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Finite number and finite size effects in relativistic Bose-Einstein condensation
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Bose-Einstein condensation of a relativistic ideal Bose gas in a rectangular cavity is studied. Finite size
corrections to the critical temperature are obtained by the heat kernel method. Using zeta-function regulariza-
tion of the one-loop effective potential, lower-dimensional critical temperatures are calculated. In the presence
of strong anisotropy, the condensation is shown to occur in multisteps. The criteria of this behavior is that
critical temperatures corresponding to lower-dimensional systems are smaller than the three-dimensional criti-
cal temperature.@S0556-2821~99!02818-0#
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I. INTRODUCTION

Bose-Einstein condensation~BEC!, first predicted in 1924
@1–4#, has become an explosive field of research in rec
years@5–8#. Because of the temperature dependence of
chemical potential in a Bose-Einstein distribution function
macroscopic number of bosons start accumulating onto
ground state at the critical temperature. This phenomeno
typically phrased as the phase density of particles being la
enough such that all particles characterized by the de Bro
wavelength overlap to form a condensate. Liquid heliu
which becomes a superfluid at the transition, has until
cently been known as the only substance which shows
behavior. However, the strong interaction between heli
atoms has been an obstacle for a complete understandin
the mechanism of condensation.

Recent technological progress in atom cooling techniq
made it possible to achieve Bose-Einstein condensation
neutral atoms. The weakly interacting nature of these ato
enables one to understand the condensation within the
turbative framework. It also provides an ideal testing grou
for some fundamental aspects of quantum mechanics
controlled environment. Studies of similar phenome
stimulated by rapid progress in this subject, are no lon
restricted to condensed-matter physics and atom optics
start to involve other areas in physics, such as nucle
particle physics and astrophysics@5#.

In this paper we study the effect of a finite size contain
on the condensation. For a finite size system, the absenc
thermodynamic limit alters various critical behaviors defin
and expected for a bulk system@9–11#. Thermodynamic
quantities such as the free energy has a surface term w
vanishes in the thermodynamic limit, causing a shift in t
critical point. Finite size effects in Bose-Einstein conden
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tion manifest themselves as the rounding-off of the kink
the specific heat at the critical temperature.1 Off-diagonal
long range order stays in a finite range at the critical poi

For a finite size quantum system, the invariant operato
small fluctuations has a discrete spectrum. The relevant
mensionless parameterh i which characterizes finite size e
fects near the transition is given byh i5ludB /Li for a non-
relativistic system, whereludB is the thermal de Broglie
wavelength andLi( i 51,2,3) are the system sizes in the thr
spatial directions.h i5b/Li for a relativistic system, andh i

5bv i for a harmonic oscillator with natural frequencie
v i( i 51,2,3).2

The presence of anisotropy adds more variety to the c
cal behavior. Supposeh i.1 for somei ~for a nonrelativistic
case, this impliesLi,ludB) then only the lowest mode in th
i th direction contributes significantly to the dynamics of t
system. The motion in thei th direction is frozen out and the
system has an infrared behavior effectively equivalent t
system with one less dimension in that direction@12–17#.
Thus we can classify the dynamics with an effective infrar
dimension~EIRD! into the following four cases depende
on the degree of anisotropy.

Case 1:h1 ,h2 ,h3.1→ EIRD 5 0,
case 2:h1 ,h2.1.h3→ EIRD 5 1,
case 3:h1.1.h2 ,h3→ EIRD 5 2,
case 4: 1.h1 ,h2 ,h3→ EIRD 5 3.

In this paper, we mainly study case 4 where modes in
three directions are excitable. As the temperature is lowe
the crossover behavior between higher- and low
dimensional excitations can be observed. Each mode is
beled by three quantum numbers associated with the ex
tion energy in each direction. In the presence of stro

l-
s:

1The bulk specific heat of an ideal Bose gas is not divergent,
shows the discontinuity in its derivative.

2In this paper, we use the units wherekB5\51, which rendersh i

dimensionless. The results in ordinary units can be obtained
replacingv by \v andT by kBT.
©1999 The American Physical Society16-1
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anisotropy, with these quantum numbers, it is meaningfu
split the whole particle spectum into either zero-, one-, tw
or three-dimensional excitations. The ground state, being
state with the lowest quantum numbers, is viewed as a z
dimensional excitation. Let us denote the number of mo
excited in the corresponding directions asN0 ,N1 ,N2 ,N3, re-
spectively.

We can define ann-dimensional critical temperatur
TnD (n51,2,3) as the temperature at which all t
n-dimensionally excited modes are saturated;

three-dimensional temperature:N5N3~T3D!, ~1!

two-dimensional temperature:N5N3~T2D!1N2~T2D!,
~2!

one-dimensional temperature:N5N3~T1D!1N2~T1D!

1N1~T1D!, ~3!

where the thermodynamic limit in each case is taken diff
ently. As we set the total number of particlesN→`, we
obtainT3D by tuningh1 , h2, andh3 to zero,T2D by tuning
h2 andh3 to zero whileh1 fixed, andT1D by tuningh3 to
zero whileh1 andh2 fixed. Finite size corrections necessa
ily modify the above definitions, since they involve excit
tions in lower dimensions. In Sec. III, we will discuss th
aspect in detail.

By changing the edge lengths of a cavity or oscilla
frequencies for a magnetic trap, it is possible to control
critical temperature and realize the lower dimensional c
densation. In particular, whenT1D,T2D,T3D holds, conden-
sation is expected to occur in three steps: As the tempera
is lowered, condensation into two-dimensionally excit
modes begins atT3D when three-dimensionally excited stat
saturate. At the two-dimensional critical temperatureT2D
condensation into one-dimensionally excited modes beg
The condensation onto the ground state does not occur
one dimensional critical temperatureT1D is reached.

