuation operator, is can-
serted into the Lagrangian, the gauge-fixing term containgelled by twice the log det of the Faddeev-Popov operator.
the Faddeev-Popov operatequared It is very suggestive If the gauge-fixing term is included the fluctuation opera-
that the contribution of this squared operator to the effectiveor takes the form

2
o+ Lhe| st 1—E 99 —gd'H
4 Iz £ iz 9
M;= o . (3.6
—gd,H O+ N(H2=v?) + - 6H?
|
If we apply the fluctuation operator to the gauge mode, and -£ 0 g2
use the classical equation of motion, we obtain Ug 0 1 M= D+§?H2(x) Ugtha= MepFy.
1 (3.12
——d . o .
. EH 9° 5 Let 45 now be an eigenmode of the modified fluctuation
Miia(X) = g D+&7 B | fa(x) operator with eigenvalue? . Then this equation entails
SH(X)
2 U’y = (03)2F§= MepFs (313
= Mepfa(X). 37 So if the projection on the vectar; is different from zero the

igenvalue is simultaneously an eigenvalue ofi.p. We
hereby have a second class of modes on which the fluctua-
tion operator of the gauge-Higgs system has the same spec-
92 trum as the Faddeev-Popov operator. We call them gauge-
Mepe=0+ gZHZ(x)_ (3.9 fixing modes. We have to make sure that this class of modes,
obtained by a projection, is not empty, and not identical with
. . . the gauge modes.
If fyis ar21 eigenfunction of the Faddeev-Popov operator, Obviously the modes on which the projectoy yields
Mepfa=wipfa, then the associated gauge mode satisfies ,qrq are those which satisfy the gauge condition, these are
the “physical modes.” We know that out of the five compo-
nents of the gauge-Higgs modésonly three are physical,
they represent the spatial components of the massive gauge
field.
The factor¢ in the matrix multiplies the four gauge field We next consider the action of the projector on the gauge
components. So the fluctuation operator modified by multi-eigenmodes. It is convenient to introduce a vectothat
plication with a constant matrix, has a class of eigenfunc-generates the gauge modes via
tions with the same eigenvalues as the Faddeev-Popov op-

The differential operator appearing on the right hand side i
just the Faddeev-Popov operator

{ 0 1]Mf¢3=wpp¢3- (3.9

erator. In the effective action the modification by the s
constant matrix is irrelevant, as one computes the ratio be- Wi=vf,={ g f (3.19
. . . . a a a- .
tween the fluctuation determinants in the background field EH(X)
and in a standard vacuum configuration, to which the same
arguments apply. We note that
Now consider the gauge conditigh,. We introduce the
covector g°
u§v=D+§ZH2. (3.15
_ g
Ue= (?’“'fEH(X) : (3.10 This implies that the gauge-fixing mode obtained by projec-

tion of a gauge mode satisfies

so that
2

D+§%H2(x) f.. (3.1

— g__ —
Fa=Usds. (3.10 Fa=ugla=uevta=

Consider an arbitrary modg,. We then find, using again So if f, is an eigenfunction of the Faddeev-Popov operator,
the classical equation of motion, then the gauge-fixing mode generated from it does not rep-
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resent a new, independent mode. However, the gauge modesp = (3m\2N+ 2mt2)/8v§,
and the physical modes do not exhaust the Hilbert space that

is based on five field degrees of freedom, and we are sure g—3g3/327,

that the projector does not give zero on the remaining sub-
space.

