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Gauge invariance of general relativistic tidal heating
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When a self-gravitating bodge.g., a neutron star or black hpliateracts with an external tidal fielg.g.,
that of a binary companionthe interaction can do work on the body, changing its mass-energy. The details of
this “tidal heating” are analyzed using the Landau-Lifshitz pseudotensor and the local asymptotic rest frame
of the body. It is shown that the work done on the body is gauge invariant, while the body-tidal-field interac-
tion energy contained within the body’s local asymptotic rest frame is gauge dependent. This is analogous to
Newtonian theory, where the interaction energy is shown to depend on how one localizes gravitational energy,
but the work done on the body is independent of that localizafi®8556-282199)06420-§

PACS numbd(s): 04.20.Cv, 04.25-g, 04.40.Dg, 04.70-s

[. INTRODUCTION AND SUMMARY motion of such an isolated body through the external uni-
verse.

This is one in a series of papers that develops perturbative (2) Thorne and Hartl¢1]: formulated the problem of ana-
mathematical and physical tools for studying the interactiodyzing the effects of the external universe’s tidal fields on
of an isolated gravitating body with a complicated “external such an isolated body, and conceived and initiated the devel-
universe” in the slow-motion limit. By “slow-motion limit”  opment of the perturbative formalism for studying the influ-
we mean that the shortest time scaldor changes of the ence of the tidal fields on the body’s motion through the
body’s multipole moments and/or changes of the universe’'external universe, the precession of its spin axis, and its
tidal gravitational field is long compared to the body’s sizechanges of mass-energy.

R R/7<1, where we have set the speed of light equal to (3) Thorne[4]: developed the theory of multipole mo-
unity. ments of the isolated body in the form used by Thorne and

In addition to this slow-motion requirement, we also re- Hartle.
quire that the body be isolated from other objects in the (4) Zhang[5]: developed the theory of multipole moments
external universe, in the sense that both the radius of curvder the external universe’s tidal gravitational fields, which
ture R of the external universe in the body’s vicinity, and the underlies the work of Thorne and Hartle.
length scale on which the universe’s curvature changes (5) Zhang[6]: extended the Thorne-Hartle analysis of mo-
there, are long compared to the body’s siBg#R<1 and tion and precession to include higher order moments than
R/L<1. they considered.

The slow-motion, isolated-body formalism, to which this  (6) Thorne[7] and Flanagarn8]: initiated the study of
paper is a technical addendum, is, in essence, a perturbatitidally induced volume changes in the isolated body, using
expansion in powers of the small paramet@fs, R/R and the above formalism. Their studies were motivated by nu-
R/ L. For a detailed discussion of the structure of this expanmerical solutions of Einstein’s equations by Wilson,
sion and its realm of validity, see Thorne and Haffl¢ As  Mathews, and Maronetfi9] which seemed to show each
they discuss at lengtttheir Sec. | B, the slow-motion and neutron star in a binary being compressed to the point of
isolated-body assumptions make no reference to the internabllapse by gravitational interaction with its companion.
gravity of the object under study. Consequently, the ThorneThorne and Flanagan found no such effect of the large mag-
Hartle formalism in general, and the results of this paper imitude seen in the numerical solutions. An important piece of
particular, can be applied even to strongly-gravitating bodiesThorne’s analysis came from examining the work done on
as long as the source of the external tidal field is far enougleach star by its companion’s tidal field—i.e., an analysis of
away to allow a “buffer zone” where gravity is weak. This “tidal heating.”
buffer zone, called the local asymptotic rest frame, will be  Thorne’s analysis of tidal heating required dealing with an
described more fully at the beginning of Sec. Il issue that Thorne and Hartle had discussed, but avoided con-

Two examples of isolated, slow-motion bodies @irea  fronting: For an isolated body with mass quadrupole moment
neutron star or black hole in a compact binary system thaf;,, being squeezed by an external tidal gravitational field
spirals inward due to emission of gravitational waves, andj=R;oo (With R,z,s the external Riemann tengpthere
(i) the satellite lo, which travels around Jupiter in an ellipticappears to be an ambiguity in the body’s total mass-energy
orbit and gets heated by Jupiter’s tidal gravitational fl@l M of order 6M ~Z; ;. (Here and throughout we use lo-

