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Faraday effect: A field theoretical point of view
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We analyze the structure of the vacuum polarization tensor in the presence of a background electromagnetic
field in a medium. We use various discrete symmetries and crossing symmetry to constrain the form factors
obtained for the most general case. From these symmetry arguments, we show why the vacuum polarization
tensor has to be even in the background field when there is no background medium. Taking then the back-
ground field to be purely magnetic, we evaluate the vacuum polarization to linear order in it. The result shows
the phenomenon of Faraday rotation, i.e., the rotation of the plane of polarization of a plane polarized light
passing through this background. We find that the usual expression for Faraday rotation, which is derived for
a non-degenerate plasma in the non-relativistic approximation, undergoes substantial modification if the back-
ground is degenerate and/or relativistic. We give explicit expressions for Faraday rotation in completely
degenerate and ultra-relativistic media.@S0556-2821~99!07618-3#
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I. SCOPE AND OUTLINE OF THE PAPER

It is well known that electromagnetic wave propagati
through a medium in an ambient magnetic field suffers F
aday rotation; i.e., the plane of a plane polarized light rota
as it travels through the medium in the magnetic field. T
amount of this rotation is derived in various texts on elect
magnetic theory@1# and plasma physics@2# with the assump-
tions that the medium consists of non-relativistic and n
degenerate electrons and nucleons.

Faraday rotation is extensively used in a variety of sit
tions, including astrophysical and cosmological ones@2,3#.
In such situations, either of the aforesaid assumptions a
the medium may not be valid. For example, for comp
stars, the plasma is likely to be degenerate. In the very e
universe, when the temperature was high, the assumptio
non-relativistic plasma is bound to break down. Motivat
by such situations, we reinvestigate this problem. For a g
eral framework, the formalism of quantum field theo
proves to be helpful. The aim of this paper is to use a qu
tum field theoretical formalism to calculate Faraday rotat
in different kinds of media.

The paper is organized as follows. In Sec. II, we introdu
the vacuum polarization tensor and find its most gene
form in a background medium and in the presence of a g
eral electromagnetic field, consistent with Lorentz and ga
invariances. Calculation of the vacuum polarization ten
requires the electron propagator, which is discussed in
III. We summarize there how Schwinger’s proper-tim
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propagator in a constant magnetic field is modified in
presence of a background medium. In Sec. IV, we show h
some discrete symmetries help us constraining some of
form factors appearing in the vacuum polarization. Follo
ing this, we set up the calculation in Sec. V. Starting fro
the basic Feynman rules, we arrive at an expression for
polarization tensor that is explicitly gauge invariant. In Se
VI, we derive the expression for Faraday rotation per u
length in terms of the components of the polarization tens
Then in Sec. VII, we provide explicit results for differen
kinds of backgrounds. This is the section which contains
essential results of the paper. The non-relativistic and n
degenerate case is shown in Sec. VII C, where we obtain
result usually quoted in textbooks. In Secs. VII D and VII
we find results for a completely degenerate medium and
ultra-relativistic one. Finally, we present our conclusions.

II. FORM FACTORS IN THE POLARIZATION TENSOR

The classical action of a free electromagnetic field
given by

A52
1

4E d4xFlr~x!Flr~x!. ~2.1!

In the momentum space, this can be written as

A5E d4k

~2p!4L, ~2.2!

whereL is the momentum-space Lagrangian, which can
obtained by taking Fourier transforms in Eq.~2.1!:
©1999 The American Physical Society14-1
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L52
1

2
k2g̃lrAl~k!Ar~2k!, ~2.3!

where

g̃lr5glr2
klkr

k2 . ~2.4!

Once quantum corrections are added, one obtains m
quadratic terms in the Lagrangian. These are represente
the vacuum polarization tensorPlr . In other words, after
the quantum corrections are put in, the quadratic part of
Lagrangian becomes

L5
1

2
@2k2g̃lr1Plr~k!#Al~k!Ar~2k!. ~2.5!

Owing to gauge invariance,Plr satisfies the conditions

klPlr~k!50, krPlr~k!50. ~2.6!

In addition, Bose symmetry implies

Plr~k!5Prl~2k!. ~2.7!

In the vacuum, the tensorPlr depends only on the mo
mentum vectork. Thus, the most general form forPlr is
given by

Plr5P0@k2glr2klkr#, ~2.8!

where P0 is a Lorentz-invariant form factor, which ca
therefore depend only onk2. The important point is that the
tensor structure forPlr is exactly the same as the tens
appearing in the classical Lagrangian. Thus, this correc
term can be done away with by a redefinition of the pho
field Al.

In a nontrivial background, this is no more the case.
thoughPlr still has to satisfy Eq.~2.6!, the form given in
Eq. ~2.8! does not follow. This is becausePlr can now
depend, apart from the momentum vectorkl, on various vec-
tors or tensors which characterize the background medi
Even for a homogeneous and isotropic medium, there is
extra vector in the form of the velocity of its center of mas
ul. The most general form forPlr in the presence of thes
two vectors has been discussed in the literature@4#.

Our interest lies in a more complicated background wh
in addition to the medium there is also an external elec
magnetic fieldBlr . We will work in the weak field limit
throughout. This means that the background field will
considered feeble, and we will keep only linear terms in
For the moment, we will not specialize to magnetic field
We will keep the discussion general, with a medium char
terized by the vectorul and a background electromagne
field Blr in arbitrary direction.

There are many independent tensors constructed ou
kl, ul and Blr which satisfy Eq.~2.6!. For future conve-
nience, we categorize them into several groups. In the
group, there is only one tensor which depends only on
vectorkl, viz.,
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Plr
(0)[g̃lr5glr2

klkr

k2 . ~2.9!

This, of course, is the same tensor which appears in
~2.8!.

In the second group, we include tensors constructed o
of k andu. These are@4#

Plr
(1)5ũlũr /ũ2, ~2.10!

Plr
(2)5«lrstk

sut, ~2.11!

where

ũl5g̃lsus. ~2.12!

