PHYSICAL REVIEW D, VOLUME 60, 105007

Brane baldness versus superselection sectors

Donald Marolf
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
and Physics Department, Syracuse University, Syracuse, New York 13244

Amanda Peet
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
(Received 9 April 1999; published 18 October 1999

The search for intersecting brane solutions in supergravity is a large and profitable industry. Recently,
attention has focused on finding localized forms of known “delocalized” solutions. However, in some cases,
a localized version of the delocalized solution simply does not exist. Instead, localized separated branes
necessarily delocalize as the separation is removed. This phenomenon is related to black hole no-hair theorems,
i.e., “baldness.” We continue the discussion of this effect and describe how it can be understood, in the case
of Dirichlet branes, in terms of the corresponding intersection field theory. When it occurs, it is associated with
the quantum mixing of phases and lack of superselection sectors in low dimensional field theories. We find
surprisingly wide agreement between the field theory and supergravity both with respect to which examples
delocalize and with respect to the rate at which this ocd#8556-282(99)07418-4

PACS numbds): 11.15.Pg, 11.25.Sq, 11.27d

[. INTRODUCTION Now, recall that there are certain dualities between super-
gravity and brane gauge theories, as in the AdS conformal
It is a well-known fact that, while string perturbation field theory(CFT) correspondencg28] and itsp-brane gen-
theory in intersecting D-brane backgrounds is discussed irralizationg29]; see also e.g[30]. The general picture of a
terms of localized brand4], classical supergravity solutions duality is that there is a single quantum theory which has
representing such localized branes are typically difficult toseveral distinct classical limits. In our case, one of these
construct. One often works with supergravity solutionslimits would give classical supergravity while the other
where the branes are less well localized than one might likewould give classical brane gauge theory. This means that
and in fact have extra translational symmetiigs22; see  aspects of the dynamics which are classical from the point of
[23] for a thorough review. One says that the branes havgiew of one theory correspond to strongly quantum mechani-
been “smeared” over some of the directions that weae, ca| effects in terms of the other. We will further generalize
priori, transverse to their world volume. In some cases, withhe AJS-CFET limit to describe interacting A and B branes,
a bit more work, one can construct explicit fully localized gnq we will see that the delocalization of classical supergrav-

solutions, at least in the “near-core” limj24,25. ity corresponds to large fluctuations of a modulus field on the

However, there are some situations where fully localizedy, g6 theory side. In particular, its occurrence is related to
supergravity solutions of the desired type simply do not eXihe quantum mixing between phases and the lack of super-

l)srtén-zzrzls) T:%%i?asinvgzei?]sﬁzz m‘;;lifvg:]%?h%;;f grmian;)i/dpee Ofselection sectors associated with the asymptotic values of
' massless fields in low dimensional quantum field theories;

the volume through which brane A has been smeared, and . o
when the branes intersect on a manifold of sufficiently low!:€+ ON the gauge theory side, delocalization is controlled by

dimension; the details will be explained below. If the branesthe CoIema_n—_Mer.mln—Wagner theor¢B1,32. The relevant .
are separated in a direction transverse to both typesnd ~ duantum mixing is between the gauge theory phase which
B), then localized solutions exist. Nonetheless, as the tranglescribes type A branes separated from type B branes in an
verse separation between the branes is removed, the typecB’era” transverse direction, which we will refer to ge_nerally
brane delocalizes. This phenomenon does not occur when 3§ the “separated” branch, and the phase that describes such
dimension of the intersection manifold is sufficiently high, Pranes with no transverse separation, which we call the “co-
This delocalization was studied if26] for one-branes incident” branch. That some correspondence of this sort
parallel to five-branes. As discussed there, this effect is reshould occur was suggested[86]. The consistency of this
lated to a black hole no-hair theorem. Black hole no-haiicture will be explained in Sec. Ill. We will see that, not
results tell us that, in certain cases, black hole horizons mu&@"ly Will this interpretation successfully predict the cases for
be uniform. A pertinent example occurs in Einstein-Maxwell Which the type B branes delocalize, it will also give the
theory: when an electric charge is brought near a black correct rate at which the delocalization occurs as the trans-
hole, the charge appears to be delocalized over the b|ackversefseparat|on IS removr:ad. _ o o N
hole horizon[27]. The situation discussed below is similar ~ B&fore progressing to the main topic, it is perhaps worth-
as, when delocalization occurs, the charge of the type B
brane appears to be delocalized over the entire horizon of the
type A brane. For such cases, the type A branes are “bald” This result is not, in fact, in conflict with33,34], as we will
and unable to support such hair. discuss.
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while to display an explicit and tractable example of thethe same behavior was seen 26] for a localized one-brane
supergravity delocalization phenomenon. It turns out thass it is moved onto a localized five-brane and, as we will see
this is much easier to see for a D-instanton located near below, it occurs in many other cases as well.

D3-brane than for the systems studied 26]. The point is The outline of this paper is as follows. In Sec. Il, we
that the classical supergravity solution for a localizedextend the analysis ¢26] to consider the full range of two
Bogomol'nyi-Prasad-Sommerfield BPS D-instanton in  charge intersecting brane solutions whose mathematical form
AdS; XS’ is known in terms of elementary functiof36—38 is similar to that of the localized D1-branes parallel to D5-
while, for the other examples, the supergravity solution isbranes (DID5). For example, the analysis includes the lo-
known only as &convergentinfinite series. calized DOD4 system, and the DR6 system studied in

The near D3-brane geometry is just AGS®. For sim-  [24]. We will see that the D(D4 system delocalizes as does
plicity, we take the casd36] where the D-instanton is the D1ID5 system, but that the same methods find th&s2
smeared over the®Sbut the solution localized on the &  system to remain localized. This is a useful check of the
also known explicitly[37]. By writing the AdSXS®> metric  method and resolves the apparent corfflmtween the re-
in Poincarecoordinates, sults of[26] for the D1ID5 system and the explicit construc-

o tion of the localized DID6 solutions in[24]. The D2D6

ds’=R3(U~2dU?+U25,;dy'dy! +d02),  (1.))  system is simply different from the D5 system, in a way

) ) that will be discussed below. Other solutions considered be-
we may interpret the solution ¢86] as the near-core part of |5\ are similar to a D1-brane orthogonally intersecting a
an asymptotically fla(Euclidean spacetime with a spherical D3-brane, wheregsay the D1-brane is smeared along the
(S°) shell of D-instantons located near the three-branes. Ifh3-prane world volume. In this case, we will see that when
Eq. (1.1), R is the radius of the AdSand of the 8 Inthe  the transverse separation betwedtoaalized D3 brane and
presence of the D-instantons, tiiinsteir) metric is un-  the smeared D1 branes is removed, the D3 brane delocalizes
changed, and the dilaton is given by along the D1-brane world volume. To be quite general, we

’ 4 ) will allow arbitrary transverse separation between the two
_ (d°+2)(d"+4d"—-2) (1.2) types of branes, although we will still refer to these solutions
0rF d3(d?+4)%2 ' as “intersecting” brane spacetimes. For many of these sys-

tems, certain “near-core” solutions were constructefi3ay;
where we argue in Appendix A that, while these are certainly valid
solutions to the supergravity equations, due to the subtleties
of boundary conditions they are not the appropriate ones to
consider in our context.

