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Ground state energy of a spinor field in the background of a finite radius flux tube

M. Bordag* and K. Kirsten†

Universität Leipzig, Fakulta¨t für Physik und Geowissenschaften, Institut fu¨r Theoretische Physik, Augustusplatz 10/11,
04109 Leipzig, Germany

~Received 28 December 1998; published 22 October 1999!

We develop a formalism for the calculation of the ground state energy of a spinor field in the background of
a cylindrically symmetric magnetic field. The energy is expressed in terms of the Jost function of the associated
scattering problem. Uniform asymptotic expansions needed are obtained from the Lippmann-Schwinger equa-
tion. The general results derived are applied to the background of a finite radius flux tube with a homogeneous
magnetic field inside and the ground state energy is calculated numerically as a function of the radius and the
flux. It turns out to be negative, remaining smaller by a factor ofa than the classical energy of the background
except for very small values of the radius which are outside the range of applicability of QED.
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I. INTRODUCTION

The ground state energy of the spinor field in the ba
ground of a magnetic field has been investigated since
early days of quantum electrodynamics~QED!. So, for in-
stance, the effective potential in a strong magnetic field
well known. For a weak field it takes increasing positi
values, for stronger fields it turns down, and forB→` it
becomes

Veff;2
~eB!2

12p2
lnA2eB

me
, ~1!

whereme is the electron mass. For details see, e.g., Ref.@1#.
Actual interest in this topic results, for example, from t

symmetry restoration due to a magnetic field in electrow
theory or from the influence of that field on the character
the phase transition@2#. While most work has been done i
homogeneous magnetic fields, mainly because in that
explicit formulas exist, the extension to inhomogeneo
fields is of interest.

Some work is this direction has already been done.
example for a flux where the magnetic field is concentra
on the surface of the tube, the fermion determinant was
culated in Ref.@3#. However, in that case the classical ener
is infinite. In Ref. @4#, in 211 dimensions a magnetic fiel
homogeneous in they direction and with a special shape
the x direction allowing for explicit formulas had been co
sidered. The result for the ground state energy per unit a
of the planes was expressed in quite elementary functi
which allowed the discussion of the total energy within t
family of fields considered. It was shown that the system
driven towards a uniform magnetic field. An extension
these formulas to the~311!-dimensional case was given i
Ref. @5#.

Furthermore, there exists a number of investigations
the density per unit volumee(r ) of the ground state energy
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wherer is the radial coordinate in the perpendicular plane,
the background of an infinitely thin magnetic flux tub
Partly, this is motivated by the close relation to th
Aharonov-Bohm effect. The first investigation of this kin
was done in Ref.@6# for the ground state energy density of
scalar field, later reconsidered and generalized to the sp
case in Ref.@7#, see also Ref.@8#. Extensively investigated is
the ~211!-dimensional case, see Ref.@9#, and papers cited
therein. Also, there are similar investigations in the ba
ground of an infinitely thin cosmic string@10#. The calcula-
tions in the background of an infinitely thin magnetic flu
tube have the drawback that the energy density per unit
ume cannot be integrated to get the energy densityE per unit
length due to the singular behavior near the string,e(r )
;r 24, which follows already from dimensional reasons.

In addition one might consider the combined effect
boundaries and background fields. This has been starte
Ref. @11#, where imposing spectral boundary conditions t
spinor field was considered in a finite region of space in
background of an Aharonov-Bohm flux string.

In the present paper we continue the consideration of
homogeneous magnetic background fields and calculate
ground state energy of the spinor field in the background
a straight magnetic flux tube offinite radiusR, more exactly,
the energy density per unit length. The reason to consid
flux tube of finite radiusR is that the associated classic
energy is finite and the dependence of the total energy w
R varies while the flux is fixed can be analyzed. The int
esting question in this context is if some radiusRm exists
where the complete energy, i.e., the sum of classical eneg
the magnetic field and the ground state energy of the sp
field, is minimized and the magnetic string gets stable.
doing this analysis we use and generalize the formalism
veloped in Refs.@12# and @13# for a smooth scalar back
ground field. In Sec. II we start discussing in detail the ren
malization of the ground state energy. We will normalize t
energy in such a way that it vanishes for the electron m
me→`, the resulting massless limit will also be considere
The needed counterterms and the subtraction employe
then elegantly described using the heat-kernel language.
ter having explained in detail the renormalization proced
©1999 The American Physical Society19-1
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M. BORDAG AND K. KIRSTEN PHYSICAL REVIEW D60 105019
we express the ground state energy in terms of the Jost f
tion of the associated scattering problem. The procedure
veloped in Refs.@12,13# consists of adding and subtractin
the uniform asymptotic expansion of the Jost function. T
is done in Sec. IV using a perturbative expansion of
Lippmann-Schwinger equation. Various details of this cal
lation are relegated to the Appendixes A and B. In the
maining part of the paper, Secs. V and VI, an analytical
well as numerical description of the ground state energy
spinors in the presence of a finite radius flux tube is p
formed. Some details can be found in Appendix C. In
Conclusion we summarize the main results of the paper.

II. BASIC FORMULAS AND THE RENORMALIZATION

The considered background is a straight magnetic
tube of finite radiusR, i.e., the magnetic field

BW ~xW !5
f

2p
h~r !eW z , ~2!

whereh(r ) is a profile function with compact support in th
radial variabler 5Ax21y2 in the plane perpendicular to th
tube. By the normalization*0

`drrh(r )51, f has the mean-
ing of the flux inside the tube. The corresponding vec
potential can be chosen to be

AW ~xW !5
f

2p

a~r !

r
eWw . ~3!

The profile functionsh(r ) and a(r ) are connected by the
relationh(r )5a8(r )/r . Below, we will use the special cas
of a homogenoeus magnetic field inside the tube, wh
these functions read

h~r !5
2

R2
Q~R2r !, a~r !5

r 2

R2
Q~R2r !1Q~r 2R!.

~4!

In this case the solutions of the field equations can be
pressed in terms of Bessel and hypergeometric functions

Another choice could be a magnetic field concentrated
the surface of the cylinder,h(r )5d(r 2R)/R, where the so-
lutions can solely be expressed in terms of Bessel functio
But in that case the classical energy of the backgroun
infinite.

