PHYSICAL REVIEW D, VOLUME 60, 105027
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The fermion propagator and the four-fermion Green function in massless, @EDexplicitly found with
topological effects taken into account. The corrections due to instanton s&etard, contributing to the
propagator, are shown to be just the homogenous terms admitted by the Dyson-Schwinger equ&tibn for
the case of the four-fermion function also sectkes+2 are included in the consideration. The quark con-
densates are then calculated and are shown to satisfy the cluster propertyd&pendence exhibited by the
Green functions corresponds to and may be removed by performing certain chiral gauge transformation.
[S0556-282(199)02518-1

PACS numbgs): 11.10.Kk, 11.30.Rd

I. INTRODUCTION fermionic degrees of freedom, corresponding to the transi-
tion amplitude in question, is then zero and the tunneling
Many phenomena in present-day theory of elementaryphenomenon disappears. On the other hand, however, the
particles can be only described in nonperturbative languagénotion of the & vacuum does not lose its sense since topo-
In the first place(though not exclusivelyit refers to the logical vacua do not exhibit the so-called cluster property
theory of strong interactions — quantum chromodynamic48]. The reason is that, despite the appearance of the
— where the only existence of mesons and baryons requirednomaly, a conserved chiral charge still can be defined, the
allowing for such effects as quark and gluon confinementtopological vacua being its eigenstates with different eigen-
However QCD, based on the col8iU(3) symmetry group, Vvalues. The matrix elemen¢s|Q(x)|n) of certain local op-
introduces a variety of coupled fields, which makes the pereratorQ(x) between such vacugn() and|m)) are then non-
turbative calculation very complicated, and the nonperturbavanishing if the operatorQ changes the chirality(the
tive one extremely perplexing. Hamiltonian does not belong to that type of operators and
Fortunately we have at our disposal a couple of examplebence the above mentioned lack of tunnelingone of the
of model theories that, thanks to their mathematical simplictopological vacua were taken as the true vacuum, for such a
ity, allow for investigating certain nontrivial and nonpertur- type of operatorsQ one would obtain automatically
bative aspects of more complicated phenomena. Among theg(x))yac=0. A product of such operatorsP(x,y)
most fertile ones one should mention the so-called=Q1(x)Q.(y) can, however, have the nonzero vacuum ex-
Schwinger model — the electrodynamics of massless fermipectation value, for instance, if it is constructed in a chiral
ons that, in this work, will be called “quarks,” in two space- invariant way(e.g., if Q; changes the chirality bk andQ,
time dimensions. This model was originally proposéflas by —Kk). Now the requirement of clusterization in the limit
an example of a field theory in which the existence of theglx—y|—« leads to contradictiof9]
local gauge symmetry does not entail the zero mass gauge
bosm — a fact which should not be pushed aside in elec- 0#(P)vac= (Q1)vad Q2)vac=0.
troweak interactions theory. It turns out, however, that it haﬁ

many other nontrivial properties, which can be interesting]c \_/ve.then have to (.jo with vacuum expectation value_s for
chirality nonconserving operators, we have to include in the

from the point of view of both strong and weak interactions. . ; . o
Above all one should mention here the confinement of fun_calculatlo_n different top_ologlcal vacua. Itis just that category
damental fermions and the axial anomaly. that fermion, and fermion-boson Green functions belong t_o.

The similarity between quantum chromodynamics and théaecause of the 2:1 qorre;pondence between the phlral
Schwinger model appears aléand this will be particularly c_h_arge anq the topological index O.f a vacuum, the objects
essential for this workin the presence of topological effects: _b|||near in fieldsw (propagator)srequwg the |ncllu5|on of the
the existence of instanton sectors leading to the emerging dpstanton sectors &1, and four-fermion functions — sec-

6 vacuum and nonzero “quark” condensate. tors 0:+1,+2. .

It is a known facf 2] that if the theory contains massless All these facts are, of course, well known and applied
fermions(at least ongthe amplitude of the tunneling transi- Successfully to the calculations of the quark condensate
tion between different topological vacua vanishes. Math{V (X)W (X))ac in the Schwinger model, as well as to the
ematically it is expressed through zero value of the Euclidverification of the revival of the cluster property for
ean Dirac operator determinant: [dét—eA], because of the (VX)W (X)W (Y)V(Y))vac [10-12, and in Ref.[13] the
appearance of the zero eigenvalues and eigenvectors Avhenscheme for calculating the contributions from higher sectors
bears the instanton ind¢8—7]. The functional integral over to the Green functions was given.