After studying the supergravity solutions, we turn in Sec.
with (Ug,yb) the location of the D-instantons. This setup !l to a discussion of thg corresponding intersection_ field
allows a separation between the D-instantons and the origitheories and the appropriate AdS-CFT lirfilt9]. We will
of AdSs. Note that far from the D-instantores’ tends to a  S€e that our delocalization phenomertaiien it occurg cor-
finite and nonzero constarty+c;. The constant, is arbi- ~ "€SPONds to a quantum mixing between phases of the Yang-
trary while the constan¢, is proportional to the instanton Mills theory and to the fact that-61 and 1+ 1 field theories
charge. Consider now the limit in which the instantons aredr® Not superselected by the asymptotic values of the mass-
moved onto the three-brane; that is, the limit in whidg  'ess fields. Finally, we discuss a few remaining issues in Sec.
—0 with fixedcg,cq,y;. Note thatU,y' should also remain V.
fixed as we wish to examine the solution at a given location
relative to the three-brane. In this limit, Ed..3) diverges so Il. DELOCALIZATION IN SUPERGRAVITY
that we have

e

3
d2=U,U (U‘l—U51)2+ZO(yi—yio)2 . (13

Here, we consider BPS solutions with two types of
(€%)m=Co+Cy. (1.4) brqnes, A and B, _each Iocali;ed at fixed, but different, values
of isotropic coordinate; which label the space transverse
Therefore the dilaton is now constafand it is in fact the to both branes.That is, we consider BPS solutions with the
same constant as the asymptotic Va|uee$f at generic branes Separated in the transverse direction. The branes may
D-instanton position In particular, the solution no longer
has any dependence on the coordinatealong the three-
brane. We see that the D-instantons have delocalized as theyin [26], it was stated that there was a normalization problem with
were moved toward the three-brane. Note that this does nafie solutions of24]. This is not, in fact, correct. For completeness,
happen suddenly & ,=0, but rather gradually. As viewed the normalizations are discussed in the Appendix.
from a fixed point relative to the three-brane, the field cre- 3we describe locations in the spacetime in terms of isotropic co-
ated by the instantons smoothly blurs out as we decrdgse ordinates. In all cases below, this may be translated into a coordi-
to zero. In this context, we see that our delocalization isate invariant statement by referring, for example, to the surface in
related to the well-known scale-radius duality of this systemspacetime on which the various gauge field strengths take a given
[36—38. The behavior of the D-instanton solutip87] that  value. However, it is simpler to discuss the solutions directly in
is localized on the Bas well as in the AdSis similar. Much  terms of isotropic coordinates.
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carry Ramond-RamondRR) or Neveu-Schwarz—Neveu- 1 H H
Schwarz(NS)-(NS) charge in type Il A or I B string theory ds?= (—d2+dZ2)+ \/ o= (dzp)2+ \/ oo (dz,)2
or be M-branes, and the A- and B-branes need not be of the VHAHg He Ha
same sort. For example, the type A brane may be R-R while 0 A2
the type B branes are NS-NS. Thus, we include the case of a T VHAHg(dX0), @
fundamental string intersectingbut not ending on a  and
D-brane. The equations of motion for all of these cases have
a similar structure as they are related by T- and S- duality. A eP=g HE VG, (2.2
similar analysis also applies to Kaluza-Klein monopoles and
various sorts of waves. In this section, we refer to all suc
cases as “branes.”

The world-volumes of the type A and B branes will in
general have certain directions in common. We label the di-

We have not written the gauge fields explicitly, but they have
he standard form. Constructing the supergravity solutions
then reducessee, e.g.[10,13,17,40) to solving the follow-
ing equations of motion:

rections common to both by coordinates, . Here, thd is a ) aa

label denoting the “intersection” directions. Similarly, we Iy HalX1) =~ 0(x0), 2.3
denote byz, the world volume directions of brane A notin I, bW

and we denote by, the worldvolume directions of brane B (92 + 32 Hg(X, \W,Zg) +Ha(X, )92 Hg(X, ,W,Z,)

not in I. We take brane A to be smeared in thedirections, B é

as well as in any directions in which brane B has been =Qgd(X, ,X, ) (W, Wq) 8(Z,,Za0), (2.4

smeared. We will have no need to refer explicitly to direc- o )
tions in which both branes have been smeared, as these c#iered; represents the flat space Laplacian in xhedi-
be removed by a T-duality symmetry transformation, but werections, and similarly for(? and (? . Note that, by con-

label directions in which brane Abut not B* has been  stryction, the solution has no dependence,an or z,. The
smeared byw. Finally, x, labels directions orthogonal to delta-function sources, each of the appropriate dimension,
both branes along which neither brane has been smeareghsure that the solution carries gauge field fluxes correspond-
Our conventions are conveniently summarized by the follow-ing to chargesy, ,gg at the locations specified. Note that we
ing table, wherg@®) denotes a direction along a brarie;) have taken brane A to lie at the origin of the transverse
denotes a direction in which a brane has been smeared, andordinates, , while we have placed brane B at the location
an empty space denotes a direction orthogonal to the brane (X, 5,Wg,Z,0). We have chosen to lef, ,qg denote the total
which it has not been smeared. charge of the type A and B branes, although only the charge
density of the type A branes appears in the above equations

t z Z, Zp w X, of motion (2.3).
A Y Y Y = = The first equation of motio2.3) is just Laplace’s equa-
B P P P tion. Solutions appropriate to asymptotically flat boundary

conditions may be found if the, coordinates label a

dimensional space witd=3, and we confine ourselves to

this case. The type A branes are associated with a “charge
We assume that the,, z,, andw directions are compacti- radius” r , proportional tog@*°*%~2) but the behavior of
fied to form tori of volumesV,, V,, andV,, respectively  the supergravity solution is controlled by the length scale
(the noncompact case just corresponds to\the« limit).

Thez, directions are taken to be uncompactified, or compac- (r,‘i””w‘z) d=2)

tified on a manifold of very large volume. We will also use FaA= A 29
the symbolsa,b,w to denote the number o, ,z,,w coor- v
dinates. Our discussion also applies to BPS branes at angléEhe appropriate solution may thus be written
though we will not consider this case explicitly. deo

Familiar examples of this class are [{ 4)-branes(B) H 14 Fa 26
oriented parallel to P-branes(A) as well as various inter- AX)= @*_ 2.6

secting brane solution$9,10,20,23 with one brane(A)
smeared along the world-volume directions of the othemwherer =|x,|.
brane(B). Additional cases are generated by further smear- The method of{26] then uses the symmetries and the
ing. Thus, we may refer to brane A as “the bigger brane,” inlinearity of equation(2.4) to solve forHg as an infinite sum
the sense that themearedtype A branes fill out a higher (in the case where thes,z, directions are compacbover
dimensional volume. modes. This series turns out to be absolutely convergent, and
For BPS configurations we make the ansatz so is a useful representation of the full solution.
We proceed here in the same way. As stated above, we
suppose that the coordinateg, w label compact tori of
“We could alternatively smear brane B, but this will not affect thevolume V,,V,,. If these directions are not in fact compact,
delocalization behavior. then a similar argument follows simply by replacing the
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mode sums with integrals. We Fourier transform overzhe standard techniques. Up to a constamhich does not de-

w directions and decompose the solution into harmonics opend onr | ), it is given byW(ri):rI(d’l). Thus, up to an
thed—1 sphere associated with thetransverse coordinates irrelevant constant we have
XJ_ .
In fact, it is only necessary to consider modes which are _qB¢_(rL0) _qB¢+(rL0)
constant over th&?~* sphere. The higher spherical harmon- A VAV (2.9

ics would tell us about localization of the type B branes in

the angular directions, but we already expect that, when wg\|| that remains is to determine the behaviorgf for small
move the type B branes to, =0, the limiting solution r .
becomes symmetric over the&'! sphere. Including Let us suppose that, is nonzero, so that the behavior
a discussion of the higher spherical harmonics, as wagear r, =0 is controlled by the term proportional to
done in[26], verifies this conclusion, but does not impact 1,(r )p2 in the radial equatior2.7). Recall thatH, de-
the question (_)f localization in the, and w dlre(_:nons. scribes some power law potential in that diverges at
Thus, we consider here only modes which are uniform oveL g gqr theriz potential @1=4), the radial equation may
71 - - . . - 1
the S™°! sphere. This is egdu_l\{alent to  replacing e solved exactly in terms of Bessel functions as was done in
the }()dof”l‘;‘ source inB with an shell of source: [26] Given the explicit solution ifi26], one can see that the
gl S(r . .1 10) 3(W,Wo) 8(Za,Za0), Wherer . o=[X.ol.  sum overp, converges absolutely at any#r, , so that the

