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We investigate the time evolution of a classical ensemble of isolated periodic cha@yfsymmetric
anharmonic oscillators. Our method is based on an exact evolution equation for the time dependence of
correlation functions. We discuss its solutions in an approximation which retains all contributions in next-to-
leading order in a N expansion and preserves time reflection symmetry. We observe effective irreversibility
and approximate thermalization. At large time the system approaches stationary solutions in the vicinity of, but
not identical to, thermal equilibrium. The ensemble therefore retains some memory of the initial condition
beyond the conserved total energy. Such behavior with incomplete thermalization is referred to as “meso-
scopic dynamics.” It is expected for systems in a small volume. Surprisingly, we find that the nonthermal
asymptotic stationary solutions do not change for large volume. This raises questions on Boltzmann'’s conjec-
ture that macroscopic isolated systems thermalig6556-282(99)06222-(

PACS numbgs): 11.10.Wx

[. INTRODUCTION where thermalization is incomplete; i.e. the ensemble retains
some memory of the initial conditions. We may call the as-
A central piece in our understanding of the dynamics ofsociated time evolution of the correlation functions “mesos-
large statistical systems is Boltzmann’s conjecture that acopic dynamics.” Mesoscopic dynamics is characterized by
ensemble of isolated interacting systems approaches thermgértial effective irreversibility on one side; i.e. many details
equilibrium at large times. The asymptotic values of the cor-of the initial conditions get lost for asymptotic times. On the
relation functions can then be computed from the resultingther hand, this “loss of memory” is not completas for
microcanonical equilibrium ensemble. According to Boltz- strictly thermalizing systemsso that partial information
mann’s conjecture, their values only depend on the energgbout the initial state can be recovered even after an arbi-
density of the system or, equivalently, the temperatwich trarily long time.
standard modifications in the presence of other conserved The second question concerns the validity of Boltzmann's
extensive quantitigs Apart from the energy, all memory conjecture for systems with a large volume. It is conceivable
about the initial conditions is lost asymptotically—and alsothat thermalization remains incomplete even for macroscopic
in practice if typical relaxation time scales are not too largeisolated systems. In this case some characteristics of mesos-
The thermalization conjecture only applies to spatially ex-copic dynamics would survive in the infinite volume limit.
tended systems in the limit of infinite volume. So far no We emphasize that mesoscopic dynamics is always relevant
proof for this hypothesis has been given. Correspondinglyin an appropriate volume range. Our second question there-
the question of how effective irreversibility arises from mi- fore asks if and how the asymptotic loss of memory becomes
croscopic equations which are invariant under time refleccomplete as the volume becomes macroscopic. Within our
tion, or from the time reversible Liouville equation, has notapproximations we find that certain features of mesoscopic
found a complete answer to date. This effective irreversibil-dynamics remain present for isolated systems in the large
ity is the basis of widely used effective equatiaissich as volume limit.
the Boltzmann equation Our investigation is based on an exact evolution equation
We want to address two issues by a direct study of thdor the time dependent effective actip®| which is the gen-
time dependence of the correlation functions. The first conerating functional of the equal time one particle irreducible
cerns isolated systems with a finite number of degrees ofLP)) correlation functions. The direct study of the time evo-
freedom, corresponding to a finite volurive No equilibra-  lution of the correlation functions circumvents the calcula-
tion is expected for microscopic systems of only a few de-tion of the time dependence of the probability distribution or
grees of freedom. Recently, this has been demonstrated estensity matrix. For classical systems the exact evolution
plicitly for the correlation functions of coupled anharmonic equation is equivalent to the Bogoliubov-Born-Green-
oscillators[1].! Let us assume for a moment that thermaliza-Kirkwood-Yvon (BBGKY) hierarchy{4]. A study of the 1P|
tion occurs for macroscopic systems. Then a smooth transgorrelation functions offers, however, new possibilities of
tion between the two extremes requires that there must bgystematic truncations. In particular, thermal equilibrium is

some intermediate volume or number of degrees of freedornow present as a stationary solution at every step of the
truncation. Also the generalization to quantum statistics is

straightforward and surprisingly simpl&]. An investigation

*Email address: bonini@thphys.uni-heidelberg.de of the general structure of the exact evolution equation for

TEmail address: C.Wetterich@thphys.uni-heidelberg.de the time dependent effective action reveals many new sta-

The issue would be completely different, of course, if the systentionary solutions besides thermal equilibridsl. The ques-
were coupled to an external heat bath. tion of their dynamical role is part of the scope of this paper.
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We will concentrate here on a particular example, namely Although most practical applications are for smid)lwe
a periodic chain of coupled anharmonic oscillators withalso discuss the limit of larg. The reason is that one of our
O(N) symmetry. The Hamiltonian truncation schemes is a systematic expansion in powers of
1/N. The leading order in the W/ expansion has been dis-
H= fldx cussed by various groups with different methd@s5]. In
0
A 2
+gn[9a(X¥)9a(X)]

1 1

5 Pa(X)Pa(X) + Eqa(x)(mz—A)qa(x) this first approximation infinitely many conserved quantities
preclude thermalizatiofi5]. We include here all contribu-
tions in next to leading order in W/ In particular, this in-
cludes scattering in three-dimensional field theories. Particle
numbers for individual momentum modes are no longer con-
describes an interacting time reversible system with microserved and there is no immediately visible obstruction to

&Y

scopic time evolution given by thermalization anymore.
We concentrate in this paper on classical statistics. This
310a(X) = pa(x) has the advantage that our results can easily be compared

with other methods. In particular, it should be feasible to
A solve the microscopic equations numerically with given ini-

IPa(X)=—(M?=A)qa(X) — 2y 969 Ap(X)Ga(X). (2)  tial values and then take averages over an ensemble of initial
values. In this way the equal time correlation functions dis-

