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ForN>2 we present static monopole solutions of the second ordeNEBPS Yang-Mills-Higgs equations
which are not solutions of the first order Bogomol'nyi equations. These spherically symmetric solutions may
be interpreted as monopole anti-monopole configurations and their construction involves harmonic maps into
complex projective spacegS0556-282(199)10318-1

PACS numbd(s): 14.80.Hv, 11.27+d

[. INTRODUCTION whereA;, fori=1,2,3, is the su{)-valued gauge potential,
with field strengthF;;=d;A;—d;A+[A; ,A;], andP is the

In this paper we study static monopole solutions of thesu(N)-valued Higgs field. Variation of the enerd®.1) gives
SU(N) Yang-Mills-Higgs equations in R3, in the the second order Yang-Mills-Higgs equations
Bogomol'nyi-Prasad-SommerfielBPS limit of vanishing
Higgs potential. It is well known that the solutions which DiD;®=0, DiF;=[D;®,®]. (2.2
correspond to the global minima of the Yang-Mills-Higgs » o
energy functional are all given by solutions of the simpIerThe boundary_ con_dltlons are that the energy is fl_nlte a_nd that,
first order Bogomol'nyi equationgl]. However, as proven N & chosen directiofsay along the;-axis), the Higgs field
by Taubeg2] using infinite dimensional Morse theory, there & infinity is a given constant diagonal matris(0,0)
are more solutions to the Yang-Mills-Higgs equations than— %o where
just the Bogomol'nyi ones. These solutions are saddle points
of the energy functional and correspond to monopole anti-
monopole configurations, which have an instability to anni-
hilation.

We construct a class of spherically symmetric SIY(
non-Bogomol’'nyi monopoles and calculate some of thei
properties, such as magnetic charges and energies. It is int
esting that this construction involves harmonic maps of the iR
plane intoCPN~1. Atiyah [3] has described a relationship Bk~—§G(§<1,$<2,§<3) (2.4
between instantons in two and four dimensions, and by re- 2r
duction a correspondence between SW( hyperbolic where the matrixG containsN—1 integers,n;, which are

Bogomolnyl monopoles and instantons of the two- the magnetic chargg€] and provide a topological charac-

i i PN-1 gj - ! i - . . . . .

dw_nensmnalL]P _~ sigma ”_‘Ode'- Our hon Bogomol Y1 SO° tarization of the monopole solution. Since we impose the

lutions are obtained by using the non-instanton solutions o . L : i
faming condition(2.3) along thexs-axis, then along this

CPN—-1 o

the CP . s’lgma modgl and so our results appgar to suggesly.c we have that
that Atiyah’s connection between Bogomol'nyi monopoles

and sigma model instantons may have some form of an eXG,=G(0,0,1) =diagn;,n,— Ny,

¢>o=diaQ)\1,7\2,...,)\N). (23)

Here we choose the ordering such thaz\,=...=\ and
becauseb e su(N) we have thaEiN: 1Ai=0.

] At large radius, the magnetic fiel&, = %SkijFij , has the
Jpading order behavior

cNN—1— NN—2, —N—g).

tension outside the self-dual sector. In any case, it is clear (2.5
that we have found some monopole analogues of the sigma
model non-instanton solutions. By completing the square in the energy dengigyl) the

Bogomol'nyi bound[1] is obtained as

II. SU(N) MONOPOLES 1
(N) EZ—EItr{(Di(I)iBi)ZIZBiDi(D}dSX (26)

Static monopoles are solutions of the $)(Yang-Mills-
Higgs equations ik which, in the BPS limit of a massless

Higgs boson, are derived from the energy functional = =AM+ (o= AgInot - (-1 = My)N-a .

(2.7)

The inequality(2.7) is obtained by noting that the final term
E—_ if tr{(Di<I>)2+ 1 F?}d3x 2.1) in Eq. (2.6) can be yvritten as a total derivative and as such
4 ! can be expressed in terms of the magnetic charges and the
eigenvalues of the Higgs field at infinity.
Clearly, within each magnetic charge sector the minimal
*Email address: T.loannidou@ukc.ac.uk energy solutions are obtained by solving the Bogomol'nyi
"Email address: P.M.Sutcliffe@ukc.ac.uk equations
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D;®==FB; (2.9 From Eq.(2.4) the matrix of magnetic charge§, is given

by

whose solutions saturate the energy bound. The upper sign
corresponds to monopoles, that ii5=0, whereas choosing G=(1+]z*?F5 (3.9

the lower sign, which we shall refer to as the anti-
Bogomol'nyi equations, results in anti-monopoles with  where the right hand side of the above is evaluated on the

