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Gauge invariance of general relativistic tidal heating
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~Received 29 January 1999; published 28 October 1999!

When a self-gravitating body~e.g., a neutron star or black hole! interacts with an external tidal field~e.g.,
that of a binary companion!, the interaction can do work on the body, changing its mass-energy. The details of
this ‘‘tidal heating’’ are analyzed using the Landau-Lifshitz pseudotensor and the local asymptotic rest frame
of the body. It is shown that the work done on the body is gauge invariant, while the body-tidal-field interac-
tion energy contained within the body’s local asymptotic rest frame is gauge dependent. This is analogous to
Newtonian theory, where the interaction energy is shown to depend on how one localizes gravitational energy,
but the work done on the body is independent of that localization.@S0556-2821~99!06420-6#

PACS number~s!: 04.20.Cv, 04.25.2g, 04.40.Dg, 04.70.2s
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I. INTRODUCTION AND SUMMARY

This is one in a series of papers that develops perturba
mathematical and physical tools for studying the interact
of an isolated gravitating body with a complicated ‘‘extern
universe’’ in the slow-motion limit. By ‘‘slow-motion limit’’
we mean that the shortest time scalet for changes of the
body’s multipole moments and/or changes of the univers
tidal gravitational field is long compared to the body’s si
R: R/t!1, where we have set the speed of light equal
unity.

In addition to this slow-motion requirement, we also r
quire that the body be isolated from other objects in
external universe, in the sense that both the radius of cu
tureR of the external universe in the body’s vicinity, and th
length scaleL on which the universe’s curvature chang
there, are long compared to the body’s size:R/R!1 and
R/L!1.

The slow-motion, isolated-body formalism, to which th
paper is a technical addendum, is, in essence, a perturb
expansion in powers of the small parametersR/t, R/R and
R/L. For a detailed discussion of the structure of this exp
sion and its realm of validity, see Thorne and Hartle@1#. As
they discuss at length~their Sec. I B!, the slow-motion and
isolated-body assumptions make no reference to the inte
gravity of the object under study. Consequently, the Thor
Hartle formalism in general, and the results of this pape
particular, can be applied even to strongly-gravitating bod
as long as the source of the external tidal field is far eno
away to allow a ‘‘buffer zone’’ where gravity is weak. Thi
buffer zone, called the local asymptotic rest frame, will
described more fully at the beginning of Sec. III.

Two examples of isolated, slow-motion bodies are~i! a
neutron star or black hole in a compact binary system
spirals inward due to emission of gravitational waves, a
~ii ! the satellite Io, which travels around Jupiter in an ellip
orbit and gets heated by Jupiter’s tidal gravitational field@2#.

The series of papers that has been developing the pe
bative formalism for studying tidal effects in such slow
motion, isolated bodies is the following:

~1! The bookGravitation @3#, Sec. 20.6~written by John
Wheeler!: laid the conceptual foundations for analyzing t
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motion of such an isolated body through the external u
verse.

~2! Thorne and Hartle@1#: formulated the problem of ana
lyzing the effects of the external universe’s tidal fields
such an isolated body, and conceived and initiated the de
opment of the perturbative formalism for studying the infl
ence of the tidal fields on the body’s motion through t
external universe, the precession of its spin axis, and
changes of mass-energy.

~3! Thorne @4#: developed the theory of multipole mo
ments of the isolated body in the form used by Thorne a
Hartle.

~4! Zhang@5#: developed the theory of multipole momen
for the external universe’s tidal gravitational fields, whic
underlies the work of Thorne and Hartle.

~5! Zhang@6#: extended the Thorne-Hartle analysis of m
tion and precession to include higher order moments t
they considered.

~6! Thorne @7# and Flanagan@8#: initiated the study of
tidally induced volume changes in the isolated body, us
the above formalism. Their studies were motivated by n
merical solutions of Einstein’s equations by Wilso
Mathews, and Maronetti@9# which seemed to show eac
neutron star in a binary being compressed to the poin
collapse by gravitational interaction with its companio
Thorne and Flanagan found no such effect of the large m
nitude seen in the numerical solutions. An important piece
Thorne’s analysis came from examining the work done
each star by its companion’s tidal field—i.e., an analysis
‘‘tidal heating.’’