Next, we bring in tensors constructed fromk andB only,
without any occurrence ofu. Using the shorthand

~k•B!l5ksBsl , ~2.13!

we can write these as

Plr8~1)5k2Blr2kl~k•B!r1kr~k•B!l , ~2.14!

Plr8~2)5«lrstk
s~k•B!t. ~2.15!

One might think that there might be additional terms o
tained by replacingBlr by B̃lr , where

B̃lr5
1

2
«lrstB

st. ~2.16!

But it is straightforward to show that no other independe
term arises this way.

Finally, to write down the tensors where all three ofk, u
andB occur, we employ a notation (u•B)l defined in a way
similar to (k•B)l . Then the tensors are

Plr9~1)5k•uBlr2ul~k•B!r1ur~k•B!l ~2.17!

Plr9~2)5«lrstk
s~u•B!t ~2.18!

Plr9~3)5ũl~k•B!r2ũr~k•B!l ~2.19!

Plr9~4)5ũl~k•B!r1ũr~k•B!l ~2.20!

Plr9~5)5ũlg̃rt~u•B!t2ũrg̃lt~u•B!t ~2.21!

Plr9~6)5ũlg̃rt~u•B!t1ũrg̃lt~u•B!t ~2.22!

Plr9~7)5ũl~k•B̃!r2ũr~k•B̃!l ~2.23!

Plr9~8)5ũl~k•B̃!r1ũr~k•B̃!l ~2.24!

Plr9~9)5ũlg̃rt~u•B̃!t2ũrg̃lt~u•B̃!t ~2.25!

Plr9~10)5ũlg̃rt~u•B̃!t1ũrg̃lt~u•B̃!t. ~2.26!
4-2
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FARADAY EFFECT . . . PHYSICAL REVIEW D 60 105014
A collection of gauge invariant tensors which can app
in the vacuum polarization were listed by Pe´rez Rojas and
Shabad@5#. They have tensors involving more than o
power of the background field, which we are not interes
in. As for the tensors linear inBlr , they list what we call
Plr8(1) , Plr9(1) and Plr9(8) , but none of the rest. We conclud
that the most general form forPlr consistent with Eq.~2.6!
and keeping only terms linear in the external electromagn
field is given by:

Plr5(
i

P ( i )Plr
( i )1(

i
P8( i )P8lr

( i )1(
i

P9( i )P9lr
( i ) ,

~2.27!

where in each case, the sum overi runs over the appropriat
set of values. The coefficients of the tensors are form fact
which we discuss now.

First, notice that the tensorsPlr
(0) andPlr

(1) do not depend
on the background electromagnetic field. The form fact
associated with these terms are related to the dielectric
stant and the magnetic permeability of the medium@6#. The
tensorPlr

(2) also does not involve the background electrom
netic field. It is, however, parity asymmetric, and accou
for natural optical activity@4#. Since our aim is to discus
Faraday rotation which is also a type of optical activity, w
will disregard any natural optical activity. Thus, we assu
that the form factor associated withPlr

(2) is zero for our me-
dium.

The form factors are Lorentz invariant quantities. Th
they can depend only on the Lorentz invariant combinati
of kl, ul andBlr . Sinceu251, we can obtain the following
invariant parameters, keeping at most one factor of the ba
ground field:

v[k•u, ~2.28!

K[Av22k2, ~2.29!

b[klurBlr , ~2.30!

b̃[klurB̃lr . ~2.31!

In addition, of course, the form factors can depend on
Lorentz scalars which define the background medium, e
the chemical potentialm and the temperature 1/b.

Since we are interested only in linear terms in the ba
ground field, we have discarded higher order invariants
Bmn . Moreover, notice that the tensorsPlr8( i ) and Plr9( i ) are
linear in the background field. Thus, for their co-efficien
we can neglect the field dependence for the sake of con
tency. Thus, for our purpose, the form factorsP8( i ) and
P9( i ) should be treated as functions ofv and K only, and
possibly ofm andb. We summarize this statement as

P̂ ( i )5P̂ ( i )~v,K,m,b!, ~2.32!

whereP̂ ( i ) stands for theP8( i )’s and theP9( i )’s. In Sec. IV,
we will see how arguments about various discrete sym
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tries restrict the form factors in significant ways. The co
straint of hermiticity of the action implies

Plr~k!5Prl* ~k!, ~2.33!

whose consequences will be mentioned at the end of Sec

III. THE ELECTRON PROPAGATOR

At the 1-loop level, the vacuum polarization tensor aris
from the diagram in Fig. 1. The dominant contribution to t
vacuum polarization comes from the electron line in t
loop. To evaluate this diagram, one needs to use the elec
propagator within a thermal medium in the presence o
background electromagnetic field. Rather than working w
the complicated expression for a general background fi
we will specialize to the case of a purely magnetic fie
Once this is assumed, the field can be taken in thez-direction
without any further loss of generality. We will denote th
magnitude of this field byB.

Ignoring at first the presence of the medium, the elect
propagator in such a field can be written down followin
Schwinger’s approach@7–9#:

iSB
V~p!5E

0

`

dseF(p,s)G~p,s!, ~3.1!

whereF andG are defined below. To write these in a com
pact notation, we decompose the metric tensor into t
parts:

gab5gab
i 2gab

' , ~3.2!

where

gab
i 5diag~1,0,0,21!,

gab
' 5diag~0,1,1,0!. ~3.3!

This allows us to write, for any two objectsq andq8 ~includ-
ing theg-matrices! carrying Lorentz indices,

q•qi85q0q082q3q38 , ~3.4!

q•q'8 5q1q181q2q28 . ~3.5!

Using these notations, we can write

F~p,s![ isS pi
22

tan~eBs!

eBs
p'

2 2m2D2eusu, ~3.6!

FIG. 1. One-loop diagram for vacuum polarization.
4-3
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G~p,s![
eieBssz

cos~eBs! S p” i2
e2 ieBssz

cos~eBs!
p”'1mD

5~11 isz taneBs!~p” i1m!2~sec2 eBs!p”' ,

~3.7!

where

sz5 ig1g252g0g3g5 , ~3.8!

and we have used

eieBssz5coseBs1 iszsineBs. ~3.9!

