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Faraday effect: A field theoretical point of view
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We analyze the structure of the vacuum polarization tensor in the presence of a background electromagnetic
field in a medium. We use various discrete symmetries and crossing symmetry to constrain the form factors
obtained for the most general case. From these symmetry arguments, we show why the vacuum polarization
tensor has to be even in the background field when there is no background medium. Taking then the back-
ground field to be purely magnetic, we evaluate the vacuum polarization to linear order in it. The result shows
the phenomenon of Faraday rotation, i.e., the rotation of the plane of polarization of a plane polarized light
passing through this background. We find that the usual expression for Faraday rotation, which is derived for
a non-degenerate plasma in the non-relativistic approximation, undergoes substantial modification if the back-
ground is degenerate and/or relativistic. We give explicit expressions for Faraday rotation in completely
degenerate and ultra-relativistic medi&0556-282(99)07618-3

PACS numbsdis): 12.20—m

I. SCOPE AND OUTLINE OF THE PAPER propagator in a constant magnetic field is modified in the
presence of a background medium. In Sec. IV, we show how
It is well known that electromagnetic wave propagatingsome discrete symmetries help us constraining some of the
through a medium in an ambient magnetic field suffers Farform factors appearing in the vacuum polarization. Follow-
aday rotation; i.e., the plane of a plane polarized light rotate#1d this, we set up the calculation in Sec. V. Starting from
as it travels through the medium in the magnetic field. Thethe basic Feynman rules, we arrive at an expression for the
amount of this rotation is derived in various texts on electroolarization tensor that is explicitly gauge invariant. In Sec.
magnetic theory1] and plasma physid€] with the assump- VI, we derive the expression for Faraday rotation per unit

tions that the medium consists of non-relativistic and nonJength in terms of the components of the polarization tensor.

Faraday rotation is extensively used in a variety of situakinds of backgrounds. This is the section which contains the
tions, including astrophysical and cosmological of2g].  €ssential results of the paper. The non-relativistic and non-
In such situations, either of the aforesaid assumptions abo@egenerate case is shown in Sec. VI C, where we obtain the
the medium may not be valid. For example, for compactesult usually quoted in textbooks. In Secs. VI D and VII E,
stars, the plasma is likely to be degenerate. In the very early’ find results for a completely degenerate medium and an
universe, when the temperature was high, the assumption &ftra-relativistic one. Finally, we present our conclusions.
non-relativistic plasma is bound to break down. Motivated
by such situations, we reinve_stigate this problem. For a gen- | EoRM FACTORS IN THE POLARIZATION TENSOR
eral framework, the formalism of quantum field theory
proves to be helpful. The aim of this paper is to use a quan- The classical action of a free electromagnetic field is
tum field theoretical formalism to calculate Faraday rotationgiven by
in different kinds of media.

The paper is organized as follows. In Sec. II, we introduce 1
the vacuum polarization tensor and find its most general A=——j d4xF}\p(x)F"”(x). (2.1
form in a background medium and in the presence of a gen- 4
eral electromagnetic field, consistent with Lorentz and gauge
invariances. Calculation of the vacuum polarization tensoin the momentum space, this can be written as
requires the electron propagator, which is discussed in Sec.

lll. We summarize there how Schwinger's proper-time d“k
A:f (27)45, (2.2)
*Email address: avijit@tnp.saha.ernet.in
"Email address: sushan@iucaa.ernet.in where £ is the momentum-space Lagrangian, which can be
*Email address: pbpal@tnp.saha.ernet.in obtained by taking Fourier transforms in EG.1):
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1 ~ kyk
L=~ KG A KIA(=K), 2.3 P =00\, 2" 2.9
where This, of course, is the same tensor which appears in Eq.
(2.8.
~ _ kk (2.4 In the second group, we include tensors constructed only
=™ Tz ' of k andu. These arg4]
Once quantum corrections are added, one obtains more P{H=u,u,/u?, (2.10
guadratic terms in the Lagrangian. These are represented by
the vacuum polarization tensdf, ,. In other words, after Pg)zsxpmk‘ruf, (2.11
the quantum corrections are put in, the quadratic part of the
Lagrangian becomes where
1 T :N o
L= 51K+ (OIAN KA (—K). (25 R 12
Next, we bring in tensors constructed frdoandB only,
Owing to gauge invariancd], , satisfies the conditions without any occurrence af. Using the shorthand
KMI, ,(k)=0, K*II, (k)=0. (2.6) (k-B)y=k"Bqy, (213
In addition, Bose symmetry implies we can write these as
I, (k) =TI, (— k). 2.7 Pl =KB),—ky(k-B),Tk,(k-B),,  (2.19
In the vacuum, the tensdt,, depends only on the mo- PiP=¢,,,k’(k-B)". (2.15
mentum vectok. Thus, the most general form fdl, , is
given by One might think that there might be additional terms ob-
tained by replacindg, , by B, ,, where
I, , =TT k?g) ,— kyK, ], (2.9 . ?
where I, is a Lorentz-invariant form factor, which can ~Bxp=§8xme”- (2.16

therefore depend only ok?. The important point is that the

tensor structure foll,, is exactly the same as the tensor gyt it is straightforward to show that no other independent
appearing in the classical Lagrangian. Thus, this correctioferm arises this way.

