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Instanton vibrations of the 3-Skyrmion
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The Atiyah-Drinfeld-Hitchin-Manin matrix corresponding to a tetrahedrally symmetric 3-instanton is calcu-
lated. Some small variations of the matrix correspond to vibrations of the instanton-generated 3-Skyrmion.
These vibrations are decomposed under tetrahedral symmetry and this decomposition is compared to previous
knowledge of the 3-Skyrmion vibration spectruf$0556-282(199)05420-X]

PACS numbegps): 12.39.Dc, 11.2%:d

[. INTRODUCTION Skyrme field[9,11]. In this paper the vibrations around the
instanton generated 3-Skyrmion are studied. The decomposi-

In the Skyrme model, the classid&nucleon nucleus is a tion of these vibrations as representations of the tetrahedral
B-Skyrmion: a minimum energy Skyrme field with topologi- group includes the same representations as are found in the
cal chargeB. TheB-Skyrmions have been calculated numeri- decomposition of the numerically determined spectrum. This
cally for B up to nine[1,2]. seems to indicate that the numerically determined vibrations

The Skyrme model is nonrenormalizable and so cannot bare close to being tangent to the space of instanton generated
quantized as a field theory. However, it is hoped that theSkyrme fields. It is consistient with the view that, whatever
quantum mechanics on some finite-dimensional space in thgpace should be used to quantize Bi&kyrmion, it is ap-
chargeB sector might give a good model of the quantizedproximated by a subspace of the space of instanton generated
B-nucleon. This approach has been reasonably successful Fkyrme fields.
the 1-Skyrmion casg8] but for higherB it is hard to choose The 3-Skyrmion has tetrahedral symmdty. In [11], the
a suitable, tractable, finite-dimensional space. Jackiw-Nohl-Rebbi(JNR) ansatz[12] is used to derive a

The 1-Skyrmion is spherically symmetric and has six zerdetrahedral 3-instanton. From this, the instanton-generated
modes: three translational and three rotational. This sugges8Skyrmion is calculated. Ifl3], Walet examines vibration
that the finite-dimensional space should &-@émensional modes of the instanton-generated 3-Skyrmion by varying the
and one popular candidate is the gradient-flow manifold deJNR parameters. Although a large class of instantons can be
scending from the chargB spherical saddle-poirjd]. Re-  constructed using the JNR ansatz, it is not general. However,
cently, the vibration spectra @-Skyrmions have been cal- the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction
culated numerically foB equals two, three, four and seven [14—16 is general and, in this paper, the tetrahedral
[5,6]. It was found that the vibration frequencies of the 3-instanton ADHM matrix is calculated. The instanton-
B-Skyrmion are divided into two groups by the breathergenerated 3-Skyrmion vibration modes are then examined by
mode which corresponds to dilation. This suggests that ivarying the ADHM parameters. The vibration frequencies
might be necessary to add the breather mode to thare not calculated. However, the vibrations are decomposed
6B-dimensional space to give Bs+ 1)-dimensions, or even under the action of the tetrahedral symmetry. This allows the
to include seven dimensions for each Skyrmion to give edecomposition to be compared to other calculations of
7B-dimensional space. Another suggestion is tHat-& vi-  3-Skyrmion vibrations.
brational modes should be expectéd.

The modes below the breather have been interpreted as
being monopole-like and may correspond to the gradient-
flow manifold descending from the saddle-points of infinite  Symmetric ADHM matrices have been discussed in a re-
Skyrmion separation and from the chaigéorus[8]. It may  cent paper by Singer and Sutcliffé7] and this should be
be that this is the space upon which the quantization shouldonsulted for any details not included in this section.
be performed. It is a (B+ 2)-dimensional space. The ADHM matrix for aB-instanton is a quaternionic

All these spaces are thought to be well approximated bynatrix
instanton generated Skyrme fielf@,10]. In the instanton

Il. THE ADHM MATRIX FOR THE 3-SKYRMION

construction, Skyrme fields are derived from instanton fields L
by calculating their holonomy in the, direction[9]. There M :( ) (1)
is a (8—1)-dimensional family of baryon numbeB M

Skyrme fields derived from the space Bfinstantons. It is

known for B equals one, two, three and four that the

A ; : hereL is aB-vector andM is a symmetrid3 x B matrix. M
B-Skyrmion is well approximated by an |nstanton-generate<¥:/1ust satisfy the ADHM constraint

*Email address: C.J.Houghton@damtp.cam.ac.uk MM is real. (2)
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Dagger denotes quaternionic conjugation and matrix transpgyy U's form a realB-
sition.