Thorne’s analysis of tidal heating required dealing with
issue that Thorne and Hartle had discussed, but avoided
fronting: For an isolated body with mass quadrupole mom
Ijk , being squeezed by an external tidal gravitational fi
Ejk[Rj 0k0 ~with Rabgd the external Riemann tensor!, there
appears to be an ambiguity in the body’s total mass-ene
M of order dM;IjkEjk . ~Here and throughout we use lo
cally Cartesian coordinates in the body’s local asympto
rest frame; cf. Thorne and Hartle@1#. Because the coordi
nates are Cartesian, it makes no difference whether te
indices are placed up or down.!

One can understand this apparent ambiguity by examin
©1999 The American Physical Society54-1
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PATRICIA PURDUE PHYSICAL REVIEW D 60 104054
the time-time part of the spacetime metric in the body’s lo
asymptotic rest frame:

g005211
2M

r
1

3I jknjnk

r 3
1•••2E jknjnkr 21••• .

~1!

Herenj5xj /r is the unit radial vector andr is distance from
the body in its local asymptotic rest frame. Among the ter
omitted here are those of quadratic and higher order in
body’s massM and quadrupole momentIjk and the externa
tidal field Ejk—terms induced by nonlinearities of the Ein
stein field equations. Among these nonlinear terms is

dg00;
IjkEjk

r
, ~2!

whose 1/r behavior can be deduced by dimensional cons
erations. This term has the multipolar structu
(monopole)/r identical to that of the 2M /r term from which
one normally reads off the body’s total mass, and its num
cal coefficient is ambiguous corresponding to the possib
to move some arbitrary portion of it into or out of the 2M /r
term. Correspondingly, the body’s mass is ambiguous by
amount of order

dM;IjkEjk . ~3!

In Sec. II of this paper we shall see that this ambiguity
not a purely relativistic phenomenon. In the Newtoni
theory of gravity, there is also an ambiguity of magnitude~3!
in that portion of the gravitational interaction energy of t
body and external field which is contained within the bod
local asymptotic rest frame. In Sec. III we shall explore t
relativistic version of this ‘‘tidal-quadrupolar’’ interaction
ambiguity by computing how the interaction energy chan
under a relativistic change of gauge~infinitesimal coordinate
transformation!.

‘‘Tidal heating’’ of the isolated body involves injecting
into it an amount of energy that is of just the same magnit
as this ambiguity,DM;IjkEjk . Does this mean that tida
heating is an ill-defined, unphysical concept? Certainly n
as is attested by photographs of volcanic plumes eje
from Jupiter’s satellite Io~see, e.g., Ref.@10#!. That volcan-
ism was predicted by Peale, Cassen, and Reynolds@2# before
the Voyager spacecraft discovered it; and their explanatio
that Io gets tidally heated to high internal temperature by
coupling of its quadrupole moment to Jupiter’s tidal field—
firm ~see, e.g., Refs.@11,12#!.

In this paper, we use the phrase ‘‘tidal heating’’ to me
the net work done by an external tidal field on an isola
body. This phrase is slightly misleading, as the work done
the body need not necessarily go only into heat. The a
tional energy might be used to deform the body~i.e., raise a
tide on it! or it might go into vibrational energy. If, howeve
time scales for changes ofEjk and Ijk are not close to the
body’s vibrational periods, then, when averaged over m
cycles of change ofEjk and/orIjk , the work will contribute
primarily to heat, as in the case of Io.
10405
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In his analysis of binary neutron star systems, Thorne@7#
argued, but did not prove in detail, that although the tid
quadrupole interaction energy is ambiguous, the amoun
work done on an isolated body by an external tidal field~i.e.,
the amount of tidal heating! is unambiguously given by the
formula1

dW

dt
52

1

2
Ei j

dIi j

dt
; ~4!

and he argued that this is true in general relativity theory
well as in Newtonian theory. In Sec. II we shall give a Ne
tonian demonstration of this claim. In Sec. III we shall gi
a relativistic demonstration—showing, more specifical
that although the quadrupole/tidal interaction energy is ga
dependent, the work done is gauge invariant and has
value ~4!.