We have shown up to now, that for a background field
satisfying the classical equation of motion there are two
classes of modes whose contribution to the effective action
will be cancelled by the one of the Faddeev-Popov sector.
We have not shown, thereby, that the remaining “physical”
part of the gauge-Higgs sector becomes independerdt of
Furthermore, the way in which the modes are eliminated is a
technical matter, it depends on the structure of the back-
ground field, and on the problem under consideration. So Ve use in the following a somewhat different rescaling, in-
we want to illustrate the application of these general resultéroduced in[21,22, based on the secondary minimum of the
we have to consider specific models. We will here analyzdligh-temperature potential which occurs at

the modes introduced above, and the cancellation of their 3ET
2
+ \/(—2)\ +v(T).

contribution to the fluctuation determinant, for the case of
The high-temperature potential then takes the form

(4.5
(4.6
B=3(3my,—4m;) /647y, 4.7
T5=(m/,—8v2B)/4D, (4.9

2
W

T2

2
t

m
TZ) / 16m2vg.

ar
4.9

)\Tz)\—3(3m3\, In —4miIn

ap

3ET

X (4.10

bubble nucleation in the S@) Higgs model. v(T)=

IV. BUBBLE NUCLEATION IN THE SU (2) HIGGS MODEL

Bubble nucleation occurs in the &) Higgs model if the
phase transition from the symmetric high temperature phase
to the broken symmetry phase at low temperature is first
order. It has been considered as providing a possible mecha-
nism for baryogenesis, a possibility ruled out by the present
lower limit for the Higgs mass. Still the model is of interest,
in particular it can be studied in lattice simulations for suffi- yith
ciently low Higgs masses. The phase transition is described
(see, e.g., Ref.[20]), by the three-dimensional high-
temperature action

1
J d3x

Vi(®'®) =4)\—gT2( (DTP)?— &(T)(P'P)>?

+ (4.1

3
Ee(T)—z}qﬁcD]

55

The standard formul§23—27 for the bubble nucleation
rate is given by

4

3

v(T)?

T o
“r V(T2

(4.12

1
ZFijFij +§(Di¢)T(Di‘b)+Vm(‘I’T‘I’)

]

Here the coordinates and fields have been rescal¢d]as

RARPRESE

( S

2m

1<1>T<I)
4

1
+5Ao| ~DiD;+ (4.1) e O

3/2
_ T —-1/2
o ) exp—S) J - (4.13
HereS is the high-temperature action, E@.1), minimized
by a classical minimal bubble configurati¢see below, 7 is

-

X— ——, ®—v(T)®, A—v(T)A. (4.2  the fluctuation determinant which describes the next-to-
gv(T) leading part of the semiclassical approach and which will be
. ) . defined below; its logarithm is related to the one-loop effec-
The vacuum expectation valugT) is defined as tive action by
2D 1
20T = 2_ T2 .
v(T)= )\_T(TO_T ). (4.3 Séﬁ'=zlnj. (4.14

T, is the temperature at which the high-temperature potentigfinally w_ is the absolute value of the unstable mode fre-

Vy: changes its extremum &=0 from a minimum atT
>Ty to a maximum afT<T,. The temperature dependent
coupling of the three-dimensional theory is defined as

g
2 —

We use the standard parameters

quency.

The classical bubble configuration is described by a van-
ishing gauge field and a real spherically symmetric Higgs
field H(r)=|®|(r) which is a solution of the Euler-
Lagrange equation

anr - ©

—H"(r)—%H’(r)Jr (4.15
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with the boundary conditions The background field is isoscalar, so the isospin index
_ just results in multiplicity factors, we will omit it in the fol-
limH(r)=0 and H'(0)=0. (416 lowing. The scalar field$(x),d4(x), 7(X), and ay(x) are

r—o

expanded with respect to the spherical harmohﬂB@A(), the
We expand the gauge and Higgs fields around this classPartial ~wave mode functions are denoted by

cal configuration via fL(rA),f'd,(r),f',l(r), an»df{)(r). The vector spherical harmon-
ics XY",rvVY[", andLY[" are used for expanding the space
W (x)=a%(x), components of the gauge fields via
D(x)=[H(r)+h(x) + 72¢a(X)] ° 4.17) far)
at ) ' ax)=>, (a—rvv{"+f'b(r)>“<v,m
fm | VI(1+1)

Whereai ,h and ¢, are the fluctuating fields, denoted col- (1)
lectively by ¢; . 4+ ¢ XX VY™ 4.23

