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High temperature resummation in the linear é expansion
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The optimized lineas expansion is applied to theg* theory at high temperature. Using the imaginary time
formalism the thermal mass is evaluated perturbatively up to aitlek variational procedure associated with
the method generates nonperturbative results which are used to obtain the critical temperature for the phase
transition. Our results are compared with the ones given by propagator dressing methods.
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I. INTRODUCTION der infrared regularizing contributions are nonperturbatively
taken into account. An advantage of the linéaxpansion is
The breakdown of perturbation expansion in high tem-that the same simple propagator is used in the evaluation of
perature quantum field theory is a well known probleh2]  any diagram, avoiding the potential bookkeeping problems
whose solution is still a matter of study and discussion todaymentioned above. This makes the method particularly useful
with different authors using different methof&-11]. High  and simple to use in different applications, including the
temperature perturbation expansion breaks down due to thgudy of nonperturbative high temperature effects.
appearance of infrared divergences close to critical tempera- This work is organized as follows. In Sec. Il we briefly
tures(in field theories displaying a second order phase trangescribe the lineas-expansion technique and then use it to
sition or a weakly first order transitidi2,13), or for mass-  gygjuate the thermal mass up to ordéf in the 3

less field theories, such as QCD. In particular, there are, 14 \ 44 theory. Details of the renormalization up to this
parameter regimes Whe_re conventional perturbation schem%§der are given in Sec. Il where we also discuss renormal-
become unreliable at high temperature when powers of thfeZation at higher orders irs. We show that it does not

coupling constants become surmounted by powers of thSresent any additional difficulty when compared to renormal-

temperature. {zation in the usual perturbative or loop expansions. In Sec
In general, these problems are treated with resummatiofr P P €xp ) '

techniques which try to account, in a self-consistent way, fo V. we present our results for the thermal mass, including the
the leading contributions in the infrared region. Among theséitical temperature for the phase transition, and compare
schemes are the popular daisy and super-daisy scH@&&s them with other results found in the literature. In Sec. V

composite operator methd@] and field propagator dressing concluding remarks are given.

methods[7,8]. Some of these resummation methods have

been compared in Ref9], where their difficulties and pos-

sible caveats have also been discussed. The majority of ap- Il. THE LINEAR 6 EXPANSION APPLIED
proaches used within this subject have a potential drawback TO THE EVALUATION OF THE THERMAL MASS
concerning the achievement of self-consistency as higher or- IN THE \¢* THEORY

der diagrams are resummed. This happens because the
dressed propagator changes order by order. Therefore, spe-
cial care must be taken when selecting the correct order in

the coupling constants. Another problem associated with The opt|m|zed "’?ea@ expansion 1s an alternative non-
some of these methods is related to the implementation o_qerturbatwe approximation which has been successfully used

renormalization, as discussed in REf1]. in a plethora of differen'F problems in pa_rticle thetﬁﬂ;ﬁ,l?—

In this paper, we apply the optimized linedrexpansion 19l duantum mechanic$20,21 statistical physics[22],
[14,15 (for earlier references see, e.§16]) to the \¢*  huclear mattef23] and lattice field theory24]. One advan-
theory obtaining the thermal mass to second order in théage of this method is that the selection and evaluation
perturbative parametef. Our results show that the use of a cluding renormalizationof Feynman diagrams are done ex-
proper optimization scheme is equivalent to solve the ga@ctly as in ordinary perturbation theory using a very simple
equation for the thermal mass, where leading and higher ofmodified propagator which depends on an arbitrary mass pa-

rameter. Nonperturbative results are then obtained by fixing

this parameter. An interesting result obtained with this
*Email address: fsclmep@fsc.ufsc.br method in the finite temperature domain is given in R&§]
"Email address: rudnei@dft.if.uerj.br where the critical temperature value for the Gross-Neveu

A. The linear & expansion
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model in 1+1 dimensions nicely converges, order by order,

towards the exact result set by Landau’s theord@ip=0) !

