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Brane baldness versus superselection sectors
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The search for intersecting brane solutions in supergravity is a large and profitable industry. Recently,
attention has focused on finding localized forms of known ‘‘delocalized’’ solutions. However, in some cases,
a localized version of the delocalized solution simply does not exist. Instead, localized separated branes
necessarily delocalize as the separation is removed. This phenomenon is related to black hole no-hair theorems,
i.e., ‘‘baldness.’’ We continue the discussion of this effect and describe how it can be understood, in the case
of Dirichlet branes, in terms of the corresponding intersection field theory. When it occurs, it is associated with
the quantum mixing of phases and lack of superselection sectors in low dimensional field theories. We find
surprisingly wide agreement between the field theory and supergravity both with respect to which examples
delocalize and with respect to the rate at which this occurs.@S0556-2821~99!07418-4#

PACS number~s!: 11.15.Pg, 11.25.Sq, 11.27.1d
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I. INTRODUCTION

It is a well-known fact that, while string perturbatio
theory in intersecting D-brane backgrounds is discusse
terms of localized branes@1#, classical supergravity solution
representing such localized branes are typically difficult
construct. One often works with supergravity solutio
where the branes are less well localized than one might l
and in fact have extra translational symmetries@2–22#; see
@23# for a thorough review. One says that the branes h
been ‘‘smeared’’ over some of the directions that werea
priori , transverse to their world volume. In some cases, w
a bit more work, one can construct explicit fully localize
solutions, at least in the ‘‘near-core’’ limit@24,25#.

However, there are some situations where fully localiz
supergravity solutions of the desired type simply do not
ist. This happens when the world volume of one type
brane~B! is contained inside that of another~A!, or inside
the volume through which brane A has been smeared,
when the branes intersect on a manifold of sufficiently l
dimension; the details will be explained below. If the bran
are separated in a direction transverse to both types~A and
B!, then localized solutions exist. Nonetheless, as the tra
verse separation between the branes is removed, the ty
brane delocalizes. This phenomenon does not occur whe
dimension of the intersection manifold is sufficiently high

This delocalization was studied in@26# for one-branes
parallel to five-branes. As discussed there, this effect is
lated to a black hole no-hair theorem. Black hole no-h
results tell us that, in certain cases, black hole horizons m
be uniform. A pertinent example occurs in Einstein-Maxw
theory: when an electric chargeq is brought near a black
hole, the chargeq appears to be delocalized over the bla
hole horizon@27#. The situation discussed below is simil
as, when delocalization occurs, the charge of the type
brane appears to be delocalized over the entire horizon o
type A brane. For such cases, the type A branes are ‘‘ba
and unable to support such hair.
0556-2821/99/60~10!/105007~14!/$15.00 60 1050
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Now, recall that there are certain dualities between sup
gravity and brane gauge theories, as in the AdS confor
field theory~CFT! correspondence@28# and itsp-brane gen-
eralizations@29#; see also e.g.,@30#. The general picture of a
duality is that there is a single quantum theory which h
several distinct classical limits. In our case, one of the
limits would give classical supergravity while the oth
would give classical brane gauge theory. This means
aspects of the dynamics which are classical from the poin
view of one theory correspond to strongly quantum mecha
cal effects in terms of the other. We will further generali
the AdS-CFT limit to describe interacting A and B brane
and we will see that the delocalization of classical supergr
ity corresponds to large fluctuations of a modulus field on
gauge theory side. In particular, its occurrence is related
the quantum mixing between phases and the lack of su
selection sectors associated with the asymptotic value
massless fields in low dimensional quantum field theor
i.e., on the gauge theory side, delocalization is controlled
the Coleman-Mermin-Wagner theorem@31,32#. The relevant
quantum mixing is between the gauge theory phase wh
describes type A branes separated from type B branes i
overall transverse direction, which we will refer to genera
as the ‘‘separated’’ branch, and the phase that describes
branes with no transverse separation, which we call the ‘‘
incident’’ branch.1 That some correspondence of this so
should occur was suggested in@35#. The consistency of this
picture will be explained in Sec. III. We will see that, no
only will this interpretation successfully predict the cases
which the type B branes delocalize, it will also give th
correct rate at which the delocalization occurs as the tra
verse separation is removed.

Before progressing to the main topic, it is perhaps wor

1This result is not, in fact, in conflict with@33,34#, as we will
discuss.
©1999 The American Physical Society07-1
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while to display an explicit and tractable example of t
supergravity delocalization phenomenon. It turns out t
this is much easier to see for a D-instanton located ne
D3-brane than for the systems studied in@26#. The point is
that the classical supergravity solution for a localiz
Bogomol’nyi-Prasad-Sommerfield~BPS! D-instanton in
AdS53S5 is known in terms of elementary functions@36–38#
while, for the other examples, the supergravity solution
known only as a~convergent! infinite series.

The near D3-brane geometry is just AdS53S5. For sim-
plicity, we take the case@36# where the D-instanton is
smeared over the S5, but the solution localized on the S5 is
also known explicitly@37#. By writing the AdS53S5 metric
in Poincare´ coordinates,

ds25R2~U22dU21U2d i j dyidyj1dV5
2!, ~1.1!

we may interpret the solution of@36# as the near-core part o
an asymptotically flat~Euclidean! spacetime with a spherica
(S5) shell of D-instantons located near the three-branes
Eq. ~1.1!, R is the radius of the AdS5 and of the S5. In the
presence of the D-instantons, the~Einstein! metric is un-
changed, and the dilaton is given by

ef5c01c1

~d212!~d414d222!

d3~d214!3/2 , ~1.2!

where

d25U0UF ~U212U0
21!21(

i 50

3

~yi2y0
i !2G , ~1.3!

with (U0 ,y0
i ) the location of the D-instantons. This setu

allows a separation between the D-instantons and the o
of AdS5. Note that far from the D-instantonsef tends to a
finite and nonzero constant,c01c1 . The constantc0 is arbi-
trary while the constantc1 is proportional to the instanton
charge. Consider now the limit in which the instantons
moved onto the three-brane; that is, the limit in whichU0

→0 with fixedc0 ,c1 ,y0
i . Note thatU,yi should also remain

fixed as we wish to examine the solution at a given locat
relative to the three-brane. In this limit, Eq.~1.3! diverges so
that we have

~ef! lim5c01c1 . ~1.4!

Therefore the dilaton is now constant~and it is in fact the
same constant as the asymptotic value ofef at generic
D-instanton position!. In particular, the solution no longe
has any dependence on the coordinatesyi along the three-
brane. We see that the D-instantons have delocalized as
were moved toward the three-brane. Note that this does
happen suddenly atU050, but rather gradually. As viewe
from a fixed point relative to the three-brane, the field c
ated by the instantons smoothly blurs out as we decreasU0
to zero. In this context, we see that our delocalization
related to the well-known scale-radius duality of this syst
@36–38#. The behavior of the D-instanton solution@37# that
is localized on the S5 as well as in the AdS5 is similar. Much
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the same behavior was seen in@26# for a localized one-brane
as it is moved onto a localized five-brane and, as we will
below, it occurs in many other cases as well.

The outline of this paper is as follows. In Sec. II, w
extend the analysis of@26# to consider the full range of two
charge intersecting brane solutions whose mathematical f
is similar to that of the localized D1-branes parallel to D
branes (D1iD5). For example, the analysis includes the
calized D0iD4 system, and the D2iD6 system studied in
@24#. We will see that the D0iD4 system delocalizes as doe
the D1iD5 system, but that the same methods find the D2iD6
system to remain localized. This is a useful check of
method and resolves the apparent conflict2 between the re-
sults of@26# for the D1iD5 system and the explicit construc
tion of the localized D2iD6 solutions in@24#. The D2iD6
system is simply different from the D1iD5 system, in a way
that will be discussed below. Other solutions considered
low are similar to a D1-brane orthogonally intersecting
D3-brane, where~say! the D1-brane is smeared along th
D3-brane world volume. In this case, we will see that wh
the transverse separation between a~localized! D3 brane and
the smeared D1 branes is removed, the D3 brane deloca
along the D1-brane world volume. To be quite general,
will allow arbitrary transverse separation between the t
types of branes, although we will still refer to these solutio
as ‘‘intersecting’’ brane spacetimes. For many of these s
tems, certain ‘‘near-core’’ solutions were constructed in@39#;
we argue in Appendix A that, while these are certainly va
solutions to the supergravity equations, due to the subtle
of boundary conditions they are not the appropriate one
consider in our context.

