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A general method of constructing the Dirac operator for a randomly triangulated manifold is proposed. The
fermion field and the spin connection live, respectively, on the nodes and on the links of the corresponding dual
graph. The construction is carried out explicitly in 2D, on an arbitrary orientable manifold without boundary.

It can be easily converted into a computer code. The equivalence, on a sphere, of Majorana fermions and Ising
spins in 2D is rederived. The method can, in principle, be extended to higher dimensions.
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I. INTRODUCTION covered. In the last section we shall briefly discuss the ex-
A Preamble tgnsmn_of the idea to arbitrary triangulations and to higher
dimensions.

The statistical mechanics of random manifolds has been The reader will notice that the concept of a continuous
intensely studied for a dozen yedsee the reviewEl]). The  manifold appears in our discussion as a scaffolding that helps
interest of endowing these manifolds with fermionic degreego achieve the goal of putting a spinor field on an abstract
of freedom seems rather evident. It turns out that little hagraph, with specific intrinsic symmetries.
been done in this direction. A notable exception is the paper
by Bershadsky and Migd&R], where it is demonstrated that B. General strategy
the Isjng mpdel on afi>§ed planar 2D graph is equivalent to a How to put a spinor field on a curved manifold is ex-
certain Majorana fermion theory on the dual graph. HOW-pjained in textbooks of general relativitgee, e.g.[4]). The
ever, we do not find the discussion of REd] fully satisfac- ey concepts are local frames, parallel transport and spin

tory. The authors ignore the covariance aspects of the prokspnnection. The application of the general recipe to the case
lem and, therefore, several features of the model, which havgs 5 manifold discretized in the manner of Regge is, how-

a natural explanation, come out as “miracles.” Furthermore gyer, not quite trivial, since one cannot limit the discussion
it does not seem possible to extend their arguments beyong infinitesimal displacements and rotations.
2D. Some useful ideas can be found in the pioneering papers For pedagogical reasons, let us recall some differential
of the Columbia group, in particular in R3], but they do  geometry. With each pointof the manifold is associated an
not discuss at all the topological aspects of defining a spirypjtrary orthonormal local frame defined by a setlofec-
structure on a piecewise linear manifold. tors €),(x) called vielbeins. Here, the latin indgxefers to
The aim of the present paper is to propose a rather genergle ayes of the local frame transforming under local rotations
method of constructing the Wilson fermion action on @pelonging to S@). Using vielbeins one can eliminate, by
piecewise flat manifold, made up by gluing equilateral Sim-c,nyraction, the spacgere Greekindices, in order to deal
plices at random. The metric is assumed to have the Euclid(-)l,“y with objects transforming under $@, as in flat space.
ean signature. Our motivation for studying this problemn,a <an then introduce spinor fields, because the group
originates from our involvement in the study of simplicial SO(d) has spinor representations, contrary to the group
gravity. In this context, limiting ongse]f_ to such manifolds is GL(d) induced by general coordinate transformations. The
a common practice and seems justified by the results os.q4ram is incomplete, however, until one tells how to com-

ta'REd '? trk')? StUdg ?f _nozn[grl_il(;]al s;r Ings: ;‘]or a Ec:r|1a?[3th0f eX'pare local frames at distinct points of space. WBE(IX) is
actly solvable modeis in It has been shown that the cong el transported fronx to x+ 6X, one obtains a frame

tlngum a_md the discrete VeI’S“IOI’l be_Iong t.o the _sar;n otated with respect to the one that has been chosen at
universality class, when the “dynamical triangulation

recipe, is adoptefll]. According to this recipe, the sum over + 6x. This observation is formally expressed by the equation
metrics in the Feynman integral is indeed replaced by the gl (x 1 sx)=el (x)+ T} (x)€l () 8x" — wl, (X)X (x) ox”.

sum over all triangulations of the above mentioned type. In  * # ”V ek 1)
order to make the discussion as clear as possible we shall .

focus on 2D. The results of Reff2] will, of course, be re- Here,l“ﬁw is the Christoffel symbol and}, is the spin con-
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nection, which takes care of the relative rotation of the
neighboring local frames. Equatigh) can be used to define
a covariant derivative, which gives zero acting on the viel-
bein field (and therefore also on the metlg'gw=ejﬂej )

Since we are interested in piecewise flat manifolds, we
can assume that there exists an orthonormal reference frame
in a region comprising the pointsandx+ 6x. Choosing this
frame one gets, from Eql),

el (x+ 8x) =[ S+ wl,(x) 5x"1ek (x). 2

The operation on the right-hand side is an infinitesimal rota-
tion. The space index is inert since, by assumption, the
parallel transport fronx to x+ 8x is trivial.

