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Time evolution of correlation functions and thermalization

Gian Franco Bonini* and Christof Wetterich†

Institut für Theoretische Physik, Universita¨t Heidelberg, Philosophenweg 16, Heidelberg 69120, Germany
~Received 30 July 1999; published 25 October 1999!

We investigate the time evolution of a classical ensemble of isolated periodic chains ofO(N)-symmetric
anharmonic oscillators. Our method is based on an exact evolution equation for the time dependence of
correlation functions. We discuss its solutions in an approximation which retains all contributions in next-to-
leading order in a 1/N expansion and preserves time reflection symmetry. We observe effective irreversibility
and approximate thermalization. At large time the system approaches stationary solutions in the vicinity of, but
not identical to, thermal equilibrium. The ensemble therefore retains some memory of the initial condition
beyond the conserved total energy. Such behavior with incomplete thermalization is referred to as ‘‘meso-
scopic dynamics.’’ It is expected for systems in a small volume. Surprisingly, we find that the nonthermal
asymptotic stationary solutions do not change for large volume. This raises questions on Boltzmann’s conjec-
ture that macroscopic isolated systems thermalize.@S0556-2821~99!06222-0#
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I. INTRODUCTION

A central piece in our understanding of the dynamics
large statistical systems is Boltzmann’s conjecture that
ensemble of isolated interacting systems approaches the
equilibrium at large times. The asymptotic values of the c
relation functions can then be computed from the result
microcanonical equilibrium ensemble. According to Bolt
mann’s conjecture, their values only depend on the ene
density of the system or, equivalently, the temperature~with
standard modifications in the presence of other conse
extensive quantities!. Apart from the energy, all memor
about the initial conditions is lost asymptotically—and al
in practice if typical relaxation time scales are not too lar
The thermalization conjecture only applies to spatially e
tended systems in the limit of infinite volume. So far n
proof for this hypothesis has been given. Correspondin
the question of how effective irreversibility arises from m
croscopic equations which are invariant under time refl
tion, or from the time reversible Liouville equation, has n
found a complete answer to date. This effective irreversi
ity is the basis of widely used effective equations~such as
the Boltzmann equation!.

We want to address two issues by a direct study of
time dependence of the correlation functions. The first c
cerns isolated systems with a finite number of degrees
freedom, corresponding to a finite volumeV. No equilibra-
tion is expected for microscopic systems of only a few d
grees of freedom. Recently, this has been demonstrated
plicitly for the correlation functions of coupled anharmon
oscillators@1#.1 Let us assume for a moment that thermaliz
tion occurs for macroscopic systems. Then a smooth tra
tion between the two extremes requires that there mus
some intermediate volume or number of degrees of freed

*Email address: bonini@thphys.uni-heidelberg.de
†Email address: C.Wetterich@thphys.uni-heidelberg.de
1The issue would be completely different, of course, if the syst

were coupled to an external heat bath.
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where thermalization is incomplete; i.e. the ensemble reta
some memory of the initial conditions. We may call the a
sociated time evolution of the correlation functions ‘‘meso
copic dynamics.’’ Mesoscopic dynamics is characterized
partial effective irreversibility on one side; i.e. many deta
of the initial conditions get lost for asymptotic times. On th
other hand, this ‘‘loss of memory’’ is not complete~as for
strictly thermalizing systems! so that partial information
about the initial state can be recovered even after an a
trarily long time.

The second question concerns the validity of Boltzman
conjecture for systems with a large volume. It is conceiva
that thermalization remains incomplete even for macrosco
isolated systems. In this case some characteristics of me
copic dynamics would survive in the infinite volume limi
We emphasize that mesoscopic dynamics is always rele
in an appropriate volume range. Our second question th
fore asks if and how the asymptotic loss of memory becom
complete as the volume becomes macroscopic. Within
approximations we find that certain features of mesosco
dynamics remain present for isolated systems in the la
volume limit.

Our investigation is based on an exact evolution equa
for the time dependent effective action@2# which is the gen-
erating functional of the equal time one particle irreducib
~1PI! correlation functions. The direct study of the time ev
lution of the correlation functions circumvents the calcu
tion of the time dependence of the probability distribution
density matrix. For classical systems the exact evolut
equation is equivalent to the Bogoliubov-Born-Gree
Kirkwood-Yvon ~BBGKY! hierarchy@4#. A study of the 1PI
correlation functions offers, however, new possibilities
systematic truncations. In particular, thermal equilibrium
now present as a stationary solution at every step of
truncation. Also the generalization to quantum statistics
straightforward and surprisingly simple@3#. An investigation
of the general structure of the exact evolution equation
the time dependent effective action reveals many new
tionary solutions besides thermal equilibrium@5#. The ques-
tion of their dynamical role is part of the scope of this pap
©1999 The American Physical Society26-1
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We will concentrate here on a particular example, nam
a periodic chain of coupled anharmonic oscillators w
O(N) symmetry. The Hamiltonian

H5E
0

l

dxF1

2
pa~x!pa~x!1

1

2
qa~x!~m22D!qa~x!

1
l

8N
@qa~x!qa~x!#2G ~1!

describes an interacting time reversible system with mic
scopic time evolution given by

] tqa~x!5pa~x!

] tpa~x!52~m22D!qa~x!2
l

2N
qb~x!qb~x!qa~x!. ~2!

