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Covariant technique of derivative expansion of the one-loop effective action
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A simple systematic method for calculating derivative expansions of the one-loop effective action is pre-
sented. This method is based on using symbols of operators and well known deformation quantization theory.
To demonstrate its advantages we present several examples of application for scalar theory, Yang-Mills theory,
and scalar electrodynamics. The superspace formulation of the method is considered for Ka¨hlerian and non-
Kählerian quantum corrections for Wess-Zumino and for Heisenberg-Euler Lagrangians in super QED models.
@S0556-2821~99!04918-8#

PACS number~s!: 03.70.1k, 04.60.Gw, 11.15.Tk, 12.60.Jv
tra
te
th
om
te
a
a

fo
to
is
lv
k
.
co

ha
fe
iv
o

ve
tt

nt
s
lle

ng
or
io
ck
io
th
on
n
c
it

st
ba-

hat
, a
tly
om
-
in
for

l in
efi-

t a
sig-
e
me

er-
-
ns

r-
ef-

he
-

for

c-
ry,

such
ical
und
te
ba-

A
-
re-
nd
I. INTRODUCTION

The low energy effective action~EA! ~see Ref.@1#! con-
tains all predictions of quantum field theory and is a cen
object of research in physical situations, when we are in
ested in phenomena at an energy scale which is smaller
some cutoffL. Then fundamental heavy degrees of freed
of the underlying theory appear in loops only as virtual sta
and an integration over both these mass states and all m
less excitations above the scale we are interested in le
generally speaking, to nonlocal quantities.

Unfortunately, the straightforward calculations even
one-loop EA, determined by the spectrum of the opera
H5d2S/dfdf as a functional of external fields, face th
essential problem. Such a problem can be precisely so
only for some very specific simple configurations of bac
ground fields, when eigenvalues ofH can be found precisely
Therefore, the problem of development of the manifestly
variant methods for calculating the~nonlocal! EA as a series
of local terms depending on background field derivatives
attracted much attention. The leading term, named the ef
tive potential, is the most investigated term in the derivat
expansion. It is a useful object for the determination
vacuum structure of the full theory@2#.

The most known method for calculating the derivati
expansion EA~DEEA! is the so-called Schwinger-DeWi
asymptotic expansion@3–5#. All interesting quantities, such
as EA, Green function, energy-momentum tensor, curre
and anomalies are expressed in this approach in term
asymptotic coefficient heat kernel decomposition, so-ca
Hadamard-Minakshisundaram-DeWitt-Seeley~HMDS! coef-
ficients. Various effective covariant methods for calculati
HMDS coefficients has been developed by many auth
Schwinger-DeWitt decomposition gives the good descript
of vacuum polarization effects of mass fields on a ba
ground of weak background fields. However, the descript
of such physical phenomena as Hawking radiation or
anomalous magnetic moment of the electron involves c
sideration of the nonlocal structure of the effective actio
Among various methods for investigation of nonlocal effe
tive dynamics, such as direct summation of the terms w
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higher derivatives@6# and integration of anomalies, the mo
preferable is the covariant method of the theory of pertur
tions @7#.

On the other hand, it has been known for a long time, t
one-loop EA can be, at least formally, rewritten as, first
quantized path integral for a fictive particle, which correc
describes the behavior of spin and color degrees of freed
in external fields@8#. This representation and its modifica
tions are used for calculation of derivative expansion
QFT, for research of complicated Feynman diagrams and
application of stationary phase method@9#. Unfortunately,
the application of the quantum-mechanical path integra
curved phase space meets the difficulties of its correct d
nition. This is related to the time-slicing procedure@10#, be-
cause it is not covariant itself. Moreover, in order to ge
sense of the path integral, it is necessary to add some de
nations in the way of finite-dimentional approximation. Th
ambiguities arising from such procedure have the sa
source as the quantization procedure@11#.

The powerful nonrenormalization theorems in the sup
symmetrical theories@12# do not prohibit the quantum cor
rections for superpotential. So far perturbative calculatio
determine the effective Ka¨hlerian potential. When the supe
symmetry is unbroken, this potential determines both the
fective potential of the theory and the kinetic terms. T
problem of calculating the Ka¨hlerian potential was devel
oped by many authors both on a component level@13#, and
with the use of the supergraph technique@14#. The generali-
zation of the operator Schwinger–DeWitt representation
an appropriate heat kernel is also developed~see, for ex-
ample, Ref.@15#!.

The principe of manifest covariance is crucial for effe
tive theories constructing. It means that any physical theo
which possesses some symmetry, must be formulated in
a form where all symmetries are manifest both at class
and quantum levels. The main advantages of the backgro
field method consist in the fact that it allows us to formula
supersymmetrical and gauge invariant theory of pertur
tions manifestly~see Ref.@16#, and reference therein!.

A lot of interest in perturbative calculations one-loop E
for N52,4 super-Yang-Mills~SYM! theories has been at
tracted recently. It was induced by exact Seiberg-Witten
sults in N52 supersymmetrical gauge theories without a
with material hypermultiplets@17#, where the Ka¨hlerian po-
©1999 The American Physical Society17-1



o
an

th

-
e
ei

b

re
ic

a

fo

n
es
a-
lu

nt
ic
an

tiv
x
t

,
m
.
fo
a
r
fs

as
. A

t

a
e

ic
u

t
w
se
iv
ef

f
fo

ic
tie
tio

ed
s
ant
al-
fect
sed
the

the

ted
en-
s of

e-

A
rst

u-

ief
eral
rob-

op

n,
und
the

or
od-
. In
of

l-
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tential and mass of stable states are predetermined by h
morphity and duality of the prepotential in the space of qu
tum modules of the theory.

An undertaken test@18,19# of the forms of non-Abelian
supersymmetrical EA by direct calculations indicates
presence of one-loop holomorphic functionsF and real func-
tion H(W,W̄), which are incompatible with special geom
etry and consequently withN52 supersymmetry. Therefor
a problem of contributions of higher dimensions and th
influence on the Bogomol’nyi-Prasad-Summerfield~BPS!
formula of mass remains important. One of the main o
stacles in the investigation of the EA inN52,4 SYM models
in conventional superspace is the presence of infinitely
ducible structure. The formulation of the theory in harmon
superspace in terms of unconstrained superfields@20# has not
quantization problems. Recently, the first examples of qu
tum calculations with manifestN52 supersymmetry have
been given within the context of harmonic superspace
malism @21#.

There is an unsolved problem of how to breakN52 su-
persymmetry. TheN52 supersymmetry can be broken spo
taneously or softly if we want to save its useful properti
The soft breaking@22# is a very practical approach to an
lyzing possible phenomenological applications of exact so
tions. But it has a limited predictive power because of ple
of free parameters. Therefore, finding nonsupersymmetr
vacuum solutions for the scalar potential induced by qu
tum effects in the hypermultiplet sector ofN52 gauge theo-
ries is an important problem.

However, the above mentioned problems, despite ac
attention to them recently, do not still go beyond an appro
mation of constant background fields. In this paper we try
develop a scheme@23# for calculations for one-loop DEEA
equally suitable for models, which can contain internal sy
metry and gauge or other background fields or superfields
Ref. @24# the authors have offered this computing scheme
gauge theories, but really they did not go further than extr
tion of divergences. We want to ratify this method as ve
effective for some problems. It should be noted that in Re
@23, 24# the derivative expansion method was presented
collection of separate useful expressions and identities
the same time the direct connection between them and
problem of deformation quantization can be easily seen@25#.

We use the definition of a star~or Moyal! product@26# to
give a phase-space definition of the operator trace. This
lows us to get a convenient derivative expansion for the h
kernel. The star product approach to quantization is part
larly adapted to such problems. First, its structure allows
to deal with the expansion in\ in a simple way. Secondly, i
is the only known general quantization scheme which allo
the quantization of any symplectic manifold including tho
where a choice of the polarization is impossible. Extens
lists of the literature on this subject can be found in R
@28#.