Consider now a closed cur¢gin our piecewise flat mani-
fold. It is assumed tha€ can be covered with a set of flat

patchesP,,a=1,...n: P,NP,., is nonempty, and there |y this paper, the simplices of the triangulation play the
exists an orthonormal reference frame common to the wholggle of the flat patches above. Two neighboring simplices
of P,UP,.1. The conventions are such thag. ;=P;. We  have a commond-— 1)-dimensional face. The spinor field
associate a commogl,(a) with all points of P,. The ana-  Jives on simplices or, stated differently, on the vertices of the
logue of Eq.(2) is dual lattice. Only spinors belonging to neighboring simplices
j i K are directly coupled. There always exists an orthonormal
e, (b)=U(baje,(a), (3)  frame common to two neighboring simplices. Therefore the
. ) . coupling is given by the corresponding spinor connection,
where Py, is the patch next tP, and U(ba) is a finitt \\hich can be constructed without too much effort for a pair
rotation froma to b. In the following, the space indices, like o simplices. The problem is that one has to define the spinor
w above, which are irrelevant to our discussion, will not beconnection consistently all over the lattice, which is non-
exhibited. It will be convenient to eliminate the latin indices jyial (there exist topologies where this is impossjblEhe
too, using the matrix notation to write, for example whole construction will be done explicitly, in 2D, in the next

e(b)=U(ba)e(a), @) section.

FIG. 1. The set of patches covering a closed cuna shown
explicitly). The region within two overlapping neighboring patches
is flat.

instead of Eq(3). As already mentioned, the choice of the Il. TWO-DIMENSIONAL MANIFOLDS
local framese(a) ande(b) is arbitrary. ThusU(ba) is de- A. Spin connection in the vector representation

fined up to a local gauge transformation . . . . .
P gaug We consider a triangulation of an orientable 2D manifold.

U(ba)—G(b)U(ba)G Xa). (5) By convention, all triangles are oriented counterclockwise.
In particular, given a triangla, the angle betweee'(a) and
A vector v(a) is uniquely defined irP, by its compo- e?(a) is 7/2 when measured counterclockwise. We focus on
nents along thel vielbeinse(a). Equation(4) tells how these two triangles, saya and b, sharing a common link. It is
components change as one goes from a given patch to ig®nvenient to introduce two auxiliary local framelgab)
neighbor. and f(ba), attached to this link and rotated by the angle
For any two neighboring patches the rotation depends oWith respect to each othef’(ab) (f!(ba)) is perpendicular
the gauge choice at these patches. It is easy to see that for tie the link and points towards the exterior af(b). The
closed pattP;— ...—P,—P,,;...—P; the global rota- operation performed by the spin connection matdigba)
tion matrix U(C) has the gauge transformation can be defined by the following chain of rotations:

U(C)—G(1)U(C)G (1) (6) U(ba):e(a)—f(ab)—f(ba)—e(b). ™

Denote byR(¢) the rotation by angles: R(¢)=exp(ed) ,
wheree is the rotation generator represented by the antisym-
metric matrixe,,= — €»1=1. Hence

and, therefore, (#) TrU(C) is a gauge independent geo-
metrical object, whose deviation from unity is a measure o
the curvature of the manifolsee Fig. 1 An orthonormal

frame common to all patches does not, in general, exist and U(ba)=R! R(7)R 8
the chain of spin connections has inherited information about (ba) ($o-2)R(MR(Pas)- ®
the curved metric. Here ¢, ., is the angle betweer'(a) and f'(ab), while

