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Fully general relativistic simulation of coalescing binary neutron stars: Preparatory tests
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Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

and Department of Earth and Space Science, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, J
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We present our first successful numerical results of 3D general relativistic simulations in which the Einstein
equation and the hydrodynamic equations are fully solved. This paper is especially devoted to simulations of
test problems such as spherical dust collapse, stability test of perturbed spherical stars, and preservation of
~approximate! equilibrium states of rapidly rotating neutron star and/or corotating binary neutron stars. These
test simulations confirm that simulations of coalescing binary neutron stars are feasible in a numerical relativity
code. It is illustrated that using our numerical code, simulations of these problems, in particular those of
corotating binary neutron stars, can be performed stably and fairly accurately for a couple of dynamical time
scales. These numerical results indicate that our formulation for solving the Einstein field equation and hydro-
dynamic equations is robust and makes it possible to perform a realistic simulation of coalescing binary
neutron stars for a long time from the innermost circular orbit up to formation of a black hole or neutron star.
@S0556-2821~99!01822-6#

PACS number~s!: 04.25.Dm, 04.30.2w, 04.40.Dg
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I. INTRODUCTION

The coalescence of binary neutron stars is one of the m
promising sources for planned kilometer size laser inter
ometers such as the Laser Interferometric Gravitatio
Wave Observatory~LIGO! @1,2#, VIRGO @3#, GEO @4#, and
TAMA @5#, which will be in operation within the next five
years. When a signal of gravitational waves is detected fr
binary neutron stars, it will provide not only the first chan
to observe highly relativistic objects in a dynamical motio
but also a wide variety of physical information of bina
neutron stars including their mass, spin, radius, and inn
most stable circular orbit~ISCO! @2#. The signal of gravita-
tional waves from such compact objects will be analyz
using matched filter techniques to extract the physical in
mation. To apply this technique, theoretical templates
gravitational waveforms are needed@2#. This fact has moti-
vated an intense theoretical effort for preparing such te
plates.

The orbital evolution of binary neutron stars can be
vided into three stages: inspiraling stage, intermediate st
and dynamical stage. For the study of the inspiraling stag
which their orbital radius is much larger than the stellar
dius (R) and neutron stars are in quasiperiodic states, gra
ally decreasing the orbital radius as a result of emission
gravitational waves, a post Newtonian approximation
powerful. Much effort has been made towards obtainin
template of high-order post Newtonian corrections, prov
ing many recent satisfactory results@6#.

When the orbital radius of the binary neutron stars
creases to a fewR as a consequence of gravitational wa
emission, the effect of the multipole moments of each n
tron star induced by the tidal field from the companion s
cannot be ignored. Even at this stage, the emission time s
of gravitational waves is still much longer than the orbi
period. In this intermediate stage between the inspiraling
dynamical stages, the binary can be assumed to be in a q
hydrostatic equilibrium state. For a theoretical study, it
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adequate to obtain the quasiequilibrium configuration, tak
into account the effects of the deformation of the neutr
stars, but assuming that emission of gravitational wave
negligible. In this research field, an effort has been ma
recently, yielding gradually successful results@7–9#.

With the further emission of gravitational waves, the b
nary neutron stars approach the ISCO. Upon reaching
ISCO, they behave in a dynamical manner. For the theor
cal study of such a dynamical stage, no approximation
general relativity is applicable because the system is do
nated by highly general relativistic gravity and hydrod
namic effects. In this respect, numerical relativistic simu
tion is the only promising method for a theoretical study.

Numerical relativity also plays an important role for
theoretical study of the origin ofg-ray bursts~GRBs! be-
cause the short rise times of the bursts imply that their c
tral sources have to be relativistic objects@10#. Recently, at
least some of GRBs have been turned out to be of cos
logical origin @11#. In cosmological GRBs, the centra
sources must provide a large amount of the energy*1051

ergs in a very short time scale of the order of msec to se
has been suggested that the merger of binary neutron
could be a likely candidate for the powerful central sour
@10#. The typical scenario is based on the assumption th
system composed of a rotating black hole and a surround
massive disk is formed after the merger. To clarify wheth
such a scenario is correct, numerical simulations have b
performed including effects of emission by gravitational r
diation and/or neutrinos and adopting a realistic equation
state for the neutron stars@12#. So far, the results in the
numerical simulations have not supported such a scen
@12#; i.e., the evidence that a massive disk is formed arou
the black hole has not been found. However, all the simu
tions have been performed in the Newtonian or post Ne
tonian approximations. Needless to say, general relativi
effects can play a very important role in the mergers betw
two neutron stars. To obtain the true answer, therefore
fully general relativistic simulation is necessary.
©1999 The American Physical Society52-1
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Much effort has been paid toward constructing a relia
numerical relativity code which makes it possible to clar
the evolution of merging binary neutron stars and the gra
tational waveform emitted by them. Several projects in
world such as those by Nakamura and Oohara@13,14# and by
the Washington University group@15# are in progress, but no
satisfactory results have been reported yet.

