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Universality and the magnetic catalysis of chiral symmetry breaking
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The hypothesis that the magnetic catalysis of chiral symmetry breaking is due to interactions of massless
fermions in their lowest Landau level is examined in the context of chirally symmetric models with short
ranged interactions. It is argued that, when the magnetic field is sufficiently large, even an infinitesimal
attractive interaction in the appropriate channel will break chiral symm$§556-282099)04220-4

PACS numbgs): 11.30.Qc, 11.10.Hi, 11.10.Kk, 12.20.Ds

[. INTRODUCTION Landau level. In the absence of interactions, their effective

dynamics is described by a field theory whose dimensional-

Field theoretical models in external electromagnetic fielddty is two less than the spacetime dimension. We shall take

are of great interest and have attracted a lot of attentiof€ hypothesis that, at least for strong magnetic fields and

[1—4]. They are relevant to the study of many physical sys_short _ranged interactions, the_ dynamics of_ chlral_ symmetry

tems whose properties depend on the effects produced eaking can be understood in the lower dimensional effec-
external fields, especially when such effects are non- e theory.

wurbative i X A particul le of h a sit As an illustration, we shall argue that this assumption is
perturbative in nature. A particuiar éxample of such a sl uai/ery natural in 2-1 dimensions. There, the modes of the

tion is the so-called magnetic catalysis of chiral symmetryj,est | andau level are non-propagating, and in the absence
breaking[5-10] (see alsd11-13 for some earlier studi¢s f interactions, the ground state is highly degenerate and
which has many potential applications in condensed mattegontains both chirally symmetric and chirally non-symmetric
physics[14—16 and in studies of the early Univere7]. states. Interactions, even with infinitesimally small coupling

It is well known that a sufficiently strong attractive inter- constants, will split this degeneracy, and whether chiral sym-
action between massless fermions can result in a chiral synimetry breaking occurs or not depends on whether the inter-
metry breaking condensate and a dynamically generated fegction favors the chirally non-symmetric or chirally symmet-
mion mass. In the Nambu—Jona-Lasinio model, for examplesic ground states. One by-product of our analysis will be the
this occurs when the interaction strength is at a particulafact that the dynamical generation of parity violating masses
large critical value. It is also now known that the presence oeems to be suppressed by magnetic fields.
an external magnetic field can be a strong catalyst for this In the more complicated case dB+1)-dimensional
effect, leading in some cases to the generation of a dynam@auge theory, we shall argue that the infrared dynamics is
cal mass for fermions even by very weak attractive interacgoverned by an effectivél+1)-dimensional Gross-Neveu
tions. For example, in an external magnetic field, the criticalike theory with an infinite number of flavors of fermions.
value of the Nambu—Jona-Lasinio coupling is reduced toVeé derive the most general low energy effective action
zero. which is compatible with the symmetries of the four dimen-

It was suggested ifi5] that this magnetic catalysis of sional theory. We then study the resulting model using the
chiral symmetry breaking is a rather universal phenomenof€normalization group. We will present a plausible argument
and that its main features are model independent. The argde" Our main conclusion: that the presence of chiral symme-
ments were based on the observation that the effect is primd Preaking depends crucially on the sigsut not the mag-
rily due to the dynamics of the fermions from the lowestNitud® of one particular moment of the coupling constants
Landau level which are gapless and should therefore domjhich we denote by, . If it is of the appropriate sign, its
nate the behavior of the system at long wavelengths. infrared renormalization group flow is to strong coupling and

In this paper we will develop this idea further. We shall chiral symmetry is broken. With the other sign it flows to
investigate the low-energy dynamics of chirally symmetricZ€ro coupling and chiral symmetry remains unbroken.
models with a short range interaction in an external magnetic
field. The idea is to construct an effective action for the low Il (2+1)-DIMENSIONAL PARADIGM

energy degrees of freedom. In strong external magnetic Consider a system of relativisti@+1)-dimensional fer-
fields, these are the modes of charged particles in the lowegtions with the Dirac Hamiltonian

ioc-D 0
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ish Columbia V6T 171, Canada. . .. .
TOn leave of absence from Bogolyubov Institute for Theoreticalwhere D=V +ieA(x) is the covariant derivative andr

Physics, Kiev 252143, Ukraine. = (o, 0?) are the first two Pauli matrices. This Hamiltonian
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is obtained in the continuum limit of some tight-binding lat- This is a symmetry oHy and it also commutes with the
tice models relevant to condensed matter physics — on mass termB(m, T2+ m,T3). This mass term breaks thi?2)
square lattice with half of a quantum of magnetic flux flavor symmetry toU(1)xU(1).

through each plaquettesee[18] and references thergimr

on a honeygomb Iatti(_:e without a magnetic fiél_@]. It hgs_ B. Zero modes
also been discussed in the context of the continuum limit of i i ) ) . .
the d-wave state of high superconductorgl4,15. This existence of the unitary matriy3 which anti-

commutes withH, implies thatH, has a symmetric spec-
trum: if Hyg=Euyg, thenH Byg=— EBy and, with a par-
ticular choice of phase)_g= B¢ . Thus, for each positive

Ho commutes with any linear combination of the matricesenergy state, there is a negative energy state and the prob-
ability measure/fé(x) Ye(X) is a symmetric function oE.

A. Symmetries

3
1 0 L 0 o The interesting feature dfly is the appearance of zero
1= 0o 1)’ T =le¢® 0] energy states in a background magnetic field. Consider the
equation
0 —id® 1 0 o-Dup=0, 7
T?= i o |- T= o —-1/- ) e .
where the background electromagnetic field is static and has

the propertyﬁxﬁ; B(x). It has the solution
which generate the Lie algebra ofli2) flavor symmetry

which we will call chiral symmetry. Possible mass terms Uo(X)=exgied(x) —eay(x)]v(X), 8
which can be added tél, must be matrices which anti-

commute with it. The basic matrix which anti-commuteswhere

with Hy and which commutes with all of the flavor genera- . Lo . L

tors is —V24(x)=V-A(x), —V2x(x)=VXA(Xx)=B(x)

3 ©
o 0
B=( 0 Us) ®

- Vv(x)=0. (10)

and a mass term which one could addHg which would
preserve the flavor symmetry gm.