The topological methods, however, have not been till now
applied to the calculation of the full two- and four-point
*Elecronic address: torado@fuw.edu.pl Green functions in a way that the explicit formulae be found.
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This computation will constitute the main goal in the present A. General considerations

work. The paper is organized in the following way. In Sec. Il Having specified the Lagrangian we can derive, in the
we concentrate on the quark propagator. From the considegiandard way, the Dyson-Schwinger equatioh,17] for
ations of the Dyson-Schwinger equations one knpis15  the propagators for the two basic fields in the theory. It is
that, beside the famous Schwinger solutidy satisfying  well known that the result for the gluon Green function is
{S,7°}=0, i.e.,S~¥*(---),, they admit also other terms, simply that it acquires a mass equahfe?/ . We recall that

let us call themS', for which[S',y°]=0. That means that in two dimensionse is a dimensionful constant. No other
S’ ~9°(--+)+1(---). The authors raised then the questioncontributions from the nonzero instanton sectors come into
Concerning the intel’pl’etation of such terms. EXtendinqﬂay sinceA* does not Change the chiral Charge, Sim”ar|y as
slightly the analysis of Ref[15] we show, in Sec. Il A, interactions with photons do not change the electric charge
which the most general form of the quark propagator, resulttwhich is no more true in non-Abelian theoriedVe, there-

ing from the Dyson-Schwinger equations, is. Next, in Secfore, take the full, dressed gluon propagator as already
Il B using the methods of Ref10], applied there to find the known to be(in momentum spage

value of condensate, we calculate the full propagator and
show that the additional termS’ are just those emerging k#kY 1 1 krk”
from nonzero instanton sectors. In Sec. lll we perform the D#*(k)= > 1 5T Tag

- . ) . k? Je’lm—k® N (k?)
similar calculation for the four-fermion function. The analy-

sis is here more ComplicatEd since it now involves the Oand concentrate On|y on the quark sector. The Dyson-
+1,+2 instanton sectors and also because of the tens@chwinger equation, as always, chains up the two- and three-
structure ofG, which bears now the four spinor indices. In point functions which recurrendeontinued to infinity usu-

the final section we verify the cluster property and have a|ly efficiently precludes us from solving it
look on thed dependence of the full Green functions. As one

9= ()

knows, in massless theory the parametenay be removed -, d?k
by the convenient chiral gauge transformation. This conclu- pS(p)=1+ie Wf (zw)zs(erk)
sion will find its full confirmation in our expressions for the
Green functions. XT(p+K,p)S(p)D ,,(K). (4)
The prominent and well known advantage of the Schwinger
[I. INSTANTON CONTRIBUTIONS TO THE QUARK model is that its Lagrangian is invariant under two types of
PROPAGATOR gauge transformations: ordinary and chiral ones. This leads

_to two kinds of Ward identitie§14,18—2Q which relate the
Hrojections ofl#(p+k,p) on k* and one#’k, with quark
propagator. In two-dimensional world they are sufficient to
reconstruct the full verteX'* and decouple the equation
Yrom the infinite hierarchy

In this section we would like to concentrate on the fer
mion propagator. Being defined as the vacuum expectatio

value of the product o andW¥ it should acquire additional
terms, beside that found already by Schwinger, originatin
from instanton sectors: 1.

We start with summarizing briefly the conventions used in k?
this work. The two-dimensional Lagrangian density of the S(p+K)I'"(p+k,k)S(p)=—[S(p) —S(p+k)]
Schwinger model with the gauge fixing term has the follow- k
ing form: va

Ka 5 5
T [¥°S(p)+S(p+k)y’].
_ 1
L) =P )[1y49,—ey* A, )TV (X) =7 FF(X)F 4,(X) ®)
A ) If we now adopt the Landau gauga =) we see that the
5 LI AT, (1) longitudinal part of the right-hand side of E€) does not

contribute sinceD#”(k) becomes purely transverse and Eq.

. . .. (4) may be given the following closed form:
where for Dirac matriceg* we assume the representation in

which all y's are real ZJ d?k 1
=1-ie
o 1 0 1 1 0 pS(p) (2m)? K2(e)lm—K>—ie)
0_ 1_ a S5—,0,1_ 57 5 5
Y=l o) YTl o) YTYYElo 1) XKy’Ly>S(p)+S(p+K) 7], (©)

2 where the relatiors““yﬂka=ky5 has been used. In the co-
ordinate space there is a known factorization and the equa-
The metric tensog”” and the totally antisymmetric symbol tion is simplified to

e*¥ are defined as follows: 0,S(x) = 5(2)(x)—ez[¢9x/3(x)]y58(x) 75. @
10

g%¥=—-gM=1, %=-¢1=1, £%=¢'=0. The functiong is here defined as follows:
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poo- | TP (1 !
X)= —e
(2m)? (p2—eXm+ie)(pP+ie)
i i > i (l)\/T imelik
22 —7+7E+|n ex/4w+?H0 (Ve m)| x timelike,
B ®
F[YEJF|n\/—62X2/4Tr+K0(\/—ezlew)] x spacelike,
e

and is, in fact, a function af? only. Symbolyg denotes the arise as a result of instanton effects. The first term is just the
Euler constant and functions{" andK, are Hankel func- well known Schwinger solution.

tion of the first kind, and Basset function, respectiviy].

