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The QED effective Lagrangian in the presence of an arbitrary constant electromagnetic background field at
finite temperature is derived in the imaginary-time formalism to one-loop order. The boundary conditions in
imaginary time reduce the set of gauge transformations of the background field, which allows for a further
gauge invariant and puts restrictions on the choice of gauge. The additional invariant enters the effective action
by a topological mechanism and can be identified with a chemical potential; it is furthermore related to Debye
screening. In concordance with the real-time formalism, we do not find a thermal correction to Schwinger’s
pair-production formula. The calculation is performed on a maximally Lorentz covariant and gauge invariant
stage [S0556-282(99)07018-4

PACS numbd(s): 12.20.Ds, 11.10.Wx

[. INTRODUCTION gauge transformations allows for more physical information
to be carried in the explicit form of the gauge potential. The
The construction of an effective action for quantum elec-additional information can be associated with a chemical po-
trodynamics(QED) in the presence of various external con- tential.
ditions has been a challenge since the early days of the Apart from subtleties with the correct choice of gauge, we
theory. The study of generalizations of the Heisenberg-Eulelargely agree with the findings of the “real-time” investiga-
Lagrangian that include finite-temperature effects has beetions[4]. We finally comment on the apparent controversy in
initiated by Dittrich[1], who considered the case of a con- the literature concerning théon-jvanishing of the imagi-
stant external magnetic field at finite temperature using th@ary part of the thermal effective action that is related to pair
imaginary time formalism. An extension of this work to the production[2-5,9,1Q. In concordance with the findings of
case of arbitrary constant electromagnetic fields turned out tthe real-time calculations, we do not find a thermal contribu-
be qualitatively more substantial than naively expected. Emtion to the pair-production rate to this order of calculation.
ploying the real-time formalism, this situation was investi- It is, of course, obligatory to point out that the implica-
gated by Cox, Hellman and Yildi2] and Loewe and Rojas tions of the present calculation may not be immediately in-
[3]. A more comprehensive study of the problem has beeferpretable, since the presence of an electric field violates the
performed by Elmfors and Skagerst, who corrected the thermal equilibrium assumption of the imaginary-time for-
preceding findings and additionally introduced a chemicamalism. In particular, a constant electric field transfers en-
potential. An attempt employing the imaginary-time formal- ergy to thermally fluctuating charged particles. On a formal
ism was made by Ganguly, Kaw and Par{i&]j for the case level, itis not clear whether the periodicity in imaginary time
of an external electric field. Recently, the finite-temperaturecan be identified with the physical temperature of the heat
effective action for electromagnetic fields was studied bybath. However, there are field configurations allowing for
Shovkovy[6] in the world line approach, where finite tem- thermal equilibrium, e.g., a shallow potential well as sug-
perature is also introduced via an imaginary-time formalismgested i4], for which the constant field approximation can
This paper is devoted to the derivation of the effectivebe applicable.
action of arbitrary constant electromagnetic fields at finite Moreover, the knowledge of the effective action given
temperature in the imaginary-time formalism. Similarly to below depending on the complete set of invariants of an
the above-mentioned papers, our approach is based anectromagnetic field including an additional Lorentz vector
Schwinger’s proper-time formalisfit] and refers to the one- (temperature times heat-bath velogitgight be useful even
loop level. By assigning a 4-velocity vector to the motion of in the limit of vanishing electric fields.
the observer with respect to the heat bath, a manifest cova-
riant notation is obtainef8] which enables us to formulate
the problem in terms of gauge invariant and covariant quan-
tities. The one-loop effective action of QED is characterized by
However, gauge transformations of the finite-temperaturehe fact that the fluctuating charged fermions which couple to
generating functional are priori restricted to periodic gauge the external field to all orders have been integrated out. In
functionsA, in order to leave the boundary conditions of the this way, finite temperature is introduced via the imaginary-
functional integral over the fluctuating field invariant. This time formalism by postulating anti-periodic boundary condi-
requires a more careful choice of gauge for the backgroundons for these fluctuating fermions in the direction of imagi-
field than at zero temperature, since the reduced class ofary time with period 3=1/T. Regarding the complete
generating functional of QED, the external field is treated as
a background field11]. To maintain invariance of the fer-
*Email address: holger.gies@uni-tuebingen.de mionic integral under gauge transformations of the back-
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ground field, it is important to restrict the gauge functionsin the integrand of Eq(4) also enters the proper-time for-
A(X) to be B-periodic in imaginary timk mula for the effective(unrenormalizepl one-loop Lagrang-
ian:
{Aph Agx*+iBu)=Ag(x"), (1) |
im i[9S ity @S2 [y
_ L= I|m—tryf — e SM(x| &SIDT | x7Y, (6)
whereu” denotes the 4-velocity vector of the heat bath. Al- N oS
though the QED action as well as the integration measure is
invariant under arbitrary gauge transformationgx) of the  Introducing the scalar propagator
background field, the anti-periodic boundary conditions will
be modified if A(x) €{A}; in particular ¢(0)=— ¢(B) / :-fw —im%s ’.
—np(O):—e‘e(A(ﬁ)‘A(O))l//?ﬁ). At zero temperature, the fer- AbWXA=i 0 dseEKX"slA), @)
mion determinant can only depend on the field strerigth o _ _ _
that arises from the background field; the explicit formtgf ~ Which is related to the fermion’s Green's function via
is subject to arbitrary gauge transformations. In contrast, th&[A]=(m—~II) A[A], we implicitly find an equation for
restricted class of gauge transformatiohs at finite tem-  K(x,x';s|A) which is the Green’s function equation for
perature allows for further gauge invariant quantities of thed (x,x'[A):