We may assume that the oscillators sit on discrete lat
sites with distancea such that high momenta are cut of
Then D is an appropriate discretized Laplace operator
volving neighboring sites. The indexa51, . . . ,N counts the
oscillators at a given site andH preservesO(N) symmetry.
Practical examples for smallN may be found in the form of
ring-sized molecules with discrete translational symme
along the ring. For example, theqa may describe displace
ments from the equilibrium position~with pa the associated
momenta!. The limit of large l also describes large linea
molecules if boundary effects from the ends can be
glected. Another interesting limit isl→` for fixed m2/l5
21. This imposes the nonlinear constraintqaqa51 and de-
scribes classical bosonic spin chains (N53 for spin one!.
The lengthl of the chain plays the role of the volume
three-dimensional systems. Forl 50 we are left with an en-
semble of simpleN-component anharmonic oscillators. Th
case has been studied in detail in@1#. No thermalization is
possible since infinitely many conserved correlation fu
tions keep the memory of the initial condition and obstru
thermalization. The conserved cumulants are simply rela
to powers of the conserved energy and squaredO(N) angu-
lar momentumL2, i.e. ^Er(L2)s& does not change in time fo
arbitrary r and s. If Boltzmann’s conjecture is true
asymptotic thermalization governs the behavior forl→`. In
this case we conclude that there must be a range ofl with
mesoscopic dynamics, describing the transition between
limits l→0 and l→`. On the other hand, if Boltzmann’
conjecture does not hold for isolated systems of this ty
some features of mesoscopic dynamics are expected t
relevant also forl→`.

Our system is also a prototype for classical and quan
field theories. From this point of view it describes a on
dimensionalO(N)-symmetric scalar field theory. There is n
conceptual problem in its generalization to three dimensi
where it would be relevant for cosmology~e.g. inflation and
parametric resonance or dynamical scalar fields playin
role in late cosmology!, for particle physics~e.g. pions in
heavy ion collisions! or for many systems in statistical me
chanics.
10502
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Although most practical applications are for smallN, we
also discuss the limit of largeN. The reason is that one of ou
truncation schemes is a systematic expansion in power
1/N. The leading order in the 1/N expansion has been dis
cussed by various groups with different methods@6,5#. In
this first approximation infinitely many conserved quantiti
preclude thermalization@5#. We include here all contribu-
tions in next to leading order in 1/N. In particular, this in-
cludes scattering in three-dimensional field theories. Part
numbers for individual momentum modes are no longer c
served and there is no immediately visible obstruction
thermalization anymore.

We concentrate in this paper on classical statistics. T
has the advantage that our results can easily be comp
with other methods. In particular, it should be feasible
solve the microscopic equations numerically with given i
tial values and then take averages over an ensemble of in
values. In this way the equal time correlation functions d
cussed in this paper can be directly measured at any
time. The generalization to quantum statistics is straightf
ward in our approach and will be postponed to a subsequ
paper.

We investigate homogeneous~translation invariant! and
O(N) symmetric ensembles. Individual members of the
ensembles do not, of course, share this high degree of s
metry. For generic initial conditions the solution of the m
croscopic evolution equation~2! is highly inhomogeneous
and shows noO(N) symmetry. The high symmetry of th
ensemble only means that we weight the initial conditio
according to a probability distribution that exhibits this sym
metry. In practice, there is actually no need to specify
probability distribution at the initial timet0 explicitly. It is
often more effective to specify the correlation functions att0.
These will constitute the initial data for our differential flo
equations. In the present paper we mainly consider Gaus
initial perturbations from equilibrium, where all 1PIn-point
functions except the two-point functions are equal to th
thermal values.

We find effective irreversibility as a property of the sol
tions of our time reversible flow equation. In a wider sen
this is due to the existence of attractive fixed point solutio
In our context an attractive fixed point does not necessa
mean that all solutions for a given class of initial ensemb
asymptotically reach this fixed point. The characteristic b
havior for larget is rather characterized by high-frequen
oscillations of the correlation functions around time averag
stationary mean values. The approach to the stationary
havior for the time averaged correlation functions sho
three characteristic features:

~i! First we find a fast initial irreversible behavior on typ
cal microscopic time scales between the inverse momen
cutoff L215a/p ~with a the lattice distance! and the inverse
massm21. An example is given in Fig. 1 where we plot th
time evolution of the ratio between kinetic energy and to
energy for an out-of-equilibrium system. Comparison w
the leading order in the 1/N expansion reveals no qualitativ
difference. We conclude that this first period of irreversib
6-2
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FIG. 1. Energy ‘‘equipartition.’’ We show
ek /e as a function of time, in the leading~upper
panel! and next-to-leading 1/N approximations,
for l52, N520, L55, andl 520.1. The system
is initially displaced from equilibrium according
to a Gaussian perturbation inB(q) @b50.5, DB

50.25, DB50.469,qB52.5; cf. Eq.~16!#. Hori-
zontal lines correspond to thermal equilibrium fo
T52.
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ity is not related to scattering but rather described by deph
ing @6,5#. A ‘‘rough thermalization’’ takes already place a
this very early stage.

~ii ! The first stage of rapid ‘‘rough thermalization’’ doe
not bring the two-point functions near the equilibrium va
ues. In Fig. 2 we display the evolution of the time-averag
two-point functionB(q) which characterizes the Gaussia
part of the probability distribution for the momentapa(q)
5*dxe2 iqxpa(x) by

^pa~q!pb~q8!&52pd~q1q8!dabG
pp~q!,

Gpp~q!5B21~q!$12C2~q!/@A~q!B~q!#%21

~see below!. In thermal equilibrium one expects the Maxwe
velocity distribution withB(q)5b51/T independent ofq
andC(q)50. One observes that an initially disturbedB(q)
approaches a stationary value only on time scales m
larger thanm21. ‘‘Scattering’’ is essential for this aspect o
irreversibility. This can be seen by a comparison with t
leading 1/N behavior whereB(q) oscillates around a time
independent value for everyq. In leading order 1/N no en-
ergy is exchanged between the different Fourier modes. T
explains why time averaged values forB(q) are stationary
from the beginning and therefore cannot equilibrate.

~iii ! The exchange of energy between different Four
modes in next-to-leading order in the 1/N expansion drives
the time averaged velocity distribution toward a station
value. It may be a surprise that in general this station
10502
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value differs from thermal equilibrium with uniformB(q)
5b. The implications of this finding will be discussed in th
last section.