The series of papers that has been developing the pertucally Cartesian coordinates in the body’s local asymptotic
bative formalism for studying tidal effects in such slow- rest frame; cf. Thorne and Hart[d]. Because the coordi-
motion, isolated bodies is the following: nates are Cartesian, it makes no difference whether tensor

(1) The bookGravitation[3], Sec. 20.6written by John indices are placed up or down.

Wheeley: laid the conceptual foundations for analyzing the  One can understand this apparent ambiguity by examining
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the time-time part of the spacetime metric in the body’s local In his analysis of binary neutron star systems, Thdifie

asymptotic rest frame: argued, but did not prove in detail, that although the tidal-
quadrupole interaction energy is ambiguous, the amount of
2M  3Z;nink s work done on an isolated body by an external tidal figlel.,
Qoo=—1+ vt —EpnInfrog the amount of tidal heatings unambiguously given by the
' formulat
1)

Heren!=xJ/r is the unit radial vector andis distance from aw 1 dZ; @
the body in its local asymptotic rest frame. Among the terms dt — 20 dt

omitted here are those of quadratic and higher order in the

body’s massVl and quadrupole momef, and the external  and he argued that this is true in general relativity theory as
tidal field &—terms induced by nonlinearities of the Ein- well as in Newtonian theory. In Sec. Il we shall give a New-

stein field equations. Among these nonlinear terms is tonian demonstration of this claim. In Sec. lll we shall give
a relativistic demonstration—showing, more specifically,
5900~ Zik€ik 2 that although the quadrupole(tidal intergctioq energy is gauge
r’ dependent, the work done is gauge invariant and has the
value (4).

whose 1v behavior can be deduced by dimensional consid-
erations. This term has the multipolar structure
(monopole)f identical to that of the R1/r term from which

one normally reads off the body’s total mass, and its numeri- |n this section, we consider a Newtonian body, with weak
cal coefficient is ambiguous corresponding to the possibilityinternal gravity|®,|<1 (where ®, is the body’s gravita-
to move some arbitrary portion of it into or out of thé/2r  tional potential, subjected to an external Newtonian tidal
term. Correspondingly, the body’s mass is ambiguous by afield. We assume that the external field is nearly homoge-
amount of order neous in the vicinity of the body£>R (cf. Fig. 1; in the
Newtonian case, the inner boundary of the vacuum “local
M~ T ik - ©) asymptotic rest frame?—indicated by the inner dashed
. . .. . circle—would be at the surface of the bgdy
In Sec. Il of this paper we shall see that this ambiguity is |, gyr analysis, we will consider a variety of contributions

not a purely relativistic phenomenon. In the Newtoniany, the total energy inside a sphere which encompasses the
theory of gravity, there is also an ambiguity of magnit@de 1,54y and whose boundary lies within the local asymptotic

in that portion of the gravitational interaction energy of the regt frame—i.e., the region where the external field is nearly
body and external field which is contained within the bOdyyshomogeneOUSagain cf. Fig. 1 We denote by the interior

local asymptotic rest frame. In Sec. Il we shall explore the¢ 5 sphere and by its boundary. Of greatest interest

relativistic version of this “tidal-quadrupolar” interaction il be the interaction energybetween the body and the
ambiguity by computing how the interaction energy changegyternal tidal fielgl and the work done by the tidal field on

under a relativistic change of gaugefinitesimal coordinate o body. Both of these quantities are the result of slow

transformation changes of the tidal field;, and the body’s quadrupole mo-
“Tidal heating” of the isolated body involves injecting menth-k Ik ysq P
ik -

into it an amount of energy that is of just the same magnitude - g 5 foundation for our analysis, consider a fully isolated
as th's "_"mb'g.u'ty’A,MwIJkgik' Does this mean tha; tidal system that includes the body of interest and other “compan-
hea'tmg is an ill-defined, unphysical conce'pt? Certamly not; bodies, which produce the tidal fielgl that the body