To perform a numerical simulation of coalescing bina
neutron stars for a long time from the ISCO to the format
of a black hole or new neutron star, it is necessary to cho
appropriate gauge conditions which make it possible to p
form the long-time-scale simulation stably and to extr
gravitational waves accurately. In a previous paper@16#, we
performed fully general relativistic simulations of coalesci
binary clusters using collisionless particles as the ma
source of the Einstein equation. For the simulation, we u
the approximate minimum distortion gauge and approxim
maximal slicing conditions as the spatial and time coordin
conditions~see Sec. II B!. We found that these gauge cond
tions are robust enough to allow for stable and long-tim
scale simulations of merging clusters as well as for the fa
accurate extraction of gravitational waves. In this paper,
perform simulations adopting the same gauge conditions
formulation for the Einstein equation and incorporating
solver of the relativistic hydrodynamic equations. We de
onstrate the robustness of our formulation, presenting s
cessful numerical results of 3D hydrodynamic simulation

In particular, this paper is devoted to simulations of t
problems. The purpose here is to ensure that numerical s
lations of coalescing binary neutron stars for a long ti
scale from the ISCO to the formation of a black hole
neutron star are feasible in our formulation and numer
code. The test problems presented in this paper are a sp
cal dust collapse, stability test of spherical stars in equi
rium states, excitation of quadrupole oscillations of p
turbed spherical stars, preservation of stable rapidly rota
stars in equilibrium states, and preservation of corotating
nary neutron stars in an approximate quasiequilibrium or
We show that stable and fairly accurate simulations for th
test problems are feasible with our code, indicating the f
sibility of forthcoming realistic simulations of coalescing b
nary neutron stars.

The paper is organized as follows. In Sec. II, our form
lation for solving the Einstein field equations as well as re
tivistic hydrodynamic equations is described. We also
scribe the gauge conditions and the numerical met
employed in this paper briefly. In Sec. III, we describe t
problems which should be carried out to check the accur
and performance of a numerical relativity code for solvi
the coupled equations composed of the Einstein and hy
dynamic equations. Then, we present the numerical res
for the test simulations. In Sec. IV, we present numeri
results of the merger of corotating binary neutron stars as
example. Section V is devoted to a summary. Through
this paper, we adopt the unitsG5c5M (51 whereG, c,
andM ( denote the gravitational constant, speed of light, a
the solar mass, respectively. Hence, the units of length, ti
mass, and density are 1.477 km, 4.92731026 sec, 1.989
31033 g, and 6.17331017 g/cm3. Latin and Greek indices
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denote spatial components~1–3! and spacetime componen
~0–3!, respectively. As spatial coordinates, we use the C
tesian coordinatesxk5(x,y,z) with r 5Ax21y21z2.
d i j (5d i j ) denotes the Kronecker delta.

II. FORMULATION

A. Basic equations

Our code solves the coupled equations of the Eins
equation and relativistic hydrodynamic equations. Our f
mulation for solving the Einstein equation has been
scribed in detail in previous papers@17,18,16#. Since we
adopt the same formulation, only changing the matter sou
we here only review the basic equations.

We write the line element in the form

ds25gmndxmdxn

5~2a21bkb
k!dt212b idxidt1g i j dxidxj , ~2.1!

where gmn ,a,b i (b i5g i j b
j ), and g i j are the 4D metric,

lapse function, shift vector, and 3D spatial metric, resp
tively. Following previous papers@17,18,16#, we define the
quantities to be solved in numerical computation as

g5det~g i j ![e12f, ~2.2!

g̃ i j [e24fg i j @ i.e., det~ g̃ i j !51#, ~2.3!

Ãi j [e24fS Ki j 2
1

3
g i j Kk

kD , ~2.4!

whereKi j is the extrinsic curvature andKk
k its trace. We note

that indices ofÃi j and/orÃi j are raised and lowered in term
of g̃ i j and g̃ i j . In the numerical computation, we solve fo
g̃ i j , Ãi j , f, and Kk

k instead ofg i j and Ki j . Hereafter, we

use¹m , Di , andD̃ i as the covariant derivatives with respe
to gmn , g i j , andg̃ i j , respectively.

As the matter source of the Einstein equation, we ado
perfect fluid. In this case, the energy momentum tenso
written as

Tmn5~r1r«1P!umun1Pgmn , ~2.5!

where r, «, P, and um are the rest mass density, speci
internal energy density, pressure, and four-velocity, resp
tively. Hereafter, we assume an equation of state in the fo
P5(G21)r«, whereG is a constant.

The hydrodynamic equations are composed of the co
nuity, Euler, and energy~or entropy! equations, which are
derived from

¹m~rum!50, ~2.6!

g i
m¹nTm

n 50, ~2.7!

um¹nTm
n 50. ~2.8!

We write their explicit forms as
2-2
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FULLY GENERAL RELATIVISTIC SIMULATION OF . . . PHYSICAL REVIEW D 60 104052
] tr* 1] i~r* v i !50, ~2.9!

] t~r* ûk!1] i~r* ûkv
i !

52ae6f]kP2r* Fwh]ka2û j]kb
j

1
ae24fûi û j

2wh
]kg̃

i j 2
2ah~w221!

w
]kfG ,

~2.10!

] te* 1] i~e* v i !50, ~2.11!

where ]m5]/]xm, r* 5rwe6f, h511«1P/r, w5au0,
ûk5huk , e* 5(r«)1/Gwe6f, andv i([ui /u0) is written as

v i52b i1
ag̃ i j û j

whe4f
. ~2.12!

In numerical simulations, we solve Eqs.~2.9!–~2.11! to
evolver* , ûk , ande* .

