PHYSICAL REVIEW D, VOLUME 60, 105034

Thermal fermionic quantum field in a static background gauge potential
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We study at finite temperature the Green function and energy-momentum Tepgj of a spinor field in
1+1 dimensions, interacting with a static background electric fi€lg, separates into a UV divergent part
representing the virtual sea, and a UV finite part describing the thermal plasma of the spinor field: From
we find that the virtual sea remains uniform in the presence wfitorm electric fieldE, while the thermal
plasma becomes position dependent. This remarkable property of the thermal plasma is found to be related to
the topological properties of the manifold, and to the presence of zero n{&56-282(99)03622-X]

PACS numbd(s): 11.10.Wx

[. INTRODUCTION (i) We find that a uniform background electric field causes
the thermal plasma to become position dependent, while the
At finite temperature T>0) a quantum field can be visu- Sea remains spatially uniform. The position dependence of
alized as aseaof virtual particles and a thermalasof real ~ the thermal plasma can be traced to the underlying gauge
field excitations. The virtual particle sea is independent ofnvariance.
the temperaturd. It can, however, be deformed by coupling _(ii) This position dependence is glso directly related to t_he
the quantum field to a static background involving externagXistence of zero modes of the Dirac operator. For a finite
fields and/or boundary surfaces. This is generally known asvolume” L we have a finite numbet of such zero modes;
the static vacuum Casimir effect. for each zero mode we have an infinite tower of equally
Abelian (and non-Abeliangauge theories present Casimir spaced “excited” levels, each level beirgfold degenerate.
prob]ems with particu|ar features whose origin can be tracea-he situation is thus reminiscent of the Landau levels in the
to the underlying gauge invariance. Indeed, the restriction§uantum Hall effect.
imposed byT>0 on the class of allowed gauge transforma- (iii ) Our exact results for the heat-kernel are in disagree-
tions are found to have remarkable consequences for the sp&ent with a theorerfil1] concerning the factorization of the
tial energy distribution of a charged thermal matter fieldheat-kernelin a general external gauge fig|d In the con-
coupled to a static background electromagnetic field. Th&lusion we explain the limitations of this theorem, which
resulting local distortion of the virtual sea and therrgak  turns out to be valid only foA,=0 and arbitrary static mag-
(or plasma as the thermal gas consists of both particles andnetic field. We also show how it can be generalized to in-
antiparticles is revealed by a study of local quantities, suchclude static electric fields, as well.
as the thermal stress energy momentum tensor. Though the All three of the above features are fU”y revealed for the
problem of charged quantum fields coupled to a uniformcase of a constant electric field. Even for a constant gauge
electromagnetic background field is an old one, going backield A, (vanishing electric fieldwe obtain observable ef-
to famous papers of Euler and Heisenbfgrhand Schwinger ~ fects, since on the “cylinder,” a constant time component of
[2], global aspects of this problem have received most of thé& gauge field cannot be gauged ayag,13.
attention[3—7], while local aspects seem to have been ne- The general solution for an arbitrary gauge field can then
glected. be constructed on “top” of the special solution fdf
In the present paper we try to gain some general insight const using standard methods familiar from the treatment
into the local response of fermionic, thermal matter fieldsof the Schwinger model. Since this has been amply discussed
coupled to a background electromagnetic field. We restrictn the literature, we shall restrict our discussion to the case of
our considerations to41 dimensions, where exact results a constant external electric field.
can be obtained. Using the Matsubara formaligee e.g.,
Refs.[8-10]), we work on a cylinder of circumferenc@ || THERMAL FERMIONS IN AN EXTERNAL POTENTIAL
=1/T in the Euclidean time direction, choosing space to be ) ) . ) )
flat and infinite. Our results reveal some interesting features: Electrodynamics of massless fermions i ILdimensions
is described by the Lagrangian density
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(Schwinger modelhas been extensively discussed in the lit- + 9201 | () =Ny2(x).  (2.6)
erature (See for instancgl4].) The casel' +0 has also been
discussed by a number of auth¢i$—17. We shall concen- Making the ansatz

trate in this paper on the specific aspects mentioned in the

For T=0 the fully quantized version of this model {

idy+EX+ —
I X a
2 1 )