pe D[A] A(x,X'|A) :=[m?— (yI1)2] A(x,X'|A) = 8(x—X'),
®

whereD[ A] abbreviates the differential operator. Obviously,
K(x,x";s|A) as well as the Green’s functio®(x,x’|A) and
where x denotes the components &f orthogonal tou”.  A(X.X’|A) is gauge dependent. For constant electromagnetic
Already at this stage, one might suspect that the physicdields, the solution for the transition amplitu#igx,x";s|A)

: -~ . . . . can most conveniently be found in the Schwinger-Fock
meaning OfA, is related to a chemical potential which auge that eliminates the gauge potential in favor of the field
would enter the QED action by addingy*u,, to the Dirac gaug gauge p

operatorVI=(—id—eA)—(—id—eA+ ui). In the follow- strength:
ing, we will further establish this relation betweép and u

and especially demonstrate that the appearandg, af the
effective action is of topological origin. Instead of employing
the functional integral formalism, we will closely follow The solution readfl12]
Schwinger's proper-time formalism, which provides for a
detailed study of gauge invariance. d*p
We therefore begin with the fermionic Green’s function in K(X.X';s|Asp) = f 2
e . (27)
an external electromagnetic field at zero temperature satisfy-
ing the differential equation

K(x):ifﬁdm (X +iTu™) As=Atu,, (2)
u ,8 o u ’ u m

1
A== SFR(x=X'),. (©)

e ip(x— x’)ei(e/Z)IrFse— Y(is) e pX(is)p

(10

whereoF:=0o, F*", 0,,=(i12)[y,,7,], and the quantities

[(y#I1,)+m] G(x,x'[A)= §(x—x), 3 YandX addit/iLonaIIy depend on the field strength,
with I1,=—id,—eA, . Following Schwingef7], we can 1 _ tan(eFs)
solve Eg.(3) formally on an operator levelG(x,x’|A) Y(S)_Z trinfcodeFs)], - X(s)= eF '’ (D

=(X|G[A]x")]: _ . . _
and we used matrix notation, e.§.,"=(F),". By insertion
% L, of Eq. (10) into Egs.(7), (3) and(6), we obtain the explicit
G[A]=(m—II) if dse My, (4  representation for the scalar propagator, the fermion’s
0 Green'’s function and the effective Lagrangian, respectively,

. o ~_for constant external fields at zero temperatiie the
Convergence of this proper-time integral and the following isschwinger-Fock gauge

ensured by the implicit prescriptiom’—m?—ie. The To introduce finite temperature via the imaginary-time
proper-time transition amplitude formalism, one is tempted to replace thgintegration in Eq.
(10) by a sum over Matsubara frequencfeslowever, this

K(x,X';8|A):=(x| &5 |x") (50  would lead to an incorrect or, at least, incomplete result,

since the gauge dependence of the Green’s functions has to
be taken into account.