The classical energy of the background~per unit length of
the string! is

E class[
1

2E dxWBW 25
f2

4pE0

`

dr rh~r !2. ~5!

The ground state energy of the spinor field in that ba
ground is given by

E52
m2s

2 (
(n,e)

e(n,e)
122s. ~6!
10501
c-
e-
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Here, the minus sign in front of the rhs. accounts for t
spinor obeying anticommutation relationss (s.2 and s
→0 in the end! is the regularization parameter in the ze
functional regularization which we use here andm is the
arbitrary dimensional parameter entering this regularizati
In fact, due to the translational invariance along the axis
the flux tube, we have to consider the energy density per
length. This will be taken into account below.

The e(n,e) are the eigenvalues of the Hamiltonian

H52 ig0g j@]/]xj2 ieAj~x!#1g0me ~7!

which follows from the Dirac equation. Here,e561 is the
sign of the one particle energiese(n,e) for the particle respec-
tively the antiparticle which themselves are chosen to
positive. All other quantum numbers are included into (n).
Furthermore, the indexj denotes spatial indices only an
summation over it is included.

For the renormalization we follow the standard proced
using the heat kernel expansion. The ground state energy
be expressed by the heat kernelK(t) of H 2,

E52
m2s

2 E
0

` dtts23/2

G~s21/2!
K~ t !

with the asymptotic expansion fort→0

K~ t !;
e2tm2

~4pt !d/2 (
n>0

antn,

whered is the dimension of the manifold,d53 in our case.
The heat-kernel coefficientsan for the operator under

consideration are well known. The relevant operatorH 2

reads explicitly

H 252¹ j¹ j1
1

2
s i j Fi j 1m2,

with smn5( i /2)@gmgn# and the leading coefficients can b
found, for example, in Ref.@14#.

For n50 we note that the coefficient is independent
the background field and corrresponds to the contribution
the empty Minkowski space. We drop this contribution wit
out further comment. The coefficienta1 is zero and fora2
the general formula reads

a25Tr E dxW S 2
1

12
Fi j

2 1
1

8
~s i j Fi j !

2D . ~8!

Here, the trace is over the spinors. The integration along
axis of the flux tube gives the corresponding volume
which we have to divide. So the following formulas have
be understood always as densities with respect to this a

The trace in Eq.~8! can be carried out and by means
Eq. ~3! we arrive at

a25
8p

3
d2E

0

`

dr rh~r !2, ~9!
9-2
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GROUND STATE ENERGY OF A SPINOR FIELD IN . . . PHYSICAL REVIEW D60 105019
where the notation

d5
ef

2p
~10!

is introduced. Here,e is the electron charge, and we ca
rewrite this relation asd5Aa/pf, wherea is the fine struc-
ture constant.

Using the heat kernel expansion it can be shown that
divergent part of the ground state energy results from
contribution of the heat kernel coefficientsan with n<2. We
define

E div5
a2

32p2 S 1

s
221 ln

4m2

me
2 D . ~11!

Then the renormalized ground state energy is given by

E ren5E2E div. ~12!

Here the limits→0 can be performed because the pole p
is subtracted. In general, the definition ofE div is not unique.
By the definition~11!, the normalization condition

E ren→0 for me→` ~13!

is assured. This normalization condition is natural as it i
plies that a very massive field should not show quant
fluctuations. On the other hand, it fixes the arbitrarin
which came in with the parameterm in Eq. ~6!.

Along with the subtraction ofE div from E it must be added
to E class. This is equivalent to a renormalization of the flu
according to

f2→f21
~ef!2

12p2 S 1

s
221 ln

4m2

me
2 D . ~14!

From this renormalization procedure it is possible to d
termine the leading asymptotic behavior of the renormali
ground state energy when the radiusR of the flux tube tends
to zero. In fact, this could have been done using the ar
ments given in Ref.@15# where the general scaling behavi
of the Casimir energy was investigated. The point is sim
that the regularized ground state energy~6! has a series ex
pansion with respect to powers of the massme. Note that
this is not affected by the zero modes, which are present
~see Ref.@16#!, because we consider the ground state ene
and not the determinant of the operatorP. Then, by means o
Eqs. ~12! and ~11! we subtract a contribution containin
ln me. Therefore, the renormalized ground state energyE ren

becomes forme→0 proportional to lnme. Now, for dimen-
sional reasons it can be written as

E ren5
f ~Rme!

R2
,

where f is some function of the dimensionless combinati
Rme. Consequently, forR→0 the behavior must be
10501
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E ren;
2a2

16p2
ln

1

Rme

and, for instance, with the background~4!

E ren;
21

3p

d2

R2
ln

1

Rme
. ~15!

This behavior will be confirmed below in the course of t
explicit calculations. In fact, this behavior follows alread
from the heat kernel expansion and has the same origi
the asymptotics~1!. For fixed fluxf, smallR correspond to
large B and, using Eq.~10! and f5pR2B, formula ~15!
turns into Eq.~1! @noteVeff ~1! is the energy density per un
volume#. For the same reason it can obviously be improv
using the renormalization group. Because the theory is in
red free and the limitR→0 corresponds to high momenta
is impossible to makeR too small.

When comparing Eq.~15! with the classical energy of this
background,

E class5
f2

2pR2
, ~16!

one could think that the complete energy can be made n
tive for sufficiently smallR. However, this would require
Rme,exp@23p/(2a)#, which is far outside the range of ap
plicability of QED and also ruled out by the renormalizatio
group argument.

Note that in the massless case the renormalization sch
must be modified. As discussed in Ref.@19#, for a2Þ0
which is the case here generically@a250 means a vanishing
background, cf. Eq.~9!# and which represents the conform
anomaly, there is no transition for the renormalized grou
state energyE ren from meÞ0 to me50. Usually, in the mass-
less case in the definition ofE div similar to Eq.~11! instead
of the mass, another parameter, the renormalization scalL,
is used. Therefore the renormalized ground state energy
tains a nonuniqueness proportional to the heat kernel co
cienta2, i.e., proportional to the classical energy@see formu-
las ~5! and ~9!#.

