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High temperature resummation in the linear d expansion
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The optimized lineard expansion is applied to thelf4 theory at high temperature. Using the imaginary time
formalism the thermal mass is evaluated perturbatively up to orderd2. A variational procedure associated with
the method generates nonperturbative results which are used to obtain the critical temperature for the phase
transition. Our results are compared with the ones given by propagator dressing methods.
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I. INTRODUCTION

The breakdown of perturbation expansion in high te
perature quantum field theory is a well known problem@1,2#
whose solution is still a matter of study and discussion tod
with different authors using different methods@3–11#. High
temperature perturbation expansion breaks down due to
appearance of infrared divergences close to critical temp
tures~in field theories displaying a second order phase tr
sition or a weakly first order transition@12,13#!, or for mass-
less field theories, such as QCD. In particular, there
parameter regimes where conventional perturbation sche
become unreliable at high temperature when powers of
coupling constants become surmounted by powers of
temperature.

In general, these problems are treated with resumma
techniques which try to account, in a self-consistent way,
the leading contributions in the infrared region. Among the
schemes are the popular daisy and super-daisy schemes@3,4#,
composite operator method@6# and field propagator dressin
methods@7,8#. Some of these resummation methods ha
been compared in Ref.@9#, where their difficulties and pos
sible caveats have also been discussed. The majority o
proaches used within this subject have a potential drawb
concerning the achievement of self-consistency as highe
der diagrams are resummed. This happens because
dressed propagator changes order by order. Therefore,
cial care must be taken when selecting the correct orde
the coupling constants. Another problem associated w
some of these methods is related to the implementation
renormalization, as discussed in Ref.@11#.

In this paper, we apply the optimized lineard expansion
@14,15# ~for earlier references see, e.g.,@16#! to the lf4

theory obtaining the thermal mass to second order in
perturbative parameterd. Our results show that the use of
proper optimization scheme is equivalent to solve the
equation for the thermal mass, where leading and higher
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der infrared regularizing contributions are nonperturbativ
taken into account. An advantage of the lineard expansion is
that the same simple propagator is used in the evaluatio
any diagram, avoiding the potential bookkeeping proble
mentioned above. This makes the method particularly us
and simple to use in different applications, including t
study of nonperturbative high temperature effects.

This work is organized as follows. In Sec. II we briefl
describe the lineard-expansion technique and then use it
evaluate the thermal mass up to orderd2 in the 3
11d lf4 theory. Details of the renormalization up to th
order are given in Sec. III where we also discuss renorm
ization at higher orders ind. We show that it does no
present any additional difficulty when compared to renorm
ization in the usual perturbative or loop expansions. In S
IV we present our results for the thermal mass, including
critical temperature for the phase transition, and comp
them with other results found in the literature. In Sec.
concluding remarks are given.

II. THE LINEAR d EXPANSION APPLIED
TO THE EVALUATION OF THE THERMAL MASS

IN THE lf4 THEORY

A. The linear d expansion

The optimized lineard expansion is an alternative non
perturbative approximation which has been successfully u
in a plethora of different problems in particle theory@15,17–
19#, quantum mechanics@20,21# statistical physics@22#,
nuclear matter@23# and lattice field theory@24#. One advan-
tage of this method is that the selection and evaluation~in-
cluding renormalization! of Feynman diagrams are done e
actly as in ordinary perturbation theory using a very sim
modified propagator which depends on an arbitrary mass
rameter. Nonperturbative results are then obtained by fix
this parameter. An interesting result obtained with th
method in the finite temperature domain is given in Ref.@18#
where the critical temperature value for the Gross-Nev
©1999 The American Physical Society05-1
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MARCUS B. PINTO AND RUDNEI O. RAMOS PHYSICAL REVIEW D60 105005
model in 111 dimensions nicely converges, order by ord
towards the exact result set by Landau’s theorem (Tc50).1

The standard application of the lineard expansion to a
theory described by a Lagrangian densityL starts with an
interpolation defined by

L d5~12d!L0~h!1dL5L0~h!1d@L2L0~h!#,
~2.1!

whereL0(h) is the Lagrangian density of a solvable theo
which can contain an arbitrary mass parameter (h). The La-
grangian densityL d interpolates between the solvableL0(h)
~whend50) and the originalL ~whend51). In this work
we consider thelf4 model described by

