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Ground state energy of a spinor field in the background of a finite radius flux tube
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We develop a formalism for the calculation of the ground state energy of a spinor field in the background of
a cylindrically symmetric magnetic field. The energy is expressed in terms of the Jost function of the associated
scattering problem. Uniform asymptotic expansions needed are obtained from the Lippmann-Schwinger equa-
tion. The general results derived are applied to the background of a finite radius flux tube with a homogeneous
magnetic field inside and the ground state energy is calculated numerically as a function of the radius and the
flux. It turns out to be negative, remaining smaller by a factow ¢fian the classical energy of the background
except for very small values of the radius which are outside the range of applicability of QED.
[S0556-2820199)07118-0

PACS numbgs): 11.15.Kc, 11.15.Tk

I. INTRODUCTION wherer is the radial coordinate in the perpendicular plane, in

the background of an infinitely thin magnetic flux tube.

The ground state energy of the spinor field in the backPartly, this is motivated by the close relation to the
ground of a magnetic field has been investigated since thaharonov-Bohm effect. The first investigation of this kind

early days of quantum electrodynami@@ED). So, for in-  was done in Ref6] for the ground state energy density of a

stance, the effective potential in a strong magnetic field isscalar field, later reconsidered and generalized to the spinor

well known. For a weak field it takes increasing positive case in Ref[7], see also Ref8]. Extensively investigated is
values, for stronger fields it turns down, and B~ it  the (2+1)-dimensional case, see R¢f], and papers cited

becomes therein. Also, there are similar investigations in the back-
ground of an infinitely thin cosmic strindl0]. The calcula-
e (eB)?  [2eB 1) tions in the background of an infinitely thin magnetic flux
eff 12772 : me ’ ( tube have the drawback that the energy density per unit vol-

ume cannot be integrated to get the energy dewsjigr unit
wherem, is the electron mass. For details see, e.g., Réf. length due to the singular behavior near the striag,)
Actual interest in this topic results, for example, from the ~r ~4, which follows already from dimensional reasons.
symmetry restoration due to a magnetic field in electroweak In addition one might consider the combined effect of
theory or from the influence of that field on the character ofboundaries and background fields. This has been started in
the phase transitiof2]. While most work has been done in Ref.[11], where imposing spectral boundary conditions the
homogeneous magnetic fields, mainly because in that casminor field was considered in a finite region of space in the
explicit formulas exist, the extension to inhomogeneousackground of an Aharonov-Bohm flux string.
fields is of interest. In the present paper we continue the consideration of in-
Some work is this direction has already been done. Fohomogeneous magnetic background fields and calculate the
example for a flux where the magnetic field is concentratedjround state energy of the spinor field in the background of
on the surface of the tube, the fermion determinant was cala straight magnetic flux tube dihite radiusR, more exactly,
culated in Ref[3]. However, in that case the classical energythe energy density per unit length. The reason to consider a
is infinite. In Ref.[4], in 2+1 dimensions a magnetic field flux tube of finite radiusk is that the associated classical
homogeneous in the direction and with a special shape in energy is finite and the dependence of the total energy when
the x direction allowing for explicit formulas had been con- R varies while the flux is fixed can be analyzed. The inter-
sidered. The result for the ground state energy per unit aregsting question in this context is if some radids, exists
of the planes was expressed in quite elementary functionsyhere the complete energy, i.e., the sum of classical enegy of
which allowed the discussion of the total energy within thethe magnetic field and the ground state energy of the spinor
family of fields considered. It was shown that the system idfield, is minimized and the magnetic string gets stable. In
driven towards a uniform magnetic field. An extension ofdoing this analysis we use and generalize the formalism de-
these formulas to thé3+1)-dimensional case was given in veloped in Refs[12] and [13] for a smooth scalar back-
Ref. [5]. ground field. In Sec. Il we start discussing in detail the renor-
Furthermore, there exists a number of investigations omalization of the ground state energy. We will normalize the
the density per unit volume(r) of the ground state energy, energy in such a way that it vanishes for the electron mass
m.— o, the resulting massless limit will also be considered.
The needed counterterms and the subtraction employed is
*Email address: Michael.Bordag@itp.uni-leipzig.de then elegantly described using the heat-kernel language. Af-
TEmail address: Klaus.Kirsten@itp.uni-leipzig.de ter having explained in detail the renormalization procedure
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we express the ground state energy in terms of the Jost funétere, the minus sign in front of the rhs. accounts for the
tion of the associated scattering problem. The procedure depinor obeying anticommutation relatiorss (s>2 and s
veloped in Refs[12,13 consists of adding and subtracting —0 in the end is the regularization parameter in the zeta
the uniform asymptotic expansion of the Jost function. Thisfunctional regularization which we use here andis the

is done in Sec. IV using a perturbative expansion of thearbitrary dimensional parameter entering this regularization.
Lippmann-Schwinger equation. Various details of this calcu4n fact, due to the translational invariance along the axis of
lation are relegated to the Appendixes A and B. In the rethe flux tube, we have to consider the energy density per unit
maining part of the paper, Secs. V and VI, an analytical asength. This will be taken into account below.

well as numerical description of the ground state energy for Thee, . are the eigenvalues of the Hamiltonian

spinors in the presence of a finite radius flux tube is per- . .

formed. Some details can be found in Appendix C. In the H= —iyOyJ[(?/axJ—ieAj(x)]Jr ¥°mg 7

Conclusion we summarize the main results of the paper.
which follows from the Dirac equation. Here= =1 is the

sign of the one particle energieg, . for the particle respec-
tively the antiparticle which themselves are chosen to be
The considered background is a straight magnetic fluypositive. All other quantum numbers are included intx).(
tube of finite radiusR, i.e., the magnetic field Furthermore, the index denotes spatial indices only and
summation over it is included.
. & . For the renormalization we follow the standard procedure
B(x)= Eh(r)eza 2 using the heat kernel expansion. The ground state energy can
be expressed by the heat kerig(t) of 7 2,

Il. BASIC FORMULAS AND THE RENORMALIZATION

whereh(r) is a profile function with compact support in the
radial variabler = \x?>+y? in the plane perpendicular to the E=—
tube. By the normalizatiofiydrrh(r)=1, ¢ has the mean-

ing of the flux inside the tube. The corresponding vector ) )
potential can be chosen to be with the asymptotic expansion for0

MZSJ” d ttS* 3/2

2 ), Ts=12 KV

—tm?

