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Schwinger model Green functions with topological effects
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The fermion propagator and the four-fermion Green function in massless QED2 are explicitly found with
topological effects taken into account. The corrections due to instanton sectorsk561, contributing to the
propagator, are shown to be just the homogenous terms admitted by the Dyson-Schwinger equation forS. In
the case of the four-fermion function also sectorsk562 are included in the consideration. The quark con-
densates are then calculated and are shown to satisfy the cluster property. Theu dependence exhibited by the
Green functions corresponds to and may be removed by performing certain chiral gauge transformation.
@S0556-2821~99!02518-7#
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I. INTRODUCTION

Many phenomena in present-day theory of element
particles can be only described in nonperturbative langua
In the first place~though not exclusively! it refers to the
theory of strong interactions — quantum chromodynam
— where the only existence of mesons and baryons requ
allowing for such effects as quark and gluon confineme
However QCD, based on the colorSU(3) symmetry group,
introduces a variety of coupled fields, which makes the p
turbative calculation very complicated, and the nonpertur
tive one extremely perplexing.

Fortunately we have at our disposal a couple of examp
of model theories that, thanks to their mathematical simp
ity, allow for investigating certain nontrivial and nonpertu
bative aspects of more complicated phenomena. Among
most fertile ones one should mention the so-cal
Schwinger model — the electrodynamics of massless fer
ons that, in this work, will be called ‘‘quarks,’’ in two space
time dimensions. This model was originally proposed@1# as
an example of a field theory in which the existence of
local gauge symmetry does not entail the zero mass ga
boson — a fact which should not be pushed aside in el
troweak interactions theory. It turns out, however, that it h
many other nontrivial properties, which can be interest
from the point of view of both strong and weak interaction
Above all one should mention here the confinement of f
damental fermions and the axial anomaly.

The similarity between quantum chromodynamics and
Schwinger model appears also~and this will be particularly
essential for this work! in the presence of topological effect
the existence of instanton sectors leading to the emergin
u vacuum and nonzero ‘‘quark’’ condensate.

It is a known fact@2# that if the theory contains massle
fermions~at least one! the amplitude of the tunneling trans
tion between different topological vacua vanishes. Ma
ematically it is expressed through zero value of the Euc
ean Dirac operator determinant: det@ i ]”2eA” #, because of the
appearance of the zero eigenvalues and eigenvectors whA
bears the instanton index@3–7#. The functional integral over

*Elecronic address: torado@fuw.edu.pl
0556-2821/99/60~10!/105027~10!/$15.00 60 1050
y
e.

s
es
t.

r-
-

s
-

he
d
i-

e
ge
-
s
g
.
-

e

of

-
-

n

fermionic degrees of freedom, corresponding to the tran
tion amplitude in question, is then zero and the tunnel
phenomenon disappears. On the other hand, however
notion of theu vacuum does not lose its sense since to
logical vacua do not exhibit the so-called cluster prope
@8#. The reason is that, despite the appearance of
anomaly, a conserved chiral charge still can be defined,
topological vacua being its eigenstates with different eig
values. The matrix elements^muQ(x)un& of certain local op-
eratorQ(x) between such vacua (un& andum&) are then non-
vanishing if the operatorQ changes the chirality~the
Hamiltonian does not belong to that type of operators a
hence the above mentioned lack of tunneling!. If one of the
topological vacua were taken as the true vacuum, for suc
type of operators Q one would obtain automatically
^Q(x)&vac50. A product of such operatorsP(x,y)
5Q1(x)Q2(y) can, however, have the nonzero vacuum e
pectation value, for instance, if it is constructed in a chi
invariant way~e.g., if Q1 changes the chirality byk andQ2
by 2k). Now the requirement of clusterization in the lim
ux2yu→` leads to contradiction@9#

0Þ^P&vac5^Q1&vaĉ Q2&vac50.

If we then have to do with vacuum expectation values
chirality nonconserving operators, we have to include in
calculation different topological vacua. It is just that catego
that fermion, and fermion-boson Green functions belong
Because of the 2:1 correspondence between the c
charge and the topological index of a vacuum, the obje
bilinear in fieldsC ~propagators! require the inclusion of the
instanton sectors 0,61, and four-fermion functions — sec
tors 0,61,62.

All these facts are, of course, well known and appli
successfully to the calculations of the quark condens

^C̄(x)C(x)&vac in the Schwinger model, as well as to th
verification of the revival of the cluster property fo

^C̄(x)C(x)C̄(y)C(y)&vac @10–12#, and in Ref. @13# the
scheme for calculating the contributions from higher sect
to the Green functions was given.

