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Non-Bogomol’nyi SU„N… BPS monopoles

Theodora Ioannidou* and Paul M. Sutcliffe†
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For N.2 we present static monopole solutions of the second order SU(N) BPS Yang-Mills-Higgs equations
which are not solutions of the first order Bogomol’nyi equations. These spherically symmetric solutions may
be interpreted as monopole anti-monopole configurations and their construction involves harmonic maps into
complex projective spaces.@S0556-2821~99!10318-7#

PACS number~s!: 14.80.Hv, 11.27.1d
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I. INTRODUCTION

In this paper we study static monopole solutions of
SU(N) Yang-Mills-Higgs equations in R3, in the
Bogomol’nyi-Prasad-Sommerfield~BPS! limit of vanishing
Higgs potential. It is well known that the solutions whic
correspond to the global minima of the Yang-Mills-Higg
energy functional are all given by solutions of the simp
first order Bogomol’nyi equations@1#. However, as proven
by Taubes@2# using infinite dimensional Morse theory, the
are more solutions to the Yang-Mills-Higgs equations th
just the Bogomol’nyi ones. These solutions are saddle po
of the energy functional and correspond to monopole a
monopole configurations, which have an instability to an
hilation.

We construct a class of spherically symmetric SU(N)
non-Bogomol’nyi monopoles and calculate some of th
properties, such as magnetic charges and energies. It is i
esting that this construction involves harmonic maps of
plane intoCPN21. Atiyah @3# has described a relationsh
between instantons in two and four dimensions, and by
duction a correspondence between SU(N) hyperbolic
Bogomol’nyi monopoles and instantons of the tw
dimensionalCPN21 sigma model. Our non-Bogomol’nyi so
lutions are obtained by using the non-instanton solutions
theCPN21 sigma model and so our results appear to sugg
that Atiyah’s connection between Bogomol’nyi monopol
and sigma model instantons may have some form of an
tension outside the self-dual sector. In any case, it is c
that we have found some monopole analogues of the si
model non-instanton solutions.

II. SU„N… MONOPOLES

Static monopoles are solutions of the SU(N) Yang-Mills-
Higgs equations inR3 which, in the BPS limit of a massles
Higgs boson, are derived from the energy functional

E52
1

4p E tr$~DiF!21 1
2 Fi j

2 %d3x ~2.1!
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whereAi , for i 51,2,3, is the su(N)-valued gauge potential
with field strengthFi j 5] iAj2] jAi1@Ai ,Aj #, andF is the
su(N)-valued Higgs field. Variation of the energy~2.1! gives
the second order Yang-Mills-Higgs equations

DiDiF50, DiFi j 5@D jF,F#. ~2.2!

The boundary conditions are that the energy is finite and t
in a chosen direction~say along thex3-axis!, the Higgs field
at infinity is a given constant diagonal matrix,F(0,0,̀ )
5 iF0 where

F05diag~l1 ,l2 ,...,lN!. ~2.3!

Here we choose the ordering such thatl1>l2>...>lN and
becauseFPsu(N) we have that( i 51

N l i50.
At large radius, the magnetic field,Bk5 1

2 «ki jFi j , has the
leading order behavior

Bk;
i x̂k

2r 2 G~ x̂1 ,x̂2 ,x̂3! ~2.4!

where the matrixG containsN21 integers,ni , which are
the magnetic charges@4# and provide a topological charac
terization of the monopole solution. Since we impose
framing condition~2.3! along thex3-axis, then along this
axis we have that

G05G~0,0,1!5diag~n1 ,n22n1 ,...,nN212nN22 ,2nN21!.
~2.5!

By completing the square in the energy density~2.1! the
Bogomol’nyi bound@1# is obtained as

E52
1

4p E tr$~DiF6Bi !
272BiDiF%d3x ~2.6!

>u~l12l2!n11~l22l3!n21...1~lN212lN!nN21u.
~2.7!