Assume now the most general matrix structure that is admit-

ted in two dimensions, in co-ordinate space, for the fermion B. Explicit calculation of the quark propagator

propagatorS The instanton contributions to the quark condensate were

calculated in a systematic way in Rgf0]. Below we extend
S(x) = So(¥)A(X?) +B(x?) + ¥°C(x*)+ y*XD(x*). (9)  this calculation and find the expression for the full propaga-

tor. We begin with substituting into the generating func-

The term proportional t& has been chosen, for convenience,tional, defined as usually as

as explicitly , containing the free propagatafy(x)=

—(1/27)[ %I (x“—ig)]. It is, of course, only a question of — — AT L Tt g

redefining the coefficient functioA(x?). In what follows we Z[”’"'J]:f DWDW DA HET AL,

will omit epsilons specifying that we have to do with causal (12

propagator. We now insert E() into the coordinate space

Dyson-Schwinger equatiof¥) and exploit the fact that for

all unknown functions, as well as fg8 function, we can the following form of the gauge potential:

write 4, F (x%) = 2XdF/dx?=2%F ' (x?). This allows us to de-

duce the set of four differential equations for four functions

to be found. This set arises if one takes the trace of(Bq. A#(x) = AO#(x) + 473, b(X), (13

with successive insertion df y°, X, andy°% on both sides.

These are simple first order equations _ _ _ o _
whereA©©* is certain new potential satisfying some special

A'=—ie?B’A, B'=ie?B’'B, C'=ie?p’'C, conditions at space-time infinitghis point will be discussed
afterward$ andb is the external scalar function to be chosen
later for our conveniencégThe choice ofb will be dictated

D, (10) by the topology of the “gluon” field, in a specific considered
sector, in that way that the whole nonzero winding number
of A* may be attributed ta**d,b, A©©* being the trivial

with the initial conditionA(0)=1 originating from the can- topology field) Since Eq.(13) constitutes a simple shift we

cellation of the Dirac delta functions in E¢7). This set of can now easily pass from the functional integral ogeto
equations may immediately be solved and we obtain thehat overA(©). It is known that the coupling terraW AW
most general form of the propagator that is accepted by thehay be gauged away if we introduce new fermion fields

Dyson-Schwinger equation defined by the relations

D'=-

1 )
—2+|e ﬁ,
X

S(x) = SO(X)e*iez,g(X) + Boeiezﬁ(x) + CO,}/Seiezﬂ(x)
W (x) = e 122 A @ () = @ 14 ADp (),

5
n DOV_*e—iezﬂ(x), (11) (14)
2
X
where constant8,,Cq,D, remain unknown. ﬁ(x):1?’(x)e‘eV“ﬂxdeZA(X*Z)AﬁO)(Z): W (x)el HA),
In what was stated above we did not move to far from (15

what had been done in Rdfl5], except that we found two
additional terms € andD) in the most general structure of
S In what follows, however, we will show that the terms with A(x—2z) satisfying: O,A(x—2)=6%)(x—z). The
with unknown constants in Eq11), except for the last one, above gauge transformation is an element¢fl)® U (1)
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group. While the Lagrangiafl) is invariant(apart from the lier defined quantities. We hope that it will not cause any
gauge fixing term under that kind of transformations, the confusion and the passing back to the Minkowski space will
fermion path integral measure in EQL2) is not [22—24. explicitly be stated. Before we calculate the quantitg) we
This anomalous behavior generates a mass term for theave to make some remarks on the instanton sectors.
gauge boson. After this transformation is performed in Eq. Consider the most general form of the fidddn the two-
(12), the A dependence reappears in the source termdimensional world

through the functionsp(x,A(®) and ¢é(x,A(®)) defined by

Egs. (14),(15). The substitutionA(®)— §/i 8J allows us to Au(X)=3,8(X) ~ £ 4,,0(X). (19)
perform the remaining Gaussian integral oyé) [25] and

The so-called Pontryagin index for the gluon field may be
we obtain the following expression fa yagin Incex gu I y

defined as

2[777771‘-]] ie ie
. v= Ef dZXsaﬁFaB:—EJ d’xO,b(x). (20
=Nbexp[if d?x| 5 bO%b+&#*J,d,b ] _ _
2 Due to the Euclidean nature of the space-time the
o - d’Alambert operator 1, is here, naturally, the same as the
xf D‘I’D‘I’exp[if dzx[\lf(iﬁ—ea“”yﬂ&yb)‘lf Laplace operator. Assume now that we take the function

b(x) in certain specific form

X2+ \2

)\2

+;e—i $(x, 81 )y 4 \I_,ei?)(x,&/i 8J) 7]]]

b (x)= 2'—ek In , (21)

i
xXexp — = | d?>xd?y[J*+ (O +e?/m)e” 9, b
W’ ZJ’ v ( m)e"4dab] wherek is an integer number. After the evaluation of Eq.