The standard application of the line@rexpansion to a
theory described by a Lagrangian densftystarts with an
interpolation defined by

L=(1=8)Lo( )+ 6L=Lo(n)+ L= Lo(7)],

where Ly(#n) is the Lagrangian density of a solvable theory

which can contain an arbitrary mass parametgr. (The La-
grangian density ¢ interpolates between the solvallg( 7)
(when 6=0) and the originall (when §=1). In this work
we consider the\ ¢* model described by

1 2 1 2 42 A 4
where

L —A}(a )Z—BEm2 2N ey (2.3

represents the counterterms needed to render the model
nite. Note thatl requires an extra piece if one attempts to

evaluate the thermal effective potentiall], which is not the
case here. Choosing

1 1 1
Lo( 77)25(3M¢)2—§m2¢2—§ "’ $? (2.9

and following the general prescription one can write

1 1 N, 1
- 3
L0=5(3,4)°—5mPp?— 25 ¢ = 5 (1= 8) n* ¢+ L3,

(2.9
or
1 1 O\ 1
L£0=5(3,0)2 =502 = 5 o'+ o5 P’ d?+ L5,
(2.6)
whereQ)?=m?+ 5? and
1 1 O\ 1
5_ b 2_T02pées2 N4, o7 2062
Lo=AOZ (9,97~ 5 QB2 J2CO%+ 52 72802,
(2.7

One should note that thé-expansion interpolation intro-
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The general way the method works becomes clear by
looking at the Feynman rules generated £Y. First, the
original ¢* vertex has its original Feynman rutei X modi-
fied to —i &\. This minor modification is just a reminder that
one is really expanding in orders of the artificial paraméter
Most importantly, let us look at the modifications implied by
the addition of the arbitrary quadratic part. The original bare
propagator

S(k)=i(k?*—m?+ie) 1, (2.9
becomes
S(k)=i(k*—Q?%+ie)~*
i . i N
(2.9

indicating that the term proportional tef ¢ contained inC,
is entering the theory in a nonperturbative way. On the other
and, the piece proportional ®7,2¢? is only being treated
Iﬁérturbatively as a quadratic vertéof weighti57?). Since
only an infinite order calculation would be able to compen-
sate for the infinite number of«i»?) insertions contained
in Eq. (2.9, one always ends up with & dependence in any
quantity calculated to finite order iA. Then, at the end of
the calculation one sei®=1 (the value at which the original
theory is retrievefand fixes» with the variational proce-
dure2 known as the principle of minimal sensitiviPMS)
[27]

dP(n) _

197] ;

0, (2.10

whereP represents a physical quantity calculajestturba-
tively in powers ofé.

This optimization procedure, together with the conver-
gence problem, has been discussed in detalil for simple cases
in low dimensions in Refs[20] and [21] where possible
implications to more realistic theories have also been inves-
tigated. Both references provide proofs of convergence. Us-
ing the anharmonic oscillator, Bellat al. [28] have also
studied the convergence of an alternative version of the lin-
ear § expansion. Their method has been later extended to the
Gross-Neveu model where the optimization procedure was
studied in conjunction with the renormalization gro[&9].

duces only “new” quadratic terms not altering the renormal- The convergence of th& expansion in quantum field theory
izability of the original theory. That is, the counterterms con-is still a subject deserving further investigation. In principle,

tained inL£ 2, as well as in the original;, have the same

polynomial structure.

IConsistent results in the¢* theory at finite temperature have
also been obtained with a variant of the linearexpansion, the
nonlinear § expansion[25,26. However, beyond first order, this

it seems that if the convergence proof conditions for the an-
harmonic oscillator could be extended to quantum field
theory ind<4 [21], one could pursue a similar investigation
for the A ¢* theory in 3+1d at finite temperature. This is
due to the fact that at very high temperatures this model gets

latter version presents cumbersome technical problems associatedThe third reference ii20] discusses alternative conditions for

with the evaluation of graphs.

fixing #.
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FIG. 1. Diagrams contributing to the self-energy at first order
in 8. +6NT?h