The expression forF can have an additional gauge d
pendent phase factor, but it does not contribute to the po
ization tensor. Usually, one writess instead ofusu in Eq.
~3.6!. It is equivalent since in the range of integration ind
cated in Eq.~3.1! s is never negative. However, the definitio
of F(p,s) is useful in this form for what follows next.

In the presence of a background medium, the ab
propagator is modified to@10#

iS~p!5 iSB
V~p!2hF~p!@ iSB

V~p!2 iS̄B
V~p!#, ~3.10!

where

S̄B
V~p![g0SV

†~p!g0 ~3.11!

for a fermion propagator, andhF(p) contains the distribution
function for particles and antiparticles:

hF~p!5Q~p•u! f F~p,m,b!1Q~2p•u! f F~2p,2m,b!.
~3.12!

Here,Q is the step function, which takes the value11 for
positive values of its argument and vanishes for nega
values of the argument, andf F denotes the Fermi-Dirac dis
tribution function

f F~p,m,b!5
1

eb(p•u2m)11
. ~3.13!

Putting in the form ofSB
V(p) from Eq.~3.1!, we obtain the

additional term in the propagator to be

SB
h~p![2 ihF~p!@SB

V~p!2S̄B
V~p!#

52hF~p!E
2`

`

dseF(p,s)G~p,s!,

~3.14!

with F(p,s) andG(p,s) defined in Eqs.~3.6! and ~3.7!.
It is straightforward to see that whenB50, the propagator

in Eq. ~3.1! reduces to
10501
r-

e

e

iS0
V~p!5E

0

`

dsexp@ is~p22m21 i e!#~p”1m!

5 i
p”1m

p22m21 i e
, ~3.15!

which is the vacuum propagator. In the same limit, the ba
ground dependent part reduces to

S0
h~p!522pd~p22m2!hF~p!~p”1m!. ~3.16!

IV. DISCRETE SYMMETRIES AND THE FORM
FACTORS

Before embarking on diagram calculations, let us disc
some of the symmetries of the problem, which will help
constraining some of the form factors.

A. Bose symmetry

This symmetry was already discussed in Eq.~2.7!, viz.,
under the operation

k→2k, l↔r, ~4.1!

the vacuum polarization tensor must be invariant.
Since the tensorsP8lr

( i ) change sign under the operation
Eq. ~4.1!, this implies that the associated form factors sho
satisfy the condition

P8( i )~v,K,m,b!52P8( i )~2v,K,m,b!. ~4.2!

On the form factors denoted byP9, the effect is more com-
plicated since some of the tensorsPlr9 are symmetric under
the operation of Eq.~2.7! and some are antisymmetric. I
general, let us write

Prl9
~ i )~2k!5ni Plr9~ i )~k! ~4.3!

where, by inspection, we see that

ni5H 11 for i 51,2,3,6,7,10,

21 for i 54,5,8,9.
~4.4!

The associated form factors should then satisfy the relat

P9( i )~v,K,m,b!5niP9( i )~2v,K,m,b!. ~4.5!

To apply this symmetry on the unprimed form factor
one has to take into account the dependence of these
factors onb andb̃ defined in Eq.~2.31!. Thus, this symmetry
implies

P ( i )~v,K,m,b,b,b̃!51P ( i )~2v,K,m,b,2b,2b̃!

for i 50,1 ~4.6!

P (2)~v,K,m,b,b,b̃!52P (2)~2v,K,m,b,2b,2b̃!.
~4.7!
4-4
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B. Charge conjugation symmetry

In calculating the form factors, we are neglecting any c
rections coming from weak interactions. In fact, these c
rections occur only at the 2-loop level, and therefore
anyway irrelevant for the 1-loop calculation that we will b
performing. In this case, the interactions are all purely el
tromagnetic, and so they obey charge conjugation~or C!
symmetry. The conclusion of this symmetry is thatPlr

should be invariant under the substitutions

m→2m, Bst→2Bst . ~4.8!

Said in words, it means that if we calculate the vacuum
larization in a medium with a certain background field,
should be the same as that obtained in a charged conjug
medium with an opposite background field. This means t
in the vacuum polarization, there are terms even in the ba
ground field and even inm, or odd in both. The terms linea
in B, which we will calculate, should therefore be odd inm.
This implies that the primed form factors, which are ind
pendent of the background medium, i.e., do not containm,
must vanish. This is known from the direct calculations
the polarization tensor in absence of a medium@8,11#.

C. A symmetry of the propagator

Lastly, notice that in the calculation ofPlr , the center-
of-mass velocityul and the chemical potentialm can enter
only through the functionhF in the propagator. Further, from
Eq. ~3.12!, notice thathF is invariant under the following
transformation:

u→2u, m→2m. ~4.9!

So the vacuum polarization must also obey this symmet
For the form factors, this fact has an interesting con

quence. Some of the tensorsP9lr
( i ) are even inu, some are

odd. Accordingly, the form factors would satisfy

P9( i )~v,K,m,b!5ni8P9( i )~2v,K,2m,b!, ~4.10!

where

ni85H 21 for i 51,2,3,4,7,8,

11 for i 55,6,9,10.
~4.11!

Using the consequence ofC-symmetry, we can conclud
that, for terms linear inB,

P9( i )~v,K,m,b!52ni8P9( i )~2v,K,m,b!. ~4.12!

In order that this is consistent with Eq.~4.5!, we must
have

nini8521 ~no sum on i !. ~4.13!

Using Eqs.~4.4! and~4.11!, then, we obtain that the doubly
primed form factorsP9(4), P9(6), P9(8) andP9(10) vanish.

The analysis performed in this section is valid for gene
electromagnetic fields in the weak limit. Although we ha
used the propagator in the presence of a purely magn
10501
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field, substituting the more general form does not affect
arguments. We can now discuss how this analysis can
simplified if the background field is a purely magnetic fie
in the rest frame of the background medium, i.e., ifusBst

50. Among the field-dependent tensors,Plr9(2) , Plr9(5) and
Plr9(6) vanish in this case. Therefore, in the final count, w
will have only four form factors associated with the fiel
dependent tensors, viz.,P9(1), P9(3), P9(7) andP9(9). Since
all of these are antisymmetric tensors, the hermiticity con
tion of Eq.~2.33! implies that the corresponding form facto
must be purely imaginary in the dispersive part.