as is attested by photographs of volcanic plumes ejectegd, ,qriences. For simplicity, assume that all the bodies are
from Jupiter's satellite ldsee, e.g., Re{.10]). That volcan- 546 of perfect fluida restriction that can easily be aban-
ism was predicted by Peale, Cassen, and Reyrialdsefore doned. Then, for the full system, the Newtonian gravita-

the Voyager spacecraft discovered it; and their explanationﬁoned energy density and energy flux can be written as
that lo gets tidally heated to high internal temperature by the

coupling of its quadrupole moment to Jupiter’s tidal field—is

firm (see, e.g., Ref§11,12). @20=p
In this paper, we use the phrase “tidal heating” to mean

the net work done by an external tidal field on an isolated

body. This phrase is slightly misleading, as the work done on

the body need not necessarily go only into heat. The addi- 1pcqyally, expression4) is only the leading order term in the

tional energy might be used to deform the bddg., raise @  perurbative expansion afw/dt. The next term is- $B,ds; /dt,

tide on if or it might go into vibrational energy. If, however, wheres; is the “magnetic type” tidal field of the external universe

time scales for changes &, and Zj are not close to the ands; is the body’s current quadrupole momést. In this paper
body’s vibrational periods, then, when averaged over manye confine attention to the leading-order term.

cycles of change ofj, and/orZ, the work will contribute 2We shall discuss the concept of “local asymptotic rest frame”
primarily to heat, as in the case of lo. near the beginning of Sec. Ill.

Il. NEWTONIAN ANALYSIS

1 1
SV @ |+ =D 0, ©)

2
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companion

I a i

FIG. 1. An example of an isolated, slow-motion body: a star or black hole in a binary systerRAaithl, whereR is the radius of the
body anda is the separation of the body and companion. The dashed circles indicate the boundaries of the body’s vacuum local asymptotic
rest frame, the region in whicM/r<1 andr/L£<1. Here,r is the radial coordinatéy is the mass of the body, and is the scale of
homogeneity of the gravitational field. The boundary of the sphere over which we integrate, denatédibg within this region.

1 ) p must be independent of the choice ®f° forces the coeffi-
7V +H+;+q’) ~ 1 PP (6)  cients to sum to 1. Hence, a perfectly valid form f@F* is

@gjzpvj

where®,p,p,v, andII are the Newtonian gravitational po- 0% =00+ (1-a)0", (13)
tential, mass density, pressure, velocity, and specific internal
energy[7]. wherea is an arbitrary constant.

Using conservation of rest map§‘+(pvi)’j=o, the first Notice that the choice ok gives a specific energy local-
law of thermodynamicgdIl/dt+pv’;=0, the Euler equa- ization. For exampleg=0 puts the gravitational energy en-
tion for fluids pdv!/dt+ p® ;+p ;=0, Newton’s field equa- tirely in the field[ — (V®)?/(8)], so it is non-zero outside
tion @ ;;=4mp, and the definition of the comoving time the ma}tter. Th|s. is analogous to the Iocallzat.|0r.1 used in elec-
derivative d/dt=a/at+vidlaxl, it can be shown that Egs. trostatics (1/& times the square of the electric figl€Choos-

(5) and (6) satisfy conservation of energy ing =3, by contrast, puts the gravitational energy entirely
. in the matter & p®), so it vanishes outside the body. When
0%,+09% ;=0. (7)  %p® is integrated over the entire systébody plus its com-

paniong, the result is a widely used way of computing gravi-
Equations(5) and (6) for the energy density and flux, tational energye.g., Sec. 17.1 of Ref13)).
however, are not unique. Equally valid are the following  The energy in the regioW that contains and surrounds the