II. METHOD

Our investigation is based on the time-dependent effec
action @2#, which generates the equal-time 1PI correlati
functions. We consider anN-component (111)-dimensional
scalarf4 theory and ensembles which are invariant und

FIG. 2. Time evolution of the two-point correlation function
We plot B(L/2) for the same system as in Fig. 1, in the leadi
~upper curve! and next-to-leading 1/N approximations. The plotted
values are averages over the time interval@ t220,t#. Note that the
equilibrium value for the corresponding energy isB(L/2)50.5. In
the leading 1/N approximationB(q) stays esssentially constant fo
arbitrarily long time.
6-3
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internal O(N) transformations, spatial translations, and
flection. Our truncation retains all 1PIn-point functions up to
n54 and omits 1PI vertices withn>6. One should notice
10502
-that this still includes connectedn-point functions with arbi-
trary n. In this approximation the effective action of ou
model becomes
es
o-point
G@f,p;t#5
1

2E dDq

~2p!D$A~q!fa* ~q!fa~q!1B~q!pa* ~q!pa~q!12C~q!pa* ~q!fa~q!%

1
1

8NE dDq1

~2p!D

dDq2

~2p!D

dDq3

~2p!D$u~q1 ,q2 ,q3!fa~q1!fa~q2!fb~q3!fb~2q12q22q3!

1v~q1 ,q2 ,q3!pa~q1!fa~q2!fb~q3!fb~2q12q22q3!1w~q1 ,q2 ,q3!pa~q1!pa~q2!fb~q3!

3fb~2q12q22q3!1s~q1 ,q2 ,q3!@pa~q1!pb~q2!fa~q3!fb~2q12q22q3!2pa~q1!pa~q2!fb~q3!

3fb~2q12q22q3!#1y~q1 ,q2 ,q3!pa~q1!pa~q2!pb~q3!fb~2q12q22q3!

1z~q1 ,q2 ,q3!pa~q1!pa~q2!pb~q3!pb~2q12q22q3!%, ~3!

where the ‘‘couplings’’A(q), u(q1 ,q2 ,q3), etc., depend on time. The 1PIn-point functions are obtained by taking derivativ
of G with respect tof and p, the second derivative being the inverse propagator. For example, the connected tw
function for qa reads

^qa~x!qb~y!&c5G~x2y!dab5E dDq

~2p!D
G~q!eiq(x2y)dab , ~4!

where

G~q!5
B~q!

A~q!B~q!2C2~q!
. ~5!

The time evolution ofG induced by Eq.~2! is dictated by the nonlinear evolution operator

] tG@f,p;t#52~Lcl1Lq!G@f,p;t#, ~6!

where@c i[(fa ,pa)#

Lcl5E dDxH pa~x!
d

dfa~x!
1fa~x!~¹22m2!

d

dpa~x!
2

l

2NFfb~x!fb~x!fa~x!1fa~x!Gbb
ff~x,x!12fb~x!Gba

ff~x,x!

2E dDx1dDx2dDx3Gai
fc~x,x1!Gb j

fc~x,x2!Gbk
fc~x,x3!

d3G

dc i~x1!dc j~x2!dck~x3!G d

dpa~x!J ~7!

and

Lq5
l

8N
\2E dDx fa~x!

dG

dpb~x!

dG

dpb~x!

d

dpa~x!
, ~8!

with

@G21#ab
cc8~x,y!5

d2G

dca~x!cb8~y!
, ~9!

andG of Eq. ~5! corresponding toGff.
The exact flow equations for the two-point functions follow from taking the second derivatives of Eq.~6! with respect tof

andp at f5p50:
6-4
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Ȧ~q!52v2~q!C~q!

Ḃ~q!522C~q!2
2

N
g~q!B~q!

Ċ~q!52A~q!1v2~q!B~q!2
g~q!

N
C~q!, ~10!

where

v2~q![q21m21l
~N12!

2N E
p
G~p!2

l~N12!

8N2 E
q1 ,q2

G~q1!G~q2!G~q2q22q1!

3@4u~q1 ,2q,q2!2c~q1!c~q2!c~q2q12q2!y~q2q12q2 ,q1 ,q2!2c~q1!

3@2v~2q1 ,2q2 ,q!1v~2q1 ,q,2q2!#12c~q2!c~2q12q21q!w~q2q12q2 ,q2 ,q1!#

g~q![
l~N12!

8N E
q1 ,q2

G~q1!G~q2!G~q2q22q1!•$v~q,2q1 ,2q2!24c~q1!c~q2!c~q2q12q2!

3z~2q1 ,q,2q2!22c~q1!w~2q1 ,q,2q2!1c~q2!c~q2q12q2!@y~q2q12q2 ,q2 ,2q!

12y~2q,q1 ,q2q12q2!#%

c~q![
C~q!

B~q!
. ~11!

Similarly, the flow equation for the quartic couplingu reads2

u̇~q1 ,q2 ,q3!5$v2~q1!v~q1 ,q2 ,q3!14lC~q1!24lC~q2!@S1~q11q2 ,q3!1S2~q21q3 ,q1!#2l\2C~q1!C~q2!C~q3!%SY M,

~12!

where the subscriptSY M implies symmetrization with respect to the appropriate permutations ofq1 , q2 , q3 and q45
2(q11q21q3). Here we have introduced the momentum integrals

S1~q1 ,q2![
1

2NEq
G~q!G~q1q1!•H ~N12!u~q1q1 ,2q,q2!12u~q2 ,2q,q1q1!

2
1

2
c~q!@~N12!v~2q,q1q1 ,q2!12v~2q,q2 ,q1q1!#1

1

2
c~q1q1!c~q!F ~N12!S w~2q,q1q1 ,q2!

2
1

2
s~2q,q1q1 ,q2!2

1

2
s~q1q1 ,2q,q2! D1s~2q,q1q1 ,q2!G J

S2~q1 ,q2![
1

2NEq
G~q!G~2q2q1!$4u~2q,q2 ,q1q1!1c~q!c~2q2q1!s~q1q1 ,2q,2q12q2!