After studying the supergravity solutions, we turn in Se
III to a discussion of the corresponding intersection fie
theories and the appropriate AdS-CFT limit@29#. We will
see that our delocalization phenomenon~when it occurs! cor-
responds to a quantum mixing between phases of the Ya
Mills theory and to the fact that 011 and 111 field theories
are not superselected by the asymptotic values of the m
less fields. Finally, we discuss a few remaining issues in S
IV.

II. DELOCALIZATION IN SUPERGRAVITY

Here, we consider BPS solutions with two types
branes, A and B, each localized at fixed, but different, val
of isotropic coordinatesx' which label the space transvers
to both branes.3 That is, we consider BPS solutions with th
branes separated in the transverse direction. The branes

2In @26#, it was stated that there was a normalization problem w
the solutions of@24#. This is not, in fact, correct. For completenes
the normalizations are discussed in the Appendix.

3We describe locations in the spacetime in terms of isotropic
ordinates. In all cases below, this may be translated into a coo
nate invariant statement by referring, for example, to the surfac
spacetime on which the various gauge field strengths take a g
value. However, it is simpler to discuss the solutions directly
terms of isotropic coordinates.
7-2
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BRANE BALDNESS VERSUS SUPERSELECTION SECTORS PHYSICAL REVIEW D60 105007
carry Ramond-Ramond~RR! or Neveu-Schwarz–Neveu
Schwarz~NS!-~NS! charge in type II A or II B string theory
or be M-branes, and the A- and B-branes need not be of
same sort. For example, the type A brane may be R-R w
the type B branes are NS-NS. Thus, we include the case
fundamental string intersecting~but not ending on! a
D-brane. The equations of motion for all of these cases h
a similar structure as they are related by T- and S- duality
similar analysis also applies to Kaluza-Klein monopoles a
various sorts of waves. In this section, we refer to all su
cases as ‘‘branes.’’

The world-volumes of the type A and B branes will
general have certain directions in common. We label the
rections common to both by coordinatest,zI . Here, theI is a
label denoting the ‘‘intersection’’ directions. Similarly, w
denote byza the world volume directions of brane A not in
and we denote byzb the worldvolume directions of brane B
not in I. We take brane A to be smeared in thezb directions,
as well as in any directions in which brane B has be
smeared. We will have no need to refer explicitly to dire
tions in which both branes have been smeared, as these
be removed by a T-duality symmetry transformation, but
label directions in which brane A~but not B!4 has been
smeared byw. Finally, x' labels directions orthogonal t
both branes along which neither brane has been smea
Our conventions are conveniently summarized by the follo
ing table, where~d! denotes a direction along a brane,~[!
denotes a direction in which a brane has been smeared
an empty space denotes a direction orthogonal to the bran
which it has not been smeared.

t zI za zb w x'

A d d d [ [
B d d d

We assume that theza , zb , andw directions are compacti
fied to form tori of volumesVa , Vb , and Vw respectively
~the noncompact case just corresponds to theV→` limit !.
ThezI directions are taken to be uncompactified, or comp
tified on a manifold of very large volume. We will also us
the symbolsa,b,w to denote the number ofza ,zb ,w coor-
dinates. Our discussion also applies to BPS branes at an
though we will not consider this case explicitly.

Familiar examples of this class are D(p24)-branes~B!
oriented parallel to Dp-branes~A! as well as various inter
secting brane solutions@9,10,20,23# with one brane~A!
smeared along the world-volume directions of the ot
brane~B!. Additional cases are generated by further sme
ing. Thus, we may refer to brane A as ‘‘the bigger brane,’’
the sense that thesmearedtype A branes fill out a highe
dimensional volume.

For BPS configurations we make the ansatz

4We could alternatively smear brane B, but this will not affect t
delocalization behavior.
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ds25
1

AHAHB

~2dt21dzI
2!1AHA

HB
~dzb!21AHB

HA
~dza!2

1AHAHB~dx'
2 !, ~2.1!

and

eF5gsHA
(32A)/4HB

(32B)/4 . ~2.2!

We have not written the gauge fields explicitly, but they ha
the standard form. Constructing the supergravity solutio
then reduces~see, e.g.,@10,13,17,40#! to solving the follow-
ing equations of motion:

]x'

2 HA~x'!5
qA

VbVw
d~x'!, ~2.3!

~]x'

2 1]w
2 !HB~x' ,w,za!1HA~x'!]za

2 HB~x' ,w,za!

5qBd~x' ,x'0!d~w,w0!d~za ,za0!, ~2.4!

where]x'

2 represents the flat space Laplacian in thex' di-

rections, and similarly for]w
2 and ]za

2 . Note that, by con-

struction, the solution has no dependence ont, zI or zb . The
delta-function sources, each of the appropriate dimens
ensure that the solution carries gauge field fluxes corresp
ing to chargesqA ,qB at the locations specified. Note that w
have taken brane A to lie at the origin of the transve
coordinatesx' , while we have placed brane B at the locatio
(x'0 ,w0 ,za0). We have chosen to letqA ,qB denote the total
charge of the type A and B branes, although only the cha
density of the type A branes appears in the above equat
of motion ~2.3!.

The first equation of motion~2.3! is just Laplace’s equa-
tion. Solutions appropriate to asymptotically flat bounda
conditions may be found if thex' coordinates label ad
dimensional space withd>3, and we confine ourselves t
this case. The type A branes are associated with a ‘‘cha
radius’’ r A proportional toqA

1/(d1b1w22) , but the behavior of
the supergravity solution is controlled by the length scale

r̂ A5S r A
d1b1w22

VbVw
D 1/(d22)

. ~2.5!

The appropriate solution may thus be written

HA~x'!511
r̂ A

d22

r'
d22 , ~2.6!

wherer'5ux'u.
The method of@26# then uses the symmetries and t

linearity of equation~2.4! to solve forHB as an infinite sum
~in the case where thew,za directions are compact! over
modes. This series turns out to be absolutely convergent,
so is a useful representation of the full solution.

We proceed here in the same way. As stated above,
suppose that the coordinatesza , w label compact tori of
volumeVa ,Vw . If these directions are not in fact compac
then a similar argument follows simply by replacing th
7-3
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DONALD MAROLF AND AMANDA PEET PHYSICAL REVIEW D 60 105007
mode sums with integrals. We Fourier transform over theza ,
w directions and decompose the solution into harmonics
thed21 sphere associated with thed transverse coordinate
x' .

In fact, it is only necessary to consider modes which
constant over theSd21 sphere. The higher spherical harmo
ics would tell us about localization of the type B branes
the angular directions, but we already expect that, when
move the type B branes tor'50, the limiting solution
becomes symmetric over theSd21 sphere. Including
a discussion of the higher spherical harmonics, as
done in @26#, verifies this conclusion, but does not impa
the question of localization in theza and w directions.
Thus, we consider here only modes which are uniform o
the Sd21 sphere. This is equivalent to replacin
the point source inB with an Sd21 shell of source:
qBr'

2(d21)d(r' ,r'0)d(w,w0)d(za ,za0), wherer'05ux'0u.
We express the functionHB(r' ,w,za) as a sum over Fou

rier modes in w and za multiplied by radial modes
HB,pw ,pa

(r'), wherepw andpa denote the relevant~discrete!

momenta in thew, za directions. These radial modes satis
the following second order ordinary differential equati
~ODE!:

r'
2(d21)] r'

„r'
(d21)] r'

HB,pw ,pa
~r'!…2pw

2 HB,pw ,pa
~r'!

2HA~r'!pa
2HB,pw ,pa

~r'!5
qB

VaVw
r'

2(d21)d~r' ,r'0!.

~2.7!

