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Universality and the magnetic catalysis of chiral symmetry breaking
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The hypothesis that the magnetic catalysis of chiral symmetry breaking is due to interactions of massless
fermions in their lowest Landau level is examined in the context of chirally symmetric models with short
ranged interactions. It is argued that, when the magnetic field is sufficiently large, even an infinitesimal
attractive interaction in the appropriate channel will break chiral symmetry.@S0556-2821~99!04220-4#
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I. INTRODUCTION

Field theoretical models in external electromagnetic fie
are of great interest and have attracted a lot of atten
@1–4#. They are relevant to the study of many physical s
tems whose properties depend on the effects produce
external fields, especially when such effects are n
perturbative in nature. A particular example of such a sit
tion is the so-called magnetic catalysis of chiral symme
breaking@5–10# ~see also@11–13# for some earlier studies!
which has many potential applications in condensed ma
physics@14–16# and in studies of the early Universe@17#.

It is well known that a sufficiently strong attractive inte
action between massless fermions can result in a chiral s
metry breaking condensate and a dynamically generated
mion mass. In the Nambu–Jona-Lasinio model, for exam
this occurs when the interaction strength is at a particu
large critical value. It is also now known that the presence
an external magnetic field can be a strong catalyst for
effect, leading in some cases to the generation of a dyna
cal mass for fermions even by very weak attractive inter
tions. For example, in an external magnetic field, the criti
value of the Nambu–Jona-Lasinio coupling is reduced
zero.

It was suggested in@5# that this magnetic catalysis o
chiral symmetry breaking is a rather universal phenome
and that its main features are model independent. The a
ments were based on the observation that the effect is pr
rily due to the dynamics of the fermions from the lowe
Landau level which are gapless and should therefore do
nate the behavior of the system at long wavelengths.

In this paper we will develop this idea further. We sh
investigate the low-energy dynamics of chirally symmet
models with a short range interaction in an external magn
field. The idea is to construct an effective action for the lo
energy degrees of freedom. In strong external magn
fields, these are the modes of charged particles in the low
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Landau level. In the absence of interactions, their effect
dynamics is described by a field theory whose dimension
ity is two less than the spacetime dimension. We shall t
the hypothesis that, at least for strong magnetic fields
short ranged interactions, the dynamics of chiral symme
breaking can be understood in the lower dimensional eff
tive theory.

As an illustration, we shall argue that this assumption
very natural in 211 dimensions. There, the modes of th
lowest Landau level are non-propagating, and in the abse
of interactions, the ground state is highly degenerate
contains both chirally symmetric and chirally non-symmet
states. Interactions, even with infinitesimally small coupli
constants, will split this degeneracy, and whether chiral sy
metry breaking occurs or not depends on whether the in
action favors the chirally non-symmetric or chirally symme
ric ground states. One by-product of our analysis will be
fact that the dynamical generation of parity violating mas
seems to be suppressed by magnetic fields.

In the more complicated case of~311!-dimensional
gauge theory, we shall argue that the infrared dynamic
governed by an effective~111!-dimensional Gross-Neveu
like theory with an infinite number of flavors of fermions
We derive the most general low energy effective act
which is compatible with the symmetries of the four dime
sional theory. We then study the resulting model using
renormalization group. We will present a plausible argum
for our main conclusion: that the presence of chiral symm
try breaking depends crucially on the sign~but not the mag-
nitude! of one particular moment of the coupling constan
which we denote bygv . If it is of the appropriate sign, its
infrared renormalization group flow is to strong coupling a
chiral symmetry is broken. With the other sign it flows
zero coupling and chiral symmetry remains unbroken.

II. „211…-DIMENSIONAL PARADIGM

Consider a system of relativistic~211!-dimensional fer-
mions with the Dirac Hamiltonian

H05S isW •DW 0

0 2 isW •DW D , ~1!

where DW 5¹W 1 ieAW (xW ) is the covariant derivative andsW
5(s1,s2) are the first two Pauli matrices. This Hamiltonia

-
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is obtained in the continuum limit of some tight-binding la
tice models relevant to condensed matter physics — o
square lattice with half of a quantum of magnetic fl
through each plaquette~see@18# and references therein! or
on a honeycomb lattice without a magnetic field@19#. It has
also been discussed in the context of the continuum limi
the d-wave state of highTC superconductors@14,15#.

A. Symmetries

H0 commutes with any linear combination of the matric

I5S 1 0

0 1D , T15S 0 s3

s3 0 D ,

T25S 0 2 is3

is3 0 D , T35S 1 0

0 21D , ~2!

which generate the Lie algebra of aU(2) flavor symmetry
which we will call chiral symmetry. Possible mass term
which can be added toH0 must be matrices which anti
commute with it. The basic matrix which anti-commut
with H0 and which commutes with all of the flavor gener
tors is

b5S s3 0

0 s3D ~3!

and a mass term which one could add toH0 which would
preserve the flavor symmetry isbm.

Generally, in 211 dimensions, fermion mass terms vi
late parity symmetry. A parity transformation which is
symmetry of the massless Dirac equation

H0cE~x!5EcE~x! ~4!

and which commutes with the flavor symmetry generatorsTa

is

cE~x1,x2!→S s2 0

0 2s2DcE~2x1,x2!. ~5!

The mass termbm is odd under this transformation and
would therefore violate parity symmetry. More generally,
mass terms of the formb(m0I1mW •TW ) are odd under the
parity defined in Eq.~5!. Moreover, there is no modificatio
of the parity transformation which would make the massbm
parity symmetric.

It is possible to get a parity invariant mass by breaking
flavor symmetry. For this, we must define parity as a co
bination of the transformation~5! and a discrete flavor trans
formation, for example,

cE~x1,x2!→S s2 0

0 2s2DT1cE~2x1,x2!. ~6!
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This is a symmetry ofH0 and it also commutes with the
mass termb(m2T21m3T3). This mass term breaks theU~2!
flavor symmetry toU(1)3U(1).

B. Zero modes

This existence of the unitary matrixb which anti-
commutes withH0 implies thatH0 has a symmetric spec
trum: if HcE5EcE , thenHbcE52EbcE and, with a par-
ticular choice of phase,c2E5bcE . Thus, for each positive
energy state, there is a negative energy state and the p
ability measurecE

†(x)cE(x) is a symmetric function ofE.
The interesting feature ofH0 is the appearance of zer

energy states in a background magnetic field. Consider
equation

sW •DW u050, ~7!

where the background electromagnetic field is static and
the property¹W 3AW 5B(x). It has the solution

u0~x!5exp@ ief~x!2es3x~x!#v~x!, ~8!

where

2¹W 2f~x!5¹W •AW ~x!, 2¹W 2x~x!5¹W 3AW ~x!5B~x!
~9!

and

sW •¹W v~x!50. ~10!

The second equation in Eqs.~9! has the solution

x~x!52
1

2pE d2y lnux2yuB~y!, ~11!

with asymptotic behavior

lim
uxu→`

x~x!52
x

e
lnuxu, x5

e

2pE d2yB~y!. ~12!