2c~q!@v~2q,q2 ,q1q1!1v~2q,2q12q2 ,q1q1!#%. ~13!

The flow equations for the quartic couplingsu, v, etc., are not exact since we have truncated the contributions from
6-point functions. We furthermore have omitted the two-loop contribution to the evolution of the quartic couplings
approximation may be viewed as the second order in a weighted loop expansion where the evolution of every 1PI 2m-point
function is computed in (nL112m)-loop order~i.e. two loops for the two-point function, one loop for the four-point

2We display here only one of the six flow equations for the 4-point couplings. The remaining five equations can be found in the Ap
105026-5
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function!. It is easy to convince oneself that this expansion retains systematically all contributions in orderN12nL. In our case
it also includes~incompletely! terms of order 1/N2. For comparison we employ a second systematic expansion, namely thN
expansion, where all terms of order 1/N2 are omitted3 in the flow equations.

The flow equations conserve exactly the energy densitye5E/ l :

e5
N

2Eq
H B21~q!1G~q!Fq21m21c2~q!1

N12

4N
lE

p
G~p!G J 2

N12

8N
lE

q1 ,q2 ,q3

G~q1!G~q2!G~q3!G~q4!@u~q1 ,q2 ,q3!

2v~q1 ,q2 ,q3!c~q1!1w~q1 ,q2 ,q3!c~q1!c~q2!2y~q1 ,q2 ,q3!c~q1!c~q2!c~q3!1z~q1 ,q2 ,q3!c~q1!c~q2!c~q3!c~q4!#,

~14!
rm
o
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whereas the squaredO(N) ‘‘angular momentum’’ density

L2

l
5N~N21!E

q1

G~q1!B21~q1!

3H 12
1

4NEq2

G~q2!B21~q2!@2w~q1 ,q2 ,2q2!

22s~q1 ,q2 ,2q2!2s~q1 ,q2 ,2q1!#J ~15!

is conserved only up to relative corrections of order 1/N2.
Additional independent conserved quantities of the fo
^Er(L2)s&2^E& r^(L2)&s are suppressed by inverse powers
N. They are not conserved by the truncated equations.
kinetic energy densityek5(N/2)*q$B

21(q)1G(q)c2(q)%
is, of course, not separately conserved.

We have solved the classical flow equations (\50) nu-
merically for a discretized system withNl points and an ul-
traviolet cutoffL5 a few timesm, using a standard fourth
order Runge-Kutta algorithm which has the property
being exactly time reversible. We only consider here posit
m2 and set the mass scale bym51. For a typical cutoffL
55 andNl532, the length of the chain isl 5Nla5pNl /L
.20.1.

III. EQUILIBRIUM PROPERTIES

As a first step in the numerical analysis, we compute
classical thermal equilibrium configuration~defined by the
conditionsC5v5w5s5y5z50, B5b) for different val-
ues of the parameters. In our approximation this correspo
to a solution of the Schwinger-Dyson equations forA andu
that follow from the requirement] tG50. For l/N!1 it is
possible to derive the thermal values ofA andu iteratively as
power series inl/N. In general, however, this method fail
and we found it simpler to use the flow equations the
selves, starting from theN→` thermal fixed point, letting
the system evolve for a while (Dt.m21), taking time aver-
ages of the correlation functions, adjusting them in acc

3With the exception of the subleading contributions to the evo
tion of the 4-point couplings that are contained inv2 andg. These
have to be retained in order to ensure exact energy conservati
10502
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dance with the thermal fixed point constraints, and repea
the procedure until stationary behavior with the desired
curacy was obtained. We were thus able to obtain confi
rations that were thermal to a very good approximat
(DB/B,0.001). In Fig. 3 we display the energy density a
the squared angular momentum as functions of the temp
ture. We also show the frequencyveq(0) which is related in
equilibrium to a ~partially! renormalized temperature

-

.

FIG. 3. Thermodynamic equilibrium properties. We sho
e/NT, L2/@ lN(N21)T2#, andv2(0) as functions ofT, for a sys-
tem with N520, l52, L55, andl 520.1.
6-6
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TIME EVOLUTION OF CORRELATION FUNCTIONS AND . . . PHYSICAL REVIEW D 60 105026
dependent mass byveq
2 (q)5Aeq(q)T5T/Geq(q)5mR

2

1Z(q)q2.

IV. DEPHASING AND SCATTERING

Next we discuss the evolution of ensembles that are
tially not in thermal equilibrium. We opted for Gaussian pe
turbations from the thermal state with initial two-point fun
tions:

A0~q!5CA„Aeq~q!1DA@e2(q2qA)2/DA
2
1e2(q1qA)2/DA

2
#…

B0~q!5CB~b1DB@e2(q2qB)2/DB
2
1e2(q1qB)2/DB

2
# !

C0~q!5DC@e2(q2qC)2/DC
2
1e2(q1qC)2/DC

2
#. ~16!

The constantsDA , DB , DC , qA , qB , qC , DA , DB , DC are
arbitrary, whereasCA andCB are tuned so that the perturbe
system has the sameE and L2 as the unperturbed therma
equilibrium ensemble. We also use superpositions of Ga
ian perturbations with the property that the initial deviatio
DA , DB for small and largeq2 are small.

In order to assess the importance of ‘‘scattering’’ for t
equilibration of different physical quantities, we first com
pare the results obtained by using the full equations~10!–
~12! with those obtained by keeping only the leading ter
in 1/N ~i.e. neglecting all 4-point functions!. We repeat here
that in leading order 1/N scattering is absent and only kinet
dephasing can induce a smoothening and averaging ou
the perturbation.

As we can see in Fig. 1, even in the absence of inte
tions, energy equipartition is achieved to a very good
proximation. Alsov(0) equilibrates approximately~Fig. 4!.
The individual correlation functionsA(q) and B(q), how-
ever, do not equilibrate in the absence of scattering~Figs. 2,
5!. They oscillate around constant values. When the effec
the time-dependent four-point functions is added the pict
changes. We now see that the original perturbations in
correlation functions are damped and smoothened out by
evolution, although they do not reach exact thermal equi
rium. In Fig. 6 we show the time evolution ofA(0) and
A(L/2). We recall thatATA(0) should approachv(0) in
thermal equilibrium.

