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Wilson fermions on a randomly triangulated manifold
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A general method of constructing the Dirac operator for a randomly triangulated manifold is proposed. The
fermion field and the spin connection live, respectively, on the nodes and on the links of the corresponding dual
graph. The construction is carried out explicitly in 2D, on an arbitrary orientable manifold without boundary.
It can be easily converted into a computer code. The equivalence, on a sphere, of Majorana fermions and Ising
spins in 2D is rederived. The method can, in principle, be extended to higher dimensions.
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I. INTRODUCTION

A. Preamble

The statistical mechanics of random manifolds has b
intensely studied for a dozen years~see the reviews@1#!. The
interest of endowing these manifolds with fermionic degre
of freedom seems rather evident. It turns out that little h
been done in this direction. A notable exception is the pa
by Bershadsky and Migdal@2#, where it is demonstrated tha
the Ising model on a fixed planar 2D graph is equivalent t
certain Majorana fermion theory on the dual graph. Ho
ever, we do not find the discussion of Ref.@2# fully satisfac-
tory. The authors ignore the covariance aspects of the p
lem and, therefore, several features of the model, which h
a natural explanation, come out as ‘‘miracles.’’ Furthermo
it does not seem possible to extend their arguments bey
2D. Some useful ideas can be found in the pioneering pa
of the Columbia group, in particular in Ref.@3#, but they do
not discuss at all the topological aspects of defining a s
structure on a piecewise linear manifold.

The aim of the present paper is to propose a rather gen
method of constructing the Wilson fermion action on
piecewise flat manifold, made up by gluing equilateral si
plices at random. The metric is assumed to have the Euc
ean signature. Our motivation for studying this proble
originates from our involvement in the study of simplici
gravity. In this context, limiting oneself to such manifolds
a common practice and seems justified by the results
tained in the study of noncritical strings: for a class of e
actly solvable models in 2D it has been shown that the c
tinuum and the discrete version belong to the sa
universality class, when the ‘‘dynamical triangulation
recipe, is adopted@1#. According to this recipe, the sum ove
metrics in the Feynman integral is indeed replaced by
sum over all triangulations of the above mentioned type
order to make the discussion as clear as possible we
focus on 2D. The results of Ref.@2# will, of course, be re-
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covered. In the last section we shall briefly discuss the
tension of the idea to arbitrary triangulations and to high
dimensions.

The reader will notice that the concept of a continuo
manifold appears in our discussion as a scaffolding that h
to achieve the goal of putting a spinor field on an abstr
graph, with specific intrinsic symmetries.

B. General strategy

How to put a spinor field on a curved manifold is e
plained in textbooks of general relativity~see, e.g.,@4#!. The
key concepts are local frames, parallel transport and s
connection. The application of the general recipe to the c
of a manifold discretized in the manner of Regge is, ho
ever, not quite trivial, since one cannot limit the discuss
to infinitesimal displacements and rotations.

For pedagogical reasons, let us recall some differen
geometry. With each pointx of the manifold is associated a
arbitrary orthonormal local frame defined by a set ofd vec-
tors em

j (x) called vielbeins. Here, the latin indexj refers to
the axes of the local frame transforming under local rotatio
belonging to SO~d!. Using vielbeins one can eliminate, b
contraction, the space~here Greek! indices, in order to dea
only with objects transforming under SO~d!, as in flat space.
One can then introduce spinor fields, because the gr
SO~d! has spinor representations, contrary to the gro
GL~d! induced by general coordinate transformations. T
program is incomplete, however, until one tells how to co
pare local frames at distinct points of space. Whenem

j (x) is
parallel transported fromx to x1dx, one obtains a frame
rotated with respect to the one that has been chosenx
1dx. This observation is formally expressed by the equat

em
j ~x1dx!5em

j ~x!1Gmn
l ~x!el

j ~x!dxn2vkn
j ~x!em

k ~x!dxn.
~1!