The topological methods, however, have not been till n
applied to the calculation of the full two- and four-poin
Green functions in a way that the explicit formulae be foun
©1999 The American Physical Society27-1
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This computation will constitute the main goal in the pres
work. The paper is organized in the following way. In Sec
we concentrate on the quark propagator. From the consi
ations of the Dyson-Schwinger equations one knows@14,15#
that, beside the famous Schwinger solution@1# satisfying
$S,g5%50, i.e.,S;gm(•••)m , they admit also other terms
let us call themS8, for which @S8,g5#50. That means tha
S8;g5(•••)11(•••). The authors raised then the questi
concerning the interpretation of such terms. Extend
slightly the analysis of Ref.@15# we show, in Sec. II A,
which the most general form of the quark propagator, res
ing from the Dyson-Schwinger equations, is. Next, in S
II B using the methods of Ref.@10#, applied there to find the
value of condensate, we calculate the full propagator
show that the additional termsS8 are just those emergin
from nonzero instanton sectors. In Sec. III we perform
similar calculation for the four-fermion function. The anal
sis is here more complicated since it now involves the
61,62 instanton sectors and also because of the te
structure ofG, which bears now the four spinor indices.
the final section we verify the cluster property and have
look on theu dependence of the full Green functions. As o
knows, in massless theory the parameteru may be removed
by the convenient chiral gauge transformation. This conc
sion will find its full confirmation in our expressions for th
Green functions.

II. INSTANTON CONTRIBUTIONS TO THE QUARK
PROPAGATOR

In this section we would like to concentrate on the fe
mion propagator. Being defined as the vacuum expecta
value of the product ofC andC̄ it should acquire additiona
terms, beside that found already by Schwinger, originat
from instanton sectors61.

We start with summarizing briefly the conventions used
this work. The two-dimensional Lagrangian density of t
Schwinger model with the gauge fixing term has the follo
ing form:

L~x!5C̄~x!@ igm]m2egmAm~x!#C~x!2
1

4
Fmn~x!Fmn~x!

2
l

2
@]mAm~x!#2, ~1!

where for Dirac matricesgm we assume the representation
which all g ’s are real

g05S 0 1

1 0D , g15S 0 21

1 0D , g55g0g15S 1 0

0 21D .

~2!

The metric tensorgmn and the totally antisymmetric symbo
«mn are defined as follows:

g0052g1151, «0152«1051, «005«1150.
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A. General considerations

Having specified the Lagrangian we can derive, in t
standard way, the Dyson-Schwinger equations@16,17# for
the propagators for the two basic fields in the theory. It
well known that the result for the gluon Green function
simply that it acquires a mass equal toAe2/p. We recall that
in two dimensionse is a dimensionful constant. No othe
contributions from the nonzero instanton sectors come
play sinceAm does not change the chiral charge, similarly
interactions with photons do not change the electric cha
~which is no more true in non-Abelian theories!. We, there-
fore, take the full, dressed gluon propagator as alre
known to be~in momentum space!

Dmn~k!5S gmn2
kmkn

k2 D 1

e2/p2k2
2

1

l

kmkn

~k2!2
, ~3!

and concentrate only on the quark sector. The Dys
Schwinger equation, as always, chains up the two- and th
point functions which recurrence~continued to infinity! usu-
ally efficiently precludes us from solving it

p”S~p!511 ie2gmE d2k

~2p!2
S~p1k!

3Gn~p1k,p!S~p!Dmn~k!. ~4!

The prominent and well known advantage of the Schwin
model is that its Lagrangian is invariant under two types
gauge transformations: ordinary and chiral ones. This le
to two kinds of Ward identities@14,18–20# which relate the
projections ofGm(p1k,p) on km and on«mnkn with quark
propagator. In two-dimensional world they are sufficient
reconstruct the full vertexGm and decouple the equatio
from the infinite hierarchy

S~p1k!Gn~p1k,k!S~p!5
kn

k2
@S~p!2S~p1k!#

2
«naka

k2
@g5S~p!1S~p1k!g5#.

~5!

If we now adopt the Landau gauge (l→`) we see that the
longitudinal part of the right-hand side of Eq.~5! does not
contribute sinceDmn(k) becomes purely transverse and E
~4! may be given the following closed form:

p”S~p!512 ie2E d2k

~2p!2

1

k2~e2/p2k22 i e!

3k”g5@g5S~p!1S~p1k!g5#, ~6!

where the relation«magmka5k”g5 has been used. In the co
ordinate space there is a known factorization and the eq
tion is simplified to

i ]” xS~x!5d (2)~x!2e2@]” xb~x!#g5S~x!g5. ~7!

The functionb is here defined as follows:
7-2
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b~x!5E d2p

~2p!2
~12eipx!

1

~p22e2/p1 i e!~p21 i e!

55
i

2e2 F2
ip

2
1gE1 lnAe2x2/4p1

ip

2
H0

(1)~Ae2x2/p!G x timelike,

i

2e2
@gE1 lnA2e2x2/4p1K0~A2e2x2/p!# x spacelike,

~8!
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and is, in fact, a function ofx2 only. SymbolgE denotes the
Euler constant and functionsH0

(1) and K0 are Hankel func-
tion of the first kind, and Basset function, respectively@21#.
Assume now the most general matrix structure that is ad
ted in two dimensions, in co-ordinate space, for the ferm
propagatorS:

S~x!5S0~x!A~x2!1B~x2!1g5C~x2!1g5x”D~x2!. ~9!