expressions: body but excludes the companion,
00— p| Zv2i1l|- 0 @ 8 00g3
2 =P\ 5V ar 2% (8) Ey= V® dx, (12)
i_ it P 1 ill depend ona; i.e., it will depend on where th i
0% — vl SVl | — @ will depend one; i.e., it will depend on where the energy is
02 =pv 2V 1 p ® 477(1)'“(1)’ localized. By contrast, the total ener@y0) for the fully iso-
C) lated systenibody plus its companionsvill be independent
of a.
which also satisfy energy conservatiér) but localize the Another way to express this ambiguity of the localization

gravitational energy in a different manner fr@{* . Energy  of the gravitational energy is given by Thort&ppendix of
conservation7) will also be satisfied by any linear combi- Ref. [7]): it is possible to add the divergence of;
nation of ®3* and ®3* . Imposing the additional condition =gdd ; (wherep is an arbitrary constanto ®%° and the
that, for any acceptabl®, the system’s total energy time derivative of— 7; to 9 without affecting energy con-
servation (7) or the physics of the system. Indeed, this
E:f 0%y (10) method is completely equivalent to the one presented above.
The constants are related I8y=(a—1)/4.
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Throughout the regio, the Newtonian gravitational po- dE,, o2
tential can be broken into two parts: the body’s self fidlg T —f 0~n’r<dQ (22)
and the tidal fieldP, produced by the external univergbe 4

companion bodigs so that by taking the time derivative of Eq12), inserting Eq.(7),

b=d +b (13) and applying the divergence theorem. This expression, like
o e that for the energy, can be broken into a sum by combining

The external field is quadrupolar and source-free in the reEds- (11 (6), (9), (13), (14), (15), and(20):

gionV so that dEV_ dE, dEint_ 1 dr,
1 dtodt odr 29 de
@ezzgijx'xj, (I)e,jj =O, (14) 1
o o +f 4—[a(l)o‘tq)0’j+(a—1)¢)o’tjq>0]njl’2dﬂ.
and, furthermore, the tidal fiell; evolves slowly with time. v

The body’s(external self field is monopolar and quadrupo- (22)

lar and has the body’s mass distribution as a source:
o The first term is the rate of change of the external field en-
M  3Zjn'n ergy (18) inside V, resulting from the evolution of the tidal

r 2 (3 Do jj=4mp. (15 field. The second term is the rate of change of the interaction
energy(20). The third and fourth terms together, by compari-

The quadrupole momery; , like that of the external field, son with Eq.(16), m,ust be equal tE/dt, the rate_of
evolves slowly with time, but the body’s malkis constant. change of the body’s self energy. The fourth term is the

Recall thatr=\/5;;x'x’ is radial distance from the body’s gontrldbutlc(;r]l/ f;?r:n t?e botc:]y Sthqv(\;nt field r_novn:rg]] acrrloss the
center of mass and'=x//r is the radial vector. oundaryJy. Therelore, the third term gives the change in

A useful expression for the total energy, in the spheri- the body’s energy coming from the interaction with the tidal

cal region)’ can be derived by inserting Eq&1), (5), (8), field; in other words, it is the rate of work done on the body

and(13) into Eqg.(12). The resulting expression can be bro- gﬁér}g t::%ar:;éelﬂéﬁﬁrthiﬁggog dtglst toefrfr:\o:lr\s/ ;ﬂgel\l?g\?v?:r?izgfen-
ken into a sum of three parts—the body’s self enekgy ' q Y, P

(which depends only o, andp), the external field energy ergy is localized, as claimed in Sec. |, Hd).
E. (which depends only o), and the interaction energy
Ei: (which involves products o, with p or ®):

Ill. RELATIVISTIC ANALYSIS

Ev=Eo+ EetEint, (16) In this section, we will exhibit a relativistic version of the

calculation in Sec. Il, again showing that the rate of work
done on the body by the tidal field is gauge invariant and that
it has the same value in a general relativistic perturbative
d3x, treatment as in the Newtonian one:(1/2)&;;dZ; /dt. The
formalism to be used is the Landau-Lifshitz energy-

17 momentum pseudotensor and multipole expansions as devel-
oped by Thorne and Hartlgl] and Zhang[5,6], together
_ with the slow-motion approximation, so time derivatives are
Ee= L small compared to spatial gradients.