Here we present a covariant method which consists o
sequential application of the symbol operator technique
formal trace calculation of the evolution operator. In pract
this leads to a normal coordinate expansion of all quanti
contained in the heat kernel and using the finite transla
10501
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property of momentum integrals. This property is also us
in other approaches@29# to calculate quantum correction
using a modified propagator, which has all gauge invari
combinations of background fields and their derivatives
ready. It should be noted that this procedure does not af
the space-time relation of background fields. the propo
technique allows us to produce a derivative expansion for
effective action on the background of exact solutions for
Heisenberg equation.

Obtaining that or other specific results has demonstra
the character of basic elements of the method. We conc
trate on advances in other calculation schemes, example
the scalar theory with self-action in flat space@23,30#, calcu-
lation colorless QCD correlators@29#, and simple derivation
of the chiral anomaly. We shall consider the problem of d
rivative expansion in scalar electrodynamics@31#, which is
laying outside the frameworks of theory of perturbations.
calculation by a manifestly supersymmetrical way of the fi
famous correction to Ka¨hlerian potential in Wess-Zumino
model @32,19# and supergeneralization Schwinger EA in s
per QED@33# will be presented also.

The plan of the paper is as follows. We begin with a br
consideration of the offered method. Then we present sev
examples to demonstrate its scope for the mentioned p
lems. The paper ends with a short summary.

II. THE METHOD

The starting expression for the calculation of one-lo
EA, obtained by integrating over quantum and~or! heavy
fields in functional integral is@1# G (1)521/2 Tr lnĤ, where
operatorĤ is the second functional derivative of the actio
i.e., the inverse propagator in the presence of backgro
fields. To give sense of this formal expression we use
known technique of symbols of operators@11#. In this ap-
proach the quantum expectation value of the operatorÂ is

Tr~Â!5E
X
dm~g!A~g!, ~1!

whereX is the phase space andA(g) is the function on the
phase space~i.e., the symbol of the corresponding operat
Â). The symbol calculus is based on the so-called star pr
uct which corresponds to the usual product of operators
this case the standard notation of one-loop EA in the form
the heat kernel or in the suitable for regularizationz-function
form

zH~s!5
1

G~s!
E

0

`

dTTs21 Tr~e2TĤ!, ~2!

provides us a connection with Wigner-Weyl-Moyal forma
ism @34#, since, due to Eq.~1! we can write

zH~s!5
1

G~s!
E

0

`

dTTs21E
X
dm~g!e!

2TH(g) , ~3!

wheree!
2TH is the star exponential, defined by
7-2
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COVARIANT TECHNIQUE OF DERIVATIVE EXPANSION . . . PHYSICAL REVIEW D60 105017
e!
H5(

1

N!
H!H!¯H!.

This allows us to derive phase-space expressions for the
mal trace by

Tr~Â!5E
X
dm~g!@A1\t1~A!1\2t2~A!1¯#

in quasiclassical expansion form. In order to introduce so
notations we will use in the paper we briefly review t
phase-space formulation of ordinary quantum mecha
~originated by Weyl, Wigner, and Moyal@26# and exten-
sively studied by Berezin@11#!.

Symplectic manifoldX can be viewed as a cotangent fib
bundle (X2n,Xn,Tx* X,v) with the base spaceXn, fiber Tx* X
and fundamental symplectic two-formv. In local coordi-
nates, we haveg5(p1¯pn ,x1

¯xn), gPX2n, xPXn,
pPTx* X, v5(1/2)v i j dg i∧dg j . In Hamilton mechanicsX2n

plays the role of phase-space equipped by standard Po
brackets$ f ,g%v5v i j ] i f ] jg.

Let us consider some dynamical system on a flat ph
space. Let some quantization be chosen, i.e., linear map
A↔Â between functions in the phase-space~classical obser-
vations! and operators in the Hilbert space by the followi
recipe:

A~g!→Â5E
X
djdhw~j,h!Ã~j,h!e~ i /\)~j p̂2hq̂), ~4!

where Ã is the inverse Fourier transformA, (p̂,q̂)5Ĝ are
operators satisfying the canonical commutational relat
@ p̂,q̂#52 i\, w(j,h) is a some weight function, which de
pends on ordering rule, and (j,h)5g belongs to dualX2n

space. For practical calculations it is very convenient to e
ploy a differential form of the last relation, i.e.,

Â5A~2 i ]g!eigvĜug50 . ~5!

Of course an operator can be characterized by function o
then phase-space based symbol. A prime example is its
gral kernel, i.e., the Dirac matrix element^xuÂuy& for which
the following formulas are useful. Taking the matrix eleme
of Eq. ~4! leads to a construction of the kernel starting fro
the Weyl symbol@i.e., w(j,h)51]

^xuÂuy&5E dpeip/\(x2y)AS x1y

2
,pD . ~6!

One passes in the opposite direction from the kernel to s
bol via the Wigner transform

A~p,q!5E dve2 ipv/\K q1
1

2
vuÂuq2

1

2
v L 5

^quÂup&

^qup&
,

~7!

whereup& is the momentum eigenstate. The obtained asy
metric formA is suitable for calculations.
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As soon as the mappingA(g)↔Â is constructed, the sta
product appears in phase space, which copies product o
erators. This construction is essentially nonlocal, which
characteristic of the quantum uncertainty principle. For t
basic structure there are again both integral and deriva
based formulas, which are useful in varying circumstanc

~A!B!~g!5E E dg8dg9A~g1g8!B~g1g9!e~2i /\ !g8vg9,

~8!

~A!B!~g!5e~ i\/2 !]g8v]g9A~g8!B~g9!ug5g85g9

5AB1 i\$A,B%PB1¯ . ~9!

The Groenewold formula~9! is a consequence of Eq.~8! and
provides a small\ expansion of (A!B). The fact that it may
be evaluated through the translation of function argument
the key feature

~A!B!~p,q!5AS p2
i\

2
]q ,q1

i\

2
]pDB~p,q!. ~10!

The image of commutator in the WWM formalism is th
Moyal bracket $A,B%M , which is bilinear, skewed, and
obeys the Jacobi identity.

It can be proved that different choices of star produ
correspond to different choices of operator ordering. Furth
more, there is aW` symmetry linking the various choices o
the star product.

For a dynamical system on curved phase space the a
mentioned constructions assume natural generalizations@27#.
Because the correspondenceA↔Â claims on an autonomou
quantum mechanic statement, there has to be correspond
between physical results for particular dynamic systems.
quantum equations of motion are then obtained from
classical picture having pointwise multiplication and Poiss
bracket replaced with their star analogues. It was proved
for an exactly solvable quantum-mechanical system, the
responding star analogue of the evolution operator ha
Fourier-Dirichlet expansion

e!
TH5(

lPI
ul&^lueTl/ i\.

This allows us to localize a functional integral, turning it in
a sum over spectrum of the operatorĤ @25#.

In a dynamical system, which does not have the ex
solution for the spectrum, we have to calculate asympto
expansion coefficients of the heat kernel. Our suggestio
that it is convenient to present the star product as the a
ment displacement.

Though the operator ordering is not essential, there a
number of systems having an inherit polarization. For e
ample, if theĤ5 p̂21V(q̂) then theqp ordering is the most
preferable and

e!
2TH5e2T[ p21V(q2 i\]p)] . ~11!
7-3
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N. G. PLETNEV AND A. T. BANIN PHYSICAL REVIEW D 60 105017
This is the simplest case where (p,q)PX is a symplectic
vector space. In the following sections we will demonstr
the treatment of such expressions.