~This is strictly correct if the magnetic field goes to ze
sufficiently quickly at infinity for the total fluxx to be finite.
If it is not finite, there is an infinite number of zero mode
and their density is given byx/V whereV is the volume.!
Asymptotically,

lim
uxW u→`

u0~x!5uxW uxs3
v~x!. ~13!

In order to have a normalizable zero mode, the spinorv(x)
should be an eigenvector ofs3 with eigenvalue2sgn(x)
(21 if x.0 and11 if x,0). It then must be a normaliz
able solution of the equations

s3v~x!52sgn~x!v~x!, S ]

]x1
1 isgn~x!

]

]x2D v~x!50.

~14!
4-2
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UNIVERSALITY AND THE MAGNETIC CATALYSIS OF . . . PHYSICAL REVIEW D 60 105024
Solutions of this equation arev(x);@x12 isgn(x)x2#k for
k50,1, . . . ,@ uxu#21 where@ uxu# is the largest integer les
than uxu and the maximum value ofk is the largest power
allowed by normalizability of the wave function. Thus the
are @ uxu# normalizable zero modes. This fact depends o
on the total magnetic flux and is independent of the profile
the magnetic field. The result, which we have found by
plicit computation, is also a result of the Atiyah-Singer ind
theorem generalized to open spaces@20#. Some other appli-
cations of this idea are discussed in@21#.

There are thus 2@ uxu# zero mode wave functions ofH0.
All of them obey the equation

bc052sgn~x!c0 , ~15!

@ uxu# of them obey the equation

bT3c05sgn~x!c0 , ~16!

and @ uxu# of them obey

bT3c052sgn~x!c0 . ~17!

Of course, any linear combination of them is also a z
mode and could be chosen to be eigenvalues of any of
flavor symmetry breaking mass operatorsbmW •TW . All linear
combinations would satisfy Eq.~15!.

C. Interpretation

The existence of zero modes implies that the Di
ground state of the second quantized system of fermion
degenerate. In the ground state, all negative energy stat
the fermions are full and all positive energy states are em
For overall charge neutrality, half of the fermion zero mod
must be occupied — but the occupation of zero mode
otherwise unconstrained.1 This means that the degeneracy
the ground state isN0!/ @(N0/2)!#2 whereN05@ uxu# is the
number of zero mode wave functions.

In second quantization, the expectation value of any
mion bilinear operator, using the Dirac commutator for n
mal ordering, is@20#

K E d2x:C†~x!MC~x!: L
52

1

2 S (
occupied

E d2xcE
†~x!McE~x!

2 (
unoccupied

E d2xcE
†~x!McE~x! D . ~18!

Since, in the Dirac ground state, all positive energy states
unoccupied and negative energy states are occupied,
since b maps positive energy states onto negative ene

1Of course, occupying half of the zero modes is only possi
when their number is even, which we shall assume. If it is o
there are no neutral ground states.
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states, if the matrixM commutes withb, only the zero
modes survive in this summation.

First of all, this means that in a magnetic field the expe
tation value of the parity violating mass operator vanishe

K E d2x:C̄C: L 5 K E d2x:C†bC: L 50, ~19!

regardless of the occupation of zero modes. This has
implication that external magnetic fields do not enhance
generation of parity violating mass terms. In fact, it indica
that if the external field is strong enough that the zero mo
are well isolated, the expectation value of a parity break
mass operator,̂* :C†bC:& should always vanish.

On the other hand, the parity invariant, chiral symme
breaking mass~with M5bT3) has the expectation value

K E d2x:C̄~x!T3C~x!: L
52

1

2
sgn~x!S (

occupied
E d2xc0

†~x!T3c0~x!

2 (
unoccupied

E d2xc0
†~x!T3c0~x! D . ~20!

It is possible to choose ground states where this expecta
value has any value between two bounds:

2@ uxu#< K E d2x:C̄~x!T3C~x!: L <@ uxu#. ~21!

If we added an infinitesimal mass termmbT3 to the Hamil-
tonian H0, the system would choose the ground state w
minimal bT3, that is the one where2

K E d2x:C̄~x!T3C~x!: L 52@ uxu#sgn~mx!. ~22!

The observation that this is so for infinitesimal mass w
made in@5#. However, this does not mean that chiral sym
metry is necessarily broken. It only implies that the grou
state is degenerate and there are chirally non-symme
ground states which are degenerate with chirally symme
ones. If there are additional weak interactions, of course,
correct ground state should be found by resolving the deg

e
,

2This is just the contribution of zero modes. If the total magne
flux x is finite, the Dirac Hamiltonian has a continuum spectru
whose support begins at zero energy. Furthermore, there is a th
old density of continuum states whose contribution to bilinear d
sities such as Eq.~22! makes up the difference between@ uxu# and
uxu which is proportional to the spectral asymmetry of the Ham
tonian and is the correct result. For details, see@20#. In the present
paper, for simplicity we ignore the relatively small error which w
make in neglecting the asymmetry of the continuum spectru
When the magnetic flux is infinite, for example in the case of co
stant external field,@ uxu# should be replaced byueBuV/2p whereV
is the spatial volume.
4-3



,
io
ro

y
o

ca
es
rn
ira
t

e

e
n
n
e.
he
—
e-

he

r
ge
t
a

d
n
ia

be
in

he

re
ge

tor
e
or-
cal
at

the
n-

he

-

t
.

ntz
it
s.

SEMENOFF, SHOVKOVY, AND WIJEWARDHANA PHYSICAL REVIEW D60 105024
eracy using degenerate perturbation theory. In this case
that is required to break chiral symmetry is an interact
which favors a chirally nonsymmetric population of the ze
modes.

If the interaction favors the breaking of chiral symmetr
symmetry breaking occurs for even an infinitesimal value
its coupling constant. This is the reason why the criti
value of the interaction can be at zero coupling in the pr
ence of a magnetic field. In fact, in the absence of exte
magnetic fields a critical coupling necessary to break ch
symmetry is typically large. In the presence of the magne
field it is reduced to zero.

For example, it is well known that an interaction of th
Nambu–Jona-Lasinio model,

L int5
l

2
~C̄T3C!2, ~23!

when added to the Hamiltonian will break the chiral symm
try if the coupling constant is attractive and is greater tha
particular critical value. This is seen by analyzing solutio
of the Schwinger-Dyson equation for a mass condensat
was shown in@5# that, in the presence of a magnetic field, t
critical coupling moves from some finite value to zero
even an infinitesimal coupling will break the chiral symm
try. That observation is consistent with our finding here.

An interesting test of this idea would be to examine t
effect on system with the interaction

L int5
k

2
~C̄C!2, ~24!

which can break parity by generating a parity violating fe
mion mass ifk has the appropriate sign and is of lar
enough magnitude@18#. Our analysis seems to suggest tha
large magnetic field should in fact tend to increase the m
nitude of the critical coupling.

III. STRATEGY IN D5311

In 311 dimensions, the situation is more complicate
The zero modes of the Dirac Hamiltonian in a backgrou
magnetic field still have some dynamics which is non-triv
and there are more possibilities for interactions.