In addition, of course, we can have the form factorsP (0)

andP (1), whereasP (2) vanishes because of our assumpti
of vanishing natural optical activity.

V. CALCULATION OF THE 1-LOOP VACUUM
POLARIZATION

A. Identifying the relevant terms

The amplitude of the 1-loop diagram of Fig. 1 can
written as

iPlr~k!52E d4p

~2p!4
~ ie!2 tr@gliS~p!griS~p1k!#,

~5.1!

where the minus sign on the right side is for a closed ferm
loop, andS(p) is the propagator given in Eq.~3.10!. This
implies

Plr~k!52 ie2E d4p

~2p!4
tr@gliS~p!griS~p1k!#.

~5.2!

From Eq. ~3.10! we see that there are two terms in th
propagator — the vacuum partSB

V(p) and the other part
which involves the background matter distribution. If we i
sert two such propagators in Eq.~5.2!, we will obtain four
terms.

The term obtained from theSB
V factor in both propagators

is the contribution in the vacuum. It has no importance to o
discussion of background effects. The terms with the dis
bution function factor from both propagators contribut
only to the absorptive part of the vacuum polarization, wh
we do not discuss in this article. Thus we are left with t
terms in which we use the vacuum part of one propaga
and the background dependent part of the other. These te
contribute to the partPlr9 in the notation of Sec. II. Thus

Plr9 ~k!52 ie2E d4p

~2p!4
tr @glSB

h~p!griSB
V~p8!

1gliSB
V~p!grSB

h~p8!#, ~5.3!

where, for the sake of notational simplicity, we have use

p85p1k. ~5.4!
4-5
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Substitutingp by 2p8 in the second term and using th
cyclic property of traces, we can write Eq.~5.3! as

Plr9 ~k!52 ie2E d4p

~2p!4
tr@glSB

h~p!griSB
V~p8!

1grSB
h~2p!gliSB

V~2p8!#. ~5.5!

Using now the form of the propagators from Eqs.~3.1! and
~3.14!, we obtain

Plr9 ~k!5 ie2E d4p

~2p!4E2`

`

dseF(p,s)E
0

`

ds8eF(p8,s8)

3@hF~p!tr„glG~p,s!grG~p8,s8!…

1hF~2p!tr„grG~2p,s!glG~2p8,s8!…#.

~5.6!

B. Extracting the gauge invariant piece

In order to discuss Faraday effect, we need only the te
in the vacuum polarization tensor which are odd inB. Notice
that the phase factors appearing in Eq.~5.6! are even inB.
Thus, we need only the odd terms from the traces. Perfo
ing the traces is straightforward, and the odd terms come
to be

Olr~k!54ie2E d4p

~2p!4
h2~p!

3E
2`

`

dseF(p,s)E
0

`

ds8eF(p8,s8)Rlr ~5.7!

where we have introduced the notation

h2~p![hF~p!2hF~2p!, ~5.8!

and

Rlr5«lr03m
2~ taneBs2taneBs8!

1«lra ib i
~pã ip8b i taneBs2p8ã ipb i taneBs8!

1«lra ib'
~pã ip8b' taneBs sec2 eBs8

2p8ã ipb' taneBs8 sec2 eBs!. ~5.9!

In writing this expression, we have used the notation ofpã i,
for example. This signifies a component ofp which can take
only the ‘‘parallel’’ indices, i.e., 0 and 3, and is moreov
different from the indexa appearing elsewhere in the e
pression.

Using now the definition ofp8 from Eq. ~5.4!, we can
write

Rlr5Rlr
(1)1Rlr

(2) , ~5.10!

where
10501
s

-
ut

Rlr
(1)5«lra ib

@pã i taneBs1p8ã i taneBs8#kb ~5.11!

and

Rlr
(2)5 taneBs@m2«lr031«lra ib i

pã ipb i

1«lra ib'
~pã ipb'1pã ip8b' tan2 eBs8!#

2taneBs8@m2«lr031«lra ib i
p8ã ip8b i

1«lra ib'
~p8ã ip8b'1p8ã ipb' tan2 eBs!#.

~5.12!

Obviously, Rlr
(1) is gauge invariant, i.e.,klRlr

(1)5krRlr
(1)

50. To simplify the other term, we first note that the com
binations in which the parallel components ofp and p8 ap-
pear in Eq.~5.12! can be simplified by using the following
identity:

«lra ib i
aã ibb i52«lr03a•bi , ~5.13!

which holds for any two vectorsa and b. For the terms
involving the transverse compoents, we make an impor
observation. We will be performing the calculations in t
rest frame of the medium wherep•u5p0. Thus, the distri-
bution function does not depend on the spatial compone
of p. In the last term of each square bracket of Eq.~5.12!, the
integral over the transverse components ofp has the follow-
ing generic structure:

E d2p'eF(p,s)eF(p8,s8)3~pb' or p8b'!. ~5.14!

Notice now that

]

]pb'

@eF(p,s)eF(p8,s8)#5
2i

eB ~ taneBs pb'1taneBs8p8b'!

3eF(p,s)eF(p8,s8). ~5.15!

However, this expression, being a total derivative, sho
integrate to zero. Thus we obtain that

taneBs pb'82taneBs8p8b', ~5.16!

where the sign ‘‘8 ’’ means that the expressions on bo
sides of it, though not necessarily equal algebraically, yi
the same integral. This gives

pb'82
taneBs8

taneBs1taneBs8
kb',

p8b'8
taneBs

taneBs1taneBs8
kb'. ~5.17!

Using these identities, we can rewrite Eq.~5.12! in the
following form:
4-6
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Rlr
(2)5«lr03@~m22pi

2!taneBs2~m22pi8
2!taneBs8#

2«lra ib'

taneBs taneBs8

taneB~s1s8!
~p1p8!ã ikb'

5Rlr
(2a)1«lr03R

(2b), ~5.18!

where

Rlr
(2a)52«lra ib

taneBs taneBs8

taneB~s1s8!
~p1p8!ã ikb,

~5.19!