In more complicated cases such as a particle in exte
gravitational and YM fields, which are connections on
principal bundle over the configuration spaceQ, the theme
of strict deformation quantization was discussed in a num
of works @35#. First, the gauge invariant definition of Wigne
function was studied by Stratonovich@36#. The specific char-
acter of such system consists in the fact that the phase s
of the particle is a Marsden-Weinstein reduction ofT* G,
hence this space can also be considered as reduced
space of a particular type of constrained dynamical syst
Then the quantization corresponds to assigning quantum
erators to be generators of an irreducible unitary represe
tion of the groupG. However, there is more then one su
representation of the group and many different inequiva
quantum systems arise from the study of the same confi
ration space. Physically, this means that without a conn
tion we can not separate the particle’s external momen
from its own internal ‘‘position’’ and ‘‘momentum’’ which
is associated with the motion on the coadjoint orbit. Us
the connection¹ on Q we had constructed a star product
standard ordered type!s , which is the natural generalizatio
of the standard ordered product in flatX @37#. A surprisingly
simple analogue of the operator

N5e~\/2i !]2/]pk
]qk

for any T* Q takes the form

N5e~\/2i !D.

Here the second order differential operatorD is as follows:

D5
]2

]qi]pi
1G ik

i ~q!
]

]pk
1pkG i j

k ~q!
]2

]pi]pj
1Ak~q!

]

]pk
,

whereG jk
i is the Cristoffel symbol andA is one-form onQ

such thatdA equals to the strength tensor.
The operatorN is globally defined and induces th

equivalence transformation, which yields a more physi
star product of Weyl type having the complex conjugation
an involutive antilinear antiautomorfism

f !Wg5N21@~N f !!s~Ng!#.

This equivalence is again the natural generalization of
flat case.

The above mentioned facts prescribe the following ga
invariant way to determinate the connection Weyl type sy
bol ~related to¹ ordering, because they are not commu
tive!:
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p 5ei ]p•¹~ ipm1¹m!e2 i ]p•¹

5 ipm1E
0

1

dt• i t]p
nFnm~x1 i t]p!

5 ipm1
i

2
]p

nFnm2
1

3
]p

lnFnm,l2
i

8
]p

slnFnm,ls1¯ .

~12!

The action of the operatorU5ei ]p•¹ corresponds to a ca
nonical transformation, which leads to the normal coordin
expansion. Here a role of tangent vector, along which imp
ments parallel transport, plays]/]p, in the p representation
of the normal coordinates. To find Eq.~12!, we used the
commutation relation@¹m ,¹n#5Fmn(q).

For development of the offered technique in supersp
where the choice of gauge condition is not obvious, we
tice that we have obtained a representation of the vector
tential in the Fock-Schwinger gauge

Am~q!5qn (
n50

`
1

n12

1

n!
qa1

¯qanFnm,a1¯an
,

without explicit solving the gauge conditionqmAm50. The
potential term is presented by the expression

Vp5ei ]p•¹V~q!e2 i ]p•¹5V~q1 i ]p! ~13!

in the normal coordinate expansion form. Now we get a r
resentation of the main object for calculations in the fo
Tr ln(2hp1Vp).

The main result of the technique of symbols is that
ready on the first stage of calculations we have found ini
expression forH(p,q) containing only gauge covarian
quantities. The problem of obtainingG (1) , thus, consists in
calculating of the evolution operator of some quantu
mechanical problem with HamiltonianH52hp1Vp . We
shall calculate the result of star-product directly, order
order in T. It means that we will implementp,]p ordering
until all terms having derivatives acting on nothing~vacuum!
will disappear. This is a quite a simple procedure. Moreov
the sensible separationH on an exactly soluble Hamiltonian
H0 and a perturbationV allows us to construct expansions o
the background ofH0 eigenstate.

III. DERIVATIVE EXPANSION EA ON A BACKGROUND
OF SCALAR POTENTIAL

As the first example we shall consider a massive sc
field theory with the Lagrangian

L5
1

2
]mf]mf2m2f22U~f!

and the problem of the inverse mass decomposition EA
comparison of the offered method with results string-inspi
technique@30# and other computing schemes@23,4#. Typical
problems in which interaction through derivatives plays
7-4
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important role are connected with stabilization of soliton s
lutions in the Skirm model, QCD, and in the Higgs sector
the standard models.

It is convenient to use a proper time representation for
trace of the logarithm of the operatorĤ52h1V(x),V
5m21U9(f). According to the method we get the initia
representation for one-loop EA

G (1)52
1

2 E0

` dT

T E d4xK~T!, ~14!

where

K~T!5E d4p

~2p!4 e2T[ p21V(x1 i ]p)]

is the heat kernel. The expression for the effective act
contains divergences and imposes renormalization. For
given representation thez regularization is intrinsic, which
has the advantage of automatically preserving a large clas
the classical symmetries.

We leave in the decomposition~13! fourth order terms in
derivatives:

Vp5V1 i ]p
mVm2

1

2
Vmn]p

mn2
i

3!
Vmnl]p

mnl

1
1

4!
Vmnlt]p

mnlt . ~15!

The further problem is calculation of a trace of the evoluti
operator for a fictive particle in the potential~13!. Using the
known operator identity

e2T(p21Vp)5e2Tp2
expE

0

T

dt e1tp2
~2Vp!e2tp2

, ~16!

the kinetic term can be separated. As a result the argume
Vp is shifted asVp(x1 i ]p22i tp). We shall consider Eq
~13! as a perturbation and we shall decompose theT expo-
nent up to derivatives of fourth order

PT expS E
0

T

dsVp~s! D 5 (
n50

` E
0

T

ds1E
0

s1
ds2¯

3E
0

sn21
dsnVp~s1!Vp~s2!¯Vp~sn!.

~17!

Expressions such ase1tp2
]pe2tp2

are replaced with the
solutions of the Heisenberg equations, i.e.,]p(t)5]p
22tp. The most complicated procedure is the disentang
of the star product. The partial simplification can be reach
after commutation]p to the left and using properties

E d4p

~2p!4 ]p
m~¯ !50. ~18!

All other calculations reduced to trivial integrations
10501
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E d4p

~2p!4 e2Tp2
$1,pmpn ,pm1

, . . . ,pm4
%

5
1

~4pT!2 H 1,
1

2T
dmn ,

1

4T2 dm1m2m3m4J . ~19!

For example,

^]p
nm&[E d4p

~2p!4 e2Tp2E
0

T

ds]p
n~s!]p

m~s!

52
1

3
T2dmn , ~20!

^]p
ntlr&5

2

15
T3dnltr, ^]p

m1¯m6&52
2

35
T3dm1¯m6,

^^]p
n]p

t &&[E d4p

~2p!4 e2Tp2E
0

T

ds]p
n~s!E

0

s

ds8]p
t ~s8!

52
1

12
T3dnt,

wheredm1¯m2k is a completely symmetrical tensor, consis
ing of (2k21)!! terms composed from Kronecker symb
products. After rearranging the results by extracting full d
rivatives, we obtain the known result@30#

K~T!5
1

~4pT!2 e2VT

3S 12
1

12
T3VmVm1

1

5!
T4VmnVmn

2
T5

334!
VmnVmVn1

T6

1234!
Vm

2 Vn
2D . ~21!

Further integration over proper time gives gamma functio
in any order ofT. They have poles for some terms in DEEA
which correspond to known divergences.

Previously, it was mentioned that the local Schwing
DeWitt expansion describes the vacuum polarization eff
of massive quantum fields in weak background when all th
invariants are smaller then the corresponding power of
mass parameter. However it is not a good approximation
the case of strong background fields and absolutely mean
less for massless theories and weak rapidly varying ba
ground fields. For investigation of these cases special m
ods are needed@6,7#. The result has an essentially nonloc
form. It is interesting to study how some nonlocal formfa
tors appear in our approach for this model. Let us consi
the second orderV term in the Duhamel expression~17!.
After simple manipulation we obtain

K~T!5E
0

T

ds1E
0

s1
ds2V~x!e(s12s2)(h12ip¹)

3V~x!e2(s12s2)(h12ip¹). ~22!
7-5
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Performing the integration overp we can see that the resu
can be rewritten in the form

K~T!5
1

~4pT!2 E
0

T

ds1E
0

s1
ds2Ve(s12s2)[12 ~s12s2!/T] hV.

