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Finite number and finite size effects in relativistic Bose-Einstein condensation
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Bose-Einstein condensation of a relativistic ideal Bose gas in a rectangular cavity is studied. Finite size
corrections to the critical temperature are obtained by the heat kernel method. Using zeta-function regulariza-
tion of the one-loop effective potential, lower-dimensional critical temperatures are calculated. In the presence
of strong anisotropy, the condensation is shown to occur in multisteps. The criteria of this behavior is that
critical temperatures corresponding to lower-dimensional systems are smaller than the three-dimensional criti-
cal temperaturg.S0556-282(99)02818-0

PACS numbegps): 03.70+k, 05.30.Jp, 11.10.Gh

[. INTRODUCTION tion manifest themselves as the rounding-off of the kink in
the specific heat at the critical temperattir®ff-diagonal
Bose-Einstein condensatidBEC), first predicted in 1924 long range order stays in a finite range at the critical point.
[1-4], has become an explosive field of research in recent For a finite size quantum system, the invariant operator of
years[5-8|. Because of the temperature dependence of themall fluctuations has a discrete spectrum. The relevant di-
chemical potential in a Bose-Einstein distribution function, amensionless parametex which characterizes finite size ef-
macroscopic number of bosons start accumulating onto thfects near the transition is given by =X\ ,4g/L; for a non-
ground state at the critical temperature. This phenomenon iglativistic system, where\ 45 is the thermal de Broglie
typically phrased as the phase density of particles being larggavelength and.;(i = 1,2,3) are the system sizes in the three
enough such that all particles characterized by the de Brogligpatia| directionsz, = B/L; for a relativistic system, anaj,

wavelength overlap to form a condensate. Liquid helium._ g, for a harmonic oscillator with natural frequencies
which becomes a superfluid at the transition, has until re&)_(izl 2,3)2
i 1 &y .

behavior. However, the sirong mioracton between helumy T8 Presence of anisotropy adds more variety to the crit-
atoms has been an obstacle for a complete understanding o'3rlI beha_V|_or. S_upposei>1 for somef (for a nonrelat|v_|st|c
the mechanism of condensation. case, thIS. |mpl|esi.<)\0d3) .the.rll only the lowest moo!e in the

Recent technological progress in atom cooling technique%th direction cont.nbu.tes §|gn|f.|can.tly t.o the dynamics of the
made it possible to achieve Bose-Einstein condensation foryStem- The motion in thith direction is frozen out and the
neutral atoms. The weakly interacting nature of these atom&YStem has an infrared behavior effectively equivalent to a
enables one to understand the condensation within the pefYStem with one less dimension in that directjd?—17.
turbative framework. It also provides an ideal testing ground' hus we can classify the dynamics with an effective infrared
for some fundamental aspects of quantum mechanics in @imension(EIRD) into the following four cases dependent
controlled environment. Studies of similar phenomena®n the degree of anisotropy.
stimulated by rapid progress in this subject, are no longer Case 1:71,7,,73>1— EIRD =0,
restricted to condensed-matter physics and atom optics but ¢ase 2:7;,7,>1>»n;— EIRD = 1,
start to involve other areas in physics, such as nuclear- case 3:7;>1>n,,73— EIRD = 2,
particle physics and astrophysics). case 4: > 7;,7,,7m3— EIRD = 3.

In this paper we study the effect of a finite size containern this paper, we mainly study case 4 where modes in all
on the condensation. For a finite size system, the absence #free directions are excitable. As the temperature is lowered,
thermodynamic limit alters various critical behaviors definedthe ~crossover behavior between higher- and lower-
and expected for a bulk systef®—11]. Thermodynamic dimensional excitations can be observed. Each mode is la-
quantities such as the free energy has a surface term whid¥¢led by three quantum numbers associated with the excita-
vanishes in the thermodynamic limit, causing a shift in thetion energy in each direction. In the presence of strong
critical point. Finite size effects in Bose-Einstein condensa-

The bulk specific heat of an ideal Bose gas is not divergent, but
*Present address: Theoretical Physics Institute, University of Alshows the discontinuity in its derivative.
berta, Edmonton, Alberta, Canada T6G 2J1. Email address:?|n this paper, we use the units whésg=# =1, which rendersy,
kshiok@phys.ualberta.ca dimensionless. The results in ordinary units can be obtained by
TEmail address: hub@physics.umd.edu replacingw by Aw andT by kgT.
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anisotropy, with these quantum numbers, it is meaningful tdParticles and antiparticles have chemical potentials opposite
split the whole particle spectum into either zero-, one-, two-in sign due to the fact that they carry opposite charges. Tak-
or three-dimensional excitations. The ground state, being thiag this fact into account, the positive definiteness of the
state with the lowest quantum numbers, is viewed as a zergarticle number of the particles and antiparticles with energy
dimensional excitation. Let us denote the number of modeg requires thatu|<m.
excited in the corresponding directionsig,N,N;,N3, re- Another important point is the relation between spontane-
spectively. . _ _ . ous symmetry breakin¢SSB and Bose-Einstein condensa-
We can define ann-dimensional critical temperature ton [19]. Condensation into the ground state results in a
Top (n=1,23) as the temperature at which all thenonzero vacuum expectation value of the field. Hence BEC
n-dimensionally excited modes are saturated; can be interpreted as a SSB of the local gauge symmetry.
This argument presumes that the chemical potential reaches

three-dimensional temperatureN=N3(T3p), (1) its critical value at the critical temperature. However, for a
finite system, this is generally not the case.
two-dimensional temperature:N=N3(T,p) + No(T,p), Bose-Einstein condensation of a relativistic noninteract-

