
PHYSICAL REVIEW D, VOLUME 60, 105034
Thermal fermionic quantum field in a static background gauge potential
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We study at finite temperature the Green function and energy-momentum tensorTmn(x) of a spinor field in
111 dimensions, interacting with a static background electric field.Tmn separates into a UV divergent part
representing the virtual sea, and a UV finite part describing the thermal plasma of the spinor field. FromTmn

we find that the virtual sea remains uniform in the presence of auniform electric fieldE, while the thermal
plasma becomes position dependent. This remarkable property of the thermal plasma is found to be related to
the topological properties of the manifold, and to the presence of zero modes.@S0556-2821~99!03622-X#

PACS number~s!: 11.10.Wx
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I. INTRODUCTION

At finite temperature (T.0) a quantum field can be visu
alized as aseaof virtual particles and a thermalgasof real
field excitations. The virtual particle sea is independent
the temperatureT. It can, however, be deformed by couplin
the quantum field to a static background involving exter
fields and/or boundary surfaces. This is generally known
the static vacuum Casimir effect.

Abelian~and non-Abelian! gauge theories present Casim
problems with particular features whose origin can be tra
to the underlying gauge invariance. Indeed, the restricti
imposed byT.0 on the class of allowed gauge transform
tions are found to have remarkable consequences for the
tial energy distribution of a charged thermal matter fie
coupled to a static background electromagnetic field. T
resulting local distortion of the virtual sea and thermalgas
~or plasma, as the thermal gas consists of both particles a
antiparticles! is revealed by a study of local quantities, su
as the thermal stress energy momentum tensor. Though
problem of charged quantum fields coupled to a unifo
electromagnetic background field is an old one, going b
to famous papers of Euler and Heisenberg@1# and Schwinger
@2#, global aspects of this problem have received most of
attention@3–7#, while local aspects seem to have been
glected.

In the present paper we try to gain some general ins
into the local response of fermionic, thermal matter fie
coupled to a background electromagnetic field. We rest
our considerations to 111 dimensions, where exact resul
can be obtained. Using the Matsubara formalism~see e.g.,
Refs. @8–10#!, we work on a cylinder of circumferenceb
51/T in the Euclidean time direction, choosing space to
flat and infinite. Our results reveal some interesting featu
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~i! We find that a uniform background electric field caus
the thermal plasma to become position dependent, while
sea remains spatially uniform. The position dependence
the thermal plasma can be traced to the underlying ga
invariance.

~ii ! This position dependence is also directly related to
existence of zero modes of the Dirac operator. For a fin
‘‘volume’’ L we have a finite numberk of such zero modes
for each zero mode we have an infinite tower of equa
spaced ‘‘excited’’ levels, each level beingk-fold degenerate.
The situation is thus reminiscent of the Landau levels in
quantum Hall effect.

~iii ! Our exact results for the heat-kernel are in disagr
ment with a theorem@11# concerning the factorization of th
heat-kernel in a general external gauge fieldAm . In the con-
clusion we explain the limitations of this theorem, whic
turns out to be valid only forA050 and arbitrary static mag
netic field. We also show how it can be generalized to
clude static electric fields, as well.

All three of the above features are fully revealed for t
case of a constant electric field. Even for a constant ga
field Am ~vanishing electric field! we obtain observable ef
fects, since on the ‘‘cylinder,’’ a constant time component
a gauge field cannot be gauged away@12,13#.

The general solution for an arbitrary gauge field can th
be constructed on ‘‘top’’ of the special solution forE
5const using standard methods familiar from the treatm
of the Schwinger model. Since this has been amply discus
in the literature, we shall restrict our discussion to the cas
a constant external electric field.

II. THERMAL FERMIONS IN AN EXTERNAL POTENTIAL

Electrodynamics of massless fermions in 111 dimensions
is described by the Lagrangian density

L~x!52
1

4
Fmn~x!Fmn~x!1c̄~x!~ i ]”1eA” !c~x!.

~2.1!
©1999 The American Physical Society34-1
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For T50 the fully quantized version of this mode
~Schwinger model! has been extensively discussed in the
erature.~See for instance@14#.! The caseTÞ0 has also been
discussed by a number of authors@15–17#. We shall concen-
trate in this paper on the specific aspects mentioned in
Introduction. Aside from the usual complications of spin, w
shall have to face in the infinite volume limit the existence
an infinite number of normalizable zero modes. We work
the imaginary time formalism@9,10#, where the fermion field
is required to satisfy anti-periodic boundary conditions1

c~x1 ,x2!52c~x1 ,x21b!. ~2.2!