The term proportional tox” has been chosen, for convenienc
as explicitly containing the free propagatorS0(x)5
2(1/2p)@x” /(x22 i«)#. It is, of course, only a question o
redefining the coefficient functionA(x2). In what follows we
will omit epsilons specifying that we have to do with caus
propagator. We now insert Eq.~9! into the coordinate spac
Dyson-Schwinger equation~7! and exploit the fact that for
all unknown functions, as well as forb function, we can
write ]” xF(x2)52x”dF/dx252x”F8(x2). This allows us to de-
duce the set of four differential equations for four functio
to be found. This set arises if one takes the trace of Eq.~7!
with successive insertion of1, g5, x” , andg5x” on both sides.
These are simple first order equations

A852 ie2b8A, B85 ie2b8B, C85 ie2b8C,

D852F 1

x2
1 ie2b8GD, ~10!

with the initial conditionA(0)51 originating from the can-
cellation of the Dirac delta functions in Eq.~7!. This set of
equations may immediately be solved and we obtain
most general form of the propagator that is accepted by
Dyson-Schwinger equation

S~x!5S0~x!e2 ie2b(x)1B0eie2b(x)1C0g5eie2b(x)

1D0

g5x”

x2
e2 ie2b(x), ~11!

where constantsB0 ,C0 ,D0 remain unknown.
In what was stated above we did not move to far fro

what had been done in Ref.@15#, except that we found two
additional terms (C andD) in the most general structure o
S. In what follows, however, we will show that the term
with unknown constants in Eq.~11!, except for the last one
10502
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arise as a result of instanton effects. The first term is just
well known Schwinger solution.

B. Explicit calculation of the quark propagator

The instanton contributions to the quark condensate w
calculated in a systematic way in Ref.@10#. Below we extend
this calculation and find the expression for the full propag
tor. We begin with substituting into the generating fun
tional, defined as usually as

Z@h,h̄,J#5E DCDC̄DAei *d2x[L1h̄C1C̄h1JmAm] ,

~12!

the following form of the gauge potential:

Am~x!5A(0)m~x!1«mn]nb~x!, ~13!

whereA(0)m is certain new potential satisfying some spec
conditions at space-time infinity~this point will be discussed
afterwards! andb is the external scalar function to be chos
later for our convenience.~The choice ofb will be dictated
by the topology of the ‘‘gluon’’ field, in a specific considere
sector, in that way that the whole nonzero winding numb
of Am may be attributed to«mn]nb, A(0)m being the trivial
topology field.! Since Eq.~13! constitutes a simple shift we
can now easily pass from the functional integral overA to
that overA(0). It is known that the coupling termeC̄A” (0)C
may be gauged away if we introduce new fermion fie
defined by the relations

C~x!5e2 ie]”x*d2zn(x2z)gmAm
(0)(z)C8~x!5:e2 if(x,A(0))C8~x!,

~14!

C̄~x!5C̄8~x!eiegm]”x*d2zn(x2z)Am
(0)(z)5:C̄8~x!ei f̃(x,A(0)),

~15!

with n(x2z) satisfying: hxn(x2z)5d (2)(x2z). The
above gauge transformation is an element ofU(1)^ UA(1)
7-3
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group. While the Lagrangian~1! is invariant~apart from the
gauge fixing term! under that kind of transformations, th
fermion path integral measure in Eq.~12! is not @22–24#.
This anomalous behavior generates a mass term for
gauge boson. After this transformation is performed in E
~12!, the A(0) dependence reappears in the source te
through the functionsf(x,A(0)) and f̃(x,A(0)) defined by
Eqs. ~14!,~15!. The substitutionA(0)→d/ idJ allows us to
perform the remaining Gaussian integral overA(0) @25# and
we obtain the following expression forZ:

Z@h,h̄,J#

5NbexpH i E d2xF1

2
bh2b1«mnJm]nbG J

3E DCDC̄expH i E d2x@C̄~ i ]”2e«mngm]nb!C

1h̄e2 if(x,d/ idJ)C1C̄ei f̃(x,d/ idJ)h#J
3expH 2

i

2E d2xd2y@Jm1~h1e2/p!«ma]ab#

3nmn~x2y,e2/p!@Jn1~h1e2/p!«nb]bb#J , ~16!

whereNb is certain constant (b stands for boson!. The mas-
sive propagatornmn(x2y,e2/p) satisfies the equation

F S h1
e2

p D S gmn2
]m]n

h
D1l]m]nGnna~x2y,e2/p!

5d (2)~x2y!gm
a . ~17!

The main point is now the evaluation of the fermion pa
integral in Eq.~16!. Let us denote byX the following expres-
sion:

X5E DCDC̄expH i E d2x@C̄~ i ]”2e«mngm]nb!C

1h̄8C1C̄h8#J , ~18!

where primes are used to avoid writing explicitly the facto
e2 if multiplying the external sources. This expression
naturally proportional to the determinant of the Dirac ope
tor. From Eq.~18! it is evident, however, that it strongl
depends on the choice of hitherto undefined functionb. It
turns out that for certain choices ofb it may even vanish so
one could proceed here with caution. First of all we temp
rarily go over to the Euclidean space since the propertie
the Dirac operator are there mathematically more rigoro
The transition to this space is defined by the following su
stitutions: x0→2 ix2 , A0→ iA2 , ]0→ i ]2. The Euclidean
metric tensorgmn is defined asdmn and for «mn we have
«1252«2152 i . In what follows the same symbols as befo
will be used for denoting the Euclidean counterparts of e
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lier defined quantities. We hope that it will not cause a
confusion and the passing back to the Minkowski space
explicitly be stated. Before we calculate the quantity~18! we
have to make some remarks on the instanton sectors.