term can be done away with by a redefinition of the photon  Finally, to write down the tensors where all threekoiu

field A* o andB occur, we employ a notatioru¢ B), defined in a way
In a nontrivial background, this is no more the case. Al-gimilar to (k-B), . Then the tensors are

thoughll,, still has to satisfy Eq(2.6), the form given in

Eqg. (2.8) does not follow. This is becausd,, can now PIM=k-uB,,—uy(k-B),+u,(k-B), (2.1
depend, apart from the momentum vedtdy on various vec-

tors or tensors which characterize the background medium. pr)zg}\pwko(u. B)” (2.18
Even for a homogeneous and isotropic medium, there is an

extra vector in the form of the velocity of its center of mass, P;:(ps):a}\(k. B)p—ﬁp(k- B), (2.19

u. The most general form fail,, in the presence of these
two vectors has been discussed in the literafdie

n(4)_7 -
Our interest lies in a more complicated background where PYLY=Un(k-B), (k- B)y (220
in addition to the medium there is also an external electro- (5~ = , o~ .
magnetic fieldB,,. We will work in the weak field limit PXp = UnGp-(U-B)"—Uu,0,,(u-B) (2.2
throughout. This means that the background field will be . o
considered feeble, and we will keep only linear terms in it. Py=1,0,,(u-B)"+1,g,.(u-B)" (2.22
For the moment, we will not specialize to magnetic fields.
We will keep the discussion general, with a medium charac- Pr=1,(k-B),—u,(k-B), (2.23
terized by the vectou and a background electromagnetic
field By, in arbitrary Fjirection. PTS):TJA(k-E) +U (k-E)A (2.24)
. Thsre are many independent tensors constructed out of P e
k*, u* and B, , which satisfy Eq.(2.6). For future conve- n(9) _~ ~ ~ . o~ ~ =,
nience, we captegorize them into several groups. In the first PA(P )—uxgm(u~ B)™=u,9\-(u-B) (2.29
group, there is only one tensor which depends only on the (10)_~ = o~ ~
vectork*, viz., Py, =Urngp(u-B)"+u,g,(u-B)". (2.26
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A collection of gauge invariant tensors which can appear ptk=yp
in the vacuum polarization were listed byrBe Rojas and PR PR
Shabad[5]. They have tensors involving more than one
power of the background field, which we are not interested
in. As for the tensors linear iB,,, they list what we call P
PV, PLEY and P, but none of the rest. We conclude FIG. 1. One-loop diagram for vacuum polarization.

that the most general form fdi,, consistent with Eq(2.6)

and keeping only terms linear in the external electromagnetigies restrict the form factors in significant ways. The con-
field is given by: straint of hermiticity of the action implies

pr=2 H(i)ng+E Hr(i)Prg\iF))_i_z Hn(i)Png, IT, ,(k) =117, (k), (2.33
1 1 1

(2.27  whose consequences will be mentioned at the end of Sec. IV.

where in each case, the sum oveuns over the appropriate
set of values. The coefficients of the tensors are form factors, Ill. THE ELECTRON PROPAGATOR

which we discuss now. ©) " At the 1-loop level, the vacuum polarization tensor arises
First, notice that the tensof® and Py, do not depend  fom the diagram in Fig. 1. The dominant contribution to the
on the background electromagnetic field. The form factors,zcyum polarization comes from the electron line in the
associated with these. terms are rc_alated to the dielectric COMyop. To evaluate this diagram, one needs to use the electron
stant and the magnetic permeability of the medi@h The  propagator within a thermal medium in the presence of a
tensorP{?) also does not involve the background electromagackground electromagnetic field. Rather than working with
netic field. It is, however, parity asymmetric, and accountshe complicated expression for a general background field,
for natural optical activity{4]. Since our aim is to discuss we will specialize to the case of a purely magnetic field.
Faraday rotation which is also a type of optical activity, we Once this is assumed, the field can be taken irttizection
will disregard any natural optical activity. Thus, we assumewithout any further loss of generality. We will denote the
that the form factor associated wiBf?) is zero for our me-  magnitude of this field bys.
dium. Ignoring at first the presence of the medium, the electron
The form factors are Lorentz invariant quantities. Thus,propagator in such a field can be written down following
they can depend only on the Lorentz invariant combinationschwinger's approacf7—9]:
of k*, u* andB, ,. Sinceu?= 1, we can obtain the following

invariant parameters, keeping at most one factor of the back- v I
ground field: iSg(p)= JO dse*P9G(p,s), (3.9

w=Kk-u, (2.28

where® andG are defined below. To write these in a com-
pact notation, we decompose the metric tensor into two

K=\w’—k?, (2.29 parts:
b=k'u"B,,, (2:39 ga,B:glLﬁ_giﬁ” (3.2
b=Kk'u"B,,. (23D where

In addition, of course, the_ form factors can depen_d on the ﬂyﬁ=diag(1,0,0,— 1),

Lorentz spalars wh|ph define the background medium, e.g.,

theS(i::ce;n \I/S:;l Iarigtier:li?zs?gc? (t)?laytienmlipneer::l{[reerﬁ/s in the back- Jap=diag0,1,1,0. 3.3

ground field, we have discarded higher order invariants in_ ) ) L
B Moreover. notice that the tensoFg(i) and Px(i) are This allows us to write, for any two objectsandq’ (includ-
mv ! p p

linear in the background field. Thus, for their co-efficients, ™Y the y-matrices carrying Lorentz indices,
we can neglect the field dependence for the sake of consis-

tency. Thus, for our purpose, the form factdds ) and q-0j=0odo— 33, (3.4

11”0 should be treated as functions ef and K only, and

possibly of x and 8. We summarize this statement as g-9; =0:91+ 0295 - (3.5
HO=110(w,K, u,B), (2.32  Using these notations, we can write

tan(eBs)

wherell® stands for thd1’'’s and thell”(’s. In Sec. IV,
eBs

2 2
; . . —m*| —e€|s|, 3.6
we will see how arguments about various discrete symme- PL s 3.6

®(p,s)=is| pf-
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glesso; g iebso, v o ) )
= — i = [ —m-+i +
G(pis) COieBS) pH COQEBS) pl_+m ISO(p) jO dseXF{'S(p m IE)](p m)
=(1+io,taneBs)(p;+m)—(se¢eBs)p, , b+m
=i, 3.1
(3.7 | p>—m?+ie (319
where which is the vacuum propagator. In the same limit, the back-

ground dependent part reduces to

S¢(p)=—2m8(p*—m?) ne(p)(p+m).  (3.16

0,=1Y1Y2= ~ Y0Y37s> (3.9

and we have used

) ) ) IV. DISCRETE SYMMETRIES AND THE FORM
e'®Bs7z= coseBs+io,sineBs. (3.9 FACTORS

Before embarking on diagram calculations, let us discuss
some of the symmetries of the problem, which will help us
constraining some of the form factors.

