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QED effective action at finite temperature
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The QED effective Lagrangian in the presence of an arbitrary constant electromagnetic background field at
finite temperature is derived in the imaginary-time formalism to one-loop order. The boundary conditions in
imaginary time reduce the set of gauge transformations of the background field, which allows for a further
gauge invariant and puts restrictions on the choice of gauge. The additional invariant enters the effective action
by a topological mechanism and can be identified with a chemical potential; it is furthermore related to Debye
screening. In concordance with the real-time formalism, we do not find a thermal correction to Schwinger’s
pair-production formula. The calculation is performed on a maximally Lorentz covariant and gauge invariant
stage.@S0556-2821~99!07018-6#

PACS number~s!: 12.20.Ds, 11.10.Wx
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I. INTRODUCTION

The construction of an effective action for quantum ele
trodynamics~QED! in the presence of various external co
ditions has been a challenge since the early days of
theory. The study of generalizations of the Heisenberg-E
Lagrangian that include finite-temperature effects has b
initiated by Dittrich @1#, who considered the case of a co
stant external magnetic field at finite temperature using
imaginary time formalism. An extension of this work to th
case of arbitrary constant electromagnetic fields turned ou
be qualitatively more substantial than naively expected. E
ploying the real-time formalism, this situation was inves
gated by Cox, Hellman and Yildiz@2# and Loewe and Rojas
@3#. A more comprehensive study of the problem has b
performed by Elmfors and Skagerstam@4#, who corrected the
preceding findings and additionally introduced a chemi
potential. An attempt employing the imaginary-time forma
ism was made by Ganguly, Kaw and Parikh@5# for the case
of an external electric field. Recently, the finite-temperat
effective action for electromagnetic fields was studied
Shovkovy@6# in the world line approach, where finite tem
perature is also introduced via an imaginary-time formalis

This paper is devoted to the derivation of the effect
action of arbitrary constant electromagnetic fields at fin
temperature in the imaginary-time formalism. Similarly
the above-mentioned papers, our approach is based
Schwinger’s proper-time formalism@7# and refers to the one
loop level. By assigning a 4-velocity vector to the motion
the observer with respect to the heat bath, a manifest c
riant notation is obtained@8# which enables us to formulat
the problem in terms of gauge invariant and covariant qu
tities.

However, gauge transformations of the finite-temperat
generating functional area priori restricted to periodic gaug
functionsLp in order to leave the boundary conditions of t
functional integral over the fluctuating field invariant. Th
requires a more careful choice of gauge for the backgro
field than at zero temperature, since the reduced clas
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gauge transformations allows for more physical informat
to be carried in the explicit form of the gauge potential. T
additional information can be associated with a chemical
tential.

Apart from subtleties with the correct choice of gauge,
largely agree with the findings of the ‘‘real-time’’ investiga
tions @4#. We finally comment on the apparent controversy
the literature concerning the~non-!vanishing of the imagi-
nary part of the thermal effective action that is related to p
production@2–5,9,10#. In concordance with the findings o
the real-time calculations, we do not find a thermal contrib
tion to the pair-production rate to this order of calculation

It is, of course, obligatory to point out that the implica
tions of the present calculation may not be immediately
terpretable, since the presence of an electric field violates
thermal equilibrium assumption of the imaginary-time fo
malism. In particular, a constant electric field transfers
ergy to thermally fluctuating charged particles. On a form
level, it is not clear whether the periodicity in imaginary tim
can be identified with the physical temperature of the h
bath. However, there are field configurations allowing
thermal equilibrium, e.g., a shallow potential well as su
gested in@4#, for which the constant field approximation ca
be applicable.

Moreover, the knowledge of the effective action give
below depending on the complete set of invariants of
electromagnetic field including an additional Lorentz vec
~temperature times heat-bath velocity! might be useful even
in the limit of vanishing electric fields.