<0. two-sphere at =,

From the energy boun®.7), which gives the energy for Our ansatz for SU{) monopoles is to set
Bogomol'nyi monopoles, it can be seen that the difference

. N-2

m;=X\;—\;, 1 determines the mass of the monopole of type ) 1
j, of which there aren; in total. If the eigenvalues of the =i JZO hj| P~ N/ AZZJZO 9jlPj,d;P;], A=0
Higgs field are not distinct, say; =\, thenm;=0, that (3.6
is, the monopole of typg is massless and the integgrdoes

not appear in the Bogomol'nyi boun@.7). This reflects the  \hereh,(r),g;(r) are real functions depending only on the
fact thatn; is no longer a topological quantity. In this case radial coordinate, andP;(z,z) areNx N Hermitian projec-
the residual symmetry group is non-Abelian, rather than begrs that is,P; = pi= sz, which are independent of the ra-

. . 71 . .

ing the maximal torus U(T)*, and the integen; is nota  giysr. The set ofN— 1 projectors are taken to be orthogo-

magnetic charge. To d_lstlng_wsh these cases such integers & so thatP,P;=0 fori#]. Note that we are working in a

referred to as magnetic \_N_elgP{t«é;]. . real gauge, so thak;= —AI. In Eqg. (3.6), and for the re-
Although the global minima of the energy functioral1) mainder of the paper, we drop the summation convention.

are all obtained as Bogomol’'nyi monopoles, that is, solutions The above ansatz 'is motivated by our recent sfEyof

Bogomol’nyi monopoles and their construction in terms of
farmonic maps. In the case of Bogomol'nyi monopoles it
was convenient to a choose a particular complex gauge, but
the existence of this complex gauge choice relies on a solu-
. . tion of the Bogomol'nyi equations and in general is not valid
constructy gxamples of s_phenc;ally symmetnc. NON“for the Yang-Mills-Higgs equations. However, after convert-
Bogomol'nyi monopoles and investigate some of their pr0p~Ing these Bogomol'nyi solutions to a real gauge they have
erties. In general it is a much more difficult task to solve thethe above form, although the ans&&6) is more general.

full Yang-Mills-Higgs equations than the Bogomol’'nyi equa- Substituting ,the ansat3.6) into the Yang-Mills-Higgs
tion;, not just because the equations are sec_ond orQer insm@&uations one finds that the left hand side of E3j1) is

of first order, but because the Bogomol'nyi equations arqdentically zero. This follows from the fact that the projec-

integrable and so a variety of techniques from integrable SYSors are independent of and form an orthogonal set. The

tems can be applied, whereas this property is lost for th : ; ; . ;
Yang-Mills-Higgs equations. ?eqwrement that the right hand side of E8.1) is zero gives

the following condition

N—-2

solutions of the full second order Yang-Mills-Higgs equa-
tions (2.2 which are not solutions of the first order
Bogomol'nyi equationg2.8). In the following sections we

IIl. THE HARMONIC MAP ANSATZ N-2

. . . o : . [P;,d,0;P;]1=0. 3.
The starting point for our investigation is the introduction ,Zo 9LP;10202P] @7

of the coordinates,z,z on R3. In terms of the usual spheri-
cal coordinatesr,f,¢ the Riemann sphere variable s The equation
=e'?tan(@2). Using these coordinates the Yang-Mills-

Higgs equationg2.2) take the form [P,0,0;P]=0 (3.9
(1+]2%)? is the harmonic map equation of the two-dimensiazigll ~*
[D®,@]= 212 (DF 7+ D) (3.9) sigma modelsee for example Ref6]). Thus we take each
P; to be a harmonic map and then the first Yang-Mills-Higgs
(1+]2]?)2 equation(3.1) is automatically satisfied. It is satisfying that
D,(r°D,®)=— 5 (D,D;®+D;D,P) the harmonic map equation emerges naturally from the

(3.2 Yang-Mills-Higgs equations since in the study of
' Bogomol’'nyi monopoles it was foun{b] to be useful to
1 introduce harmonic maps but the equations themselves did
D,®,®]+D,F,,= = D,[(1+]|2]*)%F; 3.3y  notappear.
D 1+ DeFez 2r? L1+ 12572 &3 To proceed further we need to briefly recall some results
. . about harmonic maps of the two-dimensionaN ! sigma
and the Bogomol'nyi equation2.8) become model. See ZakrzewsKb] for a more detailed account of
two-dimensional sigma models and their solutions.