The transformation matrix in Eq4) belongs to the vector 4 s the angle betweee'(b) andfl(ba) (see Fig. 2 It

representation of S@). A similar transformation law holds  should be kept in mind that these angles are oriented. Notice
for a spinor. The only difference is that the correspondinghat

transformation matrix belongs to the spinor representation of
SQ(d). U(ba)U(ab)=1. 9)
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The sign ambiguity cannot be resolved unless one is in a
position to control the angle in the range 0 to 4. The
connection matrixXV(ba) has the same sign ambiguity. In
analogy to Eq(8) write

V(ba)=0paS (b ) S(m)S(bab), (13

where the rotation matrices are all taken with the positive
sign [cf. Eq. (12)] and g,, is a sign factor. The parallel
transport of the spinor from to b and back does not intro-
duce any change, and therefore

FIG. 2. The local frame®(a) and e(b) in two neighboring
trianglesa and b are shown. The two auxiliary framdgab) and

f(ba) are also exhibited. They all have the same orientation. The V(ab)V(ba)=1, (14
oriented arc in the triangla represents the anglé,_,,,. Rotation which imbli h

by this angle brings the framefa) into f(ab). Similarly, the arc in ¢ plies that

b represents the anglh, ., . The rotation by this angle bringgb) Jab= —ba- (15)

into f(ba). Notice, that the angle is always measured from the local

to the auxiliary frame. This is why an inverse rotation appears in  ReplacingR by S on the right-hand side of E¢10) and
Eq. (8. including the sign factors, one finds the spinor analogue of
Eqg. (12) to be

Repeating the above argument, one eventually associates
a connection matrix with every oriented link of ttohual " L
lattice. LetL,, be an elementary loop of the dual lattice going TFV(Ln)=Tr k[[l Ik k+1S( ) S( by k-1)S™ (D k+1)-
throughn triangles labeled 1,2, .,n and letU(L,) be the - (16)
parallel transporter arourd,. One has

As in the vector case, the three rotations following flhe
n symbol correspond to a single rotation ty7/3 modulo 2.

TrU(L,)=Tr H R(MR(dy k- 1)R N by _ki1)s But since we are now working in the spinor representation,
k=1 the 27 is not innocent since it yields an extra negative sign.

(10 Hence, in general, the rotation isexp(*ivys7/6). The sign
in front of the exponential has to be determined carefully. It
using the cyclic labeling convention €¢n andn+1=1).  does not only depend on the way the dual lattice loop goes

Each factor above corresponds to a rotation by the angle through the trianglék but also on the choice of the gauge,
+ k-1~ Pk k+1 €qual, modulo 7, to /3 (—/3) for  je. on the direction of the vielbeia'(k) (in 2D specifying

L, oriented clockwisécounterclockwisg Hence the direction of a single vielbein suffices to fix the local
frame. Since TNV/(L,) is gauge invariant, we can fix the
1 Tru(L,) =cognm/3) (11 gauge at our convenience. We shall assume that in each tri-

anglee! points from the center of the triangle towards one of
the vertices. Figure 3 illustrates the six possible paths the

independently of the orientation of the loop. Fot 6, when . S PN
the angular defect is zero and therefore the lattice is Iocall3|/0Op can take through the triangleThe direction ok*(K) is

e . . also indicated, and appears as a flag associated with the ver-
flat, the right-hand side equals unity, as expected. tex of the dual lattice. The result of the calculation of the

rotation matrix is given in Table I.
B. The spinor case In the first three cases the path in the figure turns left. The

The logic underlying the construction of the spinor Con_corre'sp'onding ele_mentary loop goes counterclockwise. In the
nection, transforming a spinor field from one local frame to'€Maining cases it goes clockwise. The exponential factors
another, is close to that of the preceding subsection. Therd® known as the Kac-Ward factors. Drawing a dashed line
are, however, extra complications due to the fact that spinop@rallél to the loop, on the right of it, as shown in Fig. 3, one
rotations by¢ and ¢+ 27 are not equivalent. The resulting €20 S€€ from Table | that the sign fac_tor is negative when the
sign ambiguities require care. dash_ed line crosses the flag. Otherwise |t_|s positive. Denote

The analogue ol (ba), to be denoted/(ba), is a matrix the sign factors byz_k“ , Where the letterg,j,I rcfer to the _
belonging to the spin 1/2 representation of the rotatiorfnree successive triangles on the loop. Collecting all the sign
grzoup. In 2D there are two Hermitian Dirac matricghar;d factors we finally get
v* satisfying the usual anticommutation relatiopg', y 1 _
=26, Another standard matrix iys= —iy'y?, \c/)vﬁch i%’l 2 TrV(Ln)=F(Ly cosn/6), (7
2D is equal to the generator of rotatiopng', y?]/2i.