RN alr) - N
A(x)= % %eq)' (3 K(t)~(47r—t)d’2 néo ant",

The profile functionsh(r) and a(r) are connected by the Whered is the dimension of the manifoldi=3 in our case.
relationh(r)=a’(r)/r. Below, we will use the special case =~ The heat-kernel coefficienta, for the operator under
of a homogenoeus magnetic field inside the tube, whergonsideration are well known. The relevant operatof
these functions read reads explicitly

2 re H2= — VIV, 1 2 iE, + m2
h(r)=§®(R—r), a(r)=§®(R—r)+®(r—R). Mo 1j ’

(4) with o#”=(i/2)[ y*y"] and the leading coefficients can be

. . , . found, for example, in Ref.14].
In this case the solutions of the field equations can be ex- For n=0 we note that the coefficient is independent on

pressed in terms of Bessel and hype_rge_ometrlc functions. the background field and corrresponds to the contribution of
Another choice could be a magnetic field concentrated or)

the surface of the cylindeh(r) = 8(r — R)/R, where the so- the empty Minkowski space. We drop this contribution with-

; . . out further comment. The coefficieat is zero and fora,
lutions can solely be expressed in terms of Bessel function
. ; .The general formula reads
But in that case the classical energy of the background is

infinite.
The classical energy of the backgrouiper unit length of a,=Tr f dx| — ipﬁ + E(gii Fij )?]. (8
the string is 12 8

1 b (= Here, the trace is over the spinors. The integration along the
gclass= _J d§|§2:_f drrh(r)?. (5) axis of the flux tube gives the corresponding volume by
2 4mJo which we have to divide. So the following formulas have to
be understood always as densities with respect to this axis.
The ground state energy of the spinor field in that back- The trace in Eq(8) can be carried out and by means of
ground is given by Eq. (3) we arrive at

2s 8 o
R e © a2 “drmry?, ©
(e) 0
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where the notation —a 1
2
ren_ " |ln——

e¢d 16m2 Rme

and, for instance, with the backgroufd)
is introduced. Hereg is the electron charge, and we can
rewrite this relation ag= ya/ ¢, wherea is the fine struc- 18 1
ture constant. Eren~ 3. —In R
Using the heat kernel expansion it can be shown that the TR Me
divergent part of the ground state energy results from the
contribution of the heat kernel coefficierss with n<2. We  This behavior will be confirmed below in the course of the
define explicit calculations. In fact, this behavior follows already
from the heat kernel expansion and has the same origin as
the asymptoticgl). For fixed flux ¢, smallR correspond to
(1) large B and, using Eq.(10) and ¢=7wR?B, formula (15)
turns into Eq.(1) [noteVx (1) is the energy density per unit
volume]. For the same reason it can obviously be improved
using the renormalization group. Because the theory is infra-
gren— g_ gdiv. (12) red free and the limiR— 0 corresponds to high momenta it
is impossible to mak® too small.

Here the limits—0 can be performed because the pole part When comparing E¢15) with the classical energy of this

is subtracted. In general, the definition&" is not unique. ~Packground,
By the definition(11), the normalization condition

(15

Then the renormalized ground state energy is given by

¢2
E™N.0 for mg—o (13 golos= —— (16)

is assured. This normalization condition is natural as it im-

plies that a very massive field should not show quantunone could think that the complete energy can be made nega-

fluctuations. On the other hand, it fixes the arbitrarinesgive for sufficiently smallR. However, this would require

which came in with the parameter in Eq. (6). Rm.<exfd —37/(2a)], which is far outside the range of ap-

Along with the subtraction of %V from £ it must be added plicability of QED and also ruled out by the renormalization

to £9%S This is equivalent to a renormalization of the flux group argument.

according to Note that in the massless case the renormalization scheme
must be modified. As discussed in R¢fL9], for a,#0
which is the case here genericdllg,=0 means a vanishing

: (14 background, cf. Eq(9)] and which represents the conformal
anomaly, there is no transition for the renormalized ground

ren — i _
From this renormalization procedure it is possible to de—State energy” ™ from me# 0 tome=0. Usually, in the mass

; e div i ;
termine the leading asymptotic behavior of the renormalize(!gstshgﬁ’gs'g t:r?o?k?élrnIt:elorr;r?eterSIEléa:;r?ofrgél%zlgtligitiggle
ground state energy when the radRisf the flux tube tends ’ P '

to zero. In fact, this could have been done using the argui-s used. Therefore the renormalized ground state energy con-

ments given in Refl15] where the general scaling behavior ta_lins a n.onuniquene:ss proportional t_o the heat kernel coeffi-
of the Casimir energy was investigated. The point is simpIyC'emaZ’ i.e., proportional to the classical enerfipee formu-
that the regularized ground state enefgy has a series ex- las (5) and (9)].

pansion with respect to powers of the mass. Note that

this is not affected by the zero modes, which are present herelll. GROUND STATE ENERGY EXPRESSED IN TERMS

