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Instanton vibrations of the 3-Skyrmion
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The Atiyah-Drinfeld-Hitchin-Manin matrix corresponding to a tetrahedrally symmetric 3-instanton is calcu-
lated. Some small variations of the matrix correspond to vibrations of the instanton-generated 3-Skyrmion.
These vibrations are decomposed under tetrahedral symmetry and this decomposition is compared to previous
knowledge of the 3-Skyrmion vibration spectrum.@S0556-2821~99!05420-X#

PACS number~s!: 12.39.Dc, 11.27.1d
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I. INTRODUCTION

In the Skyrme model, the classicalB-nucleon nucleus is a
B-Skyrmion: a minimum energy Skyrme field with topolog
cal chargeB. TheB-Skyrmions have been calculated nume
cally for B up to nine@1,2#.

The Skyrme model is nonrenormalizable and so canno
quantized as a field theory. However, it is hoped that
quantum mechanics on some finite-dimensional space in
chargeB sector might give a good model of the quantiz
B-nucleon. This approach has been reasonably success
the 1-Skyrmion case@3# but for higherB it is hard to choose
a suitable, tractable, finite-dimensional space.

The 1-Skyrmion is spherically symmetric and has six z
modes: three translational and three rotational. This sugg
that the finite-dimensional space should be 6B-dimensional
and one popular candidate is the gradient-flow manifold
scending from the chargeB spherical saddle-point@4#. Re-
cently, the vibration spectra ofB-Skyrmions have been ca
culated numerically forB equals two, three, four and seve
@5,6#. It was found that the vibration frequencies of th
B-Skyrmion are divided into two groups by the breath
mode which corresponds to dilation. This suggests tha
might be necessary to add the breather mode to
6B-dimensional space to give (6B11)-dimensions, or even
to include seven dimensions for each Skyrmion to give
7B-dimensional space. Another suggestion is that 8B23 vi-
brational modes should be expected@7#.

The modes below the breather have been interprete
being monopole-like and may correspond to the gradie
flow manifold descending from the saddle-points of infin
Skyrmion separation and from the chargeB torus@8#. It may
be that this is the space upon which the quantization sho
be performed. It is a (4B12)-dimensional space.

All these spaces are thought to be well approximated
instanton generated Skyrme fields@9,10#. In the instanton
construction, Skyrme fields are derived from instanton fie
by calculating their holonomy in thex4 direction @9#. There
is a (8B21)-dimensional family of baryon numberB
Skyrme fields derived from the space ofB-instantons. It is
known for B equals one, two, three and four that t
B-Skyrmion is well approximated by an instanton-genera
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Skyrme field@9,11#. In this paper the vibrations around th
instanton generated 3-Skyrmion are studied. The decomp
tion of these vibrations as representations of the tetrahe
group includes the same representations as are found in
decomposition of the numerically determined spectrum. T
seems to indicate that the numerically determined vibrati
are close to being tangent to the space of instanton gene
Skyrme fields. It is consistient with the view that, whatev
space should be used to quantize theB-Skyrmion, it is ap-
proximated by a subspace of the space of instanton gene
Skyrme fields.

The 3-Skyrmion has tetrahedral symmetry@1#. In @11#, the
Jackiw-Nohl-Rebbi~JNR! ansatz@12# is used to derive a
tetrahedral 3-instanton. From this, the instanton-genera
3-Skyrmion is calculated. In@13#, Walet examines vibration
modes of the instanton-generated 3-Skyrmion by varying
JNR parameters. Although a large class of instantons ca
constructed using the JNR ansatz, it is not general. Howe
the Atiyah-Drinfeld-Hitchin-Manin ~ADHM ! construction
@14–16# is general and, in this paper, the tetrahed
3-instanton ADHM matrix is calculated. The instanto
generated 3-Skyrmion vibration modes are then examined
varying the ADHM parameters. The vibration frequenci
are not calculated. However, the vibrations are decompo
under the action of the tetrahedral symmetry. This allows
decomposition to be compared to other calculations
3-Skyrmion vibrations.

II. THE ADHM MATRIX FOR THE 3-SKYRMION

Symmetric ADHM matrices have been discussed in a
cent paper by Singer and Sutcliffe@17# and this should be
consulted for any details not included in this section.

The ADHM matrix for a B-instanton is a quaternionic
matrix

M̂5S L

M D ~1!

whereL is aB-vector andM is a symmetricB3B matrix. M̂
must satisfy the ADHM constraint

M̂†M̂ is real. ~2!
©1999 The American Physical Society03-1
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Dagger denotes quaternionic conjugation and matrix trans
sition.