The matrix representing a rotation by an angles

1Actua||y, the result of the calculation would be the same if the
S(¢) = = expiysp/2). (12 vielbein were rotated forth or back by an angle less théd

105029-3



Z. BURDA, J. JURKIEWICZ, AND A. KRZYWICKI PHYSICAL REVIEW D60 105029

k1 k+1 i .,
> 4 ;
(@)

[l ) ©

@ :* ® v (®

FIG. 3. Six possible ways a dual lattice loop can go through a
triangle. The line segment pointing up from the center of the tri-
angle is the vertex flag indicating the gauge choice, i.e., the direc- FIG. 4. A portion of a dual lattice with flags put on. The number
tion of the vielbeinel(k). The dashed line is the loop slightly of flags inside each elementary loop is odd. Notice that the dashed
displaced to the right. The sign factay_; 1 iS negative when line following a nonelementary loop also crosses an odd number of
the dashed line crosses the flag. flags.

where nothing fundamental in these flags. They are merely a con-

venient tool for helping to set the spin structure on the sim-
F(Ln)=012Z123 923 Z234 --- On1 Zni2- (18)  plicial manifold.
Let us follow a counterclockwise oriented elementary
Notice that the loop sign factor can be defined for any closedoop staying always slightlputsideof it. Since each crossed
loop, not only for an elementary one. flag corresponds to a negative sign factor, it follows from the
For n=6, the sign factors on the right-hand side of Eq.rule established in the preceding section that @) is sat-
(18) should combine to giv&(Lg) = —1 because the paral- isfied provided we cross an odd number of flags. Following a
lel transport is trivial in flat space. Equati¢h?) is a relation ~ clockwise oriented elementary loop, staying always slightly
between an invariant measure of the local curvature on thisideof it, one also requires that the number of crossed flags
left-hand side, and the angle deficitr2 n#/3, which deter- is odd. The two requirements are equivalent, since the total
mines the argument of the cosine function on the right-handiumber of flags attached to a loop is even. In short, there
side. It is clear that if one could change the deficit angleshould be an odd number of flags both outside and inside
continuously, like, e.g., at the top of a cone, the factor inevery elementary loop independent of its orientation. A por-
front of the cosine would not change discontinuously. On dion of a dual lattice with flags put on vertices and links is
dynamically triangulated surface the quantization of the defishown in Fig. 4. It should be clear at this point of the dis-
cit angle is a lattice artifact, devoid of any deep physicalcussion that the exact direction of a flag is irrelevant. One

significance. Therefore we set can rotate them as long as one does not cross a link of the
dual lattice.
F(Ly)=-1 (19 Let us briefly outline the strategy adopted to prove that

the constraint19) can be satisfied on every orientable mani-

for all elementary loopd. - whatevem is. We shall prove fold. First, by direct inspection, we check that it can be sat-
y 100p&.p, : P isfied on a minimal sphere. Then we show that it can be

gtl:))wmtgr?itfct)rdese constraints can be satisfied on an OrlentabLereserved when one locally deforms the geometry with an

ergodic move, whose repeated application enables one to
construct an arbitrary sphere. Since the constraint is satisfied
C. Satisfying the constraints on an orientable 2D manifold for the initial configuration and it is preserved by the moves,

We have already introduced the vertex flags. Now we alsdt can be satisfied on an arbitrary sphgrical lattice. Higher
attach flags to links. We put a flag on the right-hand side o€NUS surfaces can be produced by gluing spheres. We show
the dual lattice link going froma to b if g.,=— 1. There is that thls gluing can al§o be done in preserving the colnstralnt.