R(2b)5~m22pi
2!taneBs2~m22pi8

2!taneBs8

2
taneBs taneBs8

taneB~s1s8!
~p1p8!•ki . ~5.20!

The term calledR(2b) does not vanish on contraction wit
arbitrarykl. This term is not gauge invariant, and therefo
must vanish on integration. In the Appendix, we show t
this is indeed true, so that the contribution to the vacu
polarization tensor which is odd inB is given by

Olr~k!54ie2E d4p

~2p!4
h2~p!

3E
2`

`

dseF(p,s)E
0

`

ds8eF(p8,s8)@Rlr
(1)1Rlr

(2a)#

54ie2«lra ib
kbE d4p

~2p!4
h2~p!

3E
2`

`

dseF(p,s)E
0

`

ds8eF(p8,s8)F pã i taneBs

1p8ã i taneBs82
taneBs taneBs8

taneB~s1s8!
~p1p8!ã iG .

~5.21!

In order to perform this integration, we need to introdu
further assumptions, which will be done in Sec. VII.

VI. DISPERSION RELATIONS

A. Magnetic field-independent terms in the vacuum
polarization

The contributions to the vacuum polarization tensor de
mines the equation of motion of a photon through the m
dium. We have already found the magnetic field-depend
terms in the vacuum polarization. To obtain the dispers
relations, however, we need also the terms which do
depend on the background magnetic field. These terms
necessarily even inB and therefore did not appear inOlr .
Here we outline the calculation of these terms.

Rather than going back to Eq.~5.6! which contains also
the even terms inB, we use directly the propagators atB
10501
t

r-
-
nt
n
ot
re

50 given in Eqs.~3.15! and ~3.16! to write the background
dependent dispersive terms as

Plr8 ~k!52 ie2E d4p

~2p!4
tr@glS0

h~p!griS0
V~p8!

1gliS0
V~p!grS0

h~p8!#. ~6.1!

Changing, as before, the integration variable in the sec
term, we obtain

Plr8 ~k!52e2E d4p

~2p!3

d~p22m2!

~p1k!22m2

3tr@gl~p”1m!hF~p!gr~p”1k”1m!

1gr~p”2m!hF~2p!gl~p”1k”2m!#

524e2E d4p

~2p!3

d~p22m2!

k212p•k

3@2plpr1plkr1klpr2glrp•k#@ f 11 f 2#.

~6.2!

In writing the last form, we have putp25m2 in the denomi-
nator and in the trace, in view of the presence of t
d-function, and used

hF~p!1hF~2p!5 f 11 f 2 , ~6.3!

where we introduce the notations

f 65 f F~ up0u,7m!. ~6.4!

The expression presented in Eq.~6.2! has a particularly
simple form in the long wavelength limit, i.e., in the limit o
K50. In this case, one can show that theP00 component
vanishes, whereas theP i j components are proportional to th
unit matrix. Since the same is true for the tensorg̃mn , we can
summarize all this information by writing

Plr8 ~k!5v0
2g̃lr , ~6.5!

wherev0 is called the plasma frequency, and is given by

v0
254e2E d3p

~2p!32Ep
S 12

P2

3Ep
2D @ f 11 f 2#, ~6.6!

whereP5upW u.

B. Dispersion relations and Faraday rotation

We have thus obtained expressions for the vacuum po
ization tensor. For the rest of this paper, we will consid
only photon propagation along the direction of the magne
field. Thus, in Eq.~5.21!, the indexb can only take the
values 0 or 3. Since the indexa appearing in that equation
had also parallel components only, the antisymmetric ten
now implies thatPlr9 vanishes unless bothl andr are trans-
verse, i.e., have values 1 or 2. Thus, the only non-vanish
components ofPlr9 are
4-7
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P129 ~k!52P219 ~k!52 ia, ~6.7!

wherea has to be determined by evaluating the integral
Eq. ~5.21!. The contributions which come from the mediu
even without the magnetic field have been given in Eq.~6.5!.

To obtain the dispersion relations, we go back to the
grangian given in Eq.~2.5!. The equation of motion obtaine
from this Lagrangian is

@~2k21v0
2!g̃lr1Plr9 #Ar50. ~6.8!

In view of the Lorentz gauge conditionkrAr50, this can
also be written as

@~2k21v0
2!glr1Plr9 #Ar50. ~6.9!

For the transverse components of the photon fieldAr, the
above equation implies the following condition:

S 2k21v0
2 2 ia

ia 2k21v0
2D S A1

A2
D 50. ~6.10!

The eigenvalues of the matrix give the dispersion relatio

k25v0
26a ~6.11!

for the normalized eigenmodes

~A16 iA2!/A2, ~6.12!

which describe circularly polarized states of the photon.
Writing k2 asv22K2, we obtain the following solutions

for K:

K65Av22v0
2F17

a

v22v0
2G1/2

. ~6.13!

For small magnetic fields,a will be small, and then we can
write

K65Av22v0
2F17

a

2~v22v0
2!G , ~6.14!

which gives, for the difference of the two solutions,

DK5
a

Av22v0
2

. ~6.15!

For a plane polarized electromagnetic wave propaga
with a frequencyv, this means that, after travelling a di
tance l, the plane of propagation will be rotated by a
amount lDK. Thus, the rate of rotation of the polarizatio
angleF is given by

dF

dl
5DK5

a

Av22v0
2

. ~6.16!
10501
-

g

This is the Faraday rotation per unit length. The magnitu
of this quantity is thus determined once we determinea and
v0.1

In what follows, we find out whatv0 and a are for dif-
ferent types of backgrounds, and consequently what is
amount of Faraday rotation sufferred by plane polarized li
in such backgrounds. We will do this for three differe
kinds of backgrounds, depending on the relative importa
of the temperatureT51/b, the chemical potentialm, and the
electron massme .