. . (1+]7*)? If we regard the second order harmonic map equation
ID0=Fy, IDP="—7—Fz 34 (3.9 as a lower dimensional analogue of the Yang-Mills-
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Higgs equationg2.2), then the analogue of the first order verts a holomorphic vector to an anti-holomorphic vector,

Bogomol'nyi equationg2.8) is the instanton equation that is, instantons to anti-instantons and these are all the so-
lutions in this case.
Pd,P=0 (3.9 In order for our ansatz3.6) to give solutions to the two

remaining Yang-Mills-Higgs equation$3.2) and (3.3), the
whose solutions automatically satisfy the harmonic mapharmonic maps used must have spherical symmetry—
equation(3.8). The instanton equatiof8.9) is easy to solve, essentially the factors of (#|z|?)2 which appear in the
with the general solution being given by Yang-Mills-Higgs equations must be cancelled. The required

harmonic maps are obtained by applying the above proce-

ff dure to the initial holomorphic vector
P(1)= 2 (3.10 P
_ ¢ _ [[N—1
where f(z) is an N-component column vector which is a f=(fo,...f;,....fn-2)",  Where fj=2z j
holomorphic function oz and whose degree is equal to the (3.15

instanton number of the sigma model. Another set of solu-
tions are the anti-instantons, which satisfy the equatiorand (\“jl) denote the binomial coefficients. For a discussion
Pa,P=0, and have the same form as the instanton solutionef the spherical symmetry of these maps see Rdf.Here
but this timef is an anti-holomorphic function. For anti- we merely point out that it is at least plausible that the re-
instantons the sigma model instanton number is minus thquired factors do indeed cancel sind¢=(1+|z|%)N"1.
degree off. In the following sections we shall describe the non-
For N=2 these are all the finite action solutions to Eq.Bogomol’nyi monopoles obtained from our harmonic map
(3.8), but for N>2 there are other non-instanton solutions.ansatz in some detail for the simplest cases of33ldnd
These can be obtained from the instanton solutions by a pr&sU(4). The situation for general SB) will then become
cess of differentiation and Gram-Schmidt orthogonalizationclear.
Explicitly, introduce the operatak defined by its action on

N
any vectorf e (™ as IV. SPHERICAL MONOPOLES
f(f1o,f) In dealing with the equations which arise from the har-
Af=9,f— T (311 monic map ansat(3.6) it is convenient to exchange the pro-

file functions h;(r),g;(r) for the functions bj(r),c;(r)

and then define further vectoss*f by induction asAkf which are defined as the following linear combinations

=A(A1f).
When calculating with these objects it is useful to be

N—-2
aware of the following propertiels] of AXf whenf is ho- h;= ,Z‘J be, €¢=1-6;=0js1, forj=0,...N=2.

lomorphic: 4.2
(A¥)TA'f =0, k=l (3.12  In the above we have defingg,_,=0. Provided the eigen-
values of the Higgs field at infinity are correctly ordered, as
‘ 1 |AKF|2 in Eq. (2.3 [which corresponds td;(«)=0], then the
d{A*f)=—A fmk—l—”a monopole masses are simply given by the asymptotic values
(3.13 of the func.tionsbj(r), thgt is_, m;=b;_4() for j=1,...N
A1 AKf ' —1. Thus if bj()=0 this signals a change of symmetry
(92< . 2) — 1. breaking to a non-maximal case. This will be an important
A A point in what follows. For the ansatz to be well-defined at the
o . . . origin the boundary conditionb;(0)=0 andc;(0)=1 for
Defining kthe projectorsy corresponding to the family of i=0,... N—2, must be imposed.
vectorsA*f, that is,
P.=P(AXf), k=0,...N-1 (3.14 A. SU@)
As we have mentioned in Sec. lll, there are no non-