(see Ref[16]), because we consider the ground state energy OF THE JOST FUNCTION

and not the determinant of the operafrThen, by means of
Egs. (12) and (11) we subtract a contribution containing
Inm,. Therefore, the renormalized ground state eneityi)
becomes fom.— 0 proportional to Irm,. Now, for dimen-
sional reasons it can be written as

2
e

2 2
+@(§_z+| o

We express the regularized ground state end)yin
terms of the Jost function of the scattering problem associ-
ated with the operatdk, Eq. (7). Because the background is
translationally invariant along the third axis, by means of

@

wheref is some function of the dimensionless combinationwe rewrite the corresponding Dirac equation using the spiral
Rm.. Consequently, foR—O0 the behavior must be representation of the gamma matrices in the form
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po+L—meos P3os

3

with LIiEiZ:lUi(alﬁXi'FieAi). It is sufficient to consider

P303 po+L+meos

p3=0 and one of the two decoupled equations. Then by

means of
igy(r) eimre
=( ga(r) e ime )
(m=—o,0) we arrive at the equation
m Jd m—da(r)
pO e (?_I’_ —r
d  m+1-asa(r) o ®(r)=0,
T PoT Mg
(18)
where we introduced the notation
91("))
d(r)= 19
oL (gz(r) 19

for the solution®(r).
The solutions in the exterior spager R, are

®3(r)
VPot+ Mg Jm-s+1(Kr)
Voo m, am5<kr>) o mrme=t,
- VPot+ Me ‘Jﬁfmfl(kr)
(—m aamm)) or mo=o

(20

The Jost solution of Eq(17) is the solution which behaves

for r—0 as the free solutior{20). Its asymptotics forr
—o0 can be written as

1 —
O(N)~ S Phe(N + (K PEw(n], (2D

where ® 12 are the solutiong20) with the Hankel func-
tions instead of the Bessel function. The coefficieptk) is

the Jost function anﬁm(k) its complex conjugate.

PHYSICAL REVIEW D60 105019

where (n) denotes the remaining quantum numbers in the
plane perpendicular to the axis of the tube. Now the sum
over thesdn) can be expressed through the Jost function and
we get to the relevant order &

o0 o (9
E=Cqs >, dk(k2—m§)1*5ﬁ|n fo(ik) (23

m=—c Jmg

with Cs={1+s[—1+2In(2w)]}/(27). This representation
can be obtained in much the same way as done in the scalar
case in Ref[13]. One has to take into account the known
analytical properties of the Jost functiéwhich differ from
that in the scalar cageOne has to use as an intermediate
step a finite quantization volume with appropriate bound
conditions(bag conditions work well Then, in the course of
tending this volume to infinity, the translational invariant
contribution from the Minkowski space must be dropped and
the remaining finite part, after a deformation of the integra-
tion contour, just delivers Eq23).

We remark that in the considered problem there are zero
moded16] (atk=0). In the sum in Eq(22) they have to be
taken into account. Just in the same way as shown in detail in
the scalar case in Rdf13] for the bound states they do not
show up explicitly in representation E(23).

Here we have taken into accout that both signs of the one
particle energies as well as both signs of the spin projection
give equal contributions to the ground state energy thus re-
sulting in a factor of 4 which is included intGg. This ex-
pression will be used in the calculations below.

The renormalization of the ground state energy is defined
by Eqg.(12). The remaining task is to perform the analytical
continuation as— 0. However, this is not immediately pos-
sible using representatid@3) for £. To continue we use the
uniform asymptotic expansion ffi{ik) of the logarithm of
the Jost function, I, (ik), defined in such a way that the
difference

Infm(ik)—lnfﬁf(ik)=0(i4) (24
m

is of the orderm™# in the limit m— o, k—o for m/k fixed.
Then we split the renormalized ground state energy by add-
ing and subtracting IffYik) to get

gren=glyees (25)

The ground state energy can be expressed in terms of the

Jost function much in the same way as in the scalar casgith the “finite” part
[13]. However, due to the translational invariance in the di-
rection parallel to the flux tube, we have the energy density

MZS © dk3

- _ - _9° 2 2 1/2—s
E=—= _wzw(;s)(ks-ke(n’e)) :

1 o
== X

2 m=—o

o J
Jdk(kz—mg)w[lnfm(ik)—lnfas(ik)],

(22 (26)

instead of the general formul). After carrying out the Where it was possible to pst=0, and the “asymptotic” part

integration ovelk; we arrive at .
* J .
£¥=Cg 2, dk(kz—mg)l‘sﬁln fa%ik) — g9V,

1 I'(s—1) ) 2 )
E(e(n)) 3 (27)

2s
e # L T(s7D
2 2\/; F(S—l/Z) (n)
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Here, we included the subtraction 6fV according to Eq. . ' .

(12). The continuation ts=0 will yield a finite result be- (D(r):q)J(r)+J drir’g(r,r" )AP(r )®;(r")

cause the pole contributions cancel. This continuation will be 0

done in Sec. V. But because the expression fdflis quite ; y

simple, this task can be done analytically. +f dr'r'f dr"r"g(r,r")AP(r")
The subdivision(25) of £ is not unique, only the condition 0 0