Pure quaternions can be identified with SU2 by 2 i s
5( i , j ,k) where s5(s1 ,s2 ,s3) are the Pauli matrices
With this identification, the instanton gauge fields are

Am~x!5N†~x!]mN~x! ~3!

whereN(x) is the unit length (B11)-vector solving

N†~x!S L

M2x1B
D 50. ~4!

In this equation,1B is the B3B identity matrix and theR4

position is written as a quaternion:x5x41x1i 1x2 j 1x3k.
There is an ambiguity in choosingN(x) given by

N~x!→N~x!g~x! ~5!

where g(x) is a unit quaternion. The unit quaternions a
identified with the two-dimensional representation of S2
and so this ambiguity corresponds to gauge transformat
of the fields. There is also an ambiguity inM̂ given by

M̂→S g 0

0 r
D M̂r21 ~6!

where g is a unit quaternion andr is a real orthogonalB
3B matrix. This is a gauge transformation of the ADH
matrix: it does not affect the fields.

This convenient version of the ADHM data is the cano
cal form discussed in@15,16#. The ADHM construction, as
originally introduced, involved a larger gauge ambiguity a
a second ADHM matrix: a matrix coefficient ofx in ~4!. The
canonical form is a partial fixing of the larger gauge am
guity.

Under the conjugate action of unit quaternions onx, the
real part ofx is fixed and the imaginary part transforms und
the three-dimensional representation of SO3. This means that
for a spatial rotationR there is a quaterniong so that

x41~ i j k !RS x1

x2

x3

D 5gxg21. ~7!

Of course,2g corresponds to the sameR: SU2 is a double
cover of SO3.

As explained in@17#, an instanton has the spatial rotatio
symmetryx→gxg21 for unit quaterniong if

S L

M2gxg211B
D 5S g̃ 0

0 r•g
D S L

M2x1B
D g21

•r21 ~8!

where g̃ is a unit quaternion andr•g is the product of the
real orthogonal matrixr and the unit quaterniong. Thus, the
ADHM matrix is symmetric if the spatial rotation is equiva
lent to a gauge transformation. If the instanton is symme
under some subgroup of SO3 then the collection ofr ’s and
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of g̃’s form a realB-dimensional representation and a com
plex two-dimensional representation of the corresponding
nary subgroup of SU2.

A. The tetrahedrally symmetric ADHM matrix

Since the 3-Skyrmion is tetrahedrally symmetric, the c
responding ADHM matrix is also tetrahedrally symmetr
The tetrahedral groupT is the twelve element subgroup o
SO3 which, in one orientation, is generated by a rotation
p about thex3-axis and a rotation of 2p/3 aboutx15x2
5x3. These generators will be calledr andt respectively and
the corresponding unit quaternions areg(r )5k and g(t)
5(12 i 2 j 2k)/2.

The group is isomorphic to the alternating groupA4. The
tetrahedral double group is the 24 element subgroup of S2
which double covers the tetrahedral group. The represe
tion theory of the tetrahedral group is described in, for e
ample, Hamermesh@18#. There are one, two and three d
mensional representations derived by restricting the one,
and three dimensional irreducible representations of SU2 to
the tetrahedral group. They areA51uT , E852uT and F
53uT wheren denotes the irreduciblen-dimensional repre-
sentation of SU2. There is, in addition, the two-dimensiona
representationE and the four-dimensional representationG8.
These representations are reducible into conjugate pair
representations with complex characters.

The ADHM matrix

M̂T5S LT

MT
D 5S i j k

0 k j

k 0 i

j i 0

D ~9!

is tetrahedrally symmetric. This matrix was found by tri
and error. Having written down a likely form of the matrix
is easy to check whether or not it has the required sym
tries. Explicitly, the matrices giving the compensating gau
transformations are

r~r !5S 21 0 0

0 21 0

0 0 1
D ~10!

with g̃(r )5g(r ) for r and

r~ t !5S 0 1 0

0 0 1

1 0 0
D ~11!

with g̃(t)5g(t) for t. Thus, in this case ther ’s form the
representationF and theg̃’s form the representationE8.

M̂T is not just symmetric underT. It is also symmetric
under the 24 element groupTd which extendsT by the S4
elementu:

u:~x1 ,x2 ,x3 ,x4!→~2x2 ,x1 ,2x3 ,2x4!. ~12!
3-2
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In fact,

S L

M2u~x!1B
D 52S 21

r
D 12k

A2
S L

M2x13
D 11k

A2
r21

~13!

where

r5S 0 1 0

21 0 0

0 0 1
D . ~14!