We may assume that the oscillators sit on discrete lattic€ussed in this paper can be directly measured at any later
sites with distancea such that high momenta are cut off. time. The generalization to quantum statistics is straightfor-
Then A is an appropriate discretized Laplace operator in-ward in our approach and will be postponed to a subsequent
volving neighboring sites. The index=1, ... N counts the Paper.
oscillators at a given site ard preservesO(N) symmetry. We investigate homogeneousanslation invariantand
Practical examples for small may be found in the form of O(N) symmetric ensembles. Individual members of these
ring-sized molecules with discrete translational symmetryensembles do not, of course, share this high degree of sym-
along the ring. For example, ttgg, may describe displace- metry. For generic initial conditions the solution of the mi-
ments from the equilibrium positiofwith p, the associated croscopic evolution equatiof®) is highly inhomogeneous
momentd The limit of largel also describes large linear and shows ndD(N) symmetry. The high symmetry of the
molecules if boundary effects from the ends can be neensemble only means that we weight the initial conditions
glected. Another interesting limit is—co for fixed m*x\= " according to a probability distribution that exhibits this sym-
—1. This imposes the nonlinear constraiptl,=1 and de- metry. In practice, there is actually no need to specify the
scribes classical bosonic spin chaif$=3 for spin one.  probability distribution at the initial time, explicitly. It is
The lengthl of the chain plays the role of the volume in qften more effective to specify the correlation functionsyat
three-dimensional systems. Hor 0 we are left with an en-  Thege will constitute the initial data for our differential flow

semble of simpleN-component anharmonic oscillators. This gqyations. In the present paper we mainly consider Gaussian
case has been studied in detail[Il. No thermalization is initial perturbations from equilibrium, where all 1Ripoint

possible since infinitely many .cp_nserved. _correlation funC'functions except the two-point functions are equal to their
tions keep the memory of the initial condition and obstructt ermal values
thermalization. The conserved cumulants are simply related1 : L i
We find effective irreversibility as a property of the solu-
to powers of the conserved energy and squ&éd) angu- : . . . .
tions of our time reversible flow equation. In a wider sense

lar momentunL?, i.e.(E"(L?)S) does not change in time for . ) o . )
(E'(L)°) g this is due to the existence of attractive fixed point solutions.

arbitrary r and s. If Boltzmann’s conjecture is true, | ve fixed point d i
asymptotic thermalization governs the behaviorlferx. In h our context an gttractlve Ixe point 0€s _n_ot necessarily
mean that all solutions for a given class of initial ensembles

this case we conclude that there must be a rangevath . . ) o
mesoscopic dynamics, describing the transition between th@Symptotically reach this fixed point. The characteristic be-

limits 1—0 andl—o. On the other hand, if Boltzmann's havior for larget is rather characterized by high-frequency
conjecture does not hold for isolated systems of this typeg)scillations of the correlation functions around time averaged
some features of mesoscopic dynamics are expected to (§éationary mean values. The approach to the stationary be-
relevant also foit — . havior for the time averaged correlation functions shows
Our system is also a prototype for classical and quanturthree characteristic features:
field theories. From this point of view it describes a one- (i) First we find a fast initial irreversible behavior on typi-
dimensionalO(N)-symmetric scalar field theory. There is no cal microscopic time scales between the inverse momentum
conceptual problem in its generalization to three dimensionsutoff A ~1=a/# (with a the lattice distandeand the inverse
where it would be relevant for cosmologg.g. inflation and massm™!. An example is given in Fig. 1 where we plot the
parametric resonance or dynamical scalar fields playing &ime evolution of the ratio between kinetic energy and total
role in late cosmology for particle physicse.g. pions in  energy for an out-of-equilibrium system. Comparison with
heavy ion collisions or for many systems in statistical me- the leading order in the W/ expansion reveals no qualitative
chanics. difference. We conclude that this first period of irreversibil-
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exfe

FIG. 1. Energy “equipartition.” We show
e/ € as a function of time, in the leadingpper
. . ) pane) and next-to-leading N approximations,
9 15 20 40 60 80 100 120 140 160 180 200 for \=2, N=20, A=5, andl =20.1. The system

time is initially displaced from equilibrium according

to a Gaussian perturbation Bq) [ 8=0.5, Dg
=0.25,A5=0.469,q5=2.5; cf. Eq.(16)]. Hori-
zontal lines correspond to thermal equilibrium for
T=2.

exfe

9 15 20 40 60 80 100 120 140 160 180 200
time

ity is not related to scattering but rather described by dephasralue differs from thermal equilibrium with uniforrB(q)
ing [6,5]. A “rough thermalization” takes already place at = g. The implications of this finding will be discussed in the
this very early stage. last section.
(i) The first stage of rapid “rough thermalization” does
not bring the two-point functions near the equilibrium val- Il. METHOD
ues. In Fig. 2 we display the evolution of the time-averaged
two-point functionB(q) which characterizes the Gaussian ~ Our investigation is based on the time-dependent effective
part of the probability distribution for the momenga(q) action [2], which generates the equal-time 1PI correlation

= [dxe %p,(x) by functionf. We consider aR-component (1 1)-dimensional
scalar ¢” theory and ensembles which are invariant under
(Pa(@)Ps(a’))=2m3(q+9") 525G ™7(q), 064 : : : : ;
063 | L] i
G™(q)=B"(q){1-C*(q)/[A(@)B(q)]} * 062 |

(see below:. In thermal equilibrium one expects the Maxwell B(A/2) 06 |
velocity distribution withB(q)=8=1/T independent of

andC(q)=0. One observes that an initially disturbBdq) )
approaches a stationary value only on time scales muct 0.58 -
larger thanm™*. “Scattering” is essential for this aspect of 057 b
irreversibility. This can be seen by a comparison with the . . . . /
. . . . 0.56
leading 1N behavior whereB(q) oscillates around a time 0 100 200 300 400 500 600
independent value for eveny. In leading order ™M no en- time

ergy is exchanged between the different Fourier modes. This g1 2. Time evolution of the two-point correlation function.
explains why time averaged values fB(q) are stationary e plot B(A/2) for the same system as in Fig. 1, in the leading
from the beginning and therefore cannot equilibrate. (upper curve and next-to-leading N approximations. The plotted