To understand the general strategy that we will take,
gin with the Lagrangian which describes Dirac fermions
teracting with an external electromagnetic field,

S05E d4xiC̄gmDmC, ~25!

whereDm5]m1 ieAm(x). For concreteness, we choose t
chiral representation of the Dirac matrices,

g05S 0 2 i

i 0 D , g i5 i S 0 s i

i D , ~26!

s 0
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and we shall use the notation

C5S CL

CR
D . ~27!

The Lagrangian has the form

S05E d4x@ iCL
†~D01sW •DW !CL1 iCR

†~D02sW •DW !CR#.

~28!

This action has a globalU(1)L3U(1)R chiral symmetry. In
the following, we must keep in mind that when there a
both background electric and magnetic fields, or if the gau
field is dynamical, this symmetry is reduced to the vec
U(1) by the axial anomaly. For simplicity, in this paper w
will assume that this is not the case. It would be straightf
ward to extend the present work to models with dynami
U(1) fields, by introducing more species of fermions so th
there exist chiral symmetries which are unaffected by
axial anomaly. For now, we will consider the case of a co
stant non-dynamical background magnetic field,

A050, Ai52
B

2
e i j 3xj . ~29!

In this background field, it is convenient to make use of t
mixed spacetime-momentum representation as follows:

S05E dvdk

~2p!2
d2z@CL

†~v2ks31D!CL

1 iCR
†~v1ks32D!CR#, ~30!

where, by definition,z5x11 ix2,d2z5dx1dx2 and

D5 i S 0 2
]

]z
1

eB

2
z̄

2
]

] z̄
2

eB

2
z 0 D . ~31!

The spectrum of (ks32D) is well known. The equation

~ks32D!fl~ z̄,z!5lfl~ z̄,z! ~32!

has eigenvalues

l56Ak212nueBu, ~33!

for all integersn50,1,2, . . . . Whenn>1, these are disper
sion relations of~111!-dimensional Dirac fermions with
masses given byA2nueBu. @Of course, this mass gap is no
Lorentz invariant from a four-dimensional point of view
However, it is Lorentz invariant in 111 dimensions. The
reason for this is that there is a subgroup of the Lore
group which survives in the background magnetic field —
is invariant under boosts in the direction of the field line
4-4
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UNIVERSALITY AND THE MAGNETIC CATALYSIS OF . . . PHYSICAL REVIEW D 60 105024
Here this will mean that the effective theory for Landau le
els must be invariant under the (111)-dimensional Lorentz
transformations.#

Zero modes ofD are solutions of the equation

Dfm~z,z̄!50, ~34!

and are given by the infinite set of ortho-normal function

fm~z,z̄!5
z̄m

ApG~m11!
S eB

2 D (m11)/2

expS 2
eB

4
zz̄D S 0

1D ,

~35!

with m50,1,2, . . . . Here, without loss of generality, w
assumed thateB.0. In the (111)-dimensional theory, the
zero modes ofD correspond to massless fermions. The L
grangian is~restoring the space dependence!

S05E dx0dx3 (
m50

`

~ icm
(L)* ]1cm

(L)1 icm
(R)* ]2fm

(R)!

1~massive modes!, ~36!

where]6[]07]3 and the new fields are defined as the c
efficient functions in the expansions ofCL andCR over the
complete set of eigenstates:

CL5 (
m50

`

cm
(L)~x0,x3!fm~z,z̄!1( ~massive modes!,

~37!

CR5 (
m50

`

cm
(R)~x0,x3!fm~z,z̄!1( ~massive modes!.

~38!

Note that the kinetic term in the action~36! for the mass-
less modes appears to have aU(N)R3U(N)L with N→`
symmetry. This is just the unitary symmetry which mixes t
different wave functions of the degenerate zero modes,
which is actually there for every Landau level. This effecti
symmetry is not preserved by interactions.

We will analyze the possibility that interactions that a
added to this field theory drive a spontaneous breaking of
U(1)R3U(1)L chiral symmetry by generating a mass g
for the fermions in Eq.~36!. We expect that this spontaneou
symmetry breaking takes place at very long wave leng
Our approach to the problem in the following sections can
summarized as follows:

~i! We consider the theory of four-dimensional fermio
in a magnetic field as described above, with some inte
tions which should be local and respect (311)-dimensional
Poincare´ and chiral symmetry but are otherwise unspecifi

~ii ! We then consider the effective field theory which
obtained by integrating out all of the massive modes of
fermions in Eq.~36! and momentum states of the massle
modes above an ultraviolet cutoff.

~iii ! We assume that the resulting effective Lagrangian
local. To guarantee locality, we generally have to assu
10502
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that the interactions between fermions in four dimensions
short ranged.3 Furthermore, the ultraviolet cutoff for the ef
fective theory should be less than the mass gap of the ligh
massive mode,ueBu.

~iv! We consider all relevant operators which could
added to the effective Lagrangian which are consistent w
the symmetries of the theory. Since they should be relev
in the sense of two dimensional field theory, these are
possible four-fermion operators which are consistent w
symmetry. There are an infinite number of such operator

~v! We compute the beta function for the coupling co
stants of the relevant operators and look for infrared sta
fixed points. These fixed points should govern the behav
of the very long-wavelength degrees of freedom of t
theory.

~vi! If the coupling constants flow to an infrared stab
fixed point, then an infrared limit of the massless theo
exists and there is no symmetry breaking. If, on the ot
hand, the coupling constant flow is not in the domain
attraction of any infrared fixed point, so that it flows
strong coupling in the infrared, we postulate that this impl
the dynamical generation of a mass gap — and sponta
ously broken chiral symmetry. We shall find examples
both kinds of behavior.

An example of a local four dimensional interaction whic
preserves theU(1)R3U(1)L chiral symmetry is the
Nambu–Jona-Lasinio interaction@22#,

Sint5
G

2 E d4x@~C̄C!21~C̄ ig5C!2#. ~39!

A renormalizable version of this interaction would be o
which is mediated by a massive scalar mesons.

IV. GENERAL STRUCTURE OF THE LOW-ENERGY
THEORY

The constraints of (111)-dimensional Lorentz invarianc
and U(1)R3U(1)L chiral symmetry allow four-fermion
coupling constants as in the effective theory,

Le f f5 (
n50

`

~cn
(L)* i ]1cn

(L)1cn
(R)* i ]2cn

(R)!

1 (
n1 ,n2 ,m1 ,m250

`

g0S n1 n2

m1 m2
Dcn1

(L)* cn2

(R)cm1

(R)* cm2

(L) .

~40!

The coupling constants

g0S n1 n2

m1 m2
D

3If there are long-ranged interactions which are mediated by m
less fields, the correct procedure would be to retain the long wa
length modes of the massless fields in the effective Lagrangian
4-5
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obey further constraints from charge conjugation, parity, a
time reversal~CPT! symmetry and the symmetry of the un
derlying theory under translations and rotations about
axis of the magnetic field which are summarized in Appe
dix A. A general solution of those constraints would yie
the most general allowed structure of the low-energy eff
tive action in Eq.~40!.