II. NEWTONIAN ANALYSIS

In this section, we consider a Newtonian body, with we
internal gravity uFou!1 ~where Fo is the body’s gravita-
tional potential!, subjected to an external Newtonian tid
field. We assume that the external field is nearly homo
neous in the vicinity of the body,L@R ~cf. Fig. 1; in the
Newtonian case, the inner boundary of the vacuum ‘‘lo
asymptotic rest frame’’2—indicated by the inner dashe
circle—would be at the surface of the body!.

In our analysis, we will consider a variety of contribution
to the total energy inside a sphere which encompasses
body and whose boundary lies within the local asympto
rest frame—i.e., the region where the external field is nea
homogeneous~again, cf. Fig. 1!. We denote byV the interior
of this sphere and by]V its boundary. Of greatest interes
will be the interaction energy~between the body and th
external tidal field! and the work done by the tidal field o
the body. Both of these quantities are the result of sl
changes of the tidal fieldEjk and the body’s quadrupole mo
mentIjk .

As a foundation for our analysis, consider a fully isolat
system that includes the body of interest and other ‘‘comp
ion’’ bodies, which produce the tidal fieldEjk that the body
experiences. For simplicity, assume that all the bodies
made of perfect fluid~a restriction that can easily be aba
doned!. Then, for the full system, the Newtonian gravit
tional energy density and energy flux can be written as

Q1
005rS 1

2
v21P1F D1

1

8p
F , jF , j , ~5!

1Actually, expression~4! is only the leading order term in the
perturbative expansion ofdW/dt. The next term is2 2

3 Bi j dSi j /dt,
whereBi j is the ‘‘magnetic type’’ tidal field of the external univers
andSi j is the body’s current quadrupole moment@6#. In this paper
we confine attention to the leading-order term.

2We shall discuss the concept of ‘‘local asymptotic rest fram
near the beginning of Sec. III.
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FIG. 1. An example of an isolated, slow-motion body: a star or black hole in a binary system withR/a!1, whereR is the radius of the
body anda is the separation of the body and companion. The dashed circles indicate the boundaries of the body’s vacuum local a
rest frame, the region in whichM /r !1 and r /L!1. Here,r is the radial coordinate,M is the mass of the body, andL is the scale of
homogeneity of the gravitational field. The boundary of the sphere over which we integrate, denoted by]V, lies within this region.
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Q1
0 j5rv j S 1

2
v21P1

p

r
1F D2

1

4p
F ,tF , j , ~6!

whereF,r,p,v, andP are the Newtonian gravitational po
tential, mass density, pressure, velocity, and specific inte
energy@7#.

Using conservation of rest massr ,t1(rv j ) , j50, the first
law of thermodynamicsrdP/dt1pv , j

j 50, the Euler equa-
tion for fluidsrdv j /dt1rF , j1p, j50, Newton’s field equa-
tion F , j j 54pr, and the definition of the comoving tim
derivative d/dt5]/]t1v j]/]xj , it can be shown that Eqs
~5! and ~6! satisfy conservation of energy

Q00
,t1Q0 j

, j50. ~7!

Equations~5! and ~6! for the energy density and flux
however, are not unique. Equally valid are the followi
expressions:

Q2
005rS 1

2
v21P D2

1

8p
F , jF , j , ~8!

Q2
0 j5rv j S 1

2
v21P1

p

r
1F D1

1

4p
F ,t jF,

~9!

which also satisfy energy conservation~7! but localize the
gravitational energy in a different manner fromQ1

0m . Energy
conservation~7! will also be satisfied by any linear comb
nation of Q1

0m and Q2
0m . Imposing the additional condition

that, for any acceptableQ, the system’s total energy

E5E Q00d3x ~10!
10405
al

must be independent of the choice ofQ00 forces the coeffi-
cients to sum to 1. Hence, a perfectly valid form forQ0m is

Q0m5aQ1
0m1~12a!Q2

0m , ~11!

wherea is an arbitrary constant.
Notice that the choice ofa gives a specific energy local

ization. For example,a50 puts the gravitational energy en
tirely in the field@2(¹F)2/(8p)#, so it is non-zero outside
the matter. This is analogous to the localization used in e
trostatics (1/8p times the square of the electric field!. Choos-
ing a5 1

2 , by contrast, puts the gravitational energy entire

in the matter (12 rF), so it vanishes outside the body. Whe
1
2 rF is integrated over the entire system~body plus its com-
panions!, the result is a widely used way of computing grav
tational energy~e.g., Sec. 17.1 of Ref.@13#!.