Introduction. Aside from the usual complications of spin, we 1 ot 1)l ) @(X1)
shall have to face in the infinite volume limit the existence of P(x)=—=e'l IR 2(x0) (2.7
an infinite number of normalizable zero modes. We work in LA
the imaginary time formalisif®,10], where the fermion field ;4 defining
is required to satisfy anti-periodic boundary conditibns
T 2ma
P(X1,%0) = = (X1, %o+ B). (2.2 Xm=X1~(2M+ 1) gt o 2.9
This ImplleS the Euclidean Space-time tOpOlOgy ofa Cylinderwe arrive at the Coup|ed set of equations
R x St
From the antiperiodicity property of the spinor field we dy —
can write the stationary modes @f(x) in the Matsubara Ey+ dy ¢="\¢
form 2.9
(E d )_ A
X Y= T ]e=—A@
Y X) = iei@mw,,,mxz(ﬁmn( 1)) 2.3 dy
VB emn(X1) where we have sgt=Xx,,. Define the operators
with m=0,+1,+2,... . TheDirac equation for the modes 1 1 d
then takes the form a=—| JIEly+— — (2.1
Bl ’
o
_(2m+1)E+A2(X1)+75D1) Pmn(X1) = NmnY2@mn(X1), ) 1 1 d
a'=—| JIElYy——=— 1. 2.1

with Dy=d;—ieAy(X3). In this form the Dirac equation dis- These operators evidently satisfy the commutation relations

plays the gauge equivalence Ab(x;) and Ax(x1)=27/B  of destruction and creation operators, respectively:
configurationsA,(x;) thus has the character of an angular

variable, as will become also evident from our exact results. [a,a’]=1.
In this section we discuss the case of a spinor field in a o o
static background potentia,= const- Ex,, corresponding SubstltL_ltlng one equation into the other (@.9) we have,
to a constant electric field. Our final results for local quanti-depending on the sign &,
ties such as the heat kernel display a smdeth 0 limit, — 2
although the mathematical details of the=0 and E#0 E | 2|Elaa’e=)\"¢
. . positive: 5 (2.12
cases are quite different. 2|E|aTap=\%¢

A. Constant electric field and

Consider the case of a constant electric field, with the 2|E|a*a§=)\2¢
choice E negative . (2.13
2|E|aa’o=\%¢
A;=0, eA(x)=Ex;+2mal 2. . . . .
! #2() 1remalp @9 Now, 2|E|a'a is just the Hamiltonian of the harmonic oscil-
for the Euclidean gauge potentfalhe eigenvalue equation 'ator with the zero-point energy omitted. Correspondingly
for the corresponding Dirac operator then takes the form and ¢ are given by the harmonic oscillator eigenfunctions.
Defining the ground statf) by a|0)=0 we conclude that
the eigenstates and corresponding eigenvalues are given by

We use a Euclidean notation, wherg=ix°. Our Euclidean con- n)
ventions for the Diracy-matrices arey,= — oy, y1=0,, y°=0s3. E positive:|\lf(i))=< B ) An=*V2n|E|
Notice that since we restrict ourselves to static background field + |n— 1)
configurations, the gauge field trivially satisfied,(x;,x,)
:A//.(!X11X2+B)' and

2As is well known (see e.g.[18]), the constant term 2a/8 in |n—1)
(2..5) corrgsponds .to the introduction of a chemical potential in E negativetllf“)):( B >, kn=iJTIEI
Minkowski space-time. +|n)
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where|n) are the eigenstates of the harmonic oscillator andvheren, andn_ are the zero modes of positive and nega-
\2 are the corresponding energy-eigenvalues without théive chirality, respectively. Equatiof®.19 relates the index
“zero-point energy.” Denoting byp,(X,) the eigenfunctions of the Dirac operator to the flux of the “magnetic fiel)”
of the harmonic oscillator, normalized with respect to thethrough the torus. Notice that this flux is quantized in integer
interval [ —o,] and settingy=Xx,,, we have fom=1 the  multiples of 27/e, and depends on the temperatiire 1/8:*

orthonormalized eigenfunctions of the Dirac operdf6),
2
E=rk—. (2.20

), n=1, AL

(2.14 As we shall explicitly see in the following section, there
exists again a “vanishing theorem,” just as in the 0 case,
for positive E, and stating that zero modes occur only for either positive or
negative chirality. Notice that in the case of the zero-modes
(2.17 and(2.18), the superscript denotes “chirality.”
)' n=1, The wave functiong2.17 and (2.18 correspond to the
(2.19 ground state wave functions of the harmonic oscillator, lo-
calized at the positions