L5
1

2
~]mf!22

1

2
m2f22

l

4!
f41Lct , ~2.2!

where

Lct5A
1

2
~]mf!22B

1

2
m2f22

l

4!
Cf4 ~2.3!

represents the counterterms needed to render the mod
nite. Note thatLct requires an extra piece if one attempts
evaluate the thermal effective potential@11#, which is not the
case here. Choosing

L0~h!5
1

2
~]mf!22

1

2
m2f22

1

2
h2f2 ~2.4!

and following the general prescription one can write

L d5
1

2
~]mf!22

1

2
m2f22

dl

4!
f42

1

2
~12d!h2f21Lct

d ,

~2.5!

or

L d5
1

2
~]mf!22

1

2
V2f22

dl

4!
f41d

1

2
h2f21Lct

d ,

~2.6!

whereV25m21h2 and

Lct
d 5Ad

1

2
~]mf!22

1

2
V2Bdf22

dl

4!
Cdf41d

1

2
h2Bdf2.

~2.7!

One should note that thed-expansion interpolation intro
duces only ‘‘new’’ quadratic terms not altering the renorm
izability of the original theory. That is, the counterterms co
tained inL ct

d , as well as in the originalLct , have the same
polynomial structure.

1Consistent results in thelf4 theory at finite temperature hav
also been obtained with a variant of the lineard expansion, the
nonlineard expansion@25,26#. However, beyond first order, thi
latter version presents cumbersome technical problems assoc
with the evaluation of graphs.
10500
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The general way the method works becomes clear
looking at the Feynman rules generated byL d. First, the
original f4 vertex has its original Feynman rule2 il modi-
fied to2 idl. This minor modification is just a reminder tha
one is really expanding in orders of the artificial parameterd.
Most importantly, let us look at the modifications implied b
the addition of the arbitrary quadratic part. The original ba
propagator

S~k!5 i ~k22m21 i e!21, ~2.8!

becomes

S~k!5 i ~k22V21 i e!21

5
i

k22m21 i e F12
i

k22m21 i e
~2 ih2!G21

,

~2.9!

indicating that the term proportional toh2f2 contained inL0
is entering the theory in a nonperturbative way. On the ot
hand, the piece proportional todh2f2 is only being treated
perturbatively as a quadratic vertex~of weight idh2). Since
only an infinite order calculation would be able to compe
sate for the infinite number of (2 ih2) insertions contained
in Eq. ~2.9!, one always ends up with ah dependence in any
quantity calculated to finite order ind. Then, at the end of
the calculation one setsd51 ~the value at which the origina
theory is retrieved! and fixesh with the variational proce-
dure known as the principle of minimal sensitivity~PMS!
@27#2

]P~h!

]h U
h̄

50, ~2.10!

whereP represents a physical quantity calculatedperturba-
tively in powers ofd.

This optimization procedure, together with the conve
gence problem, has been discussed in detail for simple c
in low dimensions in Refs.@20# and @21# where possible
implications to more realistic theories have also been inv
tigated. Both references provide proofs of convergence.
ing the anharmonic oscillator, Belletet al. @28# have also
studied the convergence of an alternative version of the
eard expansion. Their method has been later extended to
Gross-Neveu model where the optimization procedure w
studied in conjunction with the renormalization group@29#.
The convergence of thed expansion in quantum field theor
is still a subject deserving further investigation. In princip
it seems that if the convergence proof conditions for the
harmonic oscillator could be extended to quantum fi
theory ind,4 @21#, one could pursue a similar investigatio
for the lf4 theory in 311d at finite temperature. This is
due to the fact that at very high temperatures this model g

ted2The third reference in@20# discusses alternative conditions fo
fixing h.
5-2
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HIGH TEMPERATURE RESUMMATION IN THE LINEAR . . . PHYSICAL REVIEW D 60 105005
dimensionally reduced to an effective 3d theory for the zero
Matsubara field modes@30#. However, we shall not pursu
this discussion.

As far as renormalization is concerned it is important
note that in general, as a result of the optimization proced
the arbitraryh turns out to be a function of the origina
model parameters, scales introduced through regulariza
as well as external parameters such as the temperature a
density. Therefore, in order to get physically acceptable
sults the optimization procedure must be carried out after
divergences have been eliminated. The renormalization p
lem, in the large-N limit, has been addressed in Ref.@31#.
The way renormalization will be carried out here is w
discussed in Ref.@11#.