YIn principle, one could additionally allow for an integer multiple
of 27r/e on the right-hand side of Eq1). But since such a term
does not contribute to the present situation, we will simply omit it 2For theories without gauge symmetries, of course, this procedure
in the following. has been applied successfully[it3].
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o [

o S (1"%0x)= 3 (~1)"DIAJAxXIA)

n=— =—

e =D[A]AT(x,X'|A), (15)

e whereu* denotes the 4-velocity of the heat bath, the period-
) icity scale is set by the inverse temperat@ethe factor

Xe (—1)" stems from theanti-periodic boundary conditions,
; and we have defined the thermal Green’s function
; B AT(xx'[A)= 2 (=D A(X.X}|A). (16)
- <

imaginary time

FIG. 1. The positions of the different poinis x' and x/, are Transition to Fourier space and separation of the
exhibited. The dotted line represents an arbitrary path fsgm temperature-dependent parts leads us to
=x"—iBnu to x. As a first step, this path is continuously deformed

in such a way thax’ becomes an element of the pattashed ling T d4p o
Second, the path from, to x' can be deformed to a straight line A (X,X'|A):f PRy e PeXDA(p) D(x,x'|A)
(solid line), which gives rise to Eq(19). (2m)

As can be shown, the complete gauge dependence can be X >, (—1)"e PG (x" x!|A)
treated multiplicatively by @&olonomyfactor. In particular, n=—c
the transition amplitude in an arbitrary gauge is related to the . , ,

; ; —in(e/2) B(iuF(x—

one in the Schwinger-Fock gauge by X g NERABAFHED), 17

K(x,x";8|A)=D(x,x'|A) K(x,x";s|Asp), (12 The separation

where the holonomy factor reads : ' ,
d D (X, X A) = B(x,X'|A) B(X' x| A) & MBI

X 1 (18)
d(x,x'|A)=ex iej dgM(A“(g)Jr—F’”(g—x’),,) .
x’ 2 . . . . .
was achieved by a continuous deformation of the integration
(13)  path in such a way that, on the one hamd,becomes an

Identical relations hold for the Green’s functions. Note thatelement of the path and, on the other hand, the path of
the integrand is curl-free and hence the integral in@g is P (x,x'[A) lies entirely in the topological trivial sector.
path-independent as long as the configuration space is simply Concerning®(x’,x;|A), we can deform the integration
connected. Concerning the effective Lagrangi@nat zero  path to a straight lin¢SL) along the imaginary* direction:
temperature, the holonomy factor plays no role, since
®(x,x'|A)—1 in the coincidence limitx—x’'. Conse- . S
quently, the effective action is gauge invariant. P(x ’X”|A):exr{lefx’—iﬁnu
The situation changes substantially at finite temperature: st

since the imaginary time becomes compactified according to . . . .
ginary b g As mentioned above, the exponent in Ef9) is an in-

the anti-periodic boundary conditions, the configuration ; it d odi ¢ p tiAnbut
space is no longer simply connected. As a consequence, gy&rant quantity under periodic gauge transiorma ARsu

holonomy factor is only invariant under continuous deforma-Will dépend on the explicit form oA* in a certain manner.

tions of the integration path but can pick up a winding num-'A_‘t this stag_e, i_t Is important tq point_out that th_e k_Jackground
ber by closing the path via the anti-periodic boundary. field pptentla_l IS not necessarily subject to periodic b_oundary
The simplest way to establish anti-periodicity in imagi- conditions, since it does not correspond to thermalized par-

nary time is to apply the method of image sources to thé'ﬁles: |t_||_s not an m:}eg:catlon \:Table ever? n thle_ complete
Green’s function equation. Therefore, Jendx’ belong to ~ tN€OrY- To specify the form oA*, more physical input is

the same topological sector; i.e., there is a straight path frof£aUired: in the present paper, we assume that the system

x to x' which does not cross the imaginary-time boundariestnder consideration is homogeneous. Since the effective La-

Then we define the reflection points of along the grangian for a homogeneous system such as the constant
. - ; ; ; field configuration has to be independentgfthe coinci-
imaginary-time axis byFig. 1) I~ , S .
dence limit x—x' of the thermal transition amplitude
X' =x'—ignu. (14) KT(x,x’;s|A) must also be independent &f the same re-
quirement holds forAT(x,x’|A). With regard to Eq.(17),
Applying the image-source construction, e.g., to B),  this is only satisfied if®(x’,x}|A) is independent ok’.
we obtain Thereby, we obtain the gauge condition

d§, A%(H|. (19
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1 B L _ temperature-dependent contributions as well as the zero-
0= fo drd, Afx #“=ipnu“+r(ipnu)]. (200  temperature part. The question of the gauge dependence of
the thermal fermionic Green’s function in a purely magnetic
Condition (20) is satisfied if background has also been addressefd.#. S
We observe that the Matsubara prescription finally reads