(20) we immediately obtain=k, i.e., the fieIdA(ak) defined
><AM,,(x—y,eZ/rr)[J”Jr(D+e2/w)s”ﬂa[,b]], (16)  ase,pdght™ bears the index=k. Since the Pontryagin in-
dex (20) is linear in gluonic field the total index of the sum

whereNy, is certain constantt( stands for boson The mas- A saﬁﬁﬁb(k), (22)
sive propagator\**(x—y,e’/ ) satisfies the equation “

e

a
The main point is now the evaluation of the fermion path
integral in Eq.(16). Let us denote b¥ the following expres-
sion:

is equal tok, and thanks to the complete freedom while
choosingA© (which is restricted to the sectoy Bonstitutes
the most general form of the field in theinstanton sector:

_ . AM AW represents a patfin the sense of Feynman path
=87(x=y)g, - 17 integra) connecting two distinct and topologically inequiva-
lent vacua fort=*«. The true vacuum of the theory, the
so-calledd vacuum, is now the superposition of these topo-
logical vacua

9,0,

=5 TAud, AV*(x—y, €%/ )

x=f D«M«?exp[if A2V (14— ect"y,d,b) ¥ |0)= 2 €"In), (23

— — and the generating functional calculated in this new vacuum
+57'U+V¥y'lt, (18 has the form

o

where primes are used to avoid writing explicitly the factors — i —

e 'Y multiplying the external sources. This expression is Z[n’n’J]_k;w 42Oy, 7.1, 24
naturally proportional to the determinant of the Dirac opera-

tor. From Eq.(19) it is evident, however, that it strongly where the summation runs over instanton indices rather than
depends on the choice of hitherto undefined functioit ~ over topological vacua ones. In each sector the appropriate
turns out that for certain choices bfit may even vanish so Z® s calculated with the restriction on the values of the
one could proceed here with caution. First of all we tempo-+ector potential to those defined by E@2). Now we are
rarily go over to the Euclidean space since the properties afeady for considering the contributions from separate terms
the Dirac operator are there mathematically more rigorousof the sum in Eq(24) — the different instanton sectors. In
The transition to this space is defined by the following sub-compliance with what was said in the Introduction about
stitutions: x°— —ix,, A°—=iA,, #®°—id,. The Euclidean chirality conserving and nonconserving operators and their
metric tensorg,,, is defined ass,, and fore,, we have matrix elements taken between different topological vacua,
g1,= — &= —i. In what follows the same symbols as before we havez[ 0,0,0]=Z(®[0,0,0]=:N;N, and for the propaga-
will be used for denoting the Euclidean counterparts of eartor we can immediately write
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X—y)= SM(x— X)=———| .|,
S(X—y) . (x=y) Xo(X) P27 a+x2lo
o 1 . eiko‘szz(k)[ﬂ,;,ﬂ 00 1 (Xotixg) A2 (1) for ke —2
LT — T o e X)=—(X1tiXp)—5— =-2.
ZO[0,0,01 5= " sn(0eny) |, -, T e T e 0

(25 (29

Similar formulas are valid also for other Green functions and The whole set of eigenmodes will be denotedypy We
will be exploited in the following section while dealing with have
four-point functions. The sum in E5) formally extends to

+oo but practically depends on the properties of the operator

the vacuum expectation value of which is being considered.

In the case of a propagator this operator is simply a product

V¥ and the whole sum reduces to three terms correspond-

ing to k=0, k=+1, andk=—1 which means that chiral

charge of the contributing vacua can, at most, differ by 2. ltwherea,, and b, are the Grassmann coefficients. We now
is not difficult to observe that the cake=0 corresponds t0  pass from the integration ovalr and¥ to that overa,, and

the well known Schwinger solutiofil], since it simply re- . The presence of a zero mode means that neéthetor
quires puttings!9=0, and is represented by the first term of | appear in the bilinear term in the exponent of E®) and

Eg. (11). The nontrivial topological effects come from two only source terms in the integration over these two param-
other sectors. We concentrate below on the sektor-1,  eters are involved. The rules for the Grassmann integration
the calculation fork=—1 being analogous. The applied demand, however, that from the whole exponent only the
method is here that of Ref10] and therefore we do not |inear part contribute. The integration over nonzero modes

\P:; AnXn 62; anrTv (30

plunge into details and point out only the main steps.
For k=1 we have to substitute=b") into Eq.(18) (or

rather into its Euclidean versipand perform thel and¥

may be done in usual way, the details of which can be found
in Ref.[10]. In that way we arrive at the following expres-
sion for the quantityX:

functional integral. By the Atiyah-Singer index theorem
[3—7] the massless Dirac operator in the external field bear-
ing the nonzero Pontryagin number possesses zero modes, o > n ,
For k==1 there is only one such mode and, for gammaSX_Nf)‘ d*x %y 7" (X) xo(X) Xo (¥Y) 7' (Y)
matrices conventions defined by H®), it has the form(for

the discussion and construction of the zero modes in the

Schwinger Model see Refg10,26,27)