The representation theory forTd is also described in Hamer
mesh@18#. The vector representationF of T is replaced by a
true vectorF2 and an axial vectorF1. In the same way, the
trivial representationA is replaced by a true scalarA1 and a
pseudo-scalarA2. Although reducible as a representation
T, E is irreducible as a representation ofTd . There are simi-
lar changes to the double group representations.

B. Uniqueness and the tetrahedrally symmetric ADHM matrix

M̂T is not unique, there is a two-parameter family of te
rahedral matrices given byx(M̂T1y14). y can be set to zero
It corresponds to translation of the instanton in thex4 direc-
tion and this does not change the corresponding Sky
field. x is a scale parameter and, when calculating
instanton-generated Skyrmion, the scale is fixed by mini
zation of the Skyrme energy. There can be no more than
parameters because, as explained in@17#, it follows from ~8!
that

MT :3 uT→~33232!uT ~15!

that is

MT :F→3F1E1A ~16!

and so there is a three-parameter family of candidateMT
matrices. This is exhausted by

S d qk r j

rk d qi

q j ri d
D . ~17!

Similarly,

LT :~332!uT→2uT5E8. ~18!

and, since (332)uT5E81G8, there is a one-parameter fam
ily of LT . The symmetry ofMT and the ADHM constraint
~2! reduce these four parameters to the two parametersx and
y above. There is another two-parameter family of symme
matrices corresponding to the dual tetrahedron. This is gi
by replacingMT in M̂T by 2MT .

It is possible to translate between JNR data and ADH
matrices. This is useful here because it gives an explicit v
fication that the 3-Skyrmion generating instanton of@11# lies
in the one-parameter familyxM̂T . The general formula
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translating JNR data into ADHM data, is given in Section
of @15#. Unfortunately, these ADHM data are not in the c
nonical form involving a single ADHM matrix. It seems tha
it is difficult to write the general JNR-derived ADHM data i
canonical form. However, in the particular case of inter
here, a straight forward calculation shows thatM̂T is the
canonical form of ADHM data derived from tetrahedral JN
data.

III. VARIATIONS

Small variations aroundM̂T are now considered. Writing

M̂5M̂T1m̂ ~19!

m̂ satisfies the linearized ADHM constraint

Im~m̂†M̂T1M̂T
†m̂!50. ~20!

If

m̂5S l 1 l 2 l 3

m11 m12 m13

m12 m22 m23

m13 m23 m33

D ~21!

the linearized equations are

Im~ l̄ 1 j 1m̄11k1m̄13i 2 i l 22km222 jm23!50, ~22!

Im~ l̄ 1k1m̄11j 1m̄12i 2 i l 32km232 jm33!50,

Im~ l̄ 2k1m̄22i 1m̄12j 2 j l 32km132 im33!50,

where bar denotes quaternionic conjugation. These equa
can be solved to give expressions for nine of the twelvel i
parameters. The remaining three components correspon
the gauge transformation

M̂T→S g 0

0 13
D M̂T . ~23!

This gauge freedom can be fixed by requiring, for examp
that l 1 is proportional toi. In this way,l may be completely
determined bym and by gauge fixing.

In order to decompose the 24mi j components as represen
tations ofTd , the actions ofr, t andu on M̂T are considered.
Thus, for example,

r~r !g~r !mg~r !21r~r !21

5S 2km11k 2km12k km13k

2km12k 2km22k km23k

km13k km23k 2km33k
D ~24!

and so the character ofr is zero. The characters oft and u
can be calculated in the same way: they are also zero.
means that the decomposition of themi j is
3-3
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A11A212E13F113F2 . ~25!

Not all of these multiplets correspond to Skyrmion vibr
tions. There remains the gauge freedom

MT→rMTr21. ~26!

By considering an infinitesimalr and calculating the charac
ter, it is found that this variation is anF1. The remaining 21
variations correspond to the 21 dimensions of the spac
3-instantons. However, the variation corresponding to ti
translation,A2, does not affect the 3-Skyrmion and is di
carded. Twenty variational modes remain: six of these c
respond to zero modes. In fact, the translation and rota
zero modes of the Skyrmion correspond to anF2 and anF1
respectively. Thus, the instanton modes of the 3-Skyrm
decompose as

A112E12F113F2 ~27!

underTd and, of these, oneF1 and oneF2 are zero modes
and the rest are vibrational modes. The isospin zero mo
are not included in this decomposition because they do
correspond to variations of the ADHM matrix.

IV. DISCUSSION

TheA1 is the breather mode corresponding to dilation.
the numerical results of Baskerville, Barnes, and Turok@5#,
it appears in the middle of the vibration spectrum. In order
increasing frequency and ignoring radiation, Baskervi
Barnes, and Turok find the spectrum to be

F21E1A11F21E. ~28!