VII. RESULTS FOR DIFFERENT BACKGROUNDS

A. General observations and assumptions

Before starting with any of the specific cases, let us n
some general features and some common assumptions i
calculations. We will perform all the calculations assumi
that the background medium is at rest in the frame in wh
we have a purely magnetic field. In other words, for t
4-vectoru, the only non-zero component is the time comp
nent, which has the value unity. All other components
zero.

As already mentioned, we will consider photon propag
tion along thez-direction ~positive or negative!. In addition,
we will take the long wavelength limit, i.e.,K!v. This im-
plies that in Eq.~5.21!, the term with the external factor o
k05v dominates over the one withk35K.

Finally, we will assume the magnetic field to be small,
that we can use only the linear terms inB. To this order,
then, the dominant contribution of Eq.~5.21! is given by

Plr9 ~k!58ie3B«lr30vI , ~7.1!

where

I 5E d4p

~2p!4
h2~p!p0E

2`

`

ds eis(p22m2)2eusu

3E
0

`

ds8eis8(p822m2)2eus8uFs1s82
ss8

s1s8
G . ~7.2!

Here, since the other factor is already linear inB, we have
usedB50 in the exponents. Moreover, we have made
further assumption thatv!me , which enables us to neglec
k0 compared top0 in the factor inside the square bracket.
the notation introduced in Eq.~6.7!, we can write

a58e3BvI . ~7.3!

The expression forI can be put in a convenenient form
For this, we first define the integral

1Instead ofv0, one can also use the index of refractionr, defined
by the relationr 5K/v. In absence of the magnetic field, i.e., whe
a50, Eq. ~6.11! gives r 2512v0

2/v2. We can use this relation to
eliminate v0 from the formulas above and express everything
terms ofr, i.e., the refractive index in absence of the magnetic fie
4-8
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Jn5E d4p

~2p!4
h2~p!p0E

2`

`

ds eis(p22m2)2eusu

3E
0

`

ds8eis8(p82 2m2)2eus8us8n. ~7.4!

If we now rewrite the factor in the square brackets in E
~7.2! in the following form,

s1s82
ss8

s1s8
5~s1s8!2s81

s82

s1s8
, ~7.5!

it is easily seen that

I 5 i
]

]~m2!
J02J11 i E d~m2!J2 . ~7.6!

The task is now to evaluateJn for n50,1,2. Thes integral in
Jn gives

E
2`

`

ds eis(p22m2)2eusu52pd~p22m2!, ~7.7!

whereas thes8 integral gives

E
0

`

ds8eis8(p822m2)2eus8us8n5
i n11n!

~p822m2!n11
. ~7.8!

Writing now

d~p22m2!5
1

2Ep
@d~p02Ep!1d~p01Ep!#, ~7.9!

and using

h2~p!5sgn~p0!@ f 1~p!2 f 2~p!# ~7.10!

which follows from the definitions in Eqs.~3.12! and ~5.8!,
we obtain

Jn5 i n11n! E d4p

~2p!3

p0 sgn~p0!

2Ep
@d~p02Ep!1d~p01Ep!#

3
f 12 f 2

~k212p0v22PK cosu8!n11
. ~7.11!

Here,km[(v,KW ), P[upW u andu8 is the angle betweenKW and
pW . We have denoted this angle byu8 in order to emphasize
that, for a general direction of propagation, it can be differ
from the angleu which is measured from thez axis, i.e.,
from the direction of the magnetic field which we have
ready specified. For our specific case of photon propaga
along the magnetic field direction, however, we will putu8
5u.

We further notice that we can neglect the termk2 because
of our assumptions stated earlier. Thus,
10501
.

t

n

Jn5
i n11n!

8 E d3p

~2p!3~ f 12 f 2!F 1

~Epv2PK cosu!n11

1
1

~2Epv2PK cosu!n11G . ~7.12!

The azimuthal integration gives a factor 2p, and theu inte-
gration can be exactly performed here. This shows thatJn
50 for even values ofn. This conclusion can be avoide
only if v and/or K becomes comparable tome . Since we
have already assumed otherwise, we obtain

I 52J1 , ~7.13!

i.e.,

I 5
1

8E d3p

~2p!3~ f 12 f 2!F 1

~Epv2PK cosu!2

1
1

~2Epv2PK cosu!2G . ~7.14!

In general, however, even this integral cannot be p
formed analytically. So, in order to discuss the amount
Faraday rotation caused by this term, we need to take
course to some specific limits.

B. Connection with the form factors

It is of interest to see how our final result forPlr9 con-
forms to the general form obtained on the basis of gauge
Lorentz invariance, a subject that was discussed in Sec. II
the end of Sec. IV, we remarked that in our case, we can
at most four independent form factors, viz, those associa
with the field-dependent tensorsPlr9(1) , Plr9(3) , Plr9(7) and
Plr9(9) . However, the simplifying assumptions made abo

imply that all components ofũl vanishes to the leading or
der. Thus, onlyPlr9(1) survives in this case. Moreover, sinc
we choose the direction of propagation to be along the m
netic field, (k•B)l50 as well. Thus, from Eq.~2.17!, we
find that the tensorPlr9(1) , in the case of our choice, is simpl
proportional toBlr . This is what the explicit calculation o
Eq. ~7.1! tells us as well.

C. A non-relativistic background

Suppose we have a gas of electrons and positrons w
all the particles are non-relativistic. In this case, we can
Ep'me within the integral, and neglect all occurrences ofP
since it is small compared toEp . Then we obtain

I 5
1

4me
2v2E d3p

~2p!3~ f 12 f 2!

5
1

8me
2v2 ~ne2nē!. ~7.15!

Using Eqs.~7.3! and ~6.16! now, the Faraday rotation pe
unit length is obtained to be
4-9
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dF

dl
5

e3B
me

2vAv22v0
2 ~ne2nē!, ~7.16!

wherev0, in this limit, can be simplified by using the gen
eral formula in Eq.~6.6!:

v0
25

2e2

me
E d3p

~2p!3@ f 11 f 2#5
e2

me
~ne1nē!. ~7.17!

If the background contains no positrons, the express
for Faraday rotation can be written as

dF

dl
5

v0
2vc

vAv22v0
2

, ~7.18!

wherevc[eB/me is called the cyclotron frequency.