Generally, in 2-1 dimensions, fermion mass terms vio- 1
late parity symmetry. A parity transformation which is a X(X):__f d?y In|x—y|B(y), (11)
symmetry of the massless Dirac equation 2m

The second equation in Eq®) has the solution

with asymptotic behavior

Hote(X) =Eie(X) (4)
e
and which commutes with the flavor symmetry generaitérs lim y(x)=— gln|x|, X= EJ d?yB(y). (12
is [x| =2
22 0 (This is strictly correct if the magnetic field goes to zero
¢E(x1,x2)—>( 2) Pe(—x1,x3). (5) sufficiently quickly at infinity for the total fluxy to be finite.
0 -0 If it is not finite, there is an infinite number of zero modes

) ) ) ~and their density is given by/V whereV is the volume).
The mass termBm is odd under this transformation and it Asymptotically,

would therefore violate parity symmetry. More generally, all

mass terms of the fornB(myZ+ rﬁ«f) are odd under the lim uo(x)=|>Z|X"3v(x). (13
parity defined in Eq(5). Moreover, there is no modification |x|—c0

of the parity transformation which would make the magss

parity symmetric. In order to have a normalizable zero mode, the spinod)

It is possible to get a parity invariant mass by breaking theshould be an eigenvector of with eigenvalue—sgn(y)
flavor symmetry. For this, we must define parity as a com{—1 if x>0 and+1 if y<0). It then must be a normaliz-
bination of the transformatio(d) and a discrete flavor trans- able solution of the equations
formation, for example,

2

d d
o av(x)=—sgr(x)Vv(X), (—1+isgr(x) —Z)V(X)=0-
lﬂE(Xl,XZ)H( 0 ax ax

0
T, 12
_0_2>T Pe(—X7,X9). (6) (14)
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Solutions of this equation are(x)~[x'—isgn(y)x?]¥ for  states, if the matrixM commutes withB, only the zero
k=0,1,...[|x|1—1 where[|x|] is the largest integer less modes survive in this summation.

than|y| and the maximum value df is the largest power First of all, this means that in a magnetic field the expec-
allowed by normalizability of the wave function. Thus there tation value of the parity violating mass operator vanishes,
are[|x|] normalizable zero modes. This fact depends only

on the total magnetic flux and is independent of the profile of 20 - ) — 2yt - ) —

the magnetic field. The result, which we have found by ex- <J’ d X'\P\P'> <f dw ’B\P'> 0, (19

plicit computation, is also a result of the Atiyah-Singer index . )

theorem generalized to open spaf28]. Some other appli- regardless of the occupation of zero modes. This has the

cations of this idea are discussed[21]. implication that external magnetic fields do not enhance the
There are thus [2x|] zero mode wave functions ¢i,. ~ 9eneration of parity violating mass terms. In fact, it indicates
All of them obey the equation that if the external field is strong enough that the zero modes
are well isolated, the expectation value of a parity breaking
Bio=—5sgr(x) o, (15  mass operatoK,[: ¥ '4W¥:) should always vanish.
On the other hand, the parity invariant, chiral symmetry

[|x|] of them obey the equation breaking masgwith M= B8T®) has the expectation value

BT 0=s0r(x) tho, (16)

<f dzx:@(x)T3\If(x):>
and[|x|] of them obey

1
BT3 0= —sgrix) . (17) =- Esgrm( Zpd d?X g () T2 4ho(X)
Of course, any linear combination of them is also a zero ot 5
mode and could be chosen to be eigenvalues of any of the —unogc:u » d™Xeho(X)T l//o(X))- (20)
flavor symmetry breaking mass operatqﬂé-f. All linear P
combinations would satisfy Eq15). It is possible to choose ground states where this expectation

value has any value between two bounds:
C. Interpretation

The existence of zero modes implies that the Dirac —[|X|]s<fdzlef(x)T3\If(x):>s[|X|], (21)
ground state of the second quantized system of fermions is

degenerate. In the ground state, all negative energy states I?fwe added an infinitesimal mass termg@T? to the Hamil-

the fermions are full and all positive energy states are empty. ) ion Ho, the system would choose the ground state with
For overall charge neutrality, half of the fermion zero modes ,

- 3 .
must be occupied — but the occupation of zero modes ignlnlmal AT®, that is the one whefe
otherwise unconstrainédThis means that the degeneracy of o
the ground state i®o!/[ (No/2)!]? whereNo=[|x|] is the <f d2x:\If(x)T3\P(x):>=—[|X|]sgr(mX). (22)
number of zero mode wave functions.

In second quantization, the expectation value of any ferthe gpservation that this is so for infinitesimal mass was
mion bilinear operator, using the Dirac commutator for nor-made in[5]. However, this does not mean that chiral sym-

mal ordering, ig20] metry is necessarily broken. It only implies that the ground
state is degenerate and there are chirally non-symmetric

< j d2x:\IfT(x)M\If(x):> ground states which are degenerate with chirally symmetric
ones. If there are additional weak interactions, of course, the

correct ground state should be found by resolving the degen-

1
T E( OCCEUpiedf d?XYLOOM re(x)

This is just the contribution of zero modes. If the total magnetic
_ N
unogc:upied d X‘/’E(X)M‘//E(X)>' (18) flux y is finite, the Dirac Hamiltonian has a continuum spectrum
whose support begins at zero energy. Furthermore, there is a thresh-

Since, in the Dirac ground state, all positive energy states argld density of continuum states whose contribution to bilinear den-
unoccupied and negative energy states are occupied, afiti€s such as Eq22) makes up the difference betwefix|] and

since 8 maps positive energy states onto negative energ _Whlch is proportional to the spectral _asymmetry of the Hamil-
onian and is the correct result. For details, E&@. In the present

paper, for simplicity we ignore the relatively small error which we
make in neglecting the asymmetry of the continuum spectrum.
1Of course, occupying half of the zero modes is only possibleWhen the magnetic flux is infinite, for example in the case of con-
when their number is even, which we shall assume. If it is oddstant external field;| x|] should be replaced bgB|V/27 whereV
there are no neutral ground states. is the spatial volume.
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eracy using degenerate perturbation theory. In this case, aind we shall use the notation
that is required to break chiral symmetry is an interaction
which favors a chirally nonsymmetric population of the zero v
modes. V= W)
If the interaction favors the breaking of chiral symmetry,
symmetry breaking occurs for even an infinitesimal value ofthe |agrangian has the form
its coupling constant. This is the reason why the critical
value of the interaction can be at zero coupling in the pres- .. ..
ence of a magnetic field. In fact, in the absence of external 30=f d*X[iW](Dg+ 0 D)W +iV](Do—o-D)Wg].
magnetic fields a critical coupling necessary to break chiral (28)
symmetry is typically large. In the presence of the magnetic
field it is reduced to zero. This action has a global (1), X U(1)g chiral symmetry. In
For example, it is well known that an interaction of the the following, we must keep in mind that when there are
Nambu—Jona-Lasinio model, both background electric and magnetic fields, or if the gauge
field is dynamical, this symmetry is reduced to the vector
N U(1) by the axial anomaly. For simplicity, in this paper we
Lintzi(\IfTslP)z, (23)  will assume that this is not the case. It would be straightfor-
ward to extend the present work to models with dynamical
U(1) fields, by introducing more species of fermions so that
when added to the Hamiltonian will break the chiral symme-there exist chiral symmetries which are unaffected by the
try if the coupling constant is attractive and is greater than axial anomaly. For now, we will consider the case of a con-
particular critical value. This is seen by analyzing solutionsstant non-dynamical background magnetic field,
of the Schwinger-Dyson equation for a mass condensate. It
was shown irf5] that, in the presence of a magnetic field, the .
critical coupling moves from some finite value to zero — Ao=0, Aj=- Efij3xj- (29
even an infinitesimal coupling will break the chiral symme-

try. That observation is consistent with our finding here. |, this background field, it is convenient to make use of the