The energy in the regionV that contains and surrounds th
body but excludes the companion,

EV5E
V
Q00d3x, ~12!

will depend ona; i.e., it will depend on where the energy
localized. By contrast, the total energy~10! for the fully iso-
lated system~body plus its companions! will be independent
of a.

Another way to express this ambiguity of the localizati
of the gravitational energy is given by Thorne~Appendix of
Ref. @7#!: it is possible to add the divergence ofh j

5bFF , j ~whereb is an arbitrary constant! to Q1
00 and the

time derivative of2h j to Q1
0 j without affecting energy con-

servation ~7! or the physics of the system. Indeed, th
method is completely equivalent to the one presented ab
The constants are related byb5(a21)/4p.
4-3
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PATRICIA PURDUE PHYSICAL REVIEW D 60 104054
Throughout the regionV, the Newtonian gravitational po
tential can be broken into two parts: the body’s self fieldFo
and the tidal fieldFe produced by the external universe~the
companion bodies!, so that

F5Fo1Fe. ~13!

The external field is quadrupolar and source-free in the
gion V so that

Fe5
1

2
E i j x

ixj , Fe,j j 50, ~14!

and, furthermore, the tidal fieldEi j evolves slowly with time.
The body’s~external! self field is monopolar and quadrupo
lar and has the body’s mass distribution as a source:

Fo52
M

r
2

3

2

I i j n
inj

r 3
, Fo,j j 54pr. ~15!

The quadrupole momentIi j , like that of the external field
evolves slowly with time, but the body’s massM is constant.
Recall thatr[Ad i j x

ixj is radial distance from the body’
center of mass andnj[xj /r is the radial vector.

A useful expression for the total energyEV in the spheri-
cal regionV can be derived by inserting Eqs.~11!, ~5!, ~8!,
and ~13! into Eq. ~12!. The resulting expression can be br
ken into a sum of three parts—the body’s self energyEo
~which depends only onFo andr), the external field energy
Ee ~which depends only onFe), and the interaction energ
Eint ~which involves products ofFe with r or Fo):

EV5Eo1Ee1Eint , ~16!

where

Eo5E
V
FrS 1

2
v21P D1arFo1

~2a21!

8p
Fo,jFo,j Gd3x,

~17!

Ee5E
V
F ~2a21!

8p
Fe,jFe,j Gd3x, ~18!

Eint5E
V
FarFe1

~2a21!

4p
Fo,jFe,j Gd3x. ~19!

Inserting Eqs.~14! and ~15! into Eq. ~19! and integrating
gives the interaction energy insideV as

Eint5
~21a!

10
Ei j Ii j , ~20!

which depends ona. In other words, it depends on our arb
trary choice of how to localize gravitational energy. This
the ambiguity of the interaction energy discussed in Sec

The rate of change of the total energy insideV can be
expressed in the form
10405
-

.

dEV
dt

52E
]V

Q0 jnj r 2dV ~21!

by taking the time derivative of Eq.~12!, inserting Eq.~7!,
and applying the divergence theorem. This expression,
that for the energy, can be broken into a sum by combin
Eqs.~11!, ~6!, ~9!, ~13!, ~14!, ~15!, and~20!:

dEV
dt

5
dEe

dt
1

dEint

dt
2

1

2
Ei j

dIi j

dt

1E
]V

1

4p
@aFo,tFo,j1~a21!Fo,t jFo#n

jr 2dV.

~22!

The first term is the rate of change of the external field
ergy ~18! insideV, resulting from the evolution of the tida
field. The second term is the rate of change of the interac
energy~20!. The third and fourth terms together, by compa
son with Eq. ~16!, must be equal todEo /dt, the rate of
change of the body’s self energy. The fourth term is t
contribution from the body’s own field moving across th
boundary]V. Therefore, the third term gives the change
the body’s energy coming from the interaction with the tid
field; in other words, it is the rate of work done on the bo
by the tidal field. Furthermore, this term is independent oa
and is, consequently, independent of how the Newtonian
ergy is localized, as claimed in Sec. I, Eq.~4!.