~ We express the functiofg(r, ,w,z,) as a sum over Fou-  series gives an accurate description of the physics. Solutions
rier modes inw and z, multiplied by radial modes . L 1+ \[14p%2
HB,pW,pa(rL)v wherep,, andp, denote the relevarttiscrete to the source-free equation behave like near

momenta in thav, z, directions. These radial modes satisfy '+ =0, SO that continuity at _the_orlgm forces_ to vanish
the following second order ordinary differential equation there. Thus, only modes witp,=0 contribute in ther, o

(ODE): —0 limit and the type B branes delocalize in thg direc-
tions. This case corresponds to, for example, D1 branes par-
ri(dfl)arl(rid—l)&riHB,pwYpa(rl))_ pevHB,pW,pa(U) allel to D5 branes.

Still considering the casd=4 (e.g., D1-branes and D5-
5 _ % (4o branes, it is interesting to ask about the rate at which the
~HA(r)paHe p, p, ()= T 78(rifio)- type B branes delocalize. Since we are interested in the lim-
aw iting behavior ag—0, we consider the delocalization as it
(2.7) reaches the largest length scalssall p,). Note that, as
Let us. for the moment. fix our attention on one choice 0fmeasured by the asymptotic fields, the solution has delocal-
! ’ ized on a length scaléx when the coefficientr, corre-

Pw,Pa, SO that we need not indicate these labels explicitly. : .
The p,=0, p,=0 mode has special boundary conditionsSp(,)ndlng to the momentupy,~1/0x pecomes smgll relative
to its value at large , 5. For convenience, we will measure

which we will discuss later. For the other modes, imposing ) _ N .
a_ relative to its value(qgd_(Fa)/VaVy) atr o=Ffa. A

boundedness at largg will determine the solution at . N 26 . lution f I
>r,, to be a constantr, times some particular solution COMParison with26] or an approximate solution for sma
r, shows thatr, vanishes like

¢, while continuity at the origin will determine the solu-

tion forr, <r , to be a constant_ times some particular T =
solution ¢_ . The constantsr.. are then determined by the VaVwae:  (Tio Pala 21
matching conditions dictated by the delta-function in Eg. Ogd_(Tp) fa (210

(2.7). Namely, as the source in ER.7) has no derivatives

of delta functions, we must havea, o (rg) for r, <f,. Specifically, for smallp,, «, vanishes like
=a_¢_(ro.), while the discontinuity in the first derivatives (/¢ y(/2) PiTA. Thus, ford=4, the type B brane appears
must reproduce the delta function source. Usfngand¢’. {5 pe delocalized on a length scalix~F a\INFalr, o as

to denote the values of the solutions and theiderivatives  \ewed from infinity. Note that, for largé,, the B-branes
evaluated at, =r o, we have as usual are quite well delocalized before they reach any strong cur-
vature region.

—(d-1
a,= qBrLé ¢ , Let us now consider the case>4, e.g., DO-branes ap-
VaVul(d- @ — ¢ dl) proaching D4-branes. Sineg_ vanishes at the origin for the
r~—2 potential, one may expect the same behavior for the
der 1§ Voo stronger potentials~(~2). This may be verified by looking
RVAVP SIS (28 for a solution of the formg=r (@ D%¥11)  ysing the
WKB approximation, and again imposing continuity rat
Our main task is to study the behavior @f. asr, ,—0. If  =0. Note that the WKB approximation is self-consistent for
the coefficientr, vanishes in this limit, then the correspond- such strong potentials. Thus, the supergravity solutions delo-
ing mode will not appear in the limiting solution féig . calize in thez, directions for these cases as well. The delo-

The denominator of Eq2.8) is just the Wronskian\\) calization is even faster than fok=4 asa, now vanishes
of EqQ. (2.7) evaluated at , =r,, and may be computed by like
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d—2 B PR sum over modes once again converges absolttd@lyus,
a+~exr{ - Pa( ) AA<_) } localization is always possible in any directions transverse to
(2.11) brane B along which brane A has been smeared.

The last mode to consider is the cgsg=0, p,=0; i.e.,

the spatially homogeneous mode. This mode does not tell us
as opposed to the power law behavior for th€ potential.  about delocalization of the branes; instead, it is the entire
When the type B branes are faty, the coefficientsx, are field remaining once complete delocalization has occurred.
small forfap,>(r,o/fa)% %271 and the type B brane has This mode is special as its boundary condition at infinity
delocalized to a size scalx~f(fa/r )9 ?27 1. Again, differs from that of any other mode. The point is that, for
at least within the domain of the WKB approximation, the qg=0, the appropriate solution islz=1 and notHgz=0.
sum over momenta converges absolutely. The dasé in-  Thus, the correct solution for the homogeneous mode is a
cludes DO branes approaching D4 branes, as well as inteconstant plus a function that vanishes for large We now
secting brane solutiongither R-R, NS-NS, or Mwith 5 or  consider the case where the type B brane delocalizes com-
more directions transverse to both branes. For example, filetely and make several observations. Recall that complete
addresses the case of a D3-brdBg¢ and an orthogonal D1- delocalization occurs whed=4 and there are nw direc-
brane(A) smeared in the threg, directions along the D3- tions. First, note that the complete solution fop=0 is of
brane. As the transverse separation is removed, the D3 brafmige formHg=1+ (rg‘”""lvarf‘z), since only the spatially
delocalizes along the D1-brane. The cdse4 also includes homogeneous mode survives. Second, since all modes with
the case of D-instantons in a D3 brane, which was explicitlyp,+0 vanish atr, =0 for any locationr |, of the type B

seen to delocalize in Sec. I. As before, for lafge the type  branes, we may evaluaté; exactly at the origin:
B branes are well delocalized before they reach any strong

2 -1 ro

curvature region. rg’“a
The remaining case is when the bigger brane has only Hg(r, =0)=1+ vriz/ (2.19
a'lo

three transverse directiond<€ 3), which is exactly the situ-

ation that arises in the solutions f24]. In this case, the ) ) o o

WKB approximation is not self-consistent, but we may studyNote that this result also holds in the infinite volume limit
; . S . ; inp pd—2+ - ; At

the radial equation by a related technique. Writipgr )  (Va—) in whichrg™="%/V,=0. Thus, if thez, directions

=r~te¥(") the sourceless radial equatiéh7) becomes ~ are not compactified, we have simpg=1 atr, =0, inde-
pendent ofr | ;. These observations will prove useful in the

following sections.