Some particular solutions of those constraints are of in
est. For example, the constraints allow the maximally sy
metric solution withU(N)R3U(N)L(N→`) symmetry,

gS n1 n2

m1 m2
D 5gLRdn1 ,m2

dn2 ,m1
, ~41!

wheregLR is real. Similarly, there is a solution withU(N)V
~with N→`) symmetry,

gS n1 n2

m1 m2
D 5gVdn1 ,n2

dm1 ,m2
, ~42!

wheregV is real again.
In addition a large class of solutions could be found

the reduction of the interactions in the origin
(311)-dimensional model to the lowest Landau level. Aft
such a reduction of the Nambu–Jona-Lasinio interact
~39!, we arrive at
10502
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gS n1 n2

m1 m2
D

5
G

2(n11m11n21m2)/2

3A G~n11m111!G~n21m211!

G~n111!G~m111!G~n211!G~m211!
. ~43!

Since it descends from a Lorentz and chirally invariant int
action in 311 dimensions, it must necessarily satisfy t
constraints of symmetry@see Eqs.~A6!, ~A7!, ~A10!, ~A11!
and ~A12!#. Unlike the first two solutions in Eqs.~41! and
~42!, this last one in Eq.~43! does not seem to have any ext
symmetry in addition to the requiredU(1)R3U(1)L flavor
symmetry.

Now, we envisage having obtained the effective act
~40! by integrating out all modes in the higher Landau leve
as well as all momentum modes of the fermions in the low
Landau level which are above a certain cutoff. Of the ma
interactions that this procedure would produce, we have k
only the local four-fermion operators. This procedure is
gitimate only if the ultraviolet cutoff of this model is lowe
than the lowest mass gap of the fields which have been el
nated, i.e.ueBu. By chiral symmetry and Lorentz invariance
the effective action cannot contain mass terms for the fer
ons. Furthermore, the only Lorentz invariant four-fermi
operator is of the form given in Eq.~40!.

The renormalization group procedure examines how
coupling constants in Eq.~40! change as we further lower th
cutoff to isolate the very long wavelength excitations. Th
information is encoded in the beta function.

The b function for the general coupling constant in E
~40! is computed in 21e dimensions to two loop order in
Appendix B. The result is
b~g!S N1 N2

M1 M2
D 52«gS N1 N2

M1 M2
D 2

1

2p (
k1

FgS N1 N2

k1 N12N21k1
D gS N12N21k1 k1

M1 M2
D

2gS N1 k1

M1 N11M12k1
D gS N11M12k1 N2

k1 M2
D G

2
1

8p2 (
k1 ,k2

FgS N1 k2

k1 N11k12k2
D gS N11k12k2 N2

M1 M21k12k2
D gS M21k12k2 k1

k2 M2
D

1gS k1 k2

M1 M11k12k2
D gS N1 N22M11k2

k2 M2
D gS M11k12k2 N2

N22M11k2 k1
D G

1
2

~4p!2
gS N1 N2

M1 M2
D (

k1 ,k2
FgS N1 k21N1

k1 k12k2
D gS k12k2 k1

k21N1 N1
D 1gS k1 k21N2

N2 k12k2
D gS k12k2 N2

k21N2 k1
D

1gS k1 k21M1

M1 k12k2
D gS k12k2 M1

k21M1 k1
D 1gS M2 k21M2

k1 k12k2
D gS k12k2 k1

k21M2 M2
D G . ~44!
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Finally, before we proceed to the next section, we note
we may have to occasionally cut off the summation o
modes in the first Landau level. We do this by summi
modes up to some maximum number,n50,1, . . . ,N. Such a
situation could be produced by considering the fermions
an external magnetic field with finite magnetic flux, or wi
uniform field and finite transverse area. In that case,N which
can be thought of as the number of ‘‘flavors’’ which goes
infinity as ueBuS12/2p whereS12→` is the area of the two-
dimensional perpendicular~with respect to the direction o
the magnetic field! subspace.

V. SYMMETRIC FIXED POINTS

In Appendix B, we have computed the two-loopb func-
tion ~44! for the most general coupling constants, subjec
the restriction in Eq.~A12!. The next natural step would b
locate infrared stable fixed points of this beta function. T
problem is far more complicated than we can solve
present. Instead, in our analysis below, we shall restrict
attention to the beta function for coupling constants w
close to maximal symmetry.

For some scalar field theories, where there are many c
ponents of a scalar field and renormalizable interacti
which couple them, it is known that the only infrared fixe
points of the renormalization group flow of relevant co
plings are those with maximal symmetry@23,24#. To our
knowledge, there is no similar theorem for Gross-Neveu l
models. On the other hand, we consider it plausible t
similar arguments can be applied: in particular, if no ma
mally symmetric infrared stable fixed point exists, then th
are no infrared stable fixed points at all.

Maximally symmetric couplings can easily be shown
be contained in other combinations of coupling constants
Appendix C we show that the Nambu–Jona-Lasinio~NJL!
coupling contains the maximally symmetric ones.

Consider the renormalization group flow in the spec
case whenU(N)R3U(N)L andU(N)V couplings, as defined
in Eqs.~41! and~42!, are the only non-zero couplings in th
effective action. Then, from our general result in the pre
ous section, we extract the following expressions for theb
functions of interest:

bLR52«gLR1
1

2p
gV

21
1

4p2
~NgLR

3 12gVgLR
2

1NgV
2gLR2gV

3 !, ~45!

bV52«gV2
N

2p
gV

21
1

4p2
@2NgV

32~N23!

3gV
2gLR2~N22!gVgLR

2 #. ~46!

Note that we have been forced to introduce a cutoff onN. In
order to get a sensible result when taking the limitN→`, it
is convenient to rescale the couplings as follows:gLR
10502
at
r

n

o

s
t

ur

-
s

e
t

-
e

In

l

-

→glr /AN andgV→gv /N. As is clear from the definition, the
b functions will also get rescaled accordingly,bLR

→b lr /AN and bV→bv /N. After taking this into account
and performing the limitN→`, we arrive at

b lr 52«glr 1
1

4p2
glr

3 , ~47!

bv52«gv2
1

2p
gv

21
1

4p2
gvglr

2 . ~48!

It must be emphasized that we have adopted the rescalin
the most symmetricgLR coupling by 1/AN rather than 1/N.
Since the rescaling performed above led to the well-defi
b functions, we conclude that the (111)-dimensional action
in Eq. ~40! with gLR of order;1/AN describes a consisten
and non-trivial interacting theory in the limitN→`.4

When«50 we can solve the renormalization group equ
tions ~47! and ~48! explicitly, and the analytical solution
reads

4As one can see, the rescaling ofgLR by 1/N is also meaningful.
The resultingb functions are

blr52«glr, ~49!

bv52«gv2
1

2p
gv

2. ~50!

The corresponding theory is less interesting. Indeed, the expres
for the b functions in Eq.~49! and ~50! in the limit e50 describe
the situation whenglr coupling does not run at all, whilegv expe-
riences asymptotic freedom from thegv.0 side and infrared free-
dom from thegv,0 side. We shall see in a moment that this pictu
corresponds to a special case (glr 50) of the flow described by
Eqs.~47! and ~48!.