III. GROUND STATE ENERGY EXPRESSED IN TERMS
OF THE JOST FUNCTION

We express the regularized ground state energy~6! in
terms of the Jost function of the scattering problem ass
ated with the operatorH, Eq. ~7!. Because the background
translationally invariant along the third axis, by means of

C (n,e)~xW !5eip3x3S F

c D ,

we rewrite the corresponding Dirac equation using the sp
representation of the gamma matrices in the form
9-3



b

s

f t
a
di
sit

the
um
nd

alar
n

te
nd
f
nt
nd
ra-

ero

il in
t

one
tion
re-

ed
al
-

e

dd-
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S p01L̂2mes3 p3s3

p3s3 p01L̂1mes3
D S F

c D 50, ~17!

with L̂5 i ( i 51
2 s i(]/]xi1 ieAi). It is sufficient to consider

p350 and one of the two decoupled equations. Then
means of

F5S ig1~r ! e2 i (m11)w

g2~r ! e2 imw D
(m52`,`) we arrive at the equation

S p02me
]

]r
2

m2da~r !

r

2
]

]r
2

m112da~r !

r
p01me

D F~r !50,

~18!

where we introduced the notation

F~r !5S g1~r !

g2~r !
D ~19!

for the solutionF(r ).
The solutions in the exterior space,r .R, are

FJ
0~r !

55 S Ap01me Jm2d11~kr !

Ap02me Jm2d~kr !
D for m112d.0,

S Ap01me Jd2m21~kr !

2Ap02me Jd2m~kr !
D for m2d,0.

~20!

The Jost solution of Eq.~17! is the solution which behave
for r→0 as the free solution~20!. Its asymptotics forr
→` can be written as

F~r !;
1

2
@ f m~k!FH(2)

0
~r !1 f̄ m~k!FH(1)

0
~r !#, ~21!

whereFH(1,2) are the solutions~20! with the Hankel func-
tions instead of the Bessel function. The coefficientf m(k) is
the Jost function andf̄ m(k) its complex conjugate.

The ground state energy can be expressed in terms o
Jost function much in the same way as in the scalar c
@13#. However, due to the translational invariance in the
rection parallel to the flux tube, we have the energy den

E52
m2s

2 E
2`

` dk3

2p (
(n,e)

~k3
21e(n,e)

2 !1/22s, ~22!

instead of the general formula~6!. After carrying out the
integration overk3 we arrive at

E52
m2s

2

1

2Ap

G~s21!

G~s21/2! (
(n)

~e(n)
2 !12s,
10501
y
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where ~n! denotes the remaining quantum numbers in
plane perpendicular to the axis of the tube. Now the s
over these~n! can be expressed through the Jost function a
we get to the relevant order ins,

E5Cs (
m52`

` E
me

`

dk~k22me
2!12s

]

]k
ln f m~ ik ! ~23!

with Cs5$11s@2112 ln(2m)#%/(2p). This representation
can be obtained in much the same way as done in the sc
case in Ref.@13#. One has to take into account the know
analytical properties of the Jost function~which differ from
that in the scalar case!. One has to use as an intermedia
step a finite quantization volume with appropriate bou
conditions~bag conditions work well!. Then, in the course o
tending this volume to infinity, the translational invaria
contribution from the Minkowski space must be dropped a
the remaining finite part, after a deformation of the integ
tion contour, just delivers Eq.~23!.

We remark that in the considered problem there are z
modes@16# ~at k50). In the sum in Eq.~22! they have to be
taken into account. Just in the same way as shown in deta
the scalar case in Ref.@13# for the bound states they do no
show up explicitly in representation Eq.~23!.

Here we have taken into accout that both signs of the
particle energies as well as both signs of the spin projec
give equal contributions to the ground state energy thus
sulting in a factor of 4 which is included intoCs . This ex-
pression will be used in the calculations below.

The renormalization of the ground state energy is defin
by Eq. ~12!. The remaining task is to perform the analytic
continuation ass→0. However, this is not immediately pos
sible using representation~23! for E. To continue we use the
uniform asymptotic expansion lnfm

as( ik) of the logarithm of
the Jost function, lnfm(ik), defined in such a way that th
difference

ln f m~ ik !2 ln f m
as~ ik !5OS 1

m4D ~24!

is of the orderm24 in the limit m→`, k→` for m/k fixed.
Then we split the renormalized ground state energy by a
ing and subtracting lnfm

as( ik) to get

E ren5E f1E as ~25!

with the ‘‘finite’’ part

E f5
1

2p (
m52`

` E
me

`

dk~k22me
2!

]

]k
@ ln f m~ ik !2 ln f as~ ik !#,

~26!

where it was possible to puts50, and the ‘‘asymptotic’’ part

E as5Cs (
m52`

` E
me

`

dk~k22me
2!12s

]

]k
ln f m

as~ ik !2E div.

~27!
9-4
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GROUND STATE ENERGY OF A SPINOR FIELD IN . . . PHYSICAL REVIEW D60 105019
Here, we included the subtraction ofE div according to Eq.
~12!. The continuation tos50 will yield a finite result be-
cause the pole contributions cancel. This continuation will
done in Sec. V. But because the expression for lnfas is quite
simple, this task can be done analytically.

The subdivision~25! of E is not unique, only the condition
~24! has to be satisfied. The inclusion of higher orders i
ln faswould speed up the convergence of the momentum s
in E f, for instance. But we will use lnfas in the minimal form
obeying Eq.~24!.

IV. THE UNIFORM ASYMPTOTIC EXPANSION
OF THE JOST FUNCTION

The uniform asymptotic expansion of the Jost functi
can be obtained from the Lippmann-Schwinger equation
much the same way as it was done in the scalar case@13#.
We rewrite Eq.~18! in the form

S p02me
]

]r
2

m

r

2
]

]r
2

m11

r
p01me

D F~r !

5
2da~r !

r S 0 1

1 0DF~r ![DP~r !F~r !.

The operator on the left-hand side can be inverted using
free solutions~20! and we get the integral equation

F~r !5F0~r !1E
0

r

dr8r 8g~r ,r 8!DP~r 8!F~r 8! ~28!

with

g~r ,r 8!52
p

2i
@FJ~r !FH(1)

T
~r 8!2FJ~r 8!FH(1)

T
~r !#,

~29!

whereFT means the transposed ofF. InsertingFJ
0 ~20! for

F0(r ) in the right-hand side of Eq.~28!, this equation deter-
mines just the Jost solution. Using the asymptotic expans
of the Hankel functions and comparing with Eq.~21! we
obtain for the Jost function the representation

f m~k!512
p

2i E0

`

dr rFH(1)
T

~r !DP~r !F~r !. ~30!