@n(Xm)

N 1
w(f)(x):_el(2m+l)(ﬂ'/ﬁ)xz B
mn 2B + @n-1(Xm)

®n-1(Xm)

ol (2m+1) (7l B)x,
+ @n(Xm)

0 ==

=) (x) =
NG Y]
for negativeE, each corresponding to the eigenvalues

An=*+2n|E[, (2.1
) . with me Z. This provides a physical interpretation of the
respec'ﬂvely. Since the spectrum corresponds to the absengggeneracy of the spectrum. In order to gain further insight
of the “zero-point energy” of the harmonic oscillator, we jnig the problem, we examine next the effective Lagrangian

have an infinite set of orthonormalized zero modes |abe|ee|iving rise to this degeneracy, as defined in terms of the
by m and chirality, of the form “local” Z-function. ’

1 (%) In order to simplify the discussion, we shall restrict our-
BLH(x)= _ei(2m+1)(w/[3)x2( Pol%m ) (2.17  Selves in the following to the case whefes positive.
0 .

VB

x,=(2m+1) 7/ BE—2malEB

.. B. Effective L iand it
for positive E, and ective Lagrangian density

We begin by considering the local heat kernel. For the

() L ams 1y 0 case in question it takes the for(we now takeE>0; we
b (X)=—=e TR oo(%e) (2.18  also include the zero modes
m

VB
for negativeE, each corresponding to the eigenvalyg=0. hB(t:x.v)= ( @ 2nEt(0) (v (o) (\)%
This is in line with the Atiyah-Singer index theorem in the as (1XY) m;—w n=1 o‘zt Ynmatnm(Y)s
infinite volume limit. Indeed, for a finite “volume”L we
have(see[16
(seel18) +¢H><x)a¢w<y>z)
© fﬁd de F (2.19
n,—n_=— X X X)= K, . .
" G o 2] Ry wrX)=x or explicitly
o1
h(ﬁ)(t;X,y): 2 _e|(2m+1)(7/ﬁ)(x27y2)
af m< B
nZO e ant(Pn(Xm) (P: (Ym) 0
X " . (2.21)
0 > e 2" i (Xm)@h 1 (Yim)
Pn—1(Xm) Pn-1(Ym

n=1

3In Euclidean space-time we may regdtg, as the component of the magnetic field perpendicular to the (12)-plane.
4In the T=0 case such a quantization emerges only after stereographic proje2ti@d] (see also chapter 4 $14]).
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The diagonal matrix structure is again a consequence of thia order to compute the effective Lagrangian density we first
existence of a pair of eigenfunctions ™) corresponding to need to subtract the zero-mode contribution,

the eigenvalues \2nE, if n# 0. We now observe thdhote

that the sum starts with=0)

oo

2 —2nEt

2 WX @ (Yrm) = €5 x| @ tHHOly 1)

(2.22

where the matrix element on the right-hand diB&1S) is the
propagation kernel of the harmonic oscillator known to be

given by

(x|e™"HHoly)

\F e Et
“Nrfi—e ™

E (x°+y?)(1+e *El)—4axye 2Bt
xXexp — = .
2 1_e—4EI

(2.23

Going to the limit of coincident pointg=y, and taking the

trace in matrix space, we arrive at

©

1
trh®(t:x,x)= >, E[ZCOShEt<Xm|e_tHHO|Xm>]

- %\E\/;_ D @ ExX tanhEt
T tanhEt m=—«
(2.24)
Making use of the identity
l 2 e Exr2n tanhEt
B m<
E 12 =
_ 2 e~ N’B°E/4tanhEt
47TtanhEt n=—o
X efin(2wa+ xlﬁE)_ (2_25)

We may thus write the Euclidean heat keri2l24) in the
form

trh®(t:x,x) =

1+221(—1)m

27\ tanh Et

x cogm(EBx,+2ma)le” m?B2E/4 tanhEt |
(2.26
SThe Hamiltonian in our case is of the forhi=p?+E2%y?, and

thus correponds to making the identifications- % w=2E in the
conventional Hamiltonian.

