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Covariant technique of derivative expansion of the one-loop effective action
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A simple systematic method for calculating derivative expansions of the one-loop effective action is pre-
sented. This method is based on using symbols of operators and well known deformation quantization theory.
To demonstrate its advantages we present several examples of application for scalar theory, Yang-Mills theory,
and scalar electrodynamics. The superspace formulation of the method is consideretilésiaand non-
Kahlerian quantum corrections for Wess-Zumino and for Heisenberg-Euler Lagrangians in super QED models.
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I. INTRODUCTION higher derivative$6] and integration of anomalies, the most
preferable is the covariant method of the theory of perturba-
The low energy effective actiofEA) (see Ref[1]) con-  tions[7].
tains all predictions of quantum field theory and is a central On the other hand, it has been known for a long time, that
object of research in physical situations, when we are interene-loop EA can be, at least formally, rewritten as, first, a
ested in phenomena at an energy scale which is smaller thejuantized path integral for a fictive particle, which correctly
some cutoffA. Then fundamental heavy degrees of freedomdescribes the behavior of spin and color degrees of freedom
of the underlying theory appear in loops only as virtual statesn external fields[8]. This representation and its modifica-
and an integration over both these mass states and all masi®ns are used for calculation of derivative expansion in
less excitations above the scale we are interested in lead@FT, for research of complicated Feynman diagrams and for
generally speaking, to nonlocal quantities. application of stationary phase methp@l]. Unfortunately,
Unfortunately, the straightforward calculations even forthe application of the quantum-mechanical path integral in
one-loop EA, determined by the spectrum of the operatocurved phase space meets the difficulties of its correct defi-
H=6°S/6¢5¢ as a functional of external fields, face this nition. This is related to the time-slicing proced(iié®)], be-
essential problem. Such a problem can be precisely solvechuse it is not covariant itself. Moreover, in order to get a
only for some very specific simple configurations of back-sense of the path integral, it is necessary to add some desig-
ground fields, when eigenvaluestdfcan be found precisely. nations in the way of finite-dimentional approximation. The
Therefore, the problem of development of the manifestly co-ambiguities arising from such procedure have the same
variant methods for calculating tifgonloca) EA as a series source as the quantization proced[it&].
of local terms depending on background field derivatives has The powerful nonrenormalization theorems in the super-
attracted much attention. The leading term, named the effesymmetrical theorie$12] do not prohibit the quantum cor-
tive potential, is the most investigated term in the derivativerections for superpotential. So far perturbative calculations
expansion. It is a useful object for the determination ofdetermine the effective Kderian potential. When the super-
vacuum structure of the full theofi2]. symmetry is unbroken, this potential determines both the ef-
The most known method for calculating the derivativefective potential of the theory and the kinetic terms. The
expansion EA(DEEA) is the so-called Schwinger-DeWitt problem of calculating the Kaerian potential was devel-
asymptotic expansiof8—5]. All interesting quantities, such oped by many authors both on a component 1¢¢8l, and
as EA, Green function, energy-momentum tensor, currentsyith the use of the supergraph technidqdd]. The generali-
and anomalies are expressed in this approach in terms a@htion of the operator Schwinger—DeWitt representation for
asymptotic coefficient heat kernel decomposition, so-callecdn appropriate heat kernel is also develogsee, for ex-
Hadamard-Minakshisundaram-DeWitt-See(e§MDS) coef-  ample, Ref[15]).
ficients. Various effective covariant methods for calculating The principe of manifest covariance is crucial for effec-
HMDS coefficients has been developed by many authordive theories constructing. It means that any physical theory,
Schwinger-DeWitt decomposition gives the good descriptionvhich possesses some symmetry, must be formulated in such
of vacuum polarization effects of mass fields on a backa form where all symmetries are manifest both at classical
ground of weak background fields. However, the descriptiorand quantum levels. The main advantages of the background
of such physical phenomena as Hawking radiation or thdield method consist in the fact that it allows us to formulate
anomalous magnetic moment of the electron involves consupersymmetrical and gauge invariant theory of perturba-
sideration of the nonlocal structure of the effective action.tions manifestly(see Ref[16], and reference therein
Among various methods for investigation of nonlocal effec- A lot of interest in perturbative calculations one-loop EA
tive dynamics, such as direct summation of the terms witHor N=2,4 super-Yang-Mills(SYM) theories has been at-
tracted recently. It was induced by exact Seiberg-Witten re-
sults inN=2 supersymmetrical gauge theories without and
*Email address: pletnev@math.nsc.ru with material hypermultiplet§17], where the Kalerian po-
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tential and mass of stable states are predetermined by holproperty of momentum integrals. This property is also used
morphity and duality of the prepotential in the space of quanin other approachef29] to calculate quantum corrections
tum modules of the theory. using a modified propagator, which has all gauge invariant
An undertaken test18,19 of the forms of non-Abelian combinations of background fields and their derivatives al-
supersymmetrical EA by direct calculations indicates theready. It should be noted that this procedure does not affect
presence of one-loop holomorphic functioAsnd real func- the space-time relation of background fields. the proposed

tion H(W,V_\/), which are incompatible with special geom- techn!que al!ows us to produce a derivative expansion for the
etry and consequently witN=2 supersymmetry. Therefore efft_ectlve action on the background of exact solutions for the
a problem of contributions of higher dimensions and theirti€isenberg equation. -
influence on the Bogomolnyi-Prasad-SummerfigBPS Obtaining that or other specific results has demonstrated
formula of mass remains important. One of the main obthe character of basic elements of the method. We concen-
stacles in the investigation of the EA = 2,4 SYM models trate on advances !n other cqlcul_ation schemes, examples of
in conventional superspace is the presence of infinitely rethe scalar theory with self-action in flat sp4@3,30, calcu-
ducible structure. The formulation of the theory in harmonic'ation colorless QCD correlatof29], and simple derivation
superspace in terms of unconstrained superfi@éshas not ~ Of the chiral anomaly. We shall consider the problem of de-
quantization problems. Recently, the first examples of quantivative expansion in scalar electrodynami@&i], which is
tum calculations with manifesi=2 supersymmetry have laying o.ut5|de the frameworks of theory Qf perturbanons: A
been given within the context of harmonic superspace foré@lculation by a manifestly supersymmetrical way of the first
malism[21]. famous correction to Kaerian _pot(_entlal in Wess-Zumino
There is an unsolved problem of how to breldk-2 su- model[32,19 and supergeneralization Schwinger EA in su-

persymmetry. Th&l=2 supersymmetry can be broken spon-Per QED[33] will be presented also. o _
taneously or softly if we want to save its useful properties. | "€ plan of the paper is as follows. We begin with a brief
The soft breaking22] is a very practical approach to ana- consideration of the offered_ method. Then we present several
lyzing possible phenomenological applications of exact solu€*@mples to demonstrate its scope for the mentioned prob-
tions. But it has a limited predictive power because of plenty€ms: The paper ends with a short summary.

of free parameters. Therefore, finding nonsupersymmetrical

vacuum solutions for the scalar potential induced by quan- Il. THE METHOD

tum .foeCt.S in the hypermultiplet sector =2 gauge theo- The starting expression for the calculation of one-loop
ries is an important problem. E