4
Tl (2.1

dimensionally reduced to an effectivel 3heory for the zero

- whereu is a mass scale introduced by dimensional regular-
Matsubara field modeg30]. However, we shall not pursue 'u y g

S . ization and
this discussion.
As far as renormalization is concerned it is important to 2
. A 1 (= X
note that in general, as a result of the optimization procedure, h(y)= _f dx ,
the arbitrary » turns out to be a function of the original 4m2)o [P+ y? )Y exp(x?+y?)2—1]
model parameters, scales introduced through regularization (2.17

as well as external parameters such as the temperature and/or

density. Therefore, in order to get physically acceptable rewherex=k/T. Note that the temperature independent term
sults the optimization procedure must be carried out after afliverges and must be renormalized. In this paper we chose
divergences have been eliminated. The renormalization profbe minimal subtractioMS) scheme where the counter-
|em' in the |argd\| ||m|t, has been addressed in R@ﬁl] terms el|m|nate the p0|es Only. At this order the Only diver-
The way renormalization will be carried out here is well 9€nce Is

discussed in Ref.11]. ,

A
35(09)=-45

, 2.1
B. The evaluation of the thermal mass at orderé? 327°€ 219
We can now start our evaluation of the thermal rnassWhich is easily eliminated by thé(5) mass counterterm
defined by
M%=Q%+34(p), 2.1 A
T 5P 219 231(92):55192=( 5 02 (219
327%¢

where E?(p) is the thermal self-energy. At lowest order
(first order in §) the relevant contributions, which are mo- By looking at Eq.(2.16) one can see that the terms propor-
mentum independent, are shown in Fig. 1 and given by  tional to S\ represent exactly the same diagram which ap-
pears at)(\) in ordinary\ ¢* theory, excepted that we now
5 A d?k i haveQ? instead ofm? and S\ instead of\. Therefore, it is
37 (p)=—67"+ 5§f 25 > (212 not surprising that to this order the renormalization proce-
T(2m)T K -0 +ie dure implied by the interpolated theory is identical to the

. ) procedure implied by the original theory @(\).
The temperature dependence can be readily obtained by Us-| et us now analyze the temperature dependent integral

ing the imaginary time formalism prescriptidsee, .g[1])  \yhich is expressed, in the high temperature linf/T<1),

as[33]
_ f d*k S f d3k 213
—lwp, — 1 . .
Poton Jr (2m)? (2m)? NI S T PN U 2 RSV I
V=247 827 16527 w2 '
Then, the self-energy becomes (2.20

. A d3k 1 In principle, sinces is arbitrary, one could be reluctant in

S8 (p)=—6n°+ 5T§ > f — = =3 taking the limit{)/T<1. Therefore, to be sure that the PMS
(2m)° o +E can be safely applied to the thermal mass in the high tem-

(2.14 perature limit, we have performed numerical calculations us-
ing both forms for the integrai(y) finding that the optimi-
whereE*=k?+ Q2. Summing over Matsubara’s frequencies zation results do not lead to any significant numerical
one gets changes. Then, taking the integhdly) in the high tempera-
ture limit, one obtains thé&(5) thermal mass:

s@(p)=— 5 2+5>\J dk | 1 1 ,
T(p)=TonTos 2E - ATZ ATQ
(2.15 ™
2 2
Then, using dimensional regularizatif®2] one obtains the +5)‘Q In AnT — el (2.21)
thermal mass 3272 w?
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FIG. 2. Diagrams which are orde¥ contributing to the self-

energy. As will be shortly seen, this contribution can be rendered
finite using a mass type counterterm containedjﬁgwhich

At O(8%) the self-energy receives contributions from mo-is tailored to account for divergences arising from the extra
mentum independent as well as momentum dependent diguadratic vertex introduced during the interpolation process.
grams. At this order there are five diagrams contributing, Considering th&)(5) mass counterterm used to eliminate
which are shown in Fig. 2. Let us first consider the momen+he divergence iligil\, [see Eq(2.19], one is able to build a
tum independent diagram given by the first diagram in Figone loopO(5%) diagram whose contribution is given by the
2, which we call3¢". In the high temperature approximation second diagram in Fig. 2. In the high temperature approxi-
it is given by mation one obtains

(2.22

2 71_2

+—.