1 1 1/2 0
X)=—| —— for k=+1, 26
(0= e (1) (20
1 1 \¥q
X)=—| —— for k=—1.
XolX) \/217()\2+x2 (0)

(27)

In the two-instanton sector, which will be dealt with in
Sec. Ill, two zero modes appear

il

(X) = (X1=ixp) M (O
X)= —=(X1—iXp)——
x N s T b |

1 )\3/2
X) =
Xol V27 N2+ %2

) for k=+2,

(28)

. exr{ B f d2xdPy 7’ (x)e 4B g (x —y)

2
exr{—f dzxe—b(l)Db(l)}
2 '

(31

X e"‘;(yv _S,U.V‘;Vb(l)) 77’ (y)

Sy being the Euclidean free fermion propagatof;Sy(x

—y)=— 8@ (x—y). The additional facton arises from the
change of variableg30) since the dimension of field in

the Feynman path integral measure is 1/2 and thayafnd
by — 0.

Now, when the integration over fermionic degrees of free-
dom has been performed, and the properties of the Euclidean
Dirac operator have been exploited, it is convenient to come
back to Minkowski space, where the final formula for the
propagator, analogous to E@ll), is to be obtained. It
should, however, be emphasized that whenever required by
the mathematical rigor, the corresponding expressions in Eu-
clidean space are presumably considered.

The differentiation over external currengsand 7, as re-
quired by Eq.(25), leads to a very simple expression if one
keeps in mind that finally we have to set all the external
sources to zero
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52X (2) The terms linear inC are strongly simplified if one
_ notices that thanks to the presencestf’ from the whole
on(x)67(y) =0 expression forA ,, only that proportional to metric tensor

_ —i(x,81159) N contributes. If one now exploit the known identity for
=—Ni\e Xo(X) X0 (¥) gamma matrices in two dimensiongy®=¢*#y, and ob-
< @ by, 311 83) gi [ax(e2/2m)b Db (D 32 serve that finallyy® may be replaced with- 1, because of
' the structure of the matrix coefficieny§xg ) in Eq.(37), we

From the definition(26) of the zero mode it is evident that See that the total effect of these terms is just to cagggh

the productyoxg has the matrix formg (1— y°). The func- (up to 1/27) toge.ther with the coe_fficient. This was, natu-
tional ¢ has similar structuréa linear combination of and ra_IIy, expected since the _conclusw(_e formula should not con-
%) and therefore both quantities commute with each othefin any trace of the particular choice iof").

which leads to the considering of the operator (3) The calculation of the term quadratic 8 is also
elementary and the result turns out to be

exd —ip(x,8l183)+id(y,dli8d)], (33

1 e
where functional differentiations act on tdedependent ar- Yet §|nF+ ie?B(x—y). (38)
gument of the last exponent function in E@6). Let us now m

introduce the(nonconservedcurrentC# by the relation .
This allows us to complete the formu(@7) for S*). The

~ ) twin calculation in thek=—1 instanton sector gives the
d(X,A) — oy, A)= _j d°zA*(2)K(z:x,y), (34 analogous outcome with the reversed signs of paraméter
and matrixy®. Finally, the quark propagator with contribu-
and satisfying tions from all sectors is

AR (zxy)=e[6D(x—2)- P y=2)], (39 . ie ,
S(x)=Sy(x)e" ¢ B(X)+4—3/2(coso—i753in g)eretie"A()
T

which is evident by virtue of the definitiond4),(15) of ¢ 39
39

and . In this notation the operator(33 is just
exd [d?ZKC “(z;x,y) 6/ 8I*(z)] and simply shifts the argu- . ) )
ment of theJ-dependent functional This proves that the second and the third term in @4),
admitted by the Dyson-Schwinger equation, do actually ma-
terialize as a result of instanton effects. The last term does
F[J]=F[J+K]. (36) notreappear in Eq39), and in fact may not do, by virtue of
simple dimensional consideration. From Egl) it is obvi-

)
ex f d?zK*(z;-,-)
8J*(2)
. . L ous that the constam, has to be dimensionless and simul-
Having found expressio(82) for the second derivative of taneously it must tend to zero whed—0 (the free case