However, the above mentioned problems, despite activeA' obtained by integrating over quantum ataf) heavy

attention to them recently, do not still go beyond an approxifields in functional integral i1] I'¢1)=—1/2TrInH, where
mation of constant background fields. In this paper we try tooperatorH is the second functional derivative of the action,
develop a schemg23] for calculations for one-loop DEEA, i.e., the inverse propagator in the presence of background
equally suitable for models, which can contain internal symdields. To give sense of this formal expression we use the
metry and gauge or other background fields or superfields. Iknown technique of symbols of operatdikl]. In this ap-
Ref.[24] the authors have offered this computing scheme foproach the quantum expectation value of the oper,&ug
gauge theories, but really they did not go further than extrac-

tion of divergences. We want to ratify this method as very A

effective for some problems. It should be noted that in Refs. Tr(A)= fXdM(Y)A( ), @)

[23, 24 the derivative expansion method was presented as a

collection of separate useful expressions and identities. AyhereX is the phase space aiqy) is the function on the

provk\)/lsnl]szf %f%g?ﬁg‘nq(;a:ts'igg'ro&gagl)berggjg{[zs[gﬁtﬂ; A). The symbol calculus is based on the so-called star prod-
. L yah p . ct which corresponds to the usual product of operators. In

give a phase-space definition of the operator trace. This af is case the standard notation of one-loop EA in the form of

lows us to get a convenient derivative expansion fqr the he e heat kernel or in the suitable for regularizatisfunction

kernel. The star product approach to quantization is partlcuf-
L orm

larly adapted to such problems. First, its structure allows us

to deal with the expansion it in a simple way. Secondly, it 1 (= .

is the only known general quantization scheme which allows Lu(s)= F—J dTT 1 Tr(e ™), 2)

the quantization of any symplectic manifold including those (s) Jo

where a choice of the polarization is impossible. Extensive . . '
lists of the literature on this subject can be found in RefProvides us a connection with Wigner-Weyl-Moyal formal-

[28]. ism [34], since, due to Eq(1) we can write

Here we present a covariant method which consists of a 1 .
sequential application of the symbol operator technique for Ln(s)= f dTTs—lJ' d,u(y)e_TH(’/), (3)
formal trace calculation of the evolution operator. In practice I'(s) Jo X "

this leads to a normal coordinate expansion of all quantities
contained in the heat kernel and using the finite translationvheree, " is the star exponential, defined by
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As soon as the mapping( y)<—>A is constructed, the star
product appears in phase space, which copies product of op-
erators. This construction is essentially nonlocal, which is
This allows us to derive phase-space expressions for the fopharacteristic of the quantum uncertainty principle. For this
mal trace by basic structure there are again both integral and derivative
based formulas, which are useful in varying circumstances

1
eT=2 WH*H*---H*.

THA) = [ du([A+hry(A)+A7r(A) ] o
" (a8 = [ [ ayayacysy By yen e,

in quasiclassical expansion form. In order to introduce some 8

notations we will use in the paper we briefly review the '

phase-space formulation of ordinary quantum mechanicgAxB)(y)=e"2)7y @7y A(y")B(y")| - -y

(originated by Weyl, Wigner, and MoydR6] and exten- .

sivegly studiec}/by B)éreziﬁg:]ll]). Y =ABFifi{AB}pgt- . ©)
Symplectic manifoldX can be viewed as a cotangent fiber

bundle X?",X", T¥X,w) with the base spac¥", fiber T} X

and fundamental symplectic two-form. In local coordi-

nates, we havey=(p; - -pp,.x>x"), yeX?", xeX"

peTiX, o=(1/2)w;dy'Ody!. In Hamilton mechanicX?"

plays the role of phase-space equipped by standard Poisson i% i

brackets{f,g},= 0" 4, ;9. (AxB)(p,q)=A p—?aq,qu ?ap B(p,q). (10
Let us consider some dynamical system on a flat phase

space. Let some quantization be chosen, i.e., linear mappinfgne image of commutator in the WWM formalism is the
A<—_>A between functions in the_phase—spadassical obser.- Moyal bracket{A,B},, which is bilinear, skewed, and
vationg and operators in the Hilbert space by the following obeys the Jacobi identity.
recipe: It can be proved that different choices of star product
correspond to different choices of operator ordering. Further-
A( 7,)_>A=J dédpw(&, n)A(E, p)ell/ME=n (4 more, there is &V.. symmetry linking the various choices of
X the star product.

5 R For a dynamical system on curved phase space the above
whereA is the inverse Fourier transforiy, (p,§)=1" are  mentioned constructions assume natural generalizat®fs
operators satisfying the canonical commutational relatiorsecause the corresponderte: A claims on an autonomous
[P.Q]=—i%, (¢, 7) is a some weight function, which de- guantum mechanic statement, there has to be correspondence
pends on ordering rule, and,(7) =y belongs to duaX between physical results for particular dynamic systems. The
space. For praCUCaI calculations it is very convenient to emquantum equations of motion are then obtained from the

The Groenewold formulé9) is a consequence of E(B) and
provides a smalk expansion of AxB). The fact that it may

be evaluated through the translation of function arguments is
the key feature

ploy a differential form of the last relation, i.e., classical picture having pointwise multiplication and Poisson
. . oo bracket replaced with their star analogues. It was proved that
A=A(—id,)e" |, _o. (5 for an exactly solvable quantum-mechanical system, the cor-

) , responding star analogue of the evolution operator has a
Of course an operator can be characterized by function othgf, rier-Dirichlet expansion

then phase-space based symbol. A prime example is its inte-

gral kernel, i.e., the Dirac matrix elemef|A|y) for which H ih
the following formulas are useful. Taking the matrix element €. :él IN)(N e :
of Eqg. (4) leads to a construction of the kernel starting from

the Weyl symboli.e., w(¢,7)=1] This allows us to localize a functional integral, turning it into

X+y a sum over spectrum of the operafér25].
—.p). (6) In a dynamical system, which does not have the exact

(xAly)= [ apercnal X2
solution for the spectrum, we have to calculate asymptotic

One passes in the opposite direction from the kernel to Sym(gxpansion coefficients of the heat kernel. Our suggestion is

bol via the Wigner transform that it is convenient to present the star product as the argu-
ment displacement.

1 1 (alAlp) Though the operator ordering is not essential, there are a
A(p,q)=f dveipv/ﬁ<q+ —leIq— —v> _ {aiAlp, , number of systems having an inherit polarization. For ex-
2 2 (alp) ample, if theH = p?+V(§) then thegp ordering is the most

preferable and

where|p) is the momentum eigenstate. The obtained asym- “TH_ —T[p2+V(q—ihdy)]
metric formA is suitable for calculations. e, =e [[PTVATIGN (11
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This is the simplest case wher@,() € X is a symplectic Vﬂ:emp'v(ipﬂ—f— V’u)e_i‘?p'v
vector space. In the following sections we will demonstrate
the treatment of such expressions.

