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Computations in large N matrix mechanics
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The algebraic formulation of largd matrix mechanics recently developed by Halpern and Schwartz leads
to a practical method of numerical computation for both action and Hamiltonian problems. The new technique
posits a boundary condition on the planar connected pgrtsnamely, that they should decrease rapidly with
increasing order. This leads to algebraic and/or variational schemes of computation which show remarkably
rapid convergence in numerical tests on some many-matrix models. The method allows the calculation of all
moments of the ground state, in a sequence of approximations, and excited states can be determined as well.
There are two unexpected findings: a ladyexpansion and a new selection rule for certain types of interac-
tions.[S0556-282099)02422-4

PACS numbsds): 11.15.Pg, 11.15.Tk

[. INTRODUCTION In ordinary quantum mechanics systems of several inter-
acting bodies are most commonly attacked from the Schro
LargeN matrix mechanic§l] differs from ordinary quan- dinger equation in coordinate space, using the direct product

tum mechanicgQM) in that the canonical commutator basis|d;,q,, - - - ,0q). That approach is not available in the
. large N reduced Hilbert space because of the noncommuta-
ilp.gl=1, (1.1) tivity of the operatorsp,,. A basis of states in this reduced

space may be written as
in the one-matrix case, is replaced by the relation
w)=¢"|0 1.
i[,¢]=[0)(0] 1.2 Iwy=¢710; (9
) ) ) where we use the “word” notation for ordered products of
where|0) is the ground state in the reduced Hilbert spacegperators
The original matrix-valued coordinatess, r,s=1, ... N,
are represented by the single operatoin this reduced Hil- V= b bm, W=mymy---m,, m=1,...d
bert spacg2]. 12 n (1.6
The solution of the one-matrix largé Hamiltonian prob- '
lem with an arbitrary potentiaV(¢) was given some years
ago[3], and only a couple of two-matrix problems in the
action formalism have previously been soldd5].
. The many-matrix prob_lem mvolves severraxbncommu'g- The new approximation technique presented in this paper
ing operators¢ér, and their ponjugate _momen.ta. Following lies close to the Heisenbefgatrix) formulation rather than
Halpern and Schwarti], this system is described at equal_ the Schrdinger (wave function formulation and makes use

times by a symmetric free algebra which involves a pair ; ; ; .
(tilde and no tilde for each Hermitian operator of the set of polynomiald,(¢) introduced in Ref[7]:

and we writef w]=n for the length of the wordv. See Ap-
pendix A for a collection of relevant definitions and formu-
las.

[bm: bl =[Tm,7n]=0, mn=1,...d (139 [1_Bm¢m+x(ﬁ)]_l:§ B Tu(¢) (1.79

[T, b0l =i[ 7m, bn]= Smr 0)(O) (1.3b
X(m:; B, Xo=0, (0|Ty(¢)|0)=5y0

éml0)= bm[0), %m|0> = | 0) (1.30 (1.7b
and the ground state energy is given by where theg,, are a dummy set ofnoncommuting param-
L eters and the numbels§, were identified as the planar con-
—nN2/0l = n _ nected parts defined in earlier diagrammatic studi&s
Eo=N%0| 2 m§=:1 T+ V(¢)|0) (1.4 Various properties of thesk,, are given in Appendix A,
including their relation to the ordinary momentg,,
where (¢) refers to the set of operatof#,,}. We shall use =(0|¢"|0) of the ground state.
the summation convention in what follows. The core idea of the present work is to truncate the set of
theseX’s,

*Email address: schwartz@physics.berkeley.edu set X,,=0 for all [w]>n, (1.8
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TABLE I. X, andZ, for the F= ¢* action problem.

n 2 4 6 10 20

X .544331 —.0925926 .0403208 .0143736 —.00311591
Z, .544331 .500000 .544331 .816497 3.95996
XnlZ, 1.00000 —.185185 .074074 .017604 .000787

and solve theénow finite) set of algebraic equations, calling this computational program, and a related method for calcu-
this the “nth order approximation.” Then increasestep by  lating excited states is given in Sec. IX. Several appendixes
step, and see whether the numerical results appear to codiscuss further details and possible extensions of this work.
verge. This is an intuitive-experimental approach for now,

since we have no mathematical proof that this method should ||, FIRST TEST: ONE-MATRIX ACTION PROBLEM

work.

With even a small number of thé¢'s determined, one can ~ We start with a simple problem: a one-matrix action at
approximate all the moments of the ground state and th@rge N. As given in Ref.[7] for the quartic action
accuracy of these results increases systematically as one pro-#°), we have the following equation for the connected
ceeds to higher orders of approximation. The excited state@artsX,:
of a Hamiltonian system are also amenable to this method.