An interesting test of this idea would be to examine thepyixeqd spacetime-momentum representation as follows:
effect on system with the interaction

(27)

S fdwdkdz [V (w—ka®+D)¥
= Z —_
0 (2m)2 Llo—Ko L

+iv i w+koP—D)Wg], (30)

K a2
Lin=7 (W¥)%, (24

which can break parity by generating a parity violating fer-
mion mass ifk has the appropriate sign and is of large
enough magnitudgL8]. Our analysis seems to suggest that a

where, by definitionz=x'+ix?,d?z=dx*dx? and

large magnetic field should in fact tend to increase the mag- 0 ZiJr e_Z
nitude of the critical coupling. _ gz 2
D=i . (31)
J eB
lll. STRATEGY IN D=3+1 2= 72 0
0z

In 3+1 dimensions, the situation is more complicated.
The zero modes of the Dirac Hamiltonian in a backgroundThe spectrum ofKo*—D) is well known. The equation
magnetic field still have some dynamics which is non-trivial B N
and there are more possibilities for interactions. (ko®*=D) ¢\ (2,2) =\ $\(2,2) (32
To understand the general strategy that we will take, be-
gin with the Lagrangian which describes Dirac fermions in-has eigenvalues
teracting with an external electromagnetic field,

A=+ Vk?+2n|eB|, (33
So=f d“xi\fy"Dﬂ‘lf, (25)  for all integersn=0,1,2 ... . Whenn=1, these are disper-

sion relations of(1+1)-dimensional Dirac fermions with
_ masses given by/2n|eB|. [Of course, this mass gap is not
whereD ,=d,+ieA,(x). For concreteness, we choose theLorentz invariant from a four-dimensional point of view.

chiral representation of the Dirac matrices, However, it is Lorentz invariant in +1 dimensions. The
_ reason for this is that there is a subgroup of the Lorentz
0 —i . 0 o group which survives in the background magnetic field — it
Y= i 0l y'=i(0i 0), (26) is invariant under boosts in the direction of the field lines.
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Here this will mean that the effective theory for Landau lev-that the interactions between fermions in four dimensions are
els must be invariant under the {11)-dimensional Lorentz ~ short ranged. Furthermore, the ultraviolet cutoff for the ef-
transformationg. fective theory should be less than the mass gap of the lightest

Zero modes ofD are solutions of the equation massive modeleB|.

(iv) We consider all relevant operators which could be
added to the effective Lagrangian which are consistent with
the symmetries of the theory. Since they should be relevant
in the sense of two dimensional field theory, these are all
and are given by the infinite set of ortho-normal functions possible four-fermion operators which are consistent with

symmetry. There are an infinite number of such operators.
@)(mﬂ)lzexp( _eB a<0> (v) We compute the beta function for the coupling con-
2 4 1)’

Dé(2,2)=0, (34)

m
bm(2,2)= JaT(m+1) stants of the relevant operators and look for infrared stable
(35) fixed points. These fixed points should govern the behavior

of the very long-wavelength degrees of freedom of the

with m=0,1,2 ... . Here, without loss of generality, we theory.
assumed tha¢B>0. In the (1+ 1)-dimensional theory, the (vi) If the coupling constants flow to an infrared stable
zero modes oD correspond to massless fermions. The La-fixed point, then an infrared limit of the massless theory
grangian is(restoring the space dependence exists and there is no symmetry breaking. If, on the other
hand, the coupling constant flow is not in the domain of

_ 043 ” (D% W) L (R% ®) attraction of_ any infrqred fixed point, so that it floyvs Fo

So= | dx’dx mE:O (™ Oy +ihy” ™ 0 py”) strong coupling in the infrared, we postulate that this implies
the dynamical generation of a mass gap — and spontane-

+ (massive modgs (36) ously broken chiral symmetry. We shall find examples of

. . both kinds of behavior.
whered.. = do+ 93 and the new fields are defined as the co-  An example of a local four dimensional interaction which
efficient functions in the expansions #f, andWy over the  preserves theU(1)gxU(1), chiral symmetry is the

complete set of eigenstates: Nambu-Jona-Lasinio interactid@2],
_ : (L)/y,0 3 N H G 4 A 2 i 2
v, = §‘,O P (X0 x3) pn(z,2)+ >, (massive modes Sii= | dX(PW)?+(Viys¥)?]. (39)
=
(37

A renormalizable version of this interaction would be one
* _ which is mediated by a massive scalar mesons.
Vo= > R x3) ¢n(z,2)+ >, (massive modas
m=0 (39) IV. GENERAL STRUCTURE OF THE LOW-ENERGY
THEORY

Note that the kinetic term in the acti@B6) for the mass-
less modes appears to havaJédN)gxX U(N), with N— o
symmetry. This is just the unitary symmetry which mixes the
different wave functions of the degenerate zero modes, an
which is actually there for every Landau level. This effective o
symmetry is not preserved by interactions. — (L)*; (L) o (R)*; (R)

We will analyze the possibility that interactions that are Lett n§=:0 (U0 19+ gn "+ Yn 1947
added to this field theory drive a spontaneous breaking of the
U(1)gXU(1),_ chiral symmetry by generating a mass gap
for the fermions in Eq(36). We expect that this spontaneous Ny Ny .my=0
symmetry breaking takes place at very long wave lengths.

Our approach to the problem in the following sections can be
summarized as follows:

(i) We consider the theory of four-dimensional fermions
in a magnetic field as described above, with some interac-
tions Which should be local and respect{3)-dimensional ( n, nz)
Poincareand chiral symmetry but are otherwise unspecified. Jdo

(i) We then consider the effective field theory which is
obtained by integrating out all of the massive modes of the
fermions in Eq.(36) and momentum states of the massless
modes above an ultraviolet cutoff. 3f there are long-ranged interactions which are mediated by mass-

(iii ) We assume that the resulting effective Lagrangian idess fields, the correct procedure would be to retain the long wave-
local. To guarantee locality, we generally have to assuméngth modes of the massless fields in the effective Lagrangian.