V. ASYMPTOTIC BEHAVIOR AND THERMALIZATION

We have seen in the previous section that next-to-lead
order terms in the weighted loop or 1/N expansions induce
an energy exchange between different Fourier modes, w
is a prerequisite for thermalization. Also ‘‘particle numbers
for individual Fourier modes are no longer conserved se
rately. Because of this energy exchange, a system with n
thermal initial conditions is driven towards thermal equili
rium. At late times its correlation functions oscillate arou
mean values that are ‘‘more thermal’’ than in the case
mere dephasing. In Fig. 7 we show the evolution of the tim
averaged correlation functionsA(q) and B(q) in a typical
case. One clearly observes the initial approach towards
equilibrium values. For larget, however, stationary value
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are reached which deviate from the equilibrium correlatio
These stationary values correspond to exact fixed point
the truncated evolution equations. We have computed
fixed points by methods similar to the computation of t
equilibrium. They are also displayed in Fig. 7. We notice th
the effect of the deviation from thermal equilibrium on th
correlation function in coordinate space is small, as can
seen from the plot ofG(x2y).

In Table I we collect the asymptotic stationary values
several different choices of physical parameters and temp
ture, and otherwise identical initial conditions.4 They clearly
differ from thermal equilibrium, typically on the 10% leve
for not too small values ofl/N. As a general rule, the large
l/N, the faster the system approaches its asymptotic lim
and the closer this limit is to the thermal values. In order
save on computer time, we have therefore opted for ra
small values ofN (1,N,5) and values ofl between 1 and
60. Of course, for smallN and/or largel/N the applicability
of a 1/N or weigthed-loop expansion is questionable. The

4This holds up to discretization corrections, since we define id
tical initial conditions by identical continuous functions ofq.

FIG. 4. Evolution of the frequencyv2(0), in theleading~upper!
and next-to-leading 1/N approximations~same parameters as i
Figs. 1 and 2!. Comparison with the equilibrium value~also shown!
indicates the ‘‘more thermal’’ behavior due to the inclusion of sc
tering; see also Fig. 3 forT52.
6-7
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FIG. 5. A comparison between the leading-order~left! and next-to-leading-order~right! evolutions of the two-point correlation functions
The first row showsA(q)/@(q8B(q8)/Nl #2(q21m2), which is a measure for the deviation of the inverse propagator from the clas
value. The second row givesB(q) or the deviation from the Maxwell velocity distributionB(q)5b. The correlation functions are average
over various time intervals. The initial values att50 are also shown.
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is no satisfactory way to assess the reliability of either tr
cation in the strong coupling regime. However, we feel co
forted by the fact that the 4-point functions never grow
large as to make the system unstable, and that the time
tuations ofL2 ~which we remind is conserved exactly by th
exact evolution but only up to relative corrections;1/N2 by
the truncated equations! are always quite small~at the 1%
level for l560, N51). The most direct test seems to be
comparison between the results from the weighted-loop
the 1/N expansions. ForN51, largel ~Table Ib!, the two
truncations lead to very different large time stationary v
ues, and it is therefore conceivable that the asymptotic
parture from thermal equilibrium is due to truncation erro
As N gets larger andl smaller, however, the two expansion
agree much better~Fig. 8! and it is less plausible that highe
order 1/N corrections could account for the asymptotic d
partures from equilibrium. We therefore believe that our n
merical results support the existence of nonthermal attrac
fixed points also for the exact~i.e. non-truncated! system.
The implications of this claim are discussed in the next s
tion.

As a final word of caution, we should consider the pos
bility that full thermalizationdoesoccur even for smalll/N,
but on longer time scales than those we have been ab
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probe. This issue can be settled only with further, mo
computer-intensive investigations. What we have seen so
does not support this hypothesis. Even if that turned out to
the case, our method would still be very useful for identif
ing the various time scales~dephasing, partial thermalization
complete thermalization! and for assessing the role of the
malization in practical problems, where extremely large tim
scales are not always relevant.

We have also studied the volume dependence of the la
time behavior for a particular choice of parameters~Table Ic,
Fig. 9!. Apparently, the large volume limit still differs from
thermal equilibrium. Relatively small volumes (l;20m21)
seem often to be sufficient for an extrapolation to infin
volume.

Finally, we have investigated a limited sample of initi
conditions that are not symmetric under time reversal, a
whose backward and forward evolutions therefore differ
their microscopic details. In all cases, the large tim
asymptotic averaged values of the correlation functions co
out the same in both time directions.

VI. DISCUSSION

Our study of the evolution equations, applied to vario
initial nonthermal probability distributions, clearly esta
6-8
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FIG. 6. Full time evolution of
the two-point functions A(0)
~both leading and next-to-leadin
order! and A(L/2) ~next-to-
leading only!, without averaging.
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lishes effectively irreversible behavior. This is not put in
hand in the form of irreversible evolution equations. O
equations are manifestly invariant under time reflection.
fective irreversibility is rather related to the existence of s
tionary solutions or fixed points towards which the flow
effectively attracted. It can be observed by evolving in tim
directionst→6`. We see both the effects of dephasing, i
effective loss of phase information, and scattering, i.e.
ergy exchange between different momentum modes. Ou
vestigations are carried out for translation invariant e
sembles such that the energy exchange is not merely due
classical background field evolving in time. The inclusion
scattering effects is a crucial step beyond the leadingN
approximation used in the past@6#. Genuinely, the system
approaches asymptotically for larget an oscillatory behavior
of the correlation functions around a stationary solution. T
time averaged values of the correlation functions are clos
the corresponding stationary solutions. In a rough sense
stationary solutions share many properties of thermal e
librium. The corresponding fixed points are, neverthele
not identical to the thermal fixed point. The latter turns out
be a point in a whole manifold of fixed points. For gene
fixed points in this manifold the correlation functions diff
from thermal equilibrium.