Equation~28! can be iterated. It turns out that we need
contributions up to the fourth power inDP in order to satisfy
condition~24!. Note that in the scalar case the second pow
had been sufficient. Iterating Eq.~28! we obtain
10501
e

o
m

n

e

n

l

r

F~r !5FJ
0~r !1E

0

r

dr8r 8g~r ,r 8!DP~r 8!FJ
0~r 8!

1E
0

r

dr8r 8E
0

r 8
dr9r 9g~r ,r 8!DP~r 8!

3g~r 8,r 9!DP~r 9!FJ
0~r 9!

1E
0

r

dr8r 8E
0

r 8
dr9r 9E

0

r 9
dr-r-g~r ,r 8!DP~r 8!

3g~r 8,r 9!DP~r 9!g~r 9,r-!DP~r-!FJ
0~r-!

1O@~DP!4#. ~31!

This expression has to be inserted into Eq.~30!. In fact, we
need the logarithm of the Jost function. Therefor the appe
ing expression must be expanded again. We write the re
as lnfm(k)5(n>1ln fm

(n)(k) wheren denotes the power of the
operatorDP. Up to the fourth order we obtain~for several
details see Appendix A!

ln f m
(1)~k!52S p

2i D E0

`

dr rFH(1)
T

~r !DP~r !FJ~r !, ~32!

ln f m
(2)~k!52S p

2i D
2E

0

`

dr r E
0

r

dr8r 8FH(1)
T

~r !DP~r !

3FH(1)~r !FJ
T~r 8!DP~r 8!FJ~r 8!, ~33!

ln f m
(3)~k!522S p

2i D
3E

0

`

dr r E
0

r

dr8r 8

3E
0

r 8
dr9r 9FH(1)

T
~r !DP~r !FH(1)~r !

3FH(1)
T

~r 8!DP~r 8!FJ~r 8!FJ
T~r 9!DP~r 9!FJ~r 9!,

~34!

ln f m
(4)~k!52S p

2i D
4E

0

`

dr r E
0

r

dr8r 8E
0

r 8
dr9r 9E

0

r 9
dr-r-

3@4FH(1)
T

~r !DP~r !FH(1)~r !FH(1)
T

~r 8!

3DP~r 8!FJ~r 8!FH(1)
T

~r 9!DP~r 9!FJ~r 9!

3FJ
T~r-!DP~r-!FJ~r-!12FH(1)

T
~r !DP~r !

3FH(1)~r !FH(1)
T

~r 8!DP~r 8!FH(1)~r 8!FJ
T~r 9!

3DP~r 9!FJ~r 9!FJ
T~r-!DP~r-!FJ~r-!#,

~35!
9-5
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where rearrangings of the integration domains had b
made.

Now, because we are interested in the Jost function
imaginary momentum, we turn from the Bessel functions
the corresponding modified ones. Then we have to perf
the uniform asymptotic expansion of these expressions.

Before doing this we note that it turned out to be mo
convenient not to use the orbital momentumm as the expan-
sion parameter, but instead
-

he

t
-
t

e-

10501
n

r
o
m

n5H m1
1

2
for m50,1,2, . . . ,

2m2
1

2
for m521,22, . . . ,

~36!

with n5 1
2 , 3

2 , . . . , in both cases.
Then we need uniform asymptotic expansions of

modified Bessel functions forn→`, z fixed, of the follow-
ing type:
Kn11/2~nz!

I n11/2~nz!
J ;Ap2eA t

2nS 12t

11t D
e/4

eenh(z) expH 26t225et3

24n
1

24et324t415et515t6

16n2

1
22160t422304et517440t617695et725400t825525et9

5760n3
1 . . . J
bu-
o

by
-
e

g
r-

to
with e571 for Kn respectively I n , h5A11z21 ln@z/(1
1A11z2)# and t5(11z2)21/2 which may be derived from
the commonly known one@17# by a corresponding reexpan
sion. Similar expansion forKn21/2 and I n21/2 are also used.

Now we insert this expansion into the logarithm of t
Jost function. Then the integrations overr-, r 9 and r 8 can
be carried out successively by the saddle point method@only
equal arguments in the functionsh(z) yield contributions
which do not exponentially decrease forn→`] as done in
Ref. @13#. In doing so it becomes apparant that terms up
the fourth power inDP contribute to the asymptotic expan
sion in n up to the ordern23. The relevant saddle poin
expansion is presented in the Appendix B, see Eq.~B1!.
Finally we collect all contributions up to this order and d
fine

ln f as~ ik !5 (
n51

3

(
j 5n

3n E
0

`dr

r
Xn, j

t j

nn
~37!

with the notationt5@11(rk/n)2#21/2. The coefficients turn
out to be

X1,15
~ad!2

2
, X1,352

~ad!2

2
,

X2,25
1

4
d2~a22raa8!,

X2,45
1

4
d2~23a21raa8!, X2,65

1

2
~ad!2

X3,35
1

4
d2S a22raa81

1

2
r 2aa92

1

2
d2a4D ,
o

X3,55
1

8
d2S 2

39

2
a217raa82r 2aa916d2a4D ,

X3,75
1

8
d2~35a225raa825d2a4!,

X3,95
235

16
d2a2. ~38!

Here,a means the profile functiona(r ) in Eq. ~3!. Below,
when inserting this expansion intoE as, the sum over the
orbital momentum must be performed. There some contri
tions cancel, for instance, those which are proportional td
andd3. They are not shown in formula~38!.

V. THE ASYMPTOTIC PART OF THE GROUND STATE
ENERGY

The asymptotic part of the ground state energy is given
Eq. ~27! and the expression~37! for the asymptotic expan
sion of the logarithm of the Jost function. We rewrite it in th
form

E as52Cs (
n5 1/2 , 3/2 , . . .