It is easy to convince oneself that one can satisfy the

. : constraint(19) on a minimal sphere made up of four tri-

TABLE I. The sign and the Kac-Ward factors. anglegsee Fig. 8a)]. A sphere of arbitrary size can be con-
Fig. 3 s s S(MS(bron)S Ubrrsr) structed by using the moves introduced, for example, in Ref.
[5]. One move consists of splitting an elementary loop of the

a 3 5m/3 + exp(—iysm/6) dual lattice by inserting a new link. The inverse move con-
b T 3 —exp(—iysm/6) sists in removing a link. We show below that the construc-
c 5713 T —exp(—iysm6) tion of a sphere of arbitrary size can be done, thereby pre-
d 5/3 /3 —exp(+iysm/6) serving(19) for every elementary loop.

e w3 a + exp(+iygml6) When a link is added, the flags preexistingidethe loop

f - 5/3 +exp(+iysml6) are partitioned among the two new loops. Since their total

number is odd, one loop gets an even number of old flags
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(a) (b)

FIG. 5. (a) A possible assignment of flags on a minimal sphere.
(b) The shaded areas represent two identical spheres with one loop .
cut out. We show a way of gluing them together with a bridge made Fl?' 6.‘ FL:Slon ofdt\évo loops. The number of flags on the com-
up of new links. Only the new flags on the bridge are exhibited. |pMon fin€ 1S always odd.
each new loop there is an even number of flags, old and new, whic
are not shown explicitly. Repeating the operation enables one t

create a sphere with handles. D(ab)= ya,V(ab) = 0apS™ N ba.p) Y-S(7)S(bp ).
(22)

sing Eq.(13) one finds that it has the following form:

and the other an even number. One has to put five new flags,
three on the new links and two on the new vertices. This cafrrom here on we shall use the Dirac-Wilson operator, for
always be done so as to have an odd number of flags at thehich we keep the symbad:
end inside the two new loops, without modifying the outside.
A similar argument holds for the inverse move. One checks D(ab)=0apS™ *(pa—p)PS(m)S(bp_a), (23)
first that the number of flags to be removed inside out-
side the new loop to be created is odticannot be Q. If this
is not the case, one flips one of them outsidside), simul-
taneously flipping insiddoutside a neighboring link flag,
the one not to be removed. The new flag assignment satisfi
fche. constrainf[ if the old one did. The.total number of fl_ags D(ab)D(ba)=0 (24)
inside two adjacent elementary loops is even. By removing a
link, one erases an odd number of flags. The final number ofnd
flags inside the new, larger loop is therefore odd, as it should
be. D'(ab)=CD(ba)C™1, (25
One can extend this result to a sphere with handles. One . ] ]
starts by creating the required topology and then one uses tighere C is the charge conjugation matfixThe former
split-join moves and the ergodicity argument, as above. Firstn€ans that the Wilson fermions do not propagate back and
duplicate a sphere and choose a pair of identical loops, onf@rth on the same link. The latter one results from Exp).
on each sphere. Join two such twin loops with a minimalFor Majorana fermions one obtains, from Eg5),
number of new links as in Fig.(b). By symmetry, there is — _
always an even number of old flags in the newly created y(a)D(ab)y(b)=y(b)D(ba)y(a), (26)
loops. It is easy to convince oneself that new flags, three for | . L .
each new link, can always be placed so as to have an odﬁh'Ch means that fermion I|r_1es are not onente_q. .
number of flags in the new loops. A surface with an arbitrary Let us calculate the contribution to the partition function
number of handles can be obtained by repeating this operé)-f a closed loopC={1.2,... n,1};
glc’;(:.e(.)f course, spheres have to be glued in more than one (H1)D(L2(2)H2)D(2,3¥(3) . ..
Finally, let us observe that the satisfaction of the con- -
straint (19) by all elementary loops implies that it is also XP(D(n. (1)
satisfied by an arbitrary contractable and self-avoiding loop =-TrD(1,2D(2,3 ... D(n,1)
C. This results from the fact that such a loop can be obtained
by fusing elementary loops with the same orientation. The
total number of flags inside two loops that fuse is even and
one drops an odd number of flagsee Fig. 6 Hence

where P=(1+y%)/2 is a projector. We recall thag,, has
been set following the rules discussed in Sec. 11 B.