FIG. 1. The renormalization group flow in the (glr ,gv) plane.
4-7
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glr ~ t !5
glr ~0!

A12
glr

2 ~0!t

2p2

, ~51!

gv~ t !5
gv~0!

S 11
2pgv~0!

glr
2 ~0!

DA12
glr

2 ~0!t

2p2
2

2pgv~0!

glr
2 ~0!

S 12
glr

2 ~0!t

2p2 D
. ~52!
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This flow is presented graphically in Fig. 1 where the arro
show the flow direction toward ultraviolet.

In the upper half-planegv.0, the simple analysis of the
flow given by Eqs.~51! and ~52! reveals infrared~with gv
→1`) and ultraviolet~with glr →6` andgv→1`) Lan-
dau poles at

t IR52S 2p

gv~0!
1

glr
2 ~0!

2gv
2~0!

D , ~53!

tUV5
2p2

glr
2 ~0!

, ~54!

respectively. We argue that the strong infrared dynam
~with gv→1`) in this half-plane of couplings is an indica
tion of a mass generation and breaking of the chiralU(1)
symmetry. Indeed, the generation of the fermion mass in
infrared region seems to be the only way one can avoid r
ning into the problem of the physical Landau pole.

The generation of the fermion mass in thegv.0 half-
plane, in its turn, is consistent with the expectation of
universality of the magnetic catalysis in a wide range of
11)-dimensional models~such as the NJL! with a short
range interaction. Indeed, as we established, the low en
dynamics in such models is described by t
(111)-dimensional effective action in Eq.~40! with the
coupling satisfying the set of restriction in Eqs.~A10!, ~A11!
and ~A12!. The generic coupling@say, like that in Eq.~43!
coming from the interaction of the lowest Landau lev
modes# which does not have any extra symmetry is still e
pected to have theU(N)R3U(N)L andU(N)V contribution
@see Eqs.~C7a! and~C7b!#. Then, if thisU(N)V contribution
is positive, gv.0, it is going to drive the system to th
generation of mass.

Now let us study the flow in the lower half-planegv<0.
As is easy to see, there is an infrared fixed point
(glr ,gv)5(0,0) and the ultraviolet Landau pole~with gv→
2` while glr is either fixed or approaches6`) at the fol-
lowing values oft:
10502
s

s

e
n-

e

gy

l
-

t

tUV5S 2p

ugv~0!u
2

glr
2 ~0!

2gv
2~0!

D , if ugv~0!u>
glr

2 ~0!

2p
,

~55!

tUV5
2p2

glr
2 ~0!

, if ugv~0!u,
glr

2 ~0!

2p
. ~56!

Since the infrared fixed point (0,0) corresponds to wea
coupled dynamics, there is apparently no mass generatio
this half-plane of the coupling space. This is also in f
agreement with our general expectation. Indeed, the nega
values ofgv correspond to the repulsion rather than attra
tion in the fermion-antifermion channel which is responsib
for the generation of mass, breaking chiralU(1) symmetry.

Our conclusion here is that whether this model brea
chiral symmetry or not is entirely dependent on the sign
the coupling constantgv .

The reader might be puzzled by the fact that aU(1) chiral
symmetry can be broken in an effectively two dimension
system. We emphasize here that this phenomenon is iden
to that in the chiral Gross-Neveu model. Strictly speakin
chiral symmetry can only be broken in the largeN limit. The
finite N system should still be chirally symmetric, as the lo
dimensionality of the system would not allow for spontan
ous breaking of a continuous symmetry. Indeed, if we c
sider the case of a large but finite value ofN, an infrared
stable fixed point appears forgv.0 at (glr ,gv)
.(22p,pN) which goes to infinity withN→`. This fixed
point is at strong coupling, so a conclusion based on per
bation theory is speculative at best, but its appearanc
consistent with the expectation that the massless limit of
model is well defined~albeit strongly coupled! whengv.0
and N is finite and chiral symmetry breaking need not ta
place. WhenN→` this fixed point moves to infinite cou
pling and chiral symmetry breaking is possible.

VI. CONCLUSION

In this paper we have shown that the effective low-ene
dynamics of theU(1) chirally symmetric models with a
short range interaction in a background magnetic field is
scribed by a (111)-dimensional Gross-Neveu like mod
4-8
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with an infinite number of flavors@see Eq.~40!#. Here we
established that different flavors come out as the represe
tion space of the magnetic translations in the original
11)-dimensional model. The number of flavors is infin
and proportional to the area of the two dimensional sp
perpendicular to the magnetic field.

Based exclusively on the arguments of symmetry, we
tablished a set of conditions, given by Eqs.~A6!, ~A7!,
~A10!, ~A11! and ~A12!, that the couplings of the effectiv
theory have to satisfy. To show that they allow a non-triv
solution, we presented a few~out of infinitely many possible!
examples of couplings that satisfy all the constrains. Amo
them, there are, in particular, the highly symmetricU(N)R
3U(N)L and U(N)V ~with N→`) couplings. These latte
are of special interest because their renormalization gr
flow is self-contained and allows an analytical solution@see
Eqs.~51! and ~52!#.

At the level of the effective theory, we calculated th
two-loopb function and analyzed the renormalization gro
flow in the two-dimensional subspace of theU(N)R
3U(N)L andU(N)V couplings. The general result is argue
to indicate the generation of the fermion mass in thegv.0
half-plane of couplings. In the other half-plane, the infrar
dynamics is weakly coupled and there is no mass genera
This mass generation pattern is consistent with the ea
suggested conjecture of the universality of the so-ca
magnetic catalysis@5# in, at least, the models from the sam
universality class as the chiralU(1) NJL model.
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APPENDIX A: CONSTRAINTS ON COUPLING
CONSTANTS

Let us clarify the origin of the action as well as the mea
ing of different flavors in Eq.~40! in terms of the original
(311)-dimensional model defined in Eqs.~28! and ~39!.

We start from the analysis of the space-time symmet
in the model. Notice that, due to the presence of the ba
ground field, the standard translations in the two-dimensio
plane perpendicular to the magnetic field are not symmet
of the original model in Eq.~28!. Nevertheless, there ar
other transformations, the so-called magnetic translatio
which leave the action invariant. In contrast to the case of
ordinary translations, the two generators of the magn
translations do not commute. In the symmetric gauge gi
in Eq. ~29!, the explicit representation of the generators a
their commutation relation read

X5AeBS x11 i
D2

eBD , ~A1a!
10502
ta-

e

s-

l

g

p

d
n.

er
d

u-
da

-

-

s
k-
al
s

s,
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n
d

Y5AeBS x22 i
D1

eBD , ~A1b!

@X,Y#5 i , ~A1c!

where we assume thateB.0. It is easy to check that the
operatorsX and Y commute with the Hamiltonian of ou
model. Instead of theseX andY, it is convenient to introduce
the ‘‘creation’’ and ‘‘annihilation’’ operators

a5
X1 iY

A2
, ~A2a!

a†5
X2 iY

A2
, ~A2b!

@a,a†#51. ~A2c!