6
(2.23

QZ

47rT? |
: A p?

2
M

TO Q2
-——+
16w 3272

252~ 5 2202 5 A2

+ 5
(3272)2%€? 3272

In

—YE +ve

52 2202
2(327%)°

Next, one considers the vertex counterterm, whose Feynman-+@ej’\?/(327%€), can be obtained, as in RéB2], by
evaluating the orde#? contribution to the four point function. The one loop graph evaluated with this counterterm, given by
the third diagram in Fig. 2, gives

sP__ 3202 e 3\Z | T2 @ 02 | 47T? 52 3202 | 02 12+l+'n'2
3770 Gond2e C 3om%e |24 8m  3pp2| | u2 | F 232792 || M\ amu?) e 6
(2.29
The next momentum independent contribution is given by the first two loop diagram shown in Fig. 2:
2 A20% 1 A2 1| T2 3TQ Q2 AmT?
Y Ay Ay S In -
(3272)% €2 3272 €24 167 1652 w?
222 T 22 T? e AT 3TQ+QZ | 4mT?
3847 () 12872 (161)2 3 27 42 : w? Ve
4mT? \2Q? 2 2
x| In — e |+ 82 2 +(2ye—1)In +2.4|. (2.25
w? e (3272)? 41 (27e-1) 4aru?

To render this diagram finite one needs mass and vertex counteftg2ins
The final contribution to the self-energy @(5%) comes from the two-loop “setting sun” diagram shown by the last term
in Fig. 2. This is a momentum dependent contribution which is given by the real part of

& 2)‘2
25 :_5 E(GO+G1+G2)7 (226}

whereGy is the zero temperature pdith Euclidean tim¢ of the diagram an@, andG, are the finite temperature onesith
one and two Bose factors, respectiVelRd G,] is given by d=4-2¢)

dko ddq 1 1 1

: 2.2
(2m®) 2m)* K2 +02 ¢>+ 0% (p—k—q)2+0? 220

RG[Go(P)]=M45f

This contribution has been evaluated in details in R&4] where the quoted result is
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de d+1 2\d-3 @ 2n
ot Q) o P 1
RE[Go(IO)]—(ZW)Zd _ (d ) k;:o( 1) al 79
sinmr| = —2 n'r'i=z+n
2 2
d d d d
r §+k B(1+k,1+k)l"(2—§+k) r2+k)B 3—§+k,3—§+k)l“(4—d+k)
% d - d
(k=—n)!'T §+k—n (k=n+1)!'T 3+k—n—§
4e *° 2n
it d y2yd-ap( 9 _ _ L3z d+n)(p ( _d d )
+(2w)2d77 (Q?) F(Z 1);0( )" q| Bl2-3+n2-g+n|, (2.29
I §+n

whereB(x,y) is the Beta functionB(x,y) =[T'(X)I'(y)]/T'(x+y). In what follows we evaluate the self-energy on-shell (
=0, po=—1Q). For e—0, we obtain the following result for the above expression:

52)\2R6:G 0.0 5\202%] 1 +3—275 2 0?2 +52)\2p2 1
P — , — — R R
6 0 44mt| e € € \4nu?|| 4(4m)* Be
NS i Y L I 17)| 0% ), 2 1T g, (2.29
——1In — . , .
2amt | \amp2) \TE6) a2 T F 6

where we purposefully left the momentum dependence in the relevant divergent term to make explicit the need for a wave-
function renormalization counterterm.
The finite temperature contributioi®; andG, are given, as in Ref8], by