(2)  ing quantum field in a rectangular cavity is studied in this
paper. Similar aspects for a nonrelativistic ideal Bose gas in
; ; N anisotropic magnetic traps is discussed in a companion paper
one-dimensional temperature:N=Ns(Typ) + Na(Tsp) [20]. In Spec. II,%ve derivgthe effective action whigh inclugeg
one-loop quantum corrections to the classical action and use
+N1(Tip), (3 the¢ function regularization to evaluate the grand canonical
thermodynamic potentigdl24—27. The generalized func-
where the thermodynamic limit in each case is taken differtion is written in terms of9 functions via a Mellin transfor-
ently. As we set the total number of particlés—, we  mation. We then use the asymptotic expansiofi ifnctions
obtainTp by tuning 71, 7,, and»s to zero,T,p by tuning  for a large system size and a small massive field to see the
7, and 3 to zero whilen, fixed, andT,p by tuning 73 to  finite size correction to the total charge and the critical tem-
zero whilen, and #, fixed. Finite size corrections necessar- perature. This asymptotic expansion is a special case of the
ily modify the above definitions, since they involve excita- more general class of short time expansion of the heat kernel
tions in lower dimensions. In Sec. Ill, we will discuss this which is used for spectral analysis on an arbitrary differen-
aspect in detail. tiable manifold[28]. The terms in the expansions correspond
By changing the edge lengths of a cavity or oscillatorto the volume(Weyl), area, and edge contributions, etc.
frequencies for a magnetic trap, it is possible to control thd26,29,3Q. In Sec. lll, we consider the effects of accidental
critical temperature and realize the lower dimensional condegeneracy in a discrete spectrum and show that the highly
densation. In particular, wheh ,<T,p<T3p holds, conden-  oscillating behavior of the density of states is large enough to
sation is expected to occur in three steps: As the temperatudominate over the higher order terms in the asymptotic ex-
is lowered, condensation into two-dimensionally excitedpansion. We introduce an infrared cutoff to include the low-
modes begins afi;n when three-dimensionally excited states est mode contribution properly and estimate the lower-
saturate. At the two-dimensional critical temperatdrg,  dimensional critical temperature accurately. In the last part
condensation into one-dimensionally excited modes begin®f this paper, we discuss the multistep behavior of conden-
The condensation onto the ground state does not occur unsition process in the presence of strong anisotfagy31].
one dimensional critical temperatufep is reached. The conditions for one-, two-, and three-dimensional con-
In a finite size system, the reduced chemical potertial densations are clarified. The relevant critical temperatures
=B(E,— u) does not vanish. From the expression for theare obtained.
ground state contribution, we can still assuae0 up to As discussed and observed in Rdf32,33 for a weakly
order 1N,. This condition is justified as long a¢, is close interacting gas, the corrections to bulk ideal-gas ground state
to the total number of particles, or equivalently, the temperaoccupation number and critical temperature are well ex-
ture is lower than the critical temperature. plained by the finite size effects. Interaction effects on those
Although work on BEC in relativistic systems has a long quantities are negligibly small. Hence we expect the results
history, modern treatment using quantum field theory did nogliscussed in this paper will still hold for weakly interacting
begin until 1980s[18,19,21-23 At relativistic tempera- gases. On the other hand, interaction effects are known to
tures, T>2m, wherem is the mass of the relativistic field, affect higher moments such as the specific heat significantly
pair creation-annihilation effects become nonnegligible, and@nd considered to be essential in explaining the observed
the particle number is no longer conserved. However, thépecific heat data. Extension of our analysis to the strongly
globalU(1) gauge symmetry of the Hamiltonian guaranteegnteracting case is a nontrivial problem which deserves fur-
the existence of a conserved charge based on Noether’s theper careful study.

rem. The net charg® in relativistic field theory is given by Bose-Einstein condensation of a relativistic gas could be
relevant to cosmology in the dark matter problgsd] or for
1 1 inflationary universg35]. Our problem is directly related to
Q=>, — ) (4)  condensation of positronium in a cavity discussed in Ref.
T | efEm—1 efETW_1 [36]. Although we restrict our study to a rectangular cavity,
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similar results are expected for systems with a finite bound-
ary. In the presence of an irregular boundary the dynamics of
the system can be nonintegrable or chaotic. The implication
of our result for nonintegrable systems of this kind is of

z- DwD¢exp[ [Dar [ cxtimdytimadon

particular interesf37]. The extension to curved spacetimes

can also be obtained by similar methd@8—-41].

Il. EFFECTIVE ACTION AND HEAT KERNEL

A. One loop effective action

The action of a free complex scalar field
S0l [ dxiorela,o-msel  ®)

is invariant under the global (1) gauge transformation

B(x)—€7p(x). (6)
The corresponding Noether current is
3.0=14'9,4=13,4'e, (M
with the total charge
Q= fvd3xJo<x>= i fvd3x[¢*<'f>— o'l (®

The integration is over the volum¥ of the cavity, here
assumed to be rectangular of edge lendtf{s=1,2,3). De-

composing ¢(x) into real and imaginary parts such that

B(X) = 1/\2[ 1(xX) +ipo(x)], Eq. (5) becomes

Sl 41= % J A*[ 3§10, 1+ 9" Bhd,uby— M bl by
UL 9
The Hamiltonian for this action is
He 5 [ @24 2+ (Vg (Vg mialoy
+m?b3s], (10)

where 771=¢1, 772=¢2 are the momentum fields canoni-
cally conjugate top, and ¢,. The total charge become&3
= [d3X(om1— P1772).