A,=A,=const, (21

which is the generic choice. Any other solution is gauge 27 (Py
equivalent to Eq(21), A,—A,+d,A,. Equation(20) also .
fixes the choice for the spatial componets since A* i

—IT 2 fi—

should produce a constant electric field via il

i e(K—Asau) ﬂ

+1+ —
2n17_r T

(21) (25)
CONSEE=VA,—duA = —duh, The explicit appearance kg, hints at the fact that this
the generic choice foA in the heat bath rest framed( mo.dified Matsubara prescript!on will be applied to an object
;&/at) reads which has been calculated in the Schwinger-Fock gauge.
Equation (25) finally states that it is a gauge field-shifted
A=—Et+a(x), (220  momentum in thei* direction, (0—e(A—Asg)),, Which is
replaced by Matsubara frequencies instead of the canonical
whereby the functiora(x) is defined byB=:V xa. Again, = momentum. This implies a dependence of the Green'’s func-
other choices foA are given by its gauge transforms with tions and the transition amplitude on the gauge field invariant
respect to\ ;. Note that these gauge conditions are differentKu even in the coincidence limit’ — x (note thatAge— 0 for
from those found in Ref[4] employing the real-time x’—x). As a consequence, the effective Lagrangian will be

formali_sm.3 _ _ _ invariant under periodic gauge transformatioks but not
Taking these considerations into account, the holonomyinder arbitrary gauge transformatiohs Of course, this was
factor (19) eventually yields expected from our initial considerations. The physical role of

<I>(X’,xr’]IA)zexp[ie(i,Bn)Ku]. 29) A, will be elucidated at the end of Sec. IV.

With the aid of a Poisson resummation, we obtain, for the . COVARIANT FORMULATION

sum in Eq.(17), The imaginary-time formalism has often been criticized
" because it exhibits the explicit non-covariant feature of lead-
S (—1)"e PG (x’ x!|A) e INEDBIUF(X") ing to discrete energies but continuous momenta for the
ne o quantized fields. In the present work, we want to demonstrate

that it is nevertheless possible to establish covariance at any
stage of this calculation, since the above-mentioned dispro-
portion between energy and momentum only appears in in-
ternal propagators, all of which are integrated out. Manifest
(24 covariance is achieved by constructing a reference frame that
completely relies on the covariant and gauge invariant build-
ing blocks of the problem.
These building blocks in the present problem of constant

=2mT 2, S(py—e(A—Agp,+imT(2n+1)),
n=—ow

with p,=u*p,, and Agr,= —3u,F*"(x—x'),. Inserting
Eq. (24) into Eq. (17) leads us to the final expression for

T / . " .
ﬁTE);’i, |§|)A) ilsmvuglrll)gs :E: t:]t;?r:]n;?lfe:ggﬂlogr:é?fs“%gﬁ_ electromagneti€EM) fields at finite temperature are the field
v strength tensors:#” and *F””z%ef‘”“ﬁFaﬁ; furthermore,

tion can be derived. Note that these objects contalr\1Ne encounter the heat-bath vectdt [15] that is on the one

hand characterized by the value of its invariant scalar
product; n“n,=—T?, whereT denotes the heat-bath tem-
%In the real-time formalism, th&® component of the gauge field perature, and on the other hand related to the heat-bath
enters the propagators as well as the effective action via the thermalyelocity via the invariant parametd. n“=T u*. There
distribution function that is given as an external condition. Hencegre 10 independent componentsFti”, *F~”, andn*. The

there is no intrinsic criterion for an appropriate choicefdf, and  umber of generators of the Lorentz group is 6; hence we

one has to rely on other arguments. E.g., in e}, it was argued ¢4 transform 6 components to zero, since there is no little
that a gauge condition of the fornd{dt)A#=0 is required for roup that leave§#?, *F~*, andn* invariant® Therefore
obtaining a clear separation of fermionic and electromagnetic energ ’ ' '

gies. This implies that the constant electric background field is pro-

duced by a spatially non-constaAP, E=—VA?, and has to be

interpreted as a spatially non-constant chemical poteftialater). “We employ the metrig=diag(—1,1,1,1).