Having introduced these operators in the problem, we rea
that the Fock space is spanned by the set of statesuq,m&
where the quantum numberm50,1,2, . . . denotes the eigen
value ofa†a operator and the multi-indexq represents all the
other quantum numbers~say, the Landau level number, th
fermion spin projection and the chirality!. In the absence of
any vacuum rearrangement~symmetry breaking!, the above
set of states~in coordinate representation! reads

^xum,n,s,x,pi&5
1

A2p l

1

~A2l !m2n

3An!

m!
e2 ix ipiz̄m2nLn

(m2n)S zz̄

2l 2D
3expS 2

zz̄

4l 2D fs,x , ~A3!

where l 51/AeB is the magnetic length,z5x11 ix2,z̄5x1

2 ix2,xipi5x0p02x3p3 andfs,x is the spinor with a given
spin projections and chiralityx. Note that the expression in
Eq. ~A3! is well defined even for the case whenm,n ~both
numbers are positive! due to the Rodrigues formula for th
generalized Laguerre polynomials,

zm2nLn
(m2n)~z!5

1

n!
ez

dn

dzn
~e2zzm!. ~A4!

One has to remember also that all the modes in the low
Landau level (n50) have the same projection of the spi
while the modes in the higher Landau levels (n>1) have
both projections.

Since we are interested in the structure of the effect
action, describing the infrared dynamics (p0!AeB), it is
sufficient to take into account only those degrees of freed
that originate from the lowest Landau level modes (n50).
These modes freely propagate in the (111)-dimensional
parallel (x0,x3) subspace, and are classified by the chira
and the eigenvalue ofa†a @see Eq.~A3!#. In what follows,
4-9
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we denote the effective degrees of freedom accordin
cm

(L,R)(xi), where the superscript~L! or ~R! denotes the state
that result from the (311)-dimensional states of definit
chirality. In the parallel subspace (x0,x3),cm

(L)(xi) and
cm

(R)(xi) have the interpretation of the left and right movin
along thex3 axis modes, respectively.

While restricting the kinetic term in the NJL model~39!
to the lowest Landau level modes,

C~xi ,x'!→ (
m50

` f1,1cm
(R)~xi!1f1,2cm

(L)~xi!

A2pm! l

3S z̄

A2l
D m

expS 2
zz̄

4l 2D , ~A5!

we check thatgmPm→g i
mpm

i . After performing the integra-
tion over the perpendicular space coordinates in the orig
NJL action, we arrive at the effective model as in Eq.~40!.
Remarkably, while the NJL couplingG is dimensionful, the
effective coupling in Eq.~40! is dimensionless,g;G/ l 2

[GueBu.
From the derivation above, we see that the fields of d

ferent flavors in the effective (111)-dimensional theory
~40! correspond to different eigenstates ofa†a operator. This
simple observation, as we show below, has far reaching c
sequences.

Now, let us establish the allowed structure of coupli
constants in Eq.~40!. The most general restriction on th
couplings comes from the condition of reality of the actio
This requires that

g* S n1 n2

m1 m2
D 5gS m2 m1

n2 n1
D . ~A6!

Similarly, the invariance under the parity (x3→2x3) leads
to another restriction:

gS n1 n2

m1 m2
D 5gS m1 m2

n1 n2
D . ~A7!

These two conditions are too general and so are not of g
interest or of great power by themselves. It turns out, ho
ever, that there are other, more restrictive conditions.

By recalling the origin of flavors in Eq.~40!, we realize
that the effective theory should enjoy some kind of flav
symmetry that results from the symmetry under magn
translations of the original (311)-dimensional theory. This
flavor symmetry, as will become clear in a moment, p
further restrictions on the allowed structure of the four-ind
coupling in Eq.~40!.

The infinitesimal transformations of the magnetic trans
tions and the related rotation in the perpendicular plane
given by the following operators:

U1511 i«1X[11
i«1

A2
~a1a†!, ~A8a!
10502
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U2511 i«2Y[11
«2

A2
~a2a†!,

~A8b!

U12511 i«12a
†a. ~A8c!

To determine the transformation properties of the fields
different flavors, we again recall that, by construction, the
fields are the eigenstates of thea†a operator. Then, by doing
a simple exercise, we find that the action of the creation
annihilation operators,a† anda, on the properly normalized
fields should read

a†cn5An11cn11 , acn5Ancn21 . ~A9!

Making use of these properties, we check that the kine
term in the effective action is invariant under the transform
tions in Eqs.~A8a!, ~A8b! and ~A8c!. In fact, if we had
started with a more general, non-diagonal kinetic term in
effective action@which is not forbidden by the chiralU(1)
symmetry#, the requirement of invariance under the magne
translations would lead us back to the diagonal form as
Eq. ~40!.

The invariance of the four-fermion interactiong in Eq.
~40! under the set of transformations in Eqs.~A8a!, ~A8b!
and ~A8c! leads to

An1gS n121 n2

m1 m2
D 2An211gS n1 n211

m1 m2
D

1Am1gS n1 n2

m121 m2
D 2Am211gS n1 n2

m1 m211D 50,

~A10!

An111gS n111 n2

m1 m2
D 2An2gS n1 n221

m1 m2
D

1Am111gS n1 n2

m111 m2
D 2Am2gS n1 n2

m1 m221D 50,

~A11!

gS n1 n2

m1 m2
D 50, unless n12n21m12m250.

~A12!

APPENDIX B: CALCULATION OF THE TWO-LOOP
b FUNCTION

To derive the two-loopb function of the effective spinor
theory in Eq.~40!, we apply the method of Ref.@24# that was
used for thew4 scalar theory ind542« dimensions. In
dimensional regularization~with D5212«), our renormal-
ized Lagrangian density reads
4-10
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LNJL5 (
n50

`

~Zn
(L)cn

(L)* i ]1cn
(L)1Zn

(R)cn
(R)* i ]2cn

(R)!

1 (
n1 ,n2 ,m1 ,m250

`

m22«GS n1 n2

m1 m2
D

3cn1

(L)* cn2

(R)cm1

(R)* cm2

(L)

5 (
n50

`

~cn
(L)* i ]1cn

(L)1cn
(R)* i ]2cn

(R)!

1 (
n1 ,n2 ,m1 ,m250

`

m22«gS n1 n2

m1 m2
Dcn1

(L)* cn2

(R)cm1

(R)* cm2

(L)

1~••• !, ~B1!

where the couplingG includes the coupling constant reno
malization, G5Zgg, and the ellipsis denotes the counte
terms. We remind the reader that the four-index couplingg is
non-zero only forn12n21m12m250. This means that the
four-fermion term in Eq.~B1! contains the sum only ove
three indices~say,n1 ,n2, andm1), while the fourth one (m2)
is superfluous.

Before proceeding with the actual calculation of theb
function, we need to specify how to handle the infrared
vergences that appear in the calculation of the Feynman
grams @24,25#. Such divergences usually come from t
propagators of the massless fermions. If treated imprope
they could easily obscure the calculation of the relevant d
grams and eventually lead to a wrong result. To avoid
problem, in what follows, we modify the infrared region b
changing the fermion propagators as follows:

S(L)~p!5
p2

p2
→ p2

p22m2
, ~B2a!