(24) has to be satisfied. The inclusion of higher orders into

In f¥would speed up the convergence of the momentum sum Xg(r', 1" AP(r")®I(r")

in &', for instance. But we will use Iffin the minimal form

. r ’ ”
Obeylng EQ(24) +j dr/r/ fr dr"l’"fr dl’"'l""g(l’,r')AP(l")
0 0 0

IV. THE UNIFORM ASYMPTOTIC EXPANSION . N o
OF THE JOST FUNCTION Xg(r',r")AP")g(r",r")AP(r")Dy(r")

The uniform asymptotic expansion of the Jost function +O[(AP)Y]. (31
can be obtained from the Lippmann-Schwinger equation in
much the same way as it was done in the scalar a3k This expression has to be inserted into E2f). In fact, we
We rewrite Eq.(18) in the form need the logarithm of the Jost function. Therefor the appear-
ing expression must be expanded again. We write the result
as Inf(K==,-1In {(k) wheren denotes the power of the

m Jd m operatorAP. Up to the fourth order we obtaiffor several
Po™Me a r details see Appendix A
O (r)
Jd m+1 Do+ m
ar r 0T Me Inf(M(k)= _(%H drrd ) ,(NAP(r)D4(r), (32)
0
—da(r)[0 1
= O(r)=AP(r)D(r).
r 1 0 m\2 (e '
Inf@ (k)= — E) f drrf dr'r’ @) (nAP(r)
0 0
The operator on the left-hand side can be inverted using the
free solutiong20) and we get the integral equation chH(l)(r)cD](r’)AP(r’)(I)J(r’), (33

3 e r
r @)y — _o| T '
q)(r):‘bo(r)'f'fodr'r’g(r,r')AP(r’)@(r’) (28) |nfm (k)— 2<2|> fo drrJ;)dr r
with xfor dr'r"® [ (N AP(r) D ya(r)

. ; ] XDyt YAP(r YD1 ) DT(FAP(H) D ("),
9(r.r") == S [@yND ]y (r) = By(r )P L),

(29 (34)

4 0 ’ n
where® " means the transposed &f. Insertingd$ (20) for In f*)(k) = _(1) f dr rfrdr’r’fr dr”r”fr dr e
®O(r) in the right-hand side of Eq28), this equation deter- m 2i) Jo 0 0 0

mines just the Jost solution. Using the asymptotic expansion

of the Hankel functions and comparing with EQ1) we x[4¢L(l)(r)AP(r)<I>H(1)(r)<1>L(1)(r’)
obtain for the Jost function the representation

XAP(r)D,5(r" )DLyt AP(r")d,(r")
fm(k)zl—%fomdrrd)L(l)(r)AP(r)CD(r). (30 XD AP )D(1") + 2] oy (NAP(T)

><<1>H(1)(r)<I>L(1)(r’)AP(r’)d)H(l)(r’)d)I(r”)
Equation(28) can be iterated. It turns out that we need all
contributions up to the fourth power %P in order to satisfy ><MJ(r")q>J(r")q>](r"')A7>(r"')cpJ(r'")],
condition(24). Note that in the scalar case the second power
had been sufficient. Iterating E(R8) we obtain (35
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where rearrangings of the integration domains had been 1
made. m+§ for m=0,1,2...,
Now, because we are interested in the Jost function for y= (36)
imaginary momentum, we turn from the Bessel functions to —m— E for m=—1-2
the corresponding modified ones. Then we have to perform 2 Lo
the uniform asymptotic expansion of these expressions.  with »=%,2,..., inboth cases.

Before doing this we note that it turned out to be more Then we need uniform asymptotic expansions of the
convenient not to use the orbital momentumas the expan- modified Bessel functions for— o, z fixed, of the follow-
sion parameter, but instead ing type:

1-t
1+t

T

24y 1612

Ko VZ)} e [t
I+ 12(v2) 2v
s 2160*— 2304et®+ 74408+ 7695t — 54008 — 5525et9+

576003 o

A %—6t2—56t3 — 4et3—4t*+5¢t5+5t°
e ex +

with e=¥1 for K, respectivelyl,, »=1+z>+In[z/(1 1, 39, S o -
+y1+7%)] andt=(1+2%) ~Y2 which may be derived from X3s=gd’| —ya+iraa’ —r-aa’+6sa’),

the commonly known ongl7] by a corresponding reexpan-

sion. Similar expansion foK, 4, andl,_4,, are also used. 1
Now we insert this expansion into the logarithm of the X3,7=§ 5%(35a%—5raa’ —56%a%),
Jost function. Then the integrations ovéf, r” andr’ can
be carried out successively by the saddle point mefbaty _35
equal arguments in the functiong(z) yield contributions Xz o9=—x 6°a°. (38)

which do not exponentially decrease for-o] as done in 16

Ref. [13]. In doing SO it becpmes apparant that terms up tQ-Iere,a means the profile functioa(r) in Eq. (3). Below,
the fourth power inAP contribute to the asymptotic expan- when inserting this expansion ini®, the sum over the

. . 73 .
sion in » up to the orderv™". The relevant saddle point orbital momentum must be performed. There some contribu-

expansion 1S presented n thg Appendix .B’ see @&j). tions cancel, for instance, those which are proportionaf to
Finally we collect all contributions up to this order and de- ;4 53 They are not shown in formulég8)

fine
s an ‘ V. THE ASYMPTOTIC PART OF THE GROUND STATE
=dr t ENERGY
Infaik) =2 2 | — Xoj—; (37)
n=1j=nJo v The asymptotic part of the ground state energy is given by

Eqg. (27) and the expressio(87) for the asymptotic expan-
with the notationt=[1+ (rk/»)?]~¥2. The coefficients turn  sion of the logarithm of the Jost function. We rewrite it in the

out to be form
(a9)* (ad)? £3=2c, > fdk(kZ—mg)l-s
=" o KT v=1/2,3/2,... Jme
R [ U
1 X— | — 2 X Xn——E™, (39
Xpo=7 (a’~raa’), okJo 1 aZ {5 T