D. A degenerate background

We now consider a degenerate electron backgroun
zero temperature. The distribution functions are now giv
by

f 15H 1 for P<PF ,

0 for P.PF ,

f 250, ~7.19!

wherePF is called the Fermi momentum. As we know, a
though the temperature is zero, the electrons need no
non-relativistic in this case, since Pauli exclusion princip
would require all electrons to be in different states, and
some of them can be at very large momentum. The num
density of electrons in this case is given by

ne52E d3p

~2p!3 f 15
PF

3

3p2 . ~7.20!

In this case, we first calculate the plasma frequency. P
forming the angular integrations of Eq.~6.6!, this can be
written in the form

v0
25

e2me
2

p2 E
0

xF
dxS x2

~11x2!1/2
2

x4

3~11x2!3/2D , ~7.21!

where x is the integration variable defined byP/me , and
xF5PF /me . The integration can be performed in a straig
forward manner by substitutingx5 sinhz, and the result is

v0
25

e2me
2

3p2

xF
3

A11xF
2

5
e2

3p2

PF
3

EF
~7.22!

whereEF is the Fermi energy,

EF5APF
21me

2. ~7.23!

We now evaluate the integralI. Starting from the expres
sion in Eq.~7.14! for the general case, we perform the ang
lar integrations to obtain
10501
n

at
n

be

o
er

r-

-

-

I 5
1

16p2KE0

`

dPP~ f 12 f 2!F 1

Epv2PK
2

1

Epv1PKG
5

1

8p2v2E
0

`

dP
P2

Ep
2 ~ f 12 f 2!, ~7.24!

for K→0.
Using now the distribution functions appropriate for th

case from Eq.~7.19!, we obtain

I 5
1

8p2v2@PF2me tan21~PF /me!#, ~7.25!

where the result of the arctan function is restricted within
domain 0 top/2. From this, we obtain the Faraday rotatio
per unit length to be

dF

dl
5

v0
2vc

vAv22v0
2
•

3meEF

PF
3 @PF2me tan21~PF /me!#.

~7.26!

It can be easily checked that ifPF!me , in which case the
background is non-relativistic, the formulas derived for th
case reduce to those derived in Sec. VII C.

E. An ultra-relativistic background

Let us now discuss the case where the temperatureT of
the background is much higher than the electron mass. In
case, we can putEp'P. Then, using the dimensionless in
tegration variabley5P/T, the plasma frequency can be e
pressed as

v0
25

2e2

3p2b2E
0

`

dy yS 1

exp~y2bm!11

1
1

exp~y1bm!11D . ~7.27!

This integration can in fact be performed exactly. In the fi
integration, use the new integration variabley85y2bm. In
the second one, usey85y1bm. The resulting integrations
can then be written in the form

v0
25

2e2

3p2b2 F E
0

`

dy8
2y8

ey811
1E

2bm

0

dy8
y81bm

ey811

2E
0

bm

dy8
y82bm

ey811
G . ~7.28!

The first integration can now be performed by expressing
denominator as a geometric series. The other two can
combined after substitutingy8→2y8 in the second integra
tion, and the final result is

v0
25e2F 1

9b2 1
m2

3p2G . ~7.29!
4-10



n
in

t

e
po
ca

ng

tion
e-

he
in

s
ia,
se.
te,

all,

ger
n in
s

FARADAY EFFECT . . . PHYSICAL REVIEW D 60 105014
For the integrationI, we start from the general expressio
in Eq. ~7.24!. Using similar substitutions as before, we obta

I 5
1

8p2bv2E
0

`

dyS 1

exp~y2bm!11
2

1

exp~y1bm!11D
5

m

8p2v2 . ~7.30!

The Faraday rotation is obtained from Eqs.~6.16! and~7.3!:

dF

dl
5

e3Bm

p2vAv22v0
2

. ~7.31!

If we put b→`, the results obtained for this case reduce
those obtained in Sec. VII D withme50.

As for the previous cases, one may want to express th
results in terms of the number densities of electrons and
itrons in the medium rather than in terms of the chemi
potentialm. The connection comes from the relation

ne2nē52E d3p

~2p!3 ~ f 12 f 2!. ~7.32!

Again, the integration can be performed exactly, followi
the steps described above, and the result is
10501
o

se
s-
l

ne2nē5
m

3b2 1
m3

3p2 . ~7.33!

One can use this to expressm in terms ofne2nē .

VIII. CONCLUSIONS

We have thus shown that the amount of Faraday rota
depends very significantly on the characteristics of the m
dium in which the background magnetic field rests. If t
medium consists of non-relativistic particles only, we obta
the formula given in Eq.~7.18!. Usually, we assume that thi
formula should be applicable for low-temperature med
since the particles should be non-relativistic in this ca
However, we show that if the medium is strongly degenera
the formula changes. ForPF!me it still agrees with the
non-relativistic result as it should. But forPF@me the
change is drastic, and Faraday rotation becomes very sm
as can be seen from Eq.~7.26!. Similarly, if the medium is so
hot that the kinetic energies of the particles are much lar
than their masses, we obtain a different result, as show
Eq. ~7.31!. But it is interesting to note that in all the case
discussed, the quantitya has the same dependence onv,
viz., that it is inversely proportional tovAv22v0

2.
r is
APPENDIX: PROOF OF GAUGE INVARIANCE

In the text, we claimed that the contribution coming fromR(2b) must vanish in order that the vacuum polarization tenso
gauge invariant. Here, we justify this claim. This contribution is proportional to the following integral:

C5E d4p

~2p!4
h2~p!E

2`

`

ds eF(p,s)E
0

`

ds8eF(p8,s8)R(2b)

5E d4p

~2p!4
h2~p!E

2`

`

dseF(p,s)E
0

`

ds8eF(p8,s8)

3F ~m22pi
2!taneBs2~m22pi8

2!taneBs82
taneBs taneBs8

taneB~s1s8!
~p1p8!•kiG . ~A1!