The recent algebraic developments by Halpern and
Schwartz[6,7] provide a wealth of formal definitions and
relations for many-matrix problems, unifying the study of
both action and Hamiltonian systems. These start with thevhich leads to the recursion formula
definitions of generalized creation and annihilation operators

X(X+1)2—B2X2—%B4:0, ngoﬁ”xn (2.2)

in the reduced Hilbert space, 1 nz o [ne2
' _ > Gna— 22 X, 22 XqXn-p-q+2Xn-p |,
Tl 0)=1Fm($)|0),  (O|mpn=—i(0|Fu(¢) (1.99 P a
Bn=Fn(¢$)+imn, Ba0)=(0[BL=0 (1.9b n=46,.... 2.2
B.BI=E, () (1.99 For one-matrix problems we replace the word laweby n
m=n—=mn ' =[w]. We can compare this with the Schwinger-Dyson
o~ equations for the ordinary momeng,=(0|¢"|0), which
Emn(#)[0)=2i[m,,Fn(¢)1/0) may be written as
(1.99
n
which is the interacting Cuntz algebidn the case of non- 27,1 4= E ZoZo-my  Zo=1 2.3

interacting harmonic oscillators, we hake, < é,,, and Egs.
(1.9b), (1.99 reduce to the original Cuntz algebka.

In the practical work of this paper there is a basic distinc-and only evem enter because of the parity symmetry in this
tion between the two types of problems. For action problemgroblem. If we have the value of,=Z, [which we know
we start out knowing the functior,,($) explicitly and this ~ from other analysis to be (2/%§], then we can compute all
lets us work directly with the algebraic equations for thethe higher ones from these recursion formulas. Table | shows
connected part¥X,, derived in Ref.[7] (see Sec. ¥ For some numerical results and we see that the r&titZ,, de-
Hamiltonian problems we do not kno®,,(¢) beforehand creases fairly rapidly as increases.
and so part of the method presented here involves a construc- Now we want to turn this process around and calculate the
tive representation of these operators, for which task we usealue of X, from the recursion formul#2.2) using the idea
the polynomialsT,,(¢#) (see Sec. Vi that X, should decrease rapidly at large-a sort of bound-

In Sec. Il we test the idea on a simple example: a oneary condition. That is, we considet, as an unknown pa-
matrix action problem. In Sec. Il we try to give some un- rameter and then search for that value that will allow us to
derstanding of why this method apparently works well.truncate Eqs(2.2) with X,.,=0, and then we step up the
Counting of the variables in many-matrix problems and mak-~value ofn and repeat the process. Table Il contains the re-
ing use of symmetry to keep things manageable is discusseallilts of this computation and we see that the residual error at
in Sec 1V, followed in Sec. V by some algebraic results for aeach level of approximation decreases quite rapidly as we
model action problem witldl interacting matrices. The plan increasen.
of attack for many-matrix Hamiltonian problems is set outin ~ We view this as a sort of eigenvalue problem for the
Sec. VI and numerical results for a set of model potentialconnected partX, and recognize a certain similarity here
are presented in Sec. VII. We note not only the extremelywith the familiar procedure for numerical integration of the
rapid convergence found in these examples but also an umne-dimensional Schdinger equation in some given poten-
expected selection rule. Section VIII presents more details dfial. While that other problem involves a continuous variable
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TABLE Il. ComputeX, by truncation:X,,, ,=0.

n+2 4 6 8 10 20
Approx. X, .500000 .534522 .541429 .543344 .544321
Error —.044331 —.009809 —.002902 —.000987 —.000010

#(x) obeying a linear(differential) equation our current With these encouraging results, we go on to study the
problem involves a discrete s¥t, obeying a nonlineatal-  problems of many matrices in largé action and Hamil-
gebraig equation. tonian systems.

Ill. WHY SHOULD THIS METHOD WORK?
IV. MANY MATRICES: COUNTING THE VARIABLES

To understand what is going on here it may help to con-

) . -
sider the ordinary moments With d matrices, the number of words of lengthis d

and this number grows very rapidly. If we have some sym-
metries in the action or the Hamiltonian, then we can reduce
Zn:<0|¢n|0>:f dap(q)q" (3.1 the number of independent variabl¥g, that we have to
handle at each level of approximation. In this paper we con-
for a one-matrix problem. Thesg,, for a typical ground sider model problems with the following invariance proper-
state densityp(q), are a rather monotonous sequence ofties of the ground stat®).
numbers. The infinite set of coupled equations for these mo- Parity symmetryChange the sign ap,, (and,) for any
ments (Schwinger-Dyson equations in one languagen- m.
tains all the information about the ground state; but one Permutation symmetrjMake any permutation among the
would not try to truncate this infinite system of equations byd labelsm,n, ... .
setting theZ,, equal to zero after some cutaff=n*. In addition, there is the general invariance of ¥yg(as of
(In earlier work[9] on moment equations for the one- and the trace operation in the unreduced spaaeder a cyclic
two-body Schrdinger equation, the asymptotic behavior of permutation of the letters in the wowd
these moments as— o« was inferred from the differential With these conditions, the number of independép's is
equation for the wave function and this allowed a backwardyreatly reduced—to what we shall call a set of “basic
iteration proceduré. words” at each leveh—as shown in Table IlI.
Now, by contrast, observe the definition of the planar con- At each level of approximatioitsignified by the maxi-
nected parts, again for the one-matrix problem: mum word lengthn) we shall deal with a number of basic
words(the dimensiorD of our parameter spage~rom Table
Xn1= (0| To( $)]0)= f dap(@aTuia (2 L) 00 ordes, Do1a135h. .« ford=5
) D=1,4,13,72...; ford=9, D=1,4,13. ... Thefirst task
where the polynomial3, have the property of the computer program is to make a table ofdllwords at
eachn, identify each word with an equivalence class accord-

(0[Tn(¢)[0)=0, n>0. @3 ing to the symmetries described above and assign one mem-
Clearly, theX,, are just an algebraic combination of tig. ~ Per of each class as a basic wavd, i=1, ... D.
But Eg. (3.3 tells us that the polynomial§,, are oscillatory
W|th|n_ the domain of integration, and this suggests _that the V. MANY-MATRIX ACTION PROBLEMS
X,, given by(3.2), can be thought of as something like the
Fourier coefficients of the density(q). Therefore, if the A. General algebraic machinery

ground state is reasonably smooth and the polynonigls For action problems, we have the dual basis system of

are reasonably “appropriate,” then we would expect that theequations derived by Halpern and Schwditk
higher Fourier coefficientgthe X,,) could decrease rapidly.