Perhaps the most interesting observation concerns the
ference of the asymptotic stationary ensembles from the t
mal ensemble. The system retains memory of the initial c
ditions beyond the energy density or temperature. Isola
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systems seem to differ in this respect from systems coup
to a heat bath. Arguments why isolated systems do not t
malize exactly can be given on different levels. First the
are exact obstructions from conserved correlation functio
An example is the squared angular momentum den
^L2&/ l . In thermal equilibrium this quantity can be compute
as a function of temperature,Leq

2 / l 5N(N21)T*qGeq(q;T).
Since ^L2& is conserved by the exact flow equations, a
initial value of ^L2& different from the thermal one implie
immediately that the correlation functions appearing in E
~14!,~15! cannot all take thermal values fort→`, not even in
a time-averaged sense. We emphasize that this obstructi
based on an exactly conserved quantity and therefore ca
be an artifact of insufficient approximations.

In principle, one could take care of the conservation
^L2& by an extension of the thermodynamic description, a
ing a chemical potential forL2. The problem is, however
that there exist infinitely many conserved combinations
correlation functions. Another prominent example is the g
bal ‘‘specific heat’’ cV5^(E2^E&)2&/T2l which corre-
sponds again to an exactly conserved combination of co
lation functionŝ (E2^E&)2&5(Nl/2)*qGpp

2 (q)1•••. Also,
the additional ‘‘chemical potentials’’ would multiply nonlo
cal expressions likeE25*dxdy e(x)e(y). Indeed, the prob-
ability distributionp;e2b(E/ l )E is stationary for an arbitrary
functionb(e). The Boltzmann distributionb(e)5b is only a
special case. If the functionb(e) is not constant, the value o
6-9
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GIAN FRANCO BONINI AND CHRISTOF WETTERICH PHYSICAL REVIEW D60 105026
cV typically differs from the one in thermal equilibrium.5

These general considerations hold for an arbitrary numbe
space dimensions. They show that for isolated systems t
cannot be a proof of strict thermalization6 using arguments o
ergodicity. Strict thermalization for arbitrary initial cond

5The infinite volume behavior (^E2&2^E&2)/^E2&; l 21 holds for
a wide class ofb(e) if its deviation from a constant scales proper
with l.

6By ‘‘strict thermalization’’ we mean an asymptotic approach
the probability distribution to the Boltzmann distribution, the dist
bution of the microcanonical ensemble.

FIG. 7. Time evolution of the two-point functions for a syste
with l510, N51, b50.3, with nonthermal initial conditions. The
three panels show, from top to bottom, the relative deviations
A(q), B(q) andG(x), averaged over various time intervals, fro
their respective thermal values.
10502
of
re

FIG. 8. Time evolution ofB(L/2) averaged overDt530. The
parameters arel51, N53, b50.3, l 517.6, and the initial pertur-
bation is described in the caption of Table I. The two curves co
spond to the 1/N and weighted loop expansions~bold and plain,
respectively!. There is no sign or an asymptotic approach to t
precise thermal valueB(L/2)50.3.

TABLE I. Asymptotic displacement from thermal equilibrium
for differentl, N, b and l. For all configurationsL55. The initial
perturbation is a superposition of three Gaussians withDB5b/2,
qB5L/2, DB51.5L/16; DB52b/4, qB55L/16, DB51.5L/16;
and DB52b/4, qB511L/16, DB51.5L/16. Configurations
marked by~* ! are evolved according to the 1/N expansion, the
others according to the weighted loop expansion. For the first
tries ~a! the 1/N expansion seems reliable. The second group
entries ~b! concerns large interactions with a rapid approach
asymptotic behavior. Finally, the last entries~c! are used for a study
of the volume dependence; see also Fig. 9.

l N b l

B~L/2!2b

b

A~L/2!2Aeq~L/2!

Aeq~L/2!

~a!

~* ! 3 1 0.3 20.1 0.08360.005 0.08
~* ! 1 2 0.3 20.1 0.15860.005 0.16
~* ! 1 5 0.3 20.1 0.1660.01 0.16

~b!

10 1 0.3 20.1 0.0260.005 0.03
~* ! 10 1 0.3 20.1 0.0360.005 0.03

60 3 0.3 20.1 0.0760.01 0.07
60 1 0.3 20.1 -0.0136 0.003 0.013

~* ! 60 1 0.3 20.1 0.0086 0.003 0.009

~c!

~* ! 1 3 0.3 5.03 0.2360.003 0.23
~* ! 1 3 0.3 10.05 0.206 0.015 0.20
~* ! 1 3 0.3 15.08 0.1836 0.015 0.24
~* ! 1 3 0.3 17.6 0.186 0.005 0.18

1 3 0.3 17.6 0.1876 0.006 0.185
~* ! 1 3 0.3 20.1 0.116 0.03 0.12

1 3 0.3 20.1 0.1676 0.008 0.17
~* ! 1 3 0.3 25.1 0.16760.017 0.16

f
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tions is in contradiction with the existence of conserved co
binations of correlation functions.7

On a second level one observes the existence of a l
manifold of fixed points or stationary solutions for the tru
cated flow equations@5#. In our truncation they are given b
C5v5y50 and by solving the remaining equations] tC
5] tv5] ty50. The latter equations determine the station
values forA, B, u, w, s, z only incompletely. The presen
work clearly establishes numerically that these fixed po
differ, in general, from the one corresponding to therm
equilibrium. They also prove stable with respect to sm
fluctuations. By investigating initial conditions with the sam
^L2& as for thermal equilibrium we also establish explicit
that the fixed points are not fully specified by^E& and^L2&.
Numerically, we actually find a large manifold of differen
fixed points for given^E& and ^L2&, as suggested by th
counting of equations and variables for the general station
solutions. We also establish that the nonthermal fixed po
play a role in the asymptotic dynamics. Nonthermal init
conditions typically result in fluctuations around nontherm
stationary solutions at late time.