The grand canonical partition function for this system

when brought in contact with a heat bath at temperaiure
=1/pB is given by

Z=Tre AH-1Q), (11)

where H and Q are the Hamiltonian and the total charge

operators respectively andis the chemical potential. Equa-

tion (11) in Hamiltonian form has a path integral representa-

tion

+u(domi— d17mr)1|, (12

whered,=d_¢,; . In the spirit of(imaginary time finite tem-
perature field theory, a periodic boundary condition is im-
posed ong;, with ¢;(0X)=¢;(3,X). We perform an inte-
gral over the momentum field and obtain

Z= f Dge S91 (13

with the action

+%(V¢1>2+ %(V¢2)2+ %mz<¢%+¢%> . 9

1. 1.
5(4’1"#4’2)2"‘ §(¢2+'M¢1)2

Using the background field decompositiah= ¢+ ¢
with fluctuation ¢, and expanding the action in Egl4)
around the classical solutiafi; which minimizes the action

2 2

1
S[¢]:S[¢c]+§ > 56,00,

ij=1
The partition function can be written as

ei¢;+0(¢%. (15

Z:e_r["bc]:e_s[('bc]f D(Pe—(lIZ)Aij[(ﬁc]‘Pi‘Pj, (16)

where T'[¢.] is the effective action andAj[ ]

=8 ¢cll 6166

The functional measurB ¢ is defined as

dc,
D‘P:rn[ 2’ 17

wherec, are the coefficients of an eigenfunction expansion
of ¢ andl is a constant with unit of length. Then the func-
tional integral in Eq(16) can be evaluated as

1 o 2
[ = fﬁwdcne’(m))‘ncnzDet(IZAiJ-[d)C])’l’Z.
(18)

The effective action to one loop order is given[d2—44

1
Il c]=Sl¢c]+ 5 log Detl?Aj[ ¢cl). (19

The second term in Eq19) can be split into two parts as

log Det(12A ;[ ¢.]) =log Det1?A . [ ¢.])

+logDe(I’A _[¢c]), (20
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where A .= —(d,* u)?— V2+m?. The eigenvalues oA .
are given by

2

+(1)N+ m2,

. 2n
( (21)

Nen=| o ip

B

wheren is an integer anavy is the eigenvalue of V2.

B. ¢-function regularization

The generalized function for an elliptic differential op-
eratorQ is defined by

Lo(8)=TrO 3= A5, (22
N
where\y are eigenvalues aP. From Eq.(22),
{o(s)= —% AnSloghyS. (23
Thus
log Det120) = {»(0)log1?— {(,(0). (24)
Using a Mellin trasformation defined by
L fxdm-s’le’“ (29
I'(s)Jo
we can write the generalizefifunction for A;; as
Ln(9=TrAZ=2 NI
- N
1 ©
— s—1 —NaNT
g )y 07 e
= —1 fwdr 57K, (1) (26)
I'(s)Jo At TR

where\ . andK,  (7) are eigenvalues and the heat kernels

for A..
Here

2n 2
><exp{—r(7+i,u +wN+m2} (27)
yielding
A(8)=0p (5)={ (5)
Y s o
:%fo dr 57 Ko(B%7), (29

where 8= g/2 [41,45 and

PHYSICAL REVIEW D 60 105016

Ko(B27)=K(r)e ™~ sE g (uprizim), (29

whered5(z|7)=1+23_,e""cos(2) is a @ function[46].
The heat kerneK(7) for —V? is defined by

K(T)=% e Bont, (30)

With this, the effective action can be expressed in terms of
{a(s) as
T[¢c]= ]+ £ (0)logl?— £} (0).

We first consider Neumann boundary conditions at the
boundary of the cavity. The corresponding eigenfunction for
-V2is

_ 2 Wnlxl 7Tn2X2 7Tn3X3
¢>N(x)—\/LlL2L3.,o L co L, co L

(32

(31

and the eigenvaluey is
2 2
’7Tn]_ ’7Tn2
wN_( Ll) +( Lz) i

wheren;=0,1,2 ...(i=1,2,3). The eigenfunction for Di-
richlet boundary conditions can be written similarly as

_ 2 X 7Tn1X1 ) ’7Tn2X2 . 7Tn3X3
qSN(x)—\/LlLZLssm L sin L, sin| L

(34)

2
7Tn3) | 33

Ls

and the eigenvaluey is
2 2 2
7Tn1 7Tn2 7Tn3
=— +|—| +|—
N ( Ll) ( Lz) ( L3>’

1,2,...1(=1.23).

(39

wheren; =

C. Asymptotic expansion of the heat kernel

The heat kernel for all accessible quantum states is given
by

a2
K(r)=2 e #onr
N
o] oo o]
:2 e mT ny TZ e~ 7722772n2 72 e 73 71'2n3 T
ny nz n3

1 ; 2 R 2
=§[6’3(0|| 7, mwT) = 1][ 05(0]i , mr)£1]