The expression fob can have an additional gauge de-
pendent phase factor, but it does not contribute to the polal
ization tensor. Usually, one writes instead of|s| in Eq.
(3.6). It is equivalent since in the range of integration indi-
cated in Eq(3.1) sis never negative. However, the definition A. Bose symmetry

In the presence of a background medium, the abovnger the operation
propagator is modified tp10]

k——k, Aep, (4.7
; iQV Y Y
ISP =1Ss(p) = 7e(PILISe(P)~1Se(P) - B0 e \acium polarization tensor must be invariant.

Since the tensor@’ﬁ'g change sign under the operation of
Eq. (4.1, this implies that the associated form factors should
satisfy the condition

where

S5(P)=70SV(P) %o (3.19) | |
' (w,Ku,B)=—1"0(-0,Kup). (4.2
for a fermion propagator, angl-(p) contains the distribution

function for particles and antiparticles: On the form factors denoted dy”, the effect is more com-
plicated since some of the tenscﬁ’ﬁp are symmetric under
7e(P)=0O(p-W)fe(p, s, B)+O(—p-Wfe(—p,— . B). the operation of Eq(2.7) and some are antisymmetric. In

(3.12 general, let us write

Here, © is the step function, which takes the valuel for P (=k)=nP{V(k) (4.3
positive values of its argument and vanishes for negative . )
values of the argument, arf@ denotes the Fermi-Dirac dis- Where, by inspection, we see that

tribution function )
+1 for i=1,2,3,6,7,10,

MTl-1 for i=4589. 9
Fe(P s B) == (3.13
e +1 The associated form factors should then satisfy the relation
Putting in the form ofSy(p) from Eq.(3.1), we obtain the "D (w,K,u,B)=nII"O(-w,K,u,B). (4.5
additional term in the propagator to be
To apply this symmetry on the unprimed form factors,
SU(p)= —i Vi) — gV one has to takg into account the dependence of these form
s(P) 7e(P)L5(P) = Se(p)] factors onb andb defined in Eq(2.31). Thus, this symmetry
. implies
== np(p)f dse’®9G(p,s), . - . -
- 314 I0(w,K,p,8,0,0)=+10(-w,K,u,B8,~b,~b)

for i=0,1 (4.6
with ®(p,s) andG(p,s) defined in Eqs(3.6) and(3.7). B N
It is straightforward to see that whéh=0, the propagator I (w,K,u,B8,b,0)=—T1(—w,K,u,B,—b,—b).
in Eq. (3.1) reduces to 4.7
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B. Charge conjugation symmetry field, substituting the more general form does not affect the
In calculating the form factors, we are neglecting any cor-2rguments. We can now discuss how this analysis can be
rections coming from weak interactions. In fact, these corSimPplified if the background field is a purely magnetic field
rections occur only at the 2-loop level, and therefore ard the rest frame of the background med,|(uzr)n, "ff("s")qu
anyway irrelevant for the 1-loop calculation that we will be :”?é)AmO_“g the field-dependent tensofs, ™, Py,” and
performing. In this case, the interactions are all purely elecPy,”’ vanish in this case. Therefore, in the final count, we
tromagnetic, and so they obey charge conjugationC)  Will have only four form factors associated with the field-

symmetry. The conclusion of this symmetry is thdf,  dependenttensors, vidl"™, [1"®), T1"(") andI1"®). Since

should be invariant under the substitutions all of these are antisymmetric tensors, the hermiticity condi-
tion of Eq.(2.33 implies that the corresponding form factors
p——p, Bgr—=—B,.. (4.8)  must be purely imaginary in the dispersive part.

. . _ In addition, of course, we can have the form factfr’
Said in words, it means that if we calculate the vacuum po, 4111 \wheread1® vanishes because of our assumption
larization in a medium with a C_erta|r_1 background f|el_d, it of vanishing natural optical activity.
should be the same as that obtained in a charged conjugated
medium with an opposite background field. This means that,
in the vacuum polarization, there are terms even in the back- V- CALCULATION OF THE 1-LOOP VACUUM
ground field and even i, or odd in both. The terms linear POLARIZATION
in B, which we will calculate, should therefore be oddyin A. Identifying the relevant terms
This implies that the primed form factors, which are inde- ) ) ,
pendent of the background medium, i.e., do not congajin | ne amplitude of the 1-loop diagram of Fig. 1 can be
must vanish. This is known from the direct calculations of W tt€n as
the polarization tensor in absence of a medi@i1]. 4

iHAp(k)z—f

P _(ie)2 t[ 1iS(p)y,iS(p+K)],

C. A symmetry of the propagator (277)4
(5.0

Lastly, notice that in the calculation di, ,, the center-

. )\ . .
of-mass velocityu™ and the chemical potential can enter a6 the minus sign on the right side is for a closed fermion
only through the functiompe in the propagator. Further, from loop, andS(p) is the propagator given in Eq3.10. This
Eq. (3.12, notice thatz is invariant under the following