This demonstrates that different gauge choices which are not gauge~°For pure EM fields, the dimension of the little group would be 2,
equivalent with respect tA} correspond to different physical since boosts along and rotation around the field direction in a sys-
settings. tem whereE andB fields are parallel leave the fields invariant.
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we are left with four Lorentz and gauge invariant scalars  wheregag~ g denotes the metric which raises and lowers
pseudo-scalaysFor reasons of convenience, we choose thecapital indices. By a direct computation, we can transform

following set: the field strength tensors and the heat-bath vector:
a=(VF2+ G2+ P12, n*:=g"Peg#n,=(T,0,0,0,
be=( [F2+G2— )2, 0 Je 0 0
. o —Jc 0 Jdlc 0
1 AB=€,F" €, = B _ .
Ci= (N F™) (NGFB,) = (U, F ) (ugFP,), 0 —Jdle 0 -Gle
T 0 0 glfc O
T=V-n*n,. (26) 0 —glc 0 \dic
The secularinvariantsa, b are related to the solutions to the fEL o i—e, *EMYen — g/‘/E 0 0 0
secular equation of*”; e.g., the standard invariants can be AB T EAu By 0 0 0o - \/E
expressed in terms @ andb according to _ Jdic 0 Jo o
(3D

1 1 1
— T Euv —_(R2_F2)=_(82_p2 .
F= 4FM Fu z(B E) z(a b, So indeed, the components of these tensors are completely
expressed in terms of invariants. Hence, any tensor algebraic

1 manipulation involving the objects from E(B1) can imme-
|G| = Z*F’”FMV =|—-E-B|=ab. (27)  diately be performed on the level of gauge and Lorentz in-
variants.

Without loss of generality, we confine ourselves to the cas? Itis wort_hwhlle to point out at this stage that a duality
of G>0 (or E-B<0) and drop the absolute value notation. ransformation of the typ&—B andB— —E does not only
E.g., in a system wherB is anti-parallel toE, we find a imply an interchange o& andb (ar12d a23|gn flip fo_rg_) but
=|B| andb=|E|. Note thatc is positive-definite since* is also demands foc—c+27=c+a"—b" Hence, it is not

a time-like vector; e.g., in the rest frame of the heat bath, w .uff|C|ent in the. fln.lte—temperature case to perform a calculg—
find c=E2. It is obvious that any gauge invariant Lorentz lon for magnetic f!elds and Fhen draw an analogy for electric
scalar appearing in the problem is expressible in terms of thigeIdS by replacmg_ B——IE-in contrast to a zero-
set of invariantg26). In the following, we are going to in- emperature calculation.

troduce a convenient coordinate system in which even the

components of any Lorentz vector or tensor of the problem IV. EFFECTIVE ACTION

can be expressed in terms of these invariants. We define the From Eq.(6), we can read off the definition of the effec-
vierbein é€* which mediates between the given system la-tjve Lagrangian at finite temperature:

beled byu,v,...=0,1,2,3 and the desired system labeled ) q
- _ i »ds .
by the (Lorent? indicesA,B, ...=0, 1, 2, 3 by £1+1T:§ tryf ?e—lstKT(SM), (32)
0
eOM:=uH~,

where the superscript implies th#t'*T consists of the
zero-temperature as well as the finite-temperature one-loop
. Uk part: £L171T=£1+ £1T. The thermal transition amplitude in
e Je the integrand is simply obtained by applying the modified
Matsubara prescriptio25) to the zero-temperature transi-
tion amplitude, Eqs(10)—(12), in the coincidence limit:

1
eyt i= —d(u“FaﬁF'B“— cept),

* 3
\/_ KT(S,A):lT 2 d P ei(e/2)o'FSe—Y(iS)
n==« Jv(2m)3
63'“:: eaﬁy,u eoa elB ezy, (28)
where the quantityl abbreviates the combination of invari- x e PX(islp |
ants pu=eA,—inT(2n+1)
33
di=2Fc— G2+ (29) 33
where V denotes the 3-space volume orthogonal to ufte
The vierbein satisfies the identity direction. We now perform the computation of E¢@2) and
(33) within the system that we established in the previous
en, es"=0gap=diag —1,1,1,, (300 section. With respect to the capital labels, this volume is

105002-5



HOLGER GIES PHYSICAL REVIEW D 60 105002

related to the componeni,B,...=1, 2, 3, whereas the tive action, while the sum represents the thermal correction.
components along the* direction correspond to the label Employing the standard results for the remaining terms in
A,B,...=0. TheX matrix in the exponent of E(B3) can  EQs.(32) and(33),

now be written as (1)

—Y(is) — -1
11 [taneas (b’ F2q) e (s = (coseascoshebs %,
X =1 —ag 22+ b2 tr, €12 7Fs= 4 coseascoshebs

and inserting the explicit representations of ¥yg into Eq.