This is the motivation to try a truncation scheme on Xis.

. . TABLE llI. t of d"— i .
A further advantage of th&'s is that they are directly Count of d™— basic words

sensitive to the interactions in many-matrix problems. In _ _ _ _
- . . . n d=2 d=3 d=5 d=9
Ref.[7] it was shown that in many-matrix problems without
interactions, the&X,, vanish if there is any mixing of letters in 2 4—1 9-1 25-1 81—1
the wordw. 4 16—3 81—3 6253 65613
Once one has determined, approximately, even a smalle 64—4 729-9 15625-9 531441-9

number of theX’s, this allows one to give approximate val- 8 25612 656141 390625-59
ues forall of theZ’s in any one- or many-matrix problem by 10  1024-28  59049-257

use of the general algebraic relatioh2) between the gen- 12 4096-94

erating functions for these two sets of parameters.
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bm=Bm[ 1+ X(B"]
(5.1a

B! =Gm(#)~ Emn(#)Bn,

X(BH=>, xzB™=> X,B™. (5.1b
w w

Here, the operatorgm,B;rn obey the simple Cuntz algebra

BB = 6mn (5.2)

and the role of these operators is to generate an infinite set of

coupled algebraic equations for the connected péyts as
will be shown by example below. The functio®,=2F,

andE,,,, defined earlier in Eq91.99, (1.9d), are immedi-
ately known once we specify the acti@ Then we shall

proceed with the sequence of truncation approximations,

generalizing the one-matrix example of Sec. Il.

B. Model problem
We take for our model problem here tdematrix action

1 d
S=~"IN m%l Tr([ b, #nl)? (5.3

in the unreduced Hilbert space. This gives us the reduce

operators

Gm<¢>=n§m (Pmbndn+t bndndm—2bndmdn)

(5.4a9
Emm(d’):n;m (PndntXnn) (5.4b
Emzn(@) = dmdn—2¢n0n (5.49

where we note that thiS has the symmetries mentioned in

the previous section and this leads to the simplificatips
=0, Xmn= OmnX11-
Equations(5.139 now look like

d
Bl= > A(BoBoBrX-+ Brn(BaBrX —X11) ~ 2B1BrBrX)

n#m=

PHYSICAL REVIEW D60 105010

(annp+ Xnnmp_ 2Xnmnp)B1|c;

+ (Xmnnpart Xnnmpar— 2Xnmnpq) B BIBY

'BIB} (5.6

where the usual constraint on the sum¥m) is understood.

The second and third lines have twés and their first few
terms are

2X11meB;+ (lelxmpqr+ anxmnqr+ mexnnqr

- 2anxnmqr+ Xnnpqur+ XnmpoP(nr

~ 2Xmnpnr) B/B{B} (5.7
and the fourth line, with thregs, starts off as
(XnpXngXmet XmpXngXnr = 2XnpXmgXnr) BT BIB] =8

Collecting the linear terms iB" gives us the equation

1=2(d~1)(X1100~ X1p15+ X5y (5.9

where we have used the symmetry properties to list the basic

words: (11) athn=2 and (111),(1122,(1212) atn=4.

This equation is exact and leads to our low@sicond order
pproximation: we set aK’s with word length greater than
equal to zero and we get

)(]_1z 1/\/2(d_ 1)

Next, we collect the cubic terms iB'. For our fourth
order approximation we drop aX,,’s with [w]>4:

(5.10

0=Xy{(2d—2+ €mpt emr)xmpqr_ 2empxmqrp
- 26mrxmrpq+ ( 5mp5qr+ 5mr5pq)[(d - 1)X1122+ ><1111
—Xmmaal} + X34 SpqOmr€mpt SqrOmpEma— 28pr Sma€mpl
(5.11

whereep,=1—6,4. These equations are now evaluated for
varying choices of the labets,p,q,r, which must be paired.
We find

(5.129

X111+ X112=0  for m=p=q=r

Xy110+3(d—1)Xq105— 2X 1915+ X5, =0 for m=p#q=r

(5.12H
+ + —
(BB XBmX + BB XBX— 2B B XB,X) Xy 1y AXopirt X210 for M=qp—r.
+ (BuXBpXB X+ BXBoXBpX — 2B, XBXBX)}. (5.129
(5.5  The solution of this set of equatioiifor d+#2) is
This system of equations is equivalent to the Schwinger- 1 5
Dyson set of equations but it is packaged to emphasize the Xi111= = X127 3 %1217 3575, X1 (5.13

role of theX’s and it leads directly to our sequence of ap-
proximations. The first line of terms in E¢5.5) has only one

X and its first few terms are

and, putting these results back into E§.9), we find the
fourth order approximation foX;:
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—1/2

(5.19

Xllz[Z(d—l) 1- 3d—+2

Ford=2, Egs.(5.12 are indeterminate, but for this case
a scaling argument leads to the conclusion that the system is
not bounded.