X[ 05(0)i pa’mr) £ 1], (36)
where nizﬁlLi for i=1,2,3. Positive(negative signs cor-
respond to Neuman(Dirichlet) boundary conditions. If we
assumd_;> B or n;<1 fori=1,2,3, we can make use of the
asymptotic behavior of thé function ast—0
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,825 3 Ak o .
0-(0li 7)— — 3 S)= K (m2— 1) B2 k/2—sf dr S K2-1
a(0fin)— @) L= X (M B drr
to obtain the following asymptotic property for the heat ker- I'(s—k/2) _
N g y p p p y :z Ak( 2_M2)k/2 S (41)
nel: k=0 I'(s)
<) 1 1 LY +1] and
T)—g = =
8| Ve [ T Vnglmr
a2s 3
_ 1 L2 ( 1 1 1 ) L9 2p D A Ay 75~ K2-1g- (W=D
8(m7)lyimamy 8TT\ MMz MMz M I'(s) =0 Bk 0
1 (1 1 1)1 - 1)9(2nuB7)?
R er (—1)9(2nupB7)
8\/_ 7 M2 73 8 n=1 q=0 (20)!
% 3
As Az 1 _2 > AkJm s—k/2—1
_§373/2 _TT+3 w2t Ao (38) T(s) kgo:k 0 dr7
where (—1)P(m2— u2)Pp2PP = 2
| 2 e
p:O p n=
iAOZl/S, - _
(—1)9%2nup7)%
_ 172 X >
Al—Ll+L2+L3/87T y q=0 (ZQ)I
— 3 0 o
+ A, =LqLo+LoLy+ Lol /8, 28%° < Ax
2=Lilot+Lols+Lsl, /87 e 2 E_ 2 20 [(2s—k+2p+2q)
— 3/2
A3—L1L2L3/87T . (39) ( 1)p+q
XT'(s—kl2+p+20)—F—
Note that the leading finite size correctiéy has opposite (s p+2q) p!(2q)! (m°— )P
signs for Neumann and Dirichlet boundary conditions. This — —,
fact results in the opposite shift in the critical temperature as XBP(2uB). (42

we will see in Eq.(58), where the coefficienlbs, is propor-

tional to A,. This expansion is equivalent to the short time
expansion of the heat kernel used in spectral analysis on a We expand Eq(42), assummgﬂ/Ll, m,B ('“'8) and (*

arbitrary Riemmanian manifold. The first term in E§8) is ~ — # ?)* are small quantitie3and obtain
the Weyl term, the second term is the boundary contribution,

etc.[29,30. Since the model is integrable, the heat kernel is 28%[ A A
factorized into contributions from each dimension. s)= = 2512 4— 28)T (2—8) + —= 725~ 512

; e {a(s) T 3 4 ) ( )+ =

Using the above expression in Eq®28) and (29), we (s)| B B

obtain the generalized function for A;; < (3-29)1(312—5) + B 12> 32(2—25)

2s

3
{a(s)= 2 XT(1—8){A;— Al mP+ (25— 2) 2]}

92

X fwdT 7SK2- lef(mL“z)Ezrﬁg,(,u,Eﬂ i/ ) +{(29)T (S){Ag— Al m*+ (25— 1) u?]}
0

+ BL(25+ 1T (s+ U2 {Ag[ (M2 — u?)22+ (s+3/2)

w

B2 AkJOC 272
= | dr S 1gm (M- PP X(s+1/2)2u*13]— Ay(m?+2su?)}. 43
I'(s) &0 gJo T ( ) 2" 13] = Aq( )} (43
~ 1)%(2n 2q The one-loop effective action then has the form
x|1+2> e 72 - )((Zq)’fBT) . (40) P
n=1 gq=0 .

3For large size l(}ﬁ) and small mass<T, we do not need to
assume higher temperature. See also Réf]

Let us denote the first term in E¢40) on the right hand
side of the equality ag,(s), the second term a%(s). Then

105016-5



K. SHIOKAWA AND B. L. HU
TL¢cl=S[ ¢l = £4(0)+ 4 (0)logl?

Cs Co Cq —
=Y o]+ ?4' ?4' §+01/2|09,3+Co

+c_ypplogB+ - -, (44)
where
77_1/2
T 5 e
{(3)A,
C2: - > y
v

712
Ci1=— T{Al_A3[m2_ 2u1},
C12= 2{Ag— Ayl m*— u?]},
712
Co=2log(2m)Ay— T(m2— w?)?p,
—{(m?= p?)log(m?— u?)+2 log(27)m?

—[2log(2m)+ 1| u?tA— #(mz_MZ)SQA&

Co1p=— 7 YA (M*— u?)?+ u*]-2Am?}. (45)
The total charge can likewise be written as

—10I'[¢]
B on
=b,T?+bg,TlogT+b;T+byogT+bo+ -,
(46)

where

8#773/2
b2: 3 A3,

Dap=4uA;,

by=— u| dum A m?— u?)Y2Ag+2[ 2+ log(m?— u?) JA,

2 771/2A1 AO

-2
(m2— V2 “m2— 2

by=— PYRT

M
_2771/2

32
2C[(1/2)+3y]+ §A3M2—8A1— log(1?)C/|,
(47)

bo

PHYSICAL REVIEW D 60 105016

where C=A;(4u?—m?), vy is the Euler constant, and
¢ is the Digamma function [ ¢(1/2)=—y—2log?2
=-1.9635% - - |. Note thatb, gives the bulk term discussed
in Ref.[18].

The above derivation is based on an asymptotic expansion
of the heat kernel which assumes a continuum spectrum. The
same assumption may not be justified in low dimensions
where the density of states does not increase as rapidly with
energy due to the restricted degrees of freedom. Thus, the
continuum spectral approximation has to be modified accord-
ingly. Indeed this type of expansion does not reproduce the
bulk term which appeared ifil8] in the two-dimensional
case [40]. Also it is not straightforward to define one-
dimensional critical temperatur€,p with the method de-
scribed above due to the existence of inverse powers?of
— w2 in Eq. (47). Itis known that the chemical potential does
not reach its critical value for a finite system at the critical
temperature. For a relativistic field theory in curved space-
time, this aspect has been studied in Réf.].