III. RELATIVISTIC ANALYSIS

In this section, we will exhibit a relativistic version of th
calculation in Sec. II, again showing that the rate of wo
done on the body by the tidal field is gauge invariant and t
it has the same value in a general relativistic perturba
treatment as in the Newtonian one:2(1/2)Ei j dIi j /dt. The
formalism to be used is the Landau-Lifshitz energ
momentum pseudotensor and multipole expansions as de
oped by Thorne and Hartle@1# and Zhang@5,6#, together
with the slow-motion approximation, so time derivatives a
small compared to spatial gradients.

We will work in the body’s vacuum local asymptotic re
frame, which is defined as a region outside the body and
enough from it that its gravitational field can be regarded
a weak perturbation of flat spacetime, yet near enough
the tidal field of the external universe can be regarded
nearly homogeneous. This region is a spherical shell aro
the body; its inner boundary is near the body’s surface
far enough away for gravity to be weak, and its outer bou
ary is at a distance where the external tidal field begins
depart from homogeneity~see Fig. 1!. Somewhat more pre
cisely, the local asymptotic rest frame is the region throu
out which r /L!1, r /R!1, and M /r !1, where r is the
radial distance from the body,M is the mass of the body, an
R andL are the radius of curvature and the scale of hom
geneity of the external gravitational field. If this region exis
~as in the case of a black hole binary far from merger,
4-4
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example! and the slow-motion limit applies, then the follow
ing analysis is valid.

As in the Newtonian case, we will consider contributio
to the total energy inside a sphereV which encompasses th
body and whose boundary]V lies within the local
asymptotic rest frame~see Fig. 1!.

A. de Donder Gauge

We shall begin by computing the work done on the bo
by the external tidal field, using the de Donder gauge~this
section!. Then in the next section, we shall show that t
work is gauge invariant.

The de Donder gauge is defined by the condition t
h̄ab

,b50, whereh̄ab is defined in terms of the metric densi
as follows:

gab[A2g gab
,b[hab2h̄ab. ~23!

At linear order in the strength of gravity,h̄ab is the trace-
reversed metric perturbation. According to Zhang@6#, the
components ofh̄ab in the body’s local asymptotic rest fram
are, at leading~linear! order in the strength of gravity and a
leading non-zero order in our slow-motion expansion,

h̄00[24F54
M

r
16

I i j x
ixj

r 5
22E i j x

ixj , ~24!

h̄0 j[2Aj52
İjaxa

r 3
1

10

21
Ėabx

axbxj2
4

21
Ėjaxar 2,

~25!

h̄i j 5OS Ëi j r
4&

Ïi j

r
D , ~26!

where the dots indicate time derivatives~i.e., İi j [dIi j /dt)
and the symbol ‘‘&’’ means ‘‘plus terms of the form an
magnitude.’’ Note that the higher-order (l -order! multipoles
have been omitted, since their contributions are smaller
;(r /L) l 22<r /L!1 and ;(M /r ) l 22<M /r !1 than the
quadrupolar (l 52) terms that we have kept. The seco
time derivatives will also be neglected since they are un
portant in the slow-motion approximation; this effective
eliminatesh̄i j in this gauge. Also, note that theF in Eq. ~24!
has the same form as the Newtonian gravitational poten
of Sec. II, and theAj of Eq. ~25! is a gravitational vector
potential, which does not appear in Newtonian theory.

In general, it would be possible to have a term}IjkEjk /r
in Eq. ~24!, as well as the}M /r term. We have chosen t
define the constant for the monopolar term to be 4M , thereby
eliminating any term}IjkEjk /r ; this is arbitrary but conve-
nient, as will be seen shortly.

The total mass energyMV inside the sphereV ~total stel-
lar mass including the quadrupolar deformation energy
energy of interaction between the deformation and ti
field! is defined by Thorne and Hartle@Eq. ~2.2a! of Ref. @1##
in terms of the Landau-Lifshitz superpotential as
10405
y

t

y

-

al

d
l

MV5
1

16pE]V
H0a0 j

,anjr
2dV, ~27!

where

Hmanb5gmngab2gangmb; ~28!

cf. Eqs. ~20.6!, ~20.3!, and ~20.20! of Misner, Thorne, and
Wheeler~MTW! @3# and Eqs.~100.14! and ~100.2! of Lan-
dau and Lifshitz@14#. Using Eqs.~28!, ~23!, and~24!–~26! in
Eq. ~27! and carrying out the integration gives

MV5M1O~EËr 7& ĖĖr 7!1O~ İĖr 2& ÏEr 2& IËr 2!