II. IMAGINARY-TIME FORMALISM

The one-loop effective action of QED is characterized
the fact that the fluctuating charged fermions which couple
the external field to all orders have been integrated out
this way, finite temperature is introduced via the imagina
time formalism by postulating anti-periodic boundary con
tions for these fluctuating fermions in the direction of imag
nary time with periodb51/T. Regarding the complete
generating functional of QED, the external field is treated
a background field@11#. To maintain invariance of the fer
mionic integral under gauge transformations of the ba
©1999 The American Physical Society02-1
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HOLGER GIES PHYSICAL REVIEW D 60 105002
ground field, it is important to restrict the gauge functio
L(x) to beb-periodic in imaginary time1:

$Lp%: Lp~xm1 ibum!5Lp~xm!, ~1!

whereum denotes the 4-velocity vector of the heat bath. A
though the QED action as well as the integration measur
invariant under arbitrary gauge transformationsL(x) of the
background field, the anti-periodic boundary conditions w
be modified if L(x)¹$Lp%; in particular c(0)52c(b)
→c(0)52eie(L(b)2L(0))c(b). At zero temperature, the fer
mion determinant can only depend on the field strengthFmn

that arises from the background field; the explicit form ofAm
is subject to arbitrary gauge transformations. In contrast,
restricted class of gauge transformationsLp at finite tem-
perature allows for further gauge invariant quantities of
type

Āu~x!5
1

bE0

b

dt Au~xm1 itum!, AuªAmum , ~2!

where x denotes the components ofxm orthogonal toum.
Already at this stage, one might suspect that the phys
meaning ofĀu is related to a chemical potentialm which
would enter the QED action by addingmgmum to the Dirac
operator:P” 5(2 i]”2eA” )→(2 i]”2eA” 1mu” ). In the follow-
ing, we will further establish this relation betweenĀu andm

and especially demonstrate that the appearance ofĀu in the
effective action is of topological origin. Instead of employin
the functional integral formalism, we will closely follow
Schwinger’s proper-time formalism, which provides for
detailed study of gauge invariance.

We therefore begin with the fermionic Green’s function
an external electromagnetic field at zero temperature sat
ing the differential equation

@~gmPm!1m# G~x,x8uA!5d~x2x8!, ~3!

with Pm52 i]m2eAm . Following Schwinger@7#, we can
solve Eq. ~3! formally on an operator level@G(x,x8uA)
5^xuG@A#ux8&#:

G@A#5~m2gP! iE
0

`

dse2 im2s ei(gP)2s. ~4!

Convergence of this proper-time integral and the following
ensured by the implicit prescriptionm2→m22 ie. The
proper-time transition amplitude

K~x,x8;suA!ª^xu eis(gP)2
ux8& ~5!

1In principle, one could additionally allow for an integer multip
of 2p/e on the right-hand side of Eq.~1!. But since such a term
does not contribute to the present situation, we will simply omi
in the following.
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in the integrand of Eq.~4! also enters the proper-time for
mula for the effective~unrenormalized! one-loop Lagrang-
ian:

L 15 lim
x8→x

i

2
trg E

0

`ds

s
e2 ism2

^xu eis(gP)2
ux8&. ~6!

Introducing the scalar propagator

D~x,x8uA!5 iE
0

`

dse2 im2s K~x,x8;suA!, ~7!

which is related to the fermion’s Green’s function v
G@A#5(m2gP) D@A#, we implicitly find an equation for
K(x,x8;suA) which is the Green’s function equation fo
D(x,x8uA):

D@A# D~x,x8uA!ª@m22~gP!2# D~x,x8uA!5d~x2x8!,

~8!

whereD@A# abbreviates the differential operator. Obvious
K(x,x8;suA) as well as the Green’s functionsG(x,x8uA) and
D(x,x8uA) is gauge dependent. For constant electromagn
fields, the solution for the transition amplitudeK(x,x8;suA)
can most conveniently be found in the Schwinger-Fo
gauge that eliminates the gauge potential in favor of the fi
strength:

ASF
m
ª2

1

2
Fmn~x2x8!n . ~9!

The solution reads@12#

K~x,x8;suASF!5E d4p

~2p!4
e2 ip(x2x8)ei(e/2)sFse2Y(is)e2pX(is)p,

~10!

wheresFªsmnFmn, smn5(i/2)@gm ,gn#, and the quantities
Y andX additionally depend on the field strength,

Y~s!5
1

2
tr ln@cos~eFs!#, X~s!5

tan~eFs!

eF
, ~11!

and we used matrix notation, e.g.,Fm
n[(F)m

n. By insertion
of Eq. ~10! into Eqs.~7!, ~3! and ~6!, we obtain the explicit
representation for the scalar propagator, the fermio
Green’s function and the effective Lagrangian, respective
for constant external fields at zero temperature~in the
Schwinger-Fock gauge!.