In more complicated cases such as a particle in external
gravitational and YM fields, which are connections on a
principal bundle over the configuration spaQe the theme . . 1., oAy
of strict deformation quantization was discussed in a number =1Put E‘yp vpo §ap Foun— §‘9P Foune
of works[35]. First, the gauge invariant definition of Wigner
function was studied by Stratonovi€B6]|. The specific char-
acter of such system consists in the fact that the phase sp

1
=ip,+ Jo dr-i Tﬁ;FVM(X+iT(9p)

J’_. .
(12

aﬁl ; _ Aidy ¥ }
of the particle is a Marsden-Weinstein reduction TG, %e_ action of the (_)peratd_rJ e% " corresponds to a ca
gggmal transformation, which leads to the normal coordinate

hence this space can also be considered as reduced ph expansion. Here a role of tangent vector, along which imple-
space of a particular type of constrained dynamical system;, P j 9 . ' 9 'mp
ents parallel transport, playgdp, in the p representation

Then the quantization corresponds to assigning quantum 0;5'j . :
erators to be generators of an irreducible unitary representc-(f) r;hr(ra]urt]gtriomnalreﬁggcr)?ﬁlgate;. ]T_oFfm? )quz)’ we used the
tion of the groupG. However, there is more then one such For development ofﬂthevogerga ?eéhni ue in superspace
representation of the group and many different inequivalent P q Persp

quantum systems arise from the study of the same config vhere the choice of gauge condition is not obvious, we no-

ration space. Physically, this means that without a connecac® that we have obtained a representation of the vector po-

tion we can not separate the particle’s external momenturﬁentlal in the Fock-Schwinger gauge

from its own internal “position” and “momentum” which o
is associated with the motion on the coadjoint orbit. Using A (q)=q”2 1 iqal___qanF
the connectiorV on Q we had constructed a star product of ” n=o N+2 n! Vha

standard ordered type;, which is the natural generalization
of the standard ordered product in f&a{37]. A surprisingly ~ without explicit solving the gauge conditiaq“A,=0. The
simple analogue of the operator potential term is presented by the expression

— QidyV —i0y-V _ ;
N H12)%10y 0 V=€ 'V(q)e " " =V(q+id,) (13
in the normal coordinate expansion form. Now we get a rep-
resentation of the main object for calculations in the form
Trin(—=Op+ V).
The main result of the technique of symbols is that al-
N=e#/2)A ready on the first stage of calculations we have found initial
expression forH(p,q) containing only gauge covariant
quantities. The problem of obtaining,), thus, consists in
Here the second order differential operafors as follows: calculating of the evolution operator of some quantum-
mechanical problem with HamiltoniaH=—,+V,. We
) shall calculate the result of star-product directly, order by
4T ( )i+ F!‘-( ) J + A )i order inT. It means that we will implemenp,d, ordering
k(G ap Pl ap;Ip; K ap until all terms having derivatives acting on nothif\gcuum
will disappear. This is a quite a simple procedure. Moreover,
the sensible separatidth on an exactly soluble Hamiltonian

whereI'j, is the Cristoffel symbol andh is one-form onQ  j "and a perturbatiol allows us to construct expansions on
such thatdA equals to the strength tensor. the background oH, eigenstate.

The operatorN is globally defined and induces the
equivalence transformation, which yields a more physical
star product of Weyl type having the complex conjugation as
an involutive antilinear antiautomorfism

for any T* Q takes the form

&2

A= Sqiam,

IIl. DERIVATIVE EXPANSION EA ON A BACKGROUND
OF SCALAR POTENTIAL

As the first example we shall consider a massive scalar

fapg=N"1[(Nf)*(Ng)]. field theory with the Lagrangian

1
= _ M m2h2—
This equivalence is again the natural generalization of the £ 2(9“(1)(9 ¢-m¢"-U(¢)

flat case.

The above mentioned facts prescribe the following gaug@nd the problem of the inverse mass decomposition EA for
invariant way to determinate the connection Weyl type sym-comparison of the offered method with results string-inspired
bol (related toV ordering, because they are not commuta-technique[30] and other computing schemgz3,4]. Typical
tive): problems in which interaction through derivatives plays an
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important role are connected with stabilization of soliton so-
lutions in the Skirm model, QCD, and in the Higgs sector of f

d’p T2
(277)46 {1,PMI0V,I0M1, . ,IOM}
the standard models.

It is convenient to use a proper time representation for the 1
trace of the logarithm of the 0peratdﬁ|=—D+V(x),V - (4771-)? Lﬁ 5w'ﬁ25u1uzusu4 - (19
=m?+U"(¢). According to the method we get the initial
representation for one-loop EA For example,
1 (=dT d4 T
r =——f —fd“xK(T), (14 wzf P —Tp"’f (s)on
) 2, T (955 (277)4e . dsdy(s)ds(s)
where 1T25 20
d4p - ) . 3 wye
K(T)Z 7€ T[pc+V(x+iap)]
(27)
\ 2 2
. ) . ) <(9v7' p>: _T35V)\Tp, <a/’~1 MG)Z _ _T3§/.L1"'M6,
is the heat kernel. The expression for the effective action P 15 p 35
contains divergences and imposes renormalization. For the
given representation thé regularization is intrinsic, which o d*p 2 (T S o
has the advantage of automatically preserving a large class of <<(9pf9p>>5 j —(277)49 P JO dsdp(s) JO ds’dp(s’)
the classical symmetries.
We leave in the decompositiqi3) fourth order terms in s
derivatives: =——5T1°0",
12
1 i . . .
Vp=V+idhV,— 5V "~ I—IVW}\agW where 61 "#2k is a completely symmetrical tensor, consist-
2 3! ing of (2k—1)!! terms composed from Kronecker symbol
1 products. After rearranging the results by extracting full de-
+ vamag”“. (150  rivatives, we obtain the known resuB0]
The further problem is calculation of a trace of the evolution K(T)= ——=—e VT
operator for a fictive particle in the potentid?3). Using the (47T)
known operator identity 1 1
_ T3 T4
. . T , , x| 1 12T V,V,+ 5 TV,.V 0,
e TP +Vp) =g~ TP expf dre™ ™ (-Vy)e ™, (16) ]
0 T5
- =V, V,V, + VAV2ZI o (21)
the kinetic term can be separated. As a result the argument of x4l A 12x4! -+

V,, is shifted asV,(x+id,—2i7p). We shall consider Eq. ) ) ) ) )
(13) as a perturbation and we shall decomposeTthexpo- Further integration over proper time gives gamma functions

nent up to derivatives of fourth order in any order ofT. They have pqles for some terms in DEEA,
which correspond to known divergences.
T * T s Previously, it was mentioned that the local Schwinger-
Pt exp{f dsz(s)) = 2 f dslf ds, - DeWitt expansion describes the vacuum polarization effect
0 n=0Jo 0 of massive quantum fields in weak background when all their

Sn_1 invariants are smaller then the corresponding power of the
xf dspVp(S1)Vp(S2) - Vp(Sn)- mass parameter. However it is not a good approximation for
0 the case of strong background fields and absolutely meaning-
(17) less for massless theories and weak rapidly varying back-
ground fields. For investigation of these cases special meth-
Expressions such as* szé’pe* ™ are replaced with the ods are neede[®,7]. The result has an essentially nonlocal
solutions of the Heisenberg equations, i.@,(7)=d, form. Itis interesting to study how some nonlocal formfac-
—27p. The most complicated procedure is the disentanglingors appear in our approach for this model. Let us consider
of the star product. The partial simplification can be reachedhe second orde¥ term in the Duhamel expressidi7).

after commutationy,, to the left and using properties After simple manipulation we obtain
f _d4p 1% 0 18 T 51 (s1—50)(O+2ipV)
ces)= = 17 °2
All other calculations reduced to trivial integrations X V(x)e~ (s1782)(0+2ipV) (22)
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Performing the integration over we can see that the result
can be rewritten in the form

1 T Sy
= (S1—89)[1— (51— 8p)/T]OI
K(T) @nT) jo dslj0 ds,Ve V.

From the last expression we obtain

. 1 T
f d XWT—T)Z ?V'y(TD)V,

(23

ﬂ -m?T

Te

Fy~=3

where the form factor has the known representafin

1
Y(TO) = fo dsd(1-sM41 10, (24)

PHYSICAL REVIEW D60 105017

1
§Fv,u,;4Fm,a<<’9£T>>-

The other terms are either full derivatives or contain as a
factor from the left or rightpdF ,,, which leads to zero
contributions. Further, performing trivial calculations similar
to Eg. (20) and using the Bianchi identities we will get the
known result29,4]

e T T2 , 3 ,
K= Gzt 2FwF e T 180 507 ”

(29

where F*=F ,,F,,Fo., J°=F 0.Fupp. Thus the first
(after unip term of the decomposition is related to renormal-
ization of charge.