(34) (37), we end up with the desired expression for the one-loop
contribution to the effective Lagrangian for constant electro-
magnetic fields at finite temperature:

. tanhebs (agas+ Fip)
eb a?+b?

where Fag=FA~Fcg. In_udentally, the identical equation [T 1y 1T
also holds, of course, with the labéels B replaced byu, v, = '
but then the components are not related to gauge and Lorentz

invariants. The only non-vanishing components of the sym- 1_ 1 wd_se_imzs eascoteas ebgothebs
metric tensorX,g are the diagonal elements as well % 8m2J)o <8
and X;3. The Gaussian momentum integration in E§3)
therefore results in e2(a2—b?)s?
——3 1}, (38)
J d3|0 Yy B
@ P XagpP
\% (27T)3 1 ocds 5
s L1T=—| —e 'MSeascoteas ebsothebs
e(X11X33~ X19)Po/X22 5 472J)o 8
= [(XaXgg— X Xpa] M2 . —
(4m) oz EAN
39 xg,l (—1)gh(s)n/aT cosh——. (39)

where we made use of the fact that(Xooxzz—X?,Z) At the zero-temperature paft, we subtracted the divergent
= (X11:X33— X2,). Substituting the modified Matsubara fre- terms, which corresponds to a field strength and charge
quenciespo=p,=eA,—i=T(2n+1) into the exponent of renormalization. The functioh(s) in the exponent of*T is
Eq. (35), the summation oven in Eq. (33) can be reorga- ©btained from
nized according to the Poisson formula: X, b2—c

h(s): > eacoteas

“ * 1/2 = 2 .2
E e—o(n—Z)zz Z (Z) e(—-frzla)nz—Zwizn_ (36) X11Xz3— X3 a“+b

n=—ow n=—w \ O
2

a+c
+2—ebcothebs
b2

In this case, we setz=—3—ieA/2xT and o a2+

= (4m2T?X5) (X1:X35— X25). At this point, we have to (40)
mention that formula36) is not valid for Reoc<0, which
would lead to a divergent behavior of the sum. This will be

checked later on.

In the rest frame of the heat bath where E2, we recover
the findings of Ref[4] for h(s). Note thath(s) is strictly

The Poisson resummation serves the purpose of separaf?!. SO there are no apparent convergence problems in em-
ing the zero-temperature from the finite-temperature partPI0¥ing the Poisson resummati¢8). However, it is not a

since the complete loop-momentum integration/summatior#traightfon’vard exercise to obtain numerical estimates for
in Eq. (33) now yield Eq. (39), due to the wildly oscillatory behavior of the whole

integrand, especially in the sum. Let us for the moment re-
o0 d°p mark thath(s) reduces to ¥ in the limit of vanishing elec-
f 2 )3e‘ PXp tric fields [the limit is most conveniently taken fd and B
n=—-o JV T

(anti-)paralle]. And assumingA,=0, we recover the find-
0 ings of Ref[1] for a purely magnetic field at finite tempera-
1+2> (-1)" ture. Furthermore, the general form of EH@9) coincides
n=1 with the representation found in the world line approfgh
(in the heat-bath rest frameexcept for the dependence on
_ 37) the gauge potential; the importance of the holonomy factor
has been overlooked {i6].
The physical interpretation ok, can most easily be illu-
Keeping only the “1” in the second line leads to the stan-minated in the limiting case of vanishing field invariants,
dard proper-time expression for the zero-temperature effea,b,c=0; under these circumstances we are able to rotate