E
me

`

dk~k22me
2!12s

3
]

]k
E

0

`dr

r
(
n51

3

(
j 5n

3n

Xn, j

t j

nn
2E div. ~39!

Here, the sum over the orbital momentumm in Eq. ~27! is
rewritten as a sum overn, Eq. ~36!. By means of Eq.~C1! it
will be replaced by two integrals. The contribution resultin
from the first integral can be calculated explicitly using fo
mula ~C2!. Together with the explicit expressions forXn,i
~38!, after a straightforward calculation, it can be seen
cancel exactlyE div @for arbitrary profile functiona(r )#.
9-6
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So we are left with the contribution resulting from th
second integral in Eq.~C1!. There the integration overk can
be carried out by means of formula~C3!. Then defining

Sn, j~x!5
G~s1 j /221!

G~ j /2!

2 i

xj E0

` dn

11exp~2pn!

3S ~ in! j 2n

@11~ in/x!2#s1 j /221

2
~2 in! j 2n

@11~2 in/x!2#s1 j /221D ~40!

we arrive at

E as52
1

p
me

2(
n51

3

(
j 5n

3n E
0

`dr

r
Xn, jSn, j~rme!. ~41!

In the functionsSn, j (x) the analytic continuation tos
50 has to be performed. For this reason one has to integ
by parts several times to get rid of the singular denomina
The resulting expressions are shown in the Appendix C,
mula ~C4!. Now in the integration overr, it is useful to
th

r-
ou
ei

10501
te
r.
r-

integrate by parts which reduces to the substitutionsraa8
→2 1

2 a2r ] r and r 2aa9→2a821 1
2 a2r ] r

2r . We note that af-
ter doing this the contribution resulting fromn52 vanishes,
already before the integration overr will be carried out. Then
the integrations overr and n can be interchanged and afte
rescalingn→nrme we get

E as5
216

p E
0

`dr

r 3
$a~r !2g1~rme!2r 2a~r !82g2~rme!

1a~r !4g3~rme!%, ~42!

with

gi~x!5E
x

`

dnAn22x2f i~n! ~ i 51,2,3!.

The functionsf i are displayed in Appendix C, Eq.~C5!. This
is the final formula forE as for an arbitrary profile function
a(r ).

For the homogeneous magnetic field inside the flux tu
i.e., for the profile function~4!, the integration overr can be
performed explicitly. After elementary calculations we ge
E as5
24

pR2
H E

0

Rme
dn

n3

3~Rme!
2
d2F f 1~n!24 f 2~n!1

8

35
d2f 3~n!S n

meR
D 4G1E

Rme

`

dnF f 1~n!d2S n32An22~Rme!
2

3

3~Rme!
2

1
An22~Rme!

2

2
2

~Rme!
2

2n
ln

@n1An22~Rme!
2#

meR
D 24 f 2~n!d2

n32An22~Rme!
2

3

3~Rme!
2

1 f 3~n!d4S 8n72An22~Rme!
2@8n614n4~Rme!

213n2~Rme!
4215~Rme!

6#

105~Rme!
6

1
An22~Rme!

2

2

2
~Rme!

2

2n
ln

~n1An22~Rme!
2!

meR
D G J . ~43!
e

Eq.
nc-
This expression consists of two parts which we write in
form

E as5d2
e1~Rme!

R2
1d4

e2~Rme!

R2
. ~44!

Here e1, respectively,e2 describe the contributions propo
tional to the second, respectively, fourth power of the c
pling d to the background. They are shown in Fig. 1. Th
behavior forx→0 can be calculated from Eq.~43! and we
have
e

-
r

e1~x!;
ln x

3p
10.13481O~x!,

e2~x!;20.03541O~x!. ~45!

The logarithmic contribution is just that which was to b
expected from the heat kernel expansion~15!.

VI. THE ‘‘FINITE’’ PART OF THE GROUND STATE
ENERGY AND NUMERICAL RESULTS

The finite part of the ground state energy is defined by
~26! together with the asymptotic expansion of the Jost fu
9-7
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tion, Eq. ~37!. In general, these quantities can be calcula
only numerically. We consider here the case of a homo
neous magnetic field inside the tube as given by Eq.~4!. In
that case the solutions of the field equations are known, t
are hypergeometric functions inside and Bessel functi
outside. As these formulas are in general quite well kno
and easy to derive, we give here only the result. The n
tions are close to that in the paper@18#. For positive orbital
momentum@m50,1, . . . , informula ~36!# we have

f n~ ik !52S kR

2 D n11/2exp~2d/2!

G~n13/2! H kR

2
Kn21/22d~kR!

31F1S 11
~kR!2

4d
,n1

3

2
;d D1S n1

1

2D
3Kn11/22d~kR!1F1S ~kR!2

4d
,n1

1

2
;d D J , ~46!

and for negativem (m521,22, . . . )

f n~ ik !52S kR

2 D n11/2exp~2d/2!

G~n13/2! H kR

2
Kn2 1/2 1d~kR!

31F1S n1
1

2
1

~kR!2

4d
,n1

3

2
;d D1S n1

1

2D
3Kn1 1/2 1d~kR!1F1S n1

1

2
1

~kR!2

4d
,n1

1

2
;d D J .

~47!

FIG. 1. The functionse1 ande2 appearing in the asymptotic pa
of the ground state energy.

FIG. 2. The functionR2d22E f(R) for several values ofd.
10501
d
e-

ey
s
n
a-

Thereby the pure Aharonov-Bohm phase is dropped a
does not contribute toE f .

The asymptotic part of the Jost function can be obtain
explicitly by carrying out the elementary integrations over
in Eq. ~37!. Now, having given all ingredients in the inte
grand ofE f , the remaining task is to perform numerical com
putations for several values of the parameters. For this ta
turned out to be useful to integrate by parts and to substi
k5Ax/R. Then we have

E f5
21

2p

1

R2 (
n51/2,3/2, . . .

E
(Rme)

2

`

dx@ ln f n
1~ ik !1 ln f n

2~ ik !

22 ln f as~ ik !# uk5Ax/R. ~48!

This expression can be calculated numerically. The integ
tion overx is quite quickly convergent, the sum overn not.
So, in order to achieve a satisfactory precision for the plo
n must be summed up to 15, for largex up to even higher
values.