From the last expression we obtain

G (1);2
1

2 E dT

T
e2m2TE d4x

1

~4pT!2

T2

2
Vg~Th !V,

~23!

where the form factor has the known representation@6#

g~Th !5E
0

1

dse@~12s2!/4# Th. ~24!

Using a similar expression for form factors, one can anal
their analytical properties, calculate their high energy lim
and their imaginary parts above the threshold, etc.

IV. NON-ABELIAN GAUGE FIELDS

Now we consider the gauge vacuum mean of gluon
erators in the form̂F2&,^F3&. In the absence of a consiste
theory of the QCD vacuum, it was assumed that vacu
expectation values of local operators, in fact, play the role
fundamental constants for QCD sum rules. The necessit
calculate the coefficients in front of these gluon operators
decomposition for colorless correlation functions~which is
used in a method of QCD sums rules! stimulated the devel-
opment of gauge-invariant methods@29,4#. Unfortunately, in
the standard Feynman diagrams technique, calculating
diagrams with emitting gluons from a loop and rearrang
vector potentials in gauge invariant structures, is a rat
hopeless problem. Because the determinant of the Dirac
erator is determined after squaring by the Klein-Gordon
erator, we limit ourselves to the consideration of a sca
loop in the external non-Abelian field with the Lagrangian

L5
1

2
¹mf¹mf1m2f2, Ĥ52¹m¹m1m2.

According to the prescription described above, we use a
resentation of one-loop EA~3! with H(p,]p)5¹p

m¹p
m1m2,

where¹p
m is a covariant pseudodifferential operator~12!. Af-

ter extracting a free part fromH in the formH05p2 ~which
corresponds to the approximation where the particle mo
between the interaction is free! and separating exponen
similar to those in Eq.~16! we shall calculate vacuum mea
dimensions (23). Nonzero contributions from Eq.~17! in
the procedure described in the second section will give
following results in the first and in the second order of t
decomposition of theT exponent, respectively;

2
1

4
FnmFtm^]p

nt&1
1

72
Fnm,tlFsm^]p

nlts&,
10501
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e

1

9
Fnm,mFta,a^^]p

nt&&.

The other terms are either full derivatives or contain a
factor from the left or rightpm]p

nFmn , which leads to zero
contributions. Further, performing trivial calculations simil
to Eq. ~20! and using the Bianchi identities we will get th
known result@29,4#

K~T!5
e2Tm2

~4pT!2 F11
T2

12
FmnFmn1T3S F3

180
2

1

60
J2D G ,

~25!

where F35FmnFnaFam , J25Fma,aFmb,b . Thus the first
~after unit! term of the decomposition is related to renorm
ization of charge.

A less trivial problem is the calculation of the next HMD
coefficient b3;(F/m)4. The simplification is reached on
free equations of motionFmn,m50. In the first order of the
T-exponent decomposition we obtain the following contrib
tion:

2
1

436!
FamFnmrstl^]p

ltsrna&

5
T4

7036!
FamFnmrstldltsrna,

where only 10 of 15 members are nonvanishing. After so
manipulations with commutating of derivatives, using of B
anchi identities and equations of motions we get the con
bution

5T4

73236! S @Fab ,Fmb#21
1

10
@Fam ,Frs#2D . ~26!

The contribution of the second order of the decomposit
~17! is

T4

236!
~$Fam ,Fbm%215~FnmFnm!2!. ~27!

The full result forb3

T4

23144S ~FnmFnm!21
1

5
$Fam ,Fbm%21

1

7
@Fab ,Fmb#2

1
1

70
@Fam ,Frs#2D ~28!

coincides with Ref.@29#. It should be noted that the hug
number of terms in the decomposition can be omitted
once, that essentially reduces body of work and demonstr
that computation of higher power corrections might be co
siderably simplified. This is important for the analysis
convergence for the series in 1/m2.

We have considered two well known examples. Le
trivial application of the EA expansion was used in Ref.@40#
for the investigation of axial anomaly. The problem of ge
eralization world line path integral representation@38,39# for
7-6
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amplitudes involving axial vector leads to another interest
application of the derivative expansion. It is well known th
if the spinor fields are coupled to background fieldsAm ,A5m ,
and the pseudoscalar one than the axial currentJm

5 has an
anomalous divergence. The Dirac operator, suitably con
ued to Euclidian space, is not Hermitian and the anomaly
be attributed to the phase of the functional determinant
Ref. @41# using the integral representation of the comp
power for the pseudodifferential operator, it was obtained
unambiguous definition of the determinant for the Dirac o
erator. The determinant is shown to be vector gauge inv
ant and it posseses the correct axial and scale anomalie

Another popular starting point is the second order desc
tion for the fermionic one-loop effective action

G (1);
1

2
$Tr logHH†1Tr~ logH2 logH†!%.

The derivative of the second term in the last expression w
respect to the background field can be written as

d

dA
Tr~ logH2 logH†!5TrF S dH

dA
H†2H

dH†

dA D 1

HH†G ,
which allows us to derive an elegant representation with
help of an auxiliary integration for the imaginary part of th
effective action, i.e., for the phase of the fermion function
determinant. Recently@40#, it was found that for the specia
case where the background consists only with an Abe
vector and an axial vector field there is a much simpler
lution to this problem which treats both parts of the effect
action equally. The price which we have to pay for this pro
erty is that the kinetic operator occurs non-Hermitian. W
consider a more complicated example contained general
Abelian fieldsAm

a ,A5m
a . It is easily to establish that

~p”1A” 1g5A” 5!252~]m1 iAm!21Q, ~29!

whereAm5Am2g5smnA5
n , A5AaTa, and

Q52
i

2
smnFmn1 ig5Am,m

5 12A5
21

1

2
smn@A5m ,A5n#,

~30!

with

Fmn5]mAn2]nAm1 i @Am ,An#.

Using such a trick, the effective action is formally identic
with the effective action for a scalar loop in non-Abelia
field A and potentialQ background. A new gauge paramet
has values in the Clifford algebra. Let us apply the meth
described above for the calculation of the quantity

G (1)52
1

2 E dT

T
e2Tm2E d4x

d4p

~2p!4 e2T(¹p
2

1Q).

Repeating the above calculation for this case, we get
known results
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K~T!5
1

~4pT!2 trH 12TQ1T2S 1

2
Q22

1

12
F 2D

1T3S 2
1

6
Q32

1

12
QmQm1

1

12
QF 2

2
i

180
F 31

1

60
J2D J , ~31!

where

Fmn5Fmn1g5s [mlA5,n]
l 1 is [mlsn] tA5

lA5
t ,

A5,m
l 5]mA5

l1 i @Am ,A5
l#.

We still need to perform the Dirac traces. We see t
unlike the vector case, the axial contribution to the imagin
part has an additional term proportional tom2A5

2. This term
is prohibited by gauge invariance in the vector case, howe
this term may appear in axial theories with massive fermio
since those theories violate the corresponding gauge inv
ance. Logarithmically diveregent terms combine autom
cally in the gauge invariant expressions

K~T!;T2
2

3
Trc$Gmn

A Gmn
A 1Gmn

A5 Gmn
A5 %,

where Gmn
A 5Fmn1 i @A5m ,A5n#. Therefore it is necessar

only to introduce the kinetic and mass counterterms for
axial field in order to render the theory be finite. The thi
HMDS coefficient contains a lot of terms. Keeping only th
contribution which comes from the three point functio
^AAA5&, we get the famous result

K~T!;2T3 TrcFGab
A Gab

A* Am,m
5 1

4

3
$Gab

A ,Gbg
A* %Ag,a

5 G .
~32!

It has shown that the effective action induced by a spi
loop can be rewritten in terms of an auxiliary non-Abelia
gauge field and a potential. This allows us to discuss
chiral anomaly from a novel point of view.