X, and collecting Eq(16r)1 tofgethelr V]‘c’ith Eq(25) weareina Natyrally no such constant exists in a world in which the
position to write down the formula for the one-instanton COMonly dimensionful constant is jug?. From similar dimen-

tribution to the quark propagator sional analysis it is obvious that constaBtg andC, in Eq.
1 L n (11) must be linear ire which is in fact the case in E439).
shix-y)=ire "Xo(X)xo () One should note in this point that instanton effects usually
i manifest themselves in a nonperturbative way, for instance
Xex;{zf d?u[bM(u)O(O+e? m)bM(u)] through the appearance of negative powers of the coupling
constant. As an example we can quote the one-instanton
i tunelling amplitude in four-dimensional YM({0|1)~exp
- EJ d?ud®w[ K #(u;x,y) +&#*(0+e? ) (—872/g?) [28]. In the present case, however, we cannot con-
struct e?>-dependent dimensionless constants, and the intu-
><aab(l)(u)]AM(u—w)[IC”(w;x,y) ition concerning nonperturbative contributions should be
confronted with dimensional considerations. In the last sec-
vB 2 (1) tion we come back to the formul@9) and analyze it from
e+ e m)agh (W)]]' @7 the point of view of the quark condensate.
It should be also observed that other functions with two
In the exponent of Eq37) all functions are perfectly known, quark “legs,” such as, for instance, the vertex function, are

so it is not difficult, although lengthy, to evaluate all expres-still completely expressible through the propaga@as dis-
sions. We skip this calculation here and only note that alkussed in Ref[20] and the relation
terms may be divided onto three groups: those not containing

current/C#, linear, and finally quadratic ifC #. ST S10(x.v:2)=iSM(x— B AN(V—2
(1) It is not difficult to check that both terms which do not (ST, ST (xy:2) x=)y*h00~2)
depend on cancel each other. —ib,y*A(x—2)SM(x—y), (40
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as well as its counterparts for higher functions, hold SepaGg?cd(Xl,Xz;Xs,M)
rately in each instanton sector. ’

(N 5_42“0[77,;,31
Z[0,0,0] 575(x1) 5mp(X2) 57c(X3) S74(Xa)

— ko
IIl. INSTANTON CONTRIBUTIONS TO THE FOUR- =€

FERMION FUNCTION

7,7,3=0

In compliance with our former discussion, the expectation (41)

value of the produc W W\ acquires contributions from up

to k= *+ 2 instanton sectors. As in the case of the propagatorf-or the sectok=0 the appropriate expression for the Green
the four-fermion Green function in a certain specific sector iunction was found in our previous wofR0]. We, therefore,
defined by the functional derivative of the generating func-begin with considering the cage=1 recalling here only the
tional final result forG(®

1 .
Gg%);cd(xl X1 X3,Xg) = E{SOac(Xl_ X3) Sobd(X2—Xa) + [ So(X1~X3) ¥°lacl So(X2—X4) 75]bd}9Xp{'ez[,3(X1_ X2)

1
= B(Xy—X3) = B(Xa—Xq) = B(X1—Xa) — B(Xz—X3) + B(Xz—X4) |} + E{SOac(Xl_X3)SObd(X2_X4)

—[So(X1=X3) ¥*Jacd So(X2—X4) ¥’ InateXp{ —i€?[ B(X1—Xz) — B(X1—X3) = B(X2—X4)
= B(X1—X4) = B(Xa—X3) + B(X3—X4) |} — (C, X3, Xy). (42)

The evaluation oZ(*) has already been done in the previous section so we are able to immediately write down the following
equation forG™):

Gglb),cd(xleZ;XBvX4):”\elg({[e 10 3109) 0 (X1) Xg (Xa) € PXa 100 [@7 180X, 0169 =1d (X2 H70,07) G (x, — x4)

X gl (g 2" "vb(l))e"”(x"ﬁ/'ﬂ)]bd—(c,x3Hd,x4)}—(a,leb,xz))expl’E f d2xbM0(0+ e/ )b

—'Ef d2xd?y[ J4(x) + e#*(O+ €%/ m) b (X) A, (X=Y)[I"(y) + e A(O+e m)dgbM(y)] 1,
(43

taken atJ=0. We now recall the definitiof84) of the currentC from the preceding section andintroduced in Ref[20] by
the relation

?b(x,A)—Tﬁ(y,AF—f d’zA*(2) T (Z:%,Y). (44)
The both currents satisfy the equation
KH™zx,y)=T*(zZ;x,y) — 2ey°e* 3 A (X—2). (45)

Using this notation we can rewrite EGL3) in the form

GM(Xq,X2;X3,Xa) =IN€' T x0(X1) Xg (X3) ® So(Xp— X4)]{ exr{ f d?ZICH (21, %) 5I4(2)

1) i
®ex;{iJ dzzjﬂ(z;xz,x4)s“”(9,,b(1)(z)+f dZZjM(Z;XZ’X“)ﬁHeX%EJ d2xbMO(0O+ e 7)b™
i
— EJ d2xd?y[J4(x) + e#*(O+ €%/ m) 9, b (X) A, (x=Y)[I"(y) + e A(O+ e m)d gbM(y)]