The volume integral ofr* in the three-hypersurface,

M* [E d3xr* , ~2.13!

denotes the total rest mass of the system, which should
conserved with time. Although the equation fore* has the
same form as that forr* , the volume integral ofe* is not
conserved in the presence of shocks. This implies that u
10405
be

ng

Eq. ~2.11! we cannot obtain the correct solution when
shock is formed. Thus, the artificial viscosity terms are add
in Eqs.~2.10! and~2.11! for some problems in which a shoc
is formed and plays an important role during the evolution
the system~see Appendix A!.

Once ûi is obtained,w(5au0) is determined from the
normalization relation of the four-velocity, which can b
written as

w2511e24fg̃ i j ûi û jF11
Ge

*
G

r* ~we6f!G21G22

. ~2.14!

The Einstein equation is split into the constraint and e
lution equations. The Hamiltonian and momentum constra
equations are written as

Rk
k2Ãi j Ã

i j 1
2

3
~Kk

k!2516pE, ~2.15!

DiÃj
i 2

2

3
D jKk

k58pJj , ~2.16!

where

E[Tmnnmnn5r* hwe26f2P, ~2.17!

Ji[2Tmnnmgn i5r* e26fûi , ~2.18!

nm5(2a,0), andRi j is the Ricci tensor with respect tog i j .
Following our previous works, we write the evolutio

equations for the geometric variables in the form@18,16#
~] t2b l] l !g̃ i j 522aÃi j 1g̃ ikb , j
k 1g̃ jkb ,i

k 2
2

3
g̃ i j b ,k

k , ~2.19!

~] t2b l] l !Ãi j 5e24fFaS Ri j 2
1

3
e4fg̃ i j Rk

kD2S DiD ja2
1

3
e4fg̃ i j DkD

ka D G
1a~Kk

kÃi j 22ÃikÃj
k!1b ,i

k Ãk j1b , j
k Ãki2

2

3
b ,k

k Ãi j 28paS e24fSi j 2
1

3
g̃ i j Sk

kD , ~2.20!

~] t2b l] l !f5
1

6
~2aKk

k1b ,k
k !, ~2.21!

~] t2b l] l !Kk
k5aF Ãi j Ã

i j 1
1

3
~Kk

k!2G2DkD
ka14pa~E1Sk

k!, ~2.22!

whereQ,i5] iQ for an arbitrary variableQ, and

Si j [Tmngm ign j5r* e26f~wh!21ûi û j1e4fg̃ i j P. ~2.23!

In calculatingRi j andRk
k in Eq. ~2.20!, we have terms of the type such asdklg̃ ik,l j anddklg̃ jk,l i . For the evaluation of such

terms, we define the auxiliary variableFi5d j l ] l g̃ i j @19,18,16# and solve the evolution equation
2-3
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~] t2b l] l !Fi52aH f k jÃik, j1 f , j
k jÃik2

1

2
Ãj l hl j ,i16f ,kÃi

k2
2

3
~Kk

k! ,i J
22d jka ,kÃi j 1d j l b ,l

k hi j ,k1S g̃ i l b , j
l 1g̃ j l b ,i

l 2
2

3
g̃ i j b ,l

l D
,k

d jk216paJi , ~2.24!
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where hi j 5g̃ i j 2d i j and f i j 5g̃ i j 2d i j . Then, dklg̃ ik,l j is
evaluated asFi , j .

We define the total angular momentum of the system

J[ lim
r→`

1

8p R ~xÃy j2yÃx j!e
6fdSj

5E d3xe6fFxJy2yJx1
1

8p
~Ãy

x2Ãx
y!

2
1

16p
Ãi j ~x]y2y]x!g̃

i j 1
1

12p
~x]y2y]x!Kk

kG ,
~2.25!

where we use Gauss’s law and Eq.~2.16! to derive the final
expression. We also use the following quantity to roug
estimate the angular momentum inside a coordinate radiur:

J~r !5E
uxi u,r

d3xe6f~xJy2yJx!. ~2.26!

B. Gauge conditions

As in a previous paper@16#, we adopt an approximat
maximal slice~AMS! condition and an approximate min
mum distortion~AMD ! gauge condition as the time and sp
tial gauge conditions, respectively, for most of the simu
tions in this paper. In some test simulations carried ou
Sec. III, we also use the zero-shift vector gauge condit
bk50 for comparison between two results obtained in d
ferent gauge conditions.

To impose the AMS condition, we solve the followin
parabolic type equation for lna at each time step until an
approximate convergence is achieved:

]l ln a5DkD
k ln a1~Dk ln a!~Dk ln a!

24p~E1Sk
k!2Ãi j Ã

i j 2
1

3
~Kk

k!21 f aKk
kr

*
1/2.

~2.27!

Herel denotes a control parameter andf a is a constant for
which we assign a constant ofO(1). Assuming that the con
vergence is achieved and that the right-hand side of
~2.27! becomes zero, the evolution equation forKk

k can be
written as

~] t2b l] l !Kk
k52 f aaKk

kr
*
1/2. ~2.28!
10405
s
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Thus, if Kk
k is zero initially and the convergence is com

pletely achieved, the maximal slice conditionKk
k50 is pre-

served. Even when the convergence is incomplete andKk
k

deviates from zero, the right-hand side of Eq.~2.28! enforces
uKk

ku to approach zero in the local dynamical time sca
;r

*
21/2. Hence, the conditionKk

k50 is expected to be sat
isfied approximately.