In a finite size system, the reduced chemical potentiae
[b(E02m) does not vanish. From the expression for t
ground state contribution, we can still assumee;0 up to
order 1/N0. This condition is justified as long asN0 is close
to the total number of particles, or equivalently, the tempe
ture is lower than the critical temperature.

Although work on BEC in relativistic systems has a lo
history, modern treatment using quantum field theory did
begin until 1980s@18,19,21–23#. At relativistic tempera-
tures,T.2m, wherem is the mass of the relativistic field
pair creation-annihilation effects become nonnegligible, a
the particle number is no longer conserved. However,
global U(1) gauge symmetry of the Hamiltonian guarante
the existence of a conserved charge based on Noether’s
rem. The net chargeQ in relativistic field theory is given by

Q5(
l

F 1

eb(El2m)21
2

1

eb(El1m)21
G . ~4!
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Particles and antiparticles have chemical potentials oppo
in sign due to the fact that they carry opposite charges. T
ing this fact into account, the positive definiteness of t
particle number of the particles and antiparticles with ene
EN requires thatumu<m.

Another important point is the relation between sponta
ous symmetry breaking~SSB! and Bose-Einstein condensa
tion @19#. Condensation into the ground state results in
nonzero vacuum expectation value of the field. Hence B
can be interpreted as a SSB of the local gauge symme
This argument presumes that the chemical potential rea
its critical value at the critical temperature. However, for
finite system, this is generally not the case.

Bose-Einstein condensation of a relativistic nonintera
ing quantum field in a rectangular cavity is studied in th
paper. Similar aspects for a nonrelativistic ideal Bose ga
anisotropic magnetic traps is discussed in a companion p
@20#. In Sec. II, we derive the effective action which includ
one-loop quantum corrections to the classical action and
the z function regularization to evaluate the grand canoni
thermodynamic potential@24–27#. The generalizedz func-
tion is written in terms ofu functions via a Mellin transfor-
mation. We then use the asymptotic expansion ofu functions
for a large system size and a small massive field to see
finite size correction to the total charge and the critical te
perature. This asymptotic expansion is a special case of
more general class of short time expansion of the heat ke
which is used for spectral analysis on an arbitrary differe
tiable manifold@28#. The terms in the expansions correspo
to the volume~Weyl!, area, and edge contributions, et
@26,29,30#. In Sec. III, we consider the effects of accident
degeneracy in a discrete spectrum and show that the hi
oscillating behavior of the density of states is large enough
dominate over the higher order terms in the asymptotic
pansion. We introduce an infrared cutoff to include the lo
est mode contribution properly and estimate the low
dimensional critical temperature accurately. In the last p
of this paper, we discuss the multistep behavior of cond
sation process in the presence of strong anisotropy@13,31#.
The conditions for one-, two-, and three-dimensional co
densations are clarified. The relevant critical temperatu
are obtained.

As discussed and observed in Refs.@32,33# for a weakly
interacting gas, the corrections to bulk ideal-gas ground s
occupation number and critical temperature are well
plained by the finite size effects. Interaction effects on tho
quantities are negligibly small. Hence we expect the res
discussed in this paper will still hold for weakly interactin
gases. On the other hand, interaction effects are know
affect higher moments such as the specific heat significa
and considered to be essential in explaining the obser
specific heat data. Extension of our analysis to the stron
interacting case is a nontrivial problem which deserves f
ther careful study.

Bose-Einstein condensation of a relativistic gas could
relevant to cosmology in the dark matter problem@34# or for
inflationary universe@35#. Our problem is directly related to
condensation of positronium in a cavity discussed in R
@36#. Although we restrict our study to a rectangular cavi
6-2
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similar results are expected for systems with a finite bou
ary. In the presence of an irregular boundary the dynamic
the system can be nonintegrable or chaotic. The implica
of our result for nonintegrable systems of this kind is
particular interest@37#. The extension to curved spacetim
can also be obtained by similar methods@38–41#.

II. EFFECTIVE ACTION AND HEAT KERNEL

A. One loop effective action

The action of a free complex scalar field

S0@f#5E d4x@]mf†]mf2m2f†f# ~5!

is invariant under the globalU(1) gauge transformation

f~x!→eihf~x!. ~6!

The corresponding Noether current is

Jm~x!5 if†]mf2 i ]mf†f, ~7!

with the total charge

Q5E
V
d3xJ0~x!5 i E

V
d3x@f†ḟ2ḟ†f#. ~8!

The integration is over the volumeV of the cavity, here
assumed to be rectangular of edge lengthsLi( i 51,2,3). De-
composingf(x) into real and imaginary parts such th
f(x)51/A2@f1(x)1 if2(x)#, Eq. ~5! becomes

S0@f#5
1

2E d4x@]mf1
†]mf11]mf2

†]mf22m2f1
†f1

2m2f2
†f2#. ~9!

The Hamiltonian for this action is

H5
1

2EV
d3x@p1

21p2
21~¹f1!21~¹f2!21m2f1

†f1

1m2f2
†f2#, ~10!

where p15ḟ1, p25ḟ2 are the momentum fields canon
cally conjugate tof1 and f2. The total charge becomesQ
5*d3x(f2p12f1p2).

The grand canonical partition function for this syste
when brought in contact with a heat bath at temperaturT
51/b is given by

Z5Tr e2b(Ĥ2mQ̂), ~11!

where Ĥ and Q̂ are the Hamiltonian and the total charg
operators respectively andm is the chemical potential. Equa
tion ~11! in Hamiltonian form has a path integral represen
tion
10501
-
of
n

f

-

Z5E DpDf expF E
0

b

dtE
V
d3x@ ip1f 1̇1 ip2f 2̇2H

1m~f2p12f1p2!#G , ~12!

wheref i̇5]tf i . In the spirit of~imaginary time! finite tem-
perature field theory, a periodic boundary condition is i
posed onf i , with f i(0,xW )5f i(b,xW ). We perform an inte-
gral over the momentum field and obtain

Z5E Dfe2S[f] , ~13!

with the action

S@f#5E
0

b

dtE
V
d3xF1

2
~ḟ12 imf2!21

1

2
~ḟ21 imf1!2

1
1

2
~¹f1!21

1

2
~¹f2!21

1

2
m2~f1

21f2
2!G . ~14!