i implies
transformation:
u——u, — 1. 4.9 . d*p . .
- p—— (4.9 I, (k) = —.ezj . )4tr[y>\|S(p)yp|S(p+ K)].
So the vacuum polarization must also obey this symmetry. 7 (5.2)
For the form factors, this fact has an interesting conse- '
quence. Some of the tensdRé{) are even inu, some are From Eq.(3.10 we see that there are two terms in the
odd. Accordingly, the form factors would satisfy propagator — the vacuum paﬁ\é(p) and the other part

which involves the background matter distribution. If we in-
sert two such propagators in E(h.2), we will obtain four
terms.
The term obtained from thS\E( factor in both propagators
-1 for i=1,2,3,4,7,8, is the contribution in the vacuum. It has no importance to our
=111 for = (4.1)  discussion of background effects. The terms with the distri-
or i=5,6,9,10. : . .
bution function factor from both propagators contributes
Using the consequence Gtsymmetry, we can conclude ©Only to the absorptive part of the vacuum polarization, which
that, for terms linear irB, we do not discuss in this article. Thus we are left with the
terms in which we use the vacuum part of one propagator
"D (w,K,u,B)=—n/TT"V(—w,K,u,B). (412  andthe background dependent part of the other. These terms
contribute to the partly, in the notation of Sec. Il. Thus

H/,(i)(w,K,M,ﬁ):ni,H”(i)(_w'K’_’u”G)' (41()

where

In order that this is consistent with E¢4.5), we must

have 4

d
11 k0= —ie? : 277‘;4trmsg<p>vpi8§(p')

nn/=—1 (nosumoni). (4.13

Using Eqs.(4.4) and(4.11), then, we obtain that the doubly- +9,iSE(p) ¥, SE(p")1, (5.3
primed form factord1”®), 11"(®) 11"(®) and 1”9 vanish.

The analysis performed in this section is valid for generawhere, for the sake of notational simplicity, we have used
electromagnetic fields in the weak limit. Although we have
used the propagator in the presence of a purely magnetic p'=p+Kk. (5.9
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Substitutingp by —p’
cyclic property of traces, we can write EG.3) as

4
2m)*
P)%iSE(—p")]. (5.9

Using now the form of the propagators from E¢B.1) and
(3.14), we obtain

H’{p<k>=—ie2J( 7, S2(p) 7,iSK(P")

+7,S8(—

" P2 d4p ” d(p’,s’
Iy (k)=ie f J dsé€ (”S)f ds'e®(P’s)
(2m)*) = 0
X[7e(P)tr(1G(p,s)y,G(p",s"))

+ 7e(—p)tr(y,G(—p,S) MG(—p’,s"))].
(5.6)

B. Extracting the gauge invariant piece

in the second term and using the

PHYSICAL REVIEW D60 105014

R{Y)=2, 6l Pl taneBs-+ p'“l taneBs' k¥ (5.11
and
R{?)= taneBs[ m?, o3+ &) pay BHpZ'HpB\I
tenpap, ( pelpfL+pip’ A1 tarf eBs’)]
—taneBs'[M?e), 03+ Skpal‘BHp,;Hp,B”
+ e, (P 7IP" P+ p! DA tarf eBs) .
(5.12
Obviously, R{}) is gauge invariant, i.ek*R{})=k’R{"
=0. To simplify the other term, we first note that the com-
binations in which the parallel componentspandp’ ap-

pear in Eq.(5.12 can be simplified by using the following
identity:
(5.13

Expay @ I071= £y 032-by

In order to discuss Faraday effect, we need only the terms

in the vacuum polarization tensor which are oddirNotice

that the phase factors appearing in E816) are even inB.

which holds for any two vectora and b. For the terms
involving the transverse compoents, we make an important

Thus, we need only the odd terms from the traces. Performebservation. We will be performing the calculations in the
ing the traces is straightforward, and the odd terms come outst frame of the medium wheg u=p,. Thus, the distri-

to be

4

i 7n-(p)

Oxp(k)=4ie2f 2m

X f_” dse‘I’(p'S)f0 ds'e®® SR, (5.7

where we have introduced the notation
7-(P)=7e(P) — 7e(—P), (5.8
and
Ry, = ) ,03M*(taneBs—taneBs’)
+ SAMHBH( pZ’Hp'ﬁH taneBs— p’Z“HpBH taneBs’)

tenpays, ( p%p’P: taneBs se€ eBBs’

—p'“IpPL taneBs’ se@ eBs). (5.9

In writing this expression, we have used the notatiorpzﬁf

for example. This signifies a componentwivhich can take
only the “parallel” indices, i.e., 0 and 3, and is moreover
different from the indexa appearing elsewhere in the ex-

pression.
Using now the definition ofp’ from Eg. (5.4), we can
write
R,,=RE+RE, (5.10
where

bution function does not depend on the spatial components
of p. In the last term of each square bracket of E&q12), the
integral over the transverse componentp dfas the follow-

ing generic structure:

f d?p, e®®P9eP(P" S (phr or p'fr). (5.14
Notice now that

2i
pe ——[e®(P9eP®", s)]——(taneBs pPL+taneBs’'p’AL)
By

X eP(P9)gP(Ps"), (5.19
However, this expression, being a total derivative, should
integrate to zero. Thus we obtain that

taneBs pfr=—taneBs'p’’., (5.16
where the sign *=" means that the expressions on both
sides of it, though not necessarily equal algebraically, yield
the same integral. This gives

taneBBs’
p/ﬂ = _ kAL ,
taneBs+taneBs’
taneBBs
p’/ﬂi kB (5.17
taneBs+taneBs’

Using these identities, we can rewrite E§.12) in the
following form:

105014-6
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R =&, ,0d (M*~pf)taneBs—(m?—p|?)taneBs’]
taneBstaneBs’

—&\pmpg ———————(p+ ’;HkBL
MUPL taneB(s+s') (P+p7)

_ Rg\zpa) + 8)\p03R(2b)’ (5.18
where
taneBstaneBs’ ~
R = —erpap——————(P+p) Ik~
Ap Mooy taneB(s+s’) (pp

(5.19

R = (m?— pf)taneBs— (m?—pj *)taneBs’

taneBstanelss’ ,

—— (p+p )'kH' (5.20

taneB(s+s’)

The term calledR(?®) does not vanish on contraction with

arbitraryk*. This term is not gauge invariant, and therefore
must vanish on integration. In the Appendix, we show that
this is indeed true, so that the contribution to the vacuum

polarization tensor which is odd iff is given by

4
O)\p(k)=4iezf (2 P

)

27-(P)

X f_wdse‘l’(p's)fo ds'e®® S R{D+ R

“p
—Ain2
=4die mpauﬁkﬁj 2 n-(p)

xf dseq’(p'S)J' ds'e®®" )| pe taneBs
— % 0
~ taneBstane3s’ ~
+p’'“ltaneBs’ — ———(p+p’)“l|.
taneB(s+s’)

(5.21

PHYSICAL REVIEW D 60 105014

=0 given in Egs(3.15 and(3.16) to write the background
dependent dispersive terms as

4

774

d
Iy, (k) = —iezf 5 F; 7, SI(p) 7,iSY(P")

+MiSo(P)7,SH(P")]. (6.1)

Changing, as before, the integration variable in the second
term, we obtain

d'p  8(p?-m?)

(2m)3 (p+k)2—m?

XL ya(p+m) 7e(p) y,(P+K+m)

+7,(b—m) ne(—p) v\ (Pp+k—m)]

d*p  8(p?—m?)

(27)® Kk*+2p-k

X[2p\p,+ Pk, +K\p,— O, P-KI[F +T_1.
(6.2)

H),\p(k): _eZ

— 2

In writing the last form, we have pyt?=m? in the denomi-
nator and in the trace, in view of the presence of the
é-function, and used

ne(p)+pe(—p)=Ff +f_, (6.3
where we introduce the notations
fo=fe(|pol,* m). (6.4

The expression presented in E§.2) has a particularly
simple form in the long wavelength limit, i.e., in the limit of
K=0. In this case, one can show that tHg, component
vanishes, whereas thhé&; components are proportional to the
unit matrix. Since the same is true for the ten~§95, we can
summarize all this information by writing

H)’\p(k) = wgé)\p ’

(6.5

wherewy is called the plasma frequency, and is given by

In order to perform this integration, we need to introduce

further assumptions, which will be done in Sec. VII.

VI. DISPERSION RELATIONS

A. Magnetic field-independent terms in the vacuum
polarization

2

1—3ng [f.+f.], (6.6

2:482f d3p
“o (2m)%2E,
whereP=p|.

B. Dispersion relations and Faraday rotation

The contributions to the vacuum polarization tensor deter-
mines the equation of motion of a photon through the me- We have thus obtained expressions for the vacuum polar-
dium. We have already found the magnetic field-dependerigation tensor. For the rest of this paper, we will consider
terms in the vacuum polarization. To obtain the dispersiorPnly photon propagation along the direction of the magnetic
relations, however, we need also the terms which do nofield. Thus, in Eq.(5.21), the index can only take the
depend on the background magnetic field. These terms atélues O or 3. Since the index appearing in that equation
necessarily even i and therefore did not appear @, , . had also parallel components only, the antisymmetric tensor
Here we outline the calculation of these terms. now implies thatly , vanishes unless bothandp are trans-

Rather than going back to E¢5.6) which contains also
the even terms i3, we use directly the propagators At

verse, i.e., have values 1 or 2. Thus, the only non-vanishing
components ofly, are
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1(k)=—TI5 (k)= —ia, (6.7)  This is the Faraday rotation per unit length. The magnitude
of this quantity is thus determined once we deternarand

wherea has to be determined by evaluating the integral in®o-

Eq. (5.21). The contributions which come from the medium  In what follows, we find out whato, anda are for dif-

even without the magnetic field have been given in@®dp).  ferent types of backgrounds, and consequently what is the
To obtain the dispersion relations, we go back to the Laamount of Faraday rotation sufferred by plane polarized light

grangian given in Eq2.5). The equation of motion obtained in such backgrounds. We will do this for three different

from this Lagrangian is kinds of backgrounds, depending on the relative importance
of the temperatur@ = 1/8, the chemical potentiak, and the
[(_ k24 w(Z))E)\p_i_pr]Apzo_ (68) electron massn, .
In view of the Lorentz gauge conditiok,A’=0, this can VII. RESULTS FOR DIFFERENT BACKGROUNDS

also be written as A. General observations and assumptions

[(—k2+w§)g>\p+H§(p]A”=0. (6.9 Before starting with any of the specific cases, let us note
some general features and some common assumptions in the

For the transverse components of the photon fiéldthe  calculations. We will perform all the calculations assuming

above equation implies the following condition: that the background medium is at rest in the frame in which
we have a purely magnetic field. In other words, for the
— K2+ w? —ia Ay 4-vectoru, the only non-zero component is the time compo-
, =0. (6.10  nent, which has the value unity. All other components are
1a — K+ wf Az) zero.