This implies the Euclidean space-time topology of a cylind
R 3S1.

From the antiperiodicity property of the spinor field w
can write the stationary modes ofc(x) in the Matsubara
form

cmn~x!5
1

Ab
ei ~2m11!~p/b!x2S wmn~x1!

w̄mn~x1!
D ~2.3!

with m50,61,62, . . . . TheDirac equation for the mode
then takes the form

S 2~2m11!
p

b
1A2~x1!1g5D1Dwmn~x1!5lmng2wmn~x1!,

~2.4!

with D15]12 ieA1(x1). In this form the Dirac equation dis
plays the gauge equivalence ofA2(x1) and A2(x1)62p/b
configurations.A2(x1) thus has the character of an angu
variable, as will become also evident from our exact resu

In this section we discuss the case of a spinor field i
static background potentialA25const1Ex1, corresponding
to a constant electric field. Our final results for local quan
ties such as the heat kernel display a smoothE→0 limit,
although the mathematical details of theE50 and EÞ0
cases are quite different.

A. Constant electric field

Consider the case of a constant electric field, with
choice

A150, eA2~x!5Ex112pa/b ~2.5!

for the Euclidean gauge potential.2 The eigenvalue equatio
for the corresponding Dirac operator then takes the form

1We use a Euclidean notation, wherex25 ix0. Our Euclidean con-
ventions for the Diracg-matrices areg252s1 , g15s2 , g55s3.
Notice that since we restrict ourselves to static background fi
configurations, the gauge field trivially satisfiesAm(x1 ,x2)
5Am(,x1 ,x21b).

2As is well known ~see e.g.,@18#!, the constant term 2pa/b in
~2.5! corresponds to the introduction of a chemical potential
Minkowski space-time.
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b
aD1g5]1Gc~x!5lg2c~x!. ~2.6!

Making the ansatz

c~x!5
1

Ab
ei ~2m11!~p/b!x2S w~x1!

w̄~x1!
D ~2.7!

and defining

xm5x12~2m11!
p

Eb
1

2pa

Eb
~2.8!

we arrive at the coupled set of equations

S Ey1
d

dyDw52lw̄

~2.9!S Ey2
d

dyD w̄52lw

where we have sety5xm . Define the operators

a5
1

A2
S AuEuy1

1

AuEu

d

dyD ~2.10!

a†5
1

A2
S AuEuy2

1

AuEu

d

dyD . ~2.11!

These operators evidently satisfy the commutation relati
of destruction and creation operators, respectively:

@a,a†#51.

Substituting one equation into the other in~2.9! we have,
depending on the sign ofE,

E positive:H 2uEuaa†w̄5l2w̄

2uEua†aw5l2w
J ~2.12!

and

E negative:H 2uEua†aw̄5l2w̄

2uEuaa†w5l2w
J . ~2.13!

Now, 2uEua†a is just the Hamiltonian of the harmonic osci
lator with the zero-point energy omitted. Correspondinglyw

and w̄ are given by the harmonic oscillator eigenfunction
Defining the ground stateu0& by au0&50 we conclude that
the eigenstates and corresponding eigenvalues are given

E positive:uC (6)&5S un&

7un21&
D , ln56A2nuEu

and

E negative:uC (6)&5S un21&

7un&
D , ln56A2nuEu

ld
4-2
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whereun& are the eigenstates of the harmonic oscillator a
ln

2 are the corresponding energy-eigenvalues without
‘‘zero-point energy.’’ Denoting bywn(x1) the eigenfunctions
of the harmonic oscillator, normalized with respect to t
interval @2`,`# and settingy5xm , we have forn>1 the
orthonormalized eigenfunctions of the Dirac operator~2.6!,

cm,n
(6)~x!5

1

A2b
ei ~2m11!~p/b!x2S wn~xm!

7wn21~xm!
D , n>1,

~2.14!

for positiveE, and

cm,n
(6)~x!5

1

A2b
ei ~2m11!~p/b!x2S wn21~xm!