The general behavior ofE f as a function of the radiusR of
the flux tube is quite smooth. ForR→0 it is proportional to
R22. This can be seen analytically from Eq.~48!. For R
→` it is proportional toR23 which we observed numeri
cally. Having in mind that the behavior forR→` is deter-
mined by the next heat kernel coefficient aftera2 we con-
clude from this thata5/2 is nonvanishing. This seems i
contradiction with the general results saying that for ma
folds without boundary half-integer coefficients vanish. B
one has to remember that higher coefficients contain~at
least! squares of derivatives of the background field whi
for the presented example leads to undefined express
Thus, for the higher coefficients the general formulas do
apply and there is no contradiction at all.

In Fig. 2 the functionE f(R) is shown multiplied by
R2d22 as a function ofR for several values ofd. In Fig. 3
the complete ground state energy,E ren(R), multiplied by
R2d22 is shown for several values ofd. In general, this
function takes only negative values, relatively weakly d
pending on the fluxd. For smallR, the logarithmic contribu-
tion is dominating.

The complete energy is the sum ofE class ~16! and E ren

~25!. In Fig. 3, the classical energy would be a straight ho
zontal line at 2p/a. From this it is clear that the complet

FIG. 3. The complete ground state energy multiplied byR2d22

for several values ofd.
9-8
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energy, remaining a monotone decreasing function of
radius, deviates only slighly from the classical energy for
values of the radiusR except for very small ones as me
tioned at the end of Sec. II.

For larged, in E f andE as the contributions proportional to
d4 dominate, giving~at last for 0<R&1) E f (E as) large
positive ~negative! values. But these contributions canc
each other. This was seen in the numerical calculatio
Also, this corresponds to the procedure of adding and s
tracting lnfas in Sec. III which contains terms proportional t
d4. However, we did not perform a complete investigation
the behavior for larged.

VII. CONCLUSIONS

In this article we have provided a full analysis of th
ground state energy of the spinor field in the background
a straight magnetic flux tube of finite radiusR. The formal-
ism developed applies in principle to any magnetic field w
cylindrical symmetry. Assuming that the Jost function
known or can be determined numerically, Eqs.~42! and~48!
give the final formulas for this case. We have applied th
formulas to the case of the magnetic field~2!. The final result
consists of a very explicit ‘‘asymptotic’’ part, Eq.~43!, and a
part to be determined numerically, Eq.~48!. A detailed nu-
merical analysis shows, that the ground state energy t
out be negative, remaining for almost all values of the rad
R by a factor proportional to the fine structure constanta
smaller than the classical energy. As a result, in the rang
applicability of our results, the total energy remains posit
and, furthermore, does not show a minimum for finite valu
of R given a fixed flux. The magnetic string thus remai
unstable also when including quantum corrections into
total energy.

The behavior of the ground state energy for largeR at
fixed flux can be understood in terms of the heat kernel
pansion because it is for dimensional reasons equivalen
the large mass behavior. We found numerically forR→` a
behavior;R23me

21 which corresponds toa5/2. This coeffi-
cient with a half integer number may be present because
background~4! has a step. In a smooth background the fi
nonvanishing coefficient~after an with n<2 which were
subtracted out by the renormalization! may bea3 with the
resulting behavior;R24me

22 . In a homogeneous magnet
background this coefficient is zero because it containes
rivatives. In a nonhomogeneous background it may be n
zero and delivers the leading asymptotics. The next coe
10501
e
ll

l
s.
b-

f

f

e

ns
s

of
e
s

e

-
to

he
t

e-
n-
fi-

cient in sequence isa4 delivering terms;R26me
24 . This

coefficient is nonzero in a homogeneous field and must
liver the Euler-Heisenberg contribution.

An interesting question is on the general dependence
the ground state energy on the specific background cho
here. First we remark, that we are in agreement with Ref.@4#
with respect to the ground state energy beeing a small
dendum to the classical energy~as long asR is not too
small!. Secondly, from explicit formulas such as Eq.~42! for
E as we expect that the dependence on the shape of the m
netic field inside the flux tube will be weak. This will be s
at last for sufficiently smooth background fields. When, ho
ever, the background becomes singular, this may change
an example one can consider the ground state energy
massive spinor field with bag boundary conditions on
sphere calculated in Ref.@20# showing as function of the
radius even changes of the sign. Another consequence o
calculations is that it seems impossible to shrink the radiu
the string to zero bcause of the logarithmic singularity~15!
appearing in that case. In view of this, it would be interest
to reconsider earlier investigations in the background of
infinitely thin string whereby we admit that it might we
happen that this singularity can be absorbed into some co
terterm.

Even if we have found a negative answer within the cla
of examples~2!, the results presented can be a starting po
to consider further the question if inhomogeneous magn
fields can minimize the energy for fixed flux. Furthermore
seems possible to include other aspects as for example e
nal electric fields and the anomalous magnetic mome
Also, the techniques developed here, are suited for the
culation of the fermionic contribution to the vacuum pola
ization in the background of the Nielsen-Olesen vortex, thZ
string, or in a chromomagnetic background.

Finally we note that the ground state energy found h
has a quite similar behavior as that in a homogeneous m
netic background insofar as both quantities are comple
negative@in the definition of the effective potential as in Eq
~1! usually the classical energy is included, in the notion
the ground state energy it is not#. Of course, these quantitie
differ in details, for instance in their asymptotic behavior
mentioned above.
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APPENDIX A: PERTURBATION THEORY FOR THE LOGARITHM OF THE JOST FUNCTION

In this appendix we will derive the expansion for the logarithm of the Jost function, Eq.~30!. The first step is to use Eq.~31!
in Eq. ~30!. The Jost function itself up to the fourth power in the perturbationD(P) reads

f m~k!5:11x11x21x31x41O@~DP!5#, ~A1!

with the definitions

x152S p

2i D E0

`

dr1r 1FH1
T

~r 1!DP~r 1!FJ~r 1!, ~A2!
9-9
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x252S p

2i D E0

`

dr1r 1E
0

r 1
dr2r 2FH1

T
~r 1!DP~r 1!g~r 1 ,r 2!DP~r 2!FJ~r 2!, ~A3!

x352S p

2i D E0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3FH1

T
~r 1!DP~r 1!g~r 1 ,r 2!DP~r 2!g~r 2 ,r 3!DP~r 3!FJ~r 3!, ~A4!

x452S p

2i D E0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3E

0

r 3
dr4r 4FH1

T
~r 1!DP~r 1!g~r 1 ,r 2!DP~r 2!g~r 2 ,r 3!DP~r 3!g~r 3 ,r 4!DP~r 4!FJ~r 4!.