Here, the sum over the orbital momentumin Eq. (27) is
1, 5 ) B 5 rewritten as a sum over, Eq. (36). By means of Eq(C1) it
Xoa=7 0 (—3a%+raa’), Xze=5(ad) will be replaced by two integrals. The contribution resulting
from the first integral can be calculated explicitly using for-
mula (C2). Together with the explicit expressions i, ;
X o }52 a?—raa + lrzaa”— }52a4 (39), after a straightforward calculation, it can be seen to
3374 2 2 : cancel exactlye @V [for arbitrary profile functiora(r)].
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So we are left with the contribution resulting from the integrate by parts which reduces to the substitutioma’
second integral in EqC1). There the integration ovércan ~ — —1a%rg, andr?aa’— —a'?+ 3a’r9’r. We note that af-

be carried out by means of formul@3). Then defining ter doing this the contribution resulting from=2 vanishes,
already before the integration ovewill be carried out. Then
y _ T(s+j2-1) —_lf“ dv the integrations over and » can be interchanged and after
nj(X)= L'(j/2) xi Jo 1+exp2mv) rescalingv— vrme we get

(iV)jin as__16 =dr 2 .2 12
(L ()22 g —TL r—s{a(r) g1(rme) —r<a(r)’“ga(rme)
(—ip)i—n +a(r)*gs(rmey)}, (42)
- : 29s+j/2—1 (40
[1+(—iv/x)“] with

we arrive at
3 3y gi(x)= f dvr?—x2f( (i=1,2,9.
me2, 2 f —XnZqj(rmg).  (41)
The functionsf; are displayed in Appendix C, E¢C5). This
In the functionsX, ;(x) the analytic continuation ts s the final formula for€® for an arbitrary profile function
=0 has to be performed. For this reason one has to integraggr).
by parts several times to get rid of the singular denominator. For the homogeneous magnetic field inside the flux tube,

The resulting expressions are shown in the Appendix C, fori.e., for the profile functior(4), the integration over can be
mula (C4). Now in the integration over, it is useful to  performed explicitly. After elementary calculations we get

3
—4 ] (Rm 3 8 N 3= 1P—(Rmy)?
as_ f dy—— &2 fl(v)—4f2(v)+—52f3(v)( +f do| 1,(mys2| (R
aR? | Jo 3(Rmy)? 35 meR RM, 3(Rmy)?
3
LV Rm? (Rmy* [V+\/V2_(Rmez] 4t (V)ézvs—wz—(ane)z
2 2v meR 2 3(Rmy)?
81— \r?’—(Rmy) 818+ 4v*(Rm)2+3v2(Rm)*— 15(Rr‘r1e)6] V2= (Rmy)?
+fa(v)o*
105Rmy)° 2
(Rme)2 (v+w —(Rmy?)
2v meR
|
This expression consists of two parts which we write in the In x
form e1(X)~ s—+0.1348+ O(x),
3w
€5(X)~—0.0354+ O(x). 45
o 8RR " 2(X) (%) (45)
R? R? The logarithmic contribution is just that which was to be

expected from the heat kernel expansias).

Here e, respectivelye, describe the contributions propor- VI. THE “EINITE” PART OF THE GROUND STATE

tional to the second, respectively, fourth power of the cou- ENERGY AND NUMERICAL RESULTS

pling é to the background. They are shown in Fig. 1. Their

behavior forx—0 can be calculated from E¢43) and we The finite part of the ground state energy is defined by Eq.
have (26) together with the asymptotic expansion of the Jost func-

105019-7



M. BORDAG AND K. KIRSTEN
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FIG. 1. The functiong, ande, appearing in the asymptotic part

of the ground state energy.
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FIG. 3. The complete ground state energy multiplied5y 2
for several values 0.

tion, Eqg.(37). In general, these quantities can be calculatedrhereby the pure Aharonov-Bohm phase is dropped as it
only numerically. We consider here the case of a homogedoes not contribute t&".

neous magnetic field inside the tube as given by @y.In

The asymptotic part of the Jost function can be obtained

that case the solutions of the field equations are known, thegxplicitly by carrying out the elementary integrations over
are hypergeometric functions inside and Bessel functiong Eq. (37). Now, having given all ingredients in the inte-
outside. As these formulas are in general quite well knowrgrand of€', the remaining task is to perform numerical com-
and easy to derive, we give here only the result. The notaputations for several values of the parameters. For this task it

tions are close to that in the pagdér8]. For positive orbital

momentum{m=0,1, ..., informula (36)] we have

f(ik)=2

2

kR\|”*Y2exp — 8/2) kRK ‘R
Twra2)| 2 v—1/2- s(KR)

(kR)2 3)
1+ ———, v+ 58|+

1
7 2 vty

X
lFl 2

(kR)? 1
XK1 12- o(KR)1F1 T”H_E;g ,

and for negativen (m=-1,—2,...)

2

kR\|""2exp — 6/2) (kR
T(vi3i2) 7KV— 12+ 5(KR)

1 (kR)? 3
V+§+F’V+§

f(ik)=2

XlFl ,5+ v+ =

2

(46)

1 (kR)? 1
XKyt 124 8(KR)1Fq| v+ 5+ ,V+§;5 .

2 46

§=04

FIG. 2. The functiorR?5 2£f(R) for several values 0.

(47)

turned out to be useful to integrate by parts and to substitute
k= X/R. Then we have

_1 1 0
Ef=—— f dx[Infr(ik)+Inf (ik
27 R? VZl/%/Z,... (Rmy2 Lint, k) v (1K)

—2|nfas(ik)]|k:&,R. (48)

This expression can be calculated numerically. The integra-
tion overx is quite quickly convergent, the sum ovemot.
So, in order to achieve a satisfactory precision for the plots,
v must be summed up to 15, for largeup to even higher
values.