B. The evaluation of the thermal mass at orderd2

We can now start our evaluation of the thermal ma
defined by

MT
25V21ST

d~p!, ~2.11!

where ST
d(p) is the thermal self-energy. At lowest orde

~first order ind) the relevant contributions, which are mo
mentum independent, are shown in Fig. 1 and given by

ST
d1

~p!52dh21d
l

2ET

d4k

~2p!4

i

k22V21 i e
. ~2.12!

The temperature dependence can be readily obtained b
ing the imaginary time formalism prescription~see, e.g.@1#!

p0→ ivn , E
T

d4k

~2p!4
→ iT( E d3k

~2p!3
. ~2.13!

Then, the self-energy becomes

ST
d1

~p!52dh21dT
l

2 ( E d3k

~2p!3

1

vn
21E2

,

~2.14!

whereE25k21V2. Summing over Matsubara’s frequenci
one gets

ST
d1

~p!52dh21d
l

2E d3k

~2p!3 H 1

2E
2

1

E@12exp~E/T!#J .

~2.15!

Then, using dimensional regularization@32# one obtains the
thermal mass

FIG. 1. Diagrams contributing to the self-energy at first ord
in d.
10500
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MT
25V22dh21d

l

32p2
V2F2

1

e
1 lnS V2

4pm2D 1gE21G
1dlT2hS V

T D , ~2.16!

wherem is a mass scale introduced by dimensional regu
ization and

h~y!5
1

4p2E0

`

dx
x2

@x21y2#1/2@exp~x21y2!1/221#
,

~2.17!

wherex5k/T. Note that the temperature independent te
diverges and must be renormalized. In this paper we ch
the minimal subtraction~MS! scheme where the counte
terms eliminate the poles only. At this order the only dive
gence is

Sdiv
d1

~V2!52d
lV2

32p2e
, ~2.18!

which is easily eliminated by theO(d) mass counterterm

Sct
d1

~V2!5Bd1
V25S d

l

32p2e
D V2. ~2.19!

By looking at Eq.~2.16! one can see that the terms propo
tional to dl represent exactly the same diagram which a
pears atO(l) in ordinarylf4 theory, excepted that we now
haveV2 instead ofm2 anddl instead ofl. Therefore, it is
not surprising that to this order the renormalization pro
dure implied by the interpolated theory is identical to t
procedure implied by the original theory atO(l).

Let us now analyze the temperature dependent inte
which is expressed, in the high temperature limit (V/T!1),
as @33#

h~y!5
1

24
2

1

8p
y2

1

16p2
y2F lnS y

4p D1gE2
1

2G1••• .

~2.20!

In principle, sinceh is arbitrary, one could be reluctant i
taking the limitV/T!1. Therefore, to be sure that the PM
can be safely applied to the thermal mass in the high te
perature limit, we have performed numerical calculations
ing both forms for the integralh(y) finding that the optimi-
zation results do not lead to any significant numeri
changes. Then, taking the integralh(y) in the high tempera-
ture limit, one obtains theO(d) thermal mass:

MT
25V22dh21d

lT2

24
2d

lTV

8p

1d
lV2

32p2 F lnS 4pT2

m2 D 2gEG . ~2.21!

r

5-3
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MARCUS B. PINTO AND RUDNEI O. RAMOS PHYSICAL REVIEW D60 105005
At O(d2) the self-energy receives contributions from m
mentum independent as well as momentum dependent
grams. At this order there are five diagrams contributi
which are shown in Fig. 2. Let us first consider the mom
tum independent diagram given by the first diagram in F

2, which we callS1
d2

. In the high temperature approximatio
it is given by

FIG. 2. Diagrams which are orderd2 contributing to the self-
energy.
10500
ia-
,
-
.

S1
d2

.d2
lTh2

16pV
2d2

lh2

32p2 F2
1

e
1 lnS 4pT2

m2 D 2gEG .

~2.22!