[ -
=162 (X11Xa3— X2

X n2 eANn
xXexp — % - coshi
X11X33—= X713 4T T
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the contours— —is and an interchange of integration and V. DISCUSSION

summation is permitted in E439): Going beyond the constant field approximation, the effec-
% ” A tive Lagrangian in Eqs(38) and(39) can be viewed as the
T 1 ds 2472 eAn ) g .
LY (A)=— —Zf —e ™Sy (—1)"%e " Scosh? zeroth order of a gradient expansion of the one-loop effective
4mcJo n=1 action which governs the dynamics of the background gauge
) o 1 — field A#(x). An immediate physical consequence of the fact
= — —m?T2> (=1 CosheAu_n Kz(Tn) that theA,, field appears explicitly in the Lagrangian is the
w2 n=1 n? T T well-known Debye screening of electric fields. A weak-field
. . — expansion will take the form £'T=—3d,A,0*A,
2T (-1 eA,n 2 —\2 —~2 .
= cosh? +(mg/2) (A,)“+ O(Ay), where the effective photon mass

SS

m?n=1 N (inverse Debye screening lengtis given by
d3k > 2, 1T
= - (VkE+mA)/TIn °L
Xf 27° Mer(T) = —=5~Ia,~0- (42)
A
d3k B — L . . L .
=T 2f 3[In(1+e B(ETeA)) Considering the zero-field limit for simplicity, we find
)
(E-eA) 7L 2 Zi (—1)"K (m ) (43)
—B(E—eA, = — m — —=n/,
+In(1l+e )], (41) &Kzu . 2 & 2| T

where we introduced the particle energy for #ige™ gas,

E:=\k“+m*=|k,|, and two different representations of the whereK, denotes a modified Bessel function. In the high-
modified Bessel functiofK, were taken advantage p16].  temperature limitT>m, the sum can be expanded, e.g., em-

According to the relation ploying the techniques described in the Appendix B 2],
~ leading to [=7_,(—1)"K,(m/T n)=x2T2/6m? + O(1)].
— _Inz(T,AY) ; =n
ElT(Au):TT, We finally arrive at
i i i iti . (eT)?
we indeed find the general expression f_or the partition func mgﬁ(T)z (44)

tion Z of an ideale® e -gas in which theA,, field plays the 3’
role of a chemical potential. If we had started the computa- . . . .
tion including a chemical potential, we would always haveWh'C.h is the ngl-known result found in the Iltera.ture. Th?

S = -~ = o leading corrections to the Debye mass in the high-density
encountered the combinationeA,—u=eA'—u, Which IS 54 high temperature limit can be looked up in the erratum

thereforeihe only physical quantity. In other words, we cany Ref. [4].

identify eA, with a chemical potential during the complete At last we turn to the question of whether Schwinger's
calculation; hence, the additional informatigcompared to  famous formula for the pair-production probability renders
the zero temperature caswhich is required to define the finite-temperature corrections at one-loop order. While no
correct choice of the background gauge potendidlis ob-  thermal contributions have been found to the imaginary part
tained from the value of the chemical potential of the systenyf £ 17 in [2] or [4] within the real-time formalism or ifi10]
under consideration. If one wants to perform a gauge transsmploying the functional Schdinger representation, an
formation beyond the class of periodig,, one has to rede- maginary part seems to appear in the imaginary-time for-
fine the chemical potential to obtain the same physical sysmalism[5]. Besides, the latter result had also been computed
tem. in the real-time formalism in3].

The case of the effective Lagrangian of a constant mag- Although our findings for the effective thermal Lagrang-
netic field at non-zero chemical potential has been discussggén, Eq.(39), in the heat-bath rest frame formally coincide
in [17]. Based on the real-time formalism, a comprehensiveyith those found if3] (up to numerical pre-factors and an
study of this situation including finite temperature can bejnterchange of proper-time integration and summatiove
found in[18] where also astrophysical implications are dis-do not agree with their computation of the imaginary part,
cussed. The same physical situation was investigated envhich follows the line of the zero-temperature calculation.
ploying the imaginary-time formalism ifil9] where high-  various obstacles are encountered when proceeding in this

and low-temperature expansions were approached in a mojgay for the finite-temperature case: since the functi¢s)
direct way. As is demonstrated in these references, the zergy the exponential of Eq(39) reduces to

temperature limit of Eq(39) at a chemical potential obeying
w>m requires careful study. h(s)=eEcotheEs (45)