The constraints of (+ 1)-dimensional Lorentz invariance
and U(1)gXU(1)_ chiral symmetry allow four-fermion
Eoupling constants as in the effective theory,

©

ng Ny
(Lyx /(R),,(R)x /(L)
mz)wnl YR ).

(40)

The coupling constants

m; mp
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time reversalCPT) symmetry and the symmetry of the un- g
derlying theory under translations and rotations about the
axis of the magnetic field which are summarized in Appen- G
dix A. A general solution of those constraints would yield =
the most general allowed structure of the low-energy effec-

obey further constraints from charge conjugation, parity, and ( ny nz)

m; mp

2(n1+ mq+ny+my)/2

PHYSICAL REVIEW D60 105024

tive action in Eq.(40).
Some particular solutions of those constraints are of inter-

r'ing+my+1)I'(ny,+my+1)

est. For example, the constraints allow the maximally sym-

x \/F(n1+ DT (Mgt DT (Nt DT (mp+ 1)

(43)

metric solution withU(N)gX U(N) (N—o) symmetry,

ng N
g :gLR‘snl,mzb‘nz,mla (41)

m; mp

whereg, g is real. Similarly, there is a solution witd (N),,
(with N— ) symmetry,

ng np
g :9v5n1,n25m1,m2, (42

mp mp

wheregy is real again.

Since it descends from a Lorentz and chirally invariant inter-
action in 3+1 dimensions, it must necessarily satisfy the
constraints of symmetrjsee Eqs(A6), (A7), (A10), (A11)
and (A12)]. Unlike the first two solutions in Eqg41) and
(42), this last one in Eq43) does not seem to have any extra
symmetry in addition to the requirdd(1)gx U (1), flavor
symmetry.

Now, we envisage having obtained the effective action
(40) by integrating out all modes in the higher Landau levels,
as well as all momentum modes of the fermions in the lowest
Landau level which are above a certain cutoff. Of the many
interactions that this procedure would produce, we have kept
only the local four-fermion operators. This procedure is le-
gitimate only if the ultraviolet cutoff of this model is lower
than the lowest mass gap of the fields which have been elimi-
nated, i.e/eB|. By chiral symmetry and Lorentz invariance,
the effective action cannot contain mass terms for the fermi-
ons. Furthermore, the only Lorentz invariant four-fermion
operator is of the form given in Eq40).

The renormalization group procedure examines how the
coupling constants in E¢40) change as we further lower the

In addition a large class of solutions could be found bycutoff to isolate the very long wavelength excitations. This

the reduction of the interactions in

the original information is encoded in the beta function.
(3+1)-dimensional model to the lowest Landau level. After

The B function for the general coupling constant in Eq.

such a reduction of the Nambu-—Jona-Lasinio interactior{40) is computed in 2- ¢ dimensions to two loop order in

(39), we arrive at

Appendix B. The result is

Nl N2 Nl Nz 1 E Nl N2 Nl_N2+kl kl
PO v, M, 2% M, My 27 Yk NpNptky)O My M,
Nl kl N1+M1_kl N2
“9M, NgEM kO K, M,
1 |: Nl k2 ) N1+k1_k2 N2 ) M2+k1_k2 kl)
le'kz g ki Ni+ki—k; g M, M,+k;—k; g Ky M,
J’_
UMy M+k—ky) 9k, M, 9N, —M Tk, Ky
2 Nl N2 Nl k2+N1 kl_kZ kl kl k2+N2 kl_kZ N2
+——g > |9 o g ]9
(477) Ml MZ kl,kz kl kl k2 k2+N1 Nl N2 kl k2 k2+N2 kl
+ + . 44
UMy k=K ) Okt My ke "9 K k—ky )kt M, M, “49
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Finally, before we proceed to the next section, we note that // 0y \
we may have to occasionally cut off the summation over J K\
modes in the first Landau level. We do this by summing

modes up to some maximum number 0,1, ... N. Such a
situation could be produced by considering the fermions in
an external magnetic field with finite magnetic flux, or with
uniform field and finite transverse area. In that caswhich

can be thought of as the number of “flavors” which goes to arr
infinity as |eB|S,/27 whereS,,—x is the area of the two-
dimensional perpendiculdwith respect to the direction of
the magnetic fieldsubspace.

V. SYMMETRIC FIXED POINTS

In Appendix B, we have computed the two-logpfunc-
tion (44) for the most general coupling constants, subject to
the restriction in Eq(A12). The next natural step would be
locate infrared stable fixed points of this beta function. This
problem is far more complicated than we can solve at

present. Instead, in our analysis below, we shall restrict our . I
attention to the beta function for coupling constants with_’g'f/‘/N andgy—d,/N. As is clear from the definition, the

close to maximal symmetry. B functions will also get rescaled accordingly3, g
For some scalar field theories, where there are many com=Bir [N and By— B, /N. After taking this into account
ponents of a scalar field and renormalizable interactiongnd performing the limitN— o, we arrive at
which couple them, it is known that the only infrared fixed
points of the renormalization group flow of relevant cou-
plings are those with maximal symmetf23,24. To our 1
knowledge, there is no similar theorem for Gross-Neveu like Bir =289+ —0p , (47)
models. On the other hand, we consider it plausible that 4m
similar arguments can be applied: in particular, if no maxi-
mally symmetric infrared stable fixed point exists, then there
are no infrared stable fixed points at all. 1, 1 )
Maximally symmetric couplings can easily be shown to Bv=2e9y= 50+ 22 i (48)
be contained in other combinations of coupling constants. In 7
Appendix C we show that the Nambu—Jona-Lasith\aL)

coupling contains the maximally symmetric ones. | b hasized th h q dth i f
Consider the renormalization group flow in the speciallt MuSt be emphasized that we have adopted the rescaling o

case whe (N)gx U(N), andU(N)y couplings, as defined th_e most symmgtrigLR coupling by 14N rather than IV. .
effective action. Then, from our general result in the previ-8 functions, we conclude that the ¢11)-dimensional action

ous section, we extract the following expressions for ghe in Ed. (40) with g, s of order~1/\/N describes a consistent
functions of interest: and non-trivial interacting theory in the limi— o .

Whene =0 we can solve the renormalization group equa-
tions (47) and (48) explicitly, and the analytical solution

FIG. 1. The renormalization group flow in thg,(,g,) plane.