gives our required set of orthogonal harmonic maps. Sincénstanton solutions of th€P! sigma model and hence we
the projectors obtained from this sequence always satisfy theannot employ our ansatz to obtain non-Bogomol’nyi mono-
relation =g P,=1 and we are going to be taking arbitrary poles for gauge group SP). There are only two profile
linear combinations, then we can neglect the final projectofunctionsbg,cy, and the only solution is the standard spheri-
Pno1- cally symmetric Bogomol'nyi 1-monopole. The non-
Note that applying\ a total ofN—1 times to a holomor- Bogomol'nyi SU2) monopole of Taube$?] is shown to
phic vector gives an anti-holomorphic vector, so that a fur-exist by making use of an axially symmetric ansatz. Further-
ther application ofA gives the zero vector and hence no more, numerical evidence suggept$ that the solution has

corresponding projector. In th&P! case the operatak con-  only an axial symmetry and is not spherically symmetric.
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This is consistent with the fact that this solution does not fallasymptotic value®y() andb,() have opposite sign, and

into the class of solutions which we obtain here. to interpret these as monopole anti-monopole solutions.
In order to read off the properties of a given solution we
B. SU(3) need to compute the Higgs field and magnetic charge matrix

atx=(0,0) (which corresponds to the directias 0). Ex-

For N=3 there are four profile function®g,b;,cq.Cy, plicitly, these are given by

and our ansat#3.6) reduces the Yang-Mills-Higgs equations
to the following set of second order nonlinear ordinary dif-

ferential equations o= diag 2o+ by, ~bo+by, ~bg=2b) (4.6
(bjr?)'=2(2b;ci — bycy)

Go=diag2(1—c§),2(ci—c?),2(ci—1)). 4.

26/ = ¢;(262— G2~ 1+ b?r?). o=diag2(1-cg),2(cy—c1),2(c1—1)) (4.7
(4.2 As an example, consider the Bogomol'nyi monopole with

Here the indices are chosen from the $@ftl} and k#]j. maximal symmetry breaking and equal monopole masses

Recall that the summation convention is no longer used igiVen by Do(%) =by(c)=2. Then ®,=diag(2,0;-2) and

this paper. It is immediately clear that there is a symmetrythe boundary conditions force theg(>) =c,(°) =0 so that

under the interchange of indices;-0L, when applied simul- ~ Go=diag(2,0;-2). Comparing with Eq(2.5 we see that
taneously to both thb; andc; functions; we shall make use the magnetic charges arey(,n,)=(2,2). For Bogomol'nyi

of this symmetry later. monopoles the solutions can be obtained explicitly and the
The corresponding energy, E@.1), is given by monopole charges are understood in terms of the degrees of
the harmonic map projectors from which they are con-
w2 structed5]. At first sight it might appear from Ed4.7) that
E=2f0 §(b62+ bi2+bgb?) +c2+cq?+ cibh the magnetic charges are determined only by the boundary

valuescj(«) and are independent of the valuesig({«).

1 However, this naive view is incorrect as is easily seen by

+cibi+ ?[(1—C(2;)2+(1—Cf)2 considering the simple case of the anti-Bogomol'nyi solution
with bg()=Db4()=—2. Again the boundary conditions

+(c3—c?)?dr. (4.3 imply thatcy()=c;()=0 and hence we obtain the same

matrix Gg=diag(2,0;-2). But now we must be aware that
From this expression it can be seen that the energy is finiti this case we havé,=diag(—2,0,2) so that the entries are
providing the functions approach their asymptotic values atiot correctly ordered from the largest to the smallest. A con-
least as fast as i/ and if in addition the constraints that stant gauge transformation permutes the entries to obtain
Cj()bj() =0 are imposed foj=0,1. ®,=diag(2,0;-2) but this acts in the same way on the mag-
Before studying the second order equati¢h®) it is first ~ netic charge matrix so that after this gauge transformation we
useful to examine the first order Bogomol'nyi equations,are left with the charge matri6,= diag(—2,0,2). Now that

which in this formalism become ®, has the correct order we can compare this charge matrix
with Eq. (2.5 and conclude thatn(,n,)=(—2,—2). Al-
rzbj’= —(ZCf—cﬁ—l) though this example of computing the magnetic charges is

trivial it illustrates the important point that the asymptotic
(4.4 valuesbj(e) are required in order to determine the magnetic

charges. We shall see more interesting consequences of this
where the notation is as above. Integrating the last equatiof@ct in what follows.