We now make a few final remarks about variations on the
above theme. Consider, for example, solutions representing
not branes in asymptotically flat space, but branes in the near
horizon geometry associated with the type A branes; i.e., the
. _ ) solutions obtained by taking a limi,>r,, r . This is
This may be analyzed by assuming th%t\lf is much larger  realy the only part of the asymptotically flat geometry of
than (a,L\If)z, which turns out to be self-consistent for which we have made significant use, so the discussion is not
<f,. Within this approximation, the general solution be- changed. Note that taking this limit is equivalent to setting
haves near the origin like Ha=(fa/r,)% 2 and fixing the boundary conditions by im-

posing boundedness at infinity and specifying the value of
. Hg atr, =0 to be given by Eq(2.14) above. The point we
r,\[Pa'aril wish to emphasize is that the,=0, p,,=0 mode still ap-
+Cy f_> (2.13 proaches a nonzero constant far from the type B branes and
A we haveHg—1 asr—o. One can see this explicitly in the
D-instanton example from the Introduction, which already
Thus, if ¢ is to be continuous at the origin we must haveresides in the near-horizon geometry of the three-brane.
C,=0. As a resultg_ behaves like I, /fA)[pifAu], which ~ In a}ddition, one might ask how the analy;is would change
is finite and nonzero at, =0. This time we find that. if a given set of(type_IIA) branes were lifted to eleven
does not vanish as ,— 0. The result is that the type B brane dimensional supergravity. Such a lift has a translational sym-
remains localized in the, directions in agreement wifle4]. ~ Metry inxy;, so thatx;; does not become a transverse direc-
Again, within the domain of validity of this approximation tion. As the behavior of the classical solution is determined
(fa>T,0.r,), one finds that the sum over modes convergedy the number of dimensions transverse to the type A brane,
absolutely. The infinite series discussed here should sum # 1S not affected by this process. One might also ask about
the solution of[24] in the near-core region. related solutions where the M-brane is localizeckin. An

We have not yet addressed localization inthdirections
for any value ofd. Let us therefore consider a mode with
pPa=0, py,# 0. The radial equations in this case are just those 50f course, the full sum over modes includes a sum @ygeven
for the Coulomb potential of a massive field and are easilyfor p,#0. For p;>pa(fa/r,)? 2, the analysis is identical to the
studied. One finds that_ does not vanish at, =0, and the  p,=0 case and shows convergence of the sum pyer

Fa
df W+ (9, W)*—ph— pgzzo. (2.12

2,
rl> [Pafar; —1]

¢:C1(A_

A
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example where this is possible is lifting a solution with D2- in directions parallel to the brane. To see this, one can com-
branes(with one brane smeared over the olhetersecting pute the associated moduli space metric for motion of a
in points to a solution with M2-branes intersecting in pointsprobe DA-brane in the background of the others; it is trivial.
(with one brane still smeared over the other but otherwis@he next step is to keep the dimensionless expansion param-
fully localized). In such cases, the M-theoretic solution will eter in the UN,) gauge theory fixed; since we are interested
generally delocalize faster than the type Il A supergravityin large numbers of branes for comparison to the supergrav-
solution due to the increased number of transverse dimerity, this expansion parameter is

sions. Note that a qualitative change from delocalization to

localization could only happen if the number of transverse NACE) =05 M aNAEA 3= gNA(IE) 3. (3.2

directions crosses the thresholddat 4, i.e., the lifting of a ) ) ] ) )
D6 brane to M-theory. But this lift is a Kaluza-Klein mono- The field theory is perturbative when this parameter is small.

pole and, while there are only 6 directions along the corre©One also keeps fixed the mass of strings stretched perpen-
sponding M-theoretic “brane,” the Kaluza-Klein monopole dicular to the branest=|x, |/IS=U, wherex, is the dis-
has a nontrivial structure in the remaining 4 spatial direcPlacement between the branes.
tions. Due to the structure of these dimensions, the corre- In the AdS-CFT low-energy limit the physics on the brane
sponding potentiaH, behaves only as ! even for the decouples from the physics in the bulk, provided that6.
M-theoretic solution, and therefore has the same propertieshis decoupling happens essentially because supergravity is
with regard to delocalization as the 11 A D6-brane. One can@ Weak interaction at low energy compared to the gauge in-
of course, consider a Kaluza-Klein monopole in any dimeni€raction. _ o
sion and, as it always has an’ potential, the type B branes The supergravity metric is
always remain localized. This is of course to be expected
from the method o0f24,25, which realizes the “near-core” dszzi
Kaluza-Klein monopole as an orbifold of flat space and in- \/H_A
serts the type B branes before taking the orbifold quotient.

Finally, within supergravity, it is clear that the above
analysis can be extended to branes that are not asymptoti- where Hy=1+ m
cally flat. They correspond to potentials that are softer than +

r~* and therefore allow localization of the directions parallel jere we have taken all of the/Bbranes to be “clumped”
to the A brane. However, this case is not our primary conyggether at the origin=0 and have not allowed any smear-

(—dt?+dZ2)+ VHadX2

Fa | 7A
(3.3

cern and we will not discuss it in detail. ing of the branes. The symbo), denotes the charge radius
of the brane, i.e. the radius where the 1 in the harmonic
. THE SUPERGRAVITY-FIELD THEORY function is comparable to the other term:
CORRESPONDENCE
rAzls(gsNA)l/(YiA)- (3.9

In the last section we studied the delocalization behavior
of a class of asymptotically flat supergravity brane solutiongConvertingx, to U and the other factors using E@®.2) the
of type Il A/B string theory. We would now like to under- harmonic function may be writtehIA:1+)\,§(U)/(ISU)4.
stand this behavior from a field theory perspective by using éAssuming that the supergravity, which is an energy, scales
generalization of thep-brane AdS-CFT correspondence, the same as the gauge theory endEgywe see that the 1 in
which is obtained by taking a certain low-energy limit of a H, is lost in the low-energy limit. This means that we have
system ofN, R-R chargedp-branes. We first study the su- lost the asymptotically flat part of the supergravity geometry.
pergravity solutions and define the AdS-CFT limit, and thenin considering the physical validity of this near-horizon su-
move on to a field theory explanation of the supergravitypergravity solution, there are two types of corrections to
(de)localization phenomena. worry about,a’ andgg. A measure of the first type of cor-
Let us first orient ourselves with a lightning review of the rection is the Ricci scalar measured in string units, which is
salient features of the AdS-CFT correspondencé268f for  found to bel §R= 1\ A(U) and so the supergravity is weakly
DA-branes. HereA denotes the number of spatial dimen- coupled fora ,(U)>1. In comparing this to the gauge theory
sions of what in Sec. Il was a type @®irichlet) brane. We  regime) ,(E)<1, as pointed out ifi41], we must be careful
will ignore numerical factors in this entire section; the rel-in specifying the type of probe we are using, which in turn
evant precise normalizations may be found28] or in the  gives a relationship between the gauge theory enErgyd
previous section. The AdS-CFT correspondence Ry  the supergravity radius). The simplest type of probe to
DA-branes is obtained by starting in string theory with theconsider is the one originally studied j&9], the stretched
coupled bulk-brane dynamics, and taking the low-energyfundamental string, which is a BPS state in the gauge theory
limit and hasE=U as above. One then sees that the supergravity
and gauge theory breakdowns happen in a consistent fashion.
(Els)—0. (3.1  Here it was important that this result for the stretched string
mass is not corrected gravitationally. The gravitational
This energyE is measured in the gauge theory. The gaugé‘'warpage” for a fundamental string is computed from the
theory coordinates are the isotropic supergravity coordinate®A-brane metric in the string framé3.3), and since the
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(BP9 stretched string points in a direction perpendicylar Let us now study our intersecting brane supergravity so-
to the branes the warpage is unity: lutions from Sec. Il in a generalization of the low-energy
limit of [29]. Our concern is to find the relevant region of the
T supergravity geometry. If the &branes and B-branes are
LwarpagecJ \/—gngmfj \/HA Ha'=1. very far from each other, then each has its own near-horizon
(3.5  region as if the other collection of branes did not exist. The
more interesting, and new, situation arises when the branes
At still higher values of\, other descriptions of the physics influence each other strongly, i.e. when the separatignis
are appropriat€29], such as S-dual supergravity geometries.near-horizon in a sense which we now explain. In this sec-
Overall one finds different descriptions of the physics to betion, we keep the localization in thel ¢ 1)-sphere explicit,
valid at different\?’s, and they are dual to one another. We and do not use spherical shells.
will be concentrating on the super Yang-Mills and ten- An important subtlety in determining the low-energy limit
dimensional supergravity phases. for intersecting D-branes concerns the kind of probe we will
Lastly, let us make a brief remark contrasting the nearuse to connect a gauge theory eneEgwith a supergravity
horizon spacetime with the asymptotically flat solution. If we radiusU. As before, the most straightforward probes to con-
compute the curvature in string units of the asymptoticallysider are the stretched strings. In the intersecting brane ge-
flat A<3 solutions, we find that it starts from zero xat ometry, with metric (2.1, and “harmonic” functions
=0, peaks at around the charge radius at a value of ordeil 5(x,),Hg(X, ,Z5), the only BPS stretched strings are the
(9sN ) ~27=P) which is small for largegsN,, and falls off ones running in the transversex ) directions. Strings
to zero again at—«. For A>3, a similar behavior occurs stretched in directions other than , for example tethering
for the dilaton. This is to be contrasted with the near-horizortwo clumps of B branes separated irza(ll) direction, are
spacetime for which the curvature and dilaton are monotonioiot BPS; a symptom of this is that they experience large
[29]. For A<3, the curvature diverges near the branes whilewarpage
for A>3 the dilaton diverges there.