Here,Gmn
l is the Christoffel symbol andvkn

j is the spin con-
©1999 The American Physical Society29-1
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nection, which takes care of the relative rotation of t
neighboring local frames. Equation~1! can be used to defin
a covariant derivative, which gives zero acting on the vi
bein field ~and therefore also on the metricgmn5em

j ej n).
Since we are interested in piecewise flat manifolds,

can assume that there exists an orthonormal reference f
in a region comprising the pointsx andx1dx. Choosing this
frame one gets, from Eq.~1!,

em
j ~x1dx!5@dk

j 1vkn
j ~x!dxn#em

k ~x!. ~2!

The operation on the right-hand side is an infinitesimal ro
tion. The space indexm is inert since, by assumption, th
parallel transport fromx to x1dx is trivial.

Consider now a closed curveC in our piecewise flat mani-
fold. It is assumed thatC can be covered with a set of fla
patchesPa ,a51, . . . ,n: PaùPa11 is nonempty, and there
exists an orthonormal reference frame common to the wh
of PaøPa11. The conventions are such thatPn115P1. We
associate a commonem

j (a) with all points of Pa . The ana-
logue of Eq.~2! is

em
j ~b!5Uk

j ~ba!em
k ~a!, ~3!

where Pb is the patch next toPa and U(ba) is a finite
rotation froma to b. In the following, the space indices, lik
m above, which are irrelevant to our discussion, will not
exhibited. It will be convenient to eliminate the latin indice
too, using the matrix notation to write, for example

e~b!5U~ba!e~a!, ~4!

instead of Eq.~3!. As already mentioned, the choice of th
local framese(a) ande(b) is arbitrary. ThusU(ba) is de-
fined up to a local gauge transformation

U~ba!→G~b!U~ba!G21~a!. ~5!

A vector v(a) is uniquely defined inPa by its compo-
nents along thed vielbeinse(a). Equation~4! tells how these
components change as one goes from a given patch t
neighbor.

For any two neighboring patches the rotation depends
the gauge choice at these patches. It is easy to see that fo
closed pathP1→ . . .→Pa→Pa11 . . .→P1 the global rota-
tion matrix U(C) has the gauge transformation

U~C!→G~1!U~C!G21~1! ~6!

and, therefore, (1/d)Tr U(C) is a gauge independent ge
metrical object, whose deviation from unity is a measure
the curvature of the manifold~see Fig. 1!. An orthonormal
frame common to all patches does not, in general, exist
the chain of spin connections has inherited information ab
the curved metric.

The transformation matrix in Eq.~4! belongs to the vecto
representation of SO~d!. A similar transformation law holds
for a spinor. The only difference is that the correspond
transformation matrix belongs to the spinor representatio
SO~d!.
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In this paper, the simplices of the triangulation play t
role of the flat patches above. Two neighboring simplic
have a common (d21)-dimensional face. The spinor fiel
lives on simplices or, stated differently, on the vertices of
dual lattice. Only spinors belonging to neighboring simplic
are directly coupled. There always exists an orthonorm
frame common to two neighboring simplices. Therefore
coupling is given by the corresponding spinor connecti
which can be constructed without too much effort for a p
of simplices. The problem is that one has to define the sp
connection consistently all over the lattice, which is no
trivial ~there exist topologies where this is impossible!. The
whole construction will be done explicitly, in 2D, in the ne
section.

II. TWO-DIMENSIONAL MANIFOLDS

A. Spin connection in the vector representation

We consider a triangulation of an orientable 2D manifo
By convention, all triangles are oriented counterclockwi
In particular, given a trianglea, the angle betweene1(a) and
e2(a) is p/2 when measured counterclockwise. We focus
two triangles, saya and b, sharing a common link. It is
convenient to introduce two auxiliary local frames,f (ab)
and f (ba), attached to this link and rotated by the anglep
with respect to each other:f 1(ab) „f 1(ba)… is perpendicular
to the link and points towards the exterior ofa (b). The
operation performed by the spin connection matrixU(ba)
can be defined by the following chain of rotations:

U~ba!:e~a!→ f ~ab!→ f ~ba!→e~b!. ~7!

Denote byR(f) the rotation by anglef: R(f)5exp(ef) ,
wheree is the rotation generator represented by the antisy
metric matrixe1252e2151. Hence

U~ba!5R21~fb→a!R~p!R~fa→b!. ~8!