A detailed weak-field expansion of the effective Lagrang-
ian at finite temperature and chemical potential was perfor a purely electric fieldE=|E|, (i) a rotation of the con-
formed in[20], relying on the “real-time” representation of tour, s— —is, becomes useless due to the coth term in the
the effective action as given id]. exponent of Eq(39); (ii) each term in the sum of E¢39)
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exhibits an essential singularity at the poles of the coth term The way in whichKu enters the effective action can be
on the imaginary axis; the use of the rule zetPcotz  viewed as a topological effect that arises from the compac-
+imZ, 8(z—12o) is therefore senselessf. [3]); (iii) proper- tification of the finite-temperature configuration space in
time integration and summation must not be interchanged. limaginary time; the configuration space, namely, loses its
they are, the imaginary parts of the successive terms in theroperty of being simply connected and allows for infinitely
sum diverge exponentially, as can be shown by evaluatingnany topologically inequivalent paths to connect two differ-
the residues of the singularities on the imaginsigxis. In-  ent points in space-time. Each path can be classified by its
cidentally, we do not agree with the imaginary part com-winding number around the space-time cylinder. The ho-
puted in[5], simply because the expressions for the effectivdonomy factor that carries the gauge dependence of the
Lagrangians do not coincide. Green’s function is sensitive to these inequivalent paths,
However, we can give an indirect argument for the van-since it represents a mapping of the paths in configuration
ishing of the imaginary part following Ref4]: because of space into the gauge group. A Poisson resummation of the
the formal resemblance between our result 8§) and the  sum over the winding number leads to a sum over Matsubara
findings of Loewe and Rojds] for the effective Lagrangian frequencies shifted by tha, field. The quantityeA, indeed
(not for its imaginary pajt we can follow their steps back- acts like a chemical potential in the partition function and
wards and end up with the starting point of the real-timeiherefore can be identified with.
formalism, The gauge non-invariance of the effective action under
non-periodic gauge transformations furthermore manifests it-
grev 1 ) } self in giving a mass to théntegrated time-like gauge field

W: —iTr [ fF(kuaKu)

componentA,, which is, of course, nothing but the screen-

(46) ing mass of the Debye mechanism.
As a second focus of this work, we introduced a certain

— coordinate frame related to the given Lorenz vectors and
wherefg(k, ,A,) denotes drea) thermal distribution func-  tensors of the problem that allowed for a manifest covariant
tion for the fermions and = [d*x £ 7. Obviously, since the computation in the sense of relativistic thermodynamics.
right-hand side is purely real, there is no imaginary part inThis procedure helped us to present the result in terms of a
the thermal contribution to the effective one-loop action andcomp|ete set of Lorenz and gauge invariants.

hence no thermal correction to the Schwinger pair- As an immediate application of the final formula for the

]7[—m+ie_]7[—m—ie

production formula to this order of calculation. effective Lagrangian, we discussed a possible thermal con-
tribution to the Schwinger pair-production formula. In agree-
VI. CONCLUSION ment with the results of the real-time formalism, we do not

. — find an imaginary part in the thermal contribution to the ef-
In the present work, we studied the derivation of the ef- ginary p

fect ED action t I der i f arbit fective Lagrangian to this order of calculation. On a heuristic
ective QED action to one-loop order in presence of ar IraYevel, it appears plausible that a thermal contribution to pair

?)roduction can arise from higher loop graphs. E.g., the two-

imaginary-time formalism. Although the final expression forIOOIO process contains the mass operdiotthe presence of

the effective action is well known and has been studied €Xan external fielsl which can be associated with collective

tensively, especially in the real-time formaligdj, the prob- excitations at finite temperature. These can be approximately

lem as treated in the imaginary-time formalism reveals SOME. ken into account by replacing the fermion mass by an ef-
delicate features.

. . . . fective T or u dependent mas®2]. However, since these
Gauge invariance of the classical action turns out to b p dep S22]

) N ; %ffective masses generally exceed the fermion mass, such
restricted to periodic gauge transformatiohigon the quan-

; . thermal contributions are expected to be of subdominant im-
tum level in order to leave the boundary conditions of the P

functional integral unaltered. This implies the existence inortance.
further gauge invariant quantities beside the field strength

which are constructed from the background fidld. Addi-

tional information about the system under consideration has

to be employed to fix the form of the gauge potendél In The author would like to thank Professor W. Dittrich for
the present case, the demand for homogen@iynstant insightful discussions and for carefully reading the manu-
fields and constant chemical pgtenllgives rise to the ad-  script. Helpful comments by K. Langfeld, M. Engelhardt,
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