[ . .
c|= cib;

gives the asymptotic behavior foy as For the moment we shall consider the case for which
bj(e°) # 0, so that the boundary conditions ang~)=0 for
cj~exd —rbj(x)+0(1)]. (4.5 j=0,1. The Bogomol'nyi equationgt.4) are integrable and

allow explicit solutions to be found for any choice of the
Now sincec; must be finite ag —c this gives thato;(«) positive parametenrsy(),b,(), which give the monopole
=0. Thus we can characterize Bogomol'nyi monopoles bymassesm;,m,. However, it seems unlikely that explicit
the fact that the asymptotic values of thgs are all non-  non-Bogomol'nyi solutions to the second order equations
negative. If we consider the anti-Bogomol’nyi equations then(4.2) can be found in closed form. Therefore we resort to a
they are given by Eqg4.4) but in which the minus signs are numerical solution of these equations. We apply a gradient
removed from the right hand side of the equations. In thiflow algorithm with a finite difference scheme to compute
case the requirement thaf() is finite implies thatb; () the solution with a given set of boundary values
<0. Thus we see that Bogomol'nyi monopoles have thebg(%),b,(e°). For all choices of these parameters we were
property that all the asymptotic values of thgs have the able to find a numerical solution. As a test on the accuracy of
same sign, positive for monopoles and negative for antithe code we computed the char@e?) Bogomol'nyi solution
monopoles. It is then natural to look for non-Bogomol'nyi with bg()=b,()=2. In this case, since the monopole
solutions of the second order equations in which themasses are equam;=m,=2, and the total number of
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FIG. 1. (a) The profile functions for the S@3) non-Bogomol'nyi monopole with maximal symmetry breakindb) Energy density for
SU(3) monopoles with maximal symmetry breaking; non-Bogomol'nyi solutswlid line); Bogomol'nyi solution(dashed ling (c) The
profile functions for the S{B) non-Bogomol’nyi monopole with minimal symmetry breakingd) Energy density for S{B) monopoles
with minimal symmetry breaking; non-Bogomol'nyi solutigsolid line); Bogomol'nyi solution(dashed ling

monopoles is four then the energylis= 8. This value of the Bogomol'nyi solution. As discussed above, the entries of the
energy was obtained from our numerical code to within anmagnetic charge matrix must also be permutedaccor-
accuracy of three decimal places. dance with the permutation of the entries in the Higgs field to
In order to consider the non-Bogomol'nyi analogue of thisobtain the correct ordering and this results inG,
solution we want to fix the monopole masses in the same-=diag(0,2;-2). Comparison with Eq(2.5) then gives the
way asm;=m,=2. Thus the eigenvalues df; must again charges asr(;,n,)=(0,2). Clearly the energy of this solu-
be 0 and+ 2, though this time their order will not be correct. tion has little to do with the Bogomol'nyi boun@.7), and it
For example, consider the choice of orderibg=diag(0,2, would be nice to understand its value. With this aim in mind
—2), which by Eq.(4.6) corresponds to the boundary values we now attempt some phenomenology to interpret the charge
by(*)=—2 andb,()=4. Thus, sinceby() and b,(w) and energy of this monopole.
have opposite sign, this gives a non-Bogomol'nyi solution. As mentioned in Sec. lll the projectors used in the har-
In Fig. 1(a) we plot the function®y,b,,cq,c; obtained from  monic map ansatz have a sigma model interpretation in terms
the numerical solution in this case. In Figblwe plot the of instanton anti-instanton configurations. However, the
energy density of this solutiofsolid line) and the energy Bogomol'nyi monopole solutions clearly have no anti-
density of the corresponding Bogomol'nyi solutiédashed monopoles, so it appears that in this case the profile func-
line). Note the dip in the energy density at the origin for thetions are such that the monopole does not see any anti-
non-Bogomol’nyi solution, so that some energy density iso-soliton content. Nevertheless, when the profile functions are
surfaces will be shell-like. We compute the energy of thismodified to a non-Bogomol'nyi solution some of the anti-
solution to be E=9.0, so that it is larger than the soliton content becomes visible — we have already seen a
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signature for this in terms of the signs of the asymptoticobtained previously by Burzlaff8], using a hedgehog-like
values of the profile functions. This suggests that we shouldnsatz and a group theoretic approach in which the gauge
think of the charge(0,2) solution as the composite (0,2) potential involves the principle S@) triplet in SU(3) but the
=(+2-2,+2-0), where the plus signs denote monopolesHiggs field involves the associated 5-plet. Burzldf]
and the minus signs anti-monopolgke positive monopole proved the existence of a solution to the equations which
content is taken from the Bogomol'nyi solutipriVith this  result in this case. An important feature of the proof is the
interpretation the€0,2) solution contains two monopoles and fact that the equations arise as the variation of an energy
two monopole anti-monopole pairs. Since the energy of théunctional and therefore it only remains to show that a mini-
solution isE=9.0 and the monopole mass is 2, this phenom-mizer exists, for which standard methods can be employed.
enology gives an approximate value for the energy of dn our general case we have the variational formulation
monopole anti-monopole pair &,,7=2.5. This value is at which comes from the Yang-Mills-Higgs energy and so it
least reasonable, sincgaving normalized the monopole should be possible to use similar techniques to prove the
mass to 2 the energy of a monopole anti-monopole pair existence of solutions. In this paper we are content with nu-
should be something less than 4; the precise value dependgerical solutions of the profile function equations and these
on the details of the monopole anti-monopole interactionare shown in Fig. ) for this case of chargéd[2]). In Fig.
Some non-trivial tests of the above interpretation will arisel(d) we plot the energy density for this solutigsolid line)
later when we consider S4¥) monopoles. Note that although and the energy density of the corresponding Bogomol'nyi
we know that these solutions are not global minima and wesharge(2[1]) solution (dashed ling Again note the dip in
expect them to be unstabf® annihilation of the monopole energy density near the origin of the non-Bogomol'nyi solu-
anti-monopole paijswe have not proved that they are un- tion. The energy of the non-Bogomol'nyi solution is found to
stable. A stability analysis would need to be undertaken tde E=4.3, which should be compared with the eneigy
prove that the solutions are not local minima, though it=3 of the Bogomol'nyi solution.
would be extremely surprising if they were stable.