(i) The exchange of energy between different Fouriefalues are averages over the time inteftat 201]. Note that the
modes in next-to-leading order in theNLexpansion drives  equilibrium value for the corresponding energyBigA/2)=0.5. In
the time averaged velocity distribution toward a stationarythe leading 1IN approximationB(q) stays esssentially constant for
value. It may be a surprise that in general this stationararbitrarily long time.
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internal O(N) transformations, spatial translations, and re-that this still includes connecta@point functions with arbi-
flection. Our truncation retains all 1Ripoint functions upto  trary n. In this approximation the effective action of our
n=4 and omits 1Pl vertices with=6. One should notice model becomes

1 d®
Il¢,mt]= EJ ﬁ{A(q)d);(q)%(qH B(a) 73 (a) ma(a) +2C(q) 73 (Q) da(A)}

dP dP dP
8N (2:)1 (2:)2 2 q)?I’DIU(qlvq2vq3)¢a(ql)¢a(QZ)¢b(QS)¢b( —02—03)

+V(0d1,02,03) Ta(d1) Pa(d2) Pp(d3) Pu( — 01— d2—03) T W(d1,02,03) Ta(d1) Ta(d2) dp(d3)

X p(— —03)+5(d1,02,93)[ 7a(91) T(A2) Pald3) dp( — 01— 02— 03) — Ta( A1) Ta(d2) Pp(d3)
X ¢p(—d1—0d2—03) ] +Y(d1,02,03) 7a(d1) 7a(d2) 7p(d3) Pp( — 01— 02— d3)
+2(qy1,02,93) ma(d1) Ta(d2) m(d3) Tp(— 1~ d2—03)}, 3

where the “couplings”A(q), u(q;,9»,q3), etc., depend on time. The 1Rdpoint functions are obtained by taking derivatives
of I' with respect to¢ and 7, the second derivative being the inverse propagator. For example, the connected two-point
function for g, reads

dPq 4
<qa(X)CIb(y)>c:G(X_y)5ab:f DG(Q)elq(x_y)aab: (4)
(27)
where
B(q)
G(q)= —. (5)
A(q)B(q)—C*(q)
The time evolution ofl” induced by Eq(2) is dictated by the nonlinear evolution operator

W'l mt]=— (Lot LPT[ &, mit], (6)

where[ 4i=(¢,,7,) ]

N
La= de( a5 ¢( 00 GONTEm M 5= Sl B0 (0 () + o) GE (6X) + 265(X) G (6,
S8°r B
- f 02Xl xaG 6, x0) G 6. X0) G (X Xa) 5 S S 5Wa(x)] v
and
. de 5 ST P .
aT8N X $a(X) 55 Smex) dmax)’ ®
with
) 8T
[GHL (X,Y):m, 9
a b

andG of Eq. (5) corresponding ta@*?.
The exact flow equations for the two-point functions follow from taking the second derivatives ()Eqth respect top
andw at p=7=0:
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A(q)=202(q)C(q)
. 2
B(q)=—-2C(q)— Ny(q)B(q)

C(q)=—A(q)+w2(q)B(q)—%C(q), (10)

where

(N+2) N(N+2)
w*(A)=0°+m*+ A —o pr(p)— T fququ(ql)G(qz)G(q—qz—ql)

X[4u(d1,—0,92) —c(d1)c(dz)c(q—0d;—d2)Y(d—d;—0d2,01,92) —€(dy)
X[2v(—01,—02,9)+Vv(—01,d,—d2) ]+ 2¢c(dz)c(— g1~ 02+ qW(g—d1—02,02,01) ]

MN+2)

y(q)= 8N p G(d1)G(02)G(g—d,—0y)-{v(g,— 01, —dz) —4c(g1)c(dz)c(d— g1 —dp)
1:42

Xz(—d1,9,—02)—2¢(g)W(—0d1,9,—0dz) +¢c(d2)c(d—0d;—d2)[Y(d—0d1—02,92,—q)
+2y(—Q,d1,9—0d:—02) 1}

C
c(q)= %- (11

Similarly, the flow equation for the quartic couplingreads
U(qy,02,93) ={©*(q1)V(ds,G2,03) + 4N C(q1) = 4NC(GR)[ Si(U1+ Uz, G3) + Sp(d2+ 3, 01) ]~ Mi*C(d1) C(d2) C(dz) sy,

12

where the subscrip8Y M implies symmetrization with respect to the appropriate permutationg; pfq,, g; and q,=
— (g1t 95+ 0qs3). Here we have introduced the momentum integrals

(N+2)u(q+QI!_Q!QZ)+2u(q21_q1q+QI)

1
S1(01,92)= quG(Q)G(Q‘Hh)'

1 1
— 5 C(IN+2)v(~0,0+03,02) +2v(—0,02,9+dy) ]+ 5 ¢(a+a.)c(q) (N+2)(W(—q,Q+Q1,Q2)

1 1
—58(=9,0+0d1,02) ~ 58(q+0d1,—,92) +s(—q,q+q1,qz)}

1
S,(01,092)= quG(Q)G(_q_Q1){4U(_an2,q+Q1)+C(Q)C(_q_Q1)3(q+Q1v_q,_Q1_Q2)

—c(Q)[v(—4a,92,9+Q91) +Vv(—09,—q;—0d2,q9+dy) ]} (13

The flow equations for the quartic couplingsv, etc., are not exact since we have truncated the contributions from 1PI
6-point functions. We furthermore have omitted the two-loop contribution to the evolution of the quartic couplings. Our
approximation may be viewed as the second order in a weighted loop expansion where the evolution of evenpaipt 2
function is computed inr{_ + 1—m)-loop order(i.e. two loops for the two-point function, one loop for the four-point

2We display here only one of the six flow equations for the 4-point couplings. The remaining five equations can be found in the Appendix.
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function). It is easy to convince oneself that this expansion retains systematically all contributions itNérderIn our case
it also includegincompletely terms of order M?. For comparison we employ a second systematic expansion, namelythe 1/
expansion, where all terms of ordeiNt/are omitted in the flow equations.