1, 1 5 ) reads
=2 +—0gyt+t ——=(Ng'r+2
BLr=2€0Lr 29V 4772( Rt 20vOLR
+ Ng\z/gLR_gxs/)- (45) 4As one _can see, t_he rescalinggfz by 1/N is also meaningful.
The resultingg functions are
Br=2¢Qr, (49)
N , 1 3 =2 e 50
,8V=ngv—ﬂgv+ F[ZNQV—(N—:%) Bv= ng_ﬂgv- (50
a
The corresponding theory is less interesting. Indeed, the expressions
X g9 r— (N—2)gyg?r]. (46)  for the B functions in Eq.(49) and (50) in the limit =0 describe

the situation whemy,, coupling does not run at all, whilg, expe-

riences asymptotic freedom from tige>0 side and infrared free-
Note that we have been forced to introduce a cutoffNotn ~ dom from theg, <0 side. We shall see in a moment that this picture
order to get a sensible result when taking the lifit-, it  corresponds to a special casg,(=0) of the flow described by
is convenient to rescale the couplings as follovggir Egs.(47) and (48).
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9ir(0)
g ()= T (51)
’ glr(o)t
1_
272
9+(0)
av(t)= " : (52
2mg,(0) gr (0t 27g,(0) [ gi (O}t
1+ — 1- - 1-
g (0) 2m” g (0) 2m?
|
This flow is presented graphically in Fig. 1 where the arrows 2 2
A . 27 9ir(0) 9ir(0)
show the flow direction toward ultraviolet. tyuy= -— , if ]gy(0)|=—F—,
In the upper half-plang, >0, the simple analysis of the 19,0 2g%(0) 2m
flow given by Eqgs.(51) and (52) reveals infraredwith g, (55)
— +0o0) and ultraviolet(with g;,— =% andg,— +») Lan-
dau poles at 272 t 16.,(0) 97 (0) 56
tUV: Y, | g < 5
gfr(0) ’ 2
2
R=— 2_7T+ 9ir(0) , (53) Since the infrared fixed point (0,0) corresponds to weakly
9+(0) 29\2,(0) coupled dynamics, there is apparently no mass generation in

this half-plane of the coupling space. This is also in full
agreement with our general expectation. Indeed, the negative

272 values ofg, correspond to the repulsion rather than attrac-
tov="—"—, (54)  tion in the fermion-antifermion channel which is responsible
9i:(0) for the generation of mass, breaking chiti1) symmetry.

Our conclusion here is that whether this model breaks

chiral symmetry or not is entirely dependent on the sign of
respectively. We argue that the strong infrared dynamicshe coupling constard,, .
(with g,— +<) in this half-plane of couplings is an indica-  The reader might be puzzled by the fact that@ ) chiral
tion of a mass generation and breaking of the chirél) symmetry can be broken in an effectively two dimensional
symmetry. Indeed, the generation of the fermion mass in theystem. We emphasize here that this phenomenon is identical
infrared region seems to be the only way one can avoid runto that in the chiral Gross-Neveu model. Strictly speaking,
ning into the problem of the physical Landau pole. chiral symmetry can only be broken in the lafgdimit. The

The generation of the fermion mass in tgg>0 half- finite N system should still be chirally symmetric, as the low
plane, in its turn, is consistent with the expectation of thedimensionality of the system would not allow for spontane-
universality of the magnetic catalysis in a wide range of (3ous breaking of a continuous symmetry. Indeed, if we con-
+1)-dimensional modelg¢such as the NJLwith a short sider the case of a large but finite value Nf an infrared
range interaction. Indeed, as we established, the low energstable fixed point appears forg,>0 at (9, .09,)
dynamics in such models is described by the=(—2,7N) which goes to infinity withN—oco. This fixed
(1+1)-dimensional effective action in Eq40) with the  point is at strong coupling, so a conclusion based on pertur-
coupling satisfying the set of restriction in E¢A10), (A11)  bation theory is speculative at best, but its appearance is
and (A12). The generic couplingsay, like that in Eq(43) consistent with the expectation that the massless limit of this
coming from the interaction of the lowest Landau levelmodel is well definedalbeit strongly coupledwheng, >0
modeg which does not have any extra symmetry is still ex-and N is finite and chiral symmetry breaking need not take
pected to have th&)(N)gxX U(N)_ andU(N)y contribution  place. WhenN—c this fixed point moves to infinite cou-
[see Egqs(C7a and(C7b)]. Then, if thisU(N),, contribution  pling and chiral symmetry breaking is possible.
is positive, g,>0, it is going to drive the system to the
generation of mass.
Now let us study the flow in the lower half-plage=<0. VI- CONCLUSION

As is easy to see, there is an infrared fixed point at In this paper we have shown that the effective low-energy
(9 ,9,)=(0,0) and the ultraviolet Landau polwith g,— dynamics of theU(1) chirally symmetric models with a
—oo while g;, is either fixed or approaches=) at the fol-  short range interaction in a background magnetic field is de-
lowing values oft: scribed by a (% 1)-dimensional Gross-Neveu like model

105024-8
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with an infinite number of flavorgsee Eq.(40)]. Here we D,

established that different flavors come out as the representa- Y=eB| x*—i e_B)’ (Alb)
tion space of the magnetic translations in the original (3

+1)-dimensional model. The number of flavors is infinite [X,Y]=i, (Alc)
and proportional to the area of the two dimensional space

perpendicular to the magnetic field. where we assume tha&B>0. It is easy to check that the

Based exclusively on the arguments of symmetry, we esgperatorsX and Y commute with the Hamiltonian of our
tablished a set of conditions, given by Ed#6), (A7),  model. Instead of thes¢andY, it is convenient to introduce
(A10), (A11) and (A12), that the couplings of the effective the “creation” and “annihilation” operators
theory have to satisfy. To show that they allow a non-trivial
solution, we presented a felwut of infinitely many possible X+iY
examples of couplings that satisfy all the constrains. Among a= 2 (A2a)
them, there are, in particular, the highly symmetd¢N)g
XU(N)_ and U(N)y (with N—<) couplings. These latter

are of special interest because their renormalization group af= ' (A2b)
flow is self-contained and allows an analytical solutjsee J2
Egs.(51) and(52)].