The inequality~2.7! is obtained by noting that the final term
in Eq. ~2.6! can be written as a total derivative and as su
can be expressed in terms of the magnetic charges and
eigenvalues of the Higgs field at infinity.

Clearly, within each magnetic charge sector the minim
energy solutions are obtained by solving the Bogomol’n
equations
©1999 The American Physical Society09-1
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DiF57Bi ~2.8!

whose solutions saturate the energy bound. The upper
corresponds to monopoles, that is,ni>0, whereas choosing
the lower sign, which we shall refer to as the an
Bogomol’nyi equations, results in anti-monopoles withni
<0.

From the energy bound~2.7!, which gives the energy fo
Bogomol’nyi monopoles, it can be seen that the differen
mj5l j2l j 11 determines the mass of the monopole of ty
j , of which there arenj in total. If the eigenvalues of the
Higgs field are not distinct, sayl j5l j 11 , thenmj50, that
is, the monopole of typej is massless and the integernj does
not appear in the Bogomol’nyi bound~2.7!. This reflects the
fact thatnj is no longer a topological quantity. In this cas
the residual symmetry group is non-Abelian, rather than
ing the maximal torus U(1)N21, and the integernj is not a
magnetic charge. To distinguish these cases such integer
referred to as magnetic weights@4#.

Although the global minima of the energy functional~2.1!
are all obtained as Bogomol’nyi monopoles, that is, solutio
of the Bogomol’nyi equations~2.8!, Taubes@2# has proven
the existence of other critical points. In other words, there
solutions of the full second order Yang-Mills-Higgs equ
tions ~2.2! which are not solutions of the first orde
Bogomol’nyi equations~2.8!. In the following sections we
construct examples of spherically symmetric no
Bogomol’nyi monopoles and investigate some of their pro
erties. In general it is a much more difficult task to solve t
full Yang-Mills-Higgs equations than the Bogomol’nyi equ
tions, not just because the equations are second order in
of first order, but because the Bogomol’nyi equations
integrable and so a variety of techniques from integrable s
tems can be applied, whereas this property is lost for
Yang-Mills-Higgs equations.

III. THE HARMONIC MAP ANSATZ

The starting point for our investigation is the introductio
of the coordinatesr ,z,z̄ on R3. In terms of the usual spheri
cal coordinatesr ,u,w the Riemann sphere variable isz
5eiw tan(u/2). Using these coordinates the Yang-Mill
Higgs equations~2.2! take the form

@DrF,F#5
~11uzu2!2

2r 2 ~DzFrz̄1Dz̄Frz! ~3.1!

Dr~r 2DrF!52
~11uzu2!2

2
~DzDz̄F1Dz̄DzF!

~3.2!

@DzF,F#1DrFrz5
1

2r 2 Dz@~11uzu2!2Fzz̄# ~3.3!

and the Bogomol’nyi equations~2.8! become

iD zF5Frz , iD rF5
~11uzu2!2

2r 2 Fzz̄. ~3.4!
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From Eq.~2.4! the matrix of magnetic charges,G, is given
by

G5~11uzu2!2Fz̄z ~3.5!

where the right hand side of the above is evaluated on
two-sphere atr 5`.

Our ansatz for SU(N) monopoles is to set

F5 i (
j 50

N22

hj S Pj2
1

ND , Az5 (
j 50

N22

gj@Pj ,]zPj #, Ar50

~3.6!

wherehj (r ),gj (r ) are real functions depending only on th
radial coordinater , andPj (z,z̄) areN3N Hermitian projec-
tors, that is,Pj5Pj

†5Pj
2 , which are independent of the ra

dius r . The set ofN21 projectors are taken to be orthog
nal, so thatPi Pj50 for iÞ j . Note that we are working in a
real gauge, so thatAz̄52Az

† . In Eq. ~3.6!, and for the re-
mainder of the paper, we drop the summation conventio

The above ansatz is motivated by our recent study@5# of
Bogomol’nyi monopoles and their construction in terms
harmonic maps. In the case of Bogomol’nyi monopoles
was convenient to a choose a particular complex gauge,
the existence of this complex gauge choice relies on a s
tion of the Bogomol’nyi equations and in general is not va
for the Yang-Mills-Higgs equations. However, after conve
ing these Bogomol’nyi solutions to a real gauge they ha
the above form, although the ansatz~3.6! is more general.