The Dirac-Wilson operator satisfies the following two
Lgépnditions:

n

=—FO)Tr]] PK,
j=1

=—F(C)(\3/2", (27)

whereK;=exp(*iysm/6) is the Kac-Ward factor at thgth
D. Dirac-Wilson operator, fermion loops and the Ising model turn of the loop. The presence of the projediomakes the

The Dirac operator is defined by contracting the connec
tion matrix V(ab) with the Dirac matrix

F(C)=-1. (20

2c~14ic=—4IT, c'C=1 andC"= — C. For Majorana fermions
Yab=1(ab)- y=S""(ha_p) ¥'S(da_p)- (2)  y=cy'.
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final result independent of the sign in the exponent df; . lattice, decorated with flags, with spinbeins living on the
We see that the right-hand side of E87) is positive when links of the graph. One is no longer referring explicitly to the
F(C)=—1. We have already proved that this is the case fotunderlying continuous manifold.

contractable, self-avoiding loops. Now the loops are neces-

sarily self-avoiding for Majorana fermions. From E@7)

easily follows the isomorphism, on a triangulated spherical E. A sketch of the computer implementation

surface, of the Majorana fermion model and of the Ising spin The fermion action can be constructed explicitly for use

mode| In 2D‘. It rests on the identity of the pattern of pha_sqn computer simulations. The crucial part of the construction
boundaries, in the Ising model, and that of closgd fermlor]S to choose the gauge and determine the dual link sign fac-
loops. We refer the reader to R@.] for more ‘?'eta"s- tors consistently. Hence, on each particular random lattice,
In two d|r'nens.|ons and for ngorana fermions, Eg3) one first puts the flags on links and vertices. In practice, this
can be rewritten in another, partlcu_larly elegant agd SU99€S5 most simply done recursively; one starts with an arbitrary
tive form. Choose the representation=os and y*=o1, g loop, puts an odd number of flags in its interior, en-
where o; denotes the Pauli matrices. Theg=o0, andC  |314e5 the domain with flags put on by considering a neigh-
=io,=e. Thus for Majorana fermiofsy=ey™ and ¢  boring loop, and so on. Our general results insure that one
=yTe. With these conventions it is easy to check that Eqhas no problem arriving at the last loop.
(23) can be written With each dual link one associates one of the nine matri-
_ ces defined by Eq23), or what amounts to the same, by Eq.
D(ab)=0apS(pa_p) @S(dp_a), (28)  (28). These matrices can be calculated beforehand and stored
in the computer's memory. Which matrix is associated with
a given link depends on the gauge choice at the ends of the
link (i.e., the orientation of the vertex flag$or example, in
cos5 the spinbein formalism, the flag at a given dual vertex deter-
s(¢)= 5= Ssz( —sinf cosé) (29) mines the labeling of spinbeins at this vertex. Since each link
' 2 2) connects two vertices, there are two spinbeins associated
with each link and the right matrix is the one which is equal
to their Cartesian product, see E§2).
With our choice of the gauge, the anglég, ,n=1,2,3 are Let L denote the number of dual links. The Dirac-Wilson
7/3,m and 5r7/3 (the links emerging froma are ordered operator for the full lattice is ah X L matrix made up of 2
counterclockwise, starting with the flagHence, with each X2 matrices. The off-diagonal ones have the fq88) and
dual link n emerging froma one can associate a “spinbein” are found as explained above. The diagonal ones are unit 2

where

smE

s™: X 2 matrices multiplied by a mass coming from the mass
term.
) = =32
st= , s2=| |, s°= . (30
1/2 1 1/2 Ill. CONCLUSION
One has Since the conceptual difficulty in defining a spin structure
on a random manifold is associated with the sign ambigu-
slsl=g2g2=53s3=0, ities, the extension of our discussion to an arbitrary triangu-
(31) lation is, in principle, straightforward. When the triangles
sls?=slsd=52s3=\[3/2. making up the lattice are not equilateral, the exponents in the
Kac-Ward factors are no longer equal torw/6, but vary
Equation(28) can be rewritten as along the dual loop. On the other hand, the sign factor is a
o topological property of the loop and is independent of the
D(ab)=g,,s"®esm®), (32)  triangulation details. The Dirac-Wilson operator can still be