The general behavior & as a function of the radiuR of
the flux tube is quite smooth. F&— 0 it is proportional to
R~2. This can be seen analytically from E8). For R
—o it is proportional toR™2 which we observed numeri-
cally. Having in mind that the behavior f&R—« is deter-
mined by the next heat kernel coefficient afser we con-
clude from this thatag;, is nonvanishing. This seems in
contradiction with the general results saying that for mani-
folds without boundary half-integer coefficients vanish. But
one has to remember that higher coefficients contain
leas) squares of derivatives of the background field which
for the presented example leads to undefined expressions.
Thus, for the higher coefficients the general formulas do not
apply and there is no contradiction at all.

In Fig. 2 the function&'(R) is shown multiplied by
R26°2 as a function ofR for several values ob. In Fig. 3
the complete ground state energy " (R), multiplied by
R25672 is shown for several values of. In general, this
function takes only negative values, relatively weakly de-
pending on the flus. For smallR, the logarithmic contribu-
tion is dominating.

The complete energy is the sum 6f3S (16) and £™"
(25). In Fig. 3, the classical energy would be a straight hori-
zontal line at 2r/«a. From this it is clear that the complete
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energy, remaining a monotone decreasing function of thejent in sequence is, delivering terms~ R‘Gme_“. This

radius, deviates o.nIy slighly from the classical energy for allogefficient is nonzero in a homogeneous field and must de-
values of the radiuR except for very small ones as men- | er the Euler-Heisenberg contribution.

tioned at the end fOf Secésll. o _ An interesting question is on the general dependence of
For larged, in £' and&£**the contributions [eropgrtlonaI 10 the ground state energy on the specific background chosen
5 dominate, giving(at last for 0<R=1) &' (£ ) large  here. First we remark, that we are in agreement with Ref.
positive (negatn_/e) values. BuF these contrl_butlons can_cel with respect to the ground state energy beeing a small ad-
each other. This was seen in the numerical calculationgjendum to the classical energgs long asR is not too
Also, this corresponds to the procedure of adding and sub;ma”)_ Secondly, from explicit formulas such as E42) for
tracting Inf®in Sec. Il which contains terms proportional to cas e expect that the dependence on the shape of the mag-
&*. However, we did not perform a complete investigation ofetic field inside the flux tube will be weak. This will be so

the behavior for larges. at last for sufficiently smooth background fields. When, how-
ever, the background becomes singular, this may change. As
VIl. CONCLUSIONS an example one can consider the ground state energy of a

massive spinor field with bag boundary conditions on a
f%phere calculated in Ref20] showing as function of the
radius even changes of the sign. Another consequence of our
calculations is that it seems impossible to shrink the radius of
the string to zero bcause of the logarithmic singula¢it$)
appearing in that case. In view of this, it would be interesting
éo reconsider earlier investigations in the background of the
infinitely thin string whereby we admit that it might well
happen that this singularity can be absorbed into some coun-

In this article we have provided a full analysis of the
ground state energy of the spinor field in the background o
a straight magnetic flux tube of finite radi&s The formal-
ism developed applies in principle to any magnetic field with
cylindrical symmetry. Assuming that the Jost function is
known or can be determined numerically, EGE2) and(48)
give the final formulas for this case. We have applied thes
formulas to the case of the magnetic fi€Xl. The final result
consists of a very explicit “asymptotic” part, E¢43), and a terterm
part to be determined numerically, E@8). A detailed nu- X

merical analvsis shows. that the around state energy turn Even if we have found a negative answer within the class
Y ' g 9y of exampleg2), the results presented can be a starting point

out be negative, remaining for aimost all values of the rad|u%0 consider further the question if inhomogeneous magnetic

R by a factor proportional to the fine structure constant . L . .

) . fields can minimize the energy for fixed flux. Furthermore, it
smaller than the classical energy. As a result, in the range g . .

Sseems possible to include other aspects as for example exter-

applicability of our results, the total energy remains pOSItlvenaI electric fields and the anomalous magnetic moment.

and, furthermore, does not show a minimum for finite values . .
. ) . . - “Also, the techniques developed here, are suited for the cal-
of R given a fixed flux. The magnetic string thus remains

) . X ; culation of the fermionic contribution to the vacuum polar-
unstable also when including quantum corrections into the . . he back d of the Niel | h
total energy. ization in the background of the Nielsen-Olesen vortex,zhe

The behavior of the ground state energy for laRyat string, or in & chromomagnetic background.

fixed flux can be understood in terms of the heat kernel ex; Finally we note that the ground state energy found here

. L ) . ; has a quite similar behavior as that in a homogeneous mag-
pansion because it is for dimensional reasons equivalent to

. . ‘ netic background insofar as both quantities are completely
the large mass behavior. We found numerically for. > a negativelin the definition of the effective potential as in Eq.

. — 73 71 . . ._
behavior~R""m, ~ which corresponds tas,. This coeff (1) usually the classical energy is included, in the notion of

Elenli with a Zalrf] Integer nurlnber may kr)]ebpreksent bzciusf?‘ Re ground state energy it is foOf course, these quantities
ac grqun_c( ) has {a_step. na smqot ackgroun the firstyifrer in details, for instance in their asymptotic behavior as
nonvanishing coefficientafter a,, with n<2 which were mentioned above

subtracted out by the renormalizatjomay beas; with the
resulting behavior~R~“m_ 2. In a homogeneous magnetic
background this coefficient is zero because it containes de-
rivatives. In a nonhomogeneous background it may be non- K.K. was supported by the DFG under Contract No. Bo
zero and delivers the leading asymptotics. The next coeffil112/4-2.
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APPENDIX A: PERTURBATION THEORY FOR THE LOGARITHM OF THE JOST FUNCTION