At the level of the effective theory, we calculated the [a,a’]=1. (A2c)

two-loop B function and analyzed the renormalization group o . .
flow in the two-dimensional subspace of thd(N)g Having introduced the_se operators in the problem, we realize
X U(N), andU(N)y couplings. The general result is argued that the Fock space is spanned by the set of states)

to indicate the generation of the fermion mass ingge-0 ~ Where the;rquantum number=0,1,2 .. . denotes the eigen-
half-plane of couplings. In the other half-plane, the infraredvalue ofa’a operator and the multi-indexrepresents all the
dynamics is weakly coupled and there is no mass generatiofther quantum numbersay, the Landau level number, the
This mass generation pattern is consistent with the earlidf"mion spin projection and the chiraljtyln the absence of
suggested conjecture of the universality of the so-calle®nY Vacuum rearrangemefstymmetry breaking the above
magnetic catalysigs] in, at least, the models from the same Set of stategin coordinate representatipreads

universality class as the chirgl(1) NJL model.

1 1
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where|=1/\/eB is the magnetic lengthz=x!+ix2,z=x"
APPENDIX A: CONSTRAINTS ON COUPLING —ix?,xp)=x%po—x*p5 and ¢, , is the spinor with a given
CONSTANTS spin projectiono- and chiralityy. Note that the expression in

Eqg. (A3) is well defined even for the case whem<n (both

~ Letus clarify the origin of the action as well as the mean-pympers are positiyedue to the Rodrigues formula for the
ing of different flavors in Eq(40) in terms of the original  generalized Laguerre polynomials,

(3+1)-dimensional model defined in Eq28) and(39).

We start from the analysis of the space-time symmetries 1 gn
in the model. Notice that, due to the presence of the back- 2" LM (z) = n—lez—n(efzzm). (A4)
ground field, the standard translations in the two-dimensional - dz
plane perpendicular to the magnetic field are not symmetrie .
of the original model in Eq(28). Nevertheless, there are E)ne has to remember also that all the modes in the lowest
other transformations, the so-called magnetic translation
which leave the action invariant. In contrast to the case of th
ordinary translations, the two generators of the magneti . . . .
translations do not commute. In the symmetric gauge given Since we are interested in the structure of the effective

in Eqg. (29), the explicit representation of the generators anoaCtipr." describing the infrared dynamicpot< veB), it is
their commutation relation read sufficient to take into account only those degrees of freedom

that originate from the lowest Landau level modes=Q).
These modes freely propagate in theH1)-dimensional

WLt E) (Ala) parallel x°,x%) subspace, and are classified by the chirality
eB/’ and the eigenvalue ai'a [see Eq.(A3)]. In what follows,

g_andau level 6=0) have the same projection of the spin,
hile the modes in the higher Landau levels=1) have
oth projections.

X=/eB

105024-9
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we denote the effective degrees of freedom accordingly,

#{-P(x)), where the superscrigt) or (R) denotes the states U,=1+ie,Y=1+ E(a— a’y,
that result from the (3-1)-dimensional states of definite V2
chirality. In the parallel subspacex{x®),y{)(x) and (A8D)
#(x)) have the interpretation of the left and right moving
along thex® axis modes, respectively. Up=1+iea'a. (A8c)
While restricting the kinetic term in the NJL mod9)
to the lowest Landau level modes, To determine the transformation properties of the fields of
different flavors, we again recall that, by construction, these
S b R+ b _Y(x) fields are the eigenstates of taéa operator. Then, by doing
W(x ,XL)—’mZO Nl a simple exercise, we find that the action of the creation and
' annihilation operatorsa™ anda, on the properly normalized
( 7 )m p( z?) fields should read
X —_ _—
7 ex ) (A5)

a'p=Vn+1¢ns1, aya=nygp1. (A9
we check thaty11,,— yﬁ‘put. After performing the integra-
tion over the perpendicular space coordinates in the origindlaking use of these properties, we check that the kinetic
NJL action, we arrive at the effective model as in E40).  term in the effective action is invariant under the transforma-
Remarkably, while the NJL couplinG is dimensionful, the tions in Eqgs.(A8a), (A8b) and (A8c). In fact, if we had
effective coupling in Eq.(40) is dimensionlessg~G/I?  started with a more general, non-diagonal kinetic term in the
=GleB. effective action[which is not forbidden by the chirdl (1)
From the derivation above, we see that the fields of dif-symmetny, the requirement of invariance under the magnetic
ferent flavors in the effective (#1)-dimensional theory translations would lead us back to the diagonal form as in
(40) correspond to different eigenstatesadt operator. This  Eq. (40).
simple observation, as we show below, has far reaching con- The invariance of the four-fermion interactianin Eq.
sequences. (40) under the set of transformations in Eq#.8a), (A8b)
Now, let us establish the allowed structure of couplingand (A8c) leads to
constants in Eq(40). The most general restriction on the

couplings comes from the condition of reality of the action. n—1 n N no+1
This requires that Jnyg| 2) —n+igl
1 my my my
N N2 mz My n n ny n,
g*( >=g( ) (A6) cymal | —ymat1 -
m; mp N, nq m; g m,— 1 m, my 19 m; m2+ 1 01
(A10)

Similarly, the invariance under the paritx3— —x3) leads
to another restriction:

n;+1 n, n, n,—1
)— Jn_zg<
(A7) mp my mpy  my

m; m; ng np/’

e e

ny n;

+Vm;+1g

el

These two conditions are too general and so are not of great m; m,—
interest or of great power by themselves. It turns out, how-
ever, that there are other, more restrictive conditions.

By recalling the origin of flavors in Eq40), we realize
that the effective theory should enjoy some kind of flavor ng n,
symmetry that results from the symmetry under magnetic g(m m )=0, unless n;—ny+m;—m,=0.
translations of the original (8 1)-dimensional theory. This v (A12)
flavor symmetry, as will become clear in a moment, puts
further restrictions on the allowed structure of the four-index
coupling in Eq.(40). APPENDIX B: CALCULATION OF THE TWO-LOOP

The infinitesimal transformations of the magnetic transla- B FUNCTION
tions and the related rotation in the perpendicular plane are
given by the following operators:

m;+1 m,
(A11)

To derive the two-loogs function of the effective spinor
theory in Eq.(40), we apply the method of Ref24] that was
. used for thee* scalar theory ind=4—¢ dimensions. In
U;=1+ig X=1+ 'S_l(aJr ah), (A8a)  dimensional regularizatiofwith D=2+ 2¢), our renormal-

J2 ized Lagrangian density reads

105024-10
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o K+p
Lun= 3 @O 0,40+ ZP g0yl L
0 R Q'k R R
ng n, > >
+ Z M—ZSG( ) p P
ni,Ny,my,my=0 mp mp
X l//(L)* l/I(R) {/,(R)* l/I(L) L
q
(a)
=2 W0 P+ ia_y) kep
n=0 R
” n
+ E MZag( ) lﬁ(L)* w(R) l//(R)* l//(L) L q-k L L
nq,ny,mq,my=0 m; m > > >
p p
+ ( . ), (Bl)
R
q
where the couplings includes the coupling constant renor- ()

malization, G=2,9, and the ellipsis denotes the counter-
terms. We remind the reader that the four-index coupijig
non-zero only fom;—n,+m;—m,=0. This means that the
four-fermion term in Eq.B1) contains the sum only over This is going to be used in the definition of tsefunction. In
three indicegsay,n;,n,, andm;), while the fourth oneif,) calculation, we impose the following renormalization condi-
is superfluous. tions:
Before proceeding with the actual calculation of tBe

function, we need to specify how to handle the infrared di- d

- . . _ (ZR) (2L)
vergences that appear in the calculation of the Feynman dia- ap_ |p 0=y ap. ——TIy
grams [24,25. Such divergences usually come from the p=0
propagators of the massless fermions. If treated improperly,

N1 N
=g( ) (B5)
0

FIG. 2. Diagrams contributing t6®® andT'?Y), respectively.