~A5!

We will need the combinations

ln f m~k!5 ln f m
(1)~k!1 ln f m

(2)~k!1 ln f m
(3)~k!1 ln f m

(4)~k!1O@~D~P!5#, ~A6!

with

ln f m
(1)5x1 , ~A7!

ln f m
(2)5x22

1

2
x1

2 , ~A8!

ln f m
(3)5

1

3
x1

32x1x21x3 , ~A9!

ln f m
(4)52

1

4
x1

41x1
2x22

1

2
x2

22x1x31x4 . ~A10!

Let us consider lnfm(k) order by order. The first order lnfm
(1)(k) is already given by its definition, Eqs.~A7! and~A2!. For the

calculation of lnfm
(2)(k) some manipulations are needed. The main trick, also for the calculation of the higher orders,

rearrangement of integration domains. At the beginning we will give details, later on only an idea of the single steps i
Using Eq.~29! one obtains

ln f m
(2)~k!5S p

2i D
2H E

0

`

dr1r 1E
0

r 1
dr2r 2FH1

T
~r 1!DP~r 1!FJ~r 1!FH1

T
~r 2!DP~r 2!FJ~r 2!

2E
0

`

dr1r 1E
0

r 1
dr2r 2FH1

T
~r 1!DP~r 1!FH1~r 1!FJ

T~r 2!DP~r 2!FJ~r 2!2
1

2 F E
0

`

dr1r 1FH1
T

~r 1!DP~r 1!FJ~r 1!G2J .

The first and third terms combine to give

1

2 S p

2i D
2E

0

`

dr1r 1FH1
T

~r 1!DP~r 1!FJ~r 1!H E
0

r 1
dr2r 2FH1

T
~r 2!DP~r 2!FJ~r 2!2E

r 1

`

dr2FH1
T

~r 2!DP~r 2!FJ~r 2!J .

Next the integration domains may be rearranged,

E
0

`

dr1r 1E
r 1

`

dr25E
0

`

dr2E
0

r 2
dr1

and changing finally the name of the variable,r 1↔r 2, one arrives at Eq.~33!.
When calculating the higher orders it is extremely helpful to systematically use the lower orders already obtained. S

next order we start with

ln f m
(3)~k!5x32

1

6
~ ln f m

(1)!32~ ln f m
(1)!~ ln f m

(2)!,

where

x35x3,11x3,21x3,31x3,4
105019-10
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consists of the pieces

x3,152S p

2i D
3E

0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3FH1

T
~r 1!DP~r 1!FJ~r 1!FH1

T
~r 2!DP~r 2!FJ~r 2!FH1

T
~r 3!DP~r 3!FJ~r 3!,

x3,25S p

2i D
3E

0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3FH1

T
~r 1!DP~r 1!FJ~r 1!FH1

T
~r 2!DP~r 2!FH1~r 2!FJ

T~r 3!DP~r 3!FJ~r 3!,

x3,35S p

2i D
3E

0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3FH1

T
~r 1!DP~r 1!FH1~r 1!FJ

T~r 2!DP~r 2!FJ~r 2!FH1
T

~r 3!DP~r 3!FJ~r 3!,

x3,452S p

2i D
3E

0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3FH1

T
~r 1!DP~r 1!FH1~r 1!FJ

T~r 2!DP~r 2!FH1~r 2!FJ
T~r 3!DP~r 3!FJ~r 3!.
Cancellations occur due to the identity

E
0

`

dr1r 1E
0

r 1
dr2r 2 . . . E

0

r n
drn11f ~r 1! . . . f ~r n11!

5
1

~n11!! F E
0

`

dr f ~r !Gn11

, ~A11!

which can be proven by induction. It shows

x3,12
1

6
~ ln f m

(1)!350.

To manipulate the contribution (lnfm
(1))(ln fm

(2)) integrals are
spitted according to

E
0

`

dr35E
0

r 2
dr31E

r 2

`

dr3 ~A12!

and identities of the kind

E
0

r

dr1E
r 1

`

dr25E
0

r

dr2E
0

r 2
dr11E

r

`

dr2E
0

r

dr1

~A13!
10501
are used. One arrives at

2~ ln f m
(1)!~ ln f m

(2)!52x3,22x3,31x3,4

ending up with Eq.~35!.
Finally, the last order we will need can be written as

ln f m
(4)~k!5x42

1

2
@ ln f m

(2)~k!#22
1

2
@ ln f m

(1)~k!#2@ ln f m
(2)~k!#

2@ ln f m
(1)~k!#@ ln f m

(3)~k!#2
1

24
~ ln f m

(1)!4.

The contribution

x45(
i 51

8

x4,i

consists of
x4,15S p

2i D
4E

0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3E

0

r 3
dr4r 4FH1

T
~r 1!DP~r 1!FJ~r 1!

3FH1
T

~r 2!DP~r 2!FJ~r 2!FH1
T

~r 3!DP~r 3!FJ~r 3!FH1
T

~r 4!DP~r 4!FJ~r 4!,

x4,252S p

2i D
4E

0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3E

0

r 3
dr4r 4

3FH1
T

~r 1!DP~r 1!FJ~r 1!FH1
T

~r 2!DP~r 2!FJ~r 2!FH1
T

~r 3!DP~r 3!FH1~r 3!FJ
T~r 4!DP~r 4!FJ~r 4!,

x4,352S p

2i D
4E

0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3E

0

r 3
dr4r 4FH1

T
~r 1!DP~r 1!

3FJ~r 1!FH1
T

~r 2!DP~r 2!FH1~r 2!FJ
T~r 3!DP~r 3!FJ~r 3!FH1

T
~r 4!DP~r 4!FJ~r 4!,
9-11
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x4,45S p

2i D
4E

0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3E

0

r 3
dr4r 4FH1

T
~r 1!DP~r 1!FJ~r 1!