Using the background field decompositionf5fc1w
with fluctuation w, and expanding the action in Eq.~14!
around the classical solutionfc which minimizes the action

S@f#5S@fc#1
1

2 (
i , j 51

2
d2S

df idf j
w iw j1O~w3!. ~15!

The partition function can be written as

Z5e2G[fc]5e2S[fc]E Dwe2(1/2)L i j [fc]w iw j , ~16!

where G@fc# is the effective action andL i j @fc#
[d2S@fc#/df idf j .

The functional measureDw is defined as

Dw5)
n

dcn

A2p l
, ~17!

wherecn are the coefficients of an eigenfunction expans
of w and l is a constant with unit of length. Then the fun
tional integral in Eq.~16! can be evaluated as

)
n

1

A2p l
E

2`

`

dcne2(1/2)lncn
2
5Det~ l 2L i j @fc# !21/2.

~18!

The effective action to one loop order is given by@42–44#

G@fc#5S@fc#1
1

2
log Det~ l 2L i j @fc# !. ~19!

The second term in Eq.~19! can be split into two parts as

log Det~ l 2L i j @fc# !5 log Det~ l 2L1@fc# !

1 log Det~ l 2L2@fc# !, ~20!
6-3
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where L652(]t6m)22¹21m2. The eigenvalues ofL6

are given by

ln,N
6 5S 2pn

b
6 im D 2

1vN1m2, ~21!

wheren is an integer andvN is the eigenvalue of2¹2.

B. z-function regularization

The generalizedz function for an elliptic differential op-
eratorO is defined by

zO~s!5Tr O 2s5(
N

lN
2s , ~22!

wherelN are eigenvalues ofO. From Eq.~22!,

zO8 ~s!52(
N

lN
2sloglN

2s . ~23!

Thus

log Det~ l 2O!5zO~0!log l 22zO8 ~0!. ~24!

Using a Mellin trasformation defined by

l2s5
1

G~s!
E

0

`

dt ts21e2lt ~25!

we can write the generalizedz function for L i j as

zL6
~s!5Tr L6

2s5(
N

l6N
2s

5
1

G~s!
E

0

`

dt ts21(
N

e2l6Nt

5
1

G~s!
E

0

`

dt ts21KL6
~t!, ~26!

wherel6N andKL6
(t) are eigenvalues and the heat kern

for L6 .
Here

KL6
~t!5K0~t!5 (

n52`

`

(
N

3expH 2tF S 2pn

b
1 im D 2

1vN1m2G J ~27!

yielding

zL~s![zL1
~s!5zL2

~s!

5
b̄2s

G~s!
E

0

`

dt ts21K0~ b̄2t!, ~28!

whereb̄[b/2p @41,45# and
10501
s

K0~ b̄2t!5K~t!e2(m22m2)b̄2tu3~mb̄tu i t/p!, ~29!

whereu3(zut)5112(n51
` eiptcos(2nz) is a u function @46#.

The heat kernelK(t) for 2¹2 is defined by

K~t!5(
N

e2b̄2vNt. ~30!

With this, the effective action can be expressed in terms
zL(s) as

G@fc#5S@fc#1zL~0!logl 22zL8 ~0!. ~31!

We first consider Neumann boundary conditions at
boundary of the cavity. The corresponding eigenfunction
2¹2 is

fN~x!5A 2

L1L2L3
cosS pn1x1

L1
D cosS pn2x2

L2
D cosS pn3x3

L3
D

~32!

and the eigenvaluevN is

vN5S pn1

L1
D 2

1S pn2

L2
D 2

1S pn3

L3
D 2

, ~33!

where ni50,1,2, . . . (i 51,2,3). The eigenfunction for Di-
richlet boundary conditions can be written similarly as

fN~x!5A 2

L1L2L3
sinS pn1x1

L1
D sinS pn2x2

L2
D sinS pn3x3

L3
D

~34!

and the eigenvaluevN is

vN5S pn1

L1
D 2

1S pn2

L2
D 2

1S pn3

L3
D 2

, ~35!

whereni51,2, . . . (i 51,2,3).

C. Asymptotic expansion of the heat kernel

The heat kernel for all accessible quantum states is gi
by

K~t!5(
N

e2b̄2vNt

5(
n1

`

e2h1
2p2n1

2t(
n2

`

e2h2
2p2n2

2t(
n3

`

e2h3
2p2n3

2t

5
1

8
@u3~0u ih1

2pt!61#@u3~0u ih2
2pt!61#

3@u3~0u ih3
2pt!61#, ~36!

whereh i5b̄/Li for i 51,2,3. Positive~negative! signs cor-
respond to Neumann~Dirichlet! boundary conditions. If we
assumeLi@b̄ or h i!1 for i 51,2,3, we can make use of th
asymptotic behavior of theu function ast→0
6-4
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u3~0u i t!→ 1

At
~37!

to obtain the following asymptotic property for the heat ke
nel:

K~t!→1

8 F 1

Ah1
2pt

61GF 1

Ah2
2pt

61GF 1

Ah3
2pt

61G
5

1

8~pt!3/2h1h2h3

6
1

8pt S 1

h1h2
1

1

h2h3
1

1

h3h1
D

1
1

8Apt
S 1

h1
1

1

h2
1

1

h3
D6

1

8

5
A3

b̄3t3/2
1

A2

b̄2t
1

A1

b̄t1/2
1A0 , ~38!

where

6A051/8,

A15L11L21L3 /8p1/2,

6A25L1L21L2L31L3L1 /8p,

A35L1L2L3 /8p3/2. ~39!