A. The supergravity side IIWarpag@J' \/_gTTnglT:J drdoy1Ha (3.6

We now wish to define a generalized AdS-CFT corre-
spondence for intersecting D-branes appropriate to the R-Because of this warpage, the non-transverse strings are at-
supergravity solutions that we constructed in the last sectiorracted to the A branes. So we will concentrate only on the
Our conventions differ from the last section only in that, for transverse BPS stretched strings in the following; the dynam-
the moment, we take there to be wadirections. One special ics for other types of probes is much more complicated and
case in which we will need to reintroduee directions will e will not discuss it. As a consequence, when we take the
be discussed near the end of subsection B. So, our setup igw-energy limit, we perform the scaling of coordinates only
in the transverse directionktl;=x, /1;—0.

t 2z 7, X, If A=B we hold the A-brane coupling,ﬁ(u) fixed; if
DA ® ® @ = A<B we hold\3(U) fixed. Effectively, this means we are
DB @ ® L taking .the AdS-CFT limit just as for the larger brane. In a

sense, including the physics of the smaller brane is like a
There aral=(9+1 — A—B) of thex, , a=(A—1) of thez “perturbation” on this Iarge_r-brane AdS-CF_T correspon-
and b=(B—1) of the z,. Withoutl ioss of generality a\}ve dence, alth_ough we are not in any way treating the_ sr_naller
have chosen the Abranes to be smeared over tb@., If brane physics perturbatively. A simple example of this is the

there are n@,, then the intersection is parallel, otherwise it case of the D-instanton in the D3-brane near-horizon geom-

. o X . etry which we discussed in the Introduction; however, for the
is orthogonal. In addition, we take any smeared configuration

) : . ; examples with larger branes such asllD3, the theory on
to be irreducibly smeared in the sense that it cannot be "She smaller branes is in fact dynamical. In addition, the in-

duced via a T-duality symmetry transformation to an un- ina b heori il d e f he bulk
smeared configuration. We work in the large-volume "mit'tersectlng rane gauge t eﬁ’”es w ecoy”pe rom.t € bu
V..o but we keep a finite charge density of the & long as the branes are small_ enqugh, here this means
ab ' b P 9 y .. that there are more than three directions transverse to both
A-branes, Na/(Vp/ls). In .contrast, th? charge density branes. For the cases where there are only three, even though
Ng/(Va/l5)—0. Our analysis therefore differs from the spe- the metric does not have the same form as for a D6-brane,
cial case considered i42] in which there was a volume \ye can compute the curvature and Hawking temperature and
infinity of D-instantons on D3-branésit also differs from they turn out to behave as for six-branes. Therefore we sus-
previous analyses such g&0] where AdS-CFT for smeared pect that holography is breaking down, i.e. that making pre-
intersecting branes was studied. dictions about the classical supergravity from the quantum
brane field theory may be problematic. We will remark on
these cases explicitly when we encounter them.
8For this case, in contrast to what we study later, the theory on the Now, doing the AdS-CFT scaling ix, and holding\? of
D-instantons is not dynamical. the larger brane fixed gives the the near-horizon geometry of
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the DA-branes. That this is true no matter whetiderB or  volume{t,z ,z,} and DB-branes with{t,z ,zg}. The super-

A<B can be seen as follows. From gravity equation of motion foH , is
H :1+_rZ\‘A_51 (3.7 2 4y, =
A Vp [x,[7A : [95, IHA=y_80x.) (3.10
we find i.e. theA-branes are all at, =0. The near-horizon solution
_ _ is
Ho [9sNA(IU)A ] _ Na [gNg(lU)® °]
ATV IU T (VplINg (I U)*2 (1A
(3.8 HA=—5Vb|XL|77A7 : (3.1

Recall that there are several constraints of our setup, such 8%ere theb appears because of the smearing of the
asymptotic flatness of the intersecting brane solution, th bp 9

smearing of the B-branes over,, and the fact that both DA-branes along the B-branes.(Recall that, in our low-

intersecting D-branes live in either type Il A or 11 B string ens\r/%y I(Lrggéethethlem;r? ?naso?rofgoer?jiggt.es such that the
theory. As a result, it is always true that<4 if A=B where g

we hold \2(U) fixed, or a<4 if A<B where we hold DE-Pranes are located a4=0 and atx, =x,o. The equa-

tion satisfied b is
)\é(U) fixed. Thus we see that, as previously advertised, in We

either case only the near-horizon parttdf remains. That [92 +Had? IHg=0g (X, ,X, o) 8(Zs). (3.12
this happens even foh<B is due to the smearing of the X AT BT BT L0 :
A-branes ovez, . We will solve this equation in the region near th8{branes,

We_ now need to check Whe_t_her the supergravif[y curvature, particular forx, satisfying|x, —x, o/ <|X, o|. Over such a
and dilaton develop any additional strong coupling reg'onsfegion, the functiorH,, does not vary much, and we can

due to the presence of the B branes. First of all, we Shou'%pproximate it by a constant in the equation s . After a
not be tempted to just throw away the 1l by analogy change of coordinates

with what happened tbl , . Recall that in the infinite volume

limit, we haveHg=1 at the location of the B-branes for .

any value ofx, ¢, and that this provides a boundary condi- Y =X, =X, 0, yaz—a, (3.13
tion which forcesHg—1 far from the B-branes as well. \/H_A

(We also discussed this phenomenon explicitly for the
=3, B=—1 example in the IntroductionWe conclude that, oEE e
far from the [B-branes, the geometry and dilaton are just agnetion is given by

we see that an approximate solution to tHg equation of

they were for the near-horizonMbranes in isolation. Thus, [7-8

one expects that new strong coupling regions could arise Ho=ft B _ 3.1
only near the B-branes. We examine this possibility now, B0 [yl ?+(y)H B (19
though we need to treat the ;=0 and|x, o/ >0 cases sepa- i _ _

rately. Let us study, ,=0 first. wheref is a solution of thegg=0 version of Eq(3.12. In

For x, ,=0 we go directly to the exact solution of the Particular,f, is smooth at the location of theBbranes, so

previous section. For all cases with potentials stronger thafat the singular term will dominate in this region. For con-

1/r, where we expect holography to hold, delocalization oc-Venience, we pretend thag=1 in order to borrow results
curs, and the solution depends only on theverall trans- from the familiar DB-brane metric, but our conclusions will

verse coordinates. For, ;=0 the solution is not depend on this choice. _ _
Now notice that the fields of the intersecting brane system
ré_B 1 gNg [ g 7-A-b do not depend on any éf,z ,z,}. We may therefore rescale
Hg=1+ N, [7Ba 1+ V. /2 ( m) ' these coordinates without affecting the supergravity physics.
a alls A%l (3.9 Defining

whereV, is the volume of thez, directions, and we have (T.Y1 Vo) = (1,2, 2)
used the identita+ B=A+Db. Since we do not have a/() b VHA
volume infinity of DB-branes, we have justg=1, every-

where. As a result, the curvature and dilaton behave exactlthe metric becomes

as they would for the isolatedAbranes. We can therefore

(3.1

simply use our [A-brane intuition to tell us where the g 4= i 1 (—dT2+dy2+dy?)
=0 intersecting brane supergravity solution is valid. =NAp F/—————(— +ay;+ayy
g pergraviey VHe(Ya.y.)