Substituting the ansatz~3.6! into the Yang-Mills-Higgs
equations one finds that the left hand side of Eq.~3.1! is
identically zero. This follows from the fact that the proje
tors are independent ofr and form an orthogonal set. Th
requirement that the right hand side of Eq.~3.1! is zero gives
the following condition

(
j 50

N22

gj8@Pj ,]z] z̄Pj #50. ~3.7!

The equation

@P,]z] z̄P#50 ~3.8!

is the harmonic map equation of the two-dimensionalCPN21

sigma model~see for example Ref.@6#!. Thus we take each
Pj to be a harmonic map and then the first Yang-Mills-Hig
equation~3.1! is automatically satisfied. It is satisfying tha
the harmonic map equation emerges naturally from
Yang-Mills-Higgs equations since in the study
Bogomol’nyi monopoles it was found@5# to be useful to
introduce harmonic maps but the equations themselves
not appear.

To proceed further we need to briefly recall some resu
about harmonic maps of the two-dimensionalCPN21 sigma
model. See Zakrzewski@6# for a more detailed account o
two-dimensional sigma models and their solutions.

If we regard the second order harmonic map equat
~3.8! as a lower dimensional analogue of the Yang-Mil
9-2
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NON-BOGOMOL’NYI SU(N) BPS MONOPOLES PHYSICAL REVIEW D 60 105009
Higgs equations~2.2!, then the analogue of the first orde
Bogomol’nyi equations~2.8! is the instanton equation

P]zP50 ~3.9!

whose solutions automatically satisfy the harmonic m
equation~3.8!. The instanton equation~3.9! is easy to solve,
with the general solution being given by

P~ f !5
f f †

u f u2
~3.10!

where f (z) is an N-component column vector which is
holomorphic function ofz and whose degree is equal to th
instanton number of the sigma model. Another set of so
tions are the anti-instantons, which satisfy the equat
P] z̄P50, and have the same form as the instanton soluti
but this time f is an anti-holomorphic function. For ant
instantons the sigma model instanton number is minus
degree off .

For N52 these are all the finite action solutions to E
~3.8!, but for N.2 there are other non-instanton solution
These can be obtained from the instanton solutions by a
cess of differentiation and Gram-Schmidt orthogonalizati
Explicitly, introduce the operatorD defined by its action on
any vectorf PCN as

D f 5]zf 2
f ~ f †]zf !

u f u2
~3.11!

and then define further vectorsDkf by induction asDkf
5D(Dk21f ).

When calculating with these objects it is useful to
aware of the following properties@6# of Dkf when f is ho-
lomorphic:

~Dkf !†D l f 50, kÞ l ~3.12!

] z̄~Dkf !52Dk21f
uDkf u2

uDk21f u2
,

~3.13!

]zS Dk21f

uDk21f u2D5
Dkf

uDk21f u2 .

Defining the projectorsPk corresponding to the family o
vectorsDkf , that is,

Pk5P~Dkf !, k50, . . . ,N21 ~3.14!

gives our required set of orthogonal harmonic maps. Si
the projectors obtained from this sequence always satisfy
relation(k50

N21Pk51 and we are going to be taking arbitra
linear combinations, then we can neglect the final projec
PN21 .

Note that applyingD a total ofN21 times to a holomor-
phic vector gives an anti-holomorphic vector, so that a f
ther application ofD gives the zero vector and hence n
corresponding projector. In theCP1 case the operatorD con-
10500
p

-
n
s

e

.

.
o-
.

e
he

r

-

verts a holomorphic vector to an anti-holomorphic vect
that is, instantons to anti-instantons and these are all the
lutions in this case.