V. DERIVATIVE EXPANSION OF EA IN QED

In recent years a lot of problems related to intensive fie
and nonlinear processes such as photon splitting, nonlin
Compton effect, and pair production below the two phot
threshold were experimentally investigated@44#. So far the
problem of going beyond perturbation theory increased
much, that the description of quantum processes beco
rather urgent and gets practical goals. Really, studying
limit of a strong field we obtain the same information,
from a polarization function in the small distance limit.

Unfortunately, the validity of the famous Schwinger L
grangian@5# calculated almost a half-century ago and t
two-loop exact results@45# are limited by the constant field
approximation. The generalization of the Schwinger res
on strong varying fields or fields located in a small area
very interesting from the physical point of view. Recent
7-7
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the authors of Ref.@31# presented the next~after Schwinger
term! nonperturbative termFab,lFsd,gL1

labgsd(Fmn) in the
expansion of one-loop EA. Their result was obtained fro
the representation of the path integral. Even for electro
namics it is a rather difficult problem.

In this section we would like to demonstrate the capab
ties of the proposed method for the computation of the co
plete form for the first nontrivial correction to long wave
length limit of the EA. We use the representation~12! for the
pseudodifferential operator¹p and the proper time represen
tations for EA, induced by a scalar loop.

Let us consider this example in more detail. For the c
culation of the expansion on a nonperturbative backgroun
is necessary to split out free and perturbation terms in
expressione2T(P21D(1)), where

Pm5pm1
1

2
]p

nFnm , @Pm ,Pn#52Fmn , ~33!

D (1)5
i

3
F (nm,t)~2Pm]p

tn1dm
t ]p

n!

2
1

8
F (nm,tl)~2Pm]p

ltn1dm
(t]p

l)n!

2
1

9
F (nm,tFrm,l)]p

tnlr . ~34!

Here parentheses means symmetrization with the ap
priate weight. The interesting terms in the expansion oT
exponent~17! for the heat kernel are

K~T!5e2TP2H 11E
0

T

dsesP2F1

8
Fnm,tl~2Pm]p

ltn1¯ !

1
1

9
Fnm,tFrm,l]p

tnlrGe2sP2

2
1

9
Fnm,tFab,gE

0

T

dsE
0

s

ds8

3esP2
~2Pm]p

tn1¯ !e2(s2s8)P2

3~2Pb]p
ag1¯ !es8P2J . ~35!

The following step consists of replacin
esP2

Pme2sP2
,esP2

]p
me2sP2

in appropriate solutions
Pm(s),]p

m(s) of equations of motion

Ṗ~s!5@P2,P~s!#,]̇p
m~s!5@P2,]p

m~s!#,

i.e.,

Pm~s!5PnPnm~s!, ]p
m~s!5]p

m1PnBn
m~s!, ~36!

where P(s)5(e22sF), B(s)5 (1/F) (e22sF21). After P,
]p ordering it is necessary to take integrals overp. In prin-
ciple, some methods for solution of this problem has alre
10501
-

-
-

l-
it
e

o-

y

been used by Schwinger. Recently to a similar problem h
addressed the paper@47#, with the reference to heat kerne
calculation methods developed in@46#.

To treat the first term in Eq.~35! we notice that the op-
eratorP2 is the Hamiltonian of the two Landau oscillators
momentum representation. The kernel of the opera

^p8ue2TP2
up& is well known explicit Meller formula, fre-

quently used for direct calculation of the index of an ope
tor. It is important, that this kernel is a well converging e
pression and consequently1

E d4p

~2p!4 ]p
a~e2TP2

Pm¯ !50. ~37!

For future convinience we define the moments

Ka1a2¯an
5E d4p

~2p!4 e2TP2
Pa1

Pa2
¯Pan

.

In particular, forn52 we have

05E d4p

~2p!4 ]p
b~e2TP2

Pa!5da
bK1KcaBc

b .

The expansion of a matrixB begins with unit, therefore one
can be inversedB21 and

Kab52KBba
21 .

Similarly

Ka1¯a4
5K~Ba2a1

21 Ba4a3

21 1Ba3a1

21 Ba4a2

21 1Ba4a1

21 Ba3a2

21 !.

We also need in the relations

Ka1a2¯a6
52~Ba2a1

21 Ka3¯a6
1Ba3a1

21 Ka2a4¯a61¯
!.

The kernelK(T) satisfies the differential equation

dK

dT
52Kaa5KBaa

21

or

K21
dK

dT
5trS F

e22TF21D5trS Fe2TF

12e2TFD
52

1

2
trS ~12e2TF!21

d

dT
~12e2TF! D

52
1

2
tr

d

dT
ln~12e2TF!C, ~38!

1Using this property, the authors of Ref.@47# have reproduced the
Schwinger result.
7-8
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hereC52p/F is a constant of integration, determined fro
a known limit K51/(4pT)2 for small T, when the particle
can be considered as free. With such a choice we find
standard result

K~T!5
1

~4pT!2 Fdet
FT

sinh~FT!G
1/2

. ~39!

As a next step, it is necessary to calculate several fu
tions from matrixesFmn . It is known @48# that for any con-
stant fieldFmn there is such a reference frame, where m
netic and electrical fields are parallel and their values in
system are relativistic invariants of the field. Or, if they a
perpendicular, it is possible to find such a reference frame
which the field is either purely magnetic or purely electric
Therefore the canonical formF in this system has a bloc
structure

Fmn5S 0 l1 0 0

2l1 0 0 0

0 0 0 2l2

0 0 l2 0

D .

There is a connection between eigenvalues and invarian
the field

H65~l16 il2!25
1

2
~F27 iF * F !. ~40!

Any degreeF can be decomposed over basis of linear co
binations ofF, F* , F2, andg. Thus, for the exponent from
a matrixP5eaF we get

P5eal1A11e2al1A21eial2A31e2 ial2A4 ,

whereAmn
( i ) is another known basis@49#

A(1)5
1

2~l1
21l2

2!
~F21l2

2g1l1F2l2F* !

5
1

2 S 1 1 0 0

21 21 0 0

0 0 0 0

0 0 0 0

D ,

A(2)5
1

2~l1
21l2

2!
~F21l2

2g2l1F1l2F* !

5
1

2 S 1 21 0 0

1 21 0 0

0 0 0 0

0 0 0 0

D ,
10501
e

c-

-
is

in
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A(3)5
21

2~l1
21l2

2!
~F22l1

2g1 il2F1 il1F* !

52
1

2 S 0 0 0 0

0 0 0 0

0 0 1 2 i

0 0 i 1

D ,

A(4)5
21

2~l1
21l2

2!
~F22l1

2g2 il2F2 il1F* !

52
1

2 S 0 0 0 0

0 0 0 0

0 0 1 i

0 0 2 i 1

D ,

which has the useful projector propertiesA( i )
2 5A( i ) ,

A( i )A( j )50 for iÞ j . The transposition operation translat
A1↔A2 andA3↔A4 .

Calculation of matrix functionsB and B21 leads to re-
markably simple results

B5(
i 51

4

A( i )
1

f i
~ea f i21!, B215(

i 51

4

A( i ) f i~ea f i21!21.

~41!

It is convenient to use the notations

f 1,256l1 , f 3,456 il2 .

Now we can easily get

sinh~aF !

aF
5

sinh~al1!

al1 S 1 0 0 0

0 21 0 0

0 0 0 0

0 0 0 0

D
1

sin~al2!

al2 S 0 0 0 0

0 0 0 0

0 0 21 0

0 0 0 21

D
and for the kernel we obtain the Schwinger result

K~T!5
1

~4pT!2

Tl1

sinh~Tl1!

Tl2

sin~Tl2!
. ~42!

Then we can implement all necessary substitutions,P, ]p
ordering of the operators, and integration over momenta
the other terms of expression~35!. After some manipulation,
all matrix structuresP, B, B21 depending ons, s8, T are
grouped in several combinations. The main group is
7-9
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BT~s8!B21~T!B~s!2BT~s8!

52(
i

2

f i
A( i )ef i (s82s)sinh~ f is8!

sinh@ f i~s2T!#

sinh~ f iT!