In this appendix we will derive the expansion for the logarithm of the Jost functior(38q.The first step is to use E31)
in Eq. (30). The Jost function itself up to the fourth power in the perturbatigf®) reads

fn(K)=:1+X;+ X+ X3+ X4+ O[(AP)%], (A1)

with the definitions

[Cdrralroamiey, (A2)

_ '
=715,

105019-9
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Xp= — (2—7:) fowdrlrlfo 1dr2r2<bL1(rl)AP(r1)g(r1,rZ)AP(rZ)CDJ(rZ), (A3)
x3=—(2—77i) [Cana [ Marrs [ Far @l aPrigrs I APE G AP By 1) (A%)

m *® M 2 K]
X4:_<z> fo drlrlfo drzrzfo drsrsj'o dr4r4¢L1(r1)AP(r1)g(r1,rz)AP(rz)g(rz,rs)AP(ra)g(rsJ4)A7)(r4)q)a(r4)-

(A5)
We will need the combinations
Inf o (k)=InfBk)+1In £ k) +In k) +1In F(k) + O[(A(P)®], (AB)
with
In ffnl)=x1, (A7)
(2) 1 2
In i) =x,— 5x1, (A8)
(3) 1 3
Infy/= §xl—x1x2+x3, (A9)
(4) 14, .2 1,
Inf/=—=X]+X{Xo— 5X5— XXzt X4. (Al10)

4 2

Let us consider I (K) order by order. The first order h‘,ﬁ)(k) is already given by its definition, Eq6A7) and(A2). For the

calculation of Inf,(.,'f)(k) some manipulations are needed. The main trick, also for the calculation of the higher orders, is the

rearrangement of integration domains. At the beginning we will give details, later on only an idea of the single steps is given.
Using EQq.(29) one obtains

2( rw ”
@b~ 5] | [ ones [ arrt L ame e el ape e

o r 1| (= 2
_fo drlrlfo drzrz‘b-p:l(r1)AP(r1)‘DH1(V1)‘DI(V2)AP(V2)‘I’J(V2)—E[JO drlrlq)Ll(rl)A’P(rl)q)J(rl)} ]

The first and third terms combine to give

EI)ZFdrrcbT (r)AP(r)Ps(ry) frldrrcpT (r)) AP(r)Ds(r )—Fdr D 1(r) AP(r ) Ds(r )
22i011H11 1J1022H12 2er12H12 2)®al2)

Next the integration domains may be rearranged,

o0 ) o r
f drll’lj dr2=f drzf zdrl
0 r 0 0

and changing finally the name of the variahlgs~r,, one arrives at Eq33).
When calculating the higher orders it is extremely helpful to systematically use the lower orders already obtained. So for the
next order we start with

1
Inf() =x3= S (N Q)= (I L) (In ),

where

X3=X31t X322 X33t X34

105019-10
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consists of the pieces

|8 (= r 2
X3,1:_(E) fo drlrljo drerJO dr3r3(DLl(rl)AP(r1)(I)J(r1)CDL1(rZ)Ap(rz)q),](rZ)CDLl(r3)AP(r3)(DJ(r3),

T 8 (= r1 M2

X3,2Z(E) fo drlrlfo drzrzfo dr3r3q)-|l-—|1(r1)AP(rl)q)J(r1)¢Ll(r2)AP(r2)CDH1(r2)®}(r3)AP(r3)¢J(r3).
au 3 (e r ro T T T

X337 | 57 . dryry . dror, . drarg® 1 (r)AP(r )@ ya(r) @ ;(ro) AP(ro)® (ro) @ a(rz) AP(r3)Dy(r),

m\3 (= r1 2
X3,4:_(§) fo drlrlfo drzrzfo dr3r3¢L1(r1)A7?(r1)(IJH1(rl)dﬂ(rZ)AP(rz)@Hl(r2)¢](r3)A7?(r3)<DJ(r3).

Cancellations occur due to the identity are used. One arrives at
*© r M
f() drlrlJO dr2r2"'f0 drn+1f(r1) ---f(rn+l) _(lnfg))(lnfg)):_X3’2_X3'3+X3'4
1 o n+1 ) )
=—— J drf(r) , (A11) ending up with Eq(35).
N+ Jo Finally, the last order we will need can be written as

which can be proven by induction. It shows

1 1
B ky=x, — — (2) 2_ (1) 2 (2)
xs,l—%unfg,}))s:o. In £ =x,= 5[In FE(K) 2= S[In 130k 7In f P ()]

1
To manipulate the contribution (K{)(In f?) integrals are —[Infﬁql)(k)][lnfﬁ?)(k)]—z—‘l(lnfﬁnl))“_
spitted according to
00 r e} . .
f drszf 2dr3+f drs (A12) The contribution
0 0 ry

and identities of the kind

r © r ry © r
J dr]_J erZJ erJ dr1+J erJ drl
0 ry 0 0 r 0

Xg= 21 X4,

(A13)  consists of

4 (o r 2 s T
fo drlrlfo drzrzfo dr3r3jo drar g ® 1 (r) AP(r)Dy(rq)

“

XD L1(F) AP(r) D (1) @[ a(rg) AP(rg) @ (rg) D La(r ) AP(r ) D (1 ),

a 4 e r ) rs
X4’2:_ z fo dl’lrlfo drzrzfo dr3r3f0 dr4r4

XD L) AP(r ) D (1) D) AP(r o) @(r ) D La(r3) AP(r ) @pa(rg) @ (r ) AP(r )@ y(ry),