One may ask if the existence of these fixed points co
not be an artifact of the truncation. Three arguments indic
that this is not the case. First, some coordinates in the fi
point manifold are related to exactly conserved combinati
of correlation functions such as^L2&/ l . Second, the counting
of equations and variables indicates that the dimension of
fixed point manifold further increases once 1PI six-po
functions or higher couplings are included. Third, we fi
similar fixed points for different truncations in next-to
leading order in 1/N. The ones approached by a given initi
condition are close to each other for smalll/N and stay
substantially away from the thermal fixed points.

Our investigation of the volume dependence indicates
the fixed point manifold does not shrink to the thermal fix
point in the infinite volume limit. Furthermore, all numeric
results suggest that the nontrivial fixed points play indee
dynamical role. From all this a picture for the asymptotic la
time behavior of isolated systems emerges where some
tures of ‘‘mesoscopic’’ dynamics survive even in the infin
volume limit. The initial information is not lost completel
as for a thermalizing system. Part of the information surviv
and specifies the stationary solution around which the sys
oscillates asymptotically.

We observe that for large enough interactions the de
tions from thermal equilibrium are small—typically a fe
percent for the correlation functions and even less for qu
tities which involve momentum averages. Part of this can
explained by exact relations which hold forall stationary
solutions. As an example, let us consider the condition fo
static ^qp& correlation

7The general problem with ergodicity arguments is that only
finite neighborhood of a given point in phase space will be reac
by an arbitrary trajectory after a finite lapse of time. This is n
enough since even very close trajectories typically separate sub
tially at later time.
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1

2
] tE dx^qa~x!pa~x!&5

1

2E dx^pa~x!pa~x!& ~17!

2
1

2E dxH ^] iqa~x!] iqa~x!&1m2^qa~x!qa~x!&

1
l

2N
^@qa~x!qa~x!#2&J 50 ~18!

which relates the kinetic and potential energies~note that
they are not equal for interacting systems!:

^Ekin&5^Epot&1
l

8NE dx^@qa~x!qa~x!#2&. ~19!

This is, of course, the thermal relation, but it extends to
other stationary solutions as well. We conjecture that la
interacting systems generically show an effective irrevers
evolution towards asymptotic oscillations around one of
stationary solutions. Then relations of the type~19! hold as-
ymptotically irrespectively of the initial conditions. This ex
plains the robustness of a large set of asymptotic time a
ages of correlation functions—an important part of the init
information is indeed lost. Conversely, a judgement of p
cise asymptotic thermalization should not be based on
neric relations such as Eq.~19!, but rather on correlation
functions which can differ for two inequivalent fixed point

The lack of exact thermalization of large interacting sy
tems has consequences for ‘‘systems in a heat bath’’ as w
Indeed, we may consider a subsystem, sayqa(x), pa(x) for
uxu< l 0/2! l /2 and view it as evolving in the ‘‘heat bath’
consisting of the degrees of freedom withl 0/2,uxu< l /2. Can
we expect that the subsystem effectively thermalizes e
though the large isolated system~subsystem and bath! does
not exactly thermalize? This question can be addressed b
investigation of correlation functions for the subsystem, s
^qa(x)qa(y)&c with uxu,uyu< l 0/2, or a convenient smooth
ened version (k05p/ l 0)

a
d

t
an-

FIG. 9. Volume dependence. We show the asymptotic tim
averaged value ofB(L/2) as a function ofl, for the system of Table
Ic. Diamonds and crosses correspond to the 1/N and weighted loop
expansions, respectively.
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Gk0
~x,y!5

1

N
^qa

k0~x!qa
k0~y!&c5G~x2y!e2k0

2(x21y2)/2

~20!

qa
k0~x!5qa~x!e2k0

2x2/2. ~21!

For a translationally invariant ensemble one has

Gk0
~x,y!5E

q,q8
ei (qx2q8y)Gk0

~q,q8!

Gk0
~q,q8!5S 2p

k0
2 D D

expS 2
~q2q8!2

4k0
2 D E

p
G~p!

3expS 2

Fp2
1

2
~q1q8!G2

k0
2

D . ~22!

In particular, the Fourier transform ofGk0
(x,0) reads

G̃k0
~q!5E

q8
Gk0

~q,q8!5~2p!D/2k0
2DE

p
G~p!e2(q2p)2/2k0

2
.

~23!

Only for k0→0 does this reduce toG(q). For nonzerok0

~corresponding to a subsystem!, however,G̃k0
(q) involves a

momentum averaging with width given byk0. Because of
dephasing, the momentum averaged two-point funct
G̃k0

(q) approaches a stationary value much more efficien

thanG(q). For largel 0, and neverthelessl 0! l , it is conceiv-
able thatG̃k0

(q) actually reaches asymptotically a stationa

value whereasG(q) fluctuates around a stationary valu
Nevertheless, the time averaged values ofG̃k0

(q) andG(q)
10502
n
y

are still related by Eq.~23!. A nonthermal asymptotic behav
ior of the time averagedG(q) will manifest itself also in the
asymptotic form ofG̃k0

(q) if it extends over a momentum

range with width larger thank0. Only variations ofG(q) in
small momentum ranges will be washed out. From o
present investigation we see no indication that asympt
cally G̃k0

(q) reaches precisely its thermal value. We co
clude that mesoscopic dynamics may also be of relevance
subsystems which are in thermal contact with a ‘‘heat bat
The crucial point here is that the heat bath itself is not p
cisely thermalizing.

In summary, our investigation indicates that isolated s
tems roughly thermalize for large time, while some quan
tative deviations from thermal equilibrium remain. The ‘‘los
of memory of the initial conditions,’’ usually assumed in th
picture of thermalization, turns out not to be complete. T
holds for interacting systems and in the large volume lim
Our results question Boltzmann’s thermalization conject
for isolated systems. They suggest that even large interac
isolated systems do not thermalize in a strict sense.