Here fa→b is the angle betweene1(a) and f 1(ab), while
fb→a is the angle betweene1(b) and f 1(ba) ~see Fig. 2!. It
should be kept in mind that these angles are oriented. No
that

U~ba!U~ab!51. ~9!

FIG. 1. The set of patches covering a closed curve~not shown
explicitly!. The region within two overlapping neighboring patch
is flat.
9-2
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WILSON FERMIONS ON A RANDOMLY TRIANGULATED . . . PHYSICAL REVIEW D60 105029
Repeating the above argument, one eventually assoc
a connection matrix with every oriented link of thedual
lattice. LetLn be an elementary loop of the dual lattice goi
throughn triangles labeled 1,2,. . . ,n and letU(Ln) be the
parallel transporter aroundLn . One has

Tr U~Ln!5Tr )
k51

n

R~p!R~fk→k21!R21~fk→k11!,

~10!

using the cyclic labeling convention (0[n and n11[1).
Each factor above corresponds to a rotation by the anglp
1fk→k212fk→k11 equal, modulo 2p, to p/3 (2p/3) for
Ln oriented clockwise~counterclockwise!. Hence

1
2 Tr U~Ln!5cos~np/3! ~11!

independently of the orientation of the loop. Forn56, when
the angular defect is zero and therefore the lattice is loc
flat, the right-hand side equals unity, as expected.

B. The spinor case

The logic underlying the construction of the spinor co
nection, transforming a spinor field from one local frame
another, is close to that of the preceding subsection. Th
are, however, extra complications due to the fact that sp
rotations byf andf12p are not equivalent. The resultin
sign ambiguities require care.

The analogue ofU(ba), to be denotedV(ba), is a matrix
belonging to the spin 1/2 representation of the rotat
group. In 2D there are two Hermitian Dirac matricesg1 and
g2 satisfying the usual anticommutation relations$g j ,gk%
52d jk. Another standard matrix isg552 ig1g2, which in
2D is equal to the generator of rotations@g1,g2#/2i .

The matrix representing a rotation by an anglef is

S~f!56exp~ ig5f/2!. ~12!

FIG. 2. The local framese(a) and e(b) in two neighboring
trianglesa and b are shown. The two auxiliary framesf (ab) and
f (ba) are also exhibited. They all have the same orientation.
oriented arc in the trianglea represents the anglefa→b . Rotation
by this angle brings the framee(a) into f (ab). Similarly, the arc in
b represents the anglefb→a . The rotation by this angle bringse(b)
into f (ba). Notice, that the angle is always measured from the lo
to the auxiliary frame. This is why an inverse rotation appears
Eq. ~8!.
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The sign ambiguity cannot be resolved unless one is i
position to control the anglef in the range 0 to 4p. The
connection matrixV(ba) has the same sign ambiguity. I
analogy to Eq.~8! write

V~ba!5gbaS
21~fb→a!S~p!S~fa→b!, ~13!

where the rotation matrices are all taken with the posit
sign @cf. Eq. ~12!# and gba is a sign factor. The paralle
transport of the spinor froma to b and back does not intro
duce any change, and therefore

V~ab!V~ba!51, ~14!

which implies that

gab52gba . ~15!

ReplacingR by S on the right-hand side of Eq.~10! and
including the sign factors, one finds the spinor analogue
Eq. ~11! to be

Tr V~Ln!5Tr )
k51

n

gk k11S~p!S~fk→k21!S21~fk→k11!.

~16!

As in the vector case, the three rotations following the)
symbol correspond to a single rotation by6p/3 modulo 2p.
But since we are now working in the spinor representati
the 2p is not innocent since it yields an extra negative sig
Hence, in general, the rotation is6exp(6ig5p/6). The sign
in front of the exponential has to be determined carefully
does not only depend on the way the dual lattice loop g
through the trianglek but also on the choice of the gaug
i.e., on the direction of the vielbeine1(k) ~in 2D specifying
the direction of a single vielbein suffices to fix the loc
frame!. Since TrV(Ln) is gauge invariant, we can fix th
gauge at our convenience. We shall assume that in each
anglee1 points from the center of the triangle towards one
the vertices.1 Figure 3 illustrates the six possible paths t
loop can take through the trianglek. The direction ofe1(k) is
also indicated, and appears as a flag associated with the
tex of the dual lattice. The result of the calculation of t
rotation matrix is given in Table I.