As will be shortly seen, this contribution can be render
finite using a mass type counterterm contained inL ct

d which
is tailored to account for divergences arising from the ex
quadratic vertex introduced during the interpolation proce

Considering theO(d) mass counterterm used to elimina

the divergence inSdiv
d1

@see Eq.~2.19!#, one is able to build a
one loopO(d2) diagram whose contribution is given by th
second diagram in Fig. 2. In the high temperature appro
mation one obtains
n by

rm
S2
d2

.2d2
l2V2

~32p2!2e2
1d2

l2

32p2e
H 2

TV

16p
1

V2

32p2 F lnS 4pT2

m2 D 2gEG J 2d2
l2V2

2~32p2!2 H F lnS V2

4pm2D 1gEG2

1
p2

6 J .

~2.23!

Next, one considers the vertex counterterm, whose Feynman rule,23id2l2/(32p2e), can be obtained, as in Ref.@32#, by
evaluating the order-d2 contribution to the four point function. The one loop graph evaluated with this counterterm, give
the third diagram in Fig. 2, gives

S3
d2

.2d2
3l2V2

~32p2!2e2
1d2

3l2

32p2e
H T2

24
2

TV

8p
1

V2

32p2 F lnS 4pT2

m2 D 2gEG J 2d2
3l2V2

2~32p2!2 H F lnS V2

4pm2D2gE21G2

111
p2

6 J .

~2.24!

The next momentum independent contribution is given by the first two loop diagram shown in Fig. 2:

S4
d2

.d2
l2V2

~32p2!2

1

e2
2d2

l2

32p2

1

e H T2

24
2

3TV

16p
1

V2

16p2 F lnS 4pT2

m2 D 2gEG J
2d2l2

T3

384pV
1d2l2

T2

128p2
1d2

l2

~16p!2 H T2

3
2

3TV

2p
1

V2

4p2 F lnS 4pT2

m2 D 2gEG J
3F lnS 4pT2

m2 D 2gEG1d2
l2V2

~32p2!2 F ln2S V2

4pm2D 1~2gE21!lnS V2

4pm2D 12.4G . ~2.25!

To render this diagram finite one needs mass and vertex counterterms@32#.
The final contribution to the self-energy atO(d2) comes from the two-loop ‘‘setting sun’’ diagram shown by the last te

in Fig. 2. This is a momentum dependent contribution which is given by the real part of

S5
d2

52d2
l2

6
~G01G11G2!, ~2.26!

whereG0 is the zero temperature part~in Euclidean time! of the diagram andG1 andG2 are the finite temperature ones~with
one and two Bose factors, respectively!. Re@G0# is given by (d5422e)

Re@G0~p!#5m4eE ddk

~2p!dE ddq

~2p!d

1

k21V2

1

q21V2

1

~p2k2q!21V2
. ~2.27!

This contribution has been evaluated in details in Ref.@34# where the quoted result is
5-4
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Re@G0~p!#5
m4e

~2p!2d

pd11~V2!d23

sinpS d

2
22D (

k,n50

`

~21!nS p

V D 2n 1

n!GS d

2
1nD

3F GS d

2
1kDB~11k,11k!GS 22

d

2
1kD

~k2n!!GS d

2
1k2nD 2

G~21k!BS 32
d

2
1k,32

d

2
1kDG~42d1k!

~k2n11!!GS 31k2n2
d

2D G
1

m4e

~2p!2d
pd~V2!d23GS d

2
21D (

n50

`

~21!n
G~32d1n!

GS d

2
1nD S p

V D 2n

BS 22
d

2
1n,22

d

2
1nD , ~2.28!

whereB(x,y) is the Beta function:B(x,y)5@G(x)G(y)#/G(x1y). In what follows we evaluate the self-energy on-shellpW
50, p052 iV). For e→0, we obtain the following result for the above expression:

d2l2

6
Re@G0~2 iV,0!#5

d2l2V2

4~4p!4 F 1

e2
1

322gE

e
2

2

e
lnS V2

4pm2D G1
d2l2p2

4~4p!4

1

6e

1
d2l2V2

2~4p!4 F ln2S V2

4pm2D 1S 2gE2
17

6 D lnS V2

4pm2D 1gE
22

17gE

6
13.5140G , ~2.29!

where we purposefully left the momentum dependence in the relevant divergent term to make explicit the need for
function renormalization counterterm.

The finite temperature contributionsG1 andG2 are given, as in Ref.@8#, by

2d2
l2

6
Re@G1~2 iV,0!#5F01F11F2 , ~2.30!

where

F052d2
l2T2

~4p!2

1

e
hS V

T D , ~2.31!