We will work in the body’s vacuum local asymptotic rest
frame, which is defined as a region outside the body and far
Eim:f ds3x. (19 enough from it that its gravitational field can be regarded as

4 a weak perturbation of flat spacetime, yet near enough that

. . . ) the tidal field of the external universe can be regarded as
Inserting Eqgs.(14) and (15) into Eq. (19) and integrating  nearly homogeneous. This region is a spherical shell around
gives the interaction energy insideas the body; its inner boundary is near the body’s surface but
far enough away for gravity to be weak, and its outer bound-
ary is at a distance where the external tidal field begins to
depart from homogeneitgsee Fig. L. Somewhat more pre-
cisely, the local asymptotic rest frame is the region through-
which depends om. In other words, it depends on our arbi- out whichr/£<1, r/R<1, and M/r<1, wherer is the
trary choice of how to localize gravitational energy. This isradial distance from the bod¥ is the mass of the body, and
the ambiguity of the interaction energy discussed in Sec. |.R and L are the radius of curvature and the scale of homo-

The rate of change of the total energy insidecan be geneity of the external gravitational field. If this region exists
expressed in the form (as in the case of a black hole binary far from merger, for

where

e |
v

(2a—1)

+ap®yt+ ——
Gfp (o] 877

DDy

! 2411
p EV

(2a—1)

8 q)e’jq)e'j

d3x, (18

(2a—1)
4

apq)e+ q)O,jq)e,j

_(2+a)

int_Tgiinj : (20)
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example and the slow-motion limit applies, then the follow-
ing analysis is valid.

As in the Newtonian case, we will consider contributions

to the total energy inside a sphevenvhich encompasses the
body and whose boundary) lies within the local
asymptotic rest framésee Fig. L

A. de Donder Gauge

PHYSICAL REVIEW D60 104054

M =ij HO%% n.r2dQ (27)
v 167 oV al ’

where

HMaVB:gMVgaﬁ_gangﬁ; (29

cf. Egs.(20.6, (20.3, and (20.20 of Misner, Thorne, and
Wheeler(MTW) [3] and Eqgs.(100.14 and (100.2 of Lan-
dau and Lifshit4 14]. Using Egs(28), (23), and(24)—(26) in

We shall begin by computing the work done on the bodyEq_ (27) and carrying out the integration gives

by the external tidal field, using the de Donder gaduis

section). Then in the next section, we shall show that the

work is gauge invariant.

o The de Donder gauge is defined by the condition that

h*# ;=0, whereh®” is defined in terms of the metric density
as follows:

gf=\~g g*¥ =7 —h°~. (23
At linear order in the strength of gravitﬁ“ﬁ is the trace-
reversed metric perturbation. According to Zhdd, the
components oh“? in the body’s local asymptotic rest frame

are, at leadinglinear order in the strength of gravity and at
leading non-zero order in our slow-motion expansion,

00 M Iinin .
h E—4<I>=4T+6 5 —2&;x'x, (24
r
. Z..x2  10. . )
hOJE_AjZZ ]:3 + 21 apX XX — 27 jaXaI’Z,
(29

—|]=O< E’ijr“&%), (26)

where the dots indicate time derivativé$.,ZjEdLj /dt)

and the symbol “&” means “plus terms of the form and
magnitude.” Note that the higher-ordel-¢rdep multipoles

have been omitted, since their contributions are smaller by

~(rlL)'"?<r/L<1 and ~(M/r)'"?<M/r<1 than the

qguadrupolar (=2) terms that we have kept. The second

My=M+O(EET& EET) + O(TEr2& TEr2& TEr?)
77 IT

& (29

r r

Hence, M,=M at leading order in our slow-motion ap-
proximation when we neglect the double and higher-order
time derivatives. This is the reason the constant of the mo-
nopolar term in Eq(24) was chosen to beM.