) o ) _ i As already mentioned, we will consider photon propaga-
The eigenvalues of the matrix give the dispersion relations jgp, along thez-direction (positive or negative In addition,

we will take the long wavelength limit, i.eK<w. This im-

- 2 _ . .
k®=wp*a (6.11 plies that in Eq.(5.21), the term with the external factor of
_ _ k°=w dominates over the one witt'=K.
for the normalized eigenmodes Finally, we will assume the magnetic field to be small, so
) that we can use only the linear terms i To this order,
(AL *iA)N2, (6.12  then, the dominant contribution of E¢.21) is given by
which describe circularly polarized states of the photon. pr(k)=8ie3BsAp3owl, (7.0
Writing k? as w?—K?2, we obtain the following solutions
for K: where
K.=Vw?—wg| 15 6.1 = is(p?~m?) = els|
=T VeTT % +w2—wg 6.13 _f (2m) ﬁf(p)pojimds @s(p™-m)—els
For small magnetic fieldsa will be small, and then we can % e , sg
write xf ds'e’s' P m)—dsll g1t ——1 (7.2
0 s+s’
a
K=o’ w3 1122—2}, (6.149  Here, since the other factor is already linearldnwe have
(0= wp) used5=0 in the exponents. Moreover, we have made the

further assumption thab<<m,, which enables us to neglect
ko compared tq, in the factor inside the square bracket. In
the notation introduced in E¢6.7), we can write

which gives, for the difference of the two solutions,

a
AK= — . (6.19

For a plane polarized electromagnetic wave propagatin?__ The expression fof can be put in a convenenient form.
with a frequencyw, this means that, after travelling a dis- FOr this, we first define the integral

tance |, the plane of propagation will be rotated by an

amountlAK. Thus, the rate of rotation of the polarization

a=8e%Buwl. (7.3

angle® is given by linstead ofw,, one can also use the index of refractigrefined
by the relatiorr =K/w. In absence of the magnetic field, i.e., when
do a a=0, Eq.(6.11) givesr?=1-w3/w? We can use this relation to
— =AK= ——. (6.1 eliminate w, from the formulas above and express everything in
dl NP X o . o
0 terms ofr, i.e., the refractive index in absence of the magnetic field.
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d4p * is(p2_ m?2
J :f B j ds ds(p—m?)—els|
=) 2m” (P)Po|

% fwds'eiS’W*m2>*f\5’|s'n. (7.4
0

PHYSICAL REVIEW D 60 105014

n+1

1
(Epw—PKcosg)"*?

il d%p

In=—g— W(H—t)

1
+ . 7.12
(—Epw—PKcosa)”“] (

If we now rewrite the factor in the square brackets in EQ.The azimuthal integration gives a factorr2and theé inte-

(7.2 in the following form,

sg S/Z
st+s'———=(s+s')—-s'+ : (7.5
s+s’ s+s’
it is easily seen that
| = i ——Jo— 1+ fd %)J 7.6
a(m ) 0~ Y1 [ (m ) 2 ( . )

The task is now to evaluatk, for n=0,1,2. Thesintegral in
J, gives

f:ds dsPP-m)—elsl—p r5(p2—m?),  (7.7)
whereas the'’ integral gives
f:ds’eis'(p'Z*mz)*dS"s’”: —(p,i“j;r;!)nﬂ. (7.9
Writing now
8(p?—m?) [5(po Ep)+8(potEp)l, (7.9
and using
7-(p)=sgn(po)[f.(p)—f_(p)] (7.10

which follows from the definitions in Eq$3.12 and(5.8),
we obtain

d*p  posgn(po)
Jp=i"""n! [8(po—
n— (2m3  2E, 0

Ep)+(potEp)]

y fo—f_
(k?+2pow—2PK cosg’ )"+t

(7.1

Here k“=(w,K), P=|p| and#’ is the angle betweeii and

gration can be exactly performed here. This shows #hat
=0 for even values of. This conclusion can be avoided
only if @ and/orK becomes comparable to.. Since we
have already assumed otherwise, we obtain

l=-J,, (7.13
ie.,
11 d¥
_§f (277)3‘(f+ f_)[(Epw—PKCOSG)Z
1
* (—Epw—PKcosf)? (7.14

In general, however, even this integral cannot be per-
formed analytically. So, in order to discuss the amount of
Faraday rotation caused by this term, we need to take re-
course to some specific limits.

B. Connection with the form factors

It is of interest to see how our final result foF},, con-
forms to the general form obtained on the basis of gauge and
Lorentz invariance, a subject that was discussed in Sec. II. At
the end of Sec. IV, we remarked that in our case, we can get
at most four independent form factors, viz, those associated
with the field-dependent tensoid] (") pr® Py(" and

Ap Ap ?
P’)igg). However, the simplifying assumptions made above

imply that all components dfi, vanishes to the leading or-
der. Thus, onlyP{" survives in this case. Moreover, since
we choose the direction of propagation to be along the mag-
netic field, k-B),=0 as well. Thus, from Eq(2.17), we

find that the tensoP{E}), in the case of our choice, is simply
proportional toB, ,. This is what the explicit calculation of
Eq. (7.2) tells us as well.

C. A non-relativistic background

Suppose we have a gas of electrons and positrons where
all the particles are non-relativistic. In this case, we can put
E,~m, within the integral, and neglect all occurrencesPof
since it is small compared t&,. Then we obtain

|5. We have denoted this angle I8y in order to emphasize
that, for a general direction of propagation, it can be different
from the angled which is measured from the axis, i.e.,
from the direction of the magnetic field which we have al-
ready specified. For our specific case of photon propagation
along the magnetic field direction, however, we will it _8m7 2(Ne=Me).
=6.