2

—62%Re[61(—iQ,O)]:F0+F1+F2, (2.30
where
Fo=—6? T 1h(g), (2.3D
(4m)2 e \ T
)\ZTZ Q 2
F,=— 22(4w)2h(T) ~In po—; +2—ye (2.32
and
Fo=—&° N de K Fd—q qlnx—+ —4k}, (2.33
8(2m)*Jo  E(efF—1)Jo Eq X_
X =[ Q%= (Ex+Eq+Er ) 2I[ Q%= (= Ex+ Eq+ By )?]. (2.349
For G,, one hag8]
_ﬁRe[Gz(—iQ,O)]:H(Q)z— 52)\2()7“ dx fx dy In‘ m+¢y2——l_ (2.35
6 42m)t)1 P —1J1efY—1" | }P-1-\y?—1
In the high temperature limit, one can sh@8j that
)\2T2 QZ
F2+H(Q):5224(47T)2 In(§>+5.066%. (2.3

Finally, using the high temperature approximation lidy) and putting all together one gets
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202 202 2~2 2
qugz(p)]zgzxﬂ £+2)\Q £+2)\p 1, A
(3272)2 €2 (32m2)2 € (327%)? b€ 16m2e
" T? TQ+ 02 47 T? e 202 > 02
= e - n
24 8w 3272 w? Ve 2(4m)* 41’
+(2 17)| 0 IRy IPT. I i | i +2
YET ~ n YE— . - —1In -
£ 6 4’ £ 6 3272 A’ .
X roTe o | ( + ! + &2 T | 0 +5.066 2.3
24" 8w 1672 \AwT) 7ET2 24am2| |72 T 23

lIl. ON THE RENORMALIZATION AT ORDER  §6°

AND AT ORDER 8"

To obtain the total finite ordes® contribution one can
add all divergences appearing in Eq2.22—-(2.25 and

The second kind of diagram is exclusive of the interpolated
theory and carries at least or#? vertex. At O(6°) this
diagram is described by EQ.22 which displays the diver-

gent termS. % (7). Looking at£ % one identifies ay? coun-

(2.37. As it can be easily seem all the nonrenormalizableterterm whose Feynman ruleiigB7?. Since the actual pole
temperature dependent divergences cancel exactly and oneissof orders? one then identifies the coefficient as beBiqy,

left with
2 _ 58,02 82,2 2, 2
2 div=2gi( Q)+ 2 G(P7) + 2 Giu(79), (3.1
where
2 202 2 1
Egiv(92)=52(32772)2<—§+; , (3.2
82, 2 2 2 op
(P =0 (32772)2a, (3.3
and
2
2, a0_o M7 1
M= 34

displayed in Eq(2.18. Then

N

2 1
25 2):_585 2:_52
(7 7 32m%e

7. (3.7

In practice, the renormalization at higher orders can be done
as above. That ig)(8") diagrams belonging to the first class
will be renormalized exactly as in the original theory at
O(\"). This is obvious from the fact that all the diagrams in
this class are of ordef™\". It is easy to check that for those
diagrams the most divergent terms will display” poles.

On the other hand)(48") diagrams belonging to the second

. n—1
class will make use of the counterterdB?® 7?2, where

B " has been evaluated in a previous order. One can also
easily check that for these diagrams the most divergent terms
will have "~ 1 poles. Moreover, power counting reveals that
those 672 insertions make the loops more convergent. For
example,all one loop diagrams of orde®(s"), with n=3

By looking at all diagrams which contribute to this order one gre finite.
can identify two classes. The first is composed by diagrams Finally, one should note that the renormalization prescrip-

such as the ones described by E(&23—(2.26. All of
them are analogous to the diagrams which appe&?(at)

tion adopted here is in accordance with the one suggested in
Ref. [11], where the order by order renormalization was

in the original theory and can be rendered finite by similarshown to hold at any higher orders &
mass and wave-function counterterms, which are respec-

tively
2 2 A2 2 1
Eft(02)=85(22=—62(32772)2(—? ;)92,
(3.5
and
Eff<p2>=A52p2=—52ﬁg—z. (3.6

IV. NUMERICAL RESULTS

One can now seb=1 and apply the PMS to the finite
thermal mass. First let us set=0 so that our results for the
thermal mass can be compared directly with the resummed
perturbative expansio(RPE results of Ref[8]. At orders
one gets