In order for our ansatz~3.6! to give solutions to the two
remaining Yang-Mills-Higgs equations,~3.2! and ~3.3!, the
harmonic maps used must have spherical symmetr
essentially the factors of (11uzu2)2 which appear in the
Yang-Mills-Higgs equations must be cancelled. The requi
harmonic maps are obtained by applying the above pro
dure to the initial holomorphic vector

f 5~ f 0 ,...,f j ,...,f N21! t, where f j5zjAS N21
j D

~3.15!

and ( j
N21) denote the binomial coefficients. For a discussi

of the spherical symmetry of these maps see Ref.@5#. Here
we merely point out that it is at least plausible that the
quired factors do indeed cancel sinceu f u25(11uzu2)N21.

In the following sections we shall describe the no
Bogomol’nyi monopoles obtained from our harmonic m
ansatz in some detail for the simplest cases of SU~3! and
SU~4!. The situation for general SU(N) will then become
clear.

IV. SPHERICAL MONOPOLES

In dealing with the equations which arise from the ha
monic map ansatz~3.6! it is convenient to exchange the pro
file functions hj (r ),gj (r ) for the functions bj (r ),cj (r )
which are defined as the following linear combinations

hj5 (
k5 j

N22

bk , cj512gj2gj 11 , for j 50, . . . ,N22.

~4.1!

In the above we have definedgN2150. Provided the eigen-
values of the Higgs field at infinity are correctly ordered,
in Eq. ~2.3! @which corresponds tobj (`)>0#, then the
monopole masses are simply given by the asymptotic va
of the functionsbj (r ), that is,mj5bj 21(`) for j 51,...,N
21. Thus if bj (`)50 this signals a change of symmet
breaking to a non-maximal case. This will be an importa
point in what follows. For the ansatz to be well-defined at t
origin the boundary conditionsbj (0)50 andcj (0)51 for
all j 50, . . . ,N22, must be imposed.

A. SU„2…

As we have mentioned in Sec. III, there are no no
instanton solutions of theCP1 sigma model and hence w
cannot employ our ansatz to obtain non-Bogomol’nyi mon
poles for gauge group SU~2!. There are only two profile
functionsb0 ,c0 , and the only solution is the standard sphe
cally symmetric Bogomol’nyi 1-monopole. The non
Bogomol’nyi SU~2! monopole of Taubes@2# is shown to
exist by making use of an axially symmetric ansatz. Furth
more, numerical evidence suggests@7# that the solution has
only an axial symmetry and is not spherically symmetr
9-3
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THEODORA IOANNIDOU AND PAUL M. SUTCLIFFE PHYSICAL REVIEW D60 105009
This is consistent with the fact that this solution does not
into the class of solutions which we obtain here.

B. SU„3…

For N53 there are four profile functions,b0 ,b1 ,c0 ,c1 ,
and our ansatz~3.6! reduces the Yang-Mills-Higgs equation
to the following set of second order nonlinear ordinary d
ferential equations

~bj8r
2!852~2bjcj

22bkck
2!

r 2cj95cj~2cj
22ck

2211bj
2r 2!.

~4.2!

Here the indices are chosen from the set$0,1% and kÞ j .
Recall that the summation convention is no longer used
this paper. It is immediately clear that there is a symme
under the interchange of indices, 0↔1, when applied simul-
taneously to both thebj andcj functions; we shall make us
of this symmetry later.

The corresponding energy, Eq.~2.1!, is given by

E52E
0

` r 2

3
~b08

21b18
21b08b18!1c08

21c18
21c0

2b0
2

1c1
2b1

21
1

2r 2 @~12c0
2!21~12c1

2!2

1~c0
22c1

2!2#dr. ~4.3!

From this expression it can be seen that the energy is fi
providing the functions approach their asymptotic values
least as fast as 1/r , and if in addition the constraints tha
cj (`)bj (`)50 are imposed forj 50,1.

Before studying the second order equations~4.2! it is first
useful to examine the first order Bogomol’nyi equation
which in this formalism become

r 2bj852~2cj
22ck

221!

cj852cjbj ~4.4!

where the notation is as above. Integrating the last equa
gives the asymptotic behavior forcj as

cj;exp@2rb j~`!1O~1!#. ~4.5!