The flow equations conserve exactly the energy deresit§e/| :

=—” “Ha)+G(a)

N+ 2 N+ 2
2+m2+<:2(q)+w>\fG(|0)H—WAJq e G(041)G(d2)G(a3)G(da)[u(dy,02,03)

—V(01,02,93)c(d1) +W(d1,d2,93)c(g1)c(d2) —Y(d1,02,03)c(d1)C(d2)c(ds) +2(d1,02,03)c(d1)c(dz)c(dz)c(da) ],
(14

whereas the squaregd(N) “angular momentum” density dance with the thermal fixed point constraints, and repeating
the procedure until stationary behavior with the desired ac-
. curacy was obtained. We were thus able to obtain configu-
T:N(N_l)f G(q1)B *(qu) rations that were thermal to a very good approximation
i (AB/B<0.001). In Fig. 3 we display the energy density and
1 4 the squared angular momentum as functions of the tempera-
1- aN)J, G(qZ)B (A2)[2w(d1,92,~q2) ture. We also show the frequenay(0) which is related in
equilibrium to a (partially) renormalized temperature-

L2

—2s(01,092,—02) — (01,02, —d1)] (15 ——
1.55

is conserved only up to relative corrections of ordeX?/

Additional independent conserved quantities of the form €
(E"(L%)S)—(E)"{(L?))® are suppressed by inverse powers of NT
N. They are not conserved by the truncated equations. The

kinetic energy densitye,=(N/2) {B~*(q) +G(a)c?(qa)} L5
is, of course, not separately conserved.

We have solved the classical flow equatioris=(0) nu-
merically for a discretized system witk, points and an ul-
traviolet cutoff A= a few timesm, using a standard fourth-
order Runge-Kutta algorithm which has the property of 0.375 F
being exactly time reversible. We only consider here positive
m? and set the mass scale hy=1. For a typical cutoffA
=5 andN,=32, the length of the chain is=N,a= 7N, /A 2 03251
=20.1. IN(N-1)TZ g 5

=

(]

n

o
T

0.35 -

IIl. EQUILIBRIUM PROPERTIES 0.275
0.25F

As a first step in the numerical analysis, we compute the
classical thermal equilibrium configuratiqdefined by the
conditionsC=v=w=s=y=z=0, B= ) for different val-
ues of the parameters. In our approximation this corresponds
to a solution of the Schwinger-Dyson equations Aoandu
that follow from the requiremeng,I"’=0. For A\/N<1 it is
possible to derive the thermal valuesandu iteratively as
power series in/N. In general, however, this method fails, 2(0) -
and we found it simpler to use the flow equations them- v
selves, starting from th&l—c thermal fixed point, letting
the system evolve for a whileAt>m™1), taking time aver-
ages of the correlation functions, adjusting them in accor-

PR NN NN NN
LoD O MW RO
T T T T T T T T T T T T 1T
| I Y TN N N N N B | —} 11 }

=
~

Swith the exception of the subleading contributions to the evolu- FIG. 3. Thermodynamic equilibrium properties. We show
tion of the 4-point couplings that are containedsif andy. These  e/NT, L¥[IN(N—1)T?], andw?(0) as functions off, for a sys-
have to be retained in order to ensure exact energy conservationtem withN=20, \=2, A=5, andl =20.1.
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dependent mass bngq(q)=Aeq(q)T=T/Geq(q):mZR 1.76 T | |
2
+Z(a)a”. 174 |
IV. DEPHASING AND SCATTERING L7z

Next we discuss the evolution of ensembles that are ini- L7
tially not in thermal equilibrium. We opted for Gaussian per- w?(0) 1.68 |
turbations from the thermal state with initial two-point func-

|

\
Lk ‘,[\, |
tions: 1.66 ]l "‘ SRR
H“ ““‘w \‘M“!
2/12 242 1.64 \“ i il HM “
PolQ)=CalAeq(Q)+ Dale™ (070471 g~ (@7 a0%1A7]) il |
1.62
Bo(0) = Ca( f+ Dgle™ (4845 4 (a9 15]) 16 ' LS
0 5 10 50 100 150 200
Co(q)=Dfe (@078 4 g~ (a+dn)?/ag], (16) time
1.8 T T T T
The constant® 5, Dg, D¢, Qa, Og, dc, Aa, Ag, A are 178 |
arbitrary, wherea€ , andCg are tuned so that the perturbed
system has the sante and L? as the unperturbed thermal 1.76

equilibrium ensemble. We also use superpositions of Gauss
ian perturbations with the property that the initial deviations
D,, Dg for small and largey? are small. w?(0) 1.72

In order to assess the importance of “scattering” for the
equilibration of different physical quantities, we first com-
pare the results obtained by using the full equati@®— 1.68
(12) with those obtained by keeping only the leading terms

1.74

1.7

in 1/N (i.e. neglecting all 4-point functionsWe repeat here 1.66

that in leading order N scattering is absent and only kinetic 1.64 !

dephasing can induce a smoothening and averaging out c 0 5 10 50 100 150 200
the perturbation. time

. 2 . .
As we can see in Fig. 1, even in the absence of interac- " 'C- 4. Evolution of the frequency(0), in theleading(uppe)

tions, energy equipartition is achieved to a very good apgnd next-to-leading N approximations(same parameters as in

. . - . . Figs. 1 and 2 Comparison with the equilibrium valyalso showi
prOXI_ma.tl(.)n. Alsow(0) .equ"lbraFeS approximatelfFig. 4). indicates the “more thermal” behavior due to the inclusion of scat-
The individual correlation function#&\(q) and B(q), how- . - _

- . . tering; see also Fig. 3 foF =2.
ever, do not equilibrate in the absence of scatte(ffigs. 2,

5). They oscillate around constant values. When the effect Of];lre reached which deviate from the equilibrium correlations.