1OS IÏ
r 3

&
İİ
r 3 D . ~29!

Hence,MV5M at leading order in our slow-motion ap
proximation when we neglect the double and higher-or
time derivatives. This is the reason the constant of the m
nopolar term in Eq.~24! was chosen to be 4M .

To calculate the rate of work done by the tidal field on t
body when Ejk and Ijk change slowly, we consider th
change of the mass-energyMV ,

2
dMV

dt
5E

]V
~2g!t0 jnj r

2dV, ~30!

wheretmn is the Landau-Lifshitz pseudotensor. That this e
pression is indeed the time derivative of Eq.~27! is a result
of Gauss’s theorem~see discussion after Eqs.~2.3! of Ref.
@1#!.

In the body’s local asymptotic rest frame, the Landa
Lifshitz energy-momentum pseudotensor@Eq. ~20.22! in
MTW @3## is, at the orders of accuracy we are considerin

~2g!t005
1

16p S 2
7

8Dgi j h̄00
,i h̄

00
, j

52
7

8p
d i j F ,iF , j , ~31!

~2g!t0 j5
1

16p S 3

4
h̄00

,0h̄
00

, j1h̄00
,mh̄0m

, j2h̄00
,mh̄0 j

,mD
5

3

4p
F ,0F , j1

1

4p
~Ak, j2Aj ,k!F ,k . ~32!

Here the de Donder gauge conditionh̄ab
,b50 has been used

to eliminate many terms from the general expression
MTW, but most of the simplification has come from keepin
only terms of leading order in the slow-motion approxim
tion @zeroth and first time derivatives, respectively, in Eq
~31! and~32!#. This restriction has given us only products
h̄mn

,a which will produce terms containing the productsM2,
ME, MI, IE, II, EE for (2g)t00 andM İ, M Ė, IĖ, Eİ, Iİ,
EĖ for (2g)t0 j . This may be illustrated by expressin
(2g)t0a explicitly in terms of the quadrupole moments b
substituting Eqs.~24! and ~25! into Eqs. ~31! and ~32! to
obtain
4-5
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~2g!t005
1

16p S 214
M2

r 4 2210
IabE cdx

axbxcxd

r 7
184

IabE bcx
axc

r 5
228

ME abx
axb

r 3
214EabE bcx

axc2126
MI abx

axb

r 8

2126
IabI bcx

axc

r 10
2

315

2

IabIcdx
axbxcxd

r 12 D , ~33!

and

~2g!t0 j5
1

16p S 218
İabE c jx

axbxc

r 5
124

İabE bcx
axcxj

r 5
224

İa jE bcx
axbxc

r 5
218

Ia jĖbcx
axbxc

r 5
224

IabĖc jx
axbxc

r 5

216
IabĖbcx

axcxj

r 5
185

IabĖcdx
axbxcxdxj

r 7 D . ~34!
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Note that we have kept only theEI cross terms in the ex
pression for (2g)t0 j , as only they will contribute to our
calculation of the interaction energy and work.

We find the rate of change of mass-energy inside
sphereV by inserting Eq.~34! into Eq. ~30! and integrating.
The result~only considering the cross terms! is

2
dMV

dt
5

d

dt S 1

10
Ei j Ii j D1

1

2
Ei j

d

dt
Ii j . ~35!

Since the interaction energy can depend only on the ins
taneous deformation and tidal field, its rate of change m
be a perfect differential, whereas the rate of work need
be. Also, if the tidal field changes but the body does n
there is no work done. From these two facts, we can c
clude that the first term of Eq.~35! is the rate of change o
the interaction energy between the tidal field and the b
and that the second term represents the rate of work don
the external field on the body~the ‘‘tidal heating’’!.

Notice that this value for the rate of work matches th
discussed in Sec. I, Eq.~4!, and found via the Newtonian
analysis in Sec. II. Note the comparison with our Newton
expressions~22! and ~20!. The first and fourth terms of Eq
~22! are missing here because we included in our (2g)t0 j

only the ~body field!3~external field! crossterms. If we had
also included ~external!3~external! and ~body!3~body!
terms, Eq.~35! would have entailed expressions like the fi
and fourth terms of Eq.~22!. Note also from the interaction
energy terms in Eqs.~22!, ~20!, and ~35! that the Landau-
Lifshitz way of localizing gravitational energy correspon
to the Newtonian choicea523, a correspondence that ha
previously been derived by Chandrasekhar@15#.