Let us, for the moment, fix our attention on one choice
pw ,pa , so that we need not indicate these labels explici
The pw50, pa50 mode has special boundary conditio
which we will discuss later. For the other modes, impos
boundedness at larger' will determine the solution atr'

.r'0 to be a constanta1 times some particular solutio
f1 , while continuity at the origin will determine the solu
tion for r',r'0 to be a constanta2 times some particula
solutionf2 . The constantsa6 are then determined by th
matching conditions dictated by the delta-function in E
~2.7!. Namely, as the source in Eq.~2.7! has no derivatives
of delta functions, we must have a1f1(r 0')
5a2f2(r 0'), while the discontinuity in the first derivative
must reproduce the delta function source. Usingf6 andf68
to denote the values of the solutions and theirr' derivatives
evaluated atr'5r'0 , we have as usual

a15
qBr'0

2(d21)f2

VaVw~f2f18 2f1f28 !
,

a25
qBr'0

2(d21)f1

VaVw~f2f18 2f1f28 !
. ~2.8!

Our main task is to study the behavior ofa1 as r'0→0. If
the coefficienta1 vanishes in this limit, then the correspon
ing mode will not appear in the limiting solution forHB .

The denominator of Eq.~2.8! is just the Wronskian (W)
of Eq. ~2.7! evaluated atr'5r 0' and may be computed b
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standard techniques. Up to a constant~which does not de-
pend onr'0!, it is given byW(r')5r'

2(d21) . Thus, up to an
irrelevant constant we have

a15
qBf2~r'0!

VaVw
, a25

qBf1~r'0!

VaVw
. ~2.9!

All that remains is to determine the behavior off2 for small
r'0 .

Let us suppose thatpa is nonzero, so that the behavio
near r'50 is controlled by the term proportional t
HA(r')pa

2 in the radial equation~2.7!. Recall thatHA de-
scribes some power law potential inr' that diverges atr'

50. For ther'
22 potential (d54), the radial equation may

be solved exactly in terms of Bessel functions as was don
@26#. Given the explicit solution in@26#, one can see that th
sum overpa converges absolutely at anyr'Þr'0 so that the
series gives an accurate description of the physics. Solut

to the source-free equation behave liker
'

216A11pa
2r̂ A

2

near
r'50, so that continuity at the origin forcesf2 to vanish
there. Thus, only modes withpa50 contribute in ther'0
→0 limit and the type B branes delocalize in theza direc-
tions. This case corresponds to, for example, D1 branes
allel to D5 branes.

Still considering the cased54 ~e.g., D1-branes and D5
branes!, it is interesting to ask about the rate at which t
type B branes delocalize. Since we are interested in the
iting behavior asr→0, we consider the delocalization as
reaches the largest length scales~small pa!. Note that, as
measured by the asymptotic fields, the solution has delo
ized on a length scaledx when the coefficienta1 corre-
sponding to the momentumpa;1/dx becomes small relative
to its value at larger'0 . For convenience, we will measur
a2 relative to its value„qBf2( r̂ A)/VaVw… at r'05 r̂ A . A
comparison with@26# or an approximate solution for sma
r' shows thata1 vanishes like

VaVwa1

qBf2~ r̂ A!
;S r'0

r̂ A
D 211A11pa

2r̂ A
2

~2.10!

for r'! r̂ A . Specifically, for smallpa , a1 vanishes like

(r'0 / r̂ A)(1/2) pa
2r̂ A

2
. Thus, ford54, the type B brane appear

to be delocalized on a length scaledx; r̂ AAln r̂A /r'0 as
viewed from infinity. Note that, for larger̂ A , the B-branes
are quite well delocalized before they reach any strong c
vature region.

Let us now consider the cased.4, e.g., D0-branes ap
proaching D4-branes. Sincef2 vanishes at the origin for the
r 22 potential, one may expect the same behavior for
stronger potentialsr 2(d22). This may be verified by looking
for a solution of the formf5r'

2(d21)/2eC(r'), using the
WKB approximation, and again imposing continuity atr'

50. Note that the WKB approximation is self-consistent f
such strong potentials. Thus, the supergravity solutions d
calize in theza directions for these cases as well. The de
calization is even faster than ford54 asa1 now vanishes
like
7-4
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BRANE BALDNESS VERSUS SUPERSELECTION SECTORS PHYSICAL REVIEW D60 105007
a1;expF2paS d22

2
21D 21

r̂ AS r̂ A

r'0
D d22/221G ,

~2.11!

as opposed to the power law behavior for ther'
22 potential.

When the type B branes are atr'0 , the coefficientsa1 are
small for r̂ Apa.(r'0 / r̂ A)d22/221 and the type B brane ha
delocalized to a size scaledx; r̂ A( r̂ A /r'0)d22/221. Again,
at least within the domain of the WKB approximation, th
sum over momenta converges absolutely. The cased.4 in-
cludes D0 branes approaching D4 branes, as well as in
secting brane solutions~either R-R, NS-NS, or M! with 5 or
more directions transverse to both branes. For exampl
addresses the case of a D3-brane~B! and an orthogonal D1
brane~A! smeared in the threezb directions along the D3-
brane. As the transverse separation is removed, the D3 b
delocalizes along the D1-brane. The cased.4 also includes
the case of D-instantons in a D3 brane, which was explic
seen to delocalize in Sec. I. As before, for larger̂ A , the type
B branes are well delocalized before they reach any str
curvature region.

The remaining case is when the bigger brane has o
three transverse directions (d53), which is exactly the situ-
ation that arises in the solutions of@24#. In this case, the
WKB approximation is not self-consistent, but we may stu
the radial equation by a related technique. Writingf(r')
5r 21eC(r'), the sourceless radial equation~2.7! becomes

] r'

2 C1~] r'
C!22pw

2 2pa
2 r̂ A

r'

50. ~2.12!

This may be analyzed by assuming that] r'

2 C is much larger

than (] r'
C)2, which turns out to be self-consistent forr'

! r̂ A . Within this approximation, the general solution b
haves near the origin like

f5C1S r'

r̂ A
D [ pa

2r̂ Ar'21]

1C2S r'

r̂ A
D [ pa

2r̂ Ar']

. ~2.13!

Thus, if f is to be continuous at the origin we must ha

C150. As a result,f2 behaves like (r' / r̂ A) [ pa
2r̂ Ar'] , which

is finite and nonzero atr'50. This time we find thata1

does not vanish asr'0→0. The result is that the type B bran
remains localized in theza directions in agreement with@24#.
Again, within the domain of validity of this approximatio
( r̂ A@r'0 ,r'), one finds that the sum over modes converg
absolutely. The infinite series discussed here should sum
the solution of@24# in the near-core region.

We have not yet addressed localization in thew directions
for any value ofd. Let us therefore consider a mode wi
pa50, pwÞ0. The radial equations in this case are just tho
for the Coulomb potential of a massive field and are ea
studied. One finds thatf2 does not vanish atr'50, and the
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sum over modes once again converges absolutely.5 Thus,
localization is always possible in any directions transverse
brane B along which brane A has been smeared.

The last mode to consider is the casepa50, pw50; i.e.,
the spatially homogeneous mode. This mode does not te
about delocalization of the branes; instead, it is the en
field remaining once complete delocalization has occurr
This mode is special as its boundary condition at infin
differs from that of any other mode. The point is that, f
qB50, the appropriate solution isHB51 and notHB50.
Thus, the correct solution for the homogeneous mode
constant plus a function that vanishes for larger' . We now
consider the case where the type B brane delocalizes c
pletely and make several observations. Recall that comp
delocalization occurs whend>4 and there are now direc-
tions. First, note that the complete solution forr'050 is of
the formHB511(r B

d221a/Var'
d22), since only the spatially

homogeneous mode survives. Second, since all modes
paÞ0 vanish atr'50 for any locationr'0 of the type B
branes, we may evaluateHB exactly at the origin:

HB~r'50!511S r B
d221a

Var'0
d22D . ~2.14!

Note that this result also holds in the infinite volume lim
(Va→`) in which r B

d221a/Va50. Thus, if theza directions
are not compactified, we have simplyHB51 at r'50, inde-
pendent ofr'0 . These observations will prove useful in th
following sections.