Consider the most general form of the fieldA in the two-
dimensional world

Am~x!5]ma~x!2«mn]nb~x!. ~19!

The so-called Pontryagin index for the gluon field may
defined as

n5
ie

4pE d2x«abFab52
ie

2pE d2xhxb~x!. ~20!

Due to the Euclidean nature of the space-time
d’Alambert operatorhx is here, naturally, the same as th
Laplace operator. Assume now that we take the funct
b(x) in certain specific form

b(k)~x!5
i

2e
k lnS x21l2

l2 D , ~21!

where k is an integer number. After the evaluation of E
~20! we immediately obtainn5k, i.e., the fieldAa

(k) defined
as«ab]bb(k) bears the indexn5k. Since the Pontryagin in-
dex ~20! is linear in gluonic field the total index of the sum

Aa
(0)1«ab]bb(k), ~22!

is equal tok, and thanks to the complete freedom wh
choosingA(0) ~which is restricted to the sector 0! constitutes
the most general form of the field in thek instanton sector:
Aa

(k) . Aa
(k) represents a path~in the sense of Feynman pat

integral! connecting two distinct and topologically inequiva
lent vacua fort56`. The true vacuum of the theory, th
so-calledu vacuum, is now the superposition of these top
logical vacua

uu&5 (
n52`

`

einuun&, ~23!

and the generating functional calculated in this new vacu
has the form

Z@h,h̄,J#5 (
k52`

`

eikuZ(k)@h,h̄,J#, ~24!

where the summation runs over instanton indices rather t
over topological vacua ones. In each sector the appropr
Z(k) is calculated with the restriction on the values of t
vector potential to those defined by Eq.~22!. Now we are
ready for considering the contributions from separate te
of the sum in Eq.~24! — the different instanton sectors. I
compliance with what was said in the Introduction abo
chirality conserving and nonconserving operators and th
matrix elements taken between different topological vac
we haveZ@0,0,0#5Z(0)@0,0,0#5:NfNb and for the propaga-
tor we can immediately write
7-4
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S~x2y!5 (
k52`

`

S(k)~x2y!

52 i
1

Z(0)@0,0,0#
(

k52`

`

eiku
d2Z(k)@h,h̄,J#

dh̄~x!dh~y!
U

J,h,h̄50

.

~25!

Similar formulas are valid also for other Green functions a
will be exploited in the following section while dealing wit
four-point functions. The sum in Eq.~25! formally extends to
1` but practically depends on the properties of the opera
the vacuum expectation value of which is being consider
In the case of a propagator this operator is simply a prod
CC̄ and the whole sum reduces to three terms correspo
ing to k50, k511, andk521 which means that chira
charge of the contributing vacua can, at most, differ by 2
is not difficult to observe that the casek50 corresponds to
the well known Schwinger solution@1#, since it simply re-
quires puttingb(k)50, and is represented by the first term
Eq. ~11!. The nontrivial topological effects come from tw
other sectors. We concentrate below on the sectork511,
the calculation fork521 being analogous. The applie
method is here that of Ref.@10# and therefore we do no
plunge into details and point out only the main steps.

For k51 we have to substituteb5b(1) into Eq. ~18! ~or
rather into its Euclidean version! and perform theC andC̄
functional integral. By the Atiyah-Singer index theore
@3–7# the massless Dirac operator in the external field be
ing the nonzero Pontryagin number possesses zero mo
For k561 there is only one such mode and, for gamm
matrices conventions defined by Eq.~2!, it has the form~for
the discussion and construction of the zero modes in
Schwinger Model see Refs.@10,26,27#!

x0~x!5
1

A2p
S 1

l21x2D 1/2S 0

1D for k511, ~26!

x0~x!5
1

A2p
S 1

l21x2D 1/2S 1

0D for k521.

~27!

In the two-instanton sector, which will be dealt with
Sec. III, two zero modes appear

x0~x!5
1

A2p

l3/2

l21x2 S 0

1D ,

x1~x!5
1

A2p
~x12 ix2!

l1/2

l21x2 S 0

1D for k512,

~28!
10502
d

r
d.
ct
d-

It

r-
es.
a

e

x0~x!5
1

A2p

l3/2

l21x2 S 1

0D ,

x1~x!5
1

A2p
~x11 ix2!

l1/2

l21x2 S 1

0D for k522.

~29!

The whole set of eigenmodes will be denoted byxn . We
have

C5(
n

anxn , C̄5(
n

bnxn
1 , ~30!

where an and bn are the Grassmann coefficients. We no
pass from the integration overC andC̄ to that overan and
bn . The presence of a zero mode means that neithera0 nor
b0 appear in the bilinear term in the exponent of Eq.~18! and
only source terms in the integration over these two para
eters are involved. The rules for the Grassmann integra
demand, however, that from the whole exponent only
linear part contribute. The integration over nonzero mod
may be done in usual way, the details of which can be fou
in Ref. @10#. In that way we arrive at the following expres
sion for the quantityX:

X5NflE d2xd2yh̄8~x!x0~x!x0
1~y!h8~y!