B. General Gauge

In Sec. III A., we considered the special case of
Donder gauge, which was particularly simple due to
gauge condition and to theh̄i j terms being effectively zero
Now we will examine a general gauge, which can
achieved by a gauge transformation of the form
10405
r

n-
st
ot
t,
-

y
by

t

n

t

e
e

h̄mn→h̄mn1dh̄mn ,

dh̄mn5jm,n1jn,m2hmnja
,a , ~36!

where ja is a function to be chosen shortly. Usingh̄mn

[hmn2 1
2 hmnhs

s , wherehmn is the perturbation of the met
ric away from the Minkowski metric in the local asymptot
rest frame, this can also be expressed as

hmn→hmn1dhmn ,

dhmn5jm,n1jn,m . ~37!

Note that in the de Donder gauge,

h0052
M

r
13

I i j x
ixj

r 5 2E i j x
ixj , ~38!

h0 j522
İjaxa

r 3
2

10

21
Ėabx

axbxj1
4

21
Ėjaxar 2,

~39!

hi j 5d i j S 2
M

r
13

I klx
kxl

r 5 2E klx
kxl D .

~40!

Since we are interested only in gauge changes of the s
order as we have been using so far~leading-order in the
slow-motion approximation!, we include only terms inja
that will producedhmn of the same forms as Eqs.~38!–~40!,
but with different numerical coefficients. For example, co
sider dh0052j0,0}M /r ; that givesj0}Mt/r , sinceM is a
constant. This, in turn, impliesdh0 j5j0,j}Mtxj /r 3, but this
is not of the same form as the terms in Eq.~39!; rather, it
corresponds to a gauge that rapidly becomes ill-behave
time passes. Similar arguments apply todh00}I jkxjxk/r 5 or
dh00}E jkxjxk; their coefficients cannot be altered by a gau
change because such a change would alter the mathem
form of h0 j and would make its magnitude unacceptab
large in the slow-motion limit. As a result, we must setj0
50. If we now considerdh0 j5j j ,0 , possible terms are of the
form }İjaxa/r 3, } Ėabx

axbxj , or } Ėjaxar 2; cf. Eq. ~39!.
Each of these givesdh0050 anddhi j of the same form as
4-6
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Eq. ~40!; hence, terms of these forms are allowed. Con
quently, the most general gauge change that preserves
mathematical forms ofhmn but alters their numerical coeffi
cients is

j050,

j j5a
I jaxa

r 3
1bE jaxar 21gE abx

axbxj , ~41!

wherea,b, andg are arbitrary constants.
Using the trace-reversed gauge change~36! with Eq. ~41!,

the newh̄ab become

h̄0054
M

r
1~5g12b22!E i j x

ixj1~623a!I i j

xixj

r 5 ,

~42!

h̄0 j5~22a!İja

xa

r 3 1S 10

21
2g D Ėabx

axbxj

2S 4

21
1b D Ėjaxar 2, ~43!

h̄ jk52aI jk

1

r 313ad jkI ab

xaxb

r 5
23aI ja

xaxk

r 5

23aI ka

xaxj

r 5
12bE jkr 222~b1g!d jkE abx

axb

12~b1g!E jaxaxk12~b1g!E kax
axj . ~44!
10405
-
the

In this general gauge, if we calculate the total ma
energyMV inside the sphereV using Eqs.~28!, ~23!, and
~42!–~44! in Eq. ~27!, we find

MV5M1S 2g21
29

5
bg2

4

5
g12b222b D Ei j E i j r

5

1S 1

3
a12b1

7

5
g2

4

3
ab2

23

15
ag DIi j Ei j . ~45!

TheIi j Ii j /r 5 term is zero. It is comforting to note that all th
new terms vanish fora5b5g50, giving the de Donder
resultMV5M . TheEEr 5 andIE terms in Eq.~45! are large
compared to the double time-derivative terms that form
the largest corrections to the mass-energy in de Don
gauge~29!; however, they are still small compared to th

massM that appears in the expansion~24! of h̄00. Also note
that, near the body of interest, theEEr 5 term will be small
compared to theIE term, due to its radial dependence. S
once again, we haveMV.M as a first approximation, al
though it is necessary to keep the extra terms in Eq.~45! to
maintain the same level of accuracy as we have been us
Consequently,MV is gauge-dependent to the order that
terests us, and it has the ‘‘Ii j Ei j ’ ’ ambiguity discussed by
Thorne and Hartle@1# and mentioned in Sec. I.