Note that the leading finite size correctionA2 has opposite
signs for Neumann and Dirichlet boundary conditions. T
fact results in the opposite shift in the critical temperature
we will see in Eq.~58!, where the coefficientb3/2 is propor-
tional to A2. This expansion is equivalent to the short tim
expansion of the heat kernel used in spectral analysis o
arbitrary Riemmanian manifold. The first term in Eq.~38! is
the Weyl term, the second term is the boundary contribut
etc. @29,30#. Since the model is integrable, the heat kerne
factorized into contributions from each dimension.

Using the above expression in Eqs.~28! and ~29!, we
obtain the generalizedz function for L i j

zL~s!5
b̄2s

G~s! (
k50

3
Ak

b̄k

3E
0

`

dt ts2k/221e2(m22m2)b̄2tu3~mb̄tu i t/p!

5
b̄2s

G~s! (
k50

3
Ak

b̄kE0

`

dt ts2k/221e2(m22m2)b̄2t

3F112(
n51

`

e2n2t (
q50

`
~21!q~2nmb̄t!2q

~2q!! G . ~40!

Let us denote the first term in Eq.~40! on the right hand
side of the equality asz1(s), the second term asz2(s). Then
10501
-

s
s

an

,
s

z1~s!5
b̄2s

G~s! (
k50

3
Ak

b̄k
@~m22m2!b̄2#k/22sE

0

`

dt ts2k/221

5 (
k50

3
G~s2k/2!

G~s!
Ak~m22m2!k/22s ~41!

and

z2~s!5
2b̄2s

G~s! (
k50

3
Ak

b̄kE0

`

dt ts2k/221e2(m22m2)b̄2t

3 (
n51

`

e2n2t (
q50

`
~21!q~2nmb̄t!2q

~2q!!

5
2b̄2s

G~s! (
k50

3
Ak

b̄kE0

`

dt ts2k/221

3 (
p50

`
~21!p~m22m2!pb̄2ptp

p! (
n51

`

e2n2t

3 (
q50

`
~21!q~2nmb̄t!2q

~2q!!

5
2b̄2s

G~s! (
k50

3
Ak

b̄k (
p50

`

(
q50

`

z~2s2k12p12q!

3G~s2k/21p12q!
~21!p1q

p! ~2q!!
~m22m2!p

3b̄2p~2mb̄!2q. ~42!

We expand Eq.~42!, assumingb̄/Li , mb̄ (mb̄), and (m2

2m2)b̄2 are small quantities,3 and obtain

z2~s!5
2b̄2s

G~s! FA3

b̄3
p2s27/2z~422s!G~22s!1

A2

b̄2
p2s25/2

3z~322s!G~3/22s!1b̄21p2s23/2z~222s!

3G~12s!$A12A3@m21~2s22!m2#%G
1z~2s!G~s!$A02A2@m21~2s21!m2#%

1b̄z~2s11!G~s11/2!$A3@~m22m2!2/21~s13/2!

3~s11/2!2m4/3#2A1~m212sm2!%. ~43!

The one-loop effective action then has the form

3For large size (Li@b̄) and small massm!T, we do not need to
assume higher temperature. See also Ref.@47#
6-5
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K. SHIOKAWA AND B. L. HU PHYSICAL REVIEW D 60 105016
G@fc#5S@fc#2zL8 ~0!1zL~0!log l 2

5S@fc#1
c3

b̄3
1

c2

b̄2
1

c1

b̄
1c1/2log b̄1c0

1c21/2b̄ log b̄1•••, ~44!

where

c352
p1/2

45
A3 ,

c252
z~3!A2

p2
,

c152
p1/2

3
$A12A3@m222m2#%,

c1/252$A02A2@m22m2#%,

c052 log~2p!A02
p1/2

2
~m22m2!1/2A1

2$~m22m2!log~m22m2!12 log~2p!m2

2@2 log~2p!11#m2%A22
4Ap

2
~m22m2!3/2A3 ,

c21/252p21/2$A3@~m22m2!21m4#22A1m2%. ~45!

The total charge can likewise be written as

Q5
21

b

]G@f#

]m

5b2T21b3/2T logT1b1T1b1/2logT1b01•••,

~46!

where

b25
8mp3/2

3
A3 ,

b3/254mA2 ,

b152mF4mp1/2~m22m2!1/2A312@21 log~m22m2!#A2

2
2p1/2A1

~m22m2!1/2
22

A0

m22m2G ,

b1/252
mC

2p1/2
,

b05
m

2p1/2F2C@c~1/2!13g#1
32

3
A3m228A12 log~ l 2!CG ,

~47!
10501
where C5A3(4m22m2), g is the Euler constant, and
c is the Digamma function @c(1/2)52g22 log 2
521.96351•••#. Note thatb2 gives the bulk term discusse
in Ref. @18#.

The above derivation is based on an asymptotic expan
of the heat kernel which assumes a continuum spectrum.
same assumption may not be justified in low dimensio
where the density of states does not increase as rapidly
energy due to the restricted degrees of freedom. Thus,
continuum spectral approximation has to be modified acco
ingly. Indeed this type of expansion does not reproduce
bulk term which appeared in@18# in the two-dimensional
case @40#. Also it is not straightforward to define one
dimensional critical temperatureT1D with the method de-
scribed above due to the existence of inverse powers ofm2

2m2 in Eq. ~47!. It is known that the chemical potential doe
not reach its critical value for a finite system at the critic
temperature. For a relativistic field theory in curved spa
time, this aspect has been studied in Ref.@41#.