defined by EQq.(23) but its computer implementation be-
wheren(a) andm(b) refer to the linkab, but are labeled comes more tedious because of the additional freedom in the
according to the gauge chosenaandb, respectively. Fi-  angles entering the spin connection. With the definiti2®)
nally, we write the factor (/3/2)" in Eq. (27) is replaced by the product,
— B — | (@) along the loop, of the cosines of the Kac-Ward angles. This
y(a)D(ab)¢(b)=gapl ¢(2)s™][s™¢(b)]. (83 ng |onger corresponds to a simple Ising model with a con-
stant coupling between neighbors. The isomorphism between
the fermion theory and the simple Ising model is recovered,
however, if one follows Refl2] and introduces, in the defi-
nition of the Dirac-Wilson operator in E423), an appropri-
ate link-depending factor. In substance, this amounts to de-
fining the Dirac operator by Eq32).
3Using indicesy— i, — i, the two equations can be rewritten ~ Another issue is the spectrum of the Dirac-Wilson opera-
in the standard formy?= y,,e*# and i,= €,54". tor. This very interesting problem, completely beyond the

It should be clear that the particular choi¢80) is not
important—only the invariant relation@1) matter. Notice
that in the above formulation one only works with the dual
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scope of this paper, deserves a separate study. As is knowvithin a tetrahedron the rotations relating the various frames
from the accumulated experience with the lattice fermionsmentioned in the preceding paragraph satisfy a simple alge-
spurious zero modes do occur. This pathology is also likelyora.
to be present for fermions interacting with the geometry. An The construction of the spin connection follows the rules
extension of our discussion incorporating the recent progreg@rmulated in the preceding section. The real problem, as in
in the lattice fermion theory would, of course, be welcome. 2D, is the consistent determination of the sign factors. The
We have illustrated our method of putting Wilson fermi- Sign associated with the particular way an elementary dual
ons on a randomly triangulated manifold by carrying theloop goes through a te_trahedron |s_related to the fact that in
program in detail in the 2D case. We do not see any majop?e spinor representauon.the rotation connecting two faces
conceptual problem in extending this construction to highediréctly can differ by a sign from the compound rotation,
dimensions, although we have not done this explicitly. where one goes from the face to the local frame anq thgn
Let us briefly sketch how this could perhaps be done infrom the Ioc_al frame to _the other face. The bookkeeping is
3D. The auxiliary framed ,, and f,, have their first axis more comphcatec! than in the .2D case. .
perpendicular to the common faeiangle of the tetrahedra The book_keepmg starts being really comphc_ated as one
a andb. One can assume, without the loss of generality, thafittempts to fix th.e signs all over the_ lf"‘t.t'ce' The rlght strategy
the second axis is common to these two frames, which arf the one used'm 2D, but the explicit implementation Seems
then related by a rotation by around the second axis. This much more tedlou_s. But these seem to be merely technical
does not specify these frames yet, because the orientation BFObI_emS‘ We believe that the main conceptual issues are
the second axis can be arbitrary. The natural choice is tgvell lllustrated by the present paper.
assume that the second axis points from the center towards
one of the vertices of the triangle. There remains the freedom
to make rotations by 2/3 within the triangle. A convenient We are indebted to John Madore and Bengt Petersson for
choice of the gauge consists in associating the local frame interesting conversations. One of (&.B.) would like to
with one of the faces, in much the same way as for thehank the Laboratoire de Physique “Brigue for hospitality.
auxiliary frames, in analogy to what was done in 2D. This work was partially supported by the KBN grant number
Since the rotation group is now non-Abelian, manipulat-2P03B 044 12. Laboratoire de Physique @tigue is Unite
ing rotations is less straightforward than in 2D. However,Mixte de Recherche UMR 8627.
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