T2

p=27T|In — el (4.1

PE
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TABLE I. Results forM2/u? (X10 ). V. CONCLUSIONS

Tl nlp 0(5%) RPE Using thex ¢* model we have shown how the optimized
05 0033 0.098 0.099 6 expansion can be useful in extracting nonperturbative in-
10 0.065 0393 0.396 formation through an essentially perturbative evaluation of
15 0.098 0.884 0.892 Feynman graphs. O@@(5°) results for the thermal mass and
20 0130 1572 1587 for the phase transition critical temperature are in excellent
o5 0163 2457 2481 agreement with the ones given by other methag8]. How-

3.0 0195 3538 3574 ever, although providing very similar results, these methods
35 0228 4815 4.867 differ, from the § expansion, in some aspects which may
40 0.260 6.289 6.358 become important if one tries to consider higher orders. For
45 0293 7 960 8.049 example, within the latter methods the effective mass used in
50 0325 9827 9939 the modified propagator changes order by order turning the
55 0.358 11.890 12029  Propagator into a coupling dependent quantity from the start.
6.0 0.390 14.151 14317 ©One can then expect the selection and evaluation of higher
65 0.423 16.607 16.805 contributions to become complicated quickly. The
70 0.455 19.260 19.493 S-expansion method avoids these potential problems by us-

ing Q) in the modified propagator which is used at any order
calculation. Therefore, after drawing the relevant graphs
which, clearly, does not depend on the the coupling and carwhich contribute to a given order, one does not have to
not generate nonperturbative information. However, nonperworry about bookkeeping inconsistencies nor renormaliza-
turbative results appear already at second ordé ifiable |  tion problems since this is done as in perturbation theory.
shows our results and the results furnished by the RPE fofhe extension to higher order s immediate and, as dis-

M% in units of « for A =0.1. We also show, in units gf, the ~ cussed above, leads to a consistent resummation procedure in
optimal values ofy. finite temperature field theory.

Let us now obtain the critical temperature for the phase Although we have not attempted to prove the possibility
transition atO(5?%). Taking A =0.1, we resem?=—pu? in of convergence of our results we have explicitly shown that
M2 observing a second order phase transition at the criticdf€ procedure interpolation, renormalization, and optimiza-
temperaturdl .= 15.57 x whereas the modified perturbation tion in the finite temperature domain can be consistently
scheme (MPS) of Banerjee and Mallik[7] predicts T, ~ handled to furnish encouraging results.

—15.63 u. Choosing A\=0.01 we find T,=49.03 u We also note that the lined expansion can be extended
whereas the valud,=49.05 x is predicted by the MPs. [0 the case of gauge theories, where it has already been used
Note that in the calculation of the critical temperature per-2S & 100l to study the electroweak phase transition on the
formed in Ref.[7] the propagator has been effectively lattice[24]. Recently, it has been sho86] that the method
dressed up to the leading order correction in the temperatur@0€s not spoil gauge invariance. In this context, the liar
which is set by the tadpole term in E€.12 [see their Eq. €*xPansion may be a useful technique to analytically study the
(4.5)]. Here, on the other hand, we are definitely workingnenperturbative aspects and difficulties associated, for ex-
with all higher order corrections up to the two-loop contri- @MPple, with the electroweak phase transition as well as other
bution. The fact that our results for the critical temperatureProblems in high temperature gauge theories.

are slightly different than those obtained in REf] is an

indication of the importance of these higher order corrections

and is in accordance with well known results concerning the ACKNOWLEDGMENTS
study of phase transitions in the context of the electroweak
effective potential beyond 1-lodd 3]. The results are also in Itis a pleasure to thank H. F. Jones and P. Parkin for their

accordance with recent results for the finite temperature efinterest in this work and for pointing out few mistakes in a
fective potential of thex ¢* theory, obtained with the super- previous version of the manuscript. R.O.R. was partially sup-

daisy approximatiof35]. ported by CNPqg and FAPERJ.
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