To introduce finite temperature via the imaginary-tim
formalism, one is tempted to replace thep0 integration in Eq.
~10! by a sum over Matsubara frequencies.2 However, this
would lead to an incorrect or, at least, incomplete res
since the gauge dependence of the Green’s functions ha
be taken into account.

t 2For theories without gauge symmetries, of course, this proced
has been applied successfully in@13#.
2-2
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QED EFFECTIVE ACTION AT FINITE TEMPERATURE PHYSICAL REVIEW D60 105002
As can be shown, the complete gauge dependence ca
treated multiplicatively by aholonomyfactor. In particular,
the transition amplitude in an arbitrary gauge is related to
one in the Schwinger-Fock gauge by

K~x,x8;suA!5F~x,x8uA! K~x,x8;suASF!, ~12!

where the holonomy factor reads

F~x,x8uA!5expF ieE
x8

x

djmS Am~j!1
1

2
Fmn~j2x8!nD G .

~13!

Identical relations hold for the Green’s functions. Note th
the integrand is curl-free and hence the integral in Eq.~13! is
path-independent as long as the configuration space is sim
connected. Concerning the effective Lagrangian~6! at zero
temperature, the holonomy factor plays no role, sin
F(x,x8uA)→1 in the coincidence limitx→x8. Conse-
quently, the effective action is gauge invariant.

The situation changes substantially at finite temperat
since the imaginary time becomes compactified accordin
the anti-periodic boundary conditions, the configurati
space is no longer simply connected. As a consequence
holonomy factor is only invariant under continuous deform
tions of the integration path but can pick up a winding nu
ber by closing the path via the anti-periodic boundary.

The simplest way to establish anti-periodicity in imag
nary time is to apply the method of image sources to
Green’s function equation. Therefore, letx andx8 belong to
the same topological sector; i.e., there is a straight path f
x to x8 which does not cross the imaginary-time boundari
Then we define the reflection points ofx8 along the
imaginary-time axis by~Fig. 1!

xn85x82 ibnu. ~14!

Applying the image-source construction, e.g., to Eq.~8!,
we obtain

FIG. 1. The positions of the different pointsx, x8 and xn8 are
exhibited. The dotted line represents an arbitrary path fromxn8
5x82 ibnu to x. As a first step, this path is continuously deform
in such a way thatx8 becomes an element of the path~dashed line!.
Second, the path fromxn8 to x8 can be deformed to a straight lin
~solid line!, which gives rise to Eq.~19!.
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n52`

`

~21!nd~x,xn8!5 (
n52`

`

~21!n D@A# D~x,xn8uA!

5D@A# DT~x,x8uA!, ~15!

whereum denotes the 4-velocity of the heat bath, the perio
icity scale is set by the inverse temperatureb, the factor
(21)n stems from theanti-periodic boundary conditions
and we have defined the thermal Green’s function

DT~x,x8uA!5 (
n52`

`

~21!n D~x,xn8uA!. ~16!

Transition to Fourier space and separation of
temperature-dependent parts leads us to

DT~x,x8uA!5E d4p

~2p!4
e2 ip(x2x8)D~p! F~x,x8uA!

3 (
n52`

`

~21!n e2 ip(ibnu)F~x8,xn8uA!

3e2 in(e/2)b„iuF(x2x8)…. ~17!

The separation

F~x,xn8uA!5F~x,x8uA! F~x8,xn8uA! e2 in(e/2)b„iuF(x2x8)…

~18!

was achieved by a continuous deformation of the integra
path in such a way that, on the one hand,x8 becomes an
element of the path and, on the other hand, the path
F(x,x8uA) lies entirely in the topological trivial sector.

ConcerningF(x8,xn8uA), we can deform the integration
path to a straight line~SL! along the imaginaryum direction:

F~x8,xn8uA!5expF ieEx82 ibnu
SL

x8
djm Am~j!G . ~19!

As mentioned above, the exponent in Eq.~19! is an in-
variant quantity under periodic gauge transformationsLp but
will depend on the explicit form ofAm in a certain manner.
At this stage, it is important to point out that the backgrou
field potential is not necessarily subject to periodic bound
conditions, since it does not correspond to thermalized p
ticles; it is not an integration variable even in the comple
theory. To specify the form ofAm, more physical input is
required: in the present paper, we assume that the sys
under consideration is homogeneous. Since the effective
grangian for a homogeneous system such as the con
field configuration has to be independent ofx, the coinci-
dence limit x→x8 of the thermal transition amplitude
KT(x,x8;suA) must also be independent ofx; the same re-
quirement holds forDT(x,x8uA). With regard to Eq.~17!,
this is only satisfied ifF(x8,xn8uA) is independent ofx8.
Thereby, we obtain the gauge condition
2-3
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HOLGER GIES PHYSICAL REVIEW D 60 105002
05E
0

1

dt ]x8
m Au@x8m2 ibnum1t~ ibnum!#. ~20!