In SU(3) there are six possible ways to order the eigen- C. SU@4)
values of the Higgs field and the corresponding monopole For N=4 there are six profile functionsb; .c;, j

charges are*(2,2),(0+2),(+=2,0), thus all the other . : .
monopole solutions are trivially related to the two examples 0,12, and the Yang-Mills-Higgs equations reduce to

we have discussed. (r?b!)" =6c2b,— 4c2b
Let us now turn to minimal symmetry breaking, which we 0 00 1
may take to be given byd,=diag(l-3,—3). The (r?b!)" =8c2b,— 3¢2b,— 3¢2b
Bogomol'nyi monopole has boundary values given by ! S 00 2m2
bo(¢) =% andb,(*)=0. Since the second profile function (r2b})’ =6c2b,— 4c?b
vanishes at infinity then the boundary conditions now allow 2 2ne i 48
thatcq () #0. As this is a Bogomol'nyi solution then it can r2cg=00(3c§—205— 1+ bﬁrz) 4.8

be found explicitly and the appropriate boundary condition
turns out to be[5] c1()= 1~2, which gives the charge 3 3
(2[1]). Here the notation is that magnetic weights are de- r2cj=c,| 4c?— ECS— §c§—1+ b2r?
noted by square brackets. The monopole massesmare
=3 m,=0, so the energy iE=3.

Recall that the Bogomol'nyi solutions have the property

that all theby's at infinity have the same sign, whereas for If we regard the indices on the profile functions as labelling

non-Bogomol'nyi solutions this is not the case. Thus ONCites on a linear lattice then we see that the equations involve
may wonder whether these two types of solution are

only a nearest neighbor coupling. Also, there is again a sym-
smpothly connecte_d as the values(qhe or morgb;() are . metry of reflecting the lattice about its midpoint, which in
varied to change sign. The answer is that they are not, SiNGRis case is the interchange-@
this smooth variation must pass through the .p(bmoo) A consideration of the associated energy shows that the
=0 where(as we see aboy¢he symmetry breaking pattern boundary conditions again require thg(e)b; () =0, for
cha?ges an_d the boundary condition@(ee) suffers a dis- j. In this section we shall mainly be concerned with
continuous Jump'. . . maximal symmetry breaking, in which casg«)=0.