PHYSICAL REVIEW D 60 105010

d
E: (6.2a

-bll—\

d 2
Va($)=7 ( 2 ¢ ) (6.20)

It was very pleasing to find, in the fourth order calculation
above, that the number of independent equations was just
equal to the number of unknowns and we found a unique
solution. Will this circumstance continue at higher orders of
approximation? | have no general answer. 1

One should program a computer to carry the above se- Vi()=—= > [ b dnl?
guence of approximations to higher order; only algebraic 8 m3n=
work is required at each step. | have not done this yet, giving (6.20
priority to the more difficult Hamiltonian problems, reported
in Sec. VI.

1 d
Vad)=7 X $ndh (6.29

or, if desired, any linear combination of them. The first po-
tential, which is just the non-interacting case, is used for
. verification of the computational procedure. The third and
C. Large d expansion fourth potentials have “flat directions,” which make them

From the result above one is led to speculate that thigarticularly interesting. (Will the calculations converge
truncation sequence of approximations may be related to Bicely, indicating a bound state, or will they nptll four
“large d” expansion. The algebraic calculations describedPotentials have the symmetrigsarity and permutationde-
above have been carried out to the sixth order, with 9 equascribed in Sec. IV. The additional S@( symmetry ofV,
tions in 9 unknowns, and solved in the approximation tha@ind V, is not used at the outset but will be noted in the

d>1. This leads to the following result: results.
The following subsections outline the method and further
. 85 5 details are given in Sec. VIII and in Appendixes A and B.
(X~ ?=2(d=1)| 1= g = = 5 +0(d 7).

(5.15 B. Construction of F,,(¢)

A central construct of our previous wofl,7] is the re-
We do not have a systematic theory of such a laidge duced operatoF (), defined in Eq(1.99. We will repre-
approximation but the following crude attempt may be in-sent this quantity by a finite linear expansion in the polyno-
structive. Look back at the formula f@,,, Eq.(5.48, and  mials T,,(¢),
replace the operator paib,¢, by its ground state average,
which is Xy;. This butchereds,, is then Fm(¢):2 R\(Nm)TW(¢), 6.3
w

Gm~2w¢m, a)Z(d—l)Xll (51@
at each level of approximation and then see how to deter-
mine the coefficientR. (See Sec. VIII A for more details.
For any reduced operatérwhich depends on thé's one
has the identity

which is the formula for a system of noninteracting harmonic
oscillators. The oscillator resuX,,,= Smn/(2w) then gives
immediately the leading term in E¢.15. The higher order
terms in 1d are then expected to come from a perturbation
theory expansion about this oscillator approximation. Also, if
one looks at the computer results for the Hamiltonian prob-
lems(Sec. VII), one may discern a suggestion of more rapld
convergence for larger values df

2(0|A()F m()[0)=(0li[ 7. A($)]|0) (6.9

which is proved using the definition&l.99 and (1.30.
ChoosingA=T,,, and using the formulagA7) and (1.7b
this gives

VI. MANY-MATRIX HAMILTONIAN PROBLEMS O|T ) )|O 1 5 65
A. Choosing the model problems (OTw ($)Fm( £)10)= 27w '
We shall study the Hamiltonians far bosonic matrices,

. . . for any wordw’. We impose these relations on the approxi-
given in the unreduced Hilbert space as y P PP

mate expansiol6.3) and obtain

d
2 Tr(arpmm) + N Tr

m=1

\Y

¢
Jﬁ)l (6.1) % KW,,WRgva%éwf,m (6.6

I\)IH

with the following choices of the potential: where
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TABLE IV. Calculated values oE/d for potentialV,. TABLE VI. Computed results for the one-matrix problel.
2 1 429 AT72 .5408 .6412 2 1 375 .50
4 4 42672 47035 .53921 .64007 4 2 3717 .5100
6 8,13 426672 4703152 .539189  .640058 6 3 .371638 .51057
8 2054  .42667093 47031461 8 4 .3716339 510611
10 48 426670885 10 5 .37163373 .5106136
Kuw w={(0| Ty () Ty()|0). (6.7) We program the computer to evaluate the ground state

energyE=E,/N? at thenth order approximation with any

This matrixK is numerically evaluated in terms of th€s,  assigned numerical values for the quantifigsfor [w]<n.
as detailed in Appendix B, and then we determine the expanFhe final step of this scheme is to vary this sed so as
sion coefficientsR from a straightforward matrix inversion to minimize E. This procedure is without mathematical jus-
calculation. Of course, we make this a squéed positive  tification; it just seems like the natural thing to do.
matrix, as detailed in Eqg8.5), (8.6). This completes the What is more, this part of the method is far from straight-
first part of the fitting problem, which we would term the forward as a computational task because the engrgy a
kinematic part since it assures that we are doing our best, &ery nonlinear function of the many variablés In Sec.
any given level of approximation, to represent the basic comVIll B we describe the techniques used to search for this
mutator algebrd1.3b. minimum. The numerical results are presented next.