)

1
trh'®(t;x,x) = trh<ﬁ><t;x,x>—/—3 > @oXm) @ (Xm) |,
m:—OC

where ¢q(X) is the zero-energy harmonic oscillator wave
function:

1/4
e~ (E/2) X2

E
Po(X)= (;

Using the Jacobi identit{/19]

2 e—b(m—a)zz\/EE e—wzlzlbe—i27ral 2.27

m=—o 1=

we have
trh’ B (t:x,x) = { t)+22 —1)m

X co§g m(EBx,+2ma)f (1) |,
(2.28

where

e m2B2E/4 tanhEt _ e m2B2E/4

fm(t)= tanhEt

and the “prime” indicates the exclusion of zero-modes. Fi-
nally we define the effective Lagrangfan

1
+ = £(0;x,x)In w?
2
s=0

1/d (B)
ﬁeff(Xl)ZE d_sg (8;%,X)

:‘Csea—i_‘cglasméxl)u (229)

where

(B (s;x,x)= f dtts~th’ B)(t:x,x)

['(s)

and u is an arbitrary scale paramenter reflecting the usual
ambiguity associated with a change in scale of the dimen-
sionful eigenvalues.,,.

A simple calculation yields f0ﬁ€|a5ma(X1) the result

8In the ¢-function regularization the ambiguity in the calculation
of the effective action is well known to be determined by
£(0): IndetA=—{'(0)+£(0)In u?, whereu is an arbitrary scale
parameter.
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© E “
Cfmd )= [ @M= S ()t

X cosm(BEx;+2ma).

(2.30

The corresponding calculation df;cX;) is slightly more
involved. The temperature independent term(2r28 con-
tributes to the thermal zeta function the term

Coad SIX,X) = %f:dtts‘lfo(t)

f dttS l —2nEt

F(S) n=1
oy L (231
T 2nE)s (2E)5§R() '

wheree=E/27 and {g(s) is the Riemanri-function

Differentiating with respect tcs, settings=0 and using
{r(0)=—13%, {R(0)=—3In2m, we obtain

E
L —In| —

sea 47T

E
(2.32

T

As expected /s, does not depend oxy or on temperature,
and does depend on the gradient?gf but not onA, itself.
On the other hand, as we see from E2.30), L‘g,asma(xl)

does depend directly ofs,, and consequently is not uniform,

and in fact is periodic i\, (and hence irx;). This period-
icity can be understood as follows:

Let us compactify space to a circle of perimeteso that
Euclidean space-time is now a tor@x S'. The bosonic
(fermionic) observables should then be a perio@iatiperi-
odic) function of the spatial coordinate,, with periodL. If
we want a configuration with a non-trivial indé€xwinding
number”) «, then we must allowA,, and ¢ to change by a

bonafide gauge transformation, as we go around a close

loop on the torus in the&; direction:

(2.33

27K
Au(Xy X)) +—5 0,0

ep

AM(X1+ L,Xz):

(2.39

27K
WYX+ LX) =€""B 2h(Xy,Xp).

The integerx corresponds here to the index in the Atiya-
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in question, we must continue our results back to Minkowski
space. This requires the substitutiba—iA, in the gauge
potential. For the gauge potentie?.5) this corresponds to
performing the analytic continuatioE—iE and 2mra/B
—iu, whereE=E/e is now the(physica) electric field, and

n now plays the role of a chemical potentiake e.g.[18]
and references thergirin the thermal heat kerné2.28 and
Lpiasma this implies replacing cas(SEx,+2ma) under the
sum by cosim(BEx;+Bw). Spatial periodicity is therefore
not a property of the thermal plasma in Minkowski space-
time. Nonetheless, as already mentioned, the “physical”
plasma turns out to be position dependent as a result of the
above periodicity in Euclidean space.