~43!

which coincides with the Green function, used in the p
integral method@31#
n
la
L

c

10501
h

D~s,s8!5(
A( i )

2 f i
F2~12e2 f i (s82s)!1coth~ f iT!

3~11e2 f i (s82s)!2
1

sinh~ f iT!
~ef i (2s82T)

1ef i (22s1T)!G . ~44!

The other arising combinations of matrix structures are
rivatives ofD in s, s8, that can be easily seen
BT~s8!B21~T!B~s8!2BT~s8!5(
i

2
2

f i
A( i )sinh~ f is8!

sinh@ f i~s82T!#

sinh~ f iT!
5D~s8,s8!, ~45!

BT~s8!B21~T!P~s!5(
i

A( i )ef i (s822s1T)
sinh~ f is8!

sinh~ f iT!
52

1

2

]

]s
D~s,s8!,

PT~s8!B21~T!B~s!2PT~s8!5(
i

A( i )ef i (2s82s)
sinh@ f i~s2T!#

sinh~ f iT!
52

1

2

]

]s8
D~s,s8!,

BT~s8!B21~T!P~s8!5(
i

A( i )e2 f i (s82T)
sinh~ f is8!

sinh~ f iT!
52

1

2

]

]s
D~s,s8!us5s8 ,

PT~s8!B21~T!P~s!5(
i

2
A( i ) f ie

f i (2s822s1T)

2 sinh~ f iT!
5S 2

1

2

]

]s8D S 2
1

2

]

]sDD~s,s8!.

In these notations the result for the expression in the braces~35! looks as follows

11E
0

T

dsS 1

8
Fmn,tmDnt~s,s!1

1

4
Fmn,tl~ḊnmDtl1ḊtmDnl1ḊlmDnt!~s,s!

1
1

9
Fnm,tFrm,l~DntDrl1DrtDln1DrnDlt!~s,s! D

1
4

9
Fnm,tFab,gE

0

T

dsE
0

s

ds8$Ḋ (tm~s,s!@Ḋ (gb~s8,s8!Da)n)~s,s8!1D́bn)~s,s8!Dag~s8,s8!#

1Ḋ (am~s,s8!@D́b(t~s,s8!Dg)n)~s,s8!1Ḋg)b~s8,s8!Dnt~s,s!#1D́
˙

bm~s,s8!@D (gt~s,s8!Da)n~s,s8!

1Dnt~s,s!Dag~s8,s8!#%. ~46!

The last step is the calculation of a plenty of standard integrals such as

E D5T2(
i

A( i )L~ f i ,T!, E DD5T3(
i , j

A( i )3A( j )H L~T fi !L~T f j !1
L~T f j !2L~T fi !

~T fi !
22~T f j !

2 J .
s

ion
ich
the
Because of combersome of the general result, we do
present it here. Besides it is inconvenient in a particu
physical problem, where it is necessary only some terms.
us note only, that functions of proper timeT and relativistic
invariants of fields setting in front of every possible contra
tions Fmn,tl , Fmn,tFab,g and with direct productsA( i ),A( i )
ot
r
et

-

3A(j),A(i)3A(j)3A(k) are combinations of Langevin function
L(x)5 (x coth(x)21)/x2 and they are presented in Ref.@31#.

Furthermore, it is necessary to implement renormalizat
through the subtraction based on common principle, wh
requires putting in zero the radiation corrections at
switched off field as in the original Schwinger paper@5#, and
7-10
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replacing all bare charges and fields through the physi
Therefore it is easier to return to the initial expressions a
to execute all manipulations with necessary accuracy.

When the mass of the scalar particle is greater than
other scales of the theory, we can limit the expansion by
next terms to unit

K~T!5
T3

15S 1

3
Fmn,lFmn,l1

1

2
FnmFnm,llD . ~47!

This result agrees with Ref.@42#. Recently, similar methods
for calculation of corrections to the long wavelength limit
EA on Yang-Mills background fields was used in Ref.@43#.

It is obvious that the expressions~46! for the description
of particular processes in nonconstant background fields
exact in mass of a charged particle and field strength.
gradient corrections are very important for the analysis of
effective potential, since they can reduce energy of
ground state.

This detail presentation evidently demonstrates possi
ties to obtain the corrections on background which poss
exact solution of classical problem. Because of a large n
ber of physical set up of problems in nonconstant ba
ground fields, it is useful to have in an arsenal of tools
their solution a method, which is alternative to path integ
representation.

VI. QUANTUM CORRECTIONS
IN WESS-ZUMINO MODEL

We demonstrate how to apply the proposed techniqu
calculation DEEA for the supersymmetrical theories in t
superfield approach. The doubtless advantage of the off
method is that this method does not require the determina
of many various Green functions for calculation of fun
tional trace of the appropriate heat kernel. To show it,
obtain the known Ka¨hlerian potential of the Wess-Zumin
model @18,19,32# and lowest order non-Ka¨hlerian contribu-
tions to the one-loop effective potential.

The Wess-Zumino theory described by the action

S~f,f̄ !5E d8zf̄f1E d6zS mf2

2
1

g

3!
f3D1H.c.

is a good model for test of various supersymmetric metho
since it has all specific peculiarities of the theories with c
ral fields, and it enters as an inherent ingredient in ma
superfield theories@50,16#.

It is known that a problem of a definition of a superfie
EA agreed with symmetry of the theory can be very effe
tively solved in the framework of proper time superfie
technique@15,32#. For functional integration over quantum
chiral fields, which arise after splitting of fields on quantu
and background ones, it is convenient to introduce unc
strained superfieldsf5D̄2c and f̄5D2c̄. In principle this
introduces a new gauge invariance into the action, but in
absence of background gauge fields, the ghost assoc
with this gauge fixing are decoupled. Another proced
transforming the path integral over the chiral superfields i
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a path integral over general superfields has been develo
in Ref. @15#. The functional integration overc,c̄ leads to a
determination of the effective action in the form
2 1

2 Tr ln@Ĥ(x,u,D)# with the kinetic operator for the given
model

Ĥ5S l D̄2

D2 l̄
D S D̄2 0

0 D2D , where l5m1gf (BG) .

~48!

Except a functional trace, the operation Tr means a ma
trace as usual. There are many techniques of calculation
Kählerian potential which is an analogue of the Colema
Weinberg potential@32,19#.

We can implement the Fourier transformation in sup
space, though it is not necessary, since thed function of
Grassmanian coordinates is explicitly known, as well as
action on theD,D̄ derivatives

d~z2z8!

5E d4p

~2p!4 d2cd2c̄ei (x2x8)•p1ca(u2u8)a1c̄ȧ( ū2 ū8) ȧ.

~49!

We use the superspace agreements from Ref.@16# and we
will omit the obvious indexes. Commutating exponents
the left through the differential operators we find in the c
incidence limits the standard replacements

Du5]u1 i /2ū]→c2
1

2
pū1Du ,

~50!

D̄ ū5]ū1 i /2]u→c̄2
1

2
up1D̄ ū .

To obtain the covariant symbols of the operatorsD,D̄ in
momentum representation we use identities

US Du1c2
1

2
ūpDU215c2

1

2
]c̄p5Dp , ~51!

US D̄ ū1c̄2
1

2
upDU215c̄2

1

2
]cp5D̄p ,

where parallel translation operator was chosen in the for

U5ei ]p•]xe1/2up]c̄21/2]cpūe]cDu1]c̄D̄ ū. ~52!

The anticommutator$Dp ,D̄p%52p and, naturally, all useful
algebraic relations forDp have the same form as inDu al-
gebra. In addition, we have a transformation for a gene
superfield

fp5UfU215f~x1 i ]p ,u1]c ,ū1]c̄! ~53!

which is the finite degree polynomial in]c ,]c̄ with factors
Du¯D ūf.
7-11
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Let us note that other arrangement of exponents in
~52! related to the corresponding replacement of the nor
coordinates. For example, the same transformations with

U5ei ]p•]xe]cDue1/2up]c̄21/2]cpūe]c̄D̄ ū

give us

c2]c̄p5Dp , c̄5D̄p .