Ill. FINITE SIZE EFFECTS AND MULTISTEP
CONDENSATION

A. Finite size effects and discrete spectrum

In this section, we use an alternative method to treat the
discrete spectrum in a more appropriate way. Rewriting the
heat kernel for all accessible states in E2f) gives

[o2] o0 oe]

2 2 2 2 2 2

K(T):E e ™M 772n1 ‘rz e 2 71'2n2 Tz e 73 71'2n3 T
Ny ny n3

- * ~ 2 2 2
=> > X qtarqe, (49)

np Nz ng

2
where g;=¢e" 7i e Throughout this section, we assume
thatL s is an integral multiple of.; andL,, such thata;L,
=a,L,=L for some integers ,a,.* K(7) becomes

o] o] o]
k(D=3 T 3 qgn ey

np Nz ng

=n§0 rs(n)gs", (49)

wherer;(n) is the number of solutions of the Diophantine
equationn=a,n,?+a,’n,?+n,? in natural number§48].

Let us define the functio;(e) which counts the num-
ber of points with integer coordinates inside the ellipsoid
whosex,y,z intercept areJe/a,, Vela,, e, respectively.

In the Appendix, we give a derivation of the exact formula
for Ny(e) for arbitrary dimensiond which gives the

“The integer assumption here is not essential but for calculational
convenience.
SHere we rewriten ase (dimensionless energy
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d-dimensional cumulative density of stat&§(e) in the way 120 ' ' '
described below. Fait=1,2,3, they are related to each other
by
80 | o
Na(e)=8N3(e) = 12N,(e) + 6N (e) * 1, EPEE
No(e)=4aNo(e) = 4N, (e)+1, 3 W N
Ni(e)=2Ny(e) =1, (50) o it ]
where the uppetlower) signs correspond to DirichléNeu-
mann boundary conditions. B 40 , , ‘ ,
Inverting Eq.(50), we obtain the expression fo¥y(e) 0 200 400 600 800 1000
(d=1,2,3) in terms of\(¢) (d=1,2,3) as (@ e
1 30 T T T
Ni(e)=g[Na(e) ¥ 3Nj(e) + 3Ny (e) 7 11,
20 | P
_ 1 B
NZ(E)ZZ[N2(8)+2N1(8)+1], _____ ‘ |
) g 10 " P
N1(8):§[N1(8)11]- (51 AR
0 L -
From Egs.(51) and(A4), we readily obtain
— 73 _me 1 1 1% 200 200 600 800 1000
Ng(S):gE—l—? E-Fa—l-i-a—z +A(8). (52) (b) e

he fi . impl f h | f FIG. 1. The residual termA(e) in the cumulative density of
The first term in Eq(52) simply comes from the volume o states[Eq. (52)] is plotted for the Neumann boundary condition.

the ellipsoid, the seco-nd term originates fror_n Compensatir‘9‘his term shows the highly oscillating behavior due to accidental
the oversubtracted points on the three coordinate planes. Th@generacies(a) is an isotropic caseag=a,=1) and (b) is an
residual termA(e) includes, in addition to the terms corre- anjsotropic casea; =10 anda,=3). Supremur(dashed linesof

sponding to higher order contributions in the asymptotichoth curves show that the rate of increase is proportionai’to
spectral expansion, the error of approximating cubes locategherey=0.6.

on the surface of the sphere by a smooth surface. This error
is ascribed to what is known as accidental degeneraciefhe first term is the Weyl term, the second term is the area
[37,49. A numerical plot ofA(g) given in Fig. 1 shows that contribution from the boundary. We can easily see these
this term oscillates rapidly. The fitting of Sup ,A(e) gives  terms give the same terms in the heat kernel(86) related
Sup,/ -, A(e)~¢e?, wherey=0.6. Sincey<1, the first two by a Laplace transformation.
terms in Eq.(52) are still dominant as long as>1. How- Next we write the heat kernel in terms of the density of
ever, the contributionV;(e) arising from overcounting the states as
points on coodinate axis is proportional £&? and smaller
than the second ter50]. Hence the fluctuating part of the
cumulative density of states(e) in Eq. (52) dominates over
the contributions fromA; andA, terms in Sec. Il C. Similar
arguments should hold in any finite size systems regardlessheree;=1 corresponds to the energy level of the lowest
of whether the system is integrable or not. excited mode an& is the contribution in Eq(49) from the

For these reasons, here we properly take into account ttground state. Due to the presence of a cutoff, one can show
lowest energy gap which carries essential information abouthat the total charge of all excited modes is
finite size effects, and use the continuous spectrum approxi-

oo

K(r)=K0+f pa(e)asde, (54)
1

&

mation above the lowest excited mode. The density of states o, bgT TP
has the following form: Q=D,T"+——log =7 O(4), (55
1/2 ~
pS(S):z T i+ £+ L +.... (53 Where m2572/L32+ m?— u? and O(A) is the contribution
4 a8, 8laja, a; a from the residual term\ () and will be ignored hereafter.
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1.0 boundary condition, as we saw in E&3), the surface term

decreases the density of states. The smaller density of states
requires the excitations with higher energy for the condensa-
tion criteria(1) to be met and therefore the condensation has
to start at a higher temperature. These results agree with
those found in Refd.10,5Q. It is of interest to compare the
results obtained here with those for atoms trapped in a har-

0.8

0.6

g
g % monic oscillator potential. One can easily see that the bound-
02 ary effect in such a potential is due to the Neumann bound-
) ary condition[20]: the surface term increases the density of
states which results in the decrease of the critical temperature
0or N ] from the bulk value as observed in RE33].
o2l . oo .\\. L]
0.0 0.2 04 0.6 08 1.0 12 B. Multistep condensation