The contribution of the plasma td.¢; is real, also in
Minkowski space-time, and hence does not contribute to par-
ticle production. This is in line with the results of Ref§)]
and[7]. Physically it also seems reasonable that particle pro-
duction should occur exclusively from the virtual sea, and
therefore should be temperature independent. Indeed, the
analytic continuation 0f2.32 to Minkowski space-time is
given by

E E
—+i—In| —

Lsea=— 87 4m

(2.39

2 .

T

As expected,Ls., has an imaginary part, corresponding to
particle production.

Ill. CONCLUSION

We have investigated the effect of a uniform background
electric field on the distribution of thermal fermionic matter
fields. In order to obtain exact results, we have restricted our
discussion to fermions in#41 dimensions. By calculating
the heat kernel and the Euclidean effective Lagrangian den-
sity we found that in the presence of a constant electric field
the thermal plasma distribution of the fermion field becomes
position dependerin fact periodi¢ along the spatial direc-
tion x, while the virtual sea remains uniform. Compactifying
space to a circle of perimetér this position dependence was
traced to the quasi-periodicity propert{2.33 under a
bonafide gauge transformation. The periodidependence

the plasma was also shown to reflect the existence of a
egeneracy of the eigenvalue spectrum of the spectral opera-
tor, with degree equal to the number of zero modes as given
by the Atiyah-Singer theorem. Attention was drawn to the
formal similarity between this degneracy, and the degen-
eracy of the Landau levels in the quantum Hall effect. This
results from the fact that, at finite temperature, one is work-
ing in two-dimensional Euclidean space, with the temporal
direction compactified.

The diagonal heat kernel of a quantum field irstatic

Singer theorem2.19, and labels also the constant gaugepackground at finite temperatufe>0 is in general expected

field configuration(2.5) via the flux quantization condition
(2.20. In this way the observed periodicity &, with period
27/ B (or x4 with period 27/EB) gets intertwined with the
allowed gauge transformations.

to factorize in the following way:

hB (t;x,x) =h(t;x,X)1_o[ 1+ f(t;x;T)]

Periodicity in x; is however not a physical prediction. where h(t;x,x)t-¢ is the temperature-zero heat kernel for
Indeed, in order to make contact with the physical problenthe same background, arit,x,T) is some function of the
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temperaturdl, the diffusion or “proper” timet and the spa- for a general(even time-dependenbackground gauge po-
tial position. This functiorf vanishes exponentially as either tential A, . In fact, this claim applies only to the case where
T—0 ort—0. The factorization above is motivated by the A,=A(x,) is an arbitrary function of the spatial coordinate,
expectation thah(®)(t;x,x) separates quite generally for a and A,=0. Although the general analysis in Rél1] is
static background into an UV divergent sea part, and an U\ormally correct, the conclusion of the authors is incorrect, as
finite gas part they have taken terms involving powers of the covariant de-
rivative Dy to give a vanishing contribution, when acting to
hB(t;%,%) =h(t;X,X) seat N(t;X)gas the right on ‘%ne.” It is easg to see that, for the cas% in

where guestion, the contribution of the first two Seeley coefficients
in the Seeley expansion of R¢L1] combine to give the first
h(t;X,X)ses=(t;X,X)1=0. two terms in the series expansion of the cosine term in
(2.26.
Defining f(t;x;T) by Our results for the heat kernel and related functions are

Fourier series in the Euclidean gauge fidlgin (2.5). This

is a consequence of the compactificationAgfat finite tem-
perature. This leads us to expect that such Fourier series also
arise for an arbitrary static background time comporfent

The same is expected to be true in higher dimensions.

h(t;X)gas= F(X TH(EX,X) 10

we arrive at the factorization above.

We have shown in this paper for the case of thermal fer
mions in an external Euclidean electrostatic potenfal
=Ex,+2malB, that

1+f= 2 (_)ne—nﬁzE/ManhEte—in,BAz_
n=—o One of the authorgA.A.A.) thanks R. Viollier and the

) theory group of the Department of Physics, University of

We thus see thaft(t,x; T) in general depends ok, whena  capetown, for their kind hospitality. Support from Penn
gauge potential background is involved. This disagrees witksi5te (R.D.G. and Lehigh Valleyis gratefully acknowl-
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