S(R)~p!5
p1

p2
→ p1

p22m2
. ~B2b!

This infrared regularization procedure respects all the s
metries of the model and does not change the ultravi
region.

Now, let us calculate theb function. First of all, we recall
that the relation between the bare and the renormalized
plings, in the dimensional regularization (D5212«), reads

g0S N1 N2

M1 M2
D 5

m22«

AZN1

(L)ZM1

(R)ZN2

(R)ZM2

(L)
GS N1 N2

M1 M2
D .

~B3!
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This is going to be used in the definition of theb function. In
calculation, we impose the following renormalization cond
tions:

]

]p2
GNN

(2R)up505
]

]p1
GNN

(2L)U
p50

51, ~B4!

G (4)S N1 N2

M1 M2
D U

p50

5gS N1 N2

M1 M2
D . ~B5!

Note that the introduction of the effective infrared cutoffm
in the fermion propagators earlier allows us to use the ren
malization point atp50.

The Feynman diagrams of the relevant contributions
the two-point functions at two-loop order are given in Fig
2a and 2b. By extracting the divergent~of order 1/«) terms
of these two-loop corrections, we arrive at the equations

]

]p2
GNN

(2R)U
p50

5ZN
(R)1

c(r )

~4p!2«

3 (
k1 ,k2

GS k1 k21N

N k12k2
DGS k12k2 N

k21N k1
D ,

~B6!

]

]p1
GNN

(2L)U
p50

5ZN
(L)1

c( l )

~4p!2«

3 (
k1 ,k2

GS N k21N

k1 k12k2
DGS k12k2 k1

k21N N D ,

~B7!

FIG. 2. Diagrams contributing toG (2R) andG (2L), respectively.
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where, by definition,

~Fig. 2a!→ c(r )

~4p!2«
1O~1![2

1

m2D24

]

]p2
E dDkdDq

~2p!2D

~k1p!2~q2k!1q2

@~k1p!22m2#@~q2k!22m2#~q22m2!
U

p50

52
1

~4p!2«
1O~1!, ~B8!

~Fig. 2b!→ c( l )

~4p!2«
1O~1![2

1

m2D24

]

]p1
E dDkdDq

~2p!2D

~k1p!1~q2k!2q1

@~k1p!22m2#@~q2k!22m2#~q22m2!
U

p50

52
1

~4p!2«
1O~1!. ~B9!

Thus, we see thatc(r )5c( l )521.
In a similar way, the perturbative expansion for the four-point function reads

G (4)S N1 N2

M1 M2
D U

p50

5GS N1 N2

M1 M2
D 1

a01a1«

4p« (
k1

FGS N1 N2

k1 N12N21k1
DGS N12N21k1 k1

M1 M2
D

2GS N1 k1

M1 N11M12k1
DGS N11M12k1 N2

k1 M2
D G

1
b01b1«

~4p«!2 (
k1 ,k2

FGS N1 N2

k1 N12N21k1
DGS N12N21k1 k1

k2 N12N21k2
DGS N12N21k2 k2

M1 M2
D

1GS N1 k1

M1 N11M12k1
DGS N11M12k1 k2

k1 N11M12k2
DGS N11M12k2 N2

k2 M2
D G

1
c0

~4p!2«
(

k1 ,k2
FGS N1 k2

k1 N11k12k2
DGS N11k12k2 N2

M1 M21k12k2
DGS M21k12k2 k1

k2 M2
D

1GS k1 k2

M1 M11k12k2
DGS N1 N22M11k2

k2 M2
DGS M11k12k2 N2

N22M11k2 k1
D G

1
d01d1«

~4p«!2 (
k1 ,k2

FGS N1 k2

k1 N11k12k2
DGS N12N21k1 k1

M1 M2
DGS N11k12k2 N2

k2 N12N21k1
D

1GS k1 k2

M1 k12k21M1
DGS N1 N2

N22N11k1 k1
DGS k12k21M1 N22N11k1

k2 M2
D

1GS N1 N11k12k2

k1 k2
DGS M11k22k1 N2

N11k12k2 M2
DGS k2 k1

M1 M11k22k1
D

1GS N11M12k2 N2

k11k22M2 k1
DGS N1 k2

M1 N11M12k2
DGS k1 k11k22M2

k2 M2
D G . ~B10!

Note that the restrictionn12n21m12m250, is satisfied for each four-index coupling that appears here. The coefficientai ,
bi ,ci anddi are defined by the following expressions:
105024-12
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~Fig. 3!→ a01a1«

4p«
1O~«!

[
i

mD22E dDk

~2p!D

k2

~k22m2!2

52
1

4p« S 11«~11g!1« ln
m2

4pm2D 1O~«!,

~B11!

FIG. 3. Diagrams contributing toG (4) at one loop which deter-
mine a0 anda1.

FIG. 4. Diagrams contributing toG (4) at two loops which deter-
mine b0 andb1. The diagram~c! is finite.
10502
~Fig. 4!→ b01b1«

~4p«!2
1O~1!

[
i 2

m2D24E dDkdDq

~2p!2D

q2k2

~q22m2!2~k22m2!2

5
1

~4p«!2 S 112«~11g!12« ln
m2

4pm2D 1O~1!,

~B12!

FIG. 5. Diagrams contributing toG (4) at two loops which deter-
mine c0.

FIG. 6. Diagrams contributing toG (4) at two loops which deter-
mine d0 andd1.
4-13
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~Fig. 5!→ c0

~4p!2«
1O~«!

[
i 2

m2D24E dDkdDq

~2p!2D

k1
2 q2~q2k!2

~k22m2!2~q22m2!@~q2k!22m2#

52
1

2~4p!2«
1O~«!, ~B13!

and

~Fig. 6!→ d01d1«

~4p«!2
1O~1![

i 2

m2D24E dDkdDq

~2p!2D

3
k2q2~k2q!1

~k22m2!2~q22m2!@~k2q!22m2#

52
1

~4p«!2 S 1

2
1«~11g!1« ln

m2

4pm2D 1O~1!.

~B14!
10502
Hereg'0.577 is the Euler constant.
From Eqs.~B11! – ~B14!, we obtain

a0521, a152~11g!2 ln
m2

4pm2
, ~B15a!

b051, b152~11g!12ln
m2

4pm2
, ~B15b!

c052
1

2
, ~B15c!

d052
1

2
, d152~11g!2 ln

m2

4pm2
. ~B15d!