To impose the AMD gauge condition, we solve the fo
lowing simple elliptic type equations:

DPi5Si , ~2.29!

Dh52Six
i , ~2.30!

whereD denotes the Laplacian in the flat 3D space, and

Si[16paJi12Ãi j ~D̃ ja26aD̃ jf!1
4

3
aD̃ iKk

k .

~2.31!

From Pi andh, we determineb i as

b j5d j i F7

8
Pi2

1

8
~h ,i1Pk,ix

k!G . ~2.32!

Namely,b i satisfies an elliptic type equation of the form

d i j Db i1
1

3
b ,k j

k 5Sj . ~2.33!

As we described in a previous paper@16#, if an action

I 5E d3x~] tg̃ i j !~] tg̃kl!g̃
ikg̃ j l ~2.34!

is minimized with respect tob i , we obtain the equation of a
minimum distortion~MD! gauge condition@20# for b i as

g̃ jkD̃ i D̃ ib
k1

1

3
D̃ j D̃ ib

i1R̃jkbk5Sj , ~2.35!

whereR̃jk is the Ricci tensor with respect tog̃ i j . Thus, the
equation forb i in the AMD gauge condition is obtained b
neglecting coupling terms betweenb i andhi j in Eq. ~2.35!.
Since the neglected terms are expected to be small@16#, we
can expect thatI is approximately minimized in the AMD
gauge condition.

The other benefit of the AMD gauge condition is thatFi
is guaranteed to be small everywhere except in the str
field region just around a highly relativistic object@16#. This
implies that a transverse conditiond i j ] i g̃ jk50 approxi-
2-4
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mately holds forg̃ i j in the wave zone, helping the accura
extraction of gravitational waves near the outer bounda
of the computational domain.

C. Initial value formalism

Initial conditions are obtained by solving the constra
equations~2.15! and ~2.16!. In this paper, we restrict ou
attention to initial conditions in whichhi j (5g̃ i j 2d i j )50
andKk

k50. Then, the basic equations for obtaining the init
data are the same as those in@18,16# as described below.

Using the conformal factorc[ef, Âi j 5c6Ãi j , and Âi j

5c6Ãi j , the Hamiltonian and momentum constraint equ
tions are rewritten in the form

Dc522pEc52
1

8
Âi j Â

i j c27, ~2.36!

Âi , j
j 58pJic

6. ~2.37!

After we decomposeÂi j in the standard manner as

Âi j 5Wi , j1Wj ,i2
2

3
d i j d

klWk,l , ~2.38!

we setWi as @18,16#

Wi5
7

8
Bi2

1

8
~x ,i1Bk,ix

k!, ~2.39!

wherex andBi denote scalar and vector functions. Then, E
~2.37! can be decomposed into two simple elliptic type eq
tions

DBi58pJic
6,

~2.40!
Dx528pJix

ic6.

SinceJic
6(5r* ûi) is nonzero only in the strong field re

gion, the solution of the momentum constraint equation
accurately obtained.

In addition to the constraint equations, we solve an ellip
type equation fora to impose the maximal slice conditio
initially. In conformally flat 3D space, the equation is writte
in the form

D~ac!52pac5~E12Sk
k!1

7

8
ac27Âi j Â

i j . ~2.41!

From the initial condition, the total gravitational mass a
angular momentum of the system att50 are calculated from

~Mg!05E d3xS Ec51
1

16pc7Âi j Â
i j D , ~2.42!

J05E d3x~xJy2yJx!c
6. ~2.43!
10405
s
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Note that Eq.~2.25! reduces to Eq.~2.43! in 3D space in
which g̃ i j 5d i j andKk

k50.

D. Boundary conditions

In this paper, we assumep-rotation symmetry around the
z axis as well as a plane symmetry with respect to thez50
plane. Hence, we solve equations in a quadrant regioL
>x>2L and L>y, z>0 whereL denotes the location o
the outer boundaries. We impose the boundary condition
the y50 plane such as

Q~x,0,z!5Q~2x,0,z!, ~2.44!

QA~x,0,z!52QA~2x,0,z!,

QA~x,0,z!52QA~2x,0,z!, ~2.45!

Qz~x,0,z!5Qz~2x,0,z!,

Qz~x,0,z!5Qz~2x,0,z!, ~2.46!

QAB~x,0,z!5QAB~2x,0,z!, ~2.47!

QAz~x,0,z!52QAz~2x,0,z!, ~2.48!

Qzz~x,0,z!5Qzz~2x,0,z!, ~2.49!

where A and B5x or y, and Q, Qi(Qi), and Qi j denote
arbitrary scalar, vector, and tensor quantities, respective

At the outer boundaries, we impose an approximate o
going boundary condition forhi j and Ãi j @18# as

rQi j ~u!5const, ~2.50!

where we setu5at2e2fr . ~Even if we simply setu5t
2r , the results do not change significantly.! More explicitly,
Eq. ~2.50! is rewritten in the form

Qi j ~ t,r !5S 12
dr

r DQi j ~ t2dt,r 2dr !, ~2.51!

where dt is a time step anddr 5ae22fdt. Qi j (t2dt,r
2dr ) is linearly interpolated from the nearby eight gr
points. We also note that the numerical results are not se
tive to the boundary condition ofÃi j and we have not found
a significant change in the numerical results even when
impose the boundary condition with the radial falloff a
O(r 23). A possible explanation for this result is that th
spatial derivative ofÃi j , which appears in the evolution
equations forÃi j andFi , does not play an important role fo
the evolution of the system. On the other hand, numer
results and the stability of the numerical system are sign
cantly dependent on the boundary condition forg̃ i j . The
condition defined by Eq.~2.51! is one of the best condition
among those we have tried so far.