Pure quaternions can be identified with Sby —io
=(i,j,k) where o=(0,,0,,03) are the Pauli matrices.
With this identification, the instanton gauge fields are

dimensional representation and a com-
plex two-dimensional representation of the corresponding bi-
nary subgroup of SkJ

A. The tetrahedrally symmetric ADHM matrix

AL(x)=NT(x)3,N(x) 3 Since the 3-Skyrmion is tetrahedrally symmetric, the cor-
. . ) responding ADHM matrix is also tetrahedrally symmetric.
whereN(x) is the unit length B+ 1)-vector solving The tetrahedral grou is the twelve element subgroup of
L SO; which, in one orientation, is generated by a rotation of
NT(X)( ):0 (4) 7 about thexs-axis and a rotation of 2/3 aboutx;=Xx,
M —x1g =X3. These generators will be callec@ndt respectively and
) ) ) . . . the corresponding unit quaternions agér)=k and g(t)
In this equation/lg is the BX B identity matrix and theR* =(1-i—j—k)/2.
position is written as a quaternior:=x,+xi +Xaj + XK. The group is isomorphic to the alternating gralip The
There is an ambiguity in choosird(x) given by tetrahedral double group is the 24 element subgroup of SU

which double covers the tetrahedral group. The representa-
tion theory of the tetrahedral group is described in, for ex-
ample, Hamermeshl8]. There are one, two and three di-
mensional representations derived by restricting the one, two
and three dimensional irreducible representations of ®U
e tetrahedral group. They ak=1|;, E'=2|; and F
=3|; wheren denotes the irreducible-dimensional repre-
sentation of SY. There is, in addition, the two-dimensional

p ! (6) representatiot and the four-dimensional representat®h.
These representations are reducible into conjugate pairs of

. . . . representations with complex characters.
whereg is a unit quaternion ang is a real orthogonaB The ADHM matrix

X B matrix. This is a gauge transformation of the ADHM

matrix: it does not affect the fields. [
This convenient version of the ADHM data is the canoni- L 0

cal form discussed if15,16. The ADHM construction, as MT:( T>:

originally introduced, involved a larger gauge ambiguity and K

a second ADHM matrix: a matrix coefficient &fin (4). The i i 0

canonical form is a partial fixing of the larger gauge ambi-

guity. is tetrahedrally symmetric. This matrix was found by trial
Under the conjugate action of unit quaternionsxrthe  and error. Having written down a likely form of the matrix it

real part ofx is fixed and the imaginary part transforms underis easy to check whether or not it has the required symme-

the three-dimensional representation of;SThis means that tries. Explicitly, the matrices giving the compensating gauge

for a spatial rotatiorR there is a quaterniog so that transformations are

N(x)— N(x)g(x) 5

where g(x) is a unit quaternion. The unit quaternions are
identified with the two-dimensional representation of,SU
and so this ambiguity corresponds to gauge transformatio

of the fields. There is also an ambiguity ki given by

9

Xl _1 O O

X, + (i jKR| X2 | =gxg L. (7) p(rn)= 0 -1 0 (10
X3 0 0 1

Of course,—g corresponds to the sanfie SU, is a double  with g(r)=g(r) for r and
cover of SQ.
As explained in17], an instanton has the spatial rotation 010
symmetryx—gxg~ ! for unit quaterniong if p(t)=10 0 1 (11
1 00

a8 Al o

M—gxg 1/ |0 p-g/\M—x1g g-p ® with g(t)=g(t) for t. Thus, in this case thg’s form the
- _ _ _ representatiof and theg’s form the representatiof’.

whereg is a unit quaternion ang-g is the product of the M+ is not just symmetric undef. It is also symmetric

real orthogonal matriy and the unit quaterniog. Thus, the  ynder the 24 element groufy which extendsT by the S,
ADHM matrix is symmetric if the spatial rotation is equiva- glementu:

lent to a gauge transformation. If the instanton is symmetric
under some subgroup of $@hen the collection op’s and U:(Xq,X2,X3,X4) — (—X5,X1, = X3,~ X4g). (12
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In fact, translating JNR data into ADHM data, is given in Section 5
of [15]. Unfortunately, these ADHM data are not in the ca-