Condition ~20! is satisfied if

Au[Āu5const, ~21!

which is the generic choice. Any other solution is gau
equivalent to Eq.~21!, Au→Au1]uLp . Equation~20! also
fixes the choice for the spatial componentsA: since Am

should produce a constant electric field via

const5E5¹Au2]uA 5
~21!

2]uA,

the generic choice forA in the heat bath rest frame (]u

5̂]/]t) reads

A52Et1a~x!, ~22!

whereby the functiona(x) is defined byB5:¹3a. Again,
other choices forA are given by its gauge transforms wi
respect toLp . Note that these gauge conditions are differe
from those found in Ref.@4# employing the real-time
formalism.3

Taking these considerations into account, the holono
factor ~19! eventually yields

F~x8,xn8uA!5exp@ ie~ ibn!Āu#. ~23!

With the aid of a Poisson resummation, we obtain, for
sum in Eq.~17!,

(
n52`

`

~21!n e2 ip(ibnu)F~x8,xn8uA! e2 in(e/2)b„iuF(x2x8)…

52p iT (
n52`

`

d„pu2e~Ā2ASF!u1 ipT~2n11!…,

~24!

with pu5umpm , and ASFu52 1
2 umFmn(x2x8)n . Inserting

Eq. ~24! into Eq. ~17! leads us to the final expression fo
DT(x,x8uA). Similarly, the thermal transition amplitud
KT(x,x8;suA) as well as the thermal fermion’s Green’s fun
tion can be derived. Note that these objects cont

3In the real-time formalism, theA0 component of the gauge fiel
enters the propagators as well as the effective action via the the
distribution function that is given as an external condition. Hen
there is no intrinsic criterion for an appropriate choice ofAm, and
one has to rely on other arguments. E.g., in Ref.@4#, it was argued
that a gauge condition of the form (d/dt)Am50 is required for
obtaining a clear separation of fermionic and electromagnetic e
gies. This implies that the constant electric background field is p
duced by a spatially non-constantA0, E52¹A0, and has to be
interpreted as a spatially non-constant chemical potential~cf. later!.
This demonstrates that different gauge choices which are not ga
equivalent with respect to$Lp% correspond to different physica
settings.
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temperature-dependent contributions as well as the z
temperature part. The question of the gauge dependenc
the thermal fermionic Green’s function in a purely magne
background has also been addressed in@14#.

We observe that the Matsubara prescription finally rea

E dpu

2p
f ~pu

2!

→ iT (
n52`

`

f H 2FpTS 2n111
i

p

e~Ā2ASF!u

T
D G2J .

~25!

The explicit appearance ofASFu hints at the fact that this
modified Matsubara prescription will be applied to an obje
which has been calculated in the Schwinger-Fock gau
Equation ~25! finally states that it is a gauge field-shifte
momentum in theum direction,„p2e(A2ASF)…u , which is
replaced by Matsubara frequencies instead of the canon
momentum. This implies a dependence of the Green’s fu
tions and the transition amplitude on the gauge field invari
Āu even in the coincidence limitx8→x ~note thatASF→0 for
x8→x). As a consequence, the effective Lagrangian will
invariant under periodic gauge transformationsLp but not
under arbitrary gauge transformationsL. Of course, this was
expected from our initial considerations. The physical role
Āu will be elucidated at the end of Sec. IV.

III. COVARIANT FORMULATION

The imaginary-time formalism has often been criticiz
because it exhibits the explicit non-covariant feature of le
ing to discrete energies but continuous momenta for
quantized fields. In the present work, we want to demonst
that it is nevertheless possible to establish covariance at
stage of this calculation, since the above-mentioned disp
portion between energy and momentum only appears in
ternal propagators, all of which are integrated out. Manif
covariance is achieved by constructing a reference frame
completely relies on the covariant and gauge invariant bu
ing blocks of the problem.