In the first three cases the path in the figure turns left. T
corresponding elementary loop goes counterclockwise. In
remaining cases it goes clockwise. The exponential fac
are known as the Kac-Ward factors. Drawing a dashed
parallel to the loop, on the right of it, as shown in Fig. 3, o
can see from Table I that the sign factor is negative when
dashed line crosses the flag. Otherwise it is positive. Den
the sign factors byzk jl , where the lettersk, j ,l refer to the
three successive triangles on the loop. Collecting all the s
factors we finally get

1
2 Tr V~Ln!5F~Ln!cos~np/6!, ~17!

1Actually, the result of the calculation would be the same if t
vielbein were rotated forth or back by an angle less thanp/3.

e

l
n
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Z. BURDA, J. JURKIEWICZ, AND A. KRZYWICKI PHYSICAL REVIEW D60 105029
where

F~Ln!5g12z123 g23 z234 . . . gn1 zn12. ~18!

Notice that the loop sign factor can be defined for any clo
loop, not only for an elementary one.

For n56, the sign factors on the right-hand side of E
~18! should combine to giveF(L6)521 because the para
lel transport is trivial in flat space. Equation~17! is a relation
between an invariant measure of the local curvature on
left-hand side, and the angle deficit 2p2np/3, which deter-
mines the argument of the cosine function on the right-h
side. It is clear that if one could change the deficit an
continuously, like, e.g., at the top of a cone, the factor
front of the cosine would not change discontinuously. O
dynamically triangulated surface the quantization of the d
cit angle is a lattice artifact, devoid of any deep physi
significance. Therefore we set

F~Ln!521 ~19!

for all elementary loopsLn , whatevern is. We shall prove
now that these constraints can be satisfied on an orient
2D manifold.

C. Satisfying the constraints on an orientable 2D manifold

We have already introduced the vertex flags. Now we a
attach flags to links. We put a flag on the right-hand side
the dual lattice link going froma to b if gab521. There is

FIG. 3. Six possible ways a dual lattice loop can go throug
triangle. The line segment pointing up from the center of the
angle is the vertex flag indicating the gauge choice, i.e., the di
tion of the vielbeine1(k). The dashed line is the loop slightl
displaced to the right. The sign factorzk21 k k11 is negative when
the dashed line crosses the flag.

TABLE I. The sign and the Kac-Ward factors.

Fig. 3 fk→k21 fk→k11 S(p)S(fk→k21)S21(fk→k11)

a p/3 5p/3 1exp(2ig5p/6)
b p p/3 2exp(2ig5p/6)
c 5p/3 p 2exp(2ig5p/6)
d 5p/3 p/3 2exp(1ig5p/6)
e p/3 p 1exp(1ig5p/6)
f p 5p/3 1exp(1ig5p/6)
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nothing fundamental in these flags. They are merely a c
venient tool for helping to set the spin structure on the s
plicial manifold.

Let us follow a counterclockwise oriented elementa
loop staying always slightlyoutsideof it. Since each crossed
flag corresponds to a negative sign factor, it follows from t
rule established in the preceding section that Eq.~19! is sat-
isfied provided we cross an odd number of flags. Followin
clockwise oriented elementary loop, staying always sligh
insideof it, one also requires that the number of crossed fl
is odd. The two requirements are equivalent, since the t
number of flags attached to a loop is even. In short, th
should be an odd number of flags both outside and ins
every elementary loop independent of its orientation. A p
tion of a dual lattice with flags put on vertices and links
shown in Fig. 4. It should be clear at this point of the d
cussion that the exact direction of a flag is irrelevant. O
can rotate them as long as one does not cross a link of
dual lattice.