For f andKk
k , we impose the following boundary cond

tions at the outer boundaries:

~rf! ,r50, ~2.52!
2-5
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Kk
k50. ~2.53!

For Fi , we have tried a number of boundary conditions su
asFi5O(r 23), Fi50, and] jFi5const atxj5L, and have
found that the results are weakly dependent on the boun
condition. We have found that the conditionFi50 is prefer-
able for a long-time-scale numerical evolution, but for e
tracting gravitational waves near the outer boundaries,
condition Fi5O(r 23) or ] jFi5const is preferable. In the
spherical cases, we use the conditionFi50, but we change
the condition case by case for other cases.

It should be noted that all the outer boundary conditio
described above are only approximate. This implies that
merical errors such as spurious back reflection and incom
of gravitational waves will be generated near the ou
boundaries. For precise numerical simulation, apparently,
have to adopt more sophisticated outer boundary condit
as have been proposed and investigated by a coupl
groups@21#. Imposing precise outer boundary conditions
one of the important future issues.

E. Grid and time step

Throughout this paper, we use a uniform grid, i.e.,dx
5dy5dz5const. We take (2N11,N11,N11) grid points
in the (x,y,z) direction, respectively~i.e., N5L/dx).

The time stepdt must satisfy the stability condition re
stricted by the Courant criterion for geometric variables.
we neglect the other two directions, the geometric Cour
condition in thexi direction is written as

dt,@ag i i
21/21b i #21dx. ~2.54!

Since @ag i i
21/21b i #21 is expected to be greater than uni

for most cases, we simply set a geometric time step as

dtg5Cgdx, ~2.55!

where Cg is a constant which we choose typically as 0
Also, dt must be sufficiently small so that the matter dist
bution cannot change by a large fraction amount in one t
step. The time scale is the shortest when the matter distr
tion changes in a dynamical time scale as in the case w
the matter collapses to a singularity. Thus, we simply se

dt5minS CmA 3p

32r*
,dtgD , ~2.56!

where Cm is a constant for which we choose 0.02–0.0
Note that the first term on the right-hand side of Eq.~2.56!
denotes the time for the collapse to a singularity of a sph
cal, homogeneous dust in the Newtonian limit.

In the case when the density is so high that a black h
seems to be formed, the first term of Eq.~2.56! is smaller
than the second term, but besides such a highly relativ
case, the second term is smaller and determines the time
We note that the hydrodynamic Courant condition is le
severe than the geometric one@22#, so that we do not con
sider it.
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F. Brief summary of numerical methods and evolution scheme

For solving the equations for geometric variables as w
as for determining the apparent horizon, the same method
employed in previous papers@18,16# are used here. The nu
merical method for solving the hydrodynamic equations
briefly discussed in Appendix A.

The evolution scheme for the geometric and fluid va
ables from a time slice att to the next time slice att1dt is

as follows~see the schematic Fig. 1!: We putg̃ i j , Fi , f, a,
bk, r* , ûi , v i , ande* on t (0), t (1), . . . ,t (n) andÃi j andKk

k

on t (21/2), t (1/2), t (3/2), . . . , t (n21/2), wheret (n) denotes the
coordinate time at thenth time step, t (n11/2)[(t (n)

1t (n11))/2, andn is a positive integer. Namely, we use th
leapfrog method@23# for the evolution of the geometric vari
ables.

For a given set of the geometric variablesg̃ i j , Fi , f, a,
and bk and fluid variablesr* , ûi , v i , and e* at t (n), and
other geometric variablesÃi j andKk

k at t (n21/2) @stage~1! of

Fig. 1#, first, Ãi j andKk
k are evolved fromt (n21/2) to t (n11/2)

using the evolution equations~2.20! and ~2.22! @stage~2! of
Fig. 1#. Since the right-hand side of these evolution equ
tions includesÃi j andKk

k which are defined only att (n21/2),
we use the linear extrapolation method at each spatial
point as

FIG. 1. Schematic picture for a numerical scheme of time e
lution of variables from thenth to (n11)th time step.
2-6
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~Kk
k!(n)5

3

2
~Kk

k!(n21/2)2
1

2
~Kk

k!(n23/2),

~Ãi j !
(n)5

3

2
~Ãi j !

(n21/2)2
1

2
~Ãi j !

(n23/2),

to preserve the second order accuracy in time. We note
in adopting the linear extrapolation, we implicitly make u
of the fact that the time steps att (n21) and t (n) are approxi-
mately equal.

Once we obtain (Kk
k)(n11/2) and (Ãi j )

(n11/2), the geomet-

ric variablesg̃ i j , f, andFi are evolved tot (n11) @stage~3!
of Fig. 1#. We also use an extrapolation method such as

a (n11/2)5
3

2
a (n)2

1

2
a (n21),

~b i !(n11/2)5
3

2
~b i !(n)2

1

2
~b i !(n21),

because it is necessary to preserve the second order acc
in time.