] ) 1. One-dimensional condensation
FIG. 2. The condensation fractio®,/Q for the Neumann

boundary condition is plotted as a function of the temperatuge. As mentioned in the Introduction, in the presence of
=1, L,=10, L3=100, Q=10000, andn=0.1. The dotted curve strong anisotropy, condensation can occur in multlsteps. To
shows the bulk contribution. Solid curve includes the finite sizeSee one-dimensional condensation, we require L,<Lg,
correction based on Eq59). T, denotes the finite size corrected equivalently,a;=a,>1 wherea;L,;=a,L,=L3 as defined
three-dimensional critical temperature defined in &®). in Sec. Il A. In such a case, it is meaningful to split all the
excited quantum states into one, two, and three-

Then the second term in EG6) is replaced by, T log TL; dimensionally excited modes in the following way. Hereafter

for large L5 close to the critical temperature. we focus on Neumann boundary conditions through the rest
Now we evaluate the finite size correction to the critical of the paper. _
temperature. The bulk critical temperatdg’ is defined by The corresponding heat kernels for these states can be
defined as
Q=b,T2, (56)
22 2
From Eg.(46) and the above argument, the leading correc- Kiy(r)= Z e 733
tion to the bulk critical temperature for a finite system mani- n3=1
fests as . .
- 271'2 27' — 2772 27'
Q=b,T 2+ by,TclogTel ;. (57) Ko(r)=2 2, e 72mier 3, e i,
2~ 3~
From Eqs.(56) and(57), we obtain the finite number correc-
tion to the critical temperature for smal - - -
P bie Ke(r)= >, e~ 9,270, s > e n,2m?n,%r > e 7732772n327',
2 -1 np=1 n3=0
Te . baplog(QL;™by) 59 (60)
T 4(b,Q)"?

respectively. The factor 2 iK,(7) is due to the symmetry
The correction to the condensation fraction can be easilypetweenl ;-L; plane and.,-L3 plane.

obtained as Following the similar steps from Eq$50)—(53), we ob-
tain the expression for the three-dimensional density of states
Q_, & as
Q Q
T V% badogQLZby[[ T2 T ()”1’2 il I (61)
g)=————"—"| — —_— e,
S| | 20 T ) PAe)TL 22
T 20,0 [\ 1) T
b T T And the three-dimensional heat kernel in terms of the density
_ 87 —Jog| —|. (59)  of states is given as
(b, QM2 T 7| T
In Fig. 2, we plot the condensation fraction of the ground K3(r)=f p3(e)gside, (62
state as a function of the temperature. As mentioned in Sec. 1

Il C, the finite size correction in Eq58) gives the opposite
shift in the critical temperature whether Neumann or Dirich-where g,=a2. This gives the total charge of three-
let boundary condition is used. In the case of Dirichletdimensionally excited modes
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2 Thus we obtain
Qs=b,T 2 bs’ZTlogT— (63)
37— VM2 - ~ 5
6 m? _ 2 DPgplap  Taply 4mb,LsTsp  Taplg
Q=b,Ty5— log + log ,
herem2= 2 2. 2 2 3 u 77 T
wherem“=m“g/L3"+ m"—pu”. 71

For the two-dimensional heat kernel,
where we seju=m. The third term is the contribution from
two-dimensionally excited modes with energy larger tlaan
a1 o =a?. We will ignore the contribution fron®, based on the
argument in Sec. lll A that this term is dominated by the
n24n residual termA (g).
:anl nEO al 2 E 2ry(n)az, (64) For one-dimensional condensation to be observable, we
2o must have
wherer ,(n) is the number of solutions @f=a,?n,?+n,%in
natural numbers. We write E¢64) in an integral form using
the density of statep,(e)= m/2a; such that

T1p<T3zp. (72

Furthermore for sufficiently large;>L,,L,, comparing the
expression foiQ, in Eq. (69) with those forQ, and Qs in

2(7'):f depy(e)qs Eqgs.(67) and(63), we obtain
€1
o Q2(T1p),Qa(T1p) <Q1(T1p). (73
3
PP (65  Thus we obtainT,, as the temperature at which one-
T3 T dimensionally excited states saturate, i.e.,
2 ; ;
Wheresl_—al for the present ch(_)lce of units. Then from thg Q=04(T1p) (74)
expression of the zeta function in terms of the heat kernel in
Egs.(28) and(29) we obtain This givesT;p=7Q[ 2mL,?log(2m)] ~
L,L "n2s—2 . ) )
[(S)= 42 3 /; f dr 5 —m2g2 703(%87_“7/77) 2. Two-dimensional condensation
™ I'(s) For two-dimensional condensation, we assume<L,
(66) =L, whence we split the excited quantum states into
wherem? is the same as in Eq63). The total charge of o 2 a2
two-dimensionally excited states is Ki(r)=2>, e 77",
nz=1
2ul,L T T?
Q=—"——log=>. (67)
o m 2(7)_Een2wn2 2e7]377n37"
np,=1 nz=1
For the one-dimensional case, we have
B ) Ko(m)= D €~ ny*mPn, e > e ny mn, e > e ng*mPng’r,
éTA(S): _— dT TS n1=l n2=0 n3=O
I'(s)Jo (75

o

X > qn3 e (M=) 05 BTl m). (68)

n31

The integera;>1 defined bya;L,=L,=L5 will be used.
The factor 2 inK,(7) acounts for the symmetry betwekn
direction andL 5 direction.