Now sincecj must be finite asr→` this gives thatbj (`)
>0. Thus we can characterize Bogomol’nyi monopoles
the fact that the asymptotic values of thebj ’s are all non-
negative. If we consider the anti-Bogomol’nyi equations th
they are given by Eqs.~4.4! but in which the minus signs ar
removed from the right hand side of the equations. In t
case the requirement thatcj (`) is finite implies thatbj (`)
<0. Thus we see that Bogomol’nyi monopoles have
property that all the asymptotic values of thebj ’s have the
same sign, positive for monopoles and negative for a
monopoles. It is then natural to look for non-Bogomol’n
solutions of the second order equations in which
10500
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asymptotic valuesb0(`) andb1(`) have opposite sign, and
to interpret these as monopole anti-monopole solutions.

In order to read off the properties of a given solution w
need to compute the Higgs field and magnetic charge ma
at x5(0,0,̀ ) ~which corresponds to the directionz50!. Ex-
plicitly, these are given by

F05
1

3
diag~2b01b1 ,2b01b1 ,2b022b1! ~4.6!

G05diag„2~12c0
2!,2~c0

22c1
2!,2~c1

221!…. ~4.7!

As an example, consider the Bogomol’nyi monopole w
maximal symmetry breaking and equal monopole mas
given by b0(`)5b1(`)52. Then F05diag(2,0,22) and
the boundary conditions force thatc0(`)5c1(`)50 so that
G05diag(2,0,22). Comparing with Eq.~2.5! we see that
the magnetic charges are (n1 ,n2)5(2,2). For Bogomol’nyi
monopoles the solutions can be obtained explicitly and
monopole charges are understood in terms of the degree
the harmonic map projectors from which they are co
structed@5#. At first sight it might appear from Eq.~4.7! that
the magnetic charges are determined only by the bound
valuescj (`) and are independent of the values ofbj (`).
However, this naive view is incorrect as is easily seen
considering the simple case of the anti-Bogomol’nyi soluti
with b0(`)5b1(`)522. Again the boundary condition
imply that c0(`)5c1(`)50 and hence we obtain the sam
matrix G05diag(2,0,22). But now we must be aware tha
in this case we haveF05diag(22,0,2) so that the entries ar
not correctly ordered from the largest to the smallest. A c
stant gauge transformation permutes the entries to ob
F05diag(2,0,22) but this acts in the same way on the ma
netic charge matrix so that after this gauge transformation
are left with the charge matrixG05diag(22,0,2). Now that
F0 has the correct order we can compare this charge ma
with Eq. ~2.5! and conclude that (n1 ,n2)5(22,22). Al-
though this example of computing the magnetic charge
trivial it illustrates the important point that the asymptot
valuesbj (`) are required in order to determine the magne
charges. We shall see more interesting consequences o
fact in what follows.

For the moment we shall consider the case for wh
bj (`)Þ0, so that the boundary conditions arecj (`)50 for
j 50,1. The Bogomol’nyi equations~4.4! are integrable and
allow explicit solutions to be found for any choice of th
positive parametersb0(`),b1(`), which give the monopole
massesm1 ,m2 . However, it seems unlikely that explic
non-Bogomol’nyi solutions to the second order equatio
~4.2! can be found in closed form. Therefore we resort to
numerical solution of these equations. We apply a grad
flow algorithm with a finite difference scheme to compu
the solution with a given set of boundary valu
b0(`),b1(`). For all choices of these parameters we we
able to find a numerical solution. As a test on the accurac
the code we computed the charge~2,2! Bogomol’nyi solution
with b0(`)5b1(`)52. In this case, since the monopo
masses are equal,m15m252, and the total number o
9-4