A less trivial problem is the calculation of the next HMDS
coefficient b3~ (F/m)*. The simplification is reached on

Using a similar expression for form factors, one can analyzéree equations of motiok ,, ,=0. In the first order of the
their analytical properties, calculate their high energy limitsT-exponent decomposition we obtain the following contribu-

and their imaginary parts above the threshold, etc.

IV. NON-ABELIAN GAUGE FIELDS

Now we consider the gauge vacuum mean of gluon op
erators in the forn{F2),(F3). In the absence of a consistent

theory of the QCD vacuum, it was assumed that vacuum

tion:

NTopra
4><6|Foz/.LI:V,u,po"r}\<(7 P >

T4

= Zoxe1 ank

NTopra
F ap' vupoT 6 ’

expectation values of local operators, in fact, play the role of

fundamental constants for QCD sum rules. The necessity ty
calculate the coefficients in front of these gluon operators if"

decomposition for colorless correlation functiofvghich is
used in a method of QCD sums rulegimulated the devel-
opment of gauge-invariant metho[d9,4]. Unfortunately, in

the standard Feynman diagrams technique, calculating the
diagrams with emitting gluons from a loop and rearranging

vector potentials in gauge invariant structures, is a rathe
hopeless problem. Because the determinant of the Dirac o
erator is determined after squaring by the Klein-Gordon op-
erator, we limit ourselves to the consideration of a scalal
loop in the external non-Abelian field with the Lagrangian

1 2 42 " 2
L= 5V, 6V gt m2, A=—VAV, +m?.

According to the prescription described above, we use a rep- 2X144

resentation of one-loop EA3) with H(p,dp)=VyVy+ m?,
whereV is a covariant pseudodlfferentlal opera(mz) Af-

ter extractmg a free part froM in the formHy=p? (which
corresponds to the approximation where the particle motio
between the interaction is fre@nd separating exponents
similar to those in Eq(16) we shall calculate vacuum mean
dimensions {3). Nonzero contributions from Ed17) in
the procedure described in the second section will give th
following results in the first and in the second order of the
decomposition of thd exponent, respectively;

1 VT 1 VATO
_ZFV;LFT/L<ap >+7_2FV,LL,T)\FU,U,<‘9p >!

here only 10 of 15 members are nonvanishing. After some
anipulations with commutating of derivatives, using of Bi-
anchi identities and equations of motions we get the contri-
bution

4

1
m [FaB!FMﬁ]2+ E[FaM!FpU]Z (26)

® he contribution of the second order of the decomposition

R17) is

r T4

2X6!

({FQM’FB[L}2+5(FVM V,u,)z) (27)

The full result forb,

T4
(Fv,u v,u,)2+ {Fa,u.vFBp,} +z [Faﬁr /,LB]Z

1 2
+ %[Fa,u va(r] (28)

Roincides with Ref[29]. It should be noted that the huge

number of terms in the decomposition can be omitted at
once, that essentially reduces body of work and demonstrates
that computation of higher power corrections might be con-

%iderably simplified. This is important for the analysis of

convergence for the series innd.

We have considered two well known examples. Less
trivial application of the EA expansion was used in Héf)]
for the investigation of axial anomaly. The problem of gen-
eralization world line path integral representatj@8,39 for
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amplitudes involving axial vector leads to another interesting 1

application of the derivative expansion. It is well known that K(T)= Wtr[ 1-TQ+T?
if the spinor fields are coupled to background fieds,As,, ,

and the pseudoscalar one than the axial curﬂé{nhas an
anomalous divergence. The Dirac operator, suitably contin-
ued to Euclidian space, is not Hermitian and the anomaly can
be attributed to the phase of the functional determinant. In 3 2

Ref. [41] using the integral representation of the complex “ 189 T a)‘] ' (31)
power for the pseudodifferential operator, it was obtained an

unambiguous definition of the determinant for the Dirac op-where

erator. The determinant is shown to be vector gauge invari-

1 1
" N2_ " 12
29 127>

1

+713 —EQ3—iQ Q.+ -5QF?
6 127°HH T 12

. . . — A H N
ant and it posseses the correct axial and scale anomalies. Fuv=F uut ¥50 i As ,  Hio7,00,0A5AS
Another popular starting point is the second order descrip- \ . \
tion for the fermionic one-loop effective action As,=d,As+i[A, As].

1 We still need to perform the Dirac traces. We see that

[y~ E{Tr logHHT+ Tr(logH —log H T)}. unlike the vector case, the axial contribution to the imaginary
part has an additional term proportionalr’a?Aé. This term

The derivative of the second term in the last expression witt}S Prohibited by gauge invariance in the vector case, however

respect to the background field can be written as th|s term may appear in axial theories with massive fermlons_,
since those theories violate the corresponding gauge invari-
ance. Logarithmically diveregent terms combine automati-

' cally in the gauge invariant expressions

5HHT H&HT 1
SA T SA JHHT

é
_ — =
5ATr(IogH logH")=Tr

2
which allows us to derive an elegant representation with the K(T)~T2—Trc{waGﬁy+ GiiGii},
help of an auxiliary integration for the imaginary part of the 3
effective action, i.e., for the phase of the fermion functlonalWhere GﬁV: F,.,+i[As,.As,]. Therefore it is necessary

determinant. RecentljA0], it was found that for the special r?nly to introduce the kinetic and mass counterterms for the
case where the background consists only with an Abe“aaxial field in order to render the theory be finite. The third

vector and an axial vector field there is a much simpler SOLIMDS coefficient contains a lot of terms. Keepind onlv the
lution to this problem which treats both parts of the effectiveContribution which comes from the thrée gintg fungtion
action equally. The price which we have to pay for this prop- P

erty is that the kinetic operator occurs non-Hermitian. We<AAA5>’ we get the famous result

consider a more complicated example contained general non- 4
Abelian fieldsA? ,AZ, . It is easily to establish that K(T)~—T3Tr GH,GhsA> + E{Gﬁﬂ ,G’g’;}Aia}.
(+ A+ y5hs)2= — (3, +iA,)2+Q, 29 (32)
, A It has shown that the effective action induced by a spinor
whereA,=A,— ys0,,As, A=A"T?, and loop can be rewritten in terms of an auxiliary non-Abelian
) 1 gauge field and a potential. This allows us to discuss the
; Y chiral anomaly from a novel point of view.
Q=—50'M,,Fﬂ,,+|y5A2M+ 2A2+ 50" Asy As, ], y p
(30 V. DERIVATIVE EXPANSION OF EA IN QED
with In recent years a lot of problems related to intensive fields
and nonlinear processes such as photon splitting, nonlinear
Fu=0d,A,—d,A,FI[A, AL Compton effect, and pair production below the two photon