=1, (B4)

they could easily obscure the calculation of the relevant dia- ) Ni N

grams and eventually lead to a wrong result. To avoid the r M, M, M; M,
problem, in what follows, we modify the infrared region by
changing the fermion propagators as follows:

Note that the introduction of the effective infrared cutoff
in the fermion propagators earlier allows us to use the renor-
malization point ap=0.
s (p)= P- P- ' (B2a) The Feynman diagrams of the relevant contributions to
—m? the two-point functions at two-loop order are given in Figs.
2a and 2b. By extracting the divergef order 1£) terms
of these two-loop corrections, we arrive at the equations

S‘R)<p>=p—2~%- B2) I op|  _m,
p pc—m 'y =Z\’+
ap- p=0 (4m)%
ki k,+N ki—k, N
This infrared regularization procedure respects all the sym- X >, ( )
metries of the model and does not change the ultraviolet ke AN ki—ko kKot N - ky
region. (B6)
Now, let us calculate thg function. First of all, we recall
that the relation between the bare and the renormalized cou- Q)
plings, in the dimensional regularizatiod &2+ 2¢), reads =Z§“L)+
p=0 (477)28
(Nl NZ) M*Zs (Nl NZ) y 2 G(N k2+N G kl_k2 k1>
9 M1 M2 \/Z(NL:L)ZF\/'I?ZF\E)ZST;G Ml M2 ' Ky ko kl kl_kZ k2+N N/’
(B3) (B7)
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where, by definition,

c® 1 9 (d°dP k+p)_(q—k),q_
(Fig. 25 o= —f q (k+p)(a-k).q
(4m)% p?PHIP-J(2m)2 [(k+p)?-m?](q-K)2-m?l(q*—m?) | _,
= ! +0(1) (B8)
(4m)% ’
c®) 1 9 (dPkdP k+ —k)_
(Fig. 25 o= f q (k+p)+(q—k)-a;
(4m)% pPPH P (2m)% [(k+p)2-m?I[(q-K)2=m?l(g*—m?) | _,
= ! +0(1) (B9)
(47)%e .
Thus, we see that=cV=—1.
In a similar way, the perturbative expansion for the four-point function reads
1“(4) Nl N2 _ Nl N2 a0+alg Nl N2 Nl_N2+k1 kl
Ml M2 p=0— Ml Mz 4’778 kl kl Nl_N2+kl Ml M2
—G Ml N1+Ml_kl G kl M2
. bo+b;e { (Nl N3 (Nl_N2+ Ky ky (Nl_N2+ ko ka )
(47e)? Kk Ky Ni—Ny+ky Ky N;—Ny+k;, M, M

CO 2 |:G(N1 k2 ) N1+ kl_kZ N2 ) M2+k1_k2 kl)
+
(47)2% K kg ki Nitki—k; M, Ma+ky—ka ka M>
kl k2 Nl NZ_Ml+k2 M1+ kl_kz N2
+G G
Ml Ml+k1_k2 k2 M2 N2_M1+k2 kl
+d0+d18 |: (Nl k2 )G(Nl_N2+kl kl)G Nl+k1_k2 Nz
(47e)? K1k, ki Nit+ki—k; M, M, ka N;—Nz+ky
kl k2 Nl N2 kl_k2+M1 NZ_Nl+kl
+G G
Ml kl_k2+M1 NZ_N1+k1 kl k2 M2
G Nl N1+kl_k2 Ml+k2_kl N2 k2 kl
+
kl k2 Nl+kl_k2 M2 Ml M1+k2_kl

(B10)

+G .

kl+k2_M2 kl Ml N1+M1_k2 k2 M2

Note that the restriction; —n,+m;—m,=0, is satisfied for each four-index coupling that appears here. The coeffiaients
b;,c; andd; are defined by the following expressions:
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k
L L
R R
(@)
k
L L
R R
(b)
FIG. 3. Diagrams contributing t5(*) at one loop which deter-
mineay anda;.

) a0+a18
(b)
i dPk k? FIG. 5. Diagrams contributing t6(*) at two loops which deter-
_MDZJ (2m)° (K2—m?)2 mine Co.
1 m?
_ i b0+ b18
478(l+8(1+’)/)+8|n4w > +O(8), (F|g 4)*) 5 +O(l)
s 4re
(B11) .
B |2 f dequ q2k2
k q MZD—4 (27T)2D (qumz)z(szmz)z
1 ( 2
= 1+2e(1+ y)+2¢ln +0(1),
(4778)2 ( v) 4’7TM2 (1)
(B12)

@ [0}

(b)

0 _ @

(©
FIG. 4. Diagrams contributing t6(*) at two loops which deter- FIG. 6. Diagrams contributing t5(*) at two loops which deter-
mine by andb,. The diagram(c) is finite. mined, andd;.
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g kl Nl_N2+k1

Co Here y~0.577 is the Euler constant.
(Fig. 5)— am)? +0(e) From Egs.(B11) — (B14), we obtain
m) €
_ i2 dedeq 2
w4 (2m)?P ap=-1, a;=—(1+y)-In—;, (B153
A
ki (q—k)_
(k*=m?*)*(q*=m?)[(q—k)*~m?] 2
= W +O(8), (513) 477:“’
m) &
and 1 150
Co=— 3, C
Fio.6 d0+d18+o(1) i2 dedeq )
1. 0)— = —
(477 )2 /“LZD 4 (277.)2D
k?q_(k—q) 1 m?
" do=—5, di=—(1+y)-In—;.  (B15d
(k*=m9)*(g°=m)[(k—q)*—m7] 4
B 1 (1 m?
T (47e)? 2 telltyte In47.m2 +O). After expressing the functio@ in terms ofg, we arrive at
(B14)
|
G Nl N2 . Nl N2 _ao+3-18 Nl N2 Nl_N2+kl kl
e Mo “Omy My Tame % ’

My M2
N1+M1_k1 N2
kl M2

Nl kl
“9M, NpEM k)

:| b0_2a3+(b1_4a1a0)8
(4me)?