X4,1=

lrs 4 e ri 2 r3 T
X43:_ ~ f dl’lrlf drzrzf dr3l’3f dr4r4®H1(r1)AP(r1)
: 2i) Jo 0 0 0
XD(r ) DLa(r ) AP(r ) P a(r ) (1) AP(r3) D (1 3)® a1 ) AP(r ) D (1),
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Xa,4

PHYSICAL REVIEW D60 105019

o 4 ro r ) rs T
o7 f drlrlf drzrzj dr3r3f drgr 4@ 1 (r) AP(r)®y(ry)
I 0 0 0 0

><(I’Ll(r2)AP(V2)‘I’H1("2)‘DI("3)AP(rs)‘I’Hl(r3)¢’I(r4)A7D(r4)q)J(r4),

T 4 e ri 2 r3 T
X45=— o7 f drlrljo drzrzfo dr3r3f0 dryr g ® 1 (r ) AP(r1)Dya(ry)

0

XD (r)AP(r) P (ro) @ La(rg) AP(rg) D (r5) Do (r) AP(r ) Ds(ry),

m\4 [ ' 2 3 T
- f dl’ll’lf dr2r2f dl’3l’3J’ dr4r4CDH1(I’1)A7D(r1)CDH1(I’1)
2i 0 0 0 0

X4.6=
XD (r) AP(rp) @ 5(ro) @ L a(rg) AP(rg) @ pa(ra) D3 (r ) AP(r ) D (),
4 o) r r r
ar 1 2 3 T
X47= E) fo drlrlfO drzrzjo dr3r3f0 dr4r4<1)H1(rI)AP(rl)d)Hl(rl)

X Cb}(|’2)AP(rz)‘I’Hl(rz)q)](rs)AP(rs)‘I’J(rs)‘DL1(VA)AP(M)(DJ(U),

rs 4 o r 2 r3 T T
Xa,8~ — o Odrlrl o dryry o drars o drgr 4@ 1 (r) AP(r ) @pya(r)®;(ry)

XAP(r ) Ppa(ro)PJ(ra) AP(rg) P pa(ra) DI (ra) AP(rg)Ps(ry).

Equation(A11) shows
Xq1— —1 [In f(l)(k)]“——o
41 24 m '

With the help of rearrangements as E¢&12), (A13), and
similar ones, it can be shown that

—[INFPER) N TR (k) 1= — 2x4 7+ 44 5~ 2X4 4,

1
- E['n fg)(k)]z[ln fg)(k)] = —Xg5TXg 7 X437~ Xg8TX44
—2X4.2,

and

1 ) 5 o ry ra
—E(Infm (k))*=—X46—2| dryry| drorp| drara
0 0 0

'3
xfo drar @ a(r) AP(r ) ®pa(ry)

XD Li(r ) AP(r) Dpa(r) D (rg)
XAP(rz)®;(r3)
XD (1) AP(r ) Dy(r ).

Putting all pieces together one arrives at E2p).

APPENDIX B: SADDLE POINT EXPANSION OF
INTEGRALS

For the derivation of Eqs(37) and (38) repeated use of
saddle point expansions was made. The relevant result is
stated in this appendix.

For v—o one obtains the following asymptotic expan-
sion

r , *
j dr’ g(r')ere N =ev¢(> h,_,p7K (B1)
0 k=1
where the needed leading terms of the expansion are

hoo 20
@'(r)

e’ 40
VP e

L) 36'0¢')
LoD [e'(n]
L3I
Lo (N]°
H(r) " (1)
[o'(N]*
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APPENDIX C: REPRESENTATION OF SUMS AS

1 1 !
INTEGRALS f3‘3( 1/):(; m)
Here we display some formulas used in this paper, where

sums are replaced by integrals. v K
The sum over half integer numbers can be represented by fas(¥)=3| T+ exp2m0)
two integrals, the necessary analytical properties of the func-
tion f(v) being assumed: 11 3 D1y
- 1\ (= = dv  f(iv)—f(—iv) AV =1513]% 1+exp2mv)
Zfl+—=fdvf(v)+f . .
=0 2 01+em™ |
(Cl) 1 1(171 V5 [ATARAN;
=108\ 3 | | v | T+ exp2m) '

The first part of€2°in Sec. V can be calculated using

fdvf dk(k*—m?)1~ Sii

n

Forn=2 the formulas are slightly more explicit. They read

1
22’2: - —2In(1+e‘2m‘),
X

m2725n
T2
T 1
F(2 S)I[(1+i—n)/2]T{[s+ (n— 3)/2]} S, ,
TOX 1+e2™
(rm)"(i/2)
(C2 3 1 w? e?™
. . . . 225:_ 2mx D 2mx\2 "
The integration ovek in formula (39) can be done using 4X 1+e2™ 2 (1+e®>™)
fwd k(kz_mZ)lfsiti The functionsf; ; build the ingredients for the functiag (x)
m ak in Eq. (42). Explicitly we find
a5l (2=8)[(s+i/2—1)
I'(i/2) fi(x)= _fl 1(X) = 5F1X)+ 7 f3 AX)— 7=fa8(X)
(v/mr)!
— c3 > 35
[1+(V/mr)2]s+|/2—l ( ) +§f3’7(X)—1—6f3'9(X)
The functionsX , ;(x), Eq. (40), can be written as 1

1
_EX(?X(_ZfS,B‘(X) 35(X)— 37(X)>
4 0
En’j(x):_Zf dV\/VZ_Xan’j(V), (C9 1
o +2xa( fadX)— g 35<x>)
forn=1, j=1,3 andn=3, j=3,5,7,9 with

- - = 5lTs 0~ T55x)
f1,1(V)——m. f2(x) [ 33dX)—f35(X)],
' 1
fadv) == —1+ex:(27-rv)) ' 30 == 5[ a0 ~6f35x) +5f54)]. (e
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