threshold were experimentally investigatettt]. So far the
Using such a trick, the effective action is formally identical problem of going beyond perturbation theory increased so
with the effective action for a scalar loop in non-Abelian much, that the description of quantum processes becomes
field A and potentiaQ background. A new gauge parameter rather urgent and gets practical goals. Really, studying the
has values in the Clifford algebra. Let us apply the methodimit of a strong field we obtain the same information, as

described above for the calculation of the quantity from a polarization function in the small distance limit.
. Unfortunately, the validity of the famous Schwinger La-
r 1 ﬂeT”‘ZJ iy d®p o T(V24Q) grangian[5] calculated almost a half-century ago and the
@ 2] T (2m)* ' two-loop exact resultf45] are limited by the constant field

approximation. The generalization of the Schwinger result
Repeating the above calculation for this case, we get then strong varying fields or fields located in a small area is
known results very interesting from the physical point of view. Recently
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the authors of Ref[31] presented the nexafter Schwinger been used by Schwinger. Recently to a similar problem have
term) nonperturbative teranaﬁ,me;’yL}“ﬁ“/"‘S(FM,,) in the  addressed the papgt7], with the reference to heat kernel
expansion of one-loop EA. Their result was obtained fromcalculation methods developed [i46].
the representation of the path integral. Even for electrody- To treat the first term in E(35) we notice that the op-
namics it is a rather difficult problem. eratorI1? is the Hamiltonian of the two Landau oscillators in

In this section we would like to demonstrate the capabili-momentum representation. The kernel of the operator
ties of the proposed method for the computation of the com<p'|e*TH2|p> is well known explicit Meller formula, fre-
plete form for the first nontrivial correction to long wave- quently used for direct calculation of the index of an opera-
length limit of the EA. We use the representatid®) for the  tor. It is important, that this kernel is a well converging ex-
pseudodifferential operatdf, and the proper time represen- pression and consequeritly
tations for EA, induced by a scalar loop.

Let us consider this example in more detail. For the cal- d*p )

; . . . a;o—TII o) —

culation of the expansion on a nonperturbative background it f —(277)4 dp(e I, --)=0. (37
is necessary to split out free and perturbation terms in the

expressiore” T+ \where i -
p ) For future convinience we define the moments

1 4
0,=pu+ 5pF o, [, IL]==F,,, (33 _ 9P e
# w2 TR © # Kalaz---an_ (27T)4e HalHaz Han'
i .
1) TV T 9V =
Al )_§|:(W’T)(2H“(;p +87,0%) In particular, forn=2 we have
4
1 N [ T NS b
_gF(V,U.,T}\)(ZH,u,a),;TV"_55,,7-0");;)])) O—J' (271_)419[)(8 Ha)_(saK—’_Kcch-
1 ohp The expansion of a matri® begins with unit, therefore one
g P oundp " (34 ¢an be inverse®* and
Here parentheses means symmetrization with the appro- Kap= —KBEal-
priate weight. The interesting terms in the expansiorr of
exponent(17) for the heat kernel are Similarly
T 1 - - -
K(T)=e % 1+ fo dsell’| SF,, (201,007 ) Ka,a,=K(Baa Baa,* Basa Ba,a, T Baa,Bags,)-
1 N 12 We also need in the relations
TV — S
+ §FVM-TFPI—’H)\(9P P e 1 .
) ] . Kaa,-as= ~(Baja,Kay-ag BagalKaza4~"ae+“')'
-=F,,.F dsf ds’ g ; ; ;
9 T “'B’yfo 0 The kernelK(T) satisfies the differential equation
><esnz(21'lﬂc9‘§”+---)e‘(s‘s’)n2 dK )
aT = —Kaa=KBgaa
X (20TP 87 +-- -)eS’“z} . (35)
or
'I;he fozllowigg stzep consists  of  replacing 4K F Fe2TF
eI e " e"9se™s1" in  appropriate  solutions S S —tr
P i i aT e 2TF_1 1_e2TF
I1,,(s),d5(s) of equations of motion
1 d
. " _ 2 - 2
11(s)=[11%11(s)],4(s) =[T12,d5(5)], == 5”((1—6 ) iggd-e TF))
ie., 1 d
=-— Etrd—_l_ln(l—eZT':)C, (38)
I, (s)=1"P,,(s), dp(s)=dp+I1"Bi(s), (36)

where P(s)= (e 25F), B(s)= (1/F) (e 25F—1). After II,
dp, ordering it is necessary to take integrals operin prin- 1Using this property, the authors of Rg47] have reproduced the
ciple, some methods for solution of this problem has alreadyschwinger resuilt.
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hereC=27/F is a constant of integration, determined from
a known limit K=1/(47T)? for small T, when the particle
can be considered as free. With such a choice we find the

PHYSICAL REVIEW D60 105017

-1
AB = (F2—\2g+iN,F+iNF*
2()\1“\2)( Ng+HiNF+HiNFF)

standard result 0 0 O
ET 112 _ 1 0 0 O
- : 210 0 1 —i|’
K= 712 detsmr(FT)} (39 _
0 0 i 1
As a next step, it is necessary to calculate several func-
tions from matrixesd= ,, . It is known[48] that for any con- (4) - 2 y2. . . %
y1a% — — — —
stant fieldF ,, there is such a reference frame, where mag- A 2(N5+\3) (FP= g =ThaF =in P
netic and electrical fields are parallel and their values in this
system are relativistic invariants of the field. Or, if they are 00 0 O
perpendicular, it is possible to find such a reference frame, in 110 0 0 0O
which the field is either purely magnetic or purely electrical. =" %2lo 0 1 il
Therefore the canonical forR in this system has a block '
structure 0 0 —-i 1
0 N O 0 which has the useful projector properties(zi)zA(i),
A\, 0 0O 0 AiA=0 fori#j. The transposition operation translates
F = i A1<—>A2 al’ldA3<—>A4.

w0 00 -,

Calculation of matrix function® and B~ leads to re-

0 0\, O markably simple results

There is a connection between eigenvalues and invariants of
the field

(41
H 2 1 2—ic* . . .
He=(AEiNy)"=5(F*FIF*F). (400 It is convenient to use the notations
Any degreeF can be decomposed over basis of linear com- L= * A1, fag= =ika.
binations ofF, F*, F2, andg. Thus, for the exponent from .
a matrix P=e" we get Now we can easily get
P:ea)\lAl_i_e*a)\lAz_i_eia)\zA3+efia)\2A4, 1 0 0 O
sinh(aF)  sinf(a\;) 0 -1 0 O
WhereAﬂ)V is another known basil9] aF  an 0O 0 0O
0 0 0O
A(1>=;(F2+>\2g+>\ F—N\oF*) 00 0 O
2(\{+)\) 2o
+ e
1 1 00 aky 0 0 -1 0O
I e 00 0 -1
21 0 0 0 of
0 0 0O and for the kernel we obtain the Schwinger result
1 , K(T 1 TN, TN, 42
2)_ 2 = - - .
Al )—m(F +Ag— N FHAFY) (M (47T)? sin(Thq) SIN(TA,) “2)
1 -100 Then we can implement all necessary substitutibhs?,
111 =1 0 0 ordering of the operators, and integration over momenta in
“3lo o o ol the other terms of expressi@®5). After some manipulation,
all matrix structuresP, B, B~ depending ors, s, T are
0 0 0O grouped in several combinations. The main group is
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Tie\p—1 _RT o AD
BT(s")B~{(T)B(s)~BT(s") D)= ﬁ[_(l_ezfms/_s))ﬂotmin
2 inH f,(s—T i
:_2 f_A(l)efi(s 7S)Sinr(fisr)w
7 i SII’]I’(f,T) X(l+e2 fi(S,—S))_ i (efi(25/_T)
43) sinh(f;T)
+efi(*25+T)) ) (44)

which coincides with the Green function, used in the pathThe other arising combinations of matrix structures are de-
integral method31] rivatives ofD in s, s’, that can be easily seen