At generic separations, 5, the supergravity solution is
complicated, and is not known in terms of elementary func-
tions. We will instead use an approximation scheme to study +VHg(Ya,y. ) (dys+dy?) |. (3.1
the curvature. As usual, we consideAranes with world
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With the metric near the B-branes in the above form, the B-clumps are built out of the same string theory parameters.
scalar curvaturéR of the intersecting brane solution is easy Let us study the expansion paramet&fsclosely. For the

to compute. We have A-clump we have
PIE Yo 317 NA(E) =gsNa(IE)A 2, (319
~—— 2Ry )
T VHL T and for theB-clump
whereRg is the curvature of the B-brane metric by itself. N3(E)=gsNg(IE)B 3. (3.20
At large gsNg, this curvature is small everywhere, as we o
saw at the beginning of this section. The factor ofHj Now let us take the low-energy limit of a system of two
only makes this conclusion stronger, by a factorclumps of branes, the &branes and the B-branes, as we
VOND (X, /197 A P00, did in the previous subsection. In general the expansion pa-
We also consider the dilaton. For the intersecting solutiofameters will develop a hierarchy for energigsof similar
it is order:
D _ (3—A)/4y4(3—B)/4 )\Z(E) N
e gSHA HB . (318) _Ahw _A(ISE)A_B. (321)
Ag(E)  Ng

For smallB, this will become large near theB3branes. For

A>3, it will be damped by a power dfi,. However, due to We see that a large hierarchy arises because we are taking
the change of coordinates above frapto y,, Hg is large  the low-energy limit (;E) —0. Now recall the condition that
over a range of, that is larger than for the B-branes in we keep\?(E) fixed for the bigger brane; this would be
isolation. For small B, the supergravity solution also breaks)\,i(u) for A=B or )\é(u) for A<B. Therefore we see that
down near the B-branes, over a range af that is signifi- the coupling of the smaller brane becomes much stronger
cantly stretched relative to what occurs for the B-branes byhan that of the larger one,

themselves. If we were interested in the region where the

dilaton were too large, we would switch to an S-dual descrip- Namal E)=>N\jig(E). (3.22

tion. . . .
However, the most important point for us follows from ThiS means that the physics on the bigger brane does not

the observation of the previous section that we hakg significantly influence the physics on the smaller brane. This

—.1 far from the B-branes. In fact, when the separation is similar in spirit to the AdS-CFT decoupling of thg bulk
X, o| is small and if we do not have a volum¥,{) infinity theory from the brane theory. So whenever we consider two

of DB-branes,H approaches 1 quite rapidly. Now let us intersecting branes, orthogonal or parallel, we need only

pick a point significantly further out than theBabranes but study t_he gau(?e theory on thehsmf;‘]”ef branehang_ on thbe in-
close enough that it would lie inside the region of validity of t€rS€ction, and we can ignore the physics on the bigger brane

the near-horizon supergravity solution for theAdranes as it is essentially frozen out. The one exception occurs, of

alone. Then in the combined systeRy; is close to 1 at this course, Whem:B.’ in which case the dynamics on both
point, and the B-branes do not affect the validity of the clumps of branes is equglly relevant.

supergravity solution. The previous section then tells us thag NOW: for Dp-branes withp<3, we have from the formula
the delocalization is visible in this region, and also that, by'®" M p(E) that the perturbative Super Yang-MilSYM) re-
adjusting parameters, we can make the delocalization arbfiMme is the high-energy or ultraviolet regini29]. So in a
trarily large without placing the B-branes in the strong- Wilsonian sense the SYM description is the fundamental

curvature region of the nedx-brane geometry. We conclude ©N€- Now, note that the dimension of the theory on the in-
that delocalization is a reliable prediction in this intersectingt€rsection for our intersecting D-brane configurations has an

brane spacetime, and so it should have a dual description #PPer bound ofi=2+1. This happens because there are not
terms of the gauge field theory on the branes. enough dimensions of spacetime to have intersecting branes

(parallel or orthogonalwhich are asymptotically flat and
B. The field theory side which have an intersgction theory with>2+ 1. Thergfore,
: even at strong coupling, we may rely on conclusions that
On the field theory side of our generalized correspon{follow from general properties of the field theory on the
dence we have the coupled field theory of th&-Dand  smaller braneswith p<3) and on the intersection, such as
DB-branes. There are three sectors of open stringsAthe locality and dimensionality. On the other hand, the SYM
—A strings, theB—B strings, and theA—B strings. The physics on thel=p+1 world volume ofp>3 branes is at
action for this system in the low-energy limit at weak gaugebest a low-energy effective field theory, and gets replaced in
couplings is well known; it is T-dual to that for the 4  the UV by a more complicated theory which may not even
system and has eight real supercharges. be a local quantum field theof29]. Taking into account our
Since the dimensions of the low-energy field theories forprevious finding that the gauge physics is relevant only on
theA—A, B—B, andA—B strings are all different, we need the intersection or the smaller brane, or at worst on both
to know how the couplings scale relatively in the low-energyclumps for theA=B case, the only case where the fact that
limit (Elg)—0. The gauge couplings on thé&- and SYM,, is notthe UV theory might bother us is DD4(2).
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In fact, since in this case we do not know the fully localized modifies the dynamics of the system at large length scales
supergravity solution but only an irreducibly smeared oneand thus provides an infrarétR) cutoff. Now let us extract
we are in effect dealing with d/potentials. Therefore, we a length scale for instanton size fluctuations. The scale size
suspect that holography may be breaking down for this parand orientation for a single instanton form &1 quantum
ticular case. field theory with a moduli space metric which is flat fdg

We see that the strongly quantum mechanical coupled1, and with a coefficient 1V§gs) in front of the Lagrang-
DA,DB field theory describes the supergravity solution injan. The|§ is associated with the fact thathas dimensions
the nearA-horizon regime. This concludes our discussion ofof a length. That the metric is not renormalized at strong
the regime of validity of the gauge theory and its relation tocoupling is a consequence of the high degree of supersym-
the supergravity regime of validity. Now we turn to the metry in this systentit is hyper Kanler). For largeNs, there
gauge theory considerations, with which we want to explainare roughly N5 possible orientations for the instanton in
our previous supergravity results éae)localization. gauge space, so we have