7wn~xm!
D , n>1,

~2.15!

for negativeE, each corresponding to the eigenvalues

ln56A2nuEu, ~2.16!

respectively. Since the spectrum corresponds to the abs
of the ‘‘zero-point energy’’ of the harmonic oscillator, w
have an infinite set of orthonormalized zero modes labe
by m and chirality, of the form

fm
(1)~x!5

1

Ab
ei ~2m11!~p/b!x2S w0~xm!

0 D ~2.17!

for positiveE, and

fm
(2)~x!5

1

Ab
ei ~2m11!~p/b!x2S 0

w0~xm!
D ~2.18!

for negativeE, each corresponding to the eigenvaluel050.
This is in line with the Atiyah-Singer index theorem in th
infinite volume limit. Indeed, for a finite ‘‘volume’’L we
have~see@16#!

n12n25
e

4pE0

b

dx2E
0

L

dx1emnFmn~x!5k, ~2.19!
10503
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wheren1 andn2 are the zero modes of positive and neg
tive chirality, respectively. Equation~2.19! relates the index
of the Dirac operator to the flux of the ‘‘magnetic field’’3

through the torus. Notice that this flux is quantized in integ
multiples of 2p/e, and depends on the temperatureT51/b:4

E5k
2p

bL
. ~2.20!

As we shall explicitly see in the following section, the
exists again a ‘‘vanishing theorem,’’ just as in theT50 case,
stating that zero modes occur only for either positive
negative chirality. Notice that in the case of the zero-mod
~2.17! and ~2.18!, the superscript denotes ‘‘chirality.’’

The wave functions~2.17! and ~2.18! correspond to the
ground state wave functions of the harmonic oscillator,
calized at the positions

x15~2m11!p/bE22pa/Eb

with mPZ. This provides a physical interpretation of th
degeneracy of the spectrum. In order to gain further insi
into the problem, we examine next the effective Lagrang
giving rise to this degeneracy, as defined in terms of
‘‘local’’ z-function.

In order to simplify the discussion, we shall restrict ou
selves in the following to the case whereE is positive.

B. Effective Lagrangian density

We begin by considering the local heat kernel. For t
case in question it takes the form~we now takeE.0; we
also include the zero modes!

hab
(b)~ t;x,y!5 (

m52`

` S (
n51

`

(
s56

e22nEtcn,m
(s) ~x!acn,m

(s) ~y!b*

1fm
(1)~x!afm

(1)~y!b* D
or explicitly
hab
(b)~ t;x,y!5 (

m52`

`
1

b
ei ~2m11!~p/b!~x22y2)

3S (
n50

`

e22nEtwn~xm!wn* ~ym! 0

0 (
n51

`

e22nEtwn21~xm!wn21* ~ym!
D . ~2.21!

3In Euclidean space-time we may regardF12 as the component of the magnetic field perpendicular to the (12)-plane.
4In the T50 case such a quantization emerges only after stereographic projection@21,20# ~see also chapter 4 of@14#!.
4-3
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The diagonal matrix structure is again a consequence of
existence of a pair of eigenfunctionscn

(6) corresponding to
the eigenvalues6A2nE, if nÞ0. We now observe that~note
that the sum starts withn50)

(
n50

`

e22nEtwn~xm!wn* ~ym!5eEt^xmue2tHHOuym&

~2.22!

where the matrix element on the right-hand side~RHS! is the
propagation kernel of the harmonic oscillator known to
given by5

^xue2tHHOuy&

5AE

p

e2Et

A12e24Et

3expS 2
E

2

~x21y2!~11e24Et!24xye22Et

12e24Et D .

~2.23!

Going to the limit of coincident pointsx5y, and taking the
trace in matrix space, we arrive at

trh~b!~ t;x,x!5 (
m52`

`
1

b
@2coshEt^xmue2tHHOuxm&#

5
1

b
AE

p

1

AtanhEt
(

m52`

`

e2Exm
2 tanhEt.

~2.24!

Making use of the identity

1

b (
m52`

`

e2Exm
2 tanhEt

5F E

4p tanhEtG
1/2

(
n52`

`

e2n2b2E/4 tanhEt

3e2 in(2pa1x1bE). ~2.25!

We may thus write the Euclidean heat kernel~2.24! in the
form

tr h(b)~ t;x,x!5
E

2p S 1

tanhEtD H 112 (
m51

`

~21!m

3cos@m~Ebx112pa!#e2m2b2E/4 tanhEtJ .

~2.26!