For Bogomol'nyi monopoles a non-maximal symmetry The eigenvalues and charges are given by

breaking pattern requires the vanishing of at leastigie),

r2ch=c,(3c5—2c2—1+bsr?).

but for non-Bogomol’nyi monopoles this is not the case. For 1

example, permuting the eigenvalues into the ordes <I>O=Zdia§(3bo+ 2b;+b,,2b,+by— by,
=diag(-3,1,—3) corresponds to the choiceby(x)

=—b,()=—2 and hence the charg@,[2]). The symmetry b,—by—2b;, —by—2b;—3b,) (4.9
of equationg4.2) together with the symmetry of the bound-

ary conditions in this case force the reductiof=c; and Go=diag3(1—c?),(1+3c5—4c?),

bo=—b;. The minimally broken S(B) non-Bogomol'nyi 5 5 5

monopole that arises from this specific reduction has been —(1+3c5—4cy), —3(1—c))). (4.10
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TABLE I. Boundary conditions, charges and energies fof8U the solutions in terms of monopole anti-monopole configu-

monopoles. rations. Only one case, the charge (3,Q) solution, shows
a significant discrepancy and it is easy to imagine that the
bo(*)  by()  by()  (ng,nz,n3) E E finer details of the arrangement of the monopoles/anti-
monopoles needs to be taken into account to get a better
2 2 2 (343 200 20.0  agreement. Indeed the surprising fact is that our naive count-
2 4 -2 (34,0 216 210 ing produces results which are remarkably accurate.
4 -2 4 (32,3 220 210 We have only discussed the case of maximal symmetry
-2 6 -2 (1,4, 229 220 breaking in this section but solutions for all symmetry break-
6 -2 -2 (3,0—1) 229 255 ing patterns can also be found. As an example, the case of
4 2 —4 (3,0, 23.3 23.0 minimal symmetry breaking can be obtained by exploiting
6 4 2 (32-1) 241 245 the symmetry of the equations to d@§=—b,, b;=0, ¢,
4 P 4 (-12-1) 270 280 =C,, ¢;=0. This gives the S} analogue of Burzlaff's

SU(3) solution, and indeed the equations in the two cases
have the same structure.

Normalizing the monopole mass to two, the Bogomol'nyi V. CONCLUSION

solution with by(e°) =bq(%)=b,(*)=2 has®,=diag(3,1,

—1,—3). From (4.10 this solution hasG,=diag(3,1;-1, In this paper we have presented some static spherically
—3) and hence by comparison with E@.5) the charge is Symmetric monopole solutions of the SU) Yang-Mills-
(3,4,3, with corresponding energ = 20. Higgs equations which are not solutions of the Bogomol'nyi

There are 24 different orderings of the eigenvalde3,  €quation. Some of the properties of these solutions have been
+1 and of these there are 8 which give fundamentally dif-calculated and their interpretation in terms of monopole anti-
ferent monopoles. In Table I we list the valueshof=) and monopole configurations discussed. A crucial tool in the in-
the corresponding magnetic charges. As in thg33ldase, Vestigation was the connection with the. two-dimensional
the magnetic charges are computed by first finding the pelcI" * sigma model, and indeed our solutions may be con-
mutation required so tha, has the correct ordering, that is, Sidered to be the monopole analogues of the sigma model
®,=diag(3,1-1,—3), then applying this permutation to non-mstanton solutions. Flnqlly, it is perhaps interesting to
the elements ofG,=diag(3,1-1,—3) which can then be note that in th_e context of string theory S has revealed _
compared with the definitiof2.5). new perspectives on D-branes and other aspects of string

In Table | we also list the computed energi&s, of the theory by consideration of the dynamics of unstable D-brane

solutions and the approximate valuEs,calculated using the @nti-D-brane configurations. In particular D-branes them-
monopole anti-monopole interpretation discussed in the pre3€/ves appear as topological defects in the worldvolume of
vious section. Thus for example, we write (3,003 — 0,4 higher dimensional unstable brane_ configurations. I_t remains
—4,3-2), where the positive monopole content is takent© bg seen whether monopple Qntl-_monopol_e solutions have
from the Bogomol'nyi solution. The interpretation of this @1y important role to play in this light, but if so then our
solution is therefore that it contains six monopole anti-Selutions are perhaps the simplest examples upon which any
monopole pairs and four monopoles. The approximate enfUrther studies might be based.

ergy is thenE=4x 2+ 6E,,= 23, where we have used the
result of the previous section that,=2.5. The true energy
of this solution isE=23.3 which is in good agreement with Many thanks to Conor Houghton, Niall Mackay, Nick
the approximate value. A glance at Table | reveals that thélanton and Wojtek Zakrzewski for useful discussions.
approximate energies are in reasonable agreement with tteM.S. acknowledges the EPSRC for grant GR/L88320 and
calculated values, which adds support to our interpretation ofrant AF/98/0443.
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