In the supergravity section we saae)localization occur
as we brought the B-branes in to the A-branes from finite  \(p?)=\[(p7+...+p§)~ VNsgdl 2Vlog(Ayy /A ),
transverse separation to zero separation. We now want to see ° (3.23
how this happens from the field theory perspective. Since the
type A and B branes are initially separated, we angriori whereA g, Ay are appropriate infrared and ultraviolet cut-
on the “separated” branch of moduli space. For theélDb  offs. Now, since we take all energies low by comparison to
(and T-dual D4DO0) case this is usually called the Coulomb the string scale as in Eq3.1), AUV~I;1. In addition, as
branch, and the *“coincident” branch the Higgs branch.above, the 1-5 strings have a massvhich provides an IR
Now, if we were to integrate out the 1-5 strings to study thecutoff. If there areNg separate instantons, the moduli space
Coulomb branch, we would finf33,34 that the Coulomb  metric, although uncorrected, is not flat. What is important
and Higgs branches of moduli space are separated by &or our estimate is the normalization, which is the same as in
infinite distance and decouple. However, these 1-5 stringthe Ng=1 case. In addition, the instantons all fluctuate inde-
become light in the limit in which the separation between thependently, and so we may expect the above rough estimate to
A and B branes is removed, which is our situation of interestcarry over. To translate our estimate into the quantities used
In particular, in our setup we have kept the mass of suclin the classical supergravity discussion, recall that
strings fixed relative to our gauge theory energy scale. Thus=r /|2 and, since the A-brane is an unsmeared five-brane,
the moduli space is simply not sufficient to describe physicg . —|_\/N;g.. Also, since we are holding ()
in the region of interest. An analogy to our Ramond-Ramond_ g N, (1 .U)? fixed andr , , is small, up to numbers of order

case is the S-dual situation of fundamental strings approachyne we may replace tHe coming fromA , inside the loga-
ing N-S five-branes. There, the infinite distance in moduliyjthm with rs. We then have

space corresponds to the infinite throat of the five-brane.
However, we know that th_ls is no qbstacle to a f_undamen?al V(p? ~rs\In(r o/rs). (3.249
string reaching and crossing the five-brane horizon. Again,
what one finds is that the moduli space approximation iSNe see that this estimate matches the supergravity result.
simply not sufficient to describe this part of the dynamics. In  The story is similar for DO branes approaching D4 branes.
the same way, there is no conflict between our picture anth that case, we have a §01)-quantum field theory and the
the results of33,34; a mixing between the Coulomb and rms fluctuations will be proportional ta/1/A g, but r,
Higgs branches is allowed in our setup of the AdS-CFT limit= (gsN4)l/3|s- We find
for the intersecting branes when the separation is shall. -

Let us consider in more detail the case of D1-brafi®s (gsNy) ™l
and D5-brane$A), where on the Higgs branch the relevant V(%) ~ IN4gd VISIT 0= (gsN&) ¥ V gs+s-

moduli are the scale sizes and orientations of the gauge in- 0 (3.25

stantons which represent the D1-branes in the D5-brane

gauge theory(There are also position moduli but they will Again, this matches the classical supergravity delocalization

not be important in the following.As we argued above, we rate. The case of D3-branes and D-instantons is a bit degen-

expect a mixing between the Coulomb and Higgs branchesrate, but one finds agreement with the classical supergravity

as the separation goes to zero. We will use physics of theesults, and with scale-radius duality, by takig§p?) pro-

Higgs branch to study delocalization, in an approximateportional to 1A .

sense, keeping in mind that the small mass of the 1-5 strings We note that, for every case of intersecting Ramond-
Ramond branes that falls within our framework, we héve

+b=4 and the potentiaH, diverges no faster than 3.

7Our analysis also differs in that our B-branes are not probes; wé Urthermore, arr ° potential is always associated with a
take into account their effect on the supergravity fields. In addition(0+1)-dimensional intersection and an? potential is al-
the field theory description of our setup is neither the conformaWways associated with a (i1)-dimensional intersection.
field theory which appears in the extreme IR on the Higgs branctSimilarly, cases wherel , diverges only liker =% or weaker
nor the one on the Coulomb branéihese theories have different correspond to (2 1)-dimensional or larger intersections,
R-symmetries[33]. and both the quantum size moduli fluctuations in the brane

105007-10



BRANE BALDNESS VERSUS SUPERSELECTION SECTORS PHYSICAL REVIEW6D 105007

gauge theory and the classical supergravity delocalization are
small.[If the z, were compactified on a very large manifold,
the above results hold in the infinite-volume limit, and so by
continuity the (de)localization results are essentially un-
changed at large but finite volume. We will, however, avoid
finite volumes so as to finesse additional phenomena that
occur when the sizes of the compactified manifolds get too
small near the core in the supergravity geomeéffherefore,

we see agreement for both the parallel and orthogonal inter-

sections. A
In cases wher®>0 i.e. the type A branes are smeared,
their field theory is still A+ 1)-dimensional, not A+b FIG. 1. Field theory delocalization arguments predict a finite-

+1)-dimensional. It is therefore reasonable to repldgen sized “neck” for the asymptotically flat supergravity solution for
the argument above for the delocalization rate with the voliwe orthogonal clumpg“A” and “B” ) of D2-branes.
ume densityNAIE/Vb, as one may think of this case as hav-
ing a large number, of ordetbllg, of separate intersections. high accuracy in the regiofx, |[<r,. Thus, if the near-
Thus, an estimate of the instanton scale size fluctuations cdrrizon geometry is delocalized, there must also be a region
always be made that agrees with the classical supergravityperhaps, only fotx, |<r,) in which the asymptotically flat
delocalization rate. geometry is delocalized as well. We saw this explicitly for
Let us lastly consider the qualitatively different kinds of the solutions exhibited in Sec. Il, in which the type A branes
solutions we get by additionally smearing the type A branesvere initially smeared over thg, directions. The same con-
along thew direction. In the classical supergravity, we have clusion should hold in the case without the initial smearing,
a localized solution if only three transverse dimensions aréor which the supergravity solutions are not yet known. For
left unsmeared. This is hard to explain from the field theoryinitial progress toward constructing these solutions,[24¢
perspective, as can be seen by considering a prototypical Let us now consider as a prototype of orthogonal inter-
example of the DO-clump with a D4-clump smeared alongsections the D2D2(0) system. Initially, for clarity, we re-
two of the five transverse dimensions. Then the smeared D4rain from smearing the A-branes over the B-brane world-
clump gives rise to a t/potential and the supergravity so- volume. In the quantum gauge field theory, the instanton
lution localizes, even though the intersection isscale sizes become blowup modes of the orthogonally inter-
(0+1)-dimensional. Now, recall that holography for the D6- secting D2-branes. To see this, write each pair of spatial
brane system is problematic. For the D4-brane smeared ov&rorld volume coordinates as a complex coordin&fethen
two transverse directions, we have a pibtential and so we for the combined world volumes we get the holomorphic
suspect that holography is breaking down for this twice-curve Z,Zg=p. The smearing op is infinite because the
smeared D4-brane as well. In this sense, our success in gédteld theory on the intersection is only $01)-dimensional.
ting the classical supergravity answer for thelDB(2) and This means that the corresponding near-horizon geometry
D41 D4(2) systems from the quantum brane gauge theory iwvill also be smeared.
surprising. On the other hand, it may simply be that smearing We now use the above argument about matching super-
one brane and not the other is not a straightforward operatiogravity solutions and our knowledge of the blowup modes in
from the field theory perspective. Note also that when thghe near-horizon case to draw some conclusions about delo-
D4-branes are smeared over only one transverse directiopalization in the asymptotically flat case. This solution
instead of two, the quantum theory on the branes and thehould be delocalized, but perhaps only in some near-horizon
classical supergravity agree that delocalization should occurggion. A diagram giving our artistic impression of the as-
but do not agree with regard to the rate at which this hapymptotically flat solution is included below. We can only
pens. conclude that delocalization must occur in the interior of the
shaded region, which is the region inside a blowup mode that
has expanded until it reaches the curver,. This is con-
sistent with our expectations that, far from the intersection,
We would like to add a few more comments on the caseghe solution should reduce to the known physics of a lone
involving orthogonal intersecting branes, and how to use oub2-brane clump. Our delocalization has become a finite-
earlier results to say something about asymptotically flat, asized “neck” of the supergravity solution.
opposed to near-horizon, spacetimes. Recall that the intersec- In the actual D2 D2(0) case studied in the previous sec-
tion field theory description is dual to the near-horizon su-tion, the D2.D2(0) supergravity solution has the A-branes
pergravity description. As such, it does not directly say any-nitially smeared over, . The field theory on the intersection
thing about the asymptotically flat solutions. However, theis still (0+1)-dimensional, and so we conclude that the
near-horizon and asymptotically flat supergravity solutionsB-branes delocalize over the full near-A-horizon spacetime.
are controlled by the same equations of mot{@rB),(2.4). In considering the implications for the asymptotically flat
The only difference is in the boundary conditions imposedsolutions, we recall that the near-A-horizon region has been
onH,; the boundary conditions drg are identical for both enlarged by smearing oves,. Figures 1 and 2 show the
cases. Thus the two supergravity solutions must agree t@sult for three clumps of type A branes placed close