+ antisymmetrization, (46)
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where the “antisymmetrization” is defined by substitutions in E4@3). The obvious matrix notation has been introduced
above to simplify the expression and avoid explicitly writing four spinor indit®se should keep in mind that both currents
K and . are matrices in spinor spag&he functional derivatives over currehtsimilarly as in the expressions of the previous
section, lead to shifts of and we obtain

[ i
Xexp[zf d’xb®M0O(0+ e?/ )b — Ef d2xd2y[ ICH(X; X1, X3) @ 1+ 1® JH(X; X0, X4)

G(l)(xl,xz;X31X4):i)\eio[Xo(Xl)Xg(Xz)®50(X2_X4)9XF{if d%2.7,(z;%2,%4)e*",01)(2)

+et(0+ 32/77)9ab(1)(x)]ﬁw(x_Y)[’C "(YiX1,X3) @14+ 1@ J'(Y;X2,Xa)

+e’P(O0+ ezlw)&ﬁb(l)(y)]} + antisymmetrization. (47)
|
In the last exponent of E447) we recognize the expressions ie29°® v [ B(X1—X4) — B(X1—X5) — B(Xo—X3)
similar to those of Eq(37) although the tensor structure is
now much more complex. Nevertheless all functions are + B(X3—X4)]. (48)

known and the evaluation of Eq47) is only a matter of ] ] )
patience. We do not intend to go into details and only indi-Vith all the above taken into account, we can now give the

cate the main points. arising exponent in Eq47) the following simple form:
(1) The term quadratic irkC is just that of the previous

. s 1
section multiplied(tensor produgtby 1. _ . exgal®l+by’®15]==(1®1— 52 y®)expa—b)
(2) The term quadratic iy was calculated in our previous 2
work [20]. 1
h(3) The two terms containing squarestf) cancel each +§(1]®1] +y°®y*)expa+b),
other.
(4) The terms containing products of and b*) cancel (49)

with the first exponent in Eq47).
(5) The terms containing products & andb®) cancel wherea andb are certain functions expressible by combina-
with the appropriate part of the coefficiegg(x) xg (y) (see  tions of 8’s.

Sec. Il B). The calculations fok= —1, which are practically identi-
(6) The product terms of both currents and 7 may be cal, allow us to write down the final expression for the one
evaluated in the straightforward way and we obtain instanton contributions t&

e”E(cosH—iy°sin0) @ Sy(X,— X )[(1®1— y°® v°)

GO D(xq,%23X5,%4) + G Xy X215, X4) = —
8w

i€’ B(x1—xg) = Bxp—Xa) = B(x1~Xa) + Blx1X0) + Bz Xa) ~ BXs X t (1@ 1+ y5® 75)
X 1B (X1=Xg) = Blxp=Xa) + B(xy~ Xa) = B(X1~Xp) = Blxp=Xg) + B(Xa~Xa)] ]
+ antisymmetrization. (50

In the sectork=2 we use again the formuletl). There are now two zero modes. This means that after functional
integration over Grassmann variables, analogous to that performed to obtai@1Eghe product of twoz's and two 7's

appears. These four sources have to saturate all four derivatives (dAEgsince otherwise we would get zero after setting
7,1,J=0. That in turn means that, in the formula 6%, the current7 will not appear and
. [ [
G@(Xq,X2;X3,Xs) = — N?? tgXo(Xl)Xar(Xs)@)(1(X2)X1+(X4)EXP[EJ d?xb@0(0+e?/ m)b?)— Ef d?Xd2y[ K 4(X; X1, X3)
® 1+ 10 KH(X;Xp,Xg) + (O + €%/ 1) 9,0 P(X) 1A, (X=Y)[K "(Y;X1,X3) ® 1+ 1@ K¥(Y; X2, Xg)

+ antisymmetrization. (52

+eA(O+e?m)agh®(y)]

105027-8
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We are not going to repeat below the steps leading to the final result, since the modification of previous formulas is only slight.
The two-instanton configurations contribute then in the following way:

4
eMe[?(1- %) @ (1— ¥®) (x3+ X3) (— X3 +x7) + e~ 291+ ¥°)

G (xq,Xg;%3,Xg) + G2 (Xq, X X3,Xg) = —

25674
® (1+ 9°) (= x93+ x3) (X+ x3) expfie?] (X, —Xq) + B(Xa—X3) + B(X1—X;)
+ B(X3—X4) + B(X1—X3z) + B(Xo—X4) ]} + antisymmetrization. (52

If we now expand the tensor notation of E¢S0) and (52) contribution, which leads to the appearance of a polk?at

into explicit spinor indices and perform the full antisymme- =e?/ 7, is expressible, thanks to the formulas of the LSZ
trization (which also restores the apparently broken LorentZormalism, through the vertex function. This in turn means,
invariance as defined by Eq43) we can collect together all by virtue of Eq. (40), that each of the amplitudes in the

the contributions product(55) have the contributions from botk= =1 sec-
G . tors. As a consequence, the polar parGo$hould, in addi-

abcd(X1,X2:%3.Xs) tion to sectors+1+1 and —1—1, also contain traces of

= Gz(a%),cd(xl XoiX3,Xg)+ Gg_g,](.:)tj(xl X2:X3,X4) sectors+1—1 and —_1+ 1. Sir_n_ple_calculation shows that it
would lead to the slight modification of E¢b4) and to the