If the action is expanded with respect to the fluctuating JI(IT+1)

fields, the first order term vanishesHif(r) satisfies the clas-
sical equation of motiori4.15. The second order part de-

fines the fluctuation operator via The fluctuation operator is block diagonal. In the following

we consider just one partial wave and omit the superstript
1 1 We denote the partial wave reduction of the fluctuation op-
— stx_QDman%_ (4.19  erator M by M', we omit the superscript, however. The
g3(T) 2 components,(r),f,(r),fc(r), andfo(r) are decoupled, the
operator has the form

s(2) =

_The fI_uctuation determinanf appearing in the rate formula

is defined by @ 2 . 1+ 1)

. detM (419 dr2 rdr r?
detMm©’

+ M2+ V(r). (4.29

The masses aren,=my=m,=0 and m,=my with the
where M is the fluctuation operator obtained by expandingHiggs mass
around a spatially homogenous classical field that is a mini-
mum of effective potential. The gauge conditions for the \
three-dimensional theory read mﬁ——2(36—4). (4.25

fazaua{;+§H¢a=0. (4.20
The potentials are Vo(r)=V.(r)=H?(r)/4, V()

— 2
The total gauge-fixed actio8, is obtained from the high- =¢&H%(r)/4 and

temperature action by adding to it the gauge-fixing action

Nt
1 1 Vi(r)=—[12H3(r)—6eH(r)]. (4.26
SGF=§2(T) f d xz—g}‘afa, (4.21) 49
3
The Faddeev-Popov fluctuations are fermionic and two-fold
degenerate, as usual.
The moded ,,f,, andf, are coupled. The nonvanishing

the corresponding Faddeev-Popov action reads

2
Sep== f d3X77T( _A+§H (r)) n. (4.2  components of the fluctuaion operator are
93(T) 4
The fluctuation operator is obtained from the total act8n M.(r)=— d_z_ 2d 1d+1) H?(r) 4.27
=S+ Sge+ Sep. The fluctuation operator, and along with it aa dr2 rdr ér2 4 T

the fluctuation determinant, decomposes under partial wave
expansion into fluctuation operators for fixed angular mo-

mentum. It is these that we will consider in the following. 1{d*> 2d I(1+1)+2/¢
Mpp(H)=—=| —+—-— |+ ————
E\gr2 rdr r2
1 ; ati At H2(r)
We omit some sophistications related to zero and unstable (4.29
modes. 4 '
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d> 2d I(I+1) HXr)
Moo == a2 163 +m
N 3
+—|H (r)—ZeH(r) , (4.29
JI(1+1) d
Mab(f):_T 2+(1—§)ra},
(4.30
JI(+1 d
Mba(r)=—(—2) 1+§—(1—§)ra},
(4.32
Mpg(r) =V gp(r)=—H'(r). (4.32

The fluctuation operator of this coupled system is hermitean,

PHYSICAL REVIEW D 60 105037

In view of the general arguments of Sec. Ill we now should
identify the gauge and the gauge-fixing modes. A general
gauge transformation is parametrized by a funcigr). It

can be expanded into partial waves with respect to spherical
harmonics, the radial mode function is denoted pfr). The
gauge mode then takes the form

FAN=VI+1)f (1),

far)="f1(r), (5.9
H
f%(r)z—(T”fX(r).

The partial wave amplitude of the gauge-fixing mafies
obtained from the general definition

H(r)
FX)=Va() + ¢ $(x). (55

as it should, because it arises from the variation of a La- o _ _ _
grangian. The asymmetry suggested by the explicit formfhis equation is expanded into partial waves. The radial

arises from integrations by parts.

The gauge parametéronly occurs in the coupled system
and for the Faddeev-Popov modes. The cancellation of the
dependence will have to occur between these two sectors.

They will be analyzed in the next section.