III. FINITE SIZE EFFECTS AND MULTISTEP
CONDENSATION

A. Finite size effects and discrete spectrum

In this section, we use an alternative method to treat
discrete spectrum in a more appropriate way. Rewriting
heat kernel for all accessible states in Eq.~36! gives

K~t!5(
n1

`

e2h1
2p2n1

2t(
n2

`

e2h2
2p2n2

2t(
n3

`

e2h3
2p2n3

2t

5(
n1

`

(
n2

`

(
n3

`

q
1
n1

2

q
2
n2

2

q
3
n3

2

, ~48!

where qi5e2h i
2p2t. Throughout this section, we assum

that L3 is an integral multiple ofL1 andL2, such thata1L1
5a2L25L3 for some integersa1 ,a2.4 K(t) becomes

K~t!5(
n1

`

(
n2

`

(
n3

`

q
3
a1

2n1
2
1a2

2n2
2
1n3

2

5 (
n50

`

r 3~n!q3
n , ~49!

where r 3(n) is the number of solutions of the Diophantin
equationn5a1

2n1
21a2

2n2
21n3

2 in natural numbers@48#.
Let us define the functionN3(«) which counts the num-

ber of points with integer coordinates inside the ellipso
whosex,y,z intercept areAe/a1 , Ae/a2 , Ae, respectively.5

In the Appendix, we give a derivation of the exact formu
for Nd(«) for arbitrary dimensiond which gives the

4The integer assumption here is not essential but for calculatio
convenience.

5Here we rewriten as« ~dimensionless energy!.
6-6
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d-dimensional cumulative density of statesN̄d(«) in the way
described below. Ford51,2,3, they are related to each oth
by

N3~«!58N̄3~«!612N̄2~«!16N̄1~«!61,

N2~«!54N̄2~«!64N̄1~«!11,

N1~«!52N̄1~«!61, ~50!

where the upper~lower! signs correspond to Dirichlet~Neu-
mann! boundary conditions.

Inverting Eq. ~50!, we obtain the expression forN̄d(«)
(d51,2,3) in terms ofNd(«) (d51,2,3) as

N̄3~«!5
1

8
@N3~«!73N2~«!13N1~«!71#,

N̄2~«!5
1

4
@N2~«!72N1~«!11#,

N̄1~«!5
1

2
@N1~«!71#. ~51!

From Eqs.~51! and ~A4!, we readily obtain

N̄3~«!5
p

6

«3/2

a1a2
7

p«

8 F 1

a1a2
1

1

a1
1

1

a2
G1D~«!. ~52!

The first term in Eq.~52! simply comes from the volume o
the ellipsoid, the second term originates from compensa
the oversubtracted points on the three coordinate planes.
residual termD(«) includes, in addition to the terms corre
sponding to higher order contributions in the asympto
spectral expansion, the error of approximating cubes loca
on the surface of the sphere by a smooth surface. This e
is ascribed to what is known as accidental degenera
@37,49#. A numerical plot ofD(«) given in Fig. 1 shows tha
this term oscillates rapidly. The fitting of Sup«8,«D(«) gives
Sup«8,«D(«);«g, whereg50.6. Sinceg,1, the first two
terms in Eq.~52! are still dominant as long as«@1. How-
ever, the contributionN1(«) arising from overcounting the
points on coodinate axis is proportional to«1/2 and smaller
than the second term@50#. Hence the fluctuating part of th
cumulative density of statesD(«) in Eq. ~52! dominates over
the contributions fromA1 andA0 terms in Sec. II C. Similar
arguments should hold in any finite size systems regard
of whether the system is integrable or not.

For these reasons, here we properly take into accoun
lowest energy gap which carries essential information ab
finite size effects, and use the continuous spectrum appr
mation above the lowest excited mode. The density of st
has the following form:

r3~«!5
p

4

«1/2

a1a2
7

p

8 F 1

a1a2
1

1

a1
1

1

a2
G1•••. ~53!
10501
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The first term is the Weyl term, the second term is the a
contribution from the boundary. We can easily see th
terms give the same terms in the heat kernel Eq.~38! related
by a Laplace transformation.

Next we write the heat kernel in terms of the density
states as

K~t!5K01E
«1

`

r3~«!q3
«d«, ~54!

where«151 corresponds to the energy level of the lowe
excited mode andK0 is the contribution in Eq.~49! from the
ground state. Due to the presence of a cutoff, one can s
that the total charge of all excited modes is

Q5b2T21
b3/2T

2
log

T2

m̃2
1O~D!, ~55!

wherem̃2[p2/L3
21m22m2 and O(D) is the contribution

from the residual termD(«) and will be ignored hereafter

FIG. 1. The residual termD(«) in the cumulative density of
states@Eq. ~52!# is plotted for the Neumann boundary conditio
This term shows the highly oscillating behavior due to acciden
degeneracies.~a! is an isotropic case (a15a251) and ~b! is an
anisotropic case (a1510 anda253). Supremum~dashed lines! of
both curves show that the rate of increase is proportional to«g

whereg50.6.
6-7
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Then the second term in Eq.~46! is replaced byb3/2T logTL3
for largeL3 close to the critical temperature.

Now we evaluate the finite size correction to the critic
temperature. The bulk critical temperatureTc

(0) is defined by

Q5b2Tc
(0)2 . ~56!

From Eq.~46! and the above argument, the leading corr
tion to the bulk critical temperature for a finite system ma
fests as

Q5b2Tc
21b3/2TclogTcL3 . ~57!

From Eqs.~56! and~57!, we obtain the finite number correc
tion to the critical temperature for smallb3/2

Tc

Tc
(0)

512
b3/2log~QL3

2/b2!

4~b2Q!1/2
. ~58!

The correction to the condensation fraction can be ea
obtained as

Q0

Q
512

Q1

Q

512S T

Tc
(0)D 2

1
b3/2log~QL3

2/b2!

2~b2Q!1/2 F S T

Tc
(0)D 2

2
T

Tc
(0)G

2
b3/2

~b2Q!1/2

T

Tc
(0)

logS T

Tc
(0)D . ~59!

In Fig. 2, we plot the condensation fraction of the grou
state as a function of the temperature. As mentioned in S
II C, the finite size correction in Eq.~58! gives the opposite
shift in the critical temperature whether Neumann or Diric
let boundary condition is used. In the case of Dirich

FIG. 2. The condensation fractionQ0 /Q for the Neumann
boundary condition is plotted as a function of the temperature.L1

51, L2510, L35100, Q510 000, andm50.1. The dotted curve
shows the bulk contribution. Solid curve includes the finite s
correction based on Eq.~59!. Tc denotes the finite size correcte
three-dimensional critical temperature defined in Eq.~58!.
10501
l

-
-

ly

c.