NON-BOGOMOL’NYI SU(N) BPS MONOPOLES PHYSICAL REVIEW D 60 105009
FIG. 1. ~a! The profile functions for the SU~3! non-Bogomol’nyi monopole with maximal symmetry breaking.~b! Energy density for
SU~3! monopoles with maximal symmetry breaking; non-Bogomol’nyi solution~solid line!; Bogomol’nyi solution~dashed line!. ~c! The
profile functions for the SU~3! non-Bogomol’nyi monopole with minimal symmetry breaking.~d! Energy density for SU~3! monopoles
with minimal symmetry breaking; non-Bogomol’nyi solution~solid line!; Bogomol’nyi solution~dashed line!.
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monopoles is four then the energy isE58. This value of the
energy was obtained from our numerical code to within
accuracy of three decimal places.

In order to consider the non-Bogomol’nyi analogue of th
solution we want to fix the monopole masses in the sa
way asm15m252. Thus the eigenvalues ofF0 must again
be 0 and62, though this time their order will not be correc
For example, consider the choice of orderingF05diag(0,2,
22), which by Eq.~4.6! corresponds to the boundary valu
b0(`)522 and b1(`)54. Thus, sinceb0(`) and b1(`)
have opposite sign, this gives a non-Bogomol’nyi solutio
In Fig. 1~a! we plot the functionsb0 ,b1 ,c0 ,c1 obtained from
the numerical solution in this case. In Fig. 1~b! we plot the
energy density of this solution~solid line! and the energy
density of the corresponding Bogomol’nyi solution~dashed
line!. Note the dip in the energy density at the origin for t
non-Bogomol’nyi solution, so that some energy density i
surfaces will be shell-like. We compute the energy of t
solution to be E59.0, so that it is larger than th
10500
n

e

.

-
s

Bogomol’nyi solution. As discussed above, the entries of
magnetic charge matrix must also be permuted~in accor-
dance with the permutation of the entries in the Higgs field
obtain the correct ordering! and this results in G0
5diag(0,2,22). Comparison with Eq.~2.5! then gives the
charges as (n1 ,n2)5(0,2). Clearly the energy of this solu
tion has little to do with the Bogomol’nyi bound~2.7!, and it
would be nice to understand its value. With this aim in mi
we now attempt some phenomenology to interpret the cha
and energy of this monopole.

As mentioned in Sec. III the projectors used in the h
monic map ansatz have a sigma model interpretation in te
of instanton anti-instanton configurations. However, t
Bogomol’nyi monopole solutions clearly have no an
monopoles, so it appears that in this case the profile fu
tions are such that the monopole does not see any a
soliton content. Nevertheless, when the profile functions
modified to a non-Bogomol’nyi solution some of the an
soliton content becomes visible — we have already see
9-5
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THEODORA IOANNIDOU AND PAUL M. SUTCLIFFE PHYSICAL REVIEW D60 105009
signature for this in terms of the signs of the asympto
values of the profile functions. This suggests that we sho
think of the charge~0,2! solution as the composite (0,2
5(1222,1220), where the plus signs denote monopo
and the minus signs anti-monopoles~the positive monopole
content is taken from the Bogomol’nyi solution!. With this
interpretation the~0,2! solution contains two monopoles an
two monopole anti-monopole pairs. Since the energy of
solution isE59.0 and the monopole mass is 2, this pheno
enology gives an approximate value for the energy o
monopole anti-monopole pair asEmm̄52.5. This value is at
least reasonable, since~having normalized the monopol
mass to 2! the energy of a monopole anti-monopole p
should be something less than 4; the precise value dep
on the details of the monopole anti-monopole interacti
Some non-trivial tests of the above interpretation will ar
later when we consider SU~4! monopoles. Note that althoug
we know that these solutions are not global minima and
expect them to be unstable~to annihilation of the monopole
anti-monopole pairs! we have not proved that they are u
stable. A stability analysis would need to be undertaken
prove that the solutions are not local minima, though
would be extremely surprising if they were stable.

In SU~3! there are six possible ways to order the eige
values of the Higgs field and the corresponding monop
charges are6(2,2),(0,62),(62,0), thus all the other
monopole solutions are trivially related to the two examp
we have discussed.