the time-dependent four-point functions is added the PICIUNS o se stationary values correspond to exact fixed points of

change;. We now see that the original perturbations in thﬁwe truncated evolution equations. We have computed the
correlation functions are damped and smoothened out by thre i

evolution, although they do not reach exact thermal equilib-')((a(.jl.tf)c.)'nts bﬁ/ methO(Ijs Sd'm”?r tod 'ghe computation of tr?e
fium. In Fig. 6 we show the time evolution g&(0) and equilibrium. They are also displayed in Fig. 7. We notice that

—— . the effect of the deviation from thermal equilibrium on the
A(AL2). We. _re(_:all thatyTA(O) should approact(0) in correlation function in coordinate space is small, as can be
thermal equilibrium.

seen from the plot 0G(x—Yy).
In Table | we collect the asymptotic stationary values for
V. ASYMPTOTIC BEHAVIOR AND THERMALIZATION several different choices of physical parameters and tempera-

We have seen in the previous section that next-to-leadin{f™" and otherwise identical initial conditiohThey clearly

order terms in the weighted loop orNLiexpansions induce iffer from thermal equilibrium, typically on the 10% level

an energy exchange between different Fourier modes, whicgr\?/anOthtoc; small ;]/alues at/N. As a gﬁner_al rule, the Iargﬁr.
is a prerequisite for thermalization. Also “particle numbers” N the faster the system approaches its asymptotic limit,

for individual Fourier modes are no longer conserved sepa@”d the closer this limit is to the thermal values. In order to

rately. Because of this energy exchange, a system with nonc‘-"’“’eII onlcompfljtei tlme,g\)/ve hgve lthereffc:rt()e opted flor rzther
thermal initial conditions is driven towards thermal equilib- small values oN (1<N<5) and values ok between 1 an

rium. At late times its correlation functions oscillate around 80- ©Of course, for smalN and/or largex/N the applicability
mean values that are “more thermal” than in the case offf @ IN or weigthed-loop expansion is questionable. There
mere dephasing. In Fig. 7 we show the evolution of the time-

averaged correlation functioms(q) and B(q) in a typical

case. One clearly observes the initial approach towards the*This holds up to discretization corrections, since we define iden-
equilibrium values. For largé, however, stationary values tical initial conditions by identical continuous functions @f
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3 T T T T
2 t=0 —
B<t<10 - -
1 25 <t <100 —
0 200 <t <500 ----
-1
A
20 _ (¢ +m?) 2
3
-4
5
-6
-7
6
0.85
t=0 —
0.8 1<t<25 -
B<t<10 —
0.75 25<t<100 -+~
200 < £ < 500 —
0.7
B(g) 0.65
0.6
0.55
0.5
045 1 1 1 1
0 2 4 60 2 4 6

FIG. 5. A comparison between the leading-or@eft) and next-to-leading-ordéright) evolutions of the two-point correlation functions.
The first row showsA(q)/[Zq'B(q’)/Nd—(q2+ m?), which is a measure for the deviation of the inverse propagator from the classical
value. The second row givéXq) or the deviation from the Maxwell velocity distributid®(q) = 8. The correlation functions are averaged
over various time intervals. The initial valuestat0 are also shown.

is no satisfactory way to assess the reliability of either trunprobe. This issue can be settled only with further, more
cation in the strong coupling regime. However, we feel com-computer-intensive investigations. What we have seen so far
forted by the fact that the 4-point functions never grow sodoes not support this hypothesis. Even if that turned out to be
large as to make the system unstable, and that the time fluéhe case, our method would still be very useful for identify-
tuations ofL? (which we remind is conserved exactly by the ing the various time scaldégephasing, partial thermalization,
exact evolution but only up to relative correctiond/N2 by ~ complete thermalizationand for assessing the role of ther-
the truncated equationsre always quite smallat the 1% malization in practical problems, where extremely large time
level for \=60, N=1). The most direct test seems to be aSCa|€S are not always relevant.

comparison between the results from the weighted-loop and We have_ also StUd'eq the volu_me dependence of the large
the 1N expansions. FON=1, large\ (Table Ib, the two time behavior for a particular choice Of. p?‘fame‘(%‘fab'e Ic,
truncations lead to very different large time stationary val-F19- 9- Apparently, the large volume limit still differs from

ues, and it is therefore conceivable that the asymptotic det_hermal equilibrium. Rglgtlvely small volumeiﬁ 20m .1). .
parture from thermal equilibrium is due to truncation errors.S€€M often to be sufficient for an extrapolation to infinite
As N gets larger and smaller, however, the two expansions YOlUMe- _ _ . .
agree much betteFig. 8 and it is less plausible that higher Finally, we have investigated a limited sample of initial

order 1N corrections could account for the asymptotic de-conditions that are not symmetric under time reversal, and

partures from equilibrium. We therefore believe that our nu-Whose backward and forward evolutions therefore differ in

merical results support the existence of nonthermal attractivIEhe'r MICroscopic details. In all cases, the Ia_rge time
fixed points also for the exadt.e. non-truncatedsystem. asymptotic averaged values of the correlation functions come

The implications of this claim are discussed in the next secOUt the same in both time directions.

tion.
. . . . VI. DISCUSSION
As a final word of caution, we should consider the possi-
bility that full thermalizationdoesoccur even for smalk/N, Our study of the evolution equations, applied to various

but on longer time scales than those we have been able finitial nonthermal probability distributions, clearly estab-
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time time the two-point functions A(0)
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leading only, without averaging.
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time

lishes effectively irreversible behavior. This is not put in by systems seem to differ in this respect from systems coupled
hand in the form of irreversible evolution equations. Ourto a heat bath. Arguments why isolated systems do not ther-
equations are manifestly invariant under time reflection. Efmalize exactly can be given on different levels. First there
fective irreversibility is rather related to the existence of sta-are exact obstructions from conserved correlation functions.
tionary solutions or fixed points towards which the flow is an example is the squared angular momentum density
effectively attracted. It can be observed by evolving in time(| 2y/| |n thermal equilibrium this quantity can be computed

directionst— = . We see both the effects of dephasing, i.e.55 3 function of temperaturequl =N(N=1)T/(Geg(a:T)