F152d2
l2T2

2~4p!2
hS V

T D F2 lnS V2

4pm2D 122gEG ~2.32!

and

F252d2
l2

8~2p!4E0

`

dk
k

Ek~ebEk21!
E

0

`dq

Eq
FqlnUX1

X2
U24kG , ~2.33!

X65@V22~Ek1Eq1Ek6q!2#@V22~2Ek1Eq1Ek6q!2#. ~2.34!

For G2, one has@8#

2
d2l2

6
Re@G2~2 iV,0!#5H~V!52

d2l2V2

4~2p!4E1

` dx

ebVx21
E

1

` dy

ebVy21
lnUAx2211Ay221

Ax2212Ay221
U . ~2.35!

In the high temperature limit, one can show@8# that

F21H~V!.d2
l2T2

24~4p!2 F lnS V2

T2 D 15.0669G . ~2.36!

Finally, using the high temperature approximation forh(y) and putting all together one gets
105005-5
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Re@S5
d2

~p!#.d2
l2V2

~32p2!2

1

e2
1d2

l2V2

~32p2!2

1

e
1d2

l2p2

~32p2!2

1

6e
2d2

l2

16p2e

3H T2

24
2

TV

8p
1

V2

32p2 F lnS 4pT2

m2 D 2gEG J 1d2
l2V2

2~4p!4 F ln2S V2

4pm2D
1S 2gE2

17

6 D lnS V2

4pm2D 1gE
22

17gE

6
13.5140G2d2

l2

32p2 F2 lnS V2

4pm2D 122gEG
3H T2

24
2

TV

8p
2

V2

16p2 F lnS V

4pTD1gE2
1

2G J 1d2
l2T2

24~4p!2 F lnS V2

T2 D 15.0669G . ~2.37!
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III. ON THE RENORMALIZATION AT ORDER d2

AND AT ORDER dn

To obtain the total finite orderd2 contribution one can
add all divergences appearing in Eqs.~2.22!–~2.25! and
~2.37!. As it can be easily seem all the nonrenormaliza
temperature dependent divergences cancel exactly and o
left with

Sdiv
d2

5Sdiv
d2

~V2!1Sdiv
d2

~p2!1Sdiv
d2

~h2!, ~3.1!

where

Sdiv
d2

~V2!5d2
l2V2

~32p2!2 S 2
2

e2
1

1

e D , ~3.2!

Sdiv
d2

~p2!5d2
l2

~32p2!2

p2

6e
, ~3.3!

and

Sdiv
d2

~h2!5d2
lh2

~32p2!

1

e
. ~3.4!

By looking at all diagrams which contribute to this order o
can identify two classes. The first is composed by diagra
such as the ones described by Eqs.~2.23!–~2.26!. All of
them are analogous to the diagrams which appear atO(l2)
in the original theory and can be rendered finite by sim
mass and wave-function counterterms, which are resp
tively

Sct
d2

~V2!5Bd2
V252d2

l2

~32p2!2 S 2
2

e2
1

1

e D V2,

~3.5!

and

Sct
d2

~p2!5Ad2
p252d2

l2

~32p2!2

p2

6e
. ~3.6!
10500
e
e is
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The second kind of diagram is exclusive of the interpola
theory and carries at least onedh2 vertex. At O(d2) this
diagram is described by Eq.~2.22! which displays the diver-

gent termSdiv
d2

(h2). Looking atL ct
d one identifies ah2 coun-

terterm whose Feynman rule isidBdh2. Since the actual pole
is of orderd2 one then identifies the coefficient as beingBd1

,
displayed in Eq.~2.18!. Then

Sct
d2

~h2!52dBd1
h252d2

l

32p2e
h2. ~3.7!

In practice, the renormalization at higher orders can be d
as above. That is,O(dn) diagrams belonging to the first clas
will be renormalized exactly as in the original theory
O(ln). This is obvious from the fact that all the diagrams
this class are of order-dnln. It is easy to check that for thos
diagrams the most divergent terms will displaye2n poles.
On the other hand,O(dn) diagrams belonging to the secon
class will make use of the countertermdBdn21

h2, where
Bd12n

has been evaluated in a previous order. One can
easily check that for these diagrams the most divergent te
will have en21 poles. Moreover, power counting reveals th
thosedh2 insertions make the loops more convergent. F
example,all one loop diagrams of orderO(dn), with n>3
are finite.