Now we turn to the second part, which involves the dy-

namics of any particular Hamiltonian. VIl. NUMERICAL RESULTS

C. Minimizing the energy . The tables that_ follow give the outputs of the computa-
o tions and are designed to show at a glance the convergence
The kinetic energy of the ground state can be expressed & the approximation scheme described above.
1 1 Table IV shows the energyE(d) calculated for the po-
K.E./N2=§<O|7Tm7'rm|0>= §(O|FmFm|0> tential Va, f_or several values (_)ﬂ and at several Ie_vels of
approximation, and Table V gives the corresponding values
of X3,=(0[¢0).
R(ll) (6.8 We note how rapidly these numbers converge as one goes
down each column in the tables. For each step increasing the
order of approximation, we seeocme or two orders of mag-
nitude increase in accuracy, somewhat better Eothan for
. Also, one sees in these tables that the first approximation
(a “back of the envelope” computations accurate to about
1%. Such is the power of th¥. For comparison, Table VI
presents results for the one-matrix probletss 1 andV,,
computed by the same program. We see that the results of
(0] p2,2|0)= X105+ X2,  m#n the many-matrix computationéabové converge about as
(6.9b rapidly as the one-matrix results, although the amount of
work required to obtain the former is much greater.
(0l pmdPndm®nl0)=X121, mM#nN (6.90 Table VII gives theE/d results computed for the potential
V3 and one sees rapid convergence here as well.
where we have used the specified symmetries to write these In Table VIII we see the results for the potentid,
formulas in terms of the four basic words at the second angvhich has the greatest amount of “flat directions” among

L o= 1 (m)
:Z<O||[7TmrFm]|0>:ZRm =

N

using the methods and results of the previous subsection.
The potential energy of the ground state is expressed d
rectly in terms of theX’s using Eq.(A3b):

(O] ] 0y =X 1391+ 2X%; (6.99

fourth orders. our models. Here the rate of convergence is noticeably
TABLE V. Calculated values oKX, for potentialV,. TABLE VII. Calculated values oE/d for potentialV;.
n D d=2 d=3 d=5 d=9 n D d=2 d=3 d=5 d=9
2 1 437 .397 .347 .292 2 1 .236 .298 375 4725
4 4 4428 4010 .34912 .29365 4 4 .2312 .29470 .373207 471358
6 8,13 443007 401106 349171 .293667 6 8,13 .231036 .294625 3731823 47134965
8 20,54 14430170 14011103 8 20,54 .2310258 29462242
10 48 44301744 10 48 .23102504
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TABLE VIII. Calculated values oE/d for potentialV,. From an experimentainumerical perspective, but lack-
ing any formal proof, it appears that these types of ldige

n D d=2 d=3 d=5 d=9 problems are now solvable. It will be important for others to
5 1 24 30 38 47 repeat this work independently in order to verify these re-
4 4 224 289 370 a6g0  Sults.
6 8,13 .2232 .2890 .36944 468940
8 20.54,72 29299 28895 369431 VIIl. DETAILS OF THE COMPUTATIONAL PROGRAM
10 48 .222964 A. Full F,

The expressioni6.3) for F,,(¢) needs to be refined. The
slower than in the previous models, but still looks convinc-motivation for what follows comes from Appendix E in Ref.

ingly good. [6] where the ground state wave functigthe action is mod-
Also, in the several tables above, one sees a suggestion 8fed and one sees the consequent structufe;0f).

more rapid convergence for larger valuesdpfsee the dis- Corresponding to each basic word we want to have a

cussion of the large expansion in Sec. V C. group of terms[in the T,,(¢)] with a common coefficient

In another experiment, we studied the one-matrix problenRi(m) :

with potential

D
1 .9 Fin(#)=>, RM™F (). 8.0
V(¢)=5¢"— 7 ¢* (7.0 =1

For the first stage in this construction we define
as the parametey approached the valug8/3w where the
bound state disappears. The numerical procedure searching
to minimize the energy worked well until one approached
very close to this critical value; then it failed dramatically.

OtherX,, values are also produced in these computationsyhich, one can show, will guarantee that the flatness condi-
albeit with a somewhat lesser accuracy. Table IX has som#on [6]
of these for the potential,. 5 _

If there is rotational symmetry in the ground state, one [Tm,Fn(d)]—[7n,Fn()]=0 (8.3
can derive the following relation among the fourth orfés,

InTu( )= 2 Tu(e) (8.2

w~mw’

is satisfied.
X1111= 2X 1120+ X1212 (7.2 For the second stage we take all permutations among the
m=1, ... d letters that occur in the basic words.
and the data in Table IX satisfy this relation, as does the

corresponding data for the potentM),, which is also rota- 1
tionally invariant. Fni(4)= c(w(d—1)r Im E permute Ty, (¢)

There is another, unexpected, phenomenon seen in the perm (8.4)
data of Table I1X: namely, that,,;,=0. An increasing num-
ber of otherX,,’s also vanish when one looks at higher or- where the constant(w), the number of subcycles in the
ders. This result also appears for the potentiglbut not for ~ word w, is defined in Appendix A. The normalization con-

V,. When a particulaiX,, goes to zero, so does the corre- stants used above are convenient but not essential.