1+k nonical form involving a single ADHM matrix. It seems that

WP it is difficult to write the general INR-derived ADHM data in

(13) canonical form. However, in the particular case of interest
here, a straight forward calculation shows tm?itr is the

PV R e P
M—-u(x)1lg) pl 2 |M—x1,

where canonical form of ADHM data derived from tetrahedral INR
data.
0O 1 0
p=l -1 0 0], (14 IIl. VARIATIONS
0 0 1

Small variations around¥l are now considered. Writing

The representation theory fdy, is also described in Hamer-
mesh[18]. The vector representatidhof T is replaced by a
true vectorF, and an axial vectoF;. In the same way, the
trivial representatiord is replaced by a true scald; and a

M=Ms+m (19

m satisfies the linearized ADHM constraint

pseu.do.—scalal'xz. Although reduub!e as a representat'lor) of Im(m M+ I\A/I}rAn)zo. (20)
T, Eis irreducible as a representationf. There are simi-
lar changes to the double group representations. If
B. Uniqueness and the tetrahedrally symmetric ADHM matrix Iy P I3

M+ is not unique, there is a two-parameter family of tet- e My My Mgg (21)
rahedral matrices given by(M;+y1,). y can be set to zero. M My My
It corresponds to translation of the instanton in xjedirec- M3 My Mag

tion and this does not change the corresponding Skyrme
field. x is a scale parameter and, when calculating thehe linearized equations are
instanton-generated Skyrmion, the scale is fixed by minimi- .
zation of the Skyrme energy. There can be no more than two Im(14j +Hllk+ Hlsi —il,—kmp,—jm,3) =0, (22
parameters because, as explaineflifi, it follows from (8)
that Im(1 K+ M) + My — il 3— KMpg— jMaz) =0,
M1:3|r—(3X2X2)[; (15 -
|m( I 2k+ m22i + m12j _JI 3 km13_ im33) = 0,
that is

where bar denotes quaternionic conjugation. These equations

M:r:F—=3F+E+A (16)  can be solved to give expressions for nine of the twéjve

) ) ) parameters. The remaining three components correspond to
and so there is a three-parameter family of candiddte  the gauge transformation

matrices. This is exhausted by

: - g 0).

d gk rj Mt— 0 1 M. (23

rk d ail. (17 ’

qj ri d This gauge freedom can be fi_xed by requiring, for example,

thatl, is proportional tai. In this way,| may be completely
Similarly, determined bym and by gauge fixing.
In order to decompose the 2#; components as represen-

Lr:(3%2)|[t—2[r=FE". (18)  tations ofT4, the actions of, t andu on M are considered.

. . Thus, for example,
and, since 8x2)|y=E’'+ G/, there is a one-parameter fam-

ily of Ly. The symmetry oM and the ADHM constraint p(r)g(r)mg(r) tp(r)t

(2) reduce these four parameters to the two parametansl

y above. There is another two-parameter family of symmetric —kmpk  —kmpk - kmygk

matrices corresponding to the dual tetrahedron. This is given =| —kmk —kmyk kmpsk (24)

by replacingM in M1 by —M+.

It is possible to translate between JNR data and ADHM
matrices. This is useful here because it gives an explicit verignd so the character ofis zero. The characters ofandu
fication that the 3-Skyrmion generating instantoribf| lies  can be calculated in the same way: they are also zero. This
in the one-parameter familxMy. The general formula, means that the decomposition of ting is

kmy 3k Kmpk  —kmggk
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A+ A,+2E+3F;+3F,. (25) modes in this way. These are the other three modes which do
not change the positions of branch lines. The remainiBg 4
Not all of these multiplets correspond to Skyrmion vibra- —4 modes change the positions of the branch lines. These

tions. There remains the gauge freedom 4B—4 modes include the three translational and three rota-
. tional zero modes along withB 10 vibrational modes.
Mt—pMqp " (26)  Thus, there areB—7 monopole modes which are not rota-