The total charge carried by one-dimensionally excited states The three-dimensional density of states becomes

has the form
ar 81/2
2uL2T pa(e)=7,

2
et
Q.= ;‘ log(2). (69) "24]a

(76)

This gives the total charge carried by three-dimensionally
The three-dimensional critical temperature is reacheqy ited modes

when all the three-dimensionally excited modes are satu-

rated, namely, sum of all the modes with energy larger than bysT T2
e=a3 is equal to the total charg®@. We write this condition Q3=Db,T 2+ 36 log=>, (77)
m

corresponding to Eql) as
Q=Q3(T3p). (700 wherem?=72¢,/L2+m?— u? ands,;=aZ.
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The two-dimensional heat kernel is given by the density * * - * .
of statesp,(g)=m/4 as Ka(r)= D & M ™M Ty @ mmn 7ty g g mng T
ni=1 n,=0 nz=0
- ) qgl 1 P2 i 2
Ka(m)= | depy(e)0s= 7 (78) =gl 0a(0li 7y "m7) = 1][65(0i 7, m7) +1]
£1 ATy T
X[ 03(0]i py*mr)+1]. (84)

wheree;=1. The total charge of two-dimensionally excited

states Is The asymptotic behavior whersiz,> 5,5 75 can be de-
rived in a similar way as in E(.38).
_ plolgT log T? 79 The three-dimensional density of states becomes
2= =-
2m m e xl 1
pa(e) =7 —— |t —|+... (85
The total charge carried by one-dimensionally excited states 4 a2, 24a@ a; &

; ; _ 2
IS given blefA"“L? T Iog(_27_r)/7-r. : and the total charge of three-dimensionally excited modes is
The three-dimensional critical temperature is reached un-

o . . . -_given by the same form as in E(7).
der the same condition as in one-dimensional condensatior, - . .
. From the two-dimensional heat kernel, we obtain the two-
Q=Q3(T3p). Thus we obtain

dimensional density of statgs(e) = m/4a, such that

b/ T Taoly MLT Taol -
_ 2 3/2'3D 3D-1 3 '3D 3D-1
Q=b,Typ+ —5—log ——+———log ——, K2(7)=f depa(e)as
(80) '
a5
where the third term is the contribution from the two- :—32, (86)
dimensional modes as in E/1). Amayms T
For two-dimensional condensation to be observable, we 5 o
must have wheree ;= a5 for the present case. This will give us the total
charge of two-dimensionally excited states as
Furthermore, for sufficiently large,,L3;>L4, by comparing 2= 109 m2 (87)

the expression in Eq$77) and(79), we have
The total charge carried by one-dimensionally excited states
Q3(T2p)<Qx(T2p). (82 has the same form as in E@9).
The three-dimensional critical temperature is obtained as
Thus we obtainT,; as the temperature at which two-

i i i bgT Taply mLLsT Tapl
dimensionally excited states saturate, Q=b2T3§+ 32! 3D log spba  Matalap log bt
3 T T T
Q=Qx2(T2p). (83 (88)
Then T o= Q[Ba,109(QLs/Bsy) ]~ for large O, whereby, To observe three-step condensation, we must have
=mL2L3/7-r=mL§/7r. T10<T25<Tap. (89)
3. Three-step condensation In addition, for large anisotroply; <L ,<L 3, comparison of

To show three-step condensation, we assumesl, €xplicitformulas forQ,, Q, andQin Egs.(69), (87), and
<Ls, or equivalently,a;>a,>1. The corresponding heat (77) gives
kernels for these states can be defined as

Q3(T2p)<Q2(T2p) (90
S 2,2 1 , and
Ki(n)= 2 e ™ 7=5[03(0fins*mr) — 1],
’ Q3(T1p)<Q2(T1p)<Q1(T1p), (9D
S 222~ 222 where T, (Typ) is obtained by the saturation of the two-
— N, TN, T Ny TN T 2D 1D.
Ka(7) nzzl e ngE:o e = (ong-dimensionally excited states @3=Q,(T,p) and Q

=Q1(T1p). Topis given in the leading order by

_1 ; 2 i 2
_2[03(0“ 772 777-)_1][03(0“ 773 WT)+1]7 Q:BB/ZTZD |Og(L2T2D), (92)
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' ' condensation occurs in steps. In Figb¥ one-dimensional
condensation is seefgp determines the onset of condensa-
1D BEC tion into one-dimensionally excited states. Note thaf 4,
2 Step the ground state fraction is negligibly small. Condensation
into the ground state occurs at a much lower temperature. In
Fig. 4(c), two-dimensional condensation is plotted. Rdp,
two-dimensional condensation manifests itself. The critical
condition u=m is satisfied well in Figs. @-4(c) In Fig.
3 Step BEC 2 Step BEC 4(d), three-step condensation is shown. Three-dimensionally
i excited modes dominant in higher temperature are condensed
2 Step into two, one, and the ground state as the temperature is
lowered. The deviation ofT3; and the onset of two-
3D BEC dimensional components reflects the fact that the condition
\ 2 Step 2D BEC pw=m is not satisfied for the parameters chosen in Fi{g) 4
0 5 10 15 20 at T5p. This is another manifestation of finite size effects
log (L2/L1) and the result should improve near the thermodynamic limit
(7,—0, Q—). The similarity between each condensation
process becomes evident in the logarithihiscale as can be
L ) ~ B o seen in Fig. 4e). In conclusion, finite size effects on the
rithmic scale is used for both axiQ=mQ/mL,=10000 s fixed.  pgqe Finstein condensation of a charged scalar field can lead
Mqlt'Step.BEC.Can only happen in an intermediate yet Stronglyto the multistep condensation in the presence of strong an-
anlsotroplc regime. .
isotropy.
~ ) In this paper, we started from calculating the effective
where  Dgp,=mb,Ls/m.  We thus obtain Ty 4cti0n to one-loop order using zeta function regularization.
=Q[bg; log(QL,/by) 1" for large Q. Tip has the same Large volume and small mass conditions are assumed to fa-
form as in the one-dimensional condensation case. cilitate an asymptotic expansion of the heat kernel and finite
From Eqgs.(89) to (91), we obtain the following inequali- size corrections corresponding to the surface term, corner
ties for anisotropy parameters and the total charge correerm, etc., are obtained. We proceeded beyond the con-
sponding to(A) T1p<Tp, (B) Top<Tzp, and (C) Typ  tinuum spectrum approximation and showed that the higher
<Tzpas order terms in the standard asymptotic expansion are domi-
- nated by the contribution from the fluctuating part of the
5> log(Q) density of states due to accidental degeneracy. The lowest-
L, 2log(2w)’ energy gap is shown to play the crucial role in determining
the critical temperatures for one- and two-dimensional sys-
~ tems. The corresponding low-dimensional critical tempera-
5> mQ (94) tures are calculated. The energy spectrum and the associated
L1 3[log 6]2' heat kernel can be partitioned into parcels of eigenmodes
excitable in dimensions 3, 2, 1, or 0. As the temperature is
- lowered, modes in different parcels behave quite similarly in
5 5 2> 7Q 95 the presence of strong anisotropy. Whep,, Top<T3p are
Li[L2] ~ 17log(2m)]?’ (95) satisfied, condensation occurs first into the lower-
dimensionally excited states &8ty following the ground
whereQ=wQ/mL,. In Fig. 3, different multistep behaviors State condensation at lower-dimensional critical temperature.