sponding coefficienR,,. The empirical rule is this: Write Now we construct the matrix elements
out the wordw and remove any pair of matching adjacent +
letters; repeat this process; tbg, will vanish unless this tij=(O0[Fmi(#)Fm;(¢)[0) (nosum 8.9

process can reduce the original word to null. | do not have a . N ' :
full explanation for this newly discovered selection rule butWhere these are Imea'r combinations of g, defined in
it appears to be related to the fact that these poterjsals Eq. (6.7) and Eq.(6.6) is replaced by

Egs. (6.2 and (6.20] involve only pairs ¢,,¢.,) of each D 1

operator. This new symmetry is particular to lafgenatrix >t jRJ(m):_5i . i=1,...D. (8.6)
mechanics with its noncommuting coordinate operators; it j=1 " 2"

would not arise in ordinary quantum mechanics. ) ) ) ) o
In order to save computing time in evaluating eachit is

TABLE IX. Computed values of some othi, for V.. important to find and to count repeated evaluations of the
sameK elements. | am not sure that | have done this job
Xw d=2 d=3 d=5 d=9 completely in my program.
X1111 -.0132659 -.0082358 -.004201 -.001798 .
B. Searching
X1122 -.0066329 -.0041179 -.002101 -.000899
X1212 0.0 0.0 0.0 0.0 The hardest part of this program is searching for the mini-

mum energy in the parameter space of the basic word con-
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nected partsX,, =X, i=1,...D. The first method used C. Constraints

fits a quadratic function td(x) evaluated aD (D +1)/2 The quantities<,, cannot be regarded as completely inde-

nearby points and then finds the extremum: pendent variables. For example, in the one-matrix case one
has

bi = E(Xi + 5)_ E(X),
(0l($*—(¢%))?10)=0 8.9

which leads to the inequalitf,= — (X,)?.
Using the general Schwarz inequality, we can write

ai,j:E(Xi+6rxj+5)_E(X)_bi_bj (87@

!

D
1
2 avi=b-ga. X =x-ovi.  (87H O| Ty T [0)[2<(0| Ty T | 0)(O0| Ty Tur[0)  (8.10)

) o ) ) ) for all wordsw andw’. This implies many constraints upon
If one is close enough to .the minimum, iterating this proce+ne allowed values of thx parameters as we search to mini-
dure should converge rapidly. For most of the data presenteghize the energy. It is unclear how best to implement these

in Sec. VI this method worked, although | am sure that more;onstraints; in the computations reported here | only checked
sophisticated technigues could have been more efficient. F@pat the matrix(8.5) satisfied

the largest size computation carried owt=5, n=8, D

=72) the time for each evaluation of the energy was about 1 It 12<t; it

min and each iteration of this search procedure took about 44

h on a common desktop microcomputer. at each evaluation. A failure of this test signals that the
Sometimes, however, this approach failed. For the potensearch has strayed into forbidden territory.

tial V4, beyond the sixth order calculatidfor d=2 andd An entirely different sort of constraint comes from the use

=3) this method diverged or led to impossible outpsee  Of @ purely realrather than complexrepresentation for the

the next subsectionWhat succeeded in those cases was ap operators. This implies that we should ha¥Xg= X},

second method: start by solving the numerical problem for=X,,. With the extensive symmetry of the problems studied

some other potentiglike V5 where the first search method here many of these constraints are automatic, but at the 10th

worked wel) and then gradually change a coupling constanorder ford=2 and at the 8th order fa>2, one finds some

g inserted into the potential and solve again, repeating irbasic words that do not satisfy~w. Rather than imposing

small steps until one arrives at the desired result. At eackhis constraint, we are satisfied to find that this equality

new step one can start efficiently with a sort of perturbationcomes out in the numerical results.

theory

i >0 Vi (8.11)

IX. EXCITED STATES

D 2
E a; J.AJ.=52‘9 E(X), X/ =X — (69)A; (8.9 After the ground state problem is solved, we consider
=1 9gIx; excited(adjoint states in the reduced Hilbert space:

which involves the matrix; ;, Eq. (8.7a, which one has H[0)=Eo|0), H|E)=E[E) 9.9)

already calculated at the previous step. ,

Just because the numerical search appears to converge"YQere it should be reme_mbe_red that we do not_know the
no proof that we have found the correct solution. In work on'0'M Of the reduced Hamiltoniad [6] but only that it gen-
the potentialV, for d=2 we had some results at the sixth €rates time translations. With the postulate
order ©=28) which first appeared well converged by the IE)=U]0) 9.2)
first searching method, but a later check on the rotational
symmetry (7.2 showed that this was a false solution. Re-for some operatot) we find the identity
peating this calculation using the second search method de-
scribed above led to satisfactory results. The fact that the (E—Eg)(0|UTU|0)=—i(0|UTU|0). 9.3
false energy value was off only in the fifth decimal place
stands as a cautionary note on this new numerical technique. Now we make the construction, as wighbefore,

Another numerical searching procedure is suggested by
the algebraic work in Sec. V. One could vary only the subset
of X,'s with [w]=n*, keeping all others fixed, then cycle
through the choices af*.