Our treatment is based on an exact evolution equation
the time dependence of equal time correlation functio
Nevertheless, the solution of these equations involves
proximations in the form of a truncation of the time depe
dent effective action. Since our findings touch the basics
thermodynamics, they should be questioned by an indep
dent method. One possibility seems the numerical solutio
the microscopic equation~2! for a large sample of differen
initial conditions. Taking an ensemble average over the
tial conditions gives directly the equal time correlation fun
tions which can be compared with the present work. Suc
computation could establish definitely if the findings of th
work are substantially affected by the truncation or not.
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in text:
APPENDIX: FLOW EQUATIONS

In this appendix we present the evolution equation for the 1PI 4-point functions which are not specified in the ma

v̇~q1 ,q2 ,q3!5F2v2~q2!@w~q1 ,q2 ,q3!2s~q1 ,q2 ,q3!2s~q1 ,q2 ,q4!#12v2~q3!s~q1 ,q3 ,q2!24u~q1 ,q2 ,q3!14lB~q1!

2
g~q1!

N
v~q1 ,q2 ,q3!24l$B~q1!@S1~q11q2 ,q3!1S2~q11q3 ,q2!#1C~q4!S3~q11q2 ,q1!

12C~q2!S5~q21q3 ,q1!1C~q4!S6~q11q3 ,q1!%

2l\2B~q1!@C~q2!C~q3!1C~q3!C~q4!1C~q2!C~q4!#G
SY M
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ẇ~q1 ,q2 ,q3!5Fv2~q3!@y~q1 ,q2 ,q3!1y~q1 ,q3 ,q2!1y~q2 ,q3 ,q1!#2v~q1 ,q2 ,q3!2v~q2 ,q4 ,q1!2v~q2 ,q3 ,q1!

2
g~q1!1g~q2!

N
w~q1 ,q2 ,q3!2l@C~q3!S4~q1 ,q2!18B~q2!S5~q21q3 ,q1!#

24l@B~q1!S3~2q12q3 ,q2!1B~q1!S6~q21q3 ,q2!1C~q3!S7~q1 ,q2!#23l\2B~q1!B~q2!C~q3!G
SY M

ṡ~q1 ,q2 ,q3!5F2v2~q3!y~q1 ,q3 ,q2!22v~q2 ,q4 ,q1!2
g~q1!1g~q2!

N
s~q1 ,q2 ,q3!24l@B~q1!S3~2q12q3 ,q2!

1B~q1!S6~q21q3 ,q2!1C~q3!S7~q1 ,q2!#22l\2B~q1!B~q2!C~q3!G
SY M

ẏ~q1 ,q2 ,q3!5F4v2~q4!z~q1 ,q2 ,q3!22w~q1 ,q2 ,q3!2s~q2 ,q3 ,q1!2s~q1 ,q3 ,q2!1s~q1 ,q2 ,q3!1s~q1 ,q2 ,q4!

2
g~q1!1g~q2!1g~q3!

N
y~q1 ,q2 ,q3!24lS B~q3!

S4~q1 ,q2!

4
1B~q1!S7~q2 ,q3! D

2l\2B~q1!B~q2!B~q3!G
SY M

ż~q1 ,q2 ,q3!5F2y~q1 ,q2 ,q3!24
g~q1!

N
z~q1 ,q2 ,q3!G

SY M

. ~A1!

They involve the following momentum integrals:

S3~q1 ,q2![
1

2NEq
G~q!G~q2q1!F1

2
v~q2 ,2q,q2q1!1

1

2
v~q2 ,q2q1 ,2q!1

N12

2
v~q2 ,q12q2 ,2q!

1
1

2
c~q!c~q2q1!@~N12!y~q2q1 ,2q,q2!1y~q2 ,q2q1 ,2q!1y~q2 ,2q,q2q1!#

2c~q!s~2q,q2 ,q2q1!2c~q2q1!@Ns~q2q1 ,q2 ,2q!12w~q2q1 ,q2 ,2q!#G
S4~q1 ,q2![

1

NEq
G~q!G~q2q12q2!F ~N12!S w~q1 ,q2 ,q2q12q2!2

1

2
s~q1 ,q2 ,q2q12q2!2

1

2
s~q1 ,q2 ,2q! D

1s~q1 ,q2 ,2q!12c~q2q12q2!c~q!@Nz~q2q12q2 ,2q,q1!12z~q2 ,q2q12q2 ,q1!

12z~q2 ,q1 ,q2q12q2!#2c~q!@Ny~q1 ,q2 ,2q!12y~2q,q1 ,q2!12y~q1 ,q2 ,2q!#

S5~q1 ,q2!5
1

8NEq
G~q!G~2q2q1!F2v~q2 ,2q,q1q1!12c~q!c~q1q1!y~q2 ,2q,q1q1!24c~q!S w~2q,q2 ,q

1q1!2
1

2
s~2q,q2 ,q1q1!2

1

2
s~2q,q2 ,2q12q2! D22c~2q2q1!s~q2 ,q1q1 ,2q!G

S6~q1 ,q2!5
1

2NEq
G~q!G~2q2q1!Fv~q2 ,2q2q1 ,q!2c~q!s~q2 ,2q,2q2q1!22c~2q2q1!S w~2q

2q1 ,q2 ,q!

2
1

2
s~2q2q1 ,q2 ,q!2

1

2
s~2q2q1 ,q2 ,q12q2! D1c~q!c~2q2q1!y~q2 ,2q12q,q!G

S7~q1 ,q2!5
1

2NEq
G~q!G~q2q12q2!•@s~q2 ,q1 ,2q!2c~q!y~2q,q2 ,q1!2c~q2q12q2!y~q2q12q2 ,q1 ,q2!

14c~q!c~q2q 2q !z~q ,q2q 2q ,q !# . ~A2!
1 2 1 1 2 2
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