Finally, one should note that the renormalization prescr
tion adopted here is in accordance with the one suggeste
Ref. @11#, where the order by order renormalization w
shown to hold at any higher orders ind.

IV. NUMERICAL RESULTS

One can now setd51 and apply the PMS to the finite
thermal mass. First let us setm50 so that our results for the
thermal mass can be compared directly with the resumm
perturbative expansion~RPE! results of Ref.@8#. At order-d
one gets

h̄52pTF lnS 4pT2

m2 D 2gEG21

, ~4.1!
5-6
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which, clearly, does not depend on the the coupling and c
not generate nonperturbative information. However, nonp
turbative results appear already at second order ind. Table I
shows our results and the results furnished by the RPE
MT

2 in units ofm for l50.1. We also show, in units ofm, the
optimal values ofh.

Let us now obtain the critical temperature for the pha
transition atO(d2). Taking l50.1, we resetm252m2 in
MT

2 observing a second order phase transition at the crit
temperatureTc515.57 m whereas the modified perturbatio
scheme ~MPS! of Banerjee and Mallik@7# predicts Tc
515.63 m. Choosing l50.01 we find Tc549.03 m
whereas the valueTc549.05 m is predicted by the MPS
Note that in the calculation of the critical temperature p
formed in Ref. @7# the propagator has been effective
dressed up to the leading order correction in the tempera
which is set by the tadpole term in Eq.~2.12! @see their Eq.
~4.5!#. Here, on the other hand, we are definitely worki
with all higher order corrections up to the two-loop cont
bution. The fact that our results for the critical temperatu
are slightly different than those obtained in Ref.@7# is an
indication of the importance of these higher order correcti
and is in accordance with well known results concerning
study of phase transitions in the context of the electrow
effective potential beyond 1-loop@13#. The results are also in
accordance with recent results for the finite temperature
fective potential of thelf4 theory, obtained with the super
daisy approximation@35#.

TABLE I. Results forMT
2/m2 (31022).

T/m h̄/m O(d2) RPE

0.5 0.033 0.098 0.099
1.0 0.065 0.393 0.396
1.5 0.098 0.884 0.892
2.0 0.130 1.572 1.587
2.5 0.163 2.457 2.481
3.0 0.195 3.538 3.574
3.5 0.228 4.815 4.867
4.0 0.260 6.289 6.358
4.5 0.293 7.960 8.049
5.0 0.325 9.827 9.939
5.5 0.358 11.890 12.029
6.0 0.390 14.151 14.317
6.5 0.423 16.607 16.805
7.0 0.455 19.260 19.493
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V. CONCLUSIONS

Using thelf4 model we have shown how the optimize
d expansion can be useful in extracting nonperturbative
formation through an essentially perturbative evaluation
Feynman graphs. OurO(d2) results for the thermal mass an
for the phase transition critical temperature are in excell
agreement with the ones given by other methods@7,8#. How-
ever, although providing very similar results, these meth
differ, from the d expansion, in some aspects which m
become important if one tries to consider higher orders.
example, within the latter methods the effective mass use
the modified propagator changes order by order turning
propagator into a coupling dependent quantity from the st
One can then expect the selection and evaluation of hig
contributions to become complicated quickly. Th
d-expansion method avoids these potential problems by
ing V in the modified propagator which is used at any ord
calculation. Therefore, after drawing the relevant grap
which contribute to a given order, one does not have
worry about bookkeeping inconsistencies nor renormali
tion problems since this is done as in perturbation theo
The extension to higher order ind is immediate and, as dis
cussed above, leads to a consistent resummation procedu
finite temperature field theory.

Although we have not attempted to prove the possibi
of convergence of our results we have explicitly shown t
the procedure interpolation, renormalization, and optimi
tion in the finite temperature domain can be consisten
handled to furnish encouraging results.

We also note that the lineard expansion can be extende
to the case of gauge theories, where it has already been
as a tool to study the electroweak phase transition on
lattice@24#. Recently, it has been shown@36# that the method
does not spoil gauge invariance. In this context, the linead
expansion may be a useful technique to analytically study
nonperturbative aspects and difficulties associated, for
ample, with the electroweak phase transition as well as o
problems in high temperature gauge theories.
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