To calculate the rate of work done by the tidal field on the
body when & and Z;, change slowly, we consider the
change of the mass-energyt,,,

dM ‘

——":f (—g)t%n;r2dQ, (30)
dt v

wheret#” is the Landau-Lifshitz pseudotensor. That this ex-
pression is indeed the time derivative of E7) is a result
of Gauss’s theorenisee discussion after Eq&.3) of Ref.
[1]).

In the body’s local asymptotic rest frame, the Landau-
Lifshitz energy-momentum pseudotensfdq. (20.22 in
MTW [3]] is, at the orders of accuracy we are considering,

VA N —
)00 _ ] 4iip00 [00
( g)t 1677( 8)9 h vlh |
7 .
:—géjq)'i(b,j, (31)
. 33— — - .
(_g)tOJ: 167T<Zh00,0h00,j+hoo,mhom,i_hoo.mhm,m

time derivatives will also be neglected since they are unim-

portant in the slow-motion approximation; this effectively

eliminatesh in this gauge. Also, note that thi in Eq. (24)

has the same form as the Newtonian gravitational potenti

of Sec. I, and theA; of Eq. (25) is a gravitational vector
potential, which does not appear in Newtonian theory.

In general, it would be possible to have a tex#; & /r
in Eq. (24), as well as thexM/r term. We have chosen to
define the constant for the monopolar term to &, 4hereby
eliminating any termeZ; &, /r; this is arbitrary but conve-
nient, as will be seen shortly.

The total mass energyt,, inside the spher® (total stel-

¥y

o+
CI)'OCD" 4

(A=A 0P k. (32

f1'—|ere the de Donder gauge COﬂditiEﬁBﬁ:O has been used

to eliminate many terms from the general expression in
MTW, but most of the simplification has come from keeping
only terms of leading order in the slow-motion approxima-
tion [zeroth and first time derivatives, respectively, in Egs.
(31) and(32)]. This restriction has given us only products of

F’”,a which will produce terms containing the produds’,
ME, MZ, Z€, I, EE for (—g)t®andMZ, ME, Z&, €7, 11,

lar mass including the quadrupolar deformation energy and€ for (—g)t%. This may be illustrated by expressing
energy of interaction between the deformation and tidal—g)t°¢ explicitly in terms of the quadrupole moments by

field) is defined by Thorne and Harf&q. (2.29 of Ref.[1]]
in terms of the Landau-Lifshitz superpotential as

substituting Eqs(24) and (25) into Egs.(31) and (32) to
obtain
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1 M?2 Ecad®XPXXY T EpXXE MEpx3XP x2xP
(~ Q=g | ~ 147210 Fabf oo _ 4842 T pgab —14<s’abgbcxax°—126L
167 r r5 r3
—12 EIabIchaXC o ESIabICanXbXCXd , (33)
10
r 2 ri2
and
(—g)Oie 1 Tap€ XX 24iab5 b XXX _24iaj5 bcxaxbxc_loIaijCxaxbxc_24Iabécjxaxbx°
9 16 o r5 ¢5 r5 © r5 /5
TanCoX®XOX T €6 XXX Ix]
—16 ab b05 485 abCcd - . (34)
r r
|
Note _that we haveb.kept only th&r cross terms in the ex- HMV_)FWJF 5@
pression for g)t”, as only they will contribute to our o
calculation of the interaction energy and work. M= Eu sty 1,,E% o, (36)

We find the rate of change of mass-energy inside our .
sphereV by inserting Eq(34) into Eq. (30) and integrating. Where £* is a function to be chosen shortly. Usirg,,

The result(only considering the cross terjnis =h,,—37,,h’,, whereh,, is the perturbation of the met-
ric away from the M|nkowsk| metric in the local asymptotic

rest frame, this can also be expressed as
(39 h,,—h,,+déh,,,

6hMV:§[L,V+§V,;L' (37)
Since the interaction energy can depend only on the instan-
taneous deformation and tidal field, its rate of change mugiote that in the de Donder gauge,