We now make a few final remarks about variations on
above theme. Consider, for example, solutions represen
not branes in asymptotically flat space, but branes in the n
horizon geometry associated with the type A branes; i.e.,
solutions obtained by taking a limitr̂ A@r' , r'0 . This is
really the only part of the asymptotically flat geometry
which we have made significant use, so the discussion is
changed. Note that taking this limit is equivalent to setti
HA5( r̂ A /r')d22 and fixing the boundary conditions by im
posing boundedness at infinity and specifying the value
HB at r'50 to be given by Eq.~2.14! above. The point we
wish to emphasize is that thepa50, pw50 mode still ap-
proaches a nonzero constant far from the type B branes
we haveHB→1 asr→`. One can see this explicitly in the
D-instanton example from the Introduction, which alrea
resides in the near-horizon geometry of the three-brane.

In addition, one might ask how the analysis would chan
if a given set of~type II A! branes were lifted to eleven
dimensional supergravity. Such a lift has a translational sy
metry inx11, so thatx11 does not become a transverse dire
tion. As the behavior of the classical solution is determin
by the number of dimensions transverse to the type A bra
it is not affected by this process. One might also ask ab
related solutions where the M-brane is localized inx11. An

5Of course, the full sum over modes includes a sum overpw even
for paÞ0. For py

2@pa
2( r̂ A /r')d22, the analysis is identical to the

pa50 case and shows convergence of the sum overpw .
7-5
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example where this is possible is lifting a solution with D
branes~with one brane smeared over the other! intersecting
in points to a solution with M2-branes intersecting in poin
~with one brane still smeared over the other but otherw
fully localized!. In such cases, the M-theoretic solution w
generally delocalize faster than the type II A supergrav
solution due to the increased number of transverse dim
sions. Note that a qualitative change from delocalization
localization could only happen if the number of transve
directions crosses the threshold atd54, i.e., the lifting of a
D6 brane to M-theory. But this lift is a Kaluza-Klein mono
pole and, while there are only 6 directions along the cor
sponding M-theoretic ‘‘brane,’’ the Kaluza-Klein monopo
has a nontrivial structure in the remaining 4 spatial dir
tions. Due to the structure of these dimensions, the co
sponding potentialHA behaves only asr 21 even for the
M-theoretic solution, and therefore has the same prope
with regard to delocalization as the II A D6-brane. One c
of course, consider a Kaluza-Klein monopole in any dime
sion and, as it always has anr 21 potential, the type B brane
always remain localized. This is of course to be expec
from the method of@24,25#, which realizes the ‘‘near-core’
Kaluza-Klein monopole as an orbifold of flat space and
serts the type B branes before taking the orbifold quotien

Finally, within supergravity, it is clear that the abov
analysis can be extended to branes that are not asymp
cally flat. They correspond to potentials that are softer th
r 21 and therefore allow localization of the directions paral
to the A brane. However, this case is not our primary c
cern and we will not discuss it in detail.

III. THE SUPERGRAVITY-FIELD THEORY
CORRESPONDENCE

In the last section we studied the delocalization behav
of a class of asymptotically flat supergravity brane solutio
of type II A/B string theory. We would now like to under
stand this behavior from a field theory perspective by usin
generalization of thep-brane AdS-CFT correspondenc
which is obtained by taking a certain low-energy limit of
system ofNp R-R chargedp-branes. We first study the su
pergravity solutions and define the AdS-CFT limit, and th
move on to a field theory explanation of the supergrav
~de!localization phenomena.

Let us first orient ourselves with a lightning review of th
salient features of the AdS-CFT correspondence of@29# for
DA-branes. Here,A denotes the number of spatial dime
sions of what in Sec. II was a type A~Dirichlet! brane. We
will ignore numerical factors in this entire section; the re
evant precise normalizations may be found in@29# or in the
previous section. The AdS-CFT correspondence forNA
DA-branes is obtained by starting in string theory with t
coupled bulk-brane dynamics, and taking the low-ene
limit

~Els!→0. ~3.1!

This energyE is measured in the gauge theory. The gau
theory coordinates are the isotropic supergravity coordin
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in directions parallel to the brane. To see this, one can c
pute the associated moduli space metric for motion o
probe DA-brane in the background of the others; it is trivia
The next step is to keep the dimensionless expansion pa
eter in the U(NA) gauge theory fixed; since we are interest
in large numbers of branes for comparison to the superg
ity, this expansion parameter is

lA
2~E!5gY M,A

2 NAEA235gsNA~ l sE!A23. ~3.2!

The field theory is perturbative when this parameter is sm
One also keeps fixed the mass of strings stretched per
dicular to the branes,E5ux'u/ l s

2[U, wherex' is the dis-
placement between the branes.

In the AdS-CFT low-energy limit the physics on the bra
decouples from the physics in the bulk, provided thatA,6.
This decoupling happens essentially because supergrav
a weak interaction at low energy compared to the gauge
teraction.

The supergravity metric is

ds25
1

AHA

~2dt21dzA
2 !1AHAdx'

2 ,

where HA511S r A

ux'u D
72A

. ~3.3!

Here, we have taken all of the DA-branes to be ‘‘clumped’’
together at the originr 50 and have not allowed any smea
ing of the branes. The symbolr A denotes the charge radiu
of the brane, i.e. the radius where the 1 in the harmo
function is comparable to the other term:

r A5 l s~gsNA!1/(72A). ~3.4!

Convertingx' to U and the other factors using Eq.~3.2! the
harmonic function may be writtenHA511lA

2(U)/( l sU)4.
Assuming that the supergravityU, which is an energy, scale
the same as the gauge theory energyE, we see that the 1 in
HA is lost in the low-energy limit. This means that we ha
lost the asymptotically flat part of the supergravity geomet
In considering the physical validity of this near-horizon s
pergravity solution, there are two types of corrections
worry about,a8 andgs . A measure of the first type of cor
rection is the Ricci scalar measured in string units, which
found to bel s

2R51/lA(U) and so the supergravity is weakl
coupled forlA(U)@1. In comparing this to the gauge theo
regimelA(E)!1, as pointed out in@41#, we must be careful
in specifying the type of probe we are using, which in tu
gives a relationship between the gauge theory energyE and
the supergravity radiusU. The simplest type of probe to
consider is the one originally studied in@29#, the stretched
fundamental string, which is a BPS state in the gauge the
and hasE5U as above. One then sees that the supergra
and gauge theory breakdowns happen in a consistent fas
Here it was important that this result for the stretched str
mass is not corrected gravitationally. The gravitation
‘‘warpage’’ for a fundamental string is computed from th
DA-brane metric in the string frame~3.3!, and since the
7-6
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~BPS! stretched string points in a direction perpendicular~'!
to the branes the warpage is unity:

'warpage5E A2gttgss5E AHA
21/2HA

11/251.

~3.5!

At still higher values ofl, other descriptions of the physic
are appropriate@29#, such as S-dual supergravity geometri
Overall one finds different descriptions of the physics to
valid at differentl2’s, and they are dual to one another. W
will be concentrating on the super Yang-Mills and te
dimensional supergravity phases.

Lastly, let us make a brief remark contrasting the ne
horizon spacetime with the asymptotically flat solution. If w
compute the curvature in string units of the asymptotica
flat A,3 solutions, we find that it starts from zero atx'

50, peaks at around the charge radius at a value of o
(gsNA)22/(72p) which is small for largegsNA , and falls off
to zero again atr→`. For A.3, a similar behavior occurs
for the dilaton. This is to be contrasted with the near-horiz
spacetime for which the curvature and dilaton are monoto
@29#. For A,3, the curvature diverges near the branes wh
for A.3 the dilaton diverges there.

A. The supergravity side

We now wish to define a generalized AdS-CFT cor
spondence for intersecting D-branes appropriate to the
supergravity solutions that we constructed in the last sect
Our conventions differ from the last section only in that, f
the moment, we take there to be now directions. One specia
case in which we will need to reintroducew directions will
be discussed near the end of subsection B. So, our setu

t zI za zb x'

DA d d d [
DB d d d

There ared5(91I 2A2B) of thex' , a5(A2I ) of theza ,
and b5(B2I ) of the zb . Without loss of generality, we
have chosen the DA-branes to be smeared over thezb . If
there are nozb , then the intersection is parallel, otherwise
is orthogonal. In addition, we take any smeared configura
to be irreducibly smeared in the sense that it cannot be
duced via a T-duality symmetry transformation to an u
smeared configuration. We work in the large-volume lim
Va,b→`, but we keep a finite charge density of th
A-branes, NA /(Vb / l s

b). In contrast, the charge densi
NB /(Va / l s

a)→0. Our analysis therefore differs from the sp
cial case considered in@42# in which there was a volume
infinity of D-instantons on D3-branes.6 It also differs from
previous analyses such as@30# where AdS-CFT for smeare
intersecting branes was studied.