Next, the hydrodynamic equations forr* , ûi , ande* are
evolved tot (n11). For solving the evolution equations, w
use a Runge-Kutta method of second order accuracy@23#;
i.e., the hydrodynamic equations are solved fromt (n) to
t (n11/2) in the first step@stage~4! of Fig. 1#, and using the
fluid variables defined both att (n) and att (n11/2), those at
t (n11) are subsequently obtained in the second step@stage~5!

of Fig. 1#. Since there appearg̃ i j , f, a, b i , w, h, andP on
the right-hand side of the relativistic Euler equation~2.10!
and we need those att (n11/2) in the second step for solvin
the equation, we use extrapolation and interpolation:

a (n11/2)5
3

2
a (n)2

1

2
a (n21),

~b i !(n11/2)5
3

2
~b i !(n)2

1

2
~b i !(n21),

f (n11/2)5
1

2
@f (n11)1f (n)#,

~ g̃ i j !
(n11/2)5

1

2
@~ g̃ i j !

(n11)1~ g̃ i j !
(n)#,

w(n11/2)5
3

2
w(n)2

1

2
w(n21).

P andh at t (n11/2) are calculated fromr* , e* , w, andf at
t (n11/2) obtained in the first step.@Note thatw(n11), a (n11),
and (b i)(n11) have not yet been obtained by this stag#
Once the fluid variables are evolved tot (n11), Eq. ~2.14! is
solved at each spatial grid point for obtainingw(n11) using
the Newton-Raphson method@23#. Subsequently, we can ob
tain P andh at t (n11).
10405
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In the final step, we determinea (n11) and (b i)(n11) by
imposing the gauge conditions@stage~6! of Fig. 1#. In solv-
ing their equations, we again use the extrapolation as

~Kk
k!(n11)5

3

2
~Kk

k!(n11/2)2
1

2
~Kk

k!(n21/2),

~Ãi j !
(n11)5

3

2
~Ãi j !

(n11/2)2
1

2
~Ãi j !

(n21/2).

Since all the quantities are evolved by this stage, we
derive v i at t (n11) using Eq.~2.12! without any extrapola-
tion.

III. TESTS AND RESULTS

Our current priority in numerical relativity is to perform
simulations of the merger of binary neutron stars. Befo
carrying out such simulations successfully, it is necessar
confirm the accuracy and performance of our numerical c
for many different problems. In particular, the following is
sues have to be addressed.~i! The merger will take place for
a couple of orbital periods from the time when the binary ju
enters inside the ISCO to the formation of a black hole
neutron star. Can we carry out the simulation stably fo
couple of orbital periods?~ii ! The final product of the merge
will either be a black hole or a neutron star. If the merg
object is unstable against gravitational collapse, a black h
is formed. Can we judge the stability of the merged obj
against the gravitational collapse?~iii ! The formation of a
black hole will be signaled by the appearance of an appa
horizon. Can we determine the apparent horizon during
simulations?~iv! Can we extract waveforms of gravitation
waves?

To answer these questions, we have performed sim
tions for a wide variety of test problems.

~1! Spherical collapse of dust (P50) to a black hole: We
compare the results with those obtained in a 1D~spherical
symmetric! simulation. We also check whether the appare
horizon can be found at a correct time and location. This
confirms that our code can simulate the formation of a bla
hole accurately.

~2! Stability of spherical stars: We check that the stabil
of spherical stars can be judged in our code, preparing b
stable and unstable stars as initial conditions. We also ch
whether our code can provide a correct output on the fun
mental radial oscillation frequency of perturbed spheri
stars. This test is useful to confirm that we can determine
stability of the merged object against gravitational collap

~3! Quadrupole oscillations of perturbed spherical st
and emission of gravitational waves: We give a quadrup
perturbation to a spherical stable star, and check whethe
can obtain the frequency of the fundamental mode (f -mode!
oscillation and extract the waveform of gravitational wav
near the outer boundaries. This test is useful to confirm
the extraction of gravitational waves near the outer bou
aries is feasible.

~4! Preservation of rapidly rotating stars in equilibriu
states: We check that~approximate! equilibrium states of
2-7
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MASARU SHIBATA PHYSICAL REVIEW D 60 104052
rapidly rotating, stable stars can be preserved for a coupl
the rotation periods. The simulations are carried out choos
rigidly and rapidly rotating stars at mass-shedding lim
This test is useful to confirm that the coordinate twisting d
to the rotation of the stars is sufficiently suppressed to a le
adequate to carry out stable and accurate simulations in
AMD gauge condition.

~5! Preservation of a corotating binary neutron star in
quasiequilibrium state: We prepare a mildly relativistic co
tating binary neutron star in an approximate quasiequilibri
state obtained assuming a conformally flat 3D geometry@24#.
Although we ignorehi j which is necessary to obtain a tru
quasiequilibrium configuration, it is at most a second p
Newtonian quantity from the post Newtonian point of vie
@25#, and for mildly relativistic binaries, the error is expect
to be small. This test confirms that an approximate qu
equilibrium state of a binary neutron star can be preser
for more than one orbital period.

In the following subsections, we present the numeri
results of tests~1!–~5! separately.

In tests~2!–~5!, we prepare the equilibrium and/or quas
equilibrium states as the initial conditions, adopting a po
tropic equation of stateP5KrG with G55/3 and/or 2. For
G55/3 and 2, we fixK as 10 and 200/p, respectively, to
mimic a relation between the rest massM* and the central
densityrc for neutron stars.