Using the definition of the exponential factorF(p,s) from Eq. ~3.6!, we notice that

m2 taneBseF(p,s)eF(p8,s8)5taneBsS i
d

ds8
1~pi8

22sec2 eBs8p'8
2!D eF(p,s)eF(p8,s8), ~A2!

m2 taneBs8eF(p,s)eF(p8,s8)5taneBs8S i
d

ds
1~pi

22sec2 eBsp'
2 ! DeF(p,s)eF(p8,s8). ~A3!

This implies that we can write

C5C11 iC2 , ~A4!

where
4-11
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C15E d4p

~2p!4
h2~p!E

2`

`

dseF(p,s)E
0

`

ds8eF(p8,s8)

3F ~pi8
22sec2 eBs8p'8

22pi
2!taneBs2~pi

22sec2 eBsp'
2 2pi8

2!taneBs82
taneBs taneBs8

taneB~s1s8!
~p1p8!•kiG , ~A5!

C25E d4p

~2p!4
h2~p!E

2`

`

dsE
0

`

ds8S taneBs
d

ds8
2taneBs8

d

dsD eF(p,s)eF(p8,s8). ~A6!

Let us first consider the contributionC2. Performing thes8 integration in the first term and thes integration in the second
it can be written as

C25E d4p

~2p!4
h2~p!FeF~p8,s8!U

0

`E
2`

`

ds taneBs eF(p,s)2eF(p,s)U
2`

` E
0

`

ds8 taneBs8eF(p8,s8)G . ~A7!

The second term vanishes sinceeF(p,s) vanishes at both limits due to the term2eusu in it. The other exponential survives onl
at the limit s850, and gives

C25E d4p

~2p!4
h2~p!E

2`

`

ds taneBs eF(p,s)

50, ~A8!

where the last step follows on performing the integration overp, sinceF(p,s) is an even function ofp andh2(p) is odd.
Let us now look at the other contribution,C1. Separating out the terms involving parallel components from those invol

transverse components, we write

C15E d4p

~2p!4
h2~p!E

2`

`

dsE
0

`

ds8exp@F~p,s!1F~p8,s8!#

3F ~pi8
22pi

2!S taneBs1taneBs82
taneBs taneBs8

taneB~s1s8!
D 1p'

2 tan,eBs8 sec2 eBs2p'8
2 taneBs sec2 eBs8G . ~A9!

From the definition ofF, it follows that, apart from the small convergence factors,

F~p,s!1F~p8,s8!5
i

2
~s1s8!~pi8

21pi
222m2!2

i

2
~s2s8!~pi8

22pi
2!2

i

eB ~ taneBs8p'8
21taneBs p'

2 !

5
i

eB @~pi8
21pi

222m2!j2~pi8
22pi

2!z2p'8
2 tan~j2z!2p'

2 tan~j1z!#, ~A10!

where we have defined two new parameters

j5
1

2
eB~s1s8!,

z5
1

2
eB~s2s8!. ~A11!

Thus,

ieB d

dz
eF(p,s)1F(p8,s8)5eF(p,s)1F(p8,s8)@pi8

22pi
22p'8

2sec2~j2z!1p'
2 sec2~j1z!#. ~A12!

Using this, we can rewrite Eq.~A9! as
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C15E d4p

~2p!4
h2~p!E

2`

`

dsE
0

`

ds8F S taneBs1taneBs82
taneBs taneBs8

taneB~s1s8!
D ieB d

dz
eF(p,s)1F(p8,s8)

1eF(p,s)1F(p8,s8)H p'8
2 taneBs8 sec2 eBs8S 12

taneBs

taneB~s1s8!
D 2p'

2 taneBs sec2 eBsS 12
taneBs8

taneB~s1s8!
D J G .

~A13!

We are now left with only the transverse components everywhere except in the exponents. To write them in a use
we turn to Eq.~5.15! and take another derivative with respect topa'. From the fact that this derivative should also vanish
p integration, we find

p'
a p'

b8
1

taneBs1taneBs8
F2

ieB
2

g'
ab1

tan2 eBs8

taneBs1taneBs8
k'

ak'
b G . ~A14!

In particular, then,

p'
2 8

1

taneBs1taneBs8
F2 ieB1

tan2 eBs8

taneBs1taneBs8
k'

2 G . ~A15!

It then simply follows that

p'8
28

1

taneBs1taneBs8
F2 ieB1

tan2 eBs

taneBs1taneBs8
k'

2 G . ~A16!

We now put these into Eq.~A13!. After some straightforward but cumbersome algebra, it is found that the terms involvk
cancel out, and we are left with

C15 ieBE d4p

~2p!4
h2~p!E

2`

`

dsE
0

`

ds8F S taneBs1taneBs82
taneBs taneBs8

taneB~s1s8!
D d

dz
eF(p,s)1F(p8,s8)

2
eF(p,s)1F(p8,s8)

taneBs1taneBs8
H taneBs8 sec2 eBs8S 12

taneBs

taneB~s1s8!
D 2taneBs sec2 eBsS 12

taneBs8

taneB~s1s8!
D J G .

~A17!

It is straightforward to show that this can be written in the following form:

C15 ieBE d4p

~2p!4
h2~p!E

2`

`

dsE
0

`

ds8
d

dz
F~j,z!, ~A18!

where

F~j,z!5S taneBs1taneBs82
taneBs taneBs8

taneB~s1s8!
D eF(p,s)1F(p8,s8), ~A19!

with s ands8 related toj andz through Eq.~A11!.
We can now change the integration variables toj andz. This gives
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C15
2i

eBE d4p

~2p!4
h2~p!E

2`

`

djE
2`

`

dz Q~j2z!
d

dz
F~j,z!

5
2i

eBE d4p

~2p!4
h2~p!E

2`

`

djE
2`

`

dzF d

dz
$Q~j2z!F~j,z!%2d~j2z!F~j,z!G

52
2i

eBE d4p

~2p!4
h2~p!E

2`

`

dj F~j,j!, ~A20!

since the other term vanishes at the limits. In this integrand,z5j, which meanss850. Looking back at the definition ofF,
we find

F~j,j!5expH FS p,
2j

eBD J tan 2j. ~A21!

This is an even function ofp, whereash2(p) is odd. Thus, the expression vanishes on integrating overp.
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