3expF2E d2xd2yh̄8~x!e2 if(x,2«mn]nb(1))S0~x2y!

3ei f̃(y,2«mn]nb(1))h8~y!GexpF2E d2x
e2

2p
b(1)hb(1)G ,

~31!

S0 being the Euclidean free fermion propagator:i ]” xS0(x
2y)52d (2)(x2y). The additional factorl arises from the
change of variables~30! since the dimension of fieldC in
the Feynman path integral measure is 1/2 and that ofa0 and
b0 — 0.

Now, when the integration over fermionic degrees of fre
dom has been performed, and the properties of the Euclid
Dirac operator have been exploited, it is convenient to co
back to Minkowski space, where the final formula for th
propagator, analogous to Eq.~11!, is to be obtained. It
should, however, be emphasized that whenever required
the mathematical rigor, the corresponding expressions in
clidean space are presumably considered.

The differentiation over external currentsh and h̄, as re-
quired by Eq.~25!, leads to a very simple expression if on
keeps in mind that finally we have to set all the extern
sources to zero
7-5
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TOMASZ RADOŻYCKI PHYSICAL REVIEW D 60 105027
d2X

dh̄~x!dh~y!
U

h,h̄50

52Nfle2 if(x,d/ idJ)x0~x!x0
1~y!

3ei f̃(y,d/ idJ)ei *d2x(e2/2p)b(1)hb(1)
. ~32!

From the definition~26! of the zero mode it is evident tha
the productx0x0

1 has the matrix form1
2 (12g5). The func-

tional f has similar structure~a linear combination of1 and
g5) and therefore both quantities commute with each ot
which leads to the considering of the operator

exp@2 if~x,d/ idJ!1 i f̃~y,d/ idJ!#, ~33!

where functional differentiations act on theJ-dependent ar-
gument of the last exponent function in Eq.~16!. Let us now
introduce the~nonconserved! currentK m by the relation

f~x,A!2f̃~y,A!52E d2zA m~z!Km~z;x,y!, ~34!

and satisfying

]z
mKm~z;x,y!5e@d (2)~x2z!2d (2)~y2z!#, ~35!

which is evident by virtue of the definitions~14!,~15! of f

and f̃. In this notation the operator~33! is just
exp@*d2zK m(z;x,y)d/dJm(z)# and simply shifts the argu
ment of theJ-dependent functional

expF E d2zK m~z;•,• !
d

dJm~z!
GF@J#5F@J1K#. ~36!

Having found expression~32! for the second derivative o
X, and collecting Eq.~16! together with Eq.~25! we are in a
position to write down the formula for the one-instanton co
tribution to the quark propagator

S(1)~x2y!5 ileiux0~x!x0
1~y!

3expH i

2E d2u@b(1)~u!h~h1e2/p!b(1)~u!#

2
i

2E d2ud2w@K m~u;x,y!1«ma~h1e2/p!

3]ab(1)~u!#nmn~u2w!@K n~w;x,y!

1«nb~h1e2/p!]bb(1)~w!#J . ~37!

In the exponent of Eq.~37! all functions are perfectly known
so it is not difficult, although lengthy, to evaluate all expre
sions. We skip this calculation here and only note that
terms may be divided onto three groups: those not contain
currentK m, linear, and finally quadratic inK m.

~1! It is not difficult to check that both terms which do n
depend onK cancel each other.
10502
r

-

-
ll
g

~2! The terms linear inK are strongly simplified if one
notices that thanks to the presence of«mn from the whole
expression fornmn only that proportional to metric tenso
contributes. If one now exploit the known identity fo
gamma matrices in two dimensionsgbg55«mbgm and ob-
serve that finallyg5 may be replaced with21, because of
the structure of the matrix coefficient (x0x0

1) in Eq. ~37!, we
see that the total effect of these terms is just to cancelx0x0

1

~up to 1/2p) together with the coefficientl. This was, natu-
rally, expected since the conclusive formula should not c
tain any trace of the particular choice ofb(1).

~3! The calculation of the term quadratic inK is also
elementary and the result turns out to be

gE1
1

2
ln

e

2Ap
1 ie2b~x2y!. ~38!

This allows us to complete the formula~37! for S(1). The
twin calculation in thek521 instanton sector gives th
analogous outcome with the reversed signs of parametu
and matrixg5. Finally, the quark propagator with contribu
tions from all sectors is

S~x!5S0~x!e2 ie2b(x)1
ie

4p3/2
~cosu2 ig5sinu!egE1 ie2b(x).

~39!