-
t

boundary condition, as we saw in Eq.~53!, the surface term
decreases the density of states. The smaller density of s
requires the excitations with higher energy for the conden
tion criteria~1! to be met and therefore the condensation h
to start at a higher temperature. These results agree
those found in Refs.@10,50#. It is of interest to compare the
results obtained here with those for atoms trapped in a
monic oscillator potential. One can easily see that the bou
ary effect in such a potential is due to the Neumann bou
ary condition@20#: the surface term increases the density
states which results in the decrease of the critical tempera
from the bulk value as observed in Ref.@33#.

B. Multistep condensation

1. One-dimensional condensation

As mentioned in the Introduction, in the presence
strong anisotropy, condensation can occur in multisteps.
see one-dimensional condensation, we requireL15L2!L3,
equivalently,a15a2@1 wherea1L15a2L25L3 as defined
in Sec. III A. In such a case, it is meaningful to split all th
excited quantum states into one, two, and thr
dimensionally excited modes in the following way. Hereaf
we focus on Neumann boundary conditions through the
of the paper.

The corresponding heat kernels for these states can
defined as

K1~t!5 (
n351

`

e2h3
2p2n3

2t,

K2~t!52 (
n251

`

e2h2
2p2n2

2t (
n350

`

e2h3
2p2n3

2t,

K3~t!5 (
n151

`

e2h1
2p2n1

2t (
n251

`

e2h2
2p2n2

2t (
n350

`

e2h3
2p2n3

2t,

~60!

respectively. The factor 2 inK2(t) is due to the symmetry
betweenL1-L3 plane andL2-L3 plane.

Following the similar steps from Eqs.~50!–~53!, we ob-
tain the expression for the three-dimensional density of st
as

r3~«!5
p

4

«1/2

a1
2

2
p

24F 1

a1
2

1
2

a1
G1•••. ~61!

And the three-dimensional heat kernel in terms of the den
of states is given as

K3~t!5E
«1

`

r3~«!q3
«d«, ~62!

where «15a1
2. This gives the total charge of three

dimensionally excited modes
6-8
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Q35b2T 22
b3/2T

6
log

T2

m̃2
, ~63!

wherem̃2[p2«1 /L3
21m22m2.

For the two-dimensional heat kernel,

K2~t!52 (
n251

`

e2h2
2p2n2

2t (
n350

`

e2h3
2p2n3

2t

52 (
n251

`

(
n350

`

q
3
a1

2n2
2
1n3

2

5 (
n50

`

2r 2~n!q3
n , ~64!

wherer 2(n) is the number of solutions ofn5a1
2n2

21n3
2 in

natural numbers. We write Eq.~64! in an integral form using
the density of statesr2(«)5p/2a1 such that

K2~t!5E
«1

`

d«r2~«!q3
«

5
q3

«1

2pa1h3
2t

, ~65!

where«15a1
2 for the present choice of units. Then from th

expression of the zeta function in terms of the heat kerne
Eqs.~28! and ~29! we obtain

zL~s!5
L2L3

4p

b̄2s22

G~s!
E

0

`

dt ts22e2m̃2b̄2tu3~mb̄tu i t/p!,

~66!

where m̃2 is the same as in Eq.~63!. The total charge of
two-dimensionally excited states is

Q25
2mL2L3T

p
log

T2

m̃2
. ~67!

For the one-dimensional case, we have

zL~s!5
b̄2s

G~s!
E

0

`

dt ts21

3 (
n351

`

q
3
n3

2

e2(m22m2)b̄2tu3~mb̄tu i t/p!. ~68!

The total charge carried by one-dimensionally excited sta
has the form

Q15
2mL3

2T

p
log~2p!. ~69!

The three-dimensional critical temperature is reach
when all the three-dimensionally excited modes are s
rated, namely, sum of all the modes with energy larger t
«5a1

2 is equal to the total chargeQ. We write this condition
corresponding to Eq.~1! as

Q5Q3~T3D!. ~70!
10501
in

s

d
u-
n

Thus we obtain

Q5b2T3D
22

b3/2T3D

3
log

T3DL1

p
1

4mL2L3T3D

p
log

T3DL1

p
,

~71!

where we setm5m. The third term is the contribution from
two-dimensionally excited modes with energy larger than«
5a1

2. We will ignore the contribution fromQ1 based on the
argument in Sec. III A that this term is dominated by t
residual termD(«).

For one-dimensional condensation to be observable,
must have

T1D,T3D . ~72!

Furthermore for sufficiently largeL3@L1 ,L2, comparing the
expression forQ1 in Eq. ~69! with those forQ2 and Q3 in
Eqs.~67! and ~63!, we obtain

Q2~T1D!,Q3~T1D!!Q1~T1D!. ~73!

Thus we obtainT1D as the temperature at which on
dimensionally excited states saturate, i.e.,

Q5Q1~T1D!. ~74!

This givesT1D5pQ@2mL3
2log(2p)#21.

2. Two-dimensional condensation

For two-dimensional condensation, we assumeL1!L2
5L3, whence we split the excited quantum states into

K1~t!52 (
n351

`

e2h3
2p2n3

2t,

K2~t!5 (
n251

`

e2h2
2p2n2

2t (
n351

`

e2h3
2p2n3

2t,

K3~t!5 (
n151

`

e2h1
2p2n1

2t (
n250

`

e2h2
2p2n2

2t (
n350

`

e2h3
2p2n3

2t.

~75!

The integera1@1 defined bya1L15L25L3 will be used.
The factor 2 inK1(t) acounts for the symmetry betweenL2
direction andL3 direction.