L o , tional zero modes and which change the positions of the
By considering an infinitesimal and calculating the charac- pranch lines. It is possible to reformulate the observation
ter, it is found that this variation is df,. The remaining 21 154e in[7]: the decomposition of theseB4-7 modes du-
variations correspond to the 21 dimensions of the space Qfjicates the decomposition of the super-breather modes.
3-instantons. However, the variation corresponding to time " Tps, an exception is made for the rotational zero modes,
translation,A;, does not affect the 3-Skyrmion and is dis- {he translational zero modes are duplicated but the rotational
carded. Twenty variational modes remain: six of these coryqrg modes are not. In fact. in th=3 case. the instanton

respond to zero modes. In fact, the translation and rotatio,qqes contain &, duplicating the rotational zero modes.
zero modes of the Skyrmion correspond tofgnand anF;  This F, has not been observed numerically. The reason for
respectively. Thus, the instanton modes of the 3-Skyrmiony,g may be that th&, mode has a rather high frequency.
decompose as For B=3, the monopole modes which fix the branch line
positions are arfF, of isospin and anF, vibration. The
monopole modes which change the branch line positions are
the rotational and translational zero modestF, and the
ultiplet of vibration mode<. Thus, theE in the super-
eather part of the 3-Skyrmion spectrum duplicatesHlie

e monopole part. ThE, duplicates the translational zero
modes. If a duplicate is also included for the rotational zero
modes, then the aggregate of the breather, the monopole
modes and their duplicates match the instanton mode decom-

TheA, is the breather mode corresponding to dilation. InPOsition (27). .
the numerical results of Baskerville, Barnes, and TU®k Because Walet uses JNR ansatz instantons, not all of the
it appears in the middle of the vibration spectrum. In order ofinstanton modes are included in the harmonic analysis of
increasing frequency and ignoring radiation, Baskerville[13]- To be precise, there is only ol whereas the ADHM

A +2E+2F,+3F, (27)

underTy and, of these, on&,; and oneF, are zero modes
and the rest are vibrational modes. The isospin zero mod
are not included in this decomposition because they do n r
correspond to variations of the ADHM matrix. t

IV. DISCUSSION

Barnes, and Turok find the spectrum to be construction gives two. In the case of the rational map de-
composition, it is known that th& is spanned by tangent
F,+E+A;+F,+E. (28)  vectors lying along thes, symmetric geodesics. These are
referred to in[19] as twisted line scattering geodesics.
TheE+F, below the breather are the modes describd@jn There is a three-dimensional family of ADHM matrices,
as monopole modes. They correspond to variations of theymmetric under thé,4 generated by and = rotations
rational map parameters in the rational map ansaf8pf about the Cartesian axes. Vibrations tangent to this family lie

The E+F, above the breather are discussed[T by in the A;+2E of the decompositior(27). The symmetric
Baskerville and Michaels. It has been observed that, to ADHM matrices are

good approximation, there areB2-2 straight lines of zero ai aj bk

baryon density, known as branch lines, radiating from the )

center of aB-Skyrmion. In[7], the variations of the angular M. = e ck dj (29
positions of the branch lines are parametrized. These are then D™ | ck —e di

decomposed. It is noted that if an axial vector is removed dj di o

from this decomposition, the decomposition then matches

the super-breather modes in the 2-Skyrmion and S-Skyrmiowith’ from the ADHM constraint,

spectra. In the 4-Skyrmion case the decomposition is consis-

tent with the observed spectrum. Baskerville and Michaels ab+de—dc=0 (30)
interpret the axial vector which must be removed as the axial .

vector of rotational zero modes. d*—a“+2ec=0.

Some of the monopole modes also change the branch line ~
positions. Therefore[7] implies that the super-breather Fora=b=c=d=x ande=0 this isM; and fora=c=d
mode decomposition duplicates part of the decomposition ofe=0 it is axially symmetric about thes-axis. Translating
the monopole modes. There are, in totaB#42 monopole D,y JNR data to ADHM data and rewriting it in canonical
modes of aB-Skyrmion. Six of them do not change the form gives the two-parameter subfamily with=d, c=b
branch lines: of these, three are the isospin zero modes. Band e=0. However, as noted by Walet, this subfamily of
cause the parameters in the rational map are complex, tH2,q symmetric ADHM matrices shares the curious feature of
monopole modes come in pairs of opposite parity. There arthe T, matrices in[17], it does not include well-separated
three monopole modes which compose pairs with isospiinstantons of equal scale. More complicated subfamilies, in-
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cluding well-separated instantons of equal scale, may be cho- In conclusion, the instanton modes of the 3-Skyrmion
sen by using arguments similar to thosg 17]. One simple  have been calculated and decomposed. The decomposition

example, withb= 1 fixing the scale, is fits well with other similar decompositions. The primary
) question provoked by the calculations is whether it is pos-
_c(co—1) 31 sible to split the modes further without undertaking the har-
e= 2(c 1 1) G monic analysis.

Of course, this is just one path which passes though the
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