Let us now turn to minimal symmetry breaking, which w
may take to be given byF05diag(1,2 1

2 ,2 1
2 ). The

Bogomol’nyi monopole has boundary values given
b0(`)5 3

2 and b1(`)50. Since the second profile functio
vanishes at infinity then the boundary conditions now all
thatc1(`)Þ0. As this is a Bogomol’nyi solution then it ca
be found explicitly and the appropriate boundary condit
turns out to be@5# c1(`)5 1/&, which gives the charge
~2,@1#!. Here the notation is that magnetic weights are
noted by square brackets. The monopole masses arem1
5 3

2 ,m250, so the energy isE53.
Recall that the Bogomol’nyi solutions have the prope

that all thebj ’s at infinity have the same sign, whereas f
non-Bogomol’nyi solutions this is not the case. Thus o
may wonder whether these two types of solution
smoothly connected as the values of~one or more! bj (`) are
varied to change sign. The answer is that they are not, s
this smooth variation must pass through the pointbj (`)
50 where~as we see above! the symmetry breaking patter
changes and the boundary condition oncj (`) suffers a dis-
continuous jump.

For Bogomol’nyi monopoles a non-maximal symmet
breaking pattern requires the vanishing of at least onebj (`),
but for non-Bogomol’nyi monopoles this is not the case. F
example, permuting the eigenvalues into the orderF0
5diag(21

2,1,2 1
2 ) corresponds to the choiceb0(`)

52b1(`)52 3
2 and hence the charge~0,@2#!. The symmetry

of equations~4.2! together with the symmetry of the bound
ary conditions in this case force the reductionc05c1 and
b052b1 . The minimally broken SU~3! non-Bogomol’nyi
monopole that arises from this specific reduction has b
10500
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obtained previously by Burzlaff@8#, using a hedgehog-like
ansatz and a group theoretic approach in which the ga
potential involves the principle SU~2! triplet in SU~3! but the
Higgs field involves the associated 5-plet. Burzlaff@8#
proved the existence of a solution to the equations wh
result in this case. An important feature of the proof is t
fact that the equations arise as the variation of an ene
functional and therefore it only remains to show that a mi
mizer exists, for which standard methods can be employ
In our general case we have the variational formulat
which comes from the Yang-Mills-Higgs energy and so
should be possible to use similar techniques to prove
existence of solutions. In this paper we are content with
merical solutions of the profile function equations and the
are shown in Fig. 1~c! for this case of charge~0,@2#!. In Fig.
1~d! we plot the energy density for this solution~solid line!
and the energy density of the corresponding Bogomol’
charge~2,@1#! solution ~dashed line!. Again note the dip in
energy density near the origin of the non-Bogomol’nyi so
tion. The energy of the non-Bogomol’nyi solution is found
be E54.3, which should be compared with the energyE
53 of the Bogomol’nyi solution.

C. SU„4…

For N54 there are six profile functions,bj ,cj , j
50,1,2, and the Yang-Mills-Higgs equations reduce to

~r 2b08!856c0
2b024c1

2b1

~r 2b18!858c1
2b123c0

2b023c2
2b2

~r 2b28!856c2
2b224c1

2b1

~4.8!
r 2c095c0~3c0

222c1
2211b0

2r 2!

r 2c195c1S 4c1
22

3

2
c0

22
3

2
c1

2211b1
2r 2D

r 2c295c2~3c2
222c1

2211b2
2r 2!.

If we regard the indices on the profile functions as labelli
sites on a linear lattice then we see that the equations inv
only a nearest neighbor coupling. Also, there is again a s
metry of reflecting the lattice about its midpoint, which
this case is the interchange 0↔2.

A consideration of the associated energy shows that
boundary conditions again require thatcj (`)bj (`)50, for
all j . In this section we shall mainly be concerned wi
maximal symmetry breaking, in which casecj (`)50.

The eigenvalues and charges are given by

F05
1

4
diag~3b012b11b2,2b11b22b0 ,

b22b022b1 ,2b022b123b2! ~4.9!