6For this case, in contrast to what we study later, the theory on
D-instantons is not dynamical.
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Let us now study our intersecting brane supergravity
lutions from Sec. II in a generalization of the low-energ
limit of @29#. Our concern is to find the relevant region of th
supergravity geometry. If the DA-branes and DB-branes are
very far from each other, then each has its own near-hori
region as if the other collection of branes did not exist. T
more interesting, and new, situation arises when the bra
influence each other strongly, i.e. when the separationx'0 is
near-horizon in a sense which we now explain. In this s
tion, we keep the localization in the (d21)-sphere explicit,
and do not use spherical shells.

An important subtlety in determining the low-energy lim
for intersecting D-branes concerns the kind of probe we w
use to connect a gauge theory energyE with a supergravity
radiusU. As before, the most straightforward probes to co
sider are the stretched strings. In the intersecting brane
ometry, with metric ~2.1!, and ‘‘harmonic’’ functions
HA(x'),HB(x' ,za), the only BPS stretched strings are th
ones running in the transverse (x') directions. Strings
stretched in directions other thanx' , for example tethering
two clumps of B branes separated in aza ~i! direction, are
not BPS; a symptom of this is that they experience la
warpage

iwarpage5E A2gttgss5E dtdsA1/HA. ~3.6!

Because of this warpage, the non-transverse strings ar
tracted to the A branes. So we will concentrate only on
transverse BPS stretched strings in the following; the dyna
ics for other types of probes is much more complicated a
we will not discuss it. As a consequence, when we take
low-energy limit, we perform the scaling of coordinates on
in the transverse directions:Ul s5x' / l s→0.

If A>B we hold the A-brane couplinglA
2(U) fixed; if

A,B we hold lB
2(U) fixed. Effectively, this means we ar

taking the AdS-CFT limit just as for the larger brane. In
sense, including the physics of the smaller brane is lik
‘‘perturbation’’ on this larger-brane AdS-CFT correspo
dence, although we are not in any way treating the sma
brane physics perturbatively. A simple example of this is
case of the D-instanton in the D3-brane near-horizon ge
etry which we discussed in the Introduction; however, for t
examples with larger branes such as D1iD5, the theory on
the smaller branes is in fact dynamical. In addition, the
tersecting brane gauge theories will decouple from the b
as long as the branes are ‘‘small enough;’’ here this me
that there are more than three directions transverse to
branes. For the cases where there are only three, even th
the metric does not have the same form as for a D6-bra
we can compute the curvature and Hawking temperature
they turn out to behave as for six-branes. Therefore we s
pect that holography is breaking down, i.e. that making p
dictions about the classical supergravity from the quant
brane field theory may be problematic. We will remark
these cases explicitly when we encounter them.

Now, doing the AdS-CFT scaling inx' and holdingl2 of
the larger brane fixed gives the the near-horizon geometr
e

7-7
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the DA-branes. That this is true no matter whetherA>B or
A,B can be seen as follows. From

HA511
r A

72A

Vb

1

ux'u72A2b ~3.7!

we find

HA→ @gsNA~ l sU !A23#

~Vb / l s
b!~ l sU !42b 5

NA

~Vb / l s
b!NB

@gsNB~ l sU !B23#

~ l sU !42a .

~3.8!

Recall that there are several constraints of our setup, suc
asymptotic flatness of the intersecting brane solution,
smearing of the DA-branes overzb , and the fact that both
intersecting D-branes live in either type II A or II B strin
theory. As a result, it is always true thatb,4 if A>B where
we hold lA

2(U) fixed, or a,4 if A,B where we hold
lB

2(U) fixed. Thus we see that, as previously advertised
either case only the near-horizon part ofHA remains. That
this happens even forA,B is due to the smearing of th
A-branes overzb .

We now need to check whether the supergravity curva
and dilaton develop any additional strong coupling regio
due to the presence of the B branes. First of all, we sho
not be tempted to just throw away the 1 inHB by analogy
with what happened toHA . Recall that in the infinite volume
limit, we haveHB51 at the location of the DA-branes for
any value ofx'0 , and that this provides a boundary cond
tion which forcesHB→1 far from the DB-branes as well.
~We also discussed this phenomenon explicitly for theA
53, B521 example in the Introduction.! We conclude that,
far from the DB-branes, the geometry and dilaton are just
they were for the near-horizon DA-branes in isolation. Thus
one expects that new strong coupling regions could a
only near the DB-branes. We examine this possibility now
though we need to treat thex'050 andux'0u.0 cases sepa
rately. Let us studyx'050 first.

For x'050 we go directly to the exact solution of th
previous section. For all cases with potentials stronger t
1/r , where we expect holography to hold, delocalization
curs, and the solution depends only on thed overall trans-
verse coordinates. Forx'050 the solution is

HB511
r B

72B

Va

1

r 72B2a 511
gsNB

Va / l s
a S l s

ux'u D
72A2b

,

~3.9!

whereVa is the volume of theza directions, and we have
used the identitya1B5A1b. Since we do not have a (Va)
volume infinity of DB-branes, we have justHB51, every-
where. As a result, the curvature and dilaton behave exa
as they would for the isolated DA-branes. We can therefor
simply use our DA-brane intuition to tell us where thex'0
50 intersecting brane supergravity solution is valid.

At generic separationsx'0 , the supergravity solution is
complicated, and is not known in terms of elementary fu
tions. We will instead use an approximation scheme to st
the curvature. As usual, we consider DA-branes with world
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volume$t,zI ,za% and DB-branes with$t,zI ,zB%. The super-
gravity equation of motion forHA is

@]x'

2 #HA5
qA

Vb
d~x'! ~3.10!

i.e. theA-branes are all atx'50. The near-horizon solution
is

HA5
r A

72A

Vbux'u72A2b , ~3.11!

where the b appears because of the smearing of
DA-branes along the DB-branes.~Recall that, in our low-
energy limit, the 1 inHA has dropped out.!

We chose the origin of coordinates such that t
DB-branes are located atza50 and atx'5x'0 . The equa-
tion satisfied byHB is

@]x'

2 1HA]za

2 #HB5qBd~x' ,x'0!d~za!. ~3.12!

We will solve this equation in the region near the DB-branes,
in particular forx' satisfyingux'2x'0u!ux'0u. Over such a
region, the functionHA does not vary much, and we ca
approximate it by a constant in the equation forHB . After a
change of coordinates,

y'5x'2x'0 , ya5
za

AHA

, ~3.13!

we see that an approximate solution to theHB equation of
motion is given by

HB5 f 01
r B

72B

@~ya!21~y'!2# (72B)/2 , ~3.14!

where f 0 is a solution of theqB50 version of Eq.~3.12!. In
particular,f 0 is smooth at the location of the DB-branes, so
that the singular term will dominate in this region. For co
venience, we pretend thatf 051 in order to borrow results
from the familiar DB-brane metric, but our conclusions wi
not depend on this choice.

Now notice that the fields of the intersecting brane syst
do not depend on any of$t,zI ,zb%. We may therefore rescal
these coordinates without affecting the supergravity phys
Defining

~T,yI ,yb!5
~ t,zI , zb!

AHA

, ~3.15!

the metric becomes

ds25AHAF 1

AHB~ya ,y'!
~2dT21dyI

21dyb
2!

1AHB~ya ,y'!~dya
21dy'

2 !G . ~3.16!
7-8
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With the metric near the DB-branes in the above form, th
scalar curvatureR of the intersecting brane solution is ea
to compute. We have

l s
2R;

1

AHA

l s
2RB ~3.17!

whereRB is the curvature of the DB-brane metric by itself.
At large gsNB , this curvature is small everywhere, as w
saw at the beginning of this section. The factor of 1/AHA
only makes this conclusion stronger, by a fac
A(gsNA)/(x'0 / l s)

72A2b→`.
We also consider the dilaton. For the intersecting solut

it is

eF5gsHA
(32A)/4HB

(32B)/4 . ~3.18!