We further notice that we can neglect the teefrbecause
of our assumptions stated earlier. Thus,

4m2w2J' (27T)3(f )
(7.15

Using Egs.(7.3) and (6.16 now, the Faraday rotation per
unit length is obtained to be
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dd e’B 1 (= 1 1
A mayar—ar e (7.18 ':IEQRJ;dPP“+_f)Eww—PK_E¢»+PK
where w, in this limit, can be simplified by using the gen- 1 = P2
eral formula in Eq.(6.6): = mfo dPEg(f+_f—)’ (7.24
, 2e7 [ d e?

[f,+f_]=—(ng+ng). (7.17  for K=0.
Me Using now the distribution functions appropriate for this

If the background contains no positrons, the expressior?as’e from Eq(7.19, we obtain

for Faraday rotation can be written as

“m. ) (2m)°

1
| = ——[Pr—mgtan }(Pr/my)], (7.2
do B w%wc (718 87w © )
dl - wyw?- wS' where the result of the arctan function is restricted within the

domain O tor/2. From this, we obtain the Faraday rotation

wherew.=eBB/m, is called the cyclotron frequency. per unit length to be

D. A degenerate background dd wgwc 3m.E
_ € _ —1
We now consider a degenerate electron background at g ~ , [o2_ 2" P2 [Pe—metan *(Pe/me)].

zero temperature. The distribution functions are now given 0 (7.26
by '

1 for P<P It can be easily checked thatff-<m,, in which case the

L= L background is non-relativistic, the formulas derived for this
0 for P>Pg, case reduce to those derived in Sec. VII C.
f_=0, (7.19

E. An ultra-relativistic background

whereP¢ is called the Fermi momentum. As we know, al-  Let us now discuss the case where the temperafuré
though the temperature is zero, the electrons need not ke background is much higher than the electron mass. In this
non-relativistic in this case, since Pauli exclusion principlecase, we can puE,~P. Then, using the dimensionless in-
would require all electrons to be in different states, and saegration variabley=P/T, the plasma frequency can be ex-
some of them can be at very large momentum. The numbesressed as

density of electrons in this case is given by

3 2 2¢° de
3 = ———ms-y_ —_—
neo[ 9P o _ PE (7.20 0737267 |0 Y Y exply— Bu) + 1
e (27T)3 + 371_2' . L
In this case, we first calculate the plasma frequency. Per- + expy+ Bu) + 1)- (7.27
forming the angular integrations of E¢6.6), this can be
written in the form This integration can in fact be performed exactly. In the first
2 2 ) 4 integration, use the new integration variagle=y—Bu. In
wz:e meJXFdx X _ (7.21) the second one, usg =y+ Bu. The resulting integrations
o 7% Jo (1+x3)¥2 3(1+x?2)32)" can then be written in the form
where x is the integration variable defined W/m,, and ) 262 % 2y’ 0 y'+ Bu
xg=Pg/m,. The integration can be performed in a straight- ©0= 3,257 j dy'— +f dy'=—
forward manner by substituting= sinh¢, and the result is 0 e+l Jopu e +1
Bu " —
2 Eme X e P 722 —f d 'yy,ﬂ . (7.28
0" 3,2 —1+XE 372 Ef . 0 e’ +1

The first integration can now be performed by expressing the
denominator as a geometric series. The other two can be
E.= P2+ 72 combined after substituting’— —y’ in the second integra-
F Foe (7.23 tion, and the final result is
We now evaluate the integrél Starting from the expres-
sion in Eq.(7.14) for the general case, we perform the angu-
lar integrations to obtain

whereEg is the Fermi energy,

2

1 e
w§=e2 9—[_}2‘?‘?} (7.29
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For the integration, we start from the general expression m wl
in Eq.(7.24). Using similar substitutions as before, we obtain Ne— nEZW + 372 (7.33
S 1
T Q. 2p 2 y -
8mBw)o Tlexpy—Bu)+1l  expy+pBu)+l One can use this to expregsin terms ofn,—ng.
o
==—>. 7.
87w (7.39 VIIl. CONCLUSIONS
The Faraday rotation is obtained from E¢8.16 and(7.3): We have thus shown that the amount of Faraday rotation
depends very significantly on the characteristics of the me-
do e3Bu 730 dium in which the background magnetic field rests. If the
N 2 : medium consists of non-relativistic particles only, we obtain
dl ’772(1) (1)2—(1)0

the formula given in Eq(7.18. Usually, we assume that this

If we put 8—, the results obtained for this case reduce tol0rmula should be applicable for low-temperature media,
those obtained in Sec. VII D witm.=0 since the particles should be non-relativistic in this case.
. .=0.

As for the previous cases, one may want to express tf1e,§%owever, we show that if the medium is strongly degenerate,

results in terms of the number densities of electrons and podl€ formula changes. FdPe<m, it still agrees with the

itrons in the medium rather than in terms of the chemicaffon-relativistic result as it should. But foPe>m, the
potential w. The connection comes from the relation change is drastic, and Faraday rlotatlo.n become.s very small,
as can be seen from E@..26). Similarly, if the medium is so
dp hot that the kinetic energies of the particles are much larger
ne—nz=2f W(h—ff)- (7.32  than their masses, we obtain a different result, as shown in
Eq. (7.3D. But it is interesting to note that in all the cases
Again, the integration can be performed exactly, followingdiscussed, the quantity has the same dependence on
the steps described above, and the result is viz., that it is inversely proportional t@ \/wz—woz.