G05diag„3~12c0
2!,~113c0

224c1
2!,

2~113c2
224c1

2!,23~12c2
2!…. ~4.10!
9-6
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Normalizing the monopole mass to two, the Bogomol’n
solution with b0(`)5b1(`)5b2(`)52 hasF05diag(3,1,
21,23). From ~4.10! this solution hasG05diag(3,1,21,
23) and hence by comparison with Eq.~2.5! the charge is
~3,4,3!, with corresponding energyE520.

There are 24 different orderings of the eigenvalues63,
61 and of these there are 8 which give fundamentally d
ferent monopoles. In Table I we list the values ofbj (`) and
the corresponding magnetic charges. As in the SU~3! case,
the magnetic charges are computed by first finding the
mutation required so thatF0 has the correct ordering, that i
F05diag(3,1,21,23), then applying this permutation t
the elements ofG05diag(3,1,21,23) which can then be
compared with the definition~2.5!.

In Table I we also list the computed energies,E, of the
solutions and the approximate values,Ẽ, calculated using the
monopole anti-monopole interpretation discussed in the
vious section. Thus for example, we write (3,0,1)5(320,4
24,322), where the positive monopole content is tak
from the Bogomol’nyi solution. The interpretation of th
solution is therefore that it contains six monopole an
monopole pairs and four monopoles. The approximate
ergy is thenẼ543216Emm̄523, where we have used th
result of the previous section thatEmm̄52.5. The true energy
of this solution isE523.3 which is in good agreement wit
the approximate value. A glance at Table I reveals that
approximate energies are in reasonable agreement with
calculated values, which adds support to our interpretatio

TABLE I. Boundary conditions, charges and energies for SU~4!
monopoles.

b0(`) b1(`) b2(`) (n1 ,n2 ,n3) E Ẽ

2 2 2 ~3,4,3! 20.0 20.0
2 4 22 ~3,4,1! 21.6 21.0
4 22 4 ~3,2,3! 22.0 21.0

22 6 22 ~1,4,1! 22.9 22.0
6 22 22 (3,0,21) 22.9 25.5
4 2 24 ~3,0,1! 23.3 23.0
6 24 2 (3,2,21) 24.1 24.5
4 26 4 (21,2,21) 27.0 28.0
ic
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the solutions in terms of monopole anti-monopole config
rations. Only one case, the charge (3,0,21) solution, shows
a significant discrepancy and it is easy to imagine that
finer details of the arrangement of the monopoles/a
monopoles needs to be taken into account to get a be
agreement. Indeed the surprising fact is that our naive co
ing produces results which are remarkably accurate.

We have only discussed the case of maximal symme
breaking in this section but solutions for all symmetry brea
ing patterns can also be found. As an example, the cas
minimal symmetry breaking can be obtained by exploiti
the symmetry of the equations to setb052b2 , b150, c0
5c2 , c150. This gives the SU~4! analogue of Burzlaff’s
SU~3! solution, and indeed the equations in the two ca
have the same structure.

V. CONCLUSION

In this paper we have presented some static spheric
symmetric monopole solutions of the SU(N) Yang-Mills-
Higgs equations which are not solutions of the Bogomol’n
equation. Some of the properties of these solutions have b
calculated and their interpretation in terms of monopole a
monopole configurations discussed. A crucial tool in the
vestigation was the connection with the two-dimensio
CPN21 sigma model, and indeed our solutions may be c
sidered to be the monopole analogues of the sigma m
non-instanton solutions. Finally, it is perhaps interesting
note that in the context of string theory Sen@9# has revealed
new perspectives on D-branes and other aspects of s
theory by consideration of the dynamics of unstable D-bra
anti-D-brane configurations. In particular D-branes the
selves appear as topological defects in the worldvolume
higher dimensional unstable brane configurations. It rema
to be seen whether monopole anti-monopole solutions h
any important role to play in this light, but if so then ou
solutions are perhaps the simplest examples upon which
further studies might be based.
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