In Fig. 2, we showM* and the circumferential radiusRof
the spherical equilibrium stars as a function ofrc for G
55/3 and 2, respectively. ForG55/3, M* (Mg) reaches a
maximum value.1.552 (1.487) atrc.1.8531023, and for
G52, M* (Mg) .1.435 (1.306) atrc.5.031023. Beyond
the critical densities, the star is unstable.

Although we adopt particular units fixingK, the mass,

FIG. 2. Rest massM* and circumferential radiusRas a function
of central densityrc for spherical polytropic stars ofK510 and
G55/3 ~solid lines! and ofK5200/p andG52 ~dotted lines!. The
solid circles denote the equilibrium stars which are used in
simulations@tests~2! and/or ~3!#, and the open circles denote th
critical configuration of stability against gravitational collapse. T
cross in the figure forM* 2rc denotes the relation betweenM* /2
and the maximum density for corotating binary neutron stars
approximate quasiequilibrium states which are adopted as in
conditions in Secs. III E and IV.
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length, and density may be rescaled using the following ru

M* ~Mg!→M* Cn̄/2~MgCn̄/2!,R→RCn̄/2,

rc→rcC
2n̄ and J→JCn̄ for K→KC, ~3.1!

wheren̄51/(G21) andC is an arbitrary constant. Namely
the invariant quantities are only dimensionless quanti
such as M* K2n̄/2 (MgK2n̄/2), RK2n̄/2, rcK

n̄, M* /R
(Mg /R), andJ/M

*
2 (J/Mg

2).

A. Test „1…: Spherical collapse of dust

We consider a time-symmetric, conformally flat initia
condition for the dust sphere, and adopt the following de
sity profile:

r* 5AF11expS r 22r 0
2

dr 2 D G21

, ~3.2!

where we chooser 054Mg anddr 250.18Mg
2 . A is adjusted

so that the gravitational mass of the system is 1 (A.4.287
31023). In this test, we assign negligible specific intern
energy and pressure, i.e.,«!1 and P!r. Throughout this
subsection, every quantity is shown in the unitMg51 ~and
G515c).

We perform the 3D numerical simulation as well as 1
~spherical symmetric! simulation and compare the two re
sults. The simulations are carried out in two different spa
gauge conditions, the MD andb i50 gauge conditions. We
note that in a spherically symmetric case with a conforma
flat initial condition, the AMD gauge condition is identica
with the MD gauge condition because the condition] tg̃ i j
50 holds in both cases throughout the whole evolutio
Hence, a comparison can be done without any coordin
transformation. We use the maximal slice condition in t
1D case and AMS condition in the 3D case. SinceKk

k can be
kept nearly equal to zero in the AMS condition, we c
consider them as the same slice conditions. We have us
grid with N560 anddx50.15 in the 3D simulation.

First, we show numerical results for thebk50 case. In
Fig. 3, we showa andr* at r 50 as a function of time. The
dotted and solid lines are the 1D and 3D results, respectiv
In Fig. 4, we also plota along thex axis at selected times
(t512.0, 17.2, and 20.4! for the 1D~the solid lines! and 3D
~the solid circles! results, respectively. We note that in th
1D simulation, the apparent horizon is found att;18.6. In
the 3D simulation, it is also found nearly at equal time a
the same location. These results show that the 1D and
results agree well at least up to the formation of a black h
and confirm that it is possible to investigate black hole f
mation in a spherical symmetric spacetime accurately w
our formulation and numerical code.

In the late phase (t*23), the accuracy of the 3D result
deteriorates. This is because the error increases ing̃ i j rapidly
as a consequence of the so-called horizon stretching aro
the location of the apparent horizon.
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FULLY GENERAL RELATIVISTIC SIMULATION OF . . . PHYSICAL REVIEW D 60 104052
Next, we present numerical results in the MD~and AMD!
gauge conditions. In Fig. 5, we showa andr* at r 50 as a
function of time. In this case, the 1D~the dotted lines! and
3D ~the solid lines! results agree well byt;20. Fortunately,
we could determine the apparent horizon because i
formed att;18.6, but the accuracy deteriorates soon a
the formation. This illustrates that the MD gauge condition
less appropriate than thebk50 gauge condition for the evo
lution of the late phase of the gravitational collapse in
simulations performed under identical grid number and sp
ing. The reason is apparently related to the drawback of
MD gauge condition pointed out in@16#: In the MD or AMD
gauge condition withKk

k.0, the coordinates spread outwa
and the proper distance between two neighboring grids
creases, i.e.,] ib

i.0 (b r.0) and] tf.0 @cf. Eq. ~2.21!#,
aroundr 50 during gravitational collapses. As a result, t
black hole forming region cannot be well resolved. In Fig.
we show the time evolution off at r 50. It changes from
0.17 to 0.9 byt520. Thus, the proper distance between t
neighboring grids increases by a factore2[f(t520)2f(t50)]

;4. In theb i50 gauge condition withKk
k50, on the other

hand,f(xi) is constant in time andhi j for r;0 is nearly

FIG. 3. a andr* at r 50 as a function of time for a spherica
dust collapse with zero-shift gauge condition. The dotted lines
the 1D results, and the solid lines are the 3D results.