+ Gl th(X1,X2:X3,Xg) + GEh (X1, X2 X3, X,) substitutiony®® y®° for 1®1 in its last term. It is not, how-

1 GED (1 %y X Xa) 53 ever, the_case_ since the un@ty expr_essed as a projection

ab,cd\ 1122173, 247 Saln){(nl, involving the hidden integration over parameter

Since we now dispose the complete formula for the four-is diagonal in topological indices. Consequently the contri-

fermion function, we can extend the analysis carried out iputions from the sectors1—1 and—1+1 are excluded.
Ref.[20], regarding the possible existence of the Schwinger
pole in thet channel(the quark-antiquark annihilatipnover
contributions from higher topological sectors. To this goal
we identify the appropriate co-ordinates of incoming and  The expressions for the Green functions obtained in Secs.
outgoing particlesu:=x,=Xx3, Vv:=X;=x, and perform the | anq 11| show that the Schwinger model may be explicitly
Fourier transform of the expression in the new variablesgled also with all topological effects taken into account.
z:=v—u. This identification(which should be treated as an ag argued in Ref[20], all higher functionswith no more
appropriate limit has to be done in a symmetrical way as than four external fermion “legs); thanks to the two Ward
described in the quoted paper. After these manipulations Wgyentities, which are preserved in the nonzero instanton sec-
see that the formuléd5) from Ref.[20] acquires additional {5, too, are the combinations of those found above.

IV. CONCLUSION

terms from thek+0 instanton sectors From formulas (39) and (53) together with Egs.
2 okl _(42),(50),(52) we can obtain, by taking the_ appropriate lim-
oK) =| — i(k?) Y20+ e (Y0 7564975 its, the values of the cor?den_sates and verify the c_Iuster prop-
pola 4 4732 erty. We do not treat, in this work, the restoration of the
cluster property as a support for the use of th@acuum
5.~ 1095 0 ie? Dy 1095 iy instead of a topological one since this fact is well known and
—ve ®y)+ ﬁe £e ©e needs no verification. We rather show that the obtained for-

mulas are selfconsistent and agteethis special limij with
former results of other authors.

X (121+ y°® %) (54) The values of condensates

(k2—e?/m)’

One remark is worth being made here. If one considers T I 5
— Vi=(W (X)WP(x y o Var(P(X)y P (X , (56
the time ordered product of tw&’s and twoW’s then, for (FEOF(X0vac =PV )vac - (56)
some choice of time arguments, one can introduce a com-
plete set of(out) states obtaining, for instance, may be easily obtained from Edq39). If we recall that
- o B(0)=0 we get
2 (0] (x) W (xa) In)(n[ W (x) W (x2)[0).  (59)

The set|n) is here a Fock set of massive Schwinger bosons V= € e¥ecosf, Vp=—

eesing, (57)
since these are the only asymptotic states. The one-boson 23

2 77_3/2
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which agrees with the results of other authpt®,29 and In particular in the limit k—y)?— —o, whereK,—0, we
constitutes the one-instanton contribution. To verify the clushave

terization property let us now consider the objects defined by )

e e
W(X,y)==<\I_f(x)\1’(x)\l_’(y)1lf(y)>vac, WZQGZVE(].-FCOS 20), WA:ﬁeZ‘yE(_l'f‘COS 20),
(62

WAXY) =(T () 7Y ()T (V) YV (Y))vac:  (58) o _
and thanks to the identity co®22 co€g—1=1-2sirfd the
The k==1 does not contribute here since the trace of theclusterization reappears
product of an odd number of gamma matrices is zero and

that is what we obtain while exploiting equati¢s0). From W=V-V,  Wa=Va-Va. (63)
the sectok=0 we obtain We would like to devote a few words to tifedependence
o2 of the Green functions we obtained. It is well knoWn9]
WO(x,y) = —— e27et 2Kl V= e*x=y) 7], (59  thatin the case of massless fermions, thanks to the chiral
8 invariance of the Lagrangian, the parametrmay be

gauged away. This happens because of the close connection
2 between the chiral anomaly and the winding number. That it

e
WO (x,y)=— Fezwmow—ez(x—y)z/w],
ks

(60) (39),(42),(50),(52). For each prod_uctsd[f and¥ in a Green

function there appears a facter'?”” in the final formulas

and fork= =2 the result is which might obviously be cancelled by the appropriate chiral
W“Z?*z)(x,y)=W§f2;’2)(x,y) gauge transformation performed on the fermion field.

o2
=—se
873
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