5The Hamiltonian in our case is of the formH5p21E2y2, and
thus correponds to making the identificationsm5

1
2 , v52E in the

conventional Hamiltonian.
10503
heIn order to compute the effective Lagrangian density we fi
need to subtract the zero-mode contribution,

tr h8(b)~ t;x,x!5F tr h(b)~ t;x,x!2
1

b (
m52`

`

w0~xm!w0* ~xm!G ,

where w0(x) is the zero-energy harmonic oscillator wav
function:

w0~x!5S E

p D 1/4

e2 ~E/2! x2
.

Using the Jacobi identity@19#

(
m52`

`

e2b(m2a)2
5Ap

b (
l 52`

`

e2p2l 2/be2 i2pal ~2.27!

we have

tr h8(b)~ t;x,x!5
E

2p F f 0~ t !12 (
m51

`

~21!m

3cos@m~Ebx112pa!# f m~ t !G ,

~2.28!

where

f m~ t !5
1

tanhEt
e2m2b2E/4 tanhEt2e2m2b2E/4

and the ‘‘prime’’ indicates the exclusion of zero-modes. F
nally we define the effective Lagrangian6

Le f f~x1!5
1

2 F d

ds
z (b)~s;x,x!G

s50

1
1

2
z~0;x,x!ln m2

5Lsea1L plasma
b ~x1!, ~2.29!

where

z (b)~s;x,x!5
1

G~s!
E

0

`

dtts21h8(b)~ t;x,x!

and m is an arbitrary scale paramenter reflecting the us
ambiguity associated with a change in scale of the dim
sionful eigenvaluesln .

A simple calculation yields forL plasma
b (x1) the result

6In the z-function regularization the ambiguity in the calculatio
of the effective action is well known to be determined b
z(0): ln det A52z8(0)1z(0)ln m2, wherem is an arbitrary scale
parameter.
4-4
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L plasma
b ~x1!5E

0

`

dtt21
E

2p (
m51

`

~2 !mf m~ t !

3cosm~bEx112pa!. ~2.30!

The corresponding calculation ofLsea(x1) is slightly more
involved. The temperature independent term in~2.28! con-
tributes to the thermal zeta function the term

zsea~s;x,x!5
e

G~s!
E

0

`

dtts21f 0~ t !

5
2e

G~s! (
n51

` E
0

`

dtts21e22nEt

52e (
n51

`
1

~2nE!s
5

2e

~2E!s
zR~s! ~2.31!

wheree5E/2p andzR(s) is the Riemannz-function

zR~s!5 (
n51

`
1

ns
.

Differentiating with respect tos, setting s50 and using
zR(0)52 1

2 , zR8 (0)52 1
2 ln2p, we obtain

Lsea5
E

4p
lnS E

pm2D . ~2.32!

As expected,Lsea does not depend onx1 or on temperature
and does depend on the gradient ofA2, but not onA2 itself.
On the other hand, as we see from Eq.~2.30!, L plasma

b (x1)
does depend directly onA2, and consequently is not uniform
and in fact is periodic inA2 ~and hence inx1). This period-
icity can be understood as follows:

Let us compactify space to a circle of perimeterL, so that
Euclidean space-time is now a torusS13S1. The bosonic
~fermionic! observables should then be a periodic~antiperi-
odic! function of the spatial coordinatex1, with periodL. If
we want a configuration with a non-trivial index~‘‘winding
number’’! k, then we must allowAm andc to change by a
bonafide gauge transformation, as we go around a clo
loop on the torus in thex1 direction:

Am~x11L,x2!5Am~x1 ,x2!1
2pk

eb
dm,2 ~2.33!

c~x11L,x2!5ei
2pk

b x2c~x1 ,x2!. ~2.34!

The integerk corresponds here to the index in the Atiy
Singer theorem~2.19!, and labels also the constant gau
field configuration~2.5! via the flux quantization condition
~2.20!. In this way the observed periodicity inA2 with period
2p/b ~or x1 with period 2p/Eb) gets intertwined with the
allowed gauge transformations.