These building blocks in the present problem of const
electromagnetic~EM! fields at finite temperature are the fie
strength tensors,Fmn and !Fmn5 1

2 emnabFab ; furthermore,
we encounter the heat-bath vectornm @15# that is on the one
hand characterized by the value of its invariant sca
product,4 nmnm52T2, whereT denotes the heat-bath tem
perature, and on the other hand related to the heat-
4-velocity via the invariant parameterT: nm5T um. There
are 10 independent components inFmn, !Fmn, andnm. The
number of generators of the Lorentz group is 6; hence
can transform 6 components to zero, since there is no l
group that leavesFmn, !Fmn, andnm invariant.5 Therefore,

al
,

r-
-

e-

4We employ the metricg5diag(21,1,1,1).
5For pure EM fields, the dimension of the little group would be

since boosts along and rotation around the field direction in a
tem whereE andB fields are parallel leave the fields invariant.
2-4
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QED EFFECTIVE ACTION AT FINITE TEMPERATURE PHYSICAL REVIEW D60 105002
we are left with four Lorentz and gauge invariant scalars~or
pseudo-scalars!. For reasons of convenience, we choose
following set:

aª~AF 21G 21F!1/2,

bª~AF 21G 22F!1/2,

cª
1

T2
~naFam!~nbFb

m![~uaFam!~ubFb
m!,

T5A2nmnm. ~26!

Thesecularinvariantsa, b are related to the solutions to th
secular equation ofFmn; e.g., the standard invariants can
expressed in terms ofa andb according to

F5
1

4
FmnFmn5

1

2
~B22E2![

1

2
~a22b2!,

uGu5U14 !FmnFmnU5u2E•Bu[ab. ~27!

Without loss of generality, we confine ourselves to the c
of G.0 ~or E•B,0) and drop the absolute value notatio
E.g., in a system whereB is anti-parallel toE, we find a
5uBu andb5uEu. Note thatc is positive-definite sincenm is
a time-like vector; e.g., in the rest frame of the heat bath,
find c5E2. It is obvious that any gauge invariant Loren
scalar appearing in the problem is expressible in terms of
set of invariants~26!. In the following, we are going to in-
troduce a convenient coordinate system in which even
components of any Lorentz vector or tensor of the probl
can be expressed in terms of these invariants. We define
vierbein eAm which mediates between the given system
beled bym,n, . . .50,1,2,3 and the desired system label
by the ~Lorentz! indicesA,B, . . .50, 1, 2, 3 by

e0
m
ªum,

e1
m
ª

uaFam

Ac
,

e2
m
ª

1

Ad
~uaFabFbm2c e0

m!,

e3
m
ªeabgm e0a e1b e2g , ~28!

where the quantityd abbreviates the combination of invar
ants

dª2Fc2G 21c2. ~29!

The vierbein satisfies the identity

eAm eB
m5gAB[diag~21,1,1,1!, ~30!
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wheregAB;gAB denotes the metric which raises and lowe
capital indices. By a direct computation, we can transfo
the field strength tensors and the heat-bath vector:

nA
ªgABeB

m nm5~T,0,0,0!,

FABªeAmFmneBn5S 0 Ac 0 0

2Ac 0 Ad/c 0

0 2Ad/c 0 2G/Ac

0 0 G/Ac 0

D ,

!FABªeAm
!FmneBn5S 0 2G/Ac 0 Ad/c

G/Ac 0 0 0

0 0 0 2Ac

2Ad/c 0 Ac 0

D .

~31!

So indeed, the components of these tensors are compl
expressed in terms of invariants. Hence, any tensor algeb
manipulation involving the objects from Eq.~31! can imme-
diately be performed on the level of gauge and Lorentz
variants.

It is worthwhile to point out at this stage that a duali
transformation of the typeE→B andB→2E does not only
imply an interchange ofa andb ~and a sign flip forG) but
also demands forc→c12F5c1a22b2. Hence, it is not
sufficient in the finite-temperature case to perform a calcu
tion for magnetic fields and then draw an analogy for elec
fields by replacing B→2 iE–in contrast to a zero-
temperature calculation.

IV. EFFECTIVE ACTION

From Eq.~6!, we can read off the definition of the effec
tive Lagrangian at finite temperature:

L 111T5
i

2
trg E

0

`ds

s
e2 ism2

KT~suA!, ~32!

where the superscript implies thatL 111T consists of the
zero-temperature as well as the finite-temperature one-
part:L 111T5L 11L 1T. The thermal transition amplitude in
the integrand is simply obtained by applying the modifi
Matsubara prescription~25! to the zero-temperature trans
tion amplitude, Eqs.~10!–~12!, in the coincidence limit:

KT~s;A!5 iT (
n52`

` E
V

d3p

~2p!3
ei(e/2)sFse2Y(is)

3e2pX(is)pU,
pu5eĀu2 ipT(2n11)

~33!