C. Asymptotically flat orthogonal branes
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Wagner theoreni31,32. In particular, the supergravity de-
localization is related to large fluctuations of some size
i moduli fields in the “coincident” branch of the super Yang-

& Mills theory. As mentioned if26], the classical delocaliza-
tion is closely related to the black hole no-hair “theorems,”
recently reviewed if43]. It is rather amusing to connect
such a classic feature of black hole physics with quantum
fluctuations in the super Yang-Mills theory. Up to subtleties
discussed in Sec. Ill, we find agreement both with respect to
« which cases should delocalize and with respect to the rate at

which this delocalization occurs as the transverse separation
between the branes is removed. It would be very interesting
F6. 2 Srmeatng of e *a" up of D2 tranes ver n 1 OIS 1 et vy i e agrees o el
world volume of the “B” clump leads to delocalization in all world . ; . .
volume directions. expectations that there should in fact exist orthogonal inter-
secting brane supergravity solutions witbth branes/A and

enough to each other that their charge radii indicated by B) localized in the directions along the other brane. In this
dotted lineg overlap. The full near-horizon region is the in- case, our delocalization phenomenon may become a finite
terior of the solid heavy line. Thus, blowup modes near theheck of the supergravity solution of the sort that is se&t
center(thin solid line are now allowed to be much larger in the Born-Infeld description of intersecting branes. Thus,
while remaining inside the near-horizon region. Whenwhen the intersection manifold is @01)- or
enough clumps are present to model a complete smearing 61+ 1)-dimensional, we expect only solutions with necks of
the type A branes, we may expect the field theory predictiorsome minimum finite size while, for higher dimensional
to imply complete delocalization in the, directions of the cases we expect solutions with necks of all finite sides
type B branes in the asymptotically flat solution as well ascluding zer9.
the near-A-horizon solution. There were, however, some cases that we were not able to
We draw entirely analogous conclusions for the other or-analyze properly. In some of these cases, the type A brane
thogonally intersecting cases which havie=0+1)- or (d has been smeared so that it covers a- (§-dimensional
=1+1)-dimensional intersections, such as theLDB(0). volume. The corresponding spacetime then resembles, to a
The only case which can localize from the field theory per-certain extent, that of a D6-brane and the brane gauge theory
spective has a d=2+1)-intersection, and this is may not properly decouple from the bulk. We were therefore
D41 D4(2). Butsince this has only three totally transverse unable to rely on holography to draw conclusions about the
coordinates it exerts arlpotential and its near-horizon su- classical supergravity from the quantum gauge theory. None-
pergravity solution is localized, so again we have agreemertheless, we found agreement for thelD8 and D4 D4(2)
of the near-horizon supergravity and field theory. Followingcases, and we would like to understand why this happened.
our above argument, there will be asymptotically flat solu- As mentioned in[26], BPS supergravity solutions for
tions in which both branes are localized, in addition to themany three{and highe)-charge solutions can also be ana-
known solutions where the A branes are initially smearedyzed in this way. Typically, when two of the charges are

over thez, directions. smeared, we can discuss localization of the third just as was
done for the type B branes above. Asymptotically flat situa-
IV. DISCUSSION tions of this type that involve only Ramond-Ramond branes

include three sets of D2 branes, or three sets of D3 branes. In

We have seen that many supergravity solutions containin{!€S€  cases, the branes are again smeared over a
two types of brane¢A and B) have the property that one of 6+ 1)-dimensional volume and we do not expect decou-

the branes(B) delocalizes when the transverse separatiof?ind from the bulk. _ _ _
between the branes is removed. This happens when the Other cases that could not be studied precisely include

world volume directions of the type B brane are contained ir‘l\ls"NS o_bjects. Consider first the case of fundamental strings
the world volume directions of the type A brane, or in direc- Ntersecting R-R branes. Here, we are stymied by our lack of
tions in which the type A brane has been smeared, and whe#fdérstanding of fundamental strings in R-R backgrodinds.
the dimension of the intersection manifold is sufficiently 1OWEVer, in the supergravity regime, either the curvature in
small. string units or th_e dilaton becomes large near the core of the
In terms of the corresponding brane gauge theories, thi§"R Pranes. This suggests that the fundamental string will
phenomenon is associated with the lack of a sharp transitiopUctuate significantly near the supergravity R-R branes, and
between the “separated” and “coincident” branches in thethat this should give rise to delocalization of the endpoint
limit where the separation between the branes is very smal{€Cking near the core of the R-R branes in analogy with
It is also associated with the fact that the asymptotic values
of massless fields do not label superselection sectors in 0
+1 and 1+1 dimensions; i.e., with the Coleman-Mermin- &For recent progress in this direction, Jé&—47.
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our discussion of solutions describing D-strings intersectingve take thez, directions to be non-compact. We take the

a D3-brane. number ofz, directions to beD. We would like to have
For the case of P-branes intersecting NS5-branes, wherespherical symmetry in both thg andz, directions so, as in

the intersection hap—1 space and one time dimension, we Sec. I, we replace the fully localized type B brane with a

have little to say because we do not understand well enougépherical G IxsPY shell of source:

the theory on the NS5-branes or the related theory on thggr /4" Vr P~ Ys(r 1 )6(ra,ra0). Thus, we have

intersection manifold. It may be described by some sector Of;pherical symmetry in both thg, andx, directions and the

the NS5 “little string theory”[48,49, but such a description selution depends only on, andr,=|z,].

is likely to require much more than a field theory. Note that |n the regionf,>r, , r o, [39] uses a trick first intro-

there are only 3 directions transverse to both branes for anguced in[24] and finds that the equation simplifies under a

value ofp, so that the supergravity solutions, with one branechange of coordinategcorrecting a typographic error in

smeared over the other, will always be localized. [39)):
There remains however, the annoying case dfliMwith

the D4-branes smeared over omalirection. Here, our clas-

sical supergravity and quantum field theory analyses predict

delocalization. But, despite the fact that the potentiali$

and we expect holography to hold, the two descriptions disIn terms ofY, the equation to be solvedor fx>r, , )

agree with regard to the rate at which this should happen. Inay be written

appears that smearing just the D4 branes is a more subtle ,_ g/ 1_g di(4—d 1-D D-1

operation in the quantum brane gauge theory than the super- YD @y (v )aYHB))Ha (&ra(ra Hg))

gravity would have us believe. =Y‘d/(“‘d)r;’D5(Y—Y(rio))5(ra o). (A2)

s(d—2)/2
2rA 4—d/2 (Al)

r,—Y= Ta—d ry
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