Let us briefly outline the strategy adopted to prove th
the constraint~19! can be satisfied on every orientable ma
fold. First, by direct inspection, we check that it can be s
isfied on a minimal sphere. Then we show that it can
preserved when one locally deforms the geometry with
ergodic move, whose repeated application enables on
construct an arbitrary sphere. Since the constraint is satis
for the initial configuration and it is preserved by the move
it can be satisfied on an arbitrary spherical lattice. High
genus surfaces can be produced by gluing spheres. We s
that this gluing can also be done in preserving the constra

It is easy to convince oneself that one can satisfy
constraint~19! on a minimal sphere made up of four tr
angles@see Fig. 5~a!#. A sphere of arbitrary size can be con
structed by using the moves introduced, for example, in R
@5#. One move consists of splitting an elementary loop of
dual lattice by inserting a new link. The inverse move co
sists in removing a link. We show below that the constru
tion of a sphere of arbitrary size can be done, thereby p
serving~19! for every elementary loop.

When a link is added, the flags preexistinginsidethe loop
are partitioned among the two new loops. Since their to
number is odd, one loop gets an even number of old fl

a
-
c- FIG. 4. A portion of a dual lattice with flags put on. The numb
of flags inside each elementary loop is odd. Notice that the das
line following a nonelementary loop also crosses an odd numbe
flags.
9-4
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WILSON FERMIONS ON A RANDOMLY TRIANGULATED . . . PHYSICAL REVIEW D60 105029
and the other an even number. One has to put five new fl
three on the new links and two on the new vertices. This
always be done so as to have an odd number of flags a
end inside the two new loops, without modifying the outsid
A similar argument holds for the inverse move. One che
first that the number of flags to be removed inside~or out-
side! the new loop to be created is odd~it cannot be 0!. If this
is not the case, one flips one of them outside~inside!, simul-
taneously flipping inside~outside! a neighboring link flag,
the one not to be removed. The new flag assignment sati
the constraint if the old one did. The total number of fla
inside two adjacent elementary loops is even. By removin
link, one erases an odd number of flags. The final numbe
flags inside the new, larger loop is therefore odd, as it sho
be.

One can extend this result to a sphere with handles.
starts by creating the required topology and then one use
split-join moves and the ergodicity argument, as above. F
duplicate a sphere and choose a pair of identical loops,
on each sphere. Join two such twin loops with a minim
number of new links as in Fig. 5~b!. By symmetry, there is
always an even number of old flags in the newly crea
loops. It is easy to convince oneself that new flags, three
each new link, can always be placed so as to have an
number of flags in the new loops. A surface with an arbitra
number of handles can be obtained by repeating this op
tion. Of course, spheres have to be glued in more than
place.

Finally, let us observe that the satisfaction of the co
straint ~19! by all elementary loops implies that it is als
satisfied by an arbitrary contractable and self-avoiding lo
C. This results from the fact that such a loop can be obtai
by fusing elementary loops with the same orientation. T
total number of flags inside two loops that fuse is even a
one drops an odd number of flags~see Fig. 6!. Hence

F~C!521. ~20!

D. Dirac-Wilson operator, fermion loops and the Ising model

The Dirac operator is defined by contracting the conn
tion matrix V(ab) with the Dirac matrix

gab5 f 1~ab!•g5S21~fa→b!g1S~fa→b!. ~21!

FIG. 5. ~a! A possible assignment of flags on a minimal sphe
~b! The shaded areas represent two identical spheres with one
cut out. We show a way of gluing them together with a bridge ma
up of new links. Only the new flags on the bridge are exhibited
each new loop there is an even number of flags, old and new, w
are not shown explicitly. Repeating the operation enables on
create a sphere with handles.
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Using Eq.~13! one finds that it has the following form:

D~ab!5gabV~ab!5gabS
21~fa→b!g1S~p!S~fb→a!.

~22!

From here on we shall use the Dirac-Wilson operator,
which we keep the symbolD:

D~ab!5gabS
21~fa→b!PS~p!S~fb→a!, ~23!

where P5(11g1)/2 is a projector. We recall thatgab has
been set following the rules discussed in Sec. II B.