. . . . . e 1 .
effective loss of phase mforma‘uon, and scattering, i.e. e,nSince<L2> is conserved by the exact flow equations, any
ergy exchange between different momentum modes. Our "Mhitial value of (L?) different from the thermal one implies
vestigations are carried out for translation invariant en-

sembles such that the energy exchange is not merely due to|mmed|ately that the correlation functions appearing in Egs.

classical background field evolving in time. The inclusion of(f4)'(15) cannot all take thermal values for>e, not even in

scattering effects is a crucial step beyond the leadiy 1/ a time-averaged sense. We emphasize that this obstruction is

approximation used in the paf]. Genuinely, the system based on an exactly conserved quantity and therefore cannot

approaches asymptotically for largan oscillatory behavior P& an artifact of insufficient approximations. .
of the correlation functions around a stationary solution. The 2'” principle, one could take care of the conservation of
time averaged values of the correlation functions are close to-“) by an extension of the thermodynamic description, add-
the corresponding stationary solutions. In a rough sense, tH8g a chemical potential fot. The problem is, however,
stationary solutions share many properties of thermal equithat there exist infinitely many conserved combinations of
librium. The corresponding fixed points are, nevertheless¢orrelation functions. Another prominent example is the glo-
not identical to the thermal fixed point. The latter turns out tobal “specific heat” cy=((E—(E))?)/T?l which corre-
be a point in a whole manifold of fixed points. For generic Sponds again to an exactly conserved combination of corre-
fixed points in this manifold the correlation functions differ lation functions((E—(E))?)=(NI/2)[,GZ.(q)+ - - -. Also,
from thermal equilibrium. the additional “chemical potentials” would multiply nonlo-
Perhaps the most interesting observation concerns the diéal expressions lik&?= [dxdy e(x) e(y). Indeed, the prob-
ference of the asymptotic stationary ensembles from the thegbility distributionp~e~°(E'VE is stationary for an arbitrary
mal ensemble. The system retains memory of the initial confunctionb(e). The Boltzmann distributiob(e)= 3 is only a
ditions beyond the energy density or temperature. Isolatedpecial case. If the functidn(e) is not constant, the value of
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0.25 T | | T TABLE I. Asymptotic displacement from thermal equilibrium
02 L 075 < 2 t<=1g - for differe_nt)\_, N, 8 andl. For all configurations\_zs. The initial
15 <t < 3.75 — perturbation is a superposition of three Gaussians Wi B/2,
015 | EE Exidﬂft e Qg=A/2, Ag=1.5A/16; Dg=— B/4, qg=5A/16, Ag=1.5A/16;
’ : and Dg=-p/4, gg=11A/16, Ag=1.5A/16. Configurations
qu)-A,,gq)O'l marked by(*) are evolved according to the Nl/expansion, the
Aeald) 05— others according to the weighted loop expansion. For the first en-
tries (a) the 1N expansion seems reliable. The second group of
0 entries (b) concerns large interactions with a rapid approach to
005 asymptotic behavior. Finally, the last entrigs are used for a study
of the volume dependence; see also Fig. 9.
) 1I z|> 3I All 5
q B(A/2)-pB A(AI2) = Agg(A12)
A N B B Acg(A12)
@
*)3 1 03 201 0.0830.005 0.08
*)1 2 03 201 0.1580.005 0.16
*)1 5 03 201 0.16:0.01 0.16
(b)
10 1 03 201 0.02 0.005 0.03
*>10 1 03 201 0.030.005 0.03
60 3 03 201 0.020.01 0.07
60 1 03 201 -0.013 0.003 0.013
o4 (*60 1 03 201 0.008 0.003 0.009
o T T T T T
08 0T5<tils ] ©
02 - 1.5 <t < 3.75 — - *)1 3 03 5.03 0.230.003 0.23
o1 3BLESEE 1 1 3 03 1005 0.28 0015 0.20
0 T 72 N ] (*)1 3 03 15.08 0.188 0.015 0.24
Sle)=Cala)y; [ 3 O T 1 (*)1 3 03 176 0.18 0.005 0.18
0.2 4 1 3 03 176 0.18% 0.006 0.185
03 4 *)1 3 03 201 0.1% 0.03 0.12
04 \: 4 1 3 03 201 0.16% 0.008 0.17
05 F - *)1 3 03 251 0.16%0.017 0.16
0.6 1 1 1 1 1
0 2 4 6 8 10 12

FIG. 7. Time evolution of the two-point functions for a system
with A=10, N=1, B=0.3, with nonthermal initial conditions. The
three panels show, from top to bottom, the relative deviations of
A(q), B(q) andG(x), averaged over various time intervals, from 0-364
their respective thermal values. 0.362

0.36

cy typically differs from the one in thermal equilibriuh. 0358
These general considerations hold for an arbitrary number 00.356
space dimensions. They show that for isolated systems therg.3s4
cannot be a proof of strict thermalizatfomsing arguments of 352
ergodicity. Strict thermalization for arbitrary initial condi-

0.366

0.35
0.348 | 1 1 1 1
0 200 400 600 800 1000 1200
time
>The infinite volume behavior{E?)—(E)?)/(E?)~1~* holds for FIG. 8. Time evolution oB(A/2) averaged oveAt=30. The
a wide class ob(e) if its deviation from a constant scales properly parameters are=1, N=3, 8=0.3,1=17.6, and the initial pertur-
with |. bation is described in the caption of Table |. The two curves corre-