The three-dimensional density of states becomes

r3~«!5
p

4

«1/2

a1
2

1
p

24F 2

a1
11G1•••. ~76!

This gives the total charge carried by three-dimensiona
excited modes

Q35b2T 21
b3/2T

6
log

T2

m̃2
, ~77!

wherem̃2[p2«1 /L3
21m22m2 and«15a1

2.
6-9
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The two-dimensional heat kernel is given by the dens
of statesr2(«)5p/4 as

K2~t!5E
«1

`

d«r2~«!q3
«5

q3
«1

4ph3
2t

, ~78!

where«151. The total charge of two-dimensionally excite
states is

Q25
mL2L3T

2p
log

T2

m̃2
. ~79!

The total charge carried by one-dimensionally excited sta
is given byQ154mL3

2T log(2p)/p.
The three-dimensional critical temperature is reached

der the same condition as in one-dimensional condensa
Q5Q3(T3D). Thus we obtain

Q5b2T3D
21

b3/2T3D

3
log

T3DL1

p
1

mL3
2T3D

p
log

T3DL1

p
,

~80!

where the third term is the contribution from the tw
dimensional modes as in Eq.~71!.

For two-dimensional condensation to be observable,
must have

T2D,T3D . ~81!

Furthermore, for sufficiently largeL2 ,L3@L1, by comparing
the expression in Eqs.~77! and ~79!, we have

Q3~T2D!!Q2~T2D!. ~82!

Thus we obtainT2D as the temperature at which two
dimensionally excited states saturate,

Q5Q2~T2D!. ~83!

Then T2D5Q@ b̃3/2 log(QL3 /b̃3/2)#21 for large Q, whereb̃3/2

5mL2L3 /p5mL3
2/p.

3. Three-step condensation

To show three-step condensation, we assumeL1!L2
!L3, or equivalently,a1@a2@1. The corresponding hea
kernels for these states can be defined as

K1~t!5 (
n351

`

e2h3
2p2n3

2t5
1

2
@u3~0u ih3

2pt!21#,

K2~t!5 (
n251

`

e2h2
2p2n2

2t (
n350

`

e2h3
2p2n3

2t

5
1

4
@u3~0u ih2

2pt!21#@u3~0u ih3
2pt!11#,
10501
y

s

n-
n,

e

K3~t!5 (
n151

`

e2h1
2p2n1

2t (
n250

`

e2h2
2p2n2

2t (
n350

`

e2h3
2p2n3

2t

5
1

8
@u3~0u ih1

2pt!21#@u3~0u ih2
2pt!11#

3@u3~0u ih3
2pt!11#. ~84!

The asymptotic behavior when 1@h1@h2@h3 can be de-
rived in a similar way as in Eq.~38!.

The three-dimensional density of states becomes

r3~«!5
p

4

«1/2

a1a2
1

p

24F 1

a1a2
1

1

a1
1

1

a2
G1••• ~85!

and the total charge of three-dimensionally excited mode
given by the same form as in Eq.~77!.

From the two-dimensional heat kernel, we obtain the tw
dimensional density of statesr2(«)5p/4a2 such that

K2~t!5E
«1

`

d«r2~«!q3
«

5
q3

«1

4pa2h3
2t

, ~86!

where«15a2
2 for the present case. This will give us the tot

charge of two-dimensionally excited states as

Q25
mL2L3T

2p
log

T2

m̃2
. ~87!

The total charge carried by one-dimensionally excited sta
has the same form as in Eq.~69!.

The three-dimensional critical temperature is obtained

Q5b2T3D
21

b3/2T3D

3
log

T3DL1

p
1

mL2L3T3D

p
log

T3DL1

p
.

~88!

To observe three-step condensation, we must have

T1D,T2D,T3D . ~89!

In addition, for large anisotropyL1!L2!L3, comparison of
explicit formulas forQ1 , Q2, andQ3 in Eqs.~69!, ~87!, and
~77! gives

Q3~T2D!!Q2~T2D! ~90!

and

Q3~T1D!!Q2~T1D!!Q1~T1D!, ~91!

whereT2D (T1D) is obtained by the saturation of the two
~one!-dimensionally excited states asQ5Q2(T2D) and Q
5Q1(T1D). T2D is given in the leading order by

Q5b̃3/2T2D log~L2T2D!, ~92!
6-10
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where b̃3/25mL2L3 /p. We thus obtain T2D

5Q@ b̃3/2 log(QL2 /b̃3/2)#21 for large Q. T1D has the same
form as in the one-dimensional condensation case.

From Eqs.~89! to ~91!, we obtain the following inequali-
ties for anisotropy parameters and the total charge co
sponding to ~A! T1D,T2D , ~B! T2D,T3D , and ~C! T1D
,T3D as

L3

L2
@

log~Q̃!

2 log~2p!
, ~93!

L3

L1
@

pQ̃

3@ log Q̃#2
, ~94!

L3

L1
FL3

L2
G2

@
pQ̃

12@ log~2p!#2
, ~95!

whereQ̃[pQ/mL2. In Fig. 3, different multistep behavior
corresponding to various ranges of anisotropy parameters
shown. Three-step BEC can be seen in a wide region
parameter space. For an extremely strong anisotropy, dyn
ics along the short edge length will freeze out~EIRD , 3!
before BEC intoQ2 or Q1 sets in. In such a case, we on
observe two or one-step BEC. For a quasilinear cavity al
the vertical axis, three-step BEC can still be observed, w
for a quasiplanar cavity along the horizontal axes, only up
two-step BEC can happen.

In Fig. 4, the condensation fractions

Q0 /Q,Q1 /Q,Q2 /Q,Q3 /Q

as a function of the temperature are plotted. In the isotro
case@Fig. 4~a!#, condensation is only into the ground sta
Due to the finite size effects, condensation occurs before
critical temperature is reached. In strongly anisotropic ca

FIG. 3. Different multistep behaviors corresponding to differe
anisotropy parametersL2 /L1 and L3 /L2 are indicated. The loga

rithmic scale is used for both axis.Q̃[pQ/mL2510 000 is fixed.
Multistep BEC can only happen in an intermediate yet stron
anisotropic regime.
10501
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condensation occurs in steps. In Fig. 4~b!, one-dimensional
condensation is seen.T3D determines the onset of condens
tion into one-dimensionally excited states. Note that atT3D ,
the ground state fraction is negligibly small. Condensat
into the ground state occurs at a much lower temperature
Fig. 4~c!, two-dimensional condensation is plotted. AtT3D ,
two-dimensional condensation manifests itself. The criti
condition m5m is satisfied well in Figs. 4~a!–4~c! In Fig.
4~d!, three-step condensation is shown. Three-dimension
excited modes dominant in higher temperature are conde
into two, one, and the ground state as the temperatur
lowered. The deviation ofT3D and the onset of two-
dimensional components reflects the fact that the condi
m5m is not satisfied for the parameters chosen in Fig. 4~d!
at T3D . This is another manifestation of finite size effec
and the result should improve near the thermodynamic li
(h i→0, Q→`). The similarity between each condensati
process becomes evident in the logarithmicT scale as can be
seen in Fig. 4~e!. In conclusion, finite size effects on th
Bose-Einstein condensation of a charged scalar field can
to the multistep condensation in the presence of strong
isotropy.

In this paper, we started from calculating the effecti
action to one-loop order using zeta function regularizati
Large volume and small mass conditions are assumed to
cilitate an asymptotic expansion of the heat kernel and fin
size corrections corresponding to the surface term, co
term, etc., are obtained. We proceeded beyond the c
tinuum spectrum approximation and showed that the hig
order terms in the standard asymptotic expansion are do
nated by the contribution from the fluctuating part of t
density of states due to accidental degeneracy. The low
energy gap is shown to play the crucial role in determin
the critical temperatures for one- and two-dimensional s
tems. The corresponding low-dimensional critical tempe
tures are calculated. The energy spectrum and the assoc
heat kernel can be partitioned into parcels of eigenmo
excitable in dimensions 3, 2, 1, or 0. As the temperature
lowered, modes in different parcels behave quite similarly
the presence of strong anisotropy. WhenT1D ,T2D,T3D are
satisfied, condensation occurs first into the low
dimensionally excited states atT3D following the ground
state condensation at lower-dimensional critical temperat
Experimental observation of these phenomena can in p
ciple be realized in an anisotropic harmonic potential trap
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APPENDIX A: CUMULATIVE DENSITY OF STATES

In this appendix, the exact formula forNd(«) for arbitrary
dimension d is derived. d-dimensional cumulative den

t

y
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FIG. 4. The condensation fractionsQ0 /Q ~solid curve!, Q1 /Q ~dashed curve!, Q2 /Q ~dot-dashed curve!, Q3 /Q ~dotted curve! as a
function of the temperature are plotted for the Neumann boundary condition. Isotropic case (L15L25L353, Q5100, andm52) are
plotted in ~a!. Condensation is only into the ground state.Tc51.97 is the critical temperature in Eq.~57!. In ~b!–~e!, anisotropic cases are
shown. In~b!, L152, L252, L35300, Q52000, andm51 are chosen. One-dimensional condensation occurs in this case.Tc52.03 is the
three-dimensional critical temperature in Eq.~71!. In ~c!, L152, L25200, L35200, Q58000, andm50.5 are chosen.Tc50.98 is the
three-dimensional critical temperature in Eq.~80!. Two-dimensional condensation can be seen. In~d!, condensation occurs in three step
L152, L25100, L35600, Q54000, andm50.5 are used. The long dashed line is the chemical potentialm. Tc50.79 is the three-
dimensional critical temperature in Eq.~88!. The logarithmicT scale is used in~e! for the parameters in~d!.
105016-12
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sity of statesN̄d(«) can be obtained straightforwardly from
Nd(«) as we showed in Sec. III. SupposeNd(«) counts the
number of integer solutionsnW of the equation«5a1

2n1
21

•••1ad
2nd

2 where aW [(a1 , . . . ,ad) is a constant
d-dimensional vector with integer coordinates. ThenNd(«)
can be written as

Nd~«!5(
nW

u~«2uaW nW u2!

5(
nW
E duW u~«2uuW u2!dd~uW 2aW nW !

5A21(
lW
E duW u~«2uuW u2!e2p iuW ( lW/aW )

5(
lW

C~ lW !, ~A1!

where A[a1 . . . ad , aW nW [(a1n1 , . . . ,adnd), and lW/aW
[( l 1 /a1 ,•••,l d /ad). Summation is over alld-dimensional
vectors with interger coordinates. Poisson’s summation
mula is used to obtain the third line and

C~ lW ![A21E duW u~«2uuW u2!e2p iuW •( lW/aW )

5A21E duW u~«2uuW u2!e2p i uuW uu lW/aW ucosu, ~A2!
h.

-

an

n,
tt.

n,

t
.

a

10501
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whereu is the angle betweenuW and lW/aW . We make an or-
thogonal coordinate transformation fromuW to vW such that

v15uuW ucosu and write Eq.~A2! as

C~ lW !5A21E dvW u~«2uvW u2!e2p iv1u lW/aW u

5A21
p (d21)/2« (d21)/2

G@~d11!/2#

3E
21

1

dv1~12v1
2!(d21)/2e2p iv1u lW/aW u. ~A3!

This yields

C~ lW !5H A21«d/4Jd/2~2pu lW/aW uA«!/u lW/aW ud/2 for lWÞ0,

A21«d/4Vd21 for lW50,

where Jd(x) is the Bessel function andVd5pd/2/G(d/2
11) is the volume of ad-dimensional sphere with unit ra
dius. Hence we obtain

Nd~«!5A21«d/4Vd211A21«d/4(
lW

Jd/2~2pu lW/aW uA«!

u lW/aW ud/2
.
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