After expressing the functionG in terms ofg, we arrive at
GS N1 N2

M1 M2
D 5gS N1 N2

M1 M2
D 2

a01a1«

4p« (
k1

FgS N1 N2

k1 N12N21k1
D gS N12N21k1 k1

M1 M2
D

2gS N1 k1

M1 N11M12k1
D gS N11M12k1 N2

k1 M2
D G2

b022a0
21~b124a1a0!«

~4p«!2

3 (
k1 ,k2

FgS N1 N2

k1 N12N21k1
D gS N12N21k1 k1

k2 N12N21k2
D gS N12N21k2 k2

M1 M2
D

1gS N1 k1

M1 N11M12k1
D gS N11M12k1 k2

k1 N11M12k2
D gS N11M12k2 N2

k2 M2
D G

2
c0

~4p!2«
(

k1 ,k2
FgS N1 k2

k1 N11k12k2
D gS N11k12k2 N2

M1 M21k12k2
D gS M21k12k2 k1

k2 M2
D

1gS k1 k2

M1 M11k12k2
D gS N1 N22M11k2

k2 M2
D gS M11k12k2 N2

N22M11k2 k1
D G

2
d01a0

21~d112a0a1!«

~4p«!2 (
k1 ,k2

FgS N1 k2

k1 N11k12k2
D gS N12N21k1 k1

M1 M2
D

3gS N11k12k2 N2

k2 N12N21k1
D 1gS k1 k2

M1 k12k21M1
D gS N1 N2

N22N11k1 k1
D

3gS k12k21M1 N22N11k1

k2 M2
D 1gS N1 N11k12k2

k1 k2
D gS M11k22k1 N2

N11k12k2 M2
D gS k2 k1

M1 M11k22k1
D

1gS N11M12k2 N2

k11k22M2 k1
D gS N1 k2

M1 N11M12k2
D gS k1 k11k22M2

k2 M2
D G . ~B16!
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The b function is defined as follows@24#:

(
n1 ,n2 ,m1 ,m2

b~g!S n1 n2

m1 m2
D ]

]gS n1 n2

m1 m2
D F GS N1 N2

M1 M2
D

AZN1

(L)ZM1

(R)ZN2

(R)ZM2

(L)
G52«

GS N1 N2

M1 M2
D

AZN1

(L)ZM1

(R)ZN2

(R)ZM2

(L)
. ~B17!

By making use of this definition, we calculate the two-loopb function,

b~g!S N1 N2

M1 M2
D 52«gS N1 N2

M1 M2
D 1

a0

2p (
k1

FgS N1 N2

k1 N12N21k1
D gS N12N21k1 k1

M1 M2
D 2gS N1 k1

M1 N11M12k1
D

3gS N11M12k1 N2

k1 M2
D G1

b122a0a1

4p2 (
k1 ,k2

FgS N1 N2

k1 N12N21k1
D

3gS N12N21k1 k1

k2 N12N21k2
D gS N12N21k2 k2

M1 M2
D

1gS N1 k1

M1 N11M12k1
D gS N11M12k1 k2

k1 N11M12k2
D gS N11M12k2 N2

k2 M2
D G

1
c0

4p2 (
k1 ,k2

FgS N1 k2

k1 N11k12k2
D gS N11k12k2 N2

M1 M21k12k2
D gS M21k12k2 k1

k2 M2
D

1gS k1 k2

M1 M11k12k2
D gS N1 N22M11k2

k2 M2
D gS M11k12k2 N2

N22M11k2 k1
D G

1
d11a0a1

4p2 (
k1 ,k2

FgS N1 k2

k1 N11k12k2
D gS N12N21k1 k1

M1 M2
D gS N11k12k2 N2

k2 N12N21k1
D

1gS k1 k2

M1 k12k21M1
D gS N1 N2

N22N11k1 k1
D gS k12k21M1 N22N11k1

k2 M2
D

1gS N1 N11k12k2

k1 k2
D gS M11k22k1 N2

N11k12k2 M2
D gS k2 k1

M1 M11k22k1
D

1gS N11M12k2 N2

k11k22M2 k1
D gS N1 k2

M1 N11M12k2
D gS k1 k11k22M2

k2 M2
D G

1
2

~4p!2
gS N1 N2

M1 M2
D (

k1 ,k2
FgS N1 k21N1

k1 k12k2
D gS k12k2 k1

k21N1 N1
D 1gS k1 k21N2

N2 k12k2
D gS k12k2 N2

k21N2 k1
D

1gS k1 k21M1

M1 k12k2
D gS k12k2 M1

k21M1 k1
D 1gS M2 k21M2

k1 k12k2
D gS k12k2 k1

k21M2 M2
D G , ~B18!

where we already used the fact thata0
25b0522d0 which, by the way, is the necessary condition for the renormalizability

the model. Note that the last term in Eq.~B18! appears due to the renormalization of the two-point function. After taking
account the values of constants in Eqs.~B15a! – ~B15d!, we arrive at our final result for theb function:

b~g!S N1 N2

M1 M2
D 52«gS N1 N2

M1 M2
D 2

1

2p (
k1

FgS N1 N2

k1 N12N21k1
D

3gS N12N21k1 k1

M1 M2
D 2gS N1 k1

M1 N11M12k1
D gS N11M12k1 N2

k1 M2
D G

2
1

8p2 (
k1 ,k2

FgS N1 k2

k1 N11k12k2
D gS N11k12k2 N2

M1 M21k12k2
D gS M21k12k2 k1

k2 M2
D
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1gS k1 k2

M1 M11k12k2
D gS N1 N22M11k2

k2 M2
D gS M11k12k2 N2

N22M11k2 k1
D G

1
2

~4p!2
gS N1 N2

M1 M2
D (

k1 ,k2
FgS N1 k21N1

k1 k12k2
D gS k12k2 k1

k21N1 N1
D 1gS k1 k21N2

N2 k12k2
D gS k12k2 N2

k21N2 k1
D

1gS k1 k21M1

M1 k12k2
D gS k12k2 M1

k21M1 k1
D 1gS M2 k21M2

k1 k12k2
D gS k12k2 k1

k21M2 M2
D G . ~B19!
as
s,
in

c

APPENDIX C: NJL COUPLINGS CONTAIN MAXIMALLY
SYMMETRIC ONES

While having less symmetry, the coupling in Eq.~43! still
could contain contributions of highly symmetric solutions
in Eqs.~41! and ~42!. In order to extract such contribution
we introduce the projection operators to the correspond
subspaces in the space of couplings,

P(LR)@•••#5 lim
N→`

I (LR)
N Tr(LR)@•••#2Tr(V)@•••#

N~N221!
,

~C1!

P(V)@•••#5 lim
N→`

I (V)
N Tr(V)@•••#2Tr(LR)@•••#

N~N221!
,

~C2!

where, by definition,

I (LR)S n1 n2

m1 m2
D 5dn1 ,m2

dn2 ,m1
, ~C3!
e

s.

,’’

r.

v.

10502
g

Tr(LR)FgS n1 n2

m1 m2
D G5(

n,m
gS n m

m nD , ~C4!

I (V)S n1 n2

m1 m2
D 5dn1 ,n2

dm1 ,m2
, ~C5!

Tr(V)FgS n1 n2

m1 m2
D G5(

n,m
gS n n

m mD . ~C6!

By applying the projection operators in Eqs.~C1! and~C2! to
the coupling in Eq.~43!, we easily extract the symmetri
contributions,

P(LR)FgS n1 n2

m1 m2
D G5

2G

N11
I (LR), ~C7a!

P(V)FgS n1 n2

m1 m2
D G5

2G

N11
I (V). ~C7b!
cl.
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