Keeping only the leading-order terms in the slow-moti
approximation, as described in Sec. III A, the Landa
Lifshitz pseudotensor in the new gauge is
ption.
phere

e de
t
nd term
~2g!t005
1

16p S 2
7

8
gi j h̄00

,i h̄
00

, j1h̄00
,i h̄

i j
, j2

1

2
h̄i j

,kh̄
ik

, j1
1

4
h̄00

,i h̄
j j

,i1
1

4
h̄i j

,kh̄
i j

,k2
1

8
h̄i i

,kh̄
j j

,kD , ~46!

~2g!t0 j5
1

16p S 3

4
h̄00

,0h̄
00

, j1h̄00
,mh̄0m

, j2h̄00
,mh̄0 j

,m1h̄0 j
,kh̄

kl
,l2h̄00

,0h̄
i j

, j1h̄i j
,kh̄

ik
,02h̄0i

,kh̄
ik

, j1h̄0i
,kh̄

i j
k2h̄0i

,i h̄
jk

,k

2
1

4
h̄kk

,0h̄
00

, j2
1

4
h̄00

,0h̄
kk

, j2
1

2
h̄ik

,0h̄
ik

, j1
1

4
h̄i i

,0h̄
kk

, j D . ~47!

Note that the first term of Eq.~46! is the same as Eq.~31!, and the first three terms of Eq.~47! are the same as Eq.~32!. The
additional terms all involveh̄ jk, which was effectively zero in the de Donder gauge because of our slow-motion assum

Substituting Eqs.~47! and~42!–~44! into Eq.~30! and integrating gives the rate of change of mass-energy inside the s
V as

2
dMV

dt
5

d

dt F S 7ag

5
2

9g

5
1

7ab

5
2

12b

5
2

a

5
1

1

10D Ei j Ii j G1
1

2
Ei j

dIi j

dt
. ~48!

Again, we have kept only the~external field!3~body field! crossterms. As expected, this expression reduces to th
Donder result~35! whena5b5g50. Using the same argument for Eq.~48! as for Eq.~35!, we can conclude that the firs
term of Eq.~48! is the rate of change of the interaction energy between the tidal field and the body and that the seco
represents the rate of work done by the external field on the body~the ‘‘tidal heating’’!.

Notice the gauge dependence~dependence ona,b,g) of the rate of change of interaction energy
4-7
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dEint

dt
5

d

dt F S 7ag

5
2

9g

5
1

7ab

5
2

12b

5
2

a

5
1

1

10D Ei j Ii j G .
~49!

By contrast, the ‘‘tidal heating’’ work done on the body h
the same, gauge-invariant value as in Newtonian theory

dW

dt
52

1

2
Ei j

dIi j

dt
. ~50!

IV. CONCLUSIONS

In this paper, we have shown that the rate of work do
by an external tidal field on a body is independent of h
gravitational energy is localized in Newtonian theory a
that it is gauge invariant in general relativity. Furthermo
this quantity—which we are calling the ‘‘tidal heating’’—i
given unambiguously by Eq.~4!. That the tidal heating
should be a well-defined and precise quantity is reasona
given that its physical effects have been observed in the f
of volcanic activity of Jupiter’s moon Io@2,11,12#.
ys
.

10405
e

,

le,
m

There remains one aspect of the uniqueness of the
heating that we have not explored: a conceivable~but highly
unlikely! dependence ofdW/dt on the choice of energy
momentum pseudotensor in general relativity. The arbitr
ness of the pseudotensor is general relativity’s analog
Newtonian theory’s arbitrariness of localization of gravit
tional energy. The fact thatdW/dt is independent of the
Newtonian energy localization suggests that it may also
independent of the general relativistic pseudotensor. In a
tion, the clear physical nature ofdW/dt gives further confi-
dence that it must be independent of the pseudotensor. N
ertheless, it would be worthwhile to verify explicitly tha
dW/dt is pseudotensor-independent.
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