where V denotes the 3-space volume orthogonal to theum

direction. We now perform the computation of Eqs.~32! and
~33! within the system that we established in the previo
section. With respect to the capital labels, this volume
2-5
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HOLGER GIES PHYSICAL REVIEW D 60 105002
related to the componentsA,B, . . .51, 2, 3, whereas the
components along theum direction correspond to the labe
A,B, . . .50. TheX matrix in the exponent of Eq.~33! can
now be written as

XAB 5
~11!

i F taneas

ea

~b2gAB2FAB
2 !

a21b2

1
tanhebs

eb

~a2gAB1FAB
2 !

a21b2
, ~34!

where FAB
2 5FA

CFCB . Incidentally, the identical equatio
also holds, of course, with the labelsA, B replaced bym,n,
but then the components are not related to gauge and Lor
invariants. The only non-vanishing components of the sy
metric tensorXAB are the diagonal elements as well asX02
and X13. The Gaussian momentum integration in Eq.~33!
therefore results in

E
V

d3p

~2p!3
e2pAXABpB

5
e(X11X332X13

2 )p0
2/X22

~4p!3/2
@~X11X332X13

2 !X22#
21/2,

~35!

where we made use of the fact that2(X00X222X02
2 )

5(X11X332X13
2 ). Substituting the modified Matsubara fre

quenciesp0[pu5eĀu2 ipT(2n11) into the exponent of
Eq. ~35!, the summation overn in Eq. ~33! can be reorga-
nized according to the Poisson formula:

(
n52`

`

e2s(n2z)2
5 (

n52`

` S p

s D 1/2

e(2p2/s)n222p i zn. ~36!

In this case, we set z52 1
2 2 ieĀu/2pT and s

5(4p2T2/X22)(X11X332X13
2 ). At this point, we have to

mention that formula~36! is not valid for Res,0, which
would lead to a divergent behavior of the sum. This will
checked later on.

The Poisson resummation serves the purpose of sep
ing the zero-temperature from the finite-temperature p
since the complete loop-momentum integration/summa
in Eq. ~33! now yield

iT (
n52`

` E
V

d3p

~2p!3
e2pXp

5
i

16p2
~X11X332X13

2 !21F112(
n51

`

~21!n

3expS 2
X22

X11X332X13
2

n2

4T2D cosh
eĀun

T G . ~37!

Keeping only the ‘‘1’’ in the second line leads to the sta
dard proper-time expression for the zero-temperature ef
10500
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tive action, while the sum represents the thermal correct
Employing the standard results for the remaining terms
Eqs.~32! and ~33!,

e2Y( is) 5
~11!

~coseascoshebs!21,

trg e~ ie/2! sFs54coseascoshebs,

and inserting the explicit representations of theXAB into Eq.
~37!, we end up with the desired expression for the one-lo
contribution to the effective Lagrangian for constant elect
magnetic fields at finite temperature:

L 111T5L 11L 1T,

L 15
1

8p2E0

`ds

s3
e2 im2sFeascoteas ebscothebs

2
e2~a22b2!s2

3
21G , ~38!

L 1T5
1

4p2E0

`ds

s3
e2 im2s eascoteas ebscothebs

3 (
n51

`

~21!neih(s)n2/4T2
cosh

eĀun

T
. ~39!

At the zero-temperature partL 1, we subtracted the divergen
terms, which corresponds to a field strength and cha
renormalization. The functionh(s) in the exponent ofL 1T is
obtained from

h~s!ª
iX22

X11X332X13
2

5
b22c

a21b2
eacoteas

1
a21c

a21b2
ebcothebs.

~40!

In the rest frame of the heat bath wherec5E2, we recover
the findings of Ref.@4# for h(s). Note thath(s) is strictly
real, so there are no apparent convergence problems in
ploying the Poisson resummation~36!. However, it is not a
straightforward exercise to obtain numerical estimates
Eq. ~39!, due to the wildly oscillatory behavior of the whol
integrand, especially in the sum. Let us for the moment
mark thath(s) reduces to 1/s in the limit of vanishing elec-
tric fields @the limit is most conveniently taken forE andB
~anti-!parallel#. And assumingĀu50, we recover the find-
ings of Ref.@1# for a purely magnetic field at finite tempera
ture. Furthermore, the general form of Eq.~39! coincides
with the representation found in the world line approach@6#
~in the heat-bath rest frame!, except for the dependence o
the gauge potential; the importance of the holonomy fac
has been overlooked in@6#.