It should be repeated that this is all experimental workand we have, using EGA9),
that is in need of sound mathematical justification and guid-
ance. The multidimensional energy surfd€éx) is a very UZE ] 2
complicated nonlinear function of the parametersn fact, v "
there are singularities which may lie not far away from the
desired minimum. One can see the simplest example of thiwhere ther,, are as yet undetermined constants.
situation in the X 2 matrix equatior(8.6) for thed=1 case. We can now write Eq(9.3) as

U=§ FaTw(®), u*=§ ETa(¢) (9.4

TW1 7TmTW2 (9.9

W=W1mw,
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E—Eo=| > riLyw/rw

w,w’

. The relation betweel andZ is the following:
E rWKW,W,rW,)

w.w’ Z(j)=1+X(Z(j))- (A2)
(9.6
Examplegfor the case of parity symmetry, which means that

where the matrixK,, ,» was defined earlier and from Eq. each letter must appear an even number of times or else the

(A10) we have Z and X vanish are the following:
. 1 = =
Lw,w’E_i<0|TwTw’|0>: - z 2 Ku,v’Ku’,v- Zmn <0|¢m¢n|0> SmmnXmm (A3a)
2wty w' =u"mv’ 2 .
(9.7 Xmmmnit 2X5m if m=n=p=q,

Finally, vary the coefficients to find stationary values of Zmnpa= Znpgm™= XmmF’F’Jr_ XmmXpp If M=n#p=q,
Eqg. (9.6) and we get a traditional linear matrix problem, Xmnmn if p=m#n=q.
whereE —E, is an eigenvalue of the matrlxwith respect to (A3b)

the metric matrixK.
The evaluation of the matriK and thus also of is done
entirely in terms of theX,,'s, which were already solved with

For one-matrix problems the labelis replaced byn=[w].
For systems with the parity selection rule,

the ground state problem. Thyalthough | have not done To=1 T.= T.= d?—X Xo=(b2) (Ada
any explicit numerical calculations for excited statéise 0=l Ti=d, To=¢"=X;, X=(¢") (M43
complete spectrum dfl can be calculated. The lowest order Ta=¢%—20X,, Ta=d*— 32 X,— X4+ X2
approximationU =T(¢), givesE,,— Eo=1/(2X/nm) - ro 4 (Adb)
ACKNOWLEDGMENTS Xa=(pM—2X5, Xe=(¢®—6X,X,—5X3. (Adc)

| am grateful to M. B. Halpern for his advice on numerous  gejow are some new relations involviry ¢) that are

occasions and | also thank K. Bardakci and M. Rieffel foryseq in the present work. Start with the generating function
helpful conversations.

— _ — W
APPENDIX A: USEFUL FORMULAS OLD AND NEW Y=11~Bmdmt X(B))= % B "Tu(¢) (A5)
ingI.:urther conventions on the word notation are the foIIow-and calculate the commutator
w=0 is the null word. o~
i[7m, Y1=Y Bl 0)O]Y. (A6)

w=m means that the word consists of a single letten.
w~w’ means that the two words differ by at most a cy- g expand in powers o8 and match terms to find

clic permutation of their letters.
w~w’ means that the two words are equivalent under ~

some larger symmetry. [T Tw(P)]= > Tw,(9)|0)(0| Ty, (). (A7)
W;W,=W; means that the second word is appended to the W,

first word and the result is the third word.

: ~_ The other version of this relation,
w=umv means that the word is decomposed as indi-

cated. ~ ~ ~
w is the word formed by reversing the sequence of letters L7m ,TW]:W:%mWZ TW2|0><O|TW1’ (A8)
in the wordw.

c(w), the number of subcycles in the wong is defined  comes from Eq(D.11) in Ref.[7]. In a very similar way one
as the largest integdrsuch thatw=uX for any wordu with gets the time derivative equation
[u]>0.

Basic relations among(¢) and X are the following[7]: d
STw(d)= 2 Ty mmly (A9)
dt W=W1mw, 1 2
Trw=bmTw— Xow. T Ala
Y W:%wz My "2 (Alg) where we have usedd(dt) ¢,=m,. Combining the last
two equations leads to
Tum=Twdm— > Tw.X (Alb) d 1
R T OTw £ TWlO)==25 > 3 (0T, T,/[0)
dt 2 W=Umv ' =y’ my’
xmw:<0|¢mTw|o>:<0|TW¢m|o>:xwm (Alc) X<O|Tu’Tv|0> (A10)
T=Tw, X5=Xy. (Ald)  which is surprisingly simple.
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APPENDIX B: EVALUATING (T, T, R(M = oR(M) (C3)

We seek some recursive procedure for evaluation of th
matrix elements

KW,W’:<O|TW( ¢)TW’(¢)|O>:KW’,W (Bl)

in terms of the connected par¥,. Using Egs.(Ala) and
(Alb) it is relatively easy to find the following relations:

%pon comparison with Eq6.3). Next, we use the formal
expansion from Ref7],

(Eil)mn:% XumGw( @), (CH

to write the system of conditions

me,w’:Kw,mw’+ 2 XmuKW,v_ 2 vaKu,w’ <0|TW’(Emn(E71)nD_5m,p)|0>:0 (CSE»

w'=uv w=uv
(B2 m_ L
. N . > Xnpw{ 0| Ty Ty G| 0YRYT =5 Smpuro (C5b)
with the boundary counditions,, y=Kg,,= dy 0. This looks w,w”

very nice as a recursive computer program but it turns out to

be expensive: the time required grows exponentially as on Iggsoigzr?t?cnaf?:vé’ ?65 'gg SEgdBti)i’strrLaétLholz ::dnuoieasnt?oll(tagr%:
increases the size of the words. One could save time b (0.9

building a table of all th&K matrix elements one might need, 'Viast;l(l)'nd alternative scheme does awav with minimizin
but that requires enormous amounts of space. Y 9