B7(5)B(T)B(s)~BT(s)= 3, — £ AVsin(rs) Tt s s ), (45
BI(s)B™HT)P(s)= 2 A“)efi(S’ZS”’% = % %D(s,sw,
PT(s")B™HT)B(s)~PT(s") =2, A‘”efi@S’S)%: - % %D(s,s'),
B(s)B™HT)P(s') =2 A“e““”%= - % %D(s,swlszs/ ,
I

In these notations the result for the expression in the bre@®dooks as follows

T (1 1 . . .
1+fO ds<§FMV,mDVT(s,s)+ ZFW,TA(DWDTVFDWDMFDMDW)(S,S)

+

FV}L,TFP/.L,}\(DVTDP)\+ DpTD)\V—‘r DpVD)\T)(S:S)>

+
ol Ok

T S . . ,
Fm,TFag,yfo dsfods’{D(W(s,s)[D(yﬁ(s’,s’)Da)V)(s,s’)nL Dg,)(s,8")D,,(s".8")]

+D(au(8,5)[Dp((8,5)D,),)(5,8") + D 4(8",8')D,(5,8) 1+ D g,i(8,8)[ D (8,5)D ), (8,S")
+D,(8,5)D4y(s",8) 1} (46)
The last step is the calculation of a plenty of standard integrals such as

Because of combersome of the general result, we do nok A AVXADXAK are combinations of Langevin functions
present it here. Besides it is inconvenient in a particulai (x)= (x coth)—1)/x? and they are presented in RE31].
physical problem, where it is necessary only some terms. Let Furthermore, it is necessary to implement renormalization
us note only, that functions of proper tinfeand relativistic ~ through the subtraction based on common principle, which
invariants of fields setting in front of every possible contrac-requires putting in zero the radiation corrections at the
tionsF,, . Fou.-Fap, and with direct product&® A" switched off field as in the original Schwinger pap8}, and
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replacing all bare charges and fields through the physicah path integral over general superfields has been developing

Therefore it is easier to return to the initial expressions angn Ref.[15]. The functional integration ovep, ¢ leads to a

to execute all manipulations with necessary accuracy.  determination of the effective action in the form
When the mass of the scalar particle is greater than all 1

- i Trin[A x,60,D)] with the kinetic operator for the given
other scales of the theory, we can limit the expansion by th?nédel [HC )] P g
next terms to unit

3 . [N D?
T3/1 1 o -
K(T):1_5 §F,LLV,)\F,U.V,)\+ zFV,U.FV//.,)\)\ . (47) D2 A

D2 0

0 D2/’ where N=m+gd g -

(48)
This result agrees with Reff42]. Recently, similar methods
for calculation of corrections to the long wavelength limit of
EA on Yang-Mills background fields was used in Ref3].
It is obvious that the expressiof46) for the description
of particular processes in nonconstant background fields a ) . L
exact in mass of a charged particle and field strength. The We can 'mp'.e”_‘em the Fourier transformatlon_m super-
gradient corrections are very important for the analysis of th&Pac€; though it is not necessary, since shéunction of

effective potential, since they can reduce energy of thé>rassmanian coordinates is explicitly known, as well as the
ground state. action on theD,D derivatives

This detail presentation evidently demonstrates possibili- ,
ties to obtain the corrections on background which possess 8(z=2')
exact solution of classical problem. Because of a large num- d“p
ber of physical set up of problems in nonconstant back- =J 5
ground fields, it is useful to have in an arsenal of tools of (2m)
their solution a method, which is alternative to path integral (49
representation.

Except a functional trace, the operation Tr means a matrix
trace as usual. There are many techniques of calculation the
Kahlerian potential which is an analogue of the Coleman-
\Weinberg potential32,19.

22l (X X) (0= 0) o+ (0 0),

We use the superspace agreements from [Réf.and we
will omit the obvious indexes. Commutating exponents on
the left through the differential operators we find in the co-
incidence limits the standard replacements

We demonstrate how to apply the proposed technique to 1
calculation DEEA for the supersymmetrical theories in the _ ey T
superfield approach. The doubtless advantage of the offered D=9 t1/260— 4= 5P0+Dy,
method is that this method does not require the determination (50)
of many various Green functions for calculation of func-
tional trace of the appropriate heat kernel. To show it, we
obtain the known Khlerian potential of the Wess-Zumino

model[18,19,32 and lowest order non-Kderian contribu-  To obtain the covariant symbols of the operat@rD in

VI. QUANTUM CORRECTIONS
IN WESS-ZUMINO MODEL

_ 1 _
Dy=dy+i/206— = 5 0p+Dy.

tions to the one-loop effective potential. _ momentum representation we use identities
The Wess-Zumino theory described by the action
1— 1
_ _ M2 U D9+¢——0p)u—1=¢——a;p=Dp, (51)
S(¢,¢)=f d82¢¢+f dﬁz(7¢+ %dﬁ +H.c. 2 2
L T
is a good model for test of various supersymmetric methods, Ul Dyt ¢=50p|U " =¢=33,p=Dy,

since it has all specific peculiarities of the theories with chi-
ral fields, and it enters as an inherent ingredient in manyyhere parallel translation operator was chosen in the form
superfield theorief50,16. B B

It is known that a problem of a definition of a superfield U = el p Ixgl/20pdy—1120,p0adyD g+ dyD . (52)
EA agreed with symmetry of the theory can be very effec-
tively solved in the framework of proper time superfield The anticommutatofD 5}=—p and, naturally, all useful

. . . . p ] p 1 )

technique[15,32. For functional integration over quantum algebraic relations fob, have the same form as I, al-
chiral fields, which arise after splitting of fields on quantumgebra_ In addition, we phave a transformation for a general
and background ones,_it is corl/enien_t to introduce uncongyperfield
strained superfielde)=D?y and ¢=D?y. In principle this
introduces a new gauge invariance into the action, but in the dP=UgpU 1= d(x+id,,0+ %’5"‘ ;) (53
absence of background gauge fields, the ghost associated
with this gauge fixing are decoupled. Another procedurewhich is the finite degree polynomial ity ,d,, with factors
transforming the path integral over the chiral superfields intd , - -D .
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Let us note that other arrangement of exponents in Eq. 1 . o
(52) related to the corresponding replacement of the normal - —In( 1- ——AD2——\D?
coordinates. For example, the same transformations with 2 D?D? D?D?