- & T

dMm, d1 1 d
Tat atl 10 RS

be a perfect differential, whereas the rate of work need not M I”x xJ o

be. Also, if the tidal field changes but the body does not, hoo=2—+3 —Eix'x, (39)

there is no work done. From these two facts, we can con-

clude that the first term of Eq35) is the rate of change of T.aX? 4 .

the interaction energy between the tidal field and the body hoj= —21—3— 57 abx aybyi 4 — 57 Jaxarz,

and that the second term represents the rate of work done by r

the external field on the bodyhe “tidal heating”). (39
Notice that this value for the rate of work matches that M T x*

discussed in Sec. I, Ed4), and found via the Newtonian hij=&yj| 2-+3 — &

analysis in Sec. Il. Note the comparison with our Newtonian (40)

expressiong22) and (20). The first and fourth terms of Eq.

(22) are missing here because we included in O’UQItOJ Since we are interested Only in gauge ChaﬂgeS of the same

only the (body field x (external field crossterms. If we had order as we have been using so f&ading-order in the

also included (externalx (external and (body)x (body)  Slow-motion approximation we include only terms irg¢,

terms, Eq(35) would have entailed expressions like the firstthat will producesh,,, of the same forms as Eq&8)—(40),

and fourth terms of Eq(22). Note also from the interaction but with different numerical coefficients. For example, con-

energy terms in Eq922), (20), and (35) that the Landau- sider shoo=2&; =M/r; that givesé,=Mt/r, sinceM is a

Lifshitz way of localizing gravitational energy corresponds constant. This, in turn, impliehg; = §o,°<MtXJ/f but this

to the Newtonian choicer= — 3, a correspondence that has is not of the same form as the terms in Eg9), rather, it

previously been derived by ChandrasekfEs]. corresponds to a gauge that rapidly becomes ill-behaved as
time passes Similar arguments apply&q)oocIIkXJxk/r or

5hooo<51kxlx their coefficients cannot be altered by a gauge
B. General Gauge change because such a change would alter the mathematical
In Sec. Ill A., we considered the special case of deform of hy; and would make its magnitude unacceptably
Donder gauge, which was particularly simple due to thearge in the slow-motion limit. As a result, we must sgt

gauge condition and to the!l terms being effectively zero. =0. If we now cons@eb‘hol &j 0, possible terms are of the
Now we will examine a general gauge, which can beform o« Jaxa/r o E,px2xPx], or océ,‘axr ; cf. Eq. (39.
achieved by a gauge transformation of the form Each of these giveshy,=0 and sh;; of the same form as
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Eq. (40); hence, terms of these forms are allowed. Conse- In this general gauge, if we calculate the total mass-
quently, the most general gauge change that preserves te@ergy M,, inside the spher&’ using Egs.(28), (23), and
mathematical forms ofi ,, but alters their numerical coeffi- (42)—(44) in Eq. (27), we find

cients is

29 4
- My=M+ 2y2+€,8y—§y+2,82—2ﬁ)5ij€ijl’5
igX .
f=a ’ag + BE jaXPr 2+ yE XXX, (41)
r

23

1 7 4
+ §a+2ﬂ+§'y—§aﬂ—1—5ay>1”5” (45)

wherea, 8, andy are arbitrary constants.
Using the trace-reversed gauge cha(®f with Eq. (41),

the newh®? become . _ _ _
TheZ;Z Ir> term is zero. It is comforting to note that all the

—0_ M o x'x] new terms vanish fomw=B=y=0, giving the de Donder
h=4—+(5y+2B-2)&xX +(6-3a)Ljj 5, result M,,=M. The £Er® andZ€ terms in Eq.(45) are large
(42) compared to the double time-derivative terms that formed
the largest corrections to the mass-energy in de Donder
HO":(Z—a)'I,-aX—:Jr(E—y) £ gauge(29); however,.they are stiII.smaII c_%rgmared to the
r 21 massM that appears in the expansi¢@¥) of h”. Also note
4 that, near the body of interest, tigi€r® term will be small
_(_+,3)gjaxar2, (43) compared to th&€€ term, due to its radial dependence. So,
21 once again, we hava1,~M as a first approximation, al-
though it is necessary to keep the extra terms in(Ef). to