3FH1
T

~r 2!DP~r 2!FH1~r 2!FJ
T~r 3!DP~r 3!FH1~r 3!FJ

T~r 4!DP~r 4!FJ~r 4!,

x4,552S p

2i D
4E

0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3E

0

r 3
dr4r 4FH1

T
~r 1!DP~r 1!FH1~r 1!

3FJ
T~r 2!DP~r 2!FJ~r 2!FH1

T
~r 3!DP~r 3!FJ~r 3!FH1

T
~r 4!DP~r 4!FJ~r 4!,

x4,65S p

2i D
4E

0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3E

0

r 3
dr4r 4FH1

T
~r 1!DP~r 1!FH1~r 1!

3FJ
T~r 2!DP~r 2!FJ~r 2!FH1

T
~r 3!DP~r 3!FH1~r 3!FJ

T~r 4!DP~r 4!FJ~r 4!,

x4,75S p

2i D
4E

0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3E

0

r 3
dr4r 4FH1

T
~r 1!DP~r 1!FH1~r 1!

3FJ
T~r 2!DP~r 2!FH1~r 2!FJ

T~r 3!DP~r 3!FJ~r 3!FH1
T

~r 4!DP~r 4!FJ~r 4!,

x4,852S p

2i D
4E

0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3E

0

r 3
dr4r 4FH1

T
~r 1!DP~r 1!FH1~r 1!FJ

T~r 2!

3DP~r 2!FH1~r 2!FJ
T~r 3!DP~r 3!FH1~r 3!FJ

T~r 4!DP~r 4!FJ~r 4!.
f
lt is

n-
Equation~A11! shows

x4,12
1

24
@ ln f m

(1)~k!#450.

With the help of rearrangements as Eqs.~A12!, ~A13!, and
similar ones, it can be shown that

2@ ln f m
(1)~k!#@ ln f m

(3)~k!#522x4,714x4,822x4,4,

2
1

2
@ ln f m

(1)~k!#2@ ln f m
(2)~k!#52x4,51x4,72x4,32x4,81x4,4

22x4,2,

and

2
1

2
~ ln f m

(2)~k!!252x4,622E
0

`

dr1r 1E
0

r 1
dr2r 2E

0

r 2
dr3r 3

3E
0

r 3
dr4r 4FH1

T
~r 1!DP~r 1!FH1~r 1!

3FH1
T

~r 2!DP~r 2!FH1~r 2!FJ
T~r 3!

3DP~r 3!FJ~r 3!

3FJ
T~r 4!DP~r 4!FJ~r 4!.

Putting all pieces together one arrives at Eq.~35!.
10501
APPENDIX B: SADDLE POINT EXPANSION OF
INTEGRALS

For the derivation of Eqs.~37! and ~38! repeated use o
saddle point expansions was made. The relevant resu
stated in this appendix.

For n→` one obtains the following asymptotic expa
sion

E
0

r

dr8f~r 8!enw(r 8)5enw(r )(
k51

`

hk21n2k, ~B1!

where the needed leading terms of the expansion are

h05
f~r !

w8~r !
,

h15
f~r !w9~r !

@w8~r !#3
2

f8~r !

@w8~r !#2
,

h25
f9~r !

@w8~r !#3
2

3f8~r !w9~r !

@w8~r !#4

1
3f~r !@w9~r !#2

@w8~r !#5

2
f~r !w-~r !

@w8~r !#4
.
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APPENDIX C: REPRESENTATION OF SUMS AS
INTEGRALS

Here we display some formulas used in this paper, wh
sums are replaced by integrals.

The sum over half integer numbers can be represente
two integrals, the necessary analytical properties of the fu
tion f (n) being assumed:

(
l 50

`

f S l 1
1

2D5E
0

`

dn f ~n!1E
0

` dn

11e2pn

f ~ in!2 f ~2 in!

i
.

~C1!

The first part ofE as in Sec. V can be calculated using

E
0

`

dnE
m

`

dk~k22m2!12s
]

]k

ti

nn

52
m222sn

2

3
G~22s!G@~11 i 2n!/2#G$@s1~n23!/2#%

~rm!n21G~ i /2!
.

~C2!

The integration overk in formula ~39! can be done using

E
m

`

dk~k22m2!12s
]

]k
ti

52m222s
G~22s!G~s1 i /221!

G~ i /2!

3
~n/mr! i

@11~n/mr!2#s1 i /221
. ~C3!

The functionsSn, j (x), Eq. ~40!, can be written as

Sn, j~x!5
4

x2Ex

`

dnAn22x2f n, j~n!, ~C4!

for n51, j 51,3 andn53, j 53,5,7,9 with

f 1,1~n!52
1

11exp~2pn!
,

f 1,3~n!52S n

11exp~2pn! D 8
,

10501
re

by
c-

f 3,3~n!5S 1

n

1

11exp~2pn! D 8
,

f 3,5~n!5
1

3 F1

n S n

11exp~2pn! D 8G8,
f 3,7~n!5

1

15H 1

n F1

n S n3

11exp~2pn! D 8G8J 8
,

f 3,9~n!5
1

105S 1

n H 1

n F1

n S n5

11exp~2pn! D 8G8J 8D 8
.

For n52 the formulas are slightly more explicit. They rea

S2,252
1

x2
ln~11e22px!,

S2,45
p

x

1

11e2px
,

S2,65
3p

4x

1

11e2px
2

p2

2

e2px

~11e2px!2
.

The functionsf i , j build the ingredients for the functiongi(x)
in Eq. ~42!. Explicitly we find

f 1~x!5
1

2
f 1,1~x!2

1

2
f 1,3~x!1

1

4
f 3,3~x!2

39

16
f 3,5~x!

1
35

8
f 3,7~x!2

35

16
f 3,9~x!

2
1

2
x]xS 2

1

4
f 3,3~x!1

7

8
f 3,5~x!2

5

8
f 3,7~x! D

1
1

2
x]x

2S x

8
f 3,3~x!2

x

8
f 3,5~x! D ,

f 2~x!5
1

8
@ f 3,3~x!2 f 3,5~x!#,

f 3~x!52
1

8
@ f 3,3~x!26 f 3,5~x!15 f 3,7~x!#. ~C5!
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