8By “strict thermalization” we mean an asymptotic approach of spond to the M and weighted loop expansioribold and plain,
the probability distribution to the Boltzmann distribution, the distri- respectively. There is no sign or an asymptotic approach to the
bution of the microcanonical ensemble. precise thermal valuB(A/2)=0.3.
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tions is in contradiction with the existence of conserved com- 1 1
binations of correlation functior's. Eatf dX(Qa(X)pa(X)>:§f dx(pa(X)pa(x))  (17)
On a second level one observes the existence of a large
manifold of fixed points or stationary solutions for the trun-
cated flow equationfb]. In our truncation they are given by 1
C=v=y=0 and by solving the remaining equatioagC 3 dx[<f9iCIa(X)t?iQa(X)>+m2<CIa(X)Qa(X)>
=d,v=¢d;y=0. The latter equations determine the stationary
values forA, B, u, w, s, z only incompletely. The present N )
work clearly establishes numerically that these fixed points + 5N {[da(¥)da(x)]%) 1 =0 (18)
differ, in general, from the one corresponding to thermal
equilibrium. They also prove stable with respect to SmallWhich relates the kinetic and potential energieste that
fluctuations. By investigating initial conditions with the Same they are not equal for interacting systems
(L?) as for thermal equilibrium we also establish explicitly
that the fixed points are not fully specified big) and(L?).
Numerically, we actually find a large manifold of different A )
fixed points for given(E) and (L?), as suggested by the <Ekin>:<Epot>+8—NJ dx([Aa(X)da(x)]9). (19
counting of equations and variables for the general stationary
solutions. We also establish that the nonthermal fixed pointg.his is_ of course. the thermal relation. but it extends to all
play a role in the asymptotic dynamics. Nonthermal initial ! ' ’

e : . : other stationary solutions as well. We conjecture that large
conditions typically result in fluctuations around nonthermal

, ! , interacting systems generically show an effective irreversible
stationary solutions at late time. _ _ evolution towards asymptotic oscillations around one of the
One may ask if the existence of these fixed points couldationary solutions. Then relations of the ty{8) hold as-
not be an artifact of the truncation. Three arguments 'ndlcat9mptotically irrespectively of the initial conditions. This ex-
that this is not the case. First, some coordinates in the fixeg|ains the robustness of a large set of asymptotic time aver-
point manifold are related to exactly conserved combinationgges of correlation functions—an important part of the initial
of correlation functions such 4&7)/1. Second, the counting information is indeed lost. Conversely, a judgement of pre-
of equations and variables indicates that the dimension of th@se asymptotic thermalization should not be based on ge-
fixed point manifold further increases once 1PI SiX-pOintneriC relations such as E(ﬁ]_g), but rather on correlation
functions or higher couplings are included. Third, we findfunctions which can differ for two inequivalent fixed points.
similar fixed points for different truncations in next-to-  The lack of exact thermalization of large interacting sys-
leading order in I. The ones approached by a given initial tems has consequences for “systems in a heat bath” as well.
condition are close to each other for smafIN and stay |ndeed, we may consider a subsystem, Gg), pa(x) for
substantially away from the thermal fixed points. Ix|<Io/2<1/2 and view it as evolving in the “heat bath”
Our investigation of the volume dependence indicates tha¢onsisting of the degrees of freedom wiigfe< |x|<1/2. Can
the fixed point manifold does not shrink to the thermal fixedwe expect that the subsystem effectively thermalizes even
point in the infinite volume limit. Furthermore, all numerical though the large isolated systesubsystem and batfioes
results suggest that the nontrivial fixed points play indeed @ot exactly thermalize? This question can be addressed by an
dynamical role. From all this a picture for the asymptotic latejnyestigation of correlation functions for the subsystem, say

time behavior of iso_lated systems emerges Where some fe@q,(x)qa(y))e with |x|,]y|<I/2, or a convenient smooth-
tures of “mesoscopic” dynamics survive even in the infinite ened versionK,= /1)

volume limit. The initial information is not lost completely

as for a thermalizing system. Part of the information survives 0.95 —— : : : :
and specifies the stationary solution around which the systen 3
oscillates asymptotically. 02 L % i
We observe that for large enough interactions the devia- % 3
tions from thermal equilibrium are small—typically a few 015 L ‘} |
percent for the correlation functions and even less for quan-,, ..
tities which involve momentum averages. Part of this can be™ 3
explained by exact relations which hold fail stationary or i
solutions. As an example, let us consider the condition for a
static(gp) correlation 005 1 i
0 1 1 1 1 1
"The general problem with ergodicity arguments is that only a ® 1 151 % ®

finite neighborhood of a given point in phase space will be reached FIG. 9. Volume dependence. We show the asymptotic time-
by an arbitrary trajectory after a finite lapse of time. This is notaveraged value d(A/2) as a function of, for the system of Table
enough since even very close trajectories typically separate substalt- Diamonds and crosses correspond to ti dand weighted loop
tially at later time. expansions, respectively.
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1 2
Gko(X,y) = N<q:\0(x)q§0(y)>c: G(x—y)e~ kg(x2+y?)/2
(20)

LX) = ga(x) K02, 21)

For a translationally invariant ensemble one has

Gko(x,y)=J @G, (q,9")
.9’

- [2m\" (q—q')z)
Gi(.') (kg)eXp( = | am
1 2
[p—§<q+q'>
xXexp| — > (22
I(0

In particular, the Fourier transform Gko(x,O) reads

éko(q)zJ' Gko(q,qf)z(zw)D/Zkan G(p)e,(q,p)2/2k(2).
q’ b

(23
Only for ky—0 does this reduce tG&(q). For nonzerok,

(corresponding to a subsystgrhoweverf;ko(q) involves a
momentum averaging with width given b§. Because of

PHYSICAL REVIEW D60 105026

are still related by E¢(23). A nonthermal asymptotic behav-
ior of the time average@(q) will manifest itself also in the

asymptotic form of(~3k0(q) if it extends over a momentum

range with width larger thaky. Only variations ofG(q) in
small momentum ranges will be washed out. From our
present investigation we see no indication that asymptoti-

cally éko(q) reaches precisely its thermal value. We con-

clude that mesoscopic dynamics may also be of relevance for
subsystems which are in thermal contact with a “heat bath.”
The crucial point here is that the heat bath itself is not pre-
cisely thermalizing.