This proves that the second and the third term in Eq.~11!,
admitted by the Dyson-Schwinger equation, do actually m
terialize as a result of instanton effects. The last term d
not reappear in Eq.~39!, and in fact may not do, by virtue o
simple dimensional consideration. From Eq.~11! it is obvi-
ous that the constantD0 has to be dimensionless and simu
taneously it must tend to zero whene2→0 ~the free case!.
Naturally no such constant exists in a world in which t
only dimensionful constant is juste2. From similar dimen-
sional analysis it is obvious that constantsB0 andC0 in Eq.
~11! must be linear ine which is in fact the case in Eq.~39!.
One should note in this point that instanton effects usua
manifest themselves in a nonperturbative way, for insta
through the appearance of negative powers of the coup
constant. As an example we can quote the one-instan
tunelling amplitude in four-dimensional YM:̂0u1&;exp
(28p2/g2) @28#. In the present case, however, we cannot c
struct e2-dependent dimensionless constants, and the i
ition concerning nonperturbative contributions should
confronted with dimensional considerations. In the last s
tion we come back to the formula~39! and analyze it from
the point of view of the quark condensate.

It should be also observed that other functions with t
quark ‘‘legs,’’ such as, for instance, the vertex function, a
still completely expressible through the propagatorS as dis-
cussed in Ref.@20# and the relation

@SGmS# (k)~x,y;z!5 iS(k)~x2y!gm]” zn~y2z!

2 i ]” zg
mn~x2z!S(k)~x2y!, ~40!
7-6
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as well as its counterparts for higher functions, hold se
rately in each instanton sector.

III. INSTANTON CONTRIBUTIONS TO THE FOUR-
FERMION FUNCTION

In compliance with our former discussion, the expectat

value of the productCCC̄C̄ acquires contributions from up
to k562 instanton sectors. As in the case of the propaga
the four-fermion Green function in a certain specific secto
defined by the functional derivative of the generating fun
tional
10502
-

n

r,
s
-

Gab,cd
(k) ~x1 ,x2 ;x3 ,x4!

5eiku
1

Z@0,0,0#

d4Z(k)@h,h̄,J#

dh̄a~x1!dh̄b~x2!dhc~x3!dhd~x4!
U

h,h̄,J50

~41!

For the sectork50 the appropriate expression for the Gre
function was found in our previous work@20#. We, therefore,
begin with considering the casek51 recalling here only the
final result forG(0)
lowing
Gab;cd
(0) ~x1 ,x2 ;x3 ,x4!5

1

2
$S0ac~x12x3!S0bd~x22x4!1@S0~x12x3!g5#ac@S0~x22x4!g5#bd%exp$ ie2@b~x12x2!

2b~x12x3!2b~x22x4!2b~x12x4!2b~x22x3!1b~x32x4!#%1
1

2
$S0ac~x12x3!S0bd~x22x4!

2@S0~x12x3!g5#ac@S0~x22x4!g5#bd%exp$2 ie2@b~x12x2!2b~x12x3!2b~x22x4!

2b~x12x4!2b~x22x3!1b~x32x4!#%2~c,x3↔d,x4!. ~42!

The evaluation ofZ(1) has already been done in the previous section so we are able to immediately write down the fol
equation forG(1):

Gab,cd
(1) ~x1 ,x2 ;x3 ,x4!5 ileiu

„$@e2 if(x1 ,d/ idJ)x0~x1!x0
1~x3!ei f̃(x3 ,d/ idJ)#ac@e2 if(x2 ,d/ idJ)e2 if(x2 ,«mn]nb(1))S0~x22x4!

3ei f̃(x4 ,«mn]nb(1))ei f̃(x4 ,d/ idJ)#bd2~c,x3↔d,x4!%2~a,x1↔b,x2!…expH i

2E d2xb(1)h~h1e2/p!b(1)

2
i

2E d2xd2y@Jm~x!1«ma~h1e2/p!]ab(1)~x!#nmn~x2y!@Jn~y!1«nb~h1e2/p!]bb(1)~y!#J ,

~43!

taken atJ50. We now recall the definition~34! of the currentK from the preceding section andJ introduced in Ref.@20# by
the relation

f̃~x,A!2f̃~y,A!52E d2zA m~z!Jm~z;x,y!. ~44!

The both currents satisfy the equation

K m~z;x,y!5J m~z;x,y!22eg5«mn]n
zn~x2z!. ~45!

Using this notation we can rewrite Eq.~43! in the form

G(1)~x1 ,x2 ;x3 ,x4!5 ileiu@x0~x1!x0
1~x3! ^ S0~x22x4!#H expF E d2zK m~z;x1 ,x3!

d

dJm~z!
G

^ expF i E d2zJm~z;x2 ,x4!«mn]nb(1)~z!1E d2zJ m~z;x2 ,x4!
d

dJmG J expF i

2E d2xb(1)h~h1e2/p!b(1)

2
i

2E d2xd2y@Jm~x!1«ma~h1e2/p!]ab(1)~x!#nmn~x2y!@Jn~y!1«nb~h1e2/p!]bb(1)~y!#G
1antisymmetrization, ~46!
7-7
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where the ‘‘antisymmetrization’’ is defined by substitutions in Eq.~43!. The obvious matrix notation has been introduc
above to simplify the expression and avoid explicitly writing four spinor indices.~One should keep in mind that both curren
K andJ are matrices in spinor space.! The functional derivatives over currentJ, similarly as in the expressions of the previo
section, lead to shifts ofJ and we obtain

G(1)~x1 ,x2 ;x3 ,x4!5 ileiuHx0~x1!x0
1~x3! ^ S0~x22x4!expF i E d2zJm~z;x2 ,x4!«mn]nb(1)~z!G J

3expH i

2E d2xb(1)h~h1e2/p!b(1)2
i

2E d2xd2y@K m~x;x1 ,x3! ^ 111^ Jm~x;x2 ,x4!