corresponding to various ranges of anisotropy parameters afexperimental observation of these phenomena can in prin-
shown. Three-step BEC can be seen in a wide region otiple be realized in an anisotropic harmonic potential traps.
parameter space. For an extremely strong anisotropy, dynam-
ics along the short edge length will freeze ¢EIRD < 3)
before BEC intoQ, or Q; sets in. In such a case, we only
observe two or one-step BEC. For a quasilinear cavity along e thank Professor J. Weiner for helpful comments of
the vertical axis, three-step BEC can still be observed, whilexperimental relevance and Dr. K. Kirsten for useful refer-
for a quasiplanar cavity along the horizontal axes, only up t@nces. K.S. appreciated the hospitality of the Center for Non-
two-step BEC can happen. linear Studies at the Hong Kong Baptist University during
In Fig. 4, the condensation fractions his visit. This work is supported in part by the U.S. National
00/0,0,/0,0,/Q.04/Q Science Foundation under Grants No. PHY94-21849.

as a function of the temperature are plotted. In the isotropic
case[Fig. 4(a)], condensation is only into the ground state.
Due to the finite size effects, condensation occurs before the In this appendix, the exact formula faf(e) for arbitrary
critical temperature is reached. In strongly anisotropic caseslimension d is derived. d-dimensional cumulative den-

e
(=]
T

log (L3/L2)

FIG. 3. Different multistep behaviors corresponding to different
anisotropy parameterns, /L, and L;/L, are indicated. The loga-

(93
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FIG. 4. The condensation fractioid,/Q (solid curve, Q,/Q (dashed curve Q,/Q (dot-dashed curye Q;/Q (dotted curve as a
function of the temperature are plotted for the Neumann boundary condition. Isotropiclcasé(=L;=3, Q=100, andm=2) are
plotted in(a). Condensation is only into the ground stafg=1.97 is the critical temperature in E7). In (b)—(e), anisotropic cases are
shown. In(b), L;=2, L,=2, L;=300, Q=2000, andn=1 are chosen. One-dimensional condensation occurs in thistase.03 is the
three-dimensional critical temperature in E@1). In (c), L;=2, L,=200, L;=200, Q=8000, andm=0.5 are chosenl.=0.98 is the
three-dimensional critical temperature in E§0). Two-dimensional condensation can be seen(d)ncondensation occurs in three steps.
L,=2, L,=100, L;=600, Q=4000, andm=0.5 are used. The long dashed line is the chemical potential.=0.79 is the three-
dimensional critical temperature in E8). The logarithmicT scale is used iite) for the parameters id).
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sity of statesV,(e) can be obtained straightforwardly from where @ is the angle between and [/a. We make an or-
Njy(e) as we showed in Sec. Ill. Supposg(e) counts the thogonal coordinate transformation fromto v such that
number of integer solutions of the equations=a,?n,>+ v, =|u|cosd and write Eq.(A2) as

...+asng? where a=(a;,....ay) is a constant
d-dimensional vector with integer coordinates. Thej(e) R ) R B
can be written as c(l ):Aflf dvo(e—|v|?)e2mvall/al
ld=1)/2g(d-1)/2
— _lanl2 -aA—-1_ -
Nd(s)—% 6(e—|an|?) A F[(d+1)72]
1 A
= fdﬁe(s—|ﬁ|2)5d(ﬁ—5ﬁ) Xf dv(1—v, %)@ Dig2mivalllal = (A3)
= _
=AY f du g(e—[u[?)e2mu( This yields
|
:Z c(h, (A1) Cihy= ALY (27| T1al\e)/|[1a]¥?  for T#0,
' A le¥, , for =0,
where A=a;...aq, an=(a;n;,....aqnq), and I/a
=(l,/aq,---,l4/ay). Summation is over alt-dimensional

h it it dinates. Po . tion § where J4(x) is the Bessel function an®/y= 74T (d/2
vectors with interger coordinates. Foisson's summation for- 1) is the volume of a-dimensional sphere with unit ra-
mula is used to obtain the third line and

dius. Hence we obtain

c(F)EAflf di (e —|[2)e2me (12 nlT13IE)
J m|l/ale
Ny(s)=A" 1, + A L0y Z0E

N e “ 12 270|778 cos f | ERS
=A dub(e—|ul?e . (A2) (A4)
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