FIG. 4. a along thex axis at selected times (t512.0,17.2, and
20.4! for a spherical dust collapse with zero-shift gauge condit
for the 1D results~the solid lines! and 3D results~the solid circles!.
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equal to 0, so that the physical grid spacing in the MD gau
conditions is 4 times as large as that in theb i50 gauge
condition aroundr 50 at t;20.

To overcome the coordinate spreading effect witho
changing the gauge condition, we have to take a large n
ber of grid points around the black hole forming region. T
solution to this problem may be to adopt an adaptive m
refinement technique@26# in which we can improve the reso
lution around the black hole forming region effectivel
However, since the spreading factor increases rapidly
shown in Fig. 6, we have to improve the resolution a
quickly when using such a technique. We do not think i
good idea to simply rely on such a technique. We conside
necessary to modify the gauge condition. A strategy of
modification and the numerical experiment will be presen
in one of the forthcoming papers@27#.

B. Test „2…: Stability of spherical stars

In this second test, we prepare spherical equilibrium s
of a polytropic equation of state ofG55/3. We use two stars
for the test. One is a stable star ofrc51023, M* 51.499,

re

n

FIG. 5. The same as Fig. 3, but with the MD~or AMD! gauge
condition. The dotted and solid lines denote the 1D and 3D res
respectively.

FIG. 6. f as a function of time for a spherical dust collapse
the MD ~or AMD! gauge condition. The dotted and solid line
denote the 1D and 3D results, respectively.
2-9
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MASARU SHIBATA PHYSICAL REVIEW D 60 104052
and Mg51.440, and the other is an unstable star ofrc
52.431023, M* 51.542, andMg51.478. In both cases
the total rest mass is slightly less than the maximum va
In Fig. 2, we show with the solid circles and the open cir
the locations of the two stars and the star at the critical d
sity of stability, respectively.

Here, we again use two spatial gauge conditions: AM
gauge andb i50 gauge conditions. In Fig. 7, we show th
time evolution of the densityr (5r* e26f/w) and a at r
50 as a function of time for a stable configuration ofrc
51023. These simulations were performed withN550 and
dx50.4. The solid and dotted lines are the results in theb i

50 gauge condition, and the dashed line is in the AM
gauge condition. The dotted line also denotes the result
the case in which we give a perturbation to the equilibriu
configuration by reducingK by 0.5% initially. In other cases
we give the equilibrium state without any changes. Th
figures clearly illustrate the feasibility of our code to jud
the stability of the spherical stable star and to preserv
stably at least in a few oscillation periods irrespective of
gauge conditions.

As shown with the approximate perturbation analysis
Appendix B@28#, the period of the fundamental radial osc
lation is ;10.5rc

21/2. For the pressure-depleted case~the
dotted line!, the oscillation period is clearly recognized
Fig. 7. This shows that the frequency of the fundamen
radial oscillation can be computed accurately in our code

In Fig. 8, we show the time evolution ofr and a at r
50 for an unstable configuration ofrc52.431023. The
simulations are performed withN550 anddx50.3. We pre-
pare pressure-depleted initial conditions in which we red
K by 0.5% and 0.1%. As in the stable case, we use both
b i50 and AMD gauge conditions, and the numerical resu
are denoted by the solid and dashed lines, respectively
shown in Fig. 8, the unstable star collapses into a black h
As one would expect, the star collapses more quickly in

FIG. 7. r and a at r 50 as a function of time (trc
1/2) in 3D

numerical evolution of a stable spherical polytropic star ofrc

51023, K510, andG55/3. The solid and dotted lines denote th
results in the zero-shift gauge condition and the dashed line in
AMD gauge condition. In the simulation shown with the dott
line, we reduceK by a factor of 0.5% initially, and in other case
we give equilibrium states without any perturbation.
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case when the depletion factor of the pressure is lar
These results confirm that our code provides correct res

The time evolutions ofr anda at r 50 in the two spatial
gauge conditions approximately agree with each other ex
for the late phase of the gravitational collapse during wh
the coordinate spreading effect is severe in the AMD~and
MD! gauge conditions@29#. The overall agreement~except
for the late phase! is an important test of consistency becau
r anda at r 50 are both gauge-independent quantities.

C. Test „3…: Quadrupole oscillations
of a perturbed spherical star

For the third test, we prepare stable spherical stars
equilibrium states as in test~2!. We adoptG55/3 and 2 in
this test, and choose stars in whichrc51023 for G55/3 and
rc5331023 for G52, respectively. ForG52 and rc53
31023, the mass and circumferential radius are 1.25 a
6.99, respectively~see the solid circles in Fig. 2!. We per-
form the simulations withN550 anddx50.5 for G55/3
and with N550 anddx50.25 for G52, respectively. The
test is performed in the AMD gauge condition, and at t
outer boundaries, we setFi5O(r 23).

As the source of the initial quadrupole oscillation, we gi
a velocity perturbation of ‘‘1 ’’ type

ui~ t50!5AAMg

R3 ~2x,y,0! ~3.3!

or of ‘‘ 3 ’’ type

ui~ t50!5AAMg

R3 ~2y,2x,0!, ~3.4!

whereA is a constant which is set to be 0.082.
As a result of a time-varying mass quadrupole momen

the star, gravitational waves are emitted. This allows us

e

FIG. 8. r and a at r 50 as a function of time (trc
1/2) in 3D

numerical