Nl N2 Nl_N2+kl kl Nl_N2+k2 k2
x> |g B g B g
kq ko kl Nl N2+k1 k2 Nl N2+k2 Ml M2
Nl kl N1+M1_k1 k2 N1+M1_k2 N2
4+
9 M, Ny+M -k, /O K, Ny+M;—k,) 9 K, M,
CO Nl k2 N1+k1_k2 N2 M2+k1_k2 kl
-— 2|9 g g
(417)%e K ko ki Nitki—k; My Ma+ki—k; ka M2
kl k2 Nl NZ_Ml+k2 M1+kl_k2 N2
+9 |9 9\ N
M, Mj+ki—Ko/ | ko M, No—My+Kk, Ky
do+a3+(d;+2apay)e { (Nl Ky ) (Nl—N2+k1 k1>
(4me)? Ky ko g ki Nitki—k; g My M2
Nl+k1_k2 N2 kl k2 Nl N2
X +
g k2 Nl_N2+kl g Ml kl_k2+Ml g N2_Nl+k1 kl
kl_k2+Ml N2_N1+kl Nl Nl+k1_k2 Ml+k2_k1 N2 k2 kl
X
9 K M, K, kK O Ngtk—k, M, 9IM, Mtk kg
N1+Ml_k2 N2 Nl k2 kl kl+k2_M2
+ .
g kl+k2_M2 kl g Ml N1+M1_k2 g k2 M2 (816)
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N1 N
G
My M;

The B function is defined as followg24]:

o2

> ﬁ(g)(nl 2) ’ Mo Mol |, ®17
= Z& .
ny.n3 oMy .mp my m ag(nl nz) VZRZRzRZ) VZzZRZRZR
m;  my
By making use of this definition, we calculate the two-lgégunction,
Nl N2 _2 Nl Nz . ao 2 Nl N2 Nl_N2+kl kl Nl kl
ﬁ(g) Ml M2 N sg Ml Mz 277 kl g kl Nl_N2+k1 g Ml M2 g Ml N1+Ml_k1

N;+Mj—k; Nz”_f_ b,—2apa;

Ny N2
g kl Nl_N2+k1

X9

Kq M, 472 ky.ky
% Nl_N2+k1 kl Nl_N2+k2 k2
g k2 Nl_N2+k2 g Ml M2
Nl kl N1+M1_k1 k2 N1+M1_k2 NZ
+
g Ml N1+Ml_k1 g kl N1+M1_k2 g k2 M2
CO Nl k2 N1+k1_k2 N2 M2+kl_k2 kl
=29, g AL
47° Kk, 1 Nitki—k; My Ma+k;—k; ka M2
kl k2 Nl N2_M1+k2 M1+k1_k2 N2
J’_
UM, M+ki—ky) 9k, My,  J9IN,—M Tk, Ky
n dl+a0al |: (Nl k2 ) (Nl_N2+ kl kl ) N1+ kl_k2 Nz
Am® Kk J ki Nit+ki—ky J M M, J ka N;—Na+kg
kl k2 Nl N2 kl_k2+M1 NZ_Nl+kl
+g B al \, g
Ml kl k2+Ml N2 Nl+k1 kl k2 M2
+ Nl Nl+k1_k2 Ml+k2_k1 N2 k2 kl
g kl k2 g N1+k1_k2 M2 g Ml M1+k2_k1
N1+Ml_k2 N2 Nl k2 kl kl+k2_M2
+
g k1+k2_M2 kl g Ml N1+M1_k2 g k2 M2
+ 2 ( Nl Nz) |: (Nl k2+ Nl kl_kz kl) + ( kl k2+ N2 kl_k2 Nz)
(477)29 Ml M2 kl'kZ g kl kl_kZ g k2+Nl Nl g N2 kl_k2 g k2+N2 kl
kl k2+M1 kl_k2 Ml Mz k2+M2 kl_kZ kl
+
g Ml kl_k2 g k2+Ml kl kl kl_kz g k2+M2 M2 ' (818)

where we already used the fact tlﬁtz bo= —2d, which, by the way, is the necessary condition for the renormalizability of
the model. Note that the last term in E8.18) appears due to the renormalization of the two-point function. After taking into
account the values of constants in ER159 — (B15d), we arrive at our final result for thg function:

N, N2_2 N, N, 1E N, N,
ﬁ(g) Ml M2 N Sg Ml Mz 27T kl g k1 Nl_N2+k1

Nl_N2+k1 kl Nl kl
-9 g

N1+ Ml_kl Nz)

X9

1 |: (Nl k2 ) N1+k1_k2 N2 ) M2+k1_k2 k1>
872 KL kp g ki Ni+ki—k; g M, My +ki—k; g Ky M,
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+
UM, Mi+k—ky) 9k, M,  J9IN,—M Tk, Ky
2 Nl N2 Nl k2+ Nl kl_k2 kl kl k2+ N2 kl_k2 N2
+——g > |9 g 9 ]9
(477) Ml MZ klrkz k]_ kl k2 k2+ Nl Nl N2 kl k2 k2+ N2 kl
kl k2+ Ml kl_k2 Ml M2 k2+M2 kl_kz kl 9
+ .
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APPENDIX C: NJL COUPLINGS CONTAIN MAXIMALLY n, n, n m
SYMMETRIC ONES TrtR g( H= g( ) (C4)
m; m, Am\m n
While having less symmetry, the coupling in E43) still
could contain contributions of highly symmetric solutions as N n
in Egs.(41) and(42). In order to extract such contributions, |(V)( ! 2) =80 n-Om. mos (C5)
we introduce the projection operators to the corresponding my M, rre e

subspaces in the space of couplings,

(LR) W P N Y cé
R - Tr = .
p(LR)[...]:|im|(LR)NTr [ 17T ]' g m; my n,mg m m (€6
N0 N(N?-1)
(C1) By applying the projection operators in E¢E1) and(C2) to
W R the coupling in Eq.(43), we easily extract the symmetric
. NTERY[- - ]=Tr e contributions
P(V)[]: ||m|(V) [ ]2 [ ], ’
N—s oo N(N“—1)
n n
€2 P<LR’[9< ' 2) - %NLR) (C7a
_ + '
where, by definition, My M2
n, np ng np 2G
(LR) = p\V) S—— N 7
| (ml mz) 5n1,m25n2,m1- (C3 g(ml mz) N+t 1 (C7b
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