V. ANALYSIS OF THE FLUCTUATION OPERATOR

mode function of the modé& then reads

2 J0+1 H
fAr)="fy(r)+ ;fb(r)— ¥fa(r)+§¥f¢(r).
(5.6)

It can be checked, using the basic differential equations
(5.1)—(5.3) and the differential equation for the background

In analyzing the gauge dependence we will have to confield (4.19, that the mode  satisfies the differential equa-

sider the coupled system of the modgsf,, andf,, ie.,
the radial mode functions for angular momentunin anal-

tion for the Faddeev-Popov modes

ogy to Sec. Il we consider the fluctuation operator multi- o 2f, { +1)f Hz(r)f 2
plied from the left by a constant matrix diagé,1). The CFP FP 2 P FP— @ TFP-
eigenvalue problem for the fluctuation operator then takes (5.7)

the form of the three differential equations for the radial

mode functions for angular momentum

2 [(1+1)  Hr) VI(1+1)
—fa——f.t fat fa—
a r’'a ng 4 §r2

2

x[sz+(1—§)rfg]:%fa, (5.2)

y Ao+ 2 HA ) I+
_g(fb+Ffb+ > fot —3—fo~ p

2
X[(1+ ) fa— (1= O —H (Df =ty (5.2

¢
L2 0 1(+1) 5 H2(r)
_f¢_Ff¢+ ® f¢+me¢+§Tf¢
A 2 3 ’ 2
+? H (r)—ZeH(r) fo—H (Nfp=0f,.

(5.3

Likewise, if the gauge functiof, (r) satisfies this differen-
tial equation then the mode functiofisgenerated from it via
Eq. (5.4), satisfy the basic differential equatiof&1)—(5.3).
This is as to be expected from the general arguments.

We now try to separate the system of differential equa-
tions by introducing a suitable set of new mode functions.
We first eliminate the modé,(r) in favor of f Ar),

fA(r)+T5(r)+2fp(r) = (E2)H(r)f 4(r)
J(1+1) '

fa(r)=—r

(5.9

As mentioned abovéA(r) satisfies

I(1+1)

H3(r)
r_sz

2
e Tt ——fr=w’fy (5.9

Having eliminatedf,(r) in this way it cannot be used any-
more as gauge mode, for which nofy(r) is a possible
candidate, however, one cannot use a simple algebraic sub-
stitution. We introduce the new mode functiby(r), analo-
gous tox(r), and eliminatef,(r) with the substitution
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_d L 2, 1+, HA(r),
fo(r)= gy fo(r)- (5.10 — T Tt = frté——ts
We make the two other amplitudes gauge invariant by defin- 5 H(r)~ O e
ing =w —ETf(ﬁ—FLdr r's H (r")fyr’)
- H(r) ~ 2.
Fa(r)=Ty(r)+ ——Tg(r), (5.11 —H(r’)f(’b(r’)+gf}(r’) . (5.17
TAr)=fAr)+ w?fy(r). (5.1  Obviously, we have not succeeded in separating the system.

However, in this form the gauge and gauge-fixing modes are

The latter equation follows from the general relati@16.  €asy to identify. We see that with the choitg=0 andf -
We now have to find the equation of motion for the ampli- =0 the functionR(r) vanishes and the differential equation

tudef y(r). In view of its close relation to the gauge function for fq becomes the Faddeev-Popov equation again, with a
x(r) we make the ansatz corresponding energy spectrum. Likewise, the combination

fr=T,+ wzfg still satisfies Eq.(5.90 and has a Faddeev-
2 Popov eigenvalue spectrum as well. However, we do not find
2 [(1+1) H=(r) ; ) L . .
—fr Tt fot+é fq=w?f,+R(r). another linearly independent combination of amplitudes in-
g9 9 2 9 4 9 9 . . ~ . . .
r volving the amplitudef, that would satisfy a differential
(5.13 equation independent @f. So that part of the energy spec-