The Dirac-Wilson operator satisfies the following tw
conditions:

D~ab!D~ba!50 ~24!

and

DT~ab!5CD~ba!C21, ~25!

where C is the charge conjugation matrix.2 The former
means that the Wilson fermions do not propagate back
forth on the same link. The latter one results from Eq.~15!.
For Majorana fermions one obtains, from Eq.~25!,

c̄~a!D~ab!c~b!5c̄~b!D~ba!c~a!, ~26!

which means that fermion lines are not oriented.
Let us calculate the contribution to the partition functio

of a closed loopC5$1,2, . . . ,n,1%;

^c̄~1!D~1,2!c~2!c̄~2!D~2,3!c~3! . . .

3c̄~n!D~n,1!c~1!&

52Tr D~1,2!D~2,3! . . . D~n,1!

52F~C!Tr )
j 51

n

PKj

52F~C!~A3/2!n, ~27!

whereK j5exp(6ig5p/6) is the Kac-Ward factor at thej th
turn of the loop. The presence of the projectorP makes the

2C21g jC52g jT, C†C51 andCT52C. For Majorana fermions

c5Cc̄T.

.
op
e
n
ch
to

FIG. 6. Fusion of two loops. The number of flags on the co
mon line is always odd.
9-5
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final result independent of the6 sign in the exponent ofK j .
We see that the right-hand side of Eq.~27! is positive when
F(C)521. We have already proved that this is the case
contractable, self-avoiding loops. Now the loops are nec
sarily self-avoiding for Majorana fermions. From Eq.~27!
easily follows the isomorphism, on a triangulated spheri
surface, of the Majorana fermion model and of the Ising s
model in 2D. It rests on the identity of the pattern of pha
boundaries, in the Ising model, and that of closed ferm
loops. We refer the reader to Ref.@2# for more details.

In two dimensions and for Majorana fermions, Eq.~23!
can be rewritten in another, particularly elegant and sugg
tive form. Choose the representationg15s3 and g25s1,
where s i denotes the Pauli matrices. Theng55s2 and C

5 is25e. Thus for Majorana fermions3 c5ec̄T and c̄
5cTe. With these conventions it is easy to check that E
~23! can be written

D~ab!5gabs~fa→b! ^ s̄~fb→a!, ~28!

where

s~f!5S cos
f

2

sin
f

2

D , s̄5sTe5S 2sin
f

2
cos

f

2 D . ~29!

With our choice of the gauge, the anglesfa(n) ,n51,2,3 are
p/3,p and 5p/3 ~the links emerging froma are ordered
counterclockwise, starting with the flag!. Hence, with each
dual link n emerging froma one can associate a ‘‘spinbein
sn:

s15S A3/2

1/2
D , s25S 0

1D , s35S 2A3/2

1/2
D . ~30!

One has

s̄1s15 s̄2s25 s̄3s350,
~31!

s̄1s25 s̄1s35 s̄2s35A3/2.

Equation~28! can be rewritten as

D~ab!5gabs
n(a)

^ s̄m(b), ~32!

wheren(a) and m(b) refer to the linkab, but are labeled
according to the gauge chosen ata and b, respectively. Fi-
nally, we write

c̄~a!D~ab!c~b!5gab@c̄~a!sn(a)#@ s̄m(b)c~b!#. ~33!

It should be clear that the particular choice~30! is not
important—only the invariant relations~31! matter. Notice
that in the above formulation one only works with the du

3Using indicesc̄→ca, c→ca the two equations can be rewritte
in the standard formcb5caeab andca5eabcb.
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lattice, decorated with flags, with spinbeins living on t
links of the graph. One is no longer referring explicitly to th
underlying continuous manifold.

E. A sketch of the computer implementation

The fermion action can be constructed explicitly for u
in computer simulations. The crucial part of the construct
is to choose the gauge and determine the dual link sign
tors consistently. Hence, on each particular random latt
one first puts the flags on links and vertices. In practice,
is most simply done recursively; one starts with an arbitr
dual loop, puts an odd number of flags in its interior, e
larges the domain with flags put on by considering a nei
boring loop, and so on. Our general results insure that
has no problem arriving at the last loop.