TheE1F2 below the breather are the modes described in@8#
as monopole modes. They correspond to variations of
rational map parameters in the rational map ansatz of@8#.

The E1F2 above the breather are discussed in@7# by
Baskerville and Michaels. It has been observed that, t
good approximation, there are 2B22 straight lines of zero
baryon density, known as branch lines, radiating from
center of aB-Skyrmion. In@7#, the variations of the angula
positions of the branch lines are parametrized. These are
decomposed. It is noted that if an axial vector is remov
from this decomposition, the decomposition then matc
the super-breather modes in the 2-Skyrmion and 3-Skyrm
spectra. In the 4-Skyrmion case the decomposition is con
tent with the observed spectrum. Baskerville and Micha
interpret the axial vector which must be removed as the a
vector of rotational zero modes.

Some of the monopole modes also change the branch
positions. Therefore,@7# implies that the super-breathe
mode decomposition duplicates part of the decomposition
the monopole modes. There are, in total, 4B12 monopole
modes of aB-Skyrmion. Six of them do not change th
branch lines: of these, three are the isospin zero modes.
cause the parameters in the rational map are complex
monopole modes come in pairs of opposite parity. There
three monopole modes which compose pairs with isos
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modes in this way. These are the other three modes whic
not change the positions of branch lines. The remainingB
24 modes change the positions of the branch lines. Th
4B24 modes include the three translational and three ro
tional zero modes along with 4B210 vibrational modes.
Thus, there are 4B27 monopole modes which are not rot
tional zero modes and which change the positions of
branch lines. It is possible to reformulate the observat
made in@7#: the decomposition of these 4B27 modes du-
plicates the decomposition of the super-breather modes.

Thus, an exception is made for the rotational zero mod
the translational zero modes are duplicated but the rotatio
zero modes are not. In fact, in theB53 case, the instanton
modes contain aF1 duplicating the rotational zero mode
This F1 has not been observed numerically. The reason
this may be that theF1 mode has a rather high frequency.

For B53, the monopole modes which fix the branch lin
positions are anF1 of isospin and anF2 vibration. The
monopole modes which change the branch line positions
the rotational and translational zero modesF11F2 and the
multiplet of vibration modesE. Thus, theE in the super-
breather part of the 3-Skyrmion spectrum duplicates theE in
the monopole part. TheF2 duplicates the translational zer
modes. If a duplicate is also included for the rotational ze
modes, then the aggregate of the breather, the mono
modes and their duplicates match the instanton mode dec
position ~27!.

Because Walet uses JNR ansatz instantons, not all of
instanton modes are included in the harmonic analysis
@13#. To be precise, there is only oneE, whereas the ADHM
construction gives two. In the case of the rational map
composition, it is known that theE is spanned by tangen
vectors lying along theS4 symmetric geodesics. These a
referred to in@19# as twisted line scattering geodesics.

There is a three-dimensional family of ADHM matrice
symmetric under theD2d generated byu and p rotations
about the Cartesian axes. Vibrations tangent to this family
in the A112E of the decomposition~27!. The symmetric
ADHM matrices are

M̂D2d
5S ai a j bk

e ck d j

ck 2e di

d j di 0

D ~29!

with, from the ADHM constraint,

ab1de2dc50 ~30!

d22a212ec50.

For a5b5c5d5x and e50 this is M̂T and for a5c5d
5e50 it is axially symmetric about thex3-axis. Translating
D2d JNR data to ADHM data and rewriting it in canonic
form gives the two-parameter subfamily witha5d, c5b
and e50. However, as noted by Walet, this subfamily
D2d symmetric ADHM matrices shares the curious feature
the Th matrices in@17#, it does not include well-separate
instantons of equal scale. More complicated subfamilies,
3-4
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cluding well-separated instantons of equal scale, may be
sen by using arguments similar to those in@17#. One simple
example, withb51 fixing the scale, is

e5
c~c221!

2~c411!
. ~31!

Of course, this is just one path which passes though
various features associated with twisted line scattering.
infinitesimal behaviur aroundM̂T does not give the splitting
of the 2E into a sub-breatherE and the super-breatherE. It is
not known how to make this split, without calculating th
holonomy and performing the full harmonic analysis as W
let did for JNR ansatz instanton-generated 3-Skyrmions.
at

ys
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In conclusion, the instanton modes of the 3-Skyrmi
have been calculated and decomposed. The decompos
fits well with other similar decompositions. The prima
question provoked by the calculations is whether it is p
sible to split the modes further without undertaking the h
monic analysis.
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