_ o ) ) ) ~trum that is not compensated by the Faddeev-Popov contri-
(5.2, (5.3, and (5.9 for the amplitudesfy(r),f,(r), and  Matters are different, however, if we evaluate the effec-
f(r), respectively. We find, after some algebra, the equatiofiye action. This can be done using the fluctuation modes at

=0, using a general theorem on fluctuation determinants
1d 1d [28], generalized to coupled systems, that has been used,

FarzR(r)=Eaﬂ[gH(r)ﬁ(r)—Tﬂr)] e.g., for computing the fluctuation corrections to bubble
nucleation[3]. It is based on the equatidn
1| d ~ d~
H3lar RO RO T o deMEA) L detn
V)= =1lim . .
1 d. de(Mo‘l‘ V2) rﬁocdeth(Vir)

Here M is the partial wave fluctuation operator as defined
) . ) previously, and the matrii( v,r) is an (h X n) matrix formed
as a consistency condition f@. It can be solved readily by a fundamental system af linearly independenb-tuples
of solutions for a giverv, regular atr =0. The operatoM
~ ~ 1 (r ~ and the solution$, refer to a trivial background field con-
R(r)=SHI) () —fxr)+ ;Jodr'r'z[""(r')fzﬁ(r') figuration, in the present case to the symmetric vacuum state
' characterized b¥d(r)=0. It is understood, that both systems

- 2. f andfy are started, at=0 with identical initial conditions.
—H(f')qu'(r')*'gf'f(r') : (5.19  Finally, the desired fluctuation determinant is given By
=J(0).

L . . L If we apply the theorem we only need the coupled system
This fixes the right hand side of E(p.13 for fo(r) whichis ¢ jiferential equations fow=iv=0, and then it decouples
one of the basic ones for the new amplitudes. The equationg 5 tjangular way. The right hand side of the equation for

for the other amplitudes become f - vanishes entirely, the RHS of the differential equation for
3 T, only depends ori -, while bothf , andT » appear on the
Hz(r)_ZEH(r)H?d) RHS of the equation foff,. Furthermore, forf =0, the

differential equation foﬁ¢ becomes independent gf We
can choose the following set of linearly independent solu-

o 2, 10+1) A
f ( )f¢+|mﬁ+—2
g

r

s 1o HO(r tions: (i) a gauge mode solutioff, with T9=0 and7%=0,
=0 = SH(O T ar2 Jodr rEHI () (") for which f§ evolves in the same way as a pure Faddeev-
M)+ 2T 5.1
(r') ¢(r ) & A (5.16 2For a short proof along the lines of R¢R8] see Ref[29].
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plies. We have verified in the partial wave mode equations
- ) , i _ [3], that the system of these differential equations can be
f evolves independently; it appears on the right hand sidgast, at zero frequency, into a triangular form. A theorem on
of the differential equation fof , which can be obtained by fyctuation determinants relates the fluctuation determinant
using the Green function of the homogenous equation, angh the asymptotic behavior as—, of a linearly indepen-
finally (i) a gauge-fixing mode solutiofy where7§ is  dent system of solutions regularrat 0. The matrix formed
different from zero. For=0 the RHS of Eq(5.17) vanishes by then linearly independenn-tuples of solutions can be
and’f}_ evolves is a Faddeev-Popov mode. Both other amp".cast into a triangu!ar form as We”, two of the diagonal ele'.
tudes are different from zero in this case. Note that the sedNeénts evolve similar to the Faddeev-Popov modes. Their
ond type of solution is determined only modulo an arbitrarycontribution to the logarithm of the fluctuation determinant is
multiple of the first one, and the third one only modulo ar-cancelled by one of the Faddeev-Popov modes. The remain-

bitrary multiples of both other ones. This does not affect theNg diagonal elements are independentéofThe final con-
determinant def(0,r), however. clusion is that thexactone-loop correction to the nucleation

The structure of the matrif(0,r) now is triangular and its  'até iS gauge independent. This goes beyond the results of
determinant is obtained from the diagonal elements as ~ Ref.[16], where a similar statement was derived for the lead-
g S Fn R 2 =0 ing orde_rs in the gauge COL_Jpll_ng, using the gradient expan-
detf(0,r)=fg(0r)f0r)F5(0r)=Fe(0r)F5(0r). sion. This latter publication is, in part, complementary to our
(5.19  work: we have not considered the divergent parts and renor-
alization. Within our method2,3] the divergent parts can
e separated analytically from the computation of the deter-
minants and take the form of ordinary Feynman graphs. So
he ¢ independence of the renormalized leading order contri-
utions, as established in R¢L6], closes our argument.