The physical interpretation ofĀu can most easily be illu-
minated in the limiting case of vanishing field invariant
a,b,c50; under these circumstances we are able to ro
2-6
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the contours→2 is and an interchange of integration an
summation is permitted in Eq.~39!:

L 1T~Āu!52
1

4p2E0

`ds

s3
e2m2s(

n51

`

~21!ne2n2/4T2scosh
eĀun

T

52
2

p2
m2T2(

n51

`
~21!n

n2
cosh

eĀun

T
K2S m

T
nD

52
2T

p2 (
n51

`
~21!n

n
cosh

eĀun

T

3E d3k

4p
e[ 2(Ak21m2)/T]n

5T 2E d3k

~2p!3
@ ln~11e2b(E1eĀu)!

1 ln~11e2b(E2eĀu)!], ~41!

where we introduced the particle energy for thee1e2 gas,
EªAk21m2[ukuu, and two different representations of th
modified Bessel functionK2 were taken advantage of@16#.
According to the relation

L 1T~Āu!5T
ln Z~T,Āu!

V
,

we indeed find the general expression for the partition fu
tion Z of an ideale1e2-gas in which theĀu field plays the
role of a chemical potential. If we had started the compu
tion including a chemical potential, we would always ha
encountered the combination2eĀu2m5̂eĀ02m, which is
therefore the only physical quantity. In other words, we c
identify eĀu with a chemical potential during the comple
calculation; hence, the additional information~compared to
the zero temperature case! which is required to define the
correct choice of the background gauge potentialAm is ob-
tained from the value of the chemical potential of the syst
under consideration. If one wants to perform a gauge tra
formation beyond the class of periodicLp , one has to rede
fine the chemical potential to obtain the same physical s
tem.

The case of the effective Lagrangian of a constant m
netic field at non-zero chemical potential has been discus
in @17#. Based on the real-time formalism, a comprehens
study of this situation including finite temperature can
found in @18# where also astrophysical implications are d
cussed. The same physical situation was investigated
ploying the imaginary-time formalism in@19# where high-
and low-temperature expansions were approached in a m
direct way. As is demonstrated in these references, the z
temperature limit of Eq.~39! at a chemical potential obeyin
m.m requires careful study.

A detailed weak-field expansion of the effective Lagran
ian at finite temperature and chemical potential was p
formed in@20#, relying on the ‘‘real-time’’ representation o
the effective action as given in@4#.
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V. DISCUSSION

Going beyond the constant field approximation, the eff
tive Lagrangian in Eqs.~38! and ~39! can be viewed as the
zeroth order of a gradient expansion of the one-loop effec
action which governs the dynamics of the background ga
field Am(x). An immediate physical consequence of the fa
that theĀu field appears explicitly in the Lagrangian is th
well-known Debye screening of electric fields. A weak-fie
expansion will take the form L 1T52 1

2 ]mĀu]mĀu

1(meff
2 /2)(Āu)21O(Āu

4), where the effective photon mas
~inverse Debye screening length! is given by

meff
2 ~T!5

]2L 1T

]Āu
2

uĀu50 . ~42!

Considering the zero-field limit for simplicity, we find

]2L 1T

]Āu
2 U

Āu50

52
2e2

p2
m2(

n51

`

~21!n K2S m

T
nD , ~43!

whereK2 denotes a modified Bessel function. In the hig
temperature limit,T@m, the sum can be expanded, e.g., e
ploying the techniques described in the Appendix B of@21#,
leading to @(n51

` (21)n K2(m/T n).p2T2/6m2 1O(1)#.
We finally arrive at

meff
2 ~T!5

~eT!2

3
, ~44!

which is the well-known result found in the literature. Th
leading corrections to the Debye mass in the high-den
and high-temperature limit can be looked up in the errat
of Ref. @4#.

At last we turn to the question of whether Schwinge
famous formula for the pair-production probability rende
finite-temperature corrections at one-loop order. While
thermal contributions have been found to the imaginary p
of L 1T in @2# or @4# within the real-time formalism or in@10#
employing the functional Schro¨dinger representation, a
imaginary part seems to appear in the imaginary-time f
malism@5#. Besides, the latter result had also been compu
in the real-time formalism in@3#.