For smallB, this will become large near the DB-branes. For
A.3, it will be damped by a power ofHA . However, due to
the change of coordinates above fromza to ya , HB is large
over a range ofza that is larger than for the B-branes
isolation. For small B, the supergravity solution also brea
down near the DB-branes, over a range ofza that is signifi-
cantly stretched relative to what occurs for the B-branes
themselves. If we were interested in the region where
dilaton were too large, we would switch to an S-dual desc
tion.

However, the most important point for us follows fro
the observation of the previous section that we haveHB
→1 far from the DB-branes. In fact, when the separatio
ux'0u is small and if we do not have a volume (Va) infinity
of DB-branes,HB approaches 1 quite rapidly. Now let u
pick a point significantly further out than the DB-branes but
close enough that it would lie inside the region of validity
the near-horizon supergravity solution for the DA-branes
alone. Then in the combined system,HB is close to 1 at this
point, and the DB-branes do not affect the validity of th
supergravity solution. The previous section then tells us
the delocalization is visible in this region, and also that,
adjusting parameters, we can make the delocalization a
trarily large without placing the DB-branes in the strong
curvature region of the near-A-brane geometry. We conclud
that delocalization is a reliable prediction in this intersect
brane spacetime, and so it should have a dual descriptio
terms of the gauge field theory on the branes.

B. The field theory side

On the field theory side of our generalized corresp
dence we have the coupled field theory of the DA- and
DB-branes. There are three sectors of open strings, thA
2A strings, theB2B strings, and theA2B strings. The
action for this system in the low-energy limit at weak gau
couplings is well known; it is T-dual to that for the D0iD4
system and has eight real supercharges.

Since the dimensions of the low-energy field theories
theA2A, B2B, andA2B strings are all different, we nee
to know how the couplings scale relatively in the low-ener
limit ( Els)→0. The gauge couplings on theA- and
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B-clumps are built out of the same string theory paramet
Let us study the expansion parametersl2 closely. For the
A-clump we have

lA
2~E!5gsNA~ l sE!A23, ~3.19!

and for theB-clump

lB
2~E!5gsNB~ l sE!B23. ~3.20!

Now let us take the low-energy limit of a system of tw
clumps of branes, the DA-branes and the DB-branes, as we
did in the previous subsection. In general the expansion
rameters will develop a hierarchy for energiesE of similar
order:

lA
2~E!

lB
2~E!

;
NA

NB
~ l sE!A2B. ~3.21!

We see that a large hierarchy arises because we are ta
the low-energy limit (l sE)→0. Now recall the condition tha
we keepl2(E) fixed for the bigger brane; this would b
lA

2(U) for A>B or lB
2(U) for A,B. Therefore we see tha

the coupling of the smaller brane becomes much stron
than that of the larger one,

lsmall
2 ~E!@lbig

2 ~E!. ~3.22!

This means that the physics on the bigger brane does
significantly influence the physics on the smaller brane. T
is similar in spirit to the AdS-CFT decoupling of the bu
theory from the brane theory. So whenever we consider
intersecting branes, orthogonal or parallel, we need o
study the gauge theory on the smaller brane and on the
tersection, and we can ignore the physics on the bigger b
as it is essentially frozen out. The one exception occurs
course, whenA5B, in which case the dynamics on bot
clumps of branes is equally relevant.

Now, for Dp-branes withp,3, we have from the formula
for lp

2(E) that the perturbative Super Yang-Mills~SYM! re-
gime is the high-energy or ultraviolet regime@29#. So in a
Wilsonian sense the SYM description is the fundamen
one. Now, note that the dimension of the theory on the
tersection for our intersecting D-brane configurations has
upper bound ofd5211. This happens because there are
enough dimensions of spacetime to have intersecting bra
~parallel or orthogonal! which are asymptotically flat and
which have an intersection theory withd.211. Therefore,
even at strong coupling, we may rely on conclusions t
follow from general properties of the field theory on th
smaller branes~with p<3! and on the intersection, such a
locality and dimensionality. On the other hand, the SY
physics on thed5p11 world volume ofp.3 branes is at
best a low-energy effective field theory, and gets replace
the UV by a more complicated theory which may not ev
be a local quantum field theory@29#. Taking into account our
previous finding that the gauge physics is relevant only
the intersection or the smaller brane, or at worst on b
clumps for theA5B case, the only case where the fact th
SYMp11 is not the UV theory might bother us is D4'D4(2).
7-9



ed
ne

a

le
in
o
to
e
ai

it
s

th

b
h

th

y
ing
th
s

uc
u
ic
n

ac
u
n
t

ain
i

In
an
d
i

n
i

an
ill

he
th

at
in

ales

size

ng
ym-

in

t-
to

ce
nt

s in
e-
te to
sed

ne,

r

lt.
es.
e

tion
gen-
vity

d-

a

.

s,
ne

w
on
a

nc
t
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In fact, since in this case we do not know the fully localiz
supergravity solution but only an irreducibly smeared o
we are in effect dealing with 1/r potentials. Therefore, we
suspect that holography may be breaking down for this p
ticular case.

We see that the strongly quantum mechanical coup
DA,DB field theory describes the supergravity solution
the near-A-horizon regime. This concludes our discussion
the regime of validity of the gauge theory and its relation
the supergravity regime of validity. Now we turn to th
gauge theory considerations, with which we want to expl
our previous supergravity results on~de!localization.

In the supergravity section we saw~de!localization occur
as we brought the B-branes in to the A-branes from fin
transverse separation to zero separation. We now want to
how this happens from the field theory perspective. Since
type A and B branes are initially separated, we area priori
on the ‘‘separated’’ branch of moduli space. For the D5iD1
~and T-dual D4iD0! case this is usually called the Coulom
branch, and the ‘‘coincident’’ branch the Higgs branc
Now, if we were to integrate out the 1–5 strings to study
Coulomb branch, we would find@33,34# that the Coulomb
and Higgs branches of moduli space are separated b
infinite distance and decouple. However, these 1–5 str
become light in the limit in which the separation between
A and B branes is removed, which is our situation of intere
In particular, in our setup we have kept the mass of s
strings fixed relative to our gauge theory energy scale. Th
the moduli space is simply not sufficient to describe phys
in the region of interest. An analogy to our Ramond-Ramo
case is the S-dual situation of fundamental strings appro
ing N-S five-branes. There, the infinite distance in mod
space corresponds to the infinite throat of the five-bra
However, we know that this is no obstacle to a fundamen
string reaching and crossing the five-brane horizon. Ag
what one finds is that the moduli space approximation
simply not sufficient to describe this part of the dynamics.
the same way, there is no conflict between our picture
the results of@33,34#; a mixing between the Coulomb an
Higgs branches is allowed in our setup of the AdS-CFT lim
for the intersecting branes when the separation is small.7

Let us consider in more detail the case of D1-branes~B!
and D5-branes~A!, where on the Higgs branch the releva
moduli are the scale sizes and orientations of the gauge
stantons which represent the D1-branes in the D5-br
gauge theory.~There are also position moduli but they w
not be important in the following.! As we argued above, we
expect a mixing between the Coulomb and Higgs branc
as the separation goes to zero. We will use physics of
Higgs branch to study delocalization, in an approxim
sense, keeping in mind that the small mass of the 1–5 str

7Our analysis also differs in that our B-branes are not probes;
take into account their effect on the supergravity fields. In additi
the field theory description of our setup is neither the conform
field theory which appears in the extreme IR on the Higgs bra
nor the one on the Coulomb branch~these theories have differen
R-symmetries! @33#.
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modifies the dynamics of the system at large length sc
and thus provides an infrared~IR! cutoff. Now let us extract
a length scale for instanton size fluctuations. The scale
and orientation for a single instanton form a 111 quantum
field theory with a moduli space metric which is flat forN1

51, and with a coefficient 1/(l s
2gs) in front of the Lagrang-

ian. Thel s
2 is associated with the fact thatr has dimensions

of a length. That the metric is not renormalized at stro
coupling is a consequence of the high degree of supers
metry in this system~it is hyper Kähler!. For largeN5 , there
are roughly N5 possible orientations for the instanton
gauge space, so we have

A^r2&5A^r1
21...1rN5

2 &;AN5gsl s
2Alog~LUV /L IR!,

~3.23!

whereL IR ,LUV are appropriate infrared and ultraviolet cu
offs. Now, since we take all energies low by comparison
the string scale as in Eq.~3.1!, LUV; l s

21 . In addition, as
above, the 1–5 strings have a massU which provides an IR
cutoff. If there areNB separate instantons, the moduli spa
metric, although uncorrected, is not flat. What is importa
for our estimate is the normalization, which is the same a
theNB51 case. In addition, the instantons all fluctuate ind
pendently, and so we may expect the above rough estima
carry over. To translate our estimate into the quantities u
in the classical supergravity discussion, recall thatU
5r'0 / l s

2 and, since the A-brane is an unsmeared five-bra
r 55 l sAN5gs. Also, since we are holding l5

2(U)
5gsN5( l sU)2 fixed andr'0 is small, up to numbers of orde
one we may replace thel s coming fromLUV inside the loga-
rithm with r 5 . We then have

A^r2&;r 5Aln~r'0 /r 5!. ~3.24!