The steps described above from the operators to
pseudodifferential operators on the phase superspace
conventional~see Ref.@24#!. It should be mentioned, that th
final result for the trace of the operator does not depend
selection~49! which reflects the chosen ordering schem
The replacements~51!, ~53! actually correspond to the tran
sition from the operators to their symbols and can be justi
by the arguments similar to those described in the sec
section.

Limiting ourselves to a problem of calculation of the fir
correction to the potential in decomposition over Grassm
nian derivatives, we split the pseudodifferential operatorH,
acting on phase superspace, in two parts

H5H01S LD̄p
2 0

0 L̄Dp
2D , ~54!

where L5]c
aDual, L̄5]

c̄

ȧ
D̄uȧl̄ and H0 copies the form

~48!. In the following steps we will writeD,D̄ instead of
Dp ,D̄p . This must not confuse, becauseDu ,D̄ ū are con-
tained in L,L̄ only. Then the Ka¨hlerian potential and the
correction can be split:

Tr ln H01Tr lnF11S LD̄2 0

0 L̄D2D H0
21G .

For calculation of Tr ln(H0) we take out and omit the ‘‘free’’
part of the operator

S 0 D̄2D2

D2D̄2 0
D .

It is clear, that in the expression

Tr lnF 11S 0
1

D2D̄2
l̄D2

1

D̄2D2
lD̄2 0

D G ~55!

the nonzero contribution will give only even degrees of t
logarithm decomposition. Unfolding the matrix part of th
trace we get
10501
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1

2
lnS 12

1

D2D̄2
l̄D2

1

D̄2D2
lD̄2

2
1

D̄2D2
lD̄2

1

D2D̄2
l̄D2D .

Further, using the decomposition of unit in front of the log
rithm in the form

15
$D2,D̄2%2DaD̄2Da

h

one can convert all spinor derivatives in ‘‘boxes’’h5
2p2. After that we obtain

K (1)5E d4p

~2p!4

1

2p2 lnS 11
ll̄

p2 D , ~56!

which gives the known result@32,19# after integration and
renormalization of a wave function by the conditio
]2K/]f]f̄ uf5f0 ;f̄5f̄0

51.
For calculation of the next nonvanishing contribution

the EA expansion, we rewriteH0
21 in the form

S 1

D2D̄2
D2 0

0
1

D̄2D2
D̄2D S 2

1

h1

l̄
1

h1

D̄2

1

h2

D2 2
1

h2

l
D ,

whereh15D̄2D22ll̄, h25D2D̄22ll̄. Then

S LD̄2 0

0 L̄D2D ~H0
21!5S 2LP2

1

h1
l̄ LD̄2

1

h2

L̄D2
1

h1
2L̄P1

1

h2
l
D ,

~57!

where P15D2D̄2/h , P25D̄2D2/h are the projectors in
momentum representation. The first nonvanishing contri
tion in the decomposition of the logarithm gives trace of t
fourth degree of the matrix~we keep in mind the propertie
of integration overd2cd2c̄).

Moreover, among 16 terms the zero contribution au
matically comes from terms containing powers more th
two of L,L̄ and also from terms containingL̄D2 andLD̄2

from the right, because the derivatives]c̄ and]c contained
in L,L̄ act on nothing. We are left with

ll̄

4hhl
4 ~LD̄2D2L̄L̄LD̄2D21L̄D2D̄2LLL̄D2D̄2!,

hl5h2ll̄.
7-12
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We shall transfer]c ,]c̄ to the right, using Heisenberg rela
tion $]c ,Dp%51. The trivial integration over Grassmania
and usual momenta gives us immediately the known re
for the non-Kählerian terms@32,19#, leading to quantum de
formations of classical vacuum of the theory

F (1)5
1

3327

DalDalD̄ ȧl̄D̄ ȧl̄

l2l̄2
, ~58!

where the factor 227 is caused by the superagreements. T
kind of one-loop quantum correction is called the effect
potential of auxiliary fields. Certainly, such quantum corre
tions are important inN51,2 supersymmetrical models
since they lead potentially to the removal of degeneration
classical vacua of the theory. This method should be q
general and has important applications for other interes
cases, for example, for models with explicitly broken sup
symmetry.

VII. HEISENBERG-EULER LAGRANGIAN IN SQED

In this section we develop manifestly supersymmetri
gauge invariant strategy of calculations of one-loop effect
action for the most general renormalizableN51 models in-
cluding Yang-Mills fields and chiral supermuliplets

S5tr E d6zW21E d8zF̄eVF1F E d6zP~F!1H.c.G .
In more detail we consider the one-loop diagrams only w
external Abelian superfields and the expansion in terms
spinor covariant derivatives of superfieldsW,W̄ which can-
not be reduced to usual space-time derivatives. This appr
mation corresponds to generalization of the Heisenbe
Euler Lagrangian of usual QED. The background fie
method in superspace@16,15# allows us to treat both vecto
supermultiplets and matter superfield on the equal foo
and in an explicitly gauge-invariant way. However, in co
trast to ordinary gauge theories the gauge connections ar
independent objects and are expressed in terms of the pr
tentials.

The basics of the method in its ‘‘quantum-chir
background-vector’’ representation are given in Ref.@16#.
This approach implies that higher loop contributions can
arranged in such a way that background fields appear
¹A ,WA ,F only. After expansion of full action, including
gauge-fixing and ghost terms, in powers of quantum fie
the quadratic part determines a matrix of the kinetic opera
acting in the space of all quantum fields. The physical qu
tities depend on particular gauge invariant combinations
the gauge superfields only, such as the field strength
derivatives thereof.

As in the previous section, the replacement of the ope
tors by their symbols gives¹→c2 1

2 pū1¹ with manifest
dependence on grassmanian coordinates. To obtain ga
invariant and manifestly supercovariant symbols of ope
tors, we use identities~51! with replacement of the flatD ’s
by covariant ones.
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Using the known notations and conventions from R
@16#, we find the expansion of the symbols¹p5U(c
2 1

2 pū1¹)U21 in superspace ‘‘normal’’ coordinates

¹a
p5ca2

1

2
]̄ ȧpaȧ1

i

4
]̄ ȧ~]a

ḃ f ḃȧ1]ȧ
b f ba!2

1

3
]a]̄ȧiW̄ȧ ,

~59!

1
1

3
]̄2iWa1

1

4
]a]̄2D81

3

4!
]̄2]bi f ba1¯ ,

¹ȧ
p5cȧ2

1

2
]apaȧ1

i

4
]a~]a

ḃ f ḃȧ1]ȧ
b f ba!1

1

3
]2iW̄ȧ

2
1

3
]̄ ȧ]aiWa2

1

4
]̄ ȧ]2D81

3

4!
]2]̄ ḃi f ḃȧ1¯ .

We do not specify here obvious indexesc,c̄,p in the ]
representation of normal supercoordinates. The quantitief ,
D8 are the standard notation for superfieldsf ab

5 1
2 ¹ (aWb) , D852 ( i /2) ¹aWa , ¹aWa1¹̄ȧW̄ȧ50. Here

the dots mean the expansion in¹aȧ derivatives, which we
shall omit keeping in mind problems on the constant ba
ground which is independent on space-time coordinates,
with arbitrary dependence on Grassmanian coordinates
the construction, the normal coordinate expansion used g
the connection decomposition in the Wess-Zumino gaug

Similarly, for a vector derivative we have

¹aȧ
p 5 ipaȧ1

1

2
~]ȧ

b f ab1]a
ḃ f ȧḃ!1]aW̄ȧ1 ]̄ ȧWa

1
1

2
~]a]̄ ḃ f ḃȧ1 ]̄ ȧ]b f ba!1 i ]a]̄ȧD8. ~60!