Although our findings for the effective thermal Lagran
ian, Eq. ~39!, in the heat-bath rest frame formally coincid
with those found in@3# ~up to numerical pre-factors and a
interchange of proper-time integration and summation!, we
do not agree with their computation of the imaginary pa
which follows the line of the zero-temperature calculatio
Various obstacles are encountered when proceeding in
way for the finite-temperature case: since the functionh(s)
in the exponential of Eq.~39! reduces to

h~s!5eEcotheEs ~45!

for a purely electric field,E5uEu, ~i! a rotation of the con-
tour, s→2 is, becomes useless due to the coth term in
exponent of Eq.~39!; ~ii ! each term in the sum of Eq.~39!
2-7
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exhibits an essential singularity at the poles of the coth te
on the imaginary axis; the use of the rule cotz→P cotz
1ip(z0

d(z2z0) is therefore senseless~cf. @3#!; ~iii ! proper-
time integration and summation must not be interchanged
they are, the imaginary parts of the successive terms in
sum diverge exponentially, as can be shown by evalua
the residues of the singularities on the imaginarys axis. In-
cidentally, we do not agree with the imaginary part co
puted in@5#, simply because the expressions for the effect
Lagrangians do not coincide.

However, we can give an indirect argument for the va
ishing of the imaginary part following Ref.@4#: because of
the formal resemblance between our result Eq.~39! and the
findings of Loewe and Rojas@3# for the effective Lagrangian
~not for its imaginary part!, we can follow their steps back
wards and end up with the starting point of the real-tim
formalism,

]G1T

]m
52 iTr H f F~ku ,Āu!S 1

P” 2m1 ie
2

1

P” 2m2 ie
D J ,

~46!

where f F(ku ,Āu) denotes a~real! thermal distribution func-
tion for the fermions andG5*d4x L 1T. Obviously, since the
right-hand side is purely real, there is no imaginary part
the thermal contribution to the effective one-loop action a
hence no thermal correction to the Schwinger pa
production formula to this order of calculation.

VI. CONCLUSION

In the present work, we studied the derivation of the
fective QED action to one-loop order in presence of arbitr
constant electromagnetic fields at finite temperature in
imaginary-time formalism. Although the final expression f
the effective action is well known and has been studied
tensively, especially in the real-time formalism@4#, the prob-
lem as treated in the imaginary-time formalism reveals so
delicate features.

Gauge invariance of the classical action turns out to
restricted to periodic gauge transformationsLp on the quan-
tum level in order to leave the boundary conditions of t
functional integral unaltered. This implies the existence
further gauge invariant quantities beside the field stren
which are constructed from the background fieldAm. Addi-
tional information about the system under consideration
to be employed to fix the form of the gauge potentialAm. In
the present case, the demand for homogeneity~constant
fields and constant chemical potential! gives rise to the ad-
ditional gauge invariant quantityĀu .
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The way in whichĀu enters the effective action can b
viewed as a topological effect that arises from the comp
tification of the finite-temperature configuration space
imaginary time; the configuration space, namely, loses
property of being simply connected and allows for infinite
many topologically inequivalent paths to connect two diffe
ent points in space-time. Each path can be classified by
winding number around the space-time cylinder. The h
lonomy factor that carries the gauge dependence of
Green’s function is sensitive to these inequivalent pat
since it represents a mapping of the paths in configura
space into the gauge group. A Poisson resummation of
sum over the winding number leads to a sum over Matsub
frequencies shifted by theĀu field. The quantityeĀu indeed
acts like a chemical potential in the partition function a
therefore can be identified withm.

The gauge non-invariance of the effective action un
non-periodic gauge transformations furthermore manifest
self in giving a mass to the~integrated! time-like gauge field
componentĀu , which is, of course, nothing but the scree
ing mass of the Debye mechanism.

As a second focus of this work, we introduced a cert
coordinate frame related to the given Lorenz vectors a
tensors of the problem that allowed for a manifest covari
computation in the sense of relativistic thermodynami
This procedure helped us to present the result in terms
complete set of Lorenz and gauge invariants.

As an immediate application of the final formula for th
effective Lagrangian, we discussed a possible thermal c
tribution to the Schwinger pair-production formula. In agre
ment with the results of the real-time formalism, we do n
find an imaginary part in the thermal contribution to the e
fective Lagrangian to this order of calculation. On a heuris
level, it appears plausible that a thermal contribution to p
production can arise from higher loop graphs. E.g., the tw
loop process contains the mass operator~in the presence of
an external field!, which can be associated with collectiv
excitations at finite temperature. These can be approxima
taken into account by replacing the fermion mass by an
fective T or m dependent mass@22#. However, since these
effective masses generally exceed the fermion mass, s
thermal contributions are expected to be of subdominant
portance.
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