We see that this estimate matches the supergravity resu
The story is similar for D0 branes approaching D4 bran

In that case, we have a (011)-quantum field theory and th
rms fluctuations will be proportional toA1/L IR, but r 4
5(gsN4)1/3l s . We find

A^r2&;AN4gsl sAl s
2/r'05~gsN4!1/3l sA~gsN4!1/3l s

r'0
.

~3.25!

Again, this matches the classical supergravity delocaliza
rate. The case of D3-branes and D-instantons is a bit de
erate, but one finds agreement with the classical supergra
results, and with scale-radius duality, by takingA^r2& pro-
portional to 1/L IR .

We note that, for every case of intersecting Ramon
Ramond branes that falls within our framework, we haveA
1b>4 and the potentialHA diverges no faster thanr 23.
Furthermore, anr 23 potential is always associated with
(011)-dimensional intersection and anr 22 potential is al-
ways associated with a (111)-dimensional intersection
Similarly, cases whereHA diverges only liker 21 or weaker
correspond to (211)-dimensional or larger intersection
and both the quantum size moduli fluctuations in the bra

e
,
l
h
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gauge theory and the classical supergravity delocalization
small. @If the zI were compactified on a very large manifol
the above results hold in the infinite-volume limit, and so
continuity the ~de!localization results are essentially u
changed at large but finite volume. We will, however, avo
finite volumes so as to finesse additional phenomena
occur when the sizes of the compactified manifolds get
small near the core in the supergravity geometry.# Therefore,
we see agreement for both the parallel and orthogonal in
sections.

In cases whereb.0 i.e. the type A branes are smeare
their field theory is still (A11)-dimensional, not (A1b
11)-dimensional. It is therefore reasonable to replaceNA in
the argument above for the delocalization rate with the v
ume densityNAl s

b/Vb , as one may think of this case as ha
ing a large number, of orderVb / l s

b , of separate intersections
Thus, an estimate of the instanton scale size fluctuations
always be made that agrees with the classical supergra
delocalization rate.

Let us lastly consider the qualitatively different kinds
solutions we get by additionally smearing the type A bran
along thew direction. In the classical supergravity, we ha
a localized solution if only three transverse dimensions
left unsmeared. This is hard to explain from the field theo
perspective, as can be seen by considering a prototyp
example of the D0-clump with a D4-clump smeared alo
two of the five transverse dimensions. Then the smeared
clump gives rise to a 1/r potential and the supergravity so
lution localizes, even though the intersection
(011)-dimensional. Now, recall that holography for the D
brane system is problematic. For the D4-brane smeared
two transverse directions, we have a 1/r potential and so we
suspect that holography is breaking down for this twic
smeared D4-brane as well. In this sense, our success in
ting the classical supergravity answer for the D6iD2(2) and
D4'D4(2) systems from the quantum brane gauge theor
surprising. On the other hand, it may simply be that smea
one brane and not the other is not a straightforward opera
from the field theory perspective. Note also that when
D4-branes are smeared over only one transverse direc
instead of two, the quantum theory on the branes and
classical supergravity agree that delocalization should oc
but do not agree with regard to the rate at which this h
pens.

C. Asymptotically flat orthogonal branes

We would like to add a few more comments on the ca
involving orthogonal intersecting branes, and how to use
earlier results to say something about asymptotically flat
opposed to near-horizon, spacetimes. Recall that the inte
tion field theory description is dual to the near-horizon s
pergravity description. As such, it does not directly say a
thing about the asymptotically flat solutions. However, t
near-horizon and asymptotically flat supergravity solutio
are controlled by the same equations of motion~2.3!,~2.4!.
The only difference is in the boundary conditions impos
on HA ; the boundary conditions onHB are identical for both
cases. Thus the two supergravity solutions must agre
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high accuracy in the regionux'u!r A . Thus, if the near-
horizon geometry is delocalized, there must also be a reg
~perhaps, only forux'u!r A! in which the asymptotically flat
geometry is delocalized as well. We saw this explicitly f
the solutions exhibited in Sec. II, in which the type A bran
were initially smeared over thezb directions. The same con
clusion should hold in the case without the initial smearin
for which the supergravity solutions are not yet known. F
initial progress toward constructing these solutions, see@21#.

Let us now consider as a prototype of orthogonal int
sections the D2'D2(0) system. Initially, for clarity, we re-
frain from smearing the A-branes over the B-brane wor
volume. In the quantum gauge field theory, the instan
scale sizes become blowup modes of the orthogonally in
secting D2-branes. To see this, write each pair of spa
world volume coordinates as a complex coordinateZ, then
for the combined world volumes we get the holomorph
curve ZAZB5r. The smearing ofr is infinite because the
field theory on the intersection is only (011)-dimensional.
This means that the corresponding near-horizon geom
will also be smeared.

We now use the above argument about matching su
gravity solutions and our knowledge of the blowup modes
the near-horizon case to draw some conclusions about d
calization in the asymptotically flat case. This solutio
should be delocalized, but perhaps only in some near-hor
region. A diagram giving our artistic impression of the a
ymptotically flat solution is included below. We can on
conclude that delocalization must occur in the interior of t
shaded region, which is the region inside a blowup mode
has expanded until it reaches the curver 5r 2 . This is con-
sistent with our expectations that, far from the intersecti
the solution should reduce to the known physics of a lo
D2-brane clump. Our delocalization has become a fin
sized ‘‘neck’’ of the supergravity solution.

In the actual D2'D2(0) case studied in the previous se
tion, the D2'D2(0) supergravity solution has the A-bran
initially smeared overzb . The field theory on the intersectio
is still (011)-dimensional, and so we conclude that t
B-branes delocalize over the full near-A-horizon spacetim
In considering the implications for the asymptotically fl
solutions, we recall that the near-A-horizon region has b
enlarged by smearing overzb . Figures 1 and 2 show the
result for three clumps of type A branes placed clo

FIG. 1. Field theory delocalization arguments predict a fini
sized ‘‘neck’’ for the asymptotically flat supergravity solution fo
two orthogonal clumps~‘‘A’’ and ‘‘B’’ ! of D2-branes.
7-11



-
th
r
en
g
io

a

or

er

se
-
e

ng
lu
h
re

in
f
io
t
i

c
h

tly

th
itio
he
a

ue
in
-

-
ize
-

-
,’’
t
um
es
t to
e at
tion

ting
ell.
ith

ter-

his
nite

us,

of
al

le to
ane

to a
eory
re

the
ne-

ed.
r
a-
re
was
a-
es
s. In
r a
u-

ude
ngs
k of
s.
in
the
will
and
int
ith

e

DONALD MAROLF AND AMANDA PEET PHYSICAL REVIEW D 60 105007
enough to each other that their charge radii~r 2 , indicated by
dotted lines! overlap. The full near-horizon region is the in
terior of the solid heavy line. Thus, blowup modes near
center~thin solid line! are now allowed to be much large
while remaining inside the near-horizon region. Wh
enough clumps are present to model a complete smearin
the type A branes, we may expect the field theory predict
to imply complete delocalization in theza directions of the
type B branes in the asymptotically flat solution as well
the near-A-horizon solution.