In summary, our investigation indicates that isolated sys-
tems roughly thermalize for large time, while some quanti-
tative deviations from thermal equilibrium remain. The “loss
of memory of the initial conditions,” usually assumed in the
picture of thermalization, turns out not to be complete. This
holds for interacting systems and in the large volume limit.
Our results question Boltzmann's thermalization conjecture
for isolated systems. They suggest that even large interacting
isolated systems do not thermalize in a strict sense.

Our treatment is based on an exact evolution equation for
the time dependence of equal time correlation functions.
Nevertheless, the solution of these equations involves ap-
proximations in the form of a truncation of the time depen-
dent effective action. Since our findings touch the basics of
thermodynamics, they should be questioned by an indepen-
dent method. One possibility seems the numerical solution of
the microscopic equatio(®) for a large sample of different
initial conditions. Taking an ensemble average over the ini-
tial conditions gives directly the equal time correlation func-

dephasing, the momentum averaged two-point functioriions which can be compared with the present work. Such a
Gk (q) approaches a Stat|0nary value much more efﬂmenﬂy:omputatlon could establish deflnltely if the flndlngS of this

thanG(q) For largel 5, and nevertheledg<l, it is conceiv-

able thatéko(q) actually reaches asymptotically a stationary
value whereass(q) fluctuates around a stationary value.

Nevertheless, the time averaged valueépg(q) andG(q)

work are substantially affected by the truncation or not.
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APPENDIX: FLOW EQUATIONS

In this appendix we present the evolution equation for the 1Pl 4-point functions which are not specified in the main text:

v(Q1,02,93) =| 20%(q2)[W(d1,2,03) — S(01,02,03) — S(d1,02,04) ]+ 20%(G3)S(d1,03,02) —4U(d1,02,03) + 4N B(dy)

Y(Q1)

v(dy1,02,03) —4MB(q1)[S1(a1+02,03) + Sp(01+03,02) 1+ C(A4) S3(01+02,07)

+2C(02)Ss(02+03,01) + C(04)Se(Q1+03,07) }

—Mi2B(q1)[C(d2)C(d3) + C(03)C(ds) + C(d2)C(a)]

SYM
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®?(93)[y(d1,92,03) +Y(d1,03,02) +Y(d2,03,01) 1= V(d1,02,03) —V(d2,04,01) —V(d2,03,01)

+
_Mw(ql,qz,qg)—)\[C(qg)S4(q1,Q2)+83(Q2)55(QZ+Q3vql)]

W(dy,02,03) =

—4N[B(d1)S3(— 01— 03.02) +B(01) Se(da+ds,0a) + C(G3) S7(dy,02) ] — 3N 2B(q1) B(02) C(q3)
SYM

¥(d1) + ¥(d2)

S(01.02,03) =| 20%(03)y(01,03,02) ~ 2V (G2, 04, Q1) = — 1 S(01,02,0) ~4N[B(01) Sa(— 41— 03, 0)

+B(01)Ss(A2+ds,02) + C(d3)S7(d1,02) 1 — 2N 2B(01)B(0) C(q3)

SYM

S/(Q1,Q2,Q3): 4w2(Q4)Z(Q1,QZ,QS)_2W(Q1,Q2,Q3)_S(QZ,Q3,Q1)_S(Ql,Q3,Q2)+S(Q1,QZ,QS)+S(Q11Q2aQ4)

+7(02) + ¥(d3) S4(91,02)
- ) s y(ql.qz,qs)—4x(8(q3> 2 +B(q1)87(qz,q3))

—Mi?B(01)B(02)B(d3)
SYM

¥(qy)
~Y(01,0z,0s) — 4~ 2(01 02, 0)

2(01,0,,03) = (A1)

SYM

They involve the following momentum integrals:

1 1 N+2
5V(02,=0,0=01) + 5V(0d2,9= 01, —A) + —5 V(02,01 =02, ~ Q)

1

Ss(ql,qz)EquG(q)G(q—ql)
1

+5¢(a)e(q=a)[(N+2)y(d—0d1,0,02) +¥(d2,4= 0z, ~q) +Y(d2, ~9,9= 1) ]

—c(q)s(—0,02,9—0d1) —c(q—0)[Ns(qg—0a,92, — ) +2w(q—0;,02,—q)]

1 1
(N+2){ w(d1,92,0—01—03) — ES(Q1-Q2:Q_Q1_Q2)_ ES(QLQZ-_Q))

1
S4(01,02)= quG(q)G(q—ql—qz)

+5(d1,92,—9)+2c(g—d;—d2)c(q)[Nz(g—d;—d2,—0,91) + 22(92,9—d1—02,01)
+22(092,91,9—d;—d2) | —c(q)[NY(d;,02, —d) +2y(—0d,91,92) + 2y(d1,02,— ) |

1
Ss(d1,02) = ﬁqu(Q)G(_q_%) 2V(Q2,—qaq+Q1)+2C(Q)C(q+Q1)Y(QZa_qnq+Q1)_4C(Q)<W(_q,Q2yq

1 1
+0q) - ES(_q,Q2aq+Q1)_ ES(_q,Q2,_Q1_Q2)) _20(_q_Q1)5(Q2yq+Q1,_Q)}

1
Ss(01,02) = quG(Q)G(_q_Ch) V(Qz,_q_Q1aQ)_C(Q)S(Q2a_qa_q_%)_zc(_q_%)(w(_q

_qllq21q)

1 1
—58(=0-01,02,9) ~ 58(— 94— 01,082,041~ G2) +c(q)c(—q—q1)y(q2,—ql—q.q)}

1
S(01,92) = ﬁqu(q)G(q—ql—qz)-[S(QZ,ql,—q)—c(q)y(—q,q2,q1)—c(q—ql—qz)y(q—ql—qz,ql,qz)

+4c(q)c(q—0d:—0d2)2(d1,9—d1—d2,092) . (A2)
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