U = ei?p Ixa?yD ogl/20pd,— 11230 0ady Dy B _1 \D? 1_ YD2>.
D?D?  D?D?
give us
Further, using the decomposition of unit in front of the loga-
y—3d,p=D,, JZ Sp_ rithm in the form

The steps described above from the operators to the 1:{D2’D2}_DQD2Da

pseudodifferential operators on the phase superspace are O

conventionalsee Ref[24]). It should be mentioned, that the

final result for the trace of the operator does not depend oane can convert all spinor derivatives in “boxed”l =
selection(49) which reflects the chosen ordering scheme.— p2. After that we obtain

The replacement&l), (53) actually correspond to the tran-

sition from the operators to their symbols and can be justified ) dp 1 AN
by the arguments similar to those described in the second K= Wﬁzln 1+ ik (56)

section.

Limiting ourselves to a problem of calculation of the first \yhich gives the known resu[82,19 after integration and
correction to the potential in decomposition over Grassmarenormalization of a wave function by the condition
nian derivatives, we split the pseudodifferential operator PKIdbId ——

b | g py5-p,=1-

acting on phase superspace, in two parts s o o
For calculation of the next nonvanishing contribution in
the EA expansion, we rewritel, * in the form

ADZ O
0 AD 1 1 1 _
p 2
—D 0 -—\ —D?
— o — . D?D? 0. O,
where A=a$Dga)\, A=(9;D,,a)\ and H, copies the form ,
(48)Jn the following steps we will writeD,S_instead of _1 D2 LDZ _ i)\
D;,Dy. This must not confuse, becaugg,Dy are con- D?D? 0 e
tained in A,A only. Then the Khalerian potential and the _ _ .
correction can be split: where[d, =D?D?—\\, 0_=D?D?—\\. Then
— 1 1
AD?2 0 _ AP, 2~
TrinHy+Trin| 1+ — |Ht. AD?2 O APZD+)‘ AD 0o
AD? — ,|(Heh= ,
O AD2 e 2 1 o, l
. ) AD =  —AP;—\
For calculation of TrInify) we take out and omit the “free” (. o-
part of the operator (57)
0 D2p2 where P,=D?D%/0, P,=D2D%[ are the projectors in
- momentum representation. The first nonvanishing contribu-
D2D2 0 tion in the decomposition of the logarithm gives trace of the

fourth degree of the matrigwe keep in mind the properties
It is clear, that in the expression of integration overd?yd?y).
Moreover, among 16 terms the zero contribution auto-
matically comes from terms containing powers more than
0 o5 \D? two of A,A and also from terms containingD? and AD?
Trinl 14+ (55) from the right, becguse the derlvatlv% and g, contained
A in A,A act on nothing. We are left with
— —\D? 0
D<D AN
4003

(AD2D2AAAD?D2+ AD?D2AAAD?D?),

the nonzero contribution will give only even degrees of the
logarithm decomposition. Unfolding the matrix part of the o
trace we get L, =0O—\N\.
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We shall transfes,,,d,, to the right, using Heisenberg rela-  Using the known notations and conventions from Ref.

tion {d,,,Dp}=1. The trivial integration over Grassmanian [16], we find the expansion of the symboEP=U(y

and usual momenta gives us |mmed|ate|y the known reSUlL%pE-}_ V)U_l in superspace “normal’ coordinates

for the non-Kéalerian termg32,19, leading to quantum de-

formations of classical vacuum of the theory 1 i ‘ 1

Py hapn .4 _ aaiaBse . 4 B _ 5 aain.
1 D°AD,AD“AD\ Vo= ¥a” 39 Pait 790l gat Al pa) = 3029 We

a — a , (58) (59)

3x27 N2\ 2

FL=

— 1 3

where the factor 27 is caused by the superagreements. This + 3 AW+ 700D + 77020 gotooe,
kind of one-loop quantum correction is called the effective

potential of auxiliary fields. Certainly, such quantum correc- 1 i _ 1

tions are important inN=1,2 supersymmetrical models, VP =i — = 99p ot = I*(IPF o+ 0PF 5,) + = ZIW,
since they lead potentially to the removal of degeneration in ¢ ¢ 2 "¢ 47 Ve feiTalfel T3 “

classical vacua of the theory. This method should be quite

general and has important applications for other interesting — 20:,0%W,,— = 3.,0°D’ + i(;ngifﬁﬁ...
cases, for example, for models with explicitly broken super- 3 4 4!
symmetry.

We do not specify here obvious indexgsy,p in the ¢
VIl. HEISENBERG-EULER LAGRANGIAN IN SQED representation of normal supercoordinates. The quanfities
In this section we develop manifestly supersymmetrical | _are the standard notation for_superfields,y
_ 1 r_ H a a a —
gauge invariant strategy of calculations of one-loop eﬁectivetggvdg“t\év ﬁ% ’er?n t_h; ézz‘l\:si\g]a"vg (\j/\ét;itavtiv\(/evsa _w%icie\:\fe
action for the most general renormalizaible=1 models in- hall omit keeping i pe q bl a th ’ tant back-
cluding Yang-Mills fields and chiral supermuliplets shall omit Xéeping In mind probliems on the constant bac
ground which is independent on space-time coordinates, but
with arbitrary dependence on Grassmanian coordinates. By
. the construction, the normal coordinate expansion used gives
the connection decomposition in the Wess-Zumino gauge.
Similarly, for a vector derivative we have

S=trf dezv\lz+f d8zdeVd +

f dSzP(d)+H.c.

In more detail we consider the one-loop diagrams only with
external Abelian superfields and the expansion in terms of
spinor covariant derivatives of superfieldg W which can- VP. =ipaat 1((9!3fa3+ 0§fas)+(9aV_Va+3aWa

not be reduced to usual space-time derivatives. This approxi- 2

mation corresponds to generalization of the Heisenberg- 1 o o

Euler Lagrangian of usual QED. The background field + _(aaaﬁf-ﬁd+ (?aﬁﬁf,ga)ﬁr?ar?aD'- (60)
method in superspadd6,15 allows us to treat both vector 2

supermultiplets and matter superfield on the equal footing

and in an explicitly gauge-invariant way. However, in con- It is not difficult to check up the validity of the identical
trast to ordinary gauge theories the gauge connections are neerrespondence of the algebra of covariant symbols to the
independent objects and are expressed in terms of the prepalgebra of covariant derivatives

tentials.