1«ma~h1e2/p!]ab(1)~x!#nmn~x2y!@K n~y;x1 ,x3! ^ 111^ Jn~y;x2 ,x4!

1«nb~h1e2/p!]bb(1)~y!#J 1antisymmetrization. ~47!
s
is
ar

di

s

the

a-

ne
In the last exponent of Eq.~47! we recognize the expression
similar to those of Eq.~37! although the tensor structure
now much more complex. Nevertheless all functions
known and the evaluation of Eq.~47! is only a matter of
patience. We do not intend to go into details and only in
cate the main points.

~1! The term quadratic inK is just that of the previous
section multiplied~tensor product! by 1.

~2! The term quadratic inJ was calculated in our previou
work @20#.

~3! The two terms containing squares ofb(1) cancel each
other.

~4! The terms containing products ofJ and b(1) cancel
with the first exponent in Eq.~47!.

~5! The terms containing products ofK and b(1) cancel
with the appropriate part of the coefficientx0(x)x0

1(y) ~see
Sec. II B!.

~6! The product terms of both currentsK andJ may be
evaluated in the straightforward way and we obtain
10502
e
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ie2g5
^ g5@b~x12x4!2b~x12x2!2b~x22x3!

1b~x32x4!#. ~48!

With all the above taken into account, we can now give
arising exponent in Eq.~47! the following simple form:

exp@a1^ 11bg5
^ g5#5

1

2
~1^ 12g5

^ g5!exp~a2b!

1
1

2
~1^ 11g5

^ g5!exp~a1b!,

~49!

wherea andb are certain functions expressible by combin
tions of b ’s.

The calculations fork521, which are practically identi-
cal, allow us to write down the final expression for the o
instanton contributions toG
onal

ng
G(11)~x1 ,x2 ;x3 ,x4!1G(21)~x1 ,x2 ;x3 ,x4!52
ie

8p3/2
egE~cosu2 ig5sinu! ^ S0~x22x4!@~1^ 12g5

^ g5!

eie2[b(x12x3)2b(x22x4)2b(x12x4)1b(x12x2)1b(x22x3)2b(x32x4)]1~1^ 11g5
^ g5!

3eie2[b(x12x3)2b(x22x4)1b(x12x4)2b(x12x2)2b(x22x3)1b(x32x4)] #

1antisymmetrization. ~50!

In the sectork52 we use again the formula~41!. There are now two zero modes. This means that after functi
integration over Grassmann variables, analogous to that performed to obtain Eq.~31!, the product of twoh ’s and two h̄ ’s
appears. These four sources have to saturate all four derivatives in Eq.~41!, since otherwise we would get zero after setti
h,h̄,J50. That in turn means that, in the formula forG(2), the currentJ will not appear and

G(2)~x1 ,x2 ;x3 ,x4!52l2e2iux0~x1!x0
1~x3! ^ x1~x2!x1

1~x4!expH i

2E d2xb(2)h~h1e2/p!b(2)2
i

2E d2xd2y@K m~x;x1 ,x3!

^ 111^ Km~x;x2 ,x4!1«ma~h1e2/p!]ab(2)~x!#nmn~x2y!@K n~y;x1 ,x3! ^ 111^ Kn~y;x2 ,x4!

1«nb~h1e2/p!]bb(2)~y!#J 1antisymmetrization. ~51!
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We are not going to repeat below the steps leading to the final result, since the modification of previous formulas is on
The two-instanton configurations contribute then in the following way:

G(12)~x1 ,x2 ;x3 ,x4!1G(22)~x1 ,x2 ;x3 ,x4!52
e4

256p4
e4gE@e2iu~12g5! ^ ~12g5!~x2

01x2
1!~2x4

01x4
1!1e22iu~11g5!

^ ~11g5!~2x2
01x2

1!~x4
01x4

1!#exp$ ie2@b~x12x4!1b~x22x3!1b~x12x2!

1b~x32x4!1b~x12x3!1b~x22x4!#%1antisymmetrization. ~52!
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If we now expand the tensor notation of Eqs.~50! and ~52!
into explicit spinor indices and perform the full antisymm
trization ~which also restores the apparently broken Lore
invariance! as defined by Eq.~43! we can collect together al
the contributions

Gab,cd~x1 ,x2 ;x3 ,x4!

5Gab,cd
(0) ~x1 ,x2 ;x3 ,x4!1Gab,cd

(11) ~x1 ,x2 ;x3 ,x4!

1Gab,cd
(21) ~x1 ,x2 ;x3 ,x4!1Gab,cd

(12) ~x1 ,x2 ;x3 ,x4!