An alternative method is given by the following formula: the energy and warks instead from the equations of motion

0] 0) = 1F m($)[0) = = V7r(4)]0). (C6)
Kw,w’: 2 E Ku,v’xvu' ) . . .
WUy =gy’ Using the representatiai.3) for F,,, this leads us to a new
system of equations
[v]>0, [u']>0, Kge=1 (B3)
which may be derived by combining EGAla) with the ex- _i% <0|TW’Tw|O>R\(Nm):<0|Tw'Vr’n|0> (€7
pansion
where the matrix elements on the left side are the quantities
L, w defined in Sec. IX. One now hawo sets of matrix
=2, XmuG B4 w’,w
P % maGul $) B4 equations—EQqg6.6) and(C7)—determining the same set of
expansion coefficients: call the solutiofs and R’. One
from Ref.[7] and also using the identity would now seek a set of values for the parame)éu;isthat
would make these two sets of solutions the same. Computa-
(O] TwTw Gur|0Y= > (0| Tu. Tw.|0) Suw uw. S’ w tionally, the way to do this would presumably be to minimize
w'=uv e o TR the error,
(BS)
which is similar to the Ward identities derived in Appendix error=§i: IR—R/|?, (C8)
E of Ref.[7].

The program uses E¢B3) to build a small table oK’s  and this defines another nonlinear search procedure. But
each time one of them is called for and the time for thiswhat weight function ought optimally to be put into this error
grows asn? rather than exponentially. Still, this is the main calculation?

time consuming part of the computations. A third alternative is to use the monomiafd’ instead of
the polynomialsT,,(#) as a basis for the fitting of the op-
APPENDIX C: SOME ALTERNATIVE COMPUTATIONAL eratorsF,, or U. This leads to much simpler formulas for the
SCHEMES matrix elements oK andL, expressed in terms of the mo-

_ _ " mentsZ,=(0| ¢#"|0). Then one would use the relati¢A2)
_ One alternative scheme is to start out by fitting the quant, ey aiuate each,, in terms of the chosen set of parameters
tity Emn(¢) instead ofF n(¢): X, . | believe that this approach has drawbacks in both speed
and numerical accuracy, but it should be explored.
Enn(#)=2 R Tu(6). (Cy
w APPENDIX D: IS THIS METHOD USEFUL

?
The definition(1.99 is IN ORDINARY QM?

With the apparent success of this approximation method

Emn(#)|0)=2i[7,,Fm()]/0) (C2) in large N matrix mechanics, one goes back to ordinary
guantum mechanics to see if we have a new useful calcula-
and using Eq(A7), we find tional technique. The formalism developed in R&f.is eas-
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ily modified to fit the standard commutation relation TABLE X. Results for the Schidinger equatioD5).
iLpi,a;]= &l (DI) n D E X1
with the following construction: 2 1 429 437
4 2 4217 4525
Y=eBu- XA T D2 6 3 4210 45512
% w(A) (D23 8 4 .42086 45571
X(B)=2 C,B"X, (D2b)  of g. Here we find that the rati¥,/Z, decays rapidly with n
o

for the largeN situation but this ratio grows very rapidly for
the ordinary quantum mechanics situation.
Z(B):<O|e/3iQi|0>:E CMBM<O|qM|O>_ (D2¢) We have also applied the method of this paper to the
2 guantum mechanical nonlinear oscillator,

Here u represents the unordered set of occupation numbers

{u;} (remember that they’s commute with one another :1 2 E 4
now) and H 2P (DS)
C,= 1/H (). (D3) Numerical results for the ground state are shown in Table X.
i The convergence seen here is fairly good, although not as
. . good as for the similar largd problem, shown in Table VI.
In the simple one-matrix case we have (The accuracy shown here is comparable to that obtained
o with conventional variational calculations of this Schro
Z(8)=2> B"Z,/n!, Zn=<0|qn|0>=f daq'p(q) dinger equation, at the same levels of approximation.
n=0 It must be reported, however, that the results shown in

(D4a)  Table X were not obtained easily. The problem of nearby
singularities in the energy surface, mentioned in Sec. VIII B,
was more severe in this ordinary quantum mechanics prob-

X('B):nzl BXn/nt=In[Z(B)] (D4D)  jem than in the largeN problems. For the calculations
throughD =3, | used the second searching method, starting
and we want to test whether the rai@/Z,, decreases rap- from the harmonic oscillator and then moving gradually to
idly with n, as we saw for the largd situation in Sec. Il. For the quartic potential in steps of size 1/8. Fo=4, | had to

the case of a harmonic oscillator, we have the same result idecrease the step size to 1/16, andDot 5, | gave up after

both theories; namelyX,, vanishes fon>2. failing in the search procedure with step size 1/32.

One simple(non-oscillatoy model that allows analytic In conclusion, | am still in doubt about the answer to the
calculations is a constant densjtyq) over some finite range question posed in the heading of this appendix.

oo
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