The basics of the method in its “quantum-chiral (VP VP}=iVP, [VP. Vp-]zi(C' f +Cpfi)
background-vector” representation are given in Rgfb]. o o’ axr BB patpa =pa Ba(él)
This approach implies that higher loop contributions can be
arranged in such a way that background fields appears in
Va,W,,® only. After expansion of full action, including [VD.VP.]=CpWh, [VP,WP]=0,
gauge-fixing and ghost terms, in powers of quantum fields,
the quadratic part determines a matrix of the kinetic operato here WP = UWaU_1=Wa+0Bfﬁa—ir9aD’. This is the

acting in the space of all quantum fields. The physical q“an?erification that the gauge connection given by E€&9),

(?0) indeed gives rise to the field strength.
It is convenient to preserﬂ’cp,(a) in a remarkably simple
m

tities depend on particular gauge invariant combinations o
the gauge superfields only, such as the field strength an
derivatives thereof. for
As in the previous section, the replacement of the opera-

tors by their symbols give§F — y— 3p6+V with manifest | i
dependence on grassmanian coordinates. To obtain gauge- VP="+ = d*VP_ ﬂ)::ﬂ:ﬁ —9°VP.
invariant and manifestly supercovariant symbols of opera- “ 2 e 20
tors, we use identitiets1) with replacement of the flaD’s

by covariant ones. where
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7 1 YRV 2: 1_2 Bi
o=yt aﬁaﬁ IWd—aﬁ IWa—gﬁ 17 Ifﬁa
1
_ M/
4z9az?D,
- — 1 1 .- 1 — —
_ 9. aag a2 o 9249Bif L 9. 92y
Y=t 57 0a0"IWo— 570 IW, = g 9°0Fif ot 77.9,0°D "

So, we have obtained the connection decomposition in nor-

mal supercoordinates, which naturally can be called a supe
generalization of the Fock-Schwinger gauge. For some dis
cussion about this subject see R&].

Let us consider a particular example of calculation of the
one-loop contributions of chiral superfields in the diagrams

with external vector legs. It is knowil6] that such contri-

butions in the full EA are determined by the expression

Tr{In(V3V2—m?)+H.c} Using fd*0=[d?6V2, we obtain
the known basic chiral expression

fdzomﬁzvz—m2)V25<8>+H.c.
=f d26In(0, — m?)V25®), (62)

where [, =O0—iW*V —i/2(VW) with covariantC]. The
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and the identity(16), we get

d*p ,
K(T):fwdzlﬁe_TD
eTN_l B
xexp{—iwa( N )zpﬂ]emp
o [eT™N_q g4
=W2e D ¢ N ) (27_:;4emp. (64)

he last factor is the Schwinger res(®9) for a scalar loop.

For calculations of a factor which modify the Heisenberg-

Euler Lagrangian, we diagonalize the mathixand find di-
rectly

=dT
_ 8
F(l)—f d Z\/szo T

_Tmzcosr(TD’)—coshTH,)
Xe D/Z_HZ

K ( T) Schws
(65)

where’H_ was defined in Eq(40). Note the coincidence of
this result with the result of Ref§47,33, obtained by essen-
tially different methods. Certainly, there is an ultraviolet di-
vergence, which can be excluded with the help of a wave

transition to the momentum representation consists in refunction renormalization. It is important to note, that the cor-
placement of the assumed operators and fields by corrgections toW? contain nonholomorphic, in the sense of
sponding pseudodifferential operators and the addltl@a] inSeiberg, terms ;. The superfield actiori65) reproduces

tegration [ [d*p/(2m)*]d?yd?y. Obviously, all 3, d,
symbols from right-hand side d?ﬁ can be omitted, since
they act on nothing. Having in mind the property of the
Grassmanian integration, it is also possible to omit?‘@ll
acting onE2 inside the logarithm and to perform integration

over d?y.

Further, it is convenient to proceed to the proper-time
representation for the logarithm of operator and to use the

appropriate regularizationl”;)~ —¢’(0). Thenext step in

our strategy, which helps us to get the final result practically

correctly the results of the calculations on the component
level [13].

In the last example we will consider contributions from
only the quantum gauge fieM. After splitting the field into
a background and quantum part, the SYM action in Fermi-
Feynman gauge is

1 _
S=- EzTr[(e‘VV“eV)VZ(e‘VVQe")

+V(V2V2+V2V2)V].

without computations, consists in separation of exponents of

the operators/,, and the covariant “box”

(63

K(T):e—TD’f d*p dzwe—TvgiwgeTDp+-~~
(2m)*

where the omitted terms awW andW?W?2, since the factor

in front of the integral obviously will b&V?. Moreover, in
the consideredl (1) gauge effective theory, they do not give
the contribution. With the purpose to reduce the problem o
performing the trivial integration oved?y, we extract from
the T exponent

eXpT(Y W+ Y, PN%), NG=if4+ 85D’

the operator of affine transformations, i.e., ekpf). Using

[a0P, )= 050,  exp(ih,dPNg)-1=1,

The quadratic action has the form
1 _ J—
So=— 2—92Tr(V[D —iWeV ,—iWV, V).

All the dependence on the background fields is through the
connection coefficients and through the background field
strength. Further, we use the heat kernel representation of the

]EA and change all quantities by pseudodﬂfe_rential operators

as before. In this cadel, =0, +iViW+iVEW . Here all
one-loop background graphs are finite in super QCD theo-
ries, but they potentially have an infrared singularity, that is
an attribute of an unstable mode. We considé€d) gauge
theory case. Following our strategy, we set all three opera-
tors in separate exponents

Piy@ ToPiywa@ —
eTVaIWpeTVLyIWp L(W,W) eTDp.
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whereL (W, W) is the function of the superfield&/,W and Vill. SUMMARY

the operatoV’,, . For SQED, where the pow#¥ is limited In the present paper we develop elegant and effective
by 2, the function does not give the contribution to the EA.technique based on noncommutative geometry of deforma-
Now, as well as in the previous example of this section, weion quantization for calculation of the expansion in the de-
have nonzero contributions ﬁf,ﬂ&@imegrms rivatives of background fields for the one-loop effective ac-
tion. It is important that the supersymmetrical and gauge
invariant form is conserved through all stages of calcula-
tions. We use the simple idea of exploiting a canonical trans-
formation that leads to the normal coordinate expansion of
symbols. It is the well known realization of equivalence prin-
and we can, using results of the previous calculations, showiple which requires the existence of such a reference frame
at once the final result at every point that the effects of gauge fields can be locally
neglected.
e™N_1 To test the approach suggested we focused on comprehen-
de —
)

1/2
: (66)

f dzlﬂdZZeT"’a‘WSeTZd“’_Vg f —d4p e
(2m)*

TO

o eTN_l
K(T)=W?W23de .

sively investigated models, though all constructions could be
applied straightforwardly to the QFT models involving diffi-
culties in the quantization. In all examples considered, the
results of the proposed computing scheme coincide com-
pletely with the known ones. The suggested approach allows
“manual” manipulations to be effectively replaced by com-
puter methods to get all next HMDS coefficients in the ex-
pansion of the one-loop effective action.

1
X
(47T)?

TF
et—
Sin(TF)

whereN?=iD ,W*, N®=iD ,W*. To check this result, we
could use the tEChnique of correlator CalCUlatﬁém], which It can be also said that the approach shows the pr0b|em
we have already demonstrated in Sec. V. from another side and extends our knowledges about the
As well as for covariant constant YM background, the struycture of the path integrals. Other applications of the pre-
condition [V,,,Wa]=0 leads to the anticommutator sented method and its modifications for nonflat and harmonic
{Wz,w’g}zo, i.e., in this approximation the superfields superspace will be given in the subsequent papers.
W, W are effective Abelian, and we can use the results for the
EA super QED with certain changes. Full DEEA on a SYM
background and chiral superfields both in adjoint and in fun- \We thank V. G. Serbo and A. |. Vainstein for useful dis-
damental representation demands a more detailed considejussions. The authors are also grateful to V. P. Gusynin and
ation. The complication originates froSnzmix and mass terms 1. Avramidi for informing us about several papers. This work
in the operatof],,, which depends on chiral fields. was partially supported by RFBR Grant No. 96-02-19079.
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