1Gab,cd
(22) ~x1 ,x2 ;x3 ,x4!. ~53!

Since we now dispose the complete formula for the fo
fermion function, we can extend the analysis carried ou
Ref. @20#, regarding the possible existence of the Schwin
pole in thet channel~the quark-antiquark annihilation!, over
contributions from higher topological sectors. To this go
we identify the appropriate co-ordinates of incoming a
outgoing particlesuªx15x3 , vªx25x4 and perform the
Fourier transform of the expression in the new varia
zªv2u. This identification~which should be treated as a
appropriate limit! has to be done in a symmetrical way
described in the quoted paper. After these manipulations
see that the formula~45! from Ref. @20# acquires additiona
terms from thekÞ0 instanton sectors

Gpolar~k!5F2
i ~k1!2

4p
g0

^ g01
iek1

4p3/2
egE~g0

^ g5e2 iug5

2g5e2 iug5
^ g0!1

ie2

8p2
e2gEe2 iug5

^ e2 iug5

3~1^ 11g5
^ g5!G 1

~k22e2/p!
. ~54!

One remark is worth being made here. If one consid
the time ordered product of twoC ’s and twoC̄ ’s then, for
some choice of time arguments, one can introduce a c
plete set of~out! states obtaining, for instance,

(
n

^0uC~x1!C̄~x3!un&^nuC~x2!C̄~x4!u0&. ~55!

The setun& is here a Fock set of massive Schwinger bos
since these are the only asymptotic states. The one-b
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contribution, which leads to the appearance of a pole ak2

5e2/p, is expressible, thanks to the formulas of the LS
formalism, through the vertex function. This in turn mean
by virtue of Eq. ~40!, that each of the amplitudes in th
product ~55! have the contributions from bothk561 sec-
tors. As a consequence, the polar part ofG should, in addi-
tion to sectors1111 and 2121, also contain traces o
sectors1121 and2111. Simple calculation shows that
would lead to the slight modification of Eq.~54! and to the
substitutiong5

^ g5 for 1^ 1 in its last term. It is not, how-
ever, the case since the unity expressed as a projec
(nun&^nu, involving the hidden integration over parameteru,
is diagonal in topological indices. Consequently the con
butions from the sectors1121 and2111 are excluded.

IV. CONCLUSION

The expressions for the Green functions obtained in S
II and III show that the Schwinger model may be explicit
solved also with all topological effects taken into accou
As argued in Ref.@20#, all higher functions~with no more
than four external fermion ‘‘legs’’!, thanks to the two Ward
identities, which are preserved in the nonzero instanton s
tors too, are the combinations of those found above.

From formulas ~39! and ~53! together with Eqs.
~42!,~50!,~52! we can obtain, by taking the appropriate lim
its, the values of the condensates and verify the cluster p
erty. We do not treat, in this work, the restoration of t
cluster property as a support for the use of theu vacuum
instead of a topological one since this fact is well known a
needs no verification. We rather show that the obtained
mulas are selfconsistent and agree~in this special limit! with
former results of other authors.

The values of condensates

Vª^C̄~x!C~x!&vac, VAª^C̄~x!g5C~x!&vac, ~56!

may be easily obtained from Eq.~39!. If we recall that
b(0)50 we get

V5
e

2p3/2
egEcosu, VA52

ie

2p3/2
egEsinu, ~57!
7-9
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which agrees with the results of other authors@10,29# and
constitutes the one-instanton contribution. To verify the cl
terization property let us now consider the objects defined

W~x,y!ª^C̄~x!C~x!C̄~y!C~y!&vac,

WA~x,y!ª^C̄~x!g5C~x!C̄~y!g5C~y!&vac. ~58!

The k561 does not contribute here since the trace of
product of an odd number of gamma matrices is zero
that is what we obtain while exploiting equation~50!. From
the sectork50 we obtain

W (0)~x,y!5
e2

8p3
e2gE12K0[A2e2(x2y)2/p] , ~59!

W A
(0)~x,y!52

e2

8p3
e2gE12K0[A2e2(x2y)2/p] ,

~60!

and fork562 the result is

W (12;22)~x,y!5W A
(12;22)~x,y!

5
e2

8p3
e2gE22K0[A2e2(x2y)2/p]cos 2u.

~61!
o
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In particular in the limit (x2y)2→2`, whereK0→0, we
have

W5
e2

8p3
e2gE~11cos 2u!, WA5

e2

8p3
e2gE~211cos 2u!,

~62!

and thanks to the identity cos 2u52 cos2u215122sin2u the
clusterization reappears

W5V•V, WA5VA•VA . ~63!

We would like to devote a few words to theu dependence
of the Green functions we obtained. It is well known@7,9#
that in the case of massless fermions, thanks to the ch
invariance of the Lagrangian, the parameteru may be
gauged away. This happens because of the close conne
between the chiral anomaly and the winding number. Tha
can actually be done is confirmed by our formul
~39!,~42!,~50!,~52!. For each product ofC andC̄ in a Green
function there appears a factore2 iug5

in the final formulas
which might obviously be cancelled by the appropriate ch
gauge transformation performed on the fermion field.
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