We draw entirely analogous conclusions for the other
thogonally intersecting cases which have (d5011)- or (d
5111)-dimensional intersections, such as the D1'D3(0).
The only case which can localize from the field theory p
spective has a (d5211)-intersection, and this is
D4'D4(2). But since this has only three totally transver
coordinates it exerts a 1/r potential and its near-horizon su
pergravity solution is localized, so again we have agreem
of the near-horizon supergravity and field theory. Followi
our above argument, there will be asymptotically flat so
tions in which both branes are localized, in addition to t
known solutions where the A branes are initially smea
over thezb directions.

IV. DISCUSSION

We have seen that many supergravity solutions contain
two types of branes~A and B! have the property that one o
the branes~B! delocalizes when the transverse separat
between the branes is removed. This happens when
world volume directions of the type B brane are contained
the world volume directions of the type A brane, or in dire
tions in which the type A brane has been smeared, and w
the dimension of the intersection manifold is sufficien
small.

In terms of the corresponding brane gauge theories,
phenomenon is associated with the lack of a sharp trans
between the ‘‘separated’’ and ‘‘coincident’’ branches in t
limit where the separation between the branes is very sm
It is also associated with the fact that the asymptotic val
of massless fields do not label superselection sectors
11 and 111 dimensions; i.e., with the Coleman-Mermin

FIG. 2. Smearing of the ‘‘A’’ clump of D2-branes over th
world volume of the ‘‘B’’ clump leads to delocalization in all world
volume directions.
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Wagner theorem@31,32#. In particular, the supergravity de
localization is related to large fluctuations of some s
moduli fields in the ‘‘coincident’’ branch of the super Yang
Mills theory. As mentioned in@26#, the classical delocaliza
tion is closely related to the black hole no-hair ‘‘theorems
recently reviewed in@43#. It is rather amusing to connec
such a classic feature of black hole physics with quant
fluctuations in the super Yang-Mills theory. Up to subtleti
discussed in Sec. III, we find agreement both with respec
which cases should delocalize and with respect to the rat
which this delocalization occurs as the transverse separa
between the branes is removed. It would be very interes
to understand in detail exactly why this rate agrees so w

We have also seen this delocalization to be in accord w
expectations that there should in fact exist orthogonal in
secting brane supergravity solutions withbothbranes~A and
B! localized in the directions along the other brane. In t
case, our delocalization phenomenon may become a fi
neck of the supergravity solution of the sort that is seen@44#
in the Born-Infeld description of intersecting branes. Th
when the intersection manifold is (011)- or
(111)-dimensional, we expect only solutions with necks
some minimum finite size while, for higher dimension
cases we expect solutions with necks of all finite sizes~in-
cluding zero!.

There were, however, some cases that we were not ab
analyze properly. In some of these cases, the type A br
has been smeared so that it covers a (611)-dimensional
volume. The corresponding spacetime then resembles,
certain extent, that of a D6-brane and the brane gauge th
may not properly decouple from the bulk. We were therefo
unable to rely on holography to draw conclusions about
classical supergravity from the quantum gauge theory. No
theless, we found agreement for the D2iD6 and D4'D4(2)
cases, and we would like to understand why this happen

As mentioned in@26#, BPS supergravity solutions fo
many three-~and higher!-charge solutions can also be an
lyzed in this way. Typically, when two of the charges a
smeared, we can discuss localization of the third just as
done for the type B branes above. Asymptotically flat situ
tions of this type that involve only Ramond-Ramond bran
include three sets of D2 branes, or three sets of D3 brane
these cases, the branes are again smeared ove
(611)-dimensional volume and we do not expect deco
pling from the bulk.

Other cases that could not be studied precisely incl
NS-NS objects. Consider first the case of fundamental stri
intersecting R-R branes. Here, we are stymied by our lac
understanding of fundamental strings in R-R background8

However, in the supergravity regime, either the curvature
string units or the dilaton becomes large near the core of
R-R branes. This suggests that the fundamental string
fluctuate significantly near the supergravity R-R branes,
that this should give rise to delocalization of the endpo
~necking! near the core of the R-R branes in analogy w

8For recent progress in this direction, see@45–47#.
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our discussion of solutions describing D-strings intersect
a D3-brane.

For the case of Dp-branes intersecting NS5-branes, whe
the intersection hasp21 space and one time dimension, w
have little to say because we do not understand well eno
the theory on the NS5-branes or the related theory on
intersection manifold. It may be described by some secto
the NS5 ‘‘little string theory’’@48,49#, but such a description
is likely to require much more than a field theory. Note th
there are only 3 directions transverse to both branes for
value ofp, so that the supergravity solutions, with one bra
smeared over the other, will always be localized.

There remains however, the annoying case of D4iD0 with
the D4-branes smeared over onew direction. Here, our clas
sical supergravity and quantum field theory analyses pre
delocalization. But, despite the fact that the potential isr 22

and we expect holography to hold, the two descriptions d
agree with regard to the rate at which this should happe
appears that smearing just the D4 branes is a more su
operation in the quantum brane gauge theory than the su
gravity would have us believe.
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APPENDIX: A COMPARISON WITH NEAR-CORE
SOLUTIONS

One potential confusion concerns the near-core solut
of @39#. While they are valid solutions to the supergrav
equations, we now argue that, due to the subtleties of bou
ary conditions, they are not the appropriate ones to cons
in our context.

To discuss those solutions, it is necessary to recall so
elements of their construction. The differential equations
be solved are just Eqs.~2.3! and ~2.4! in the regime r̂ A
@r' , r'0 under the assumption that now directions~asso-
ciated with smearing of the type A branes in directions tra
verse to the type B branes! are present. In@39#, r'0 was set
to zero. However, we will find it useful to keepr'0 nonzero
and then study the limit in which it vanishes. Following@39#,
,
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we take theza directions to be non-compact. We take th
number ofza directions to beD. We would like to have
spherical symmetry in both thex' andza directions so, as in
Sec. II, we replace the fully localized type B brane with
spherical (Sd213SD21) shell of source:
qBr'

2(d21)r a
2(D21)d(r' ,r'0)d(r a ,r a0). Thus, we have

spherical symmetry in both theza andx' directions and the
solution depends only onr' and r a5uzau.

In the regionr̂ A@r' , r'0 , @39# uses a trick first intro-
duced in@24# and finds that the equation simplifies under
change of coordinates~correcting a typographic error in
@39#!:

r'→Y5
2r̂ A

(d22)/2

u42du
r'

42d/2 . ~A1!

In terms ofY, the equation to be solved~for r̂ A@r' , r'0!
may be written

Y2d/(42d)
„]Y~Yd/(42d)]YHB!…1r a

12D
„] r a

~r a
D21HB!…

5Y2d/(42d)r a
12Dd„Y2Y~r'0!…d~r a ,r a0!. ~A2!

This equation may be solved by realizing that it is the a
lytic continuation~to non-integer dimensions! of Laplace’s
equation onR[(d/42d) 11]3RD, in coordinates in which the
SO@(d/42d) 11#3SO(D) symmetry is manifested. The
closed form solutions of@39# may be obtained by smearin
out the source further over theS(d/d24) 1D sphereY21r a

2

5R0
2 and taking the limit asR0→0. What is important to

note is that, ford.4, the coordinate transformation~A1!
means thatR0→0 corresponds to takingr'0 to infinity.
Thus, the type B and A branes are not in fact being place
the same location in space. One may verify that, near
type A branes, the solutions of@39# for d.4 do not depend
on theza coordinates, and so in this sense are not locali
solutions. The fact that, at a generic point in the spaceti
the solutions of@39# do depend onza is a reflection of the
lack of an asymptotically flat region in the near-core spa
time: even though the type B branes have been taken
infinity, part of their field can still be seen. For the cased
54, the coordinate transformation~A1! breaks down, but
@39# constructs a logarithmic solution to which similar r
marks apply.

We note that if one tries to use these methods to const
a localized solution~for d.4! by taking r a0 , r'0→0, one
takes the source to infinity inY where it will have little
impact. Thus, this seems to reproduce the conclusion of S
II that the type B branes delocalize. However, the analysi
complicated by the nontrivial mapping of surfaces inza ,x'

space intoza ,Y space.
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