Periodicity in x1 is however not a physical prediction
Indeed, in order to make contact with the physical probl
10503
ed

in question, we must continue our results back to Minkow
space. This requires the substitutionA2→ iA0 in the gauge
potential. For the gauge potential~2.5! this corresponds to
performing the analytic continuationE→ iE and 2pa/b
→ im, whereE5E/e is now the~physical! electric field, and
m now plays the role of a chemical potential~see e.g.,@18#
and references therein!. In the thermal heat kernel~2.28! and
Lplasma this implies replacing cosm(bEx112pa) under the
sum by coshm(bEx11bm). Spatial periodicity is therefore
not a property of the thermal plasma in Minkowski spac
time. Nonetheless, as already mentioned, the ‘‘physic
plasma turns out to be position dependent as a result of
above periodicity in Euclidean space.

The contribution of the plasma toLe f f is real, also in
Minkowski space-time, and hence does not contribute to p
ticle production. This is in line with the results of Refs.@5#
and@7#. Physically it also seems reasonable that particle p
duction should occur exclusively from the virtual sea, a
therefore should be temperature independent. Indeed,
analytic continuation of~2.32! to Minkowski space-time is
given by

Lsea52
E

8p
1 i

E

4p
lnS E

pm2D . ~2.35!

As expected,Lsea has an imaginary part, corresponding
particle production.

III. CONCLUSION

We have investigated the effect of a uniform backgrou
electric field on the distribution of thermal fermionic matt
fields. In order to obtain exact results, we have restricted
discussion to fermions in 111 dimensions. By calculating
the heat kernel and the Euclidean effective Lagrangian d
sity we found that in the presence of a constant electric fi
the thermal plasma distribution of the fermion field becom
position dependent~in fact periodic! along the spatial direc-
tion x, while the virtual sea remains uniform. Compactifyin
space to a circle of perimeterL, this position dependence wa
traced to the quasi-periodicity property~2.33! under a
bonafide gauge transformation. The periodicx-dependence
of the plasma was also shown to reflect the existence
degeneracy of the eigenvalue spectrum of the spectral op
tor, with degree equal to the number of zero modes as gi
by the Atiyah-Singer theorem. Attention was drawn to t
formal similarity between this degneracy, and the deg
eracy of the Landau levels in the quantum Hall effect. T
results from the fact that, at finite temperature, one is wo
ing in two-dimensional Euclidean space, with the tempo
direction compactified.

The diagonal heat kernel of a quantum field in astatic
background at finite temperatureT.0 is in general expected
to factorize in the following way:

h(b)~ t;x,x!5h~ t;x,x!T50@11 f ~ t;x;T!#

where h(t;x,x)T50 is the temperature-zero heat kernel f
the same background, andf (t,x,T) is some function of the
4-5
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temperatureT, the diffusion or ‘‘proper’’ timet and the spa-
tial position. This functionf vanishes exponentially as eithe
T→0 or t→0. The factorization above is motivated by th
expectation thath(b)(t;x,x) separates quite generally for
static background into an UV divergent sea part, and an
finite gas part

h(b)~ t;x,x!5h~ t;x,x!sea1h~ t;x!gas

where

h~ t;x,x!sea5h~ t;x,x!T50 .

Defining f (t;x;T) by

h~ t;x!gas5 f ~ t;x;T!h~ t;x,x!T50

we arrive at the factorization above.
We have shown in this paper for the case of thermal

mions in an external Euclidean electrostatic potentialA2
5Ex112pa/b, that

11 f 5 (
n52`

`

~2 !ne2nb2E/4 tanhEte2 inbA2.

We thus see thatf (t,x;T) in general depends onA2, when a
gauge potential background is involved. This disagrees w
the claim, made in Ref.@11#, that f has the simple form

11 f 5 (
n52`

`

~2 !ne2n2b2/4t
e

. D

10503
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for a general~even time-dependent! background gauge po
tential Am . In fact, this claim applies only to the case whe
A15A(x1) is an arbitrary function of the spatial coordinat
and A250. Although the general analysis in Ref.@11# is
formally correct, the conclusion of the authors is incorrect,
they have taken terms involving powers of the covariant
rivative D0 to give a vanishing contribution, when acting
the right on ‘‘one.’’ It is easy to see that, for the case
question, the contribution of the first two Seeley coefficie
in the Seeley expansion of Ref.@11# combine to give the first
two terms in the series expansion of the cosine term
~2.26!.

Our results for the heat kernel and related functions
Fourier series in the Euclidean gauge fieldA2 in ~2.5!. This
is a consequence of the compactification ofA2 at finite tem-
perature. This leads us to expect that such Fourier series
arise for an arbitrary static background time componentA2.
The same is expected to be true in higher dimensions.
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