With each dual link one associates one of the nine ma
ces defined by Eq.~23!, or what amounts to the same, by E
~28!. These matrices can be calculated beforehand and st
in the computer’s memory. Which matrix is associated w
a given link depends on the gauge choice at the ends of
link ~i.e., the orientation of the vertex flags!. For example, in
the spinbein formalism, the flag at a given dual vertex de
mines the labeling of spinbeins at this vertex. Since each
connects two vertices, there are two spinbeins associ
with each link and the right matrix is the one which is equ
to their Cartesian product, see Eq.~32!.

Let L denote the number of dual links. The Dirac-Wilso
operator for the full lattice is anL3L matrix made up of 2
32 matrices. The off-diagonal ones have the form~32! and
are found as explained above. The diagonal ones are un
32 matrices multiplied by a mass coming from the ma
term.

III. CONCLUSION

Since the conceptual difficulty in defining a spin structu
on a random manifold is associated with the sign ambi
ities, the extension of our discussion to an arbitrary trian
lation is, in principle, straightforward. When the triangle
making up the lattice are not equilateral, the exponents in
Kac-Ward factors are no longer equal to6p/6, but vary
along the dual loop. On the other hand, the sign factor i
topological property of the loop and is independent of t
triangulation details. The Dirac-Wilson operator can still
defined by Eq.~23! but its computer implementation be
comes more tedious because of the additional freedom in
angles entering the spin connection. With the definition~23!
the factor (A3/2)n in Eq. ~27! is replaced by the product
along the loop, of the cosines of the Kac-Ward angles. T
no longer corresponds to a simple Ising model with a c
stant coupling between neighbors. The isomorphism betw
the fermion theory and the simple Ising model is recover
however, if one follows Ref.@2# and introduces, in the defi
nition of the Dirac-Wilson operator in Eq.~23!, an appropri-
ate link-depending factor. In substance, this amounts to
fining the Dirac operator by Eq.~32!.

Another issue is the spectrum of the Dirac-Wilson ope
tor. This very interesting problem, completely beyond t
9-6
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scope of this paper, deserves a separate study. As is kn
from the accumulated experience with the lattice fermio
spurious zero modes do occur. This pathology is also lik
to be present for fermions interacting with the geometry.
extension of our discussion incorporating the recent prog
in the lattice fermion theory would, of course, be welcom

We have illustrated our method of putting Wilson ferm
ons on a randomly triangulated manifold by carrying t
program in detail in the 2D case. We do not see any ma
conceptual problem in extending this construction to hig
dimensions, although we have not done this explicitly.

Let us briefly sketch how this could perhaps be done
3D. The auxiliary framesf ab and f ba have their first axis
perpendicular to the common face~triangle! of the tetrahedra
a andb. One can assume, without the loss of generality, t
the second axis is common to these two frames, which
then related by a rotation byp around the second axis. Th
does not specify these frames yet, because the orientatio
the second axis can be arbitrary. The natural choice is
assume that the second axis points from the center tow
one of the vertices of the triangle. There remains the freed
to make rotations by 2p/3 within the triangle. A convenien
choice of the gauge consists in associating the local frame
with one of the faces, in much the same way as for
auxiliary frames, in analogy to what was done in 2D.

Since the rotation group is now non-Abelian, manipul
ing rotations is less straightforward than in 2D. Howev
in
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within a tetrahedron the rotations relating the various fram
mentioned in the preceding paragraph satisfy a simple a
bra.

The construction of the spin connection follows the ru
formulated in the preceding section. The real problem, a
2D, is the consistent determination of the sign factors. T
sign associated with the particular way an elementary d
loop goes through a tetrahedron is related to the fact tha
the spinor representation the rotation connecting two fa
directly can differ by a sign from the compound rotatio
where one goes from the face to the local frame and t
from the local frame to the other face. The bookkeeping
more complicated than in the 2D case.

The bookkeeping starts being really complicated as
attempts to fix the signs all over the lattice. The right strate
is the one used in 2D, but the explicit implementation see
much more tedious. But these seem to be merely techn
problems. We believe that the main conceptual issues
well illustrated by the present paper.
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