It is not difficult to check up the validity of the identica
correspondence of the algebra of covariant symbols to
algebra of covariant derivatives

$¹a
p ,¹ȧ

p%5 i¹aȧ
p , @¹aȧ

p ,¹bḃ
p

#5 i ~Cḃȧ f ba1Cba f ḃȧ!,
~61!

@¹
ḃ

p
,¹aȧ

p #5CḃȧWa
p , @¹ȧ

p ,Wa
p#50,

where Wa
p5UWaU215Wa1]b f ba2 i ]aD8. This is the

verification that the gauge connection given by Eqs.~59!,
~60! indeed gives rise to the field strength.

It is convenient to present¹a(ȧ)
p in a remarkably simple

form

¹a
p5c̃a1

i

2
]̄ ȧ¹aȧ

p , ¹̄ȧ
p5 c̃̄ ȧ1

i

2
]a¹aȧ

p ,

where
7-13
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c̃a5ca1
1

3!
]a]̄ȧiW̄ȧ2

1

3!
]̄2iWa2

1

8
]̄2]bi f ba

2
1

4
]a]̄2D8,

c̃̄5c̄1
1

3!
]̄ ȧ]aiWa2

1

3!
]2iW̄ȧ2

1

8
]2]̄ ḃi f ḃȧ1

1

4!
]̄ ȧ]2D8.

So, we have obtained the connection decomposition in n
mal supercoordinates, which naturally can be called a su
generalization of the Fock-Schwinger gauge. For some d
cussion about this subject see Ref.@51#.

Let us consider a particular example of calculation of
one-loop contributions of chiral superfields in the diagra
with external vector legs. It is known@16# that such contri-
butions in the full EA are determined by the express
Tr$ ln(¹2¹̄22m2)1H.c.% Using *d4u5*d2u¹̄2, we obtain
the known basic chiral expression

E d2u ln~¹̄2¹22m2!¹̄2d (8)1H.c.

5E d2u ln~h12m2!¹̄2d (8), ~62!

where h15h2 iWa¹a2 i /2(¹W) with covarianth. The
transition to the momentum representation consists in
placement of the assumed operators and fields by co
sponding pseudodifferential operators and the additional
tegration * @d4p/(2p)4# d2cd2c̄. Obviously, all ]c , ]̄ c̄

symbols from right-hand side of¹̄p
2 can be omitted, since

they act on nothing. Having in mind the property of th
Grassmanian integration, it is also possible to omit all]̄ c̄

acting onc̄2 inside the logarithm and to perform integratio
over d2c̄.

Further, it is convenient to proceed to the proper-tim
representation for the logarithm of operator and to use
appropriatez regularizationG (1);2z8(0). Thenext step in
our strategy, which helps us to get the final result practica
without computations, consists in separation of exponent
the operators¹p and the covariant ‘‘box’’

K~T!5e2TD8E d4p

~2p!4 d2ce2T¹p
a iWa

p
eThp1¯, ~63!

where the omitted terms areWW̄andW2W̄2, since the factor
in front of the integral obviously will beW2. Moreover, in
the consideredU(1) gauge effective theory, they do not giv
the contribution. With the purpose to reduce the problem
performing the trivial integration overd2c, we extract from
the T exponent

expT~caiWa1ca]bNb
a!, Nb

a5 i f b
a1db

aD8,

the operator of affine transformations, i.e., exp(ca]b). Using

@ca]b,cg#5dg
bca , exp~ca]bNb

a!•151,
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and the identity~16!, we get

K~T!5E d4p

~2p!4 d2ce2TD8

3expH 2 iWaS eTN21

N D
a

b

cbJ eThp

5W2e2TD8 trS eTN21

N D E d4p

~2p!4 eThp. ~64!

The last factor is the Schwinger result~39! for a scalar loop.
For calculations of a factor which modify the Heisenber
Euler Lagrangian, we diagonalize the matrixN and find di-
rectly

G (1)5E d8zW2E
0

` dT

T

3e2Tm2 cosh~TD8!2cosh~TH2!

D822H2
2 K~T!Schw,

~65!

whereH2 was defined in Eq.~40!. Note the coincidence o
this result with the result of Refs.@47,33#, obtained by essen
tially different methods. Certainly, there is an ultraviolet d
vergence, which can be excluded with the help of a wa
function renormalization. It is important to note, that the co
rections to W2 contain nonholomorphic, in the sense
Seiberg, termsf ȧḃ . The superfield action~65! reproduces
correctly the results of the calculations on the compon
level @13#.

In the last example we will consider contributions fro
only the quantum gauge fieldV. After splitting the field into
a background and quantum part, the SYM action in Fer
Feynman gauge is

S52
1

2g2 Tr@~e2V¹aeV!¹̄2~e2V¹aeV!

1V~¹̄2¹21¹2¹̄2!V#.

The quadratic action has the form

S052
1

2g2 Tr~V@h2 iWa¹a2 iW̄ȧ¹̄ ȧ#V!.

All the dependence on the background fields is through
connection coefficients and through the background fi
strength. Further, we use the heat kernel representation o
EA and change all quantities by pseudodifferential opera
as before. In this casehV5hp1 i¹a

pWp
a1 i ¹̄ȧ

pW̄p
ȧ . Here all

one-loop background graphs are finite in super QCD th
ries, but they potentially have an infrared singularity, that
an attribute of an unstable mode. We considerU(1) gauge
theory case. Following our strategy, we set all three ope
tors in separate exponents

eT¹a
piWp

a
eT¹̄ȧ

p
iW̄p

ȧ
L~W,W̄!eThp.
7-14
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whereL(W,W̄) is the function of the superfieldsW,W̄ and
the operator¹aȧ

p . For SQED, where the powerW is limited
by 2, the function does not give the contribution to the E
Now, as well as in the previous example of this section,
have nonzero contributions tod2cd2c̄ integrals

E d2cd2c̄eTca iWp
a
eTc̄ȧ iW̄p

ȧE d4p

~2p!4 eThp

and we can, using results of the previous calculations, s
at once the final result

K~T!5W2W̄2detS eTN21

N
D detS eTN̄21

N̄
D

3
1

~4pT!2 Fdet
TF

sinh~TF!
G 1/2

, ~66!

whereNa
b5 iD aWb, N̄ȧ

ḃ5 iD̄ ȧW̄ḃ. To check this result, we
could use the technique of correlator calculation@47#, which
we have already demonstrated in Sec. V.

As well as for covariant constant YM background, t
condition @¹aȧ ,WA#50 leads to the anticommutato

$Wa
a ,W̄ȧ

a%50, i.e., in this approximation the superfield

W,W̄ are effective Abelian, and we can use the results for
EA super QED with certain changes. Full DEEA on a SY
background and chiral superfields both in adjoint and in f
damental representation demands a more detailed cons
ation. The complication originates fromS mix

2 and mass terms
in the operatorhV , which depends on chiral fields.
ic

n.
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VIII. SUMMARY

In the present paper we develop elegant and effec
technique based on noncommutative geometry of defor
tion quantization for calculation of the expansion in the d
rivatives of background fields for the one-loop effective a
tion. It is important that the supersymmetrical and gau
invariant form is conserved through all stages of calcu
tions. We use the simple idea of exploiting a canonical tra
formation that leads to the normal coordinate expansion
symbols. It is the well known realization of equivalence pri
ciple which requires the existence of such a reference fra
at every point that the effects of gauge fields can be loc
neglected.

To test the approach suggested we focused on compre
sively investigated models, though all constructions could
applied straightforwardly to the QFT models involving diffi
culties in the quantization. In all examples considered,
results of the proposed computing scheme coincide c
pletely with the known ones. The suggested approach all
‘‘manual’’ manipulations to be effectively replaced by com
puter methods to get all next HMDS coefficients in the e
pansion of the one-loop effective action.

It can be also said that the approach shows the prob
from another side and extends our knowledges about
structure of the path integrals. Other applications of the p
sented method and its modifications for nonflat and harmo
superspace will be given in the subsequent papers.
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