Popov mode(ii) a “physical” solution f¢ with T2=0; then

The same structure holds for the free solutions which have t
be started at =0 with identical initial conditions, i.e., with
the same coefficients of the lowest powersrofas deter-
mined by the centrifugal barriers. We have considered th

behavior ar =0 in detail and have verified that an appropri- We should like to add a comment on the use of partial

ate choice is possible. resummations. Indeed the high temperature effective poten-
The effective action is obtained by adding the Iogarithmstial (4.1 frorﬁ which the clgssical psolution s com uF'zed
of the various fluctuation determinants for all independent o P ’

systems, and for all partial waves. The orlydependence already contains one-loop effects. This introduces some

occurs in the gauge and gauge-fixing modes of the couplegOUbIe counting that has to be compensated 1dj. If the

system, and for the two Faddeev-Popov modes. As thes;%?uemng]ear:g)enilsntﬂg?ee fsrgrftﬁzu(?&?ge?zl;geé:égtgizs ecé(;rrgézle if
compensate each other the total effective action becomes in; Pe PP y
dependent of. all higher-loop orders are summed up. One therefore has to

make sure that the high temperature resummation, that in an

For the practical computation this means that for the ssential way determines the structure of the phase transition
coupled system we just have to solve the integrodifferentia . y P . '
akes into account transverse gauge loops and the isoscalar

equation forf, with =0, i.e., Higgs loop only. Then this modification of the “classical”
R (RS > N, 3 ~ Higgs potential does not interfere with our analysis.
g Tlet —5 Tt Myt HA(N) — ZEH(r)} fy It is not clear how far the conclusions obtained for the
r 9 special case considered here can be generalized to different

gauge theories, and to different physical systems. For the

sphaleror]9], and also for topologically nontrivial solutions

in other models, as the instanton of the abelian Higgs model
(5.20 in (1+1) dimensiong11], the application of the determi-
nant theorem meets difficulti¢80]: The contribution of the

H(r) r 112 1o INE " _ INF! ’
2 fodr rH (r")f,(r)—Hr)f,r")].

From this derivation and discussion it is clear that the i d th ; f this di b
gauge independence only holds for the effective action, ang W&ve |vergeshanh_the comp_er|15at|on of this |vergen_cebly
not for other physical quantities. The nondiagonal parts ofne sum over the higher partial waves requires a suitable

the mode solutions still depend @) so other expectation regularization. It would be worthwhile to pursue this issue.
values are affected by the gauge parameéter Another system which should be investigated are the

quantum fluctuations for the $2) Higgs model in nonequi-
librium dynamics[17]. Here the applicability is certainly
V1. CONCLUSION limited by the inclusion of the quantum back reaction on the

We have given general arguments, based on the ﬂuctufpackground fielq. This_ back reaction changes the classical
tion operator and the mode expansion, for the gauge inde2quation of motion, while analogous changes of the quantum
pendence of the one-loop effective action, computed for anode equations depend on the resummation.
background field which solves the classical equation of mo-
tion. There are various cases for which the one-loop effective
action, and its gauge independence, are of interest. It appears
in particular in the corrections to quantum or thermal tunnel- The authors thank H. de Vega and the other members of
ing rates obtained in the semiclassical approximation. For thehe LPTHE at the Universit®ierre et Marie Curie for the
case of bubble nucleation the analysis of Sec. Il fully ap-warm hospitality extended to them.
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