b k
Wk=2anki3+3a51kIabxax _3anaXaX maintain the same level of accuracy as we have been u;ing.
r ro ro Consequently M., is gauge-dependent to the order that in-
terests us, and it has theZ;;&;"" ambiguity discussed by
xax] 5 " b Thorne and Hartl¢1] and mentioned in Sec. I.
—3aIkar—5+2,351kr —2(B+y) 8E apXX Keeping only the leading-order terms in the slow-motion
approximation, as described in Sec. Ill A, the Landau-
+2(B+ 7)gjaxaxk+ 2(B+ ) E X3, (44)  Lifshitz pseudotensor in the new gauge is
|
7 1 1. 1
(_g)tOO: ﬁ( _ gglj hoo,ihoo,j 4 hoovihu'j _ Ehlj ,khlk,j + ZhOO’thJ i 4 Zh”,kh”,k_ gh”,kh“,k , (46)

o1 (3 - — — e
(_g)t0]:_(ZhoovohOO’j_FhOO’thm’j_hOO’thJ’m_F hOJ,khkl,I_hOO,Oh”,j+h”,khlk,o_hOI,khlk,j+hOI,khIJk_ hO|’thk’k

167
1 — 1 1 — 1
_ thk’OhOO'j _ ZhOO,Ohkk,j _ Ehlk,ohlk,j + Zh“,Ohkk,j ] (47)

Note that the first term of Eq46) is the same as E@31), and the first three terms of EG17) are the same as E(B2). The
additional terms all involvér’¥, which was effectively zero in the de Donder gauge because of our slow-motion assumption.

Substituting Eqs(47) and(42)—(44) into Eq.(30) and integrating gives the rate of change of mass-energy inside the sphere
V as

dMy d|(7ay 9y Tap 128 o 1 1 dz;
T Tar ot (?‘?*?‘?‘E*E iy | 5% g - “8)

Again, we have kept only théexternal fieldx (body field crossterms. As expected, this expression reduces to the de
Donder resul{35) whena= 8= y=0. Using the same argument for E48) as for Eq.(35), we can conclude that the first
term of Eq.(48) is the rate of change of the interaction energy between the tidal field and the body and that the second term
represents the rate of work done by the external field on the tibey“tidal heating”).

Notice the gauge dependen@ependence owr,3,y) of the rate of change of interaction energy
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dEint _ d

dt t

Tay 9y 7aB 128 a 1 There remains one aspect of the uniqueness of the tidal
(T— 5 + 5 5 5§ + f)) &Ly |- heating that we have not explored: a conceivdblé highly
(49  unlikely) dependence olW/dt on the choice of energy-
momentum pseudotensor in general relativity. The arbitrari-
By contrast, the “tidal heating” work done on the body has ness of the pseudotensor is general relativity’s analog of
the same, gauge-invariant value as in Newtonian theory  Newtonian theory’s arbitrariness of localization of gravita-
tional energy. The fact thadW/dt is independent of the

d_W_ _ E ; % (50) Newtonian energy localization suggests that it may also be

dt 271 dt independent of the general relativistic pseudotensor. In addi-
tion, the clear physical nature dfW/dt gives further confi-

V. CONCLUSIONS dence that it must be independent of the pseudotensor. Nev-

. ertheless, it would be worthwhile to verify explicitly that
In this paper, we have shown that the rate of work doneywydt is pseudotensor-independent.

by an external tidal field on a body is independent of how
gravitational energy is localized in Newtonian theory and
that it is gauge invariant in general relativity. Furthermore,
this quantity—which we are calling the “tidal heating”’—is

given unambiguously by Eq4). That the tidal heating | thank Kip Thorne for proposing this research problem

should be a well-defined and precise quantity is reasonablend for helpful advice about its solution and about the prose
given that its physical effects have been observed in the forrof this paper. This research was supported in part by NSF
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