APPENDIX: PROOF OF GAUGE INVARIANCE

In the text, we claimed that the contribution coming fr&#f® must vanish in order that the vacuum polarization tensor is
gauge invariant. Here, we justify this claim. This contribution is proportional to the following integral:

C:f i ”—(p)Jm ds eq)(p's)fwdS’e‘I’(p"S’)R(Zb)
(2m)* - 0

ZJ @b n (p)foc dse‘b(p's)fwds’e‘b(p"s')
mt T 0

taneBstane3s’

x| (m?—pf)taneBs— (m?—p(?)taneBs’ — (P+p")-Ky|. (A1)

taneB(s+s’)

Using the definition of the exponential factén(p,s) from Eg.(3.6), we notice that

ror . d r oot
m? taneBseP (PSP (P’ s ):taneBs( i~ +(pj*—sed eBs’pf)) eP(P9eP(P’s) (A2)
s
! ’ d ’ ’
m? taneBs’ e?(P9eP(P’ s )=taneBS’( i d—s+(pf—seé eBsp?) |eP(PoeP®"sh), (A3)
This implies that we can write
C:Cl+iC2, (A4)

where
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cff i m(p)fw dse‘b(p*s)jwds’e‘b(p"s')
(2m)* — 0

12 12 2 2 /2 taneBstaneBs’
x| (pj —seceBs'p! —pH)taneBS—(pH—se@eBspf—p” )taneBs’ — —————(p+p’)-k|, (AD)
taneB(s+s’)
szf d'p n,(p)J'w dsfmds’(tanelS‘si—taneBs’i eP(P9ghPsh), (A6)
(2m)* —= Jo ds’ ds

Let us first consider the contributid®,. Performing thes’ integration in the first term and thsintegration in the second,
it can be written as

’ !
e®(p's)

foo dstaneBs e*(P9)—g®(P:9)
0

— o0

f ds’ taneBs’e®(P"s") |, (A7)
— o 0

d*p
Co= f (2m)° 7-(p)

The second term vanishes sireg®¥P vanishes at both limits due to the terme|s| in it. The other exponential survives only
at the limits’=0, and gives

C2= j d4—p’7—(p)foc dstaneBs e®(P:9)
(2m)* -

=0, (A8)
where the last step follows on performing the integration quesince®(p,s) is an even function op and »_(p) is odd.

Let us now look at the other contributio@;. Separating out the terms involving parallel components from those involving
transverse components, we write

d4p - N / /)
Cl_f (277)4 ﬂf(p)f_mdsjo ds'exd ®(p,s)+P(p’,s')]

o o taneBstaneBs’ ) 2
(p“—pj)| taneBs+taneBs’ = ———————— | +p’ taneBs’ seéeBs—p/°taneBsseceBs’|. (A9)
taneB(s+s’)

X

From the definition ofb, it follows that, apart from the small convergence factors,

i i [
®(p,s)+P(p'.s")= 5 (s+ s')(p]*+pf—2m?) - S(s— s')(p[*—pf)— Jg(taneBs’prrtaneBs p%)

i
= ogL(p[*+pf—2m*) é—(p*~pf){—p *tané— 1) —pf tan £+ )], (A10)
where we have defined two new parameters

— 1 ’
&= EeB(s+s ),

1
{=5eB(s—s'). (A11)
Thus,
d ! ! ’ !
leB el (T F ) =g TR S pf®— pf —p!sec(¢~¢) +pL seC(£+()]. (A12)

Using this, we can rewrite EGA9) as
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oo [ 2o | ol

+ eq’(P'S)“D(p"S')[ p;%taneBs’ seé eBs’ ( 1-

taneBstaneBs’
taneB(s+s’)

2 taneBs’
—p? taneBsseéeBs| 1- —— | | |.
taneB(s+s’)

ienL et 00’ )

( taneBs+taneBs’ —

taneBBs
taneB(s+s’)

(A13)

We are now left with only the transverse components everywhere except in the exponents. To write them in a useful form,
we turn to Eq.(5.15 and take another derivative with respeciptt . From the fact that this derivative should also vanish on
p integration, we find

.. 1 ieB af tarf eBs’ B (ALY
P.PL taneBs+taneB3s’ 2 9 taneBs+taneBs’ |
In particular, then,
) 1 . tarf eBs’ 5
pi= —ieB+ KTl (A15)
taneBs+ tane3s’ taneBs+ tanes’

It then simply follows that

_ tarf eBs 5
—ieB+ kT |. (A16)
taneBs—+ taneBs’

12 . 1
* taneBs+taneBs’

We now put these into EqA13). After some straightforward but cumbersome algebra, it is found that the terms invélving
cancel out, and we are left with

ie¢(p,5)+<b(p’,8’)

dZ

taneBstane3s’ )

taneBs+taneBs’ —
taneB(s+s’)

cimies[ 2oy o[ as[ as
=ie _ s| ds
1 (277)477 P o

eP(Ps)+@(p".s") taneBs tane3s’
- taneBs’ se¢eBs’| 1- —— | —taneBssec¢eBs| 1— —— | ¢ |.
taneBs+tane3s’ taneB(s+s’) taneB(s+s’)
(A17)
It is straightforward to show that this can be written in the following form:
C 'BJ d'p ()jwdfwd’df(gg) (A18)
=le — S S+ ’ l
: 2wt P98 g
where
taneBstanelss’ '
FED= ( taneBs+taneBs’ - ——————— | e (P (@S) (A19)
taneB(s+s’)

with s ands’ related to¢ and ¢ through Eq.(A11).
We can now change the integration variableg tand . This gives
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2 dp
'eBl (2m)?

o[ e aow-ogRen

2| d*p
(2m)*

7- (p)f dff dé[dg{@)(% OFED— (6= HFED)

20 d*p
= (2m )477 (p)f dé F(&.9), (A20)

since the other term vanishes at the limits. In this integrgrdé, which means’ =0. Looking back at the definition of,
we find

F(§,§)=exp{(l)(p,§—l§ ]tan 2. (A21)

This is an even function g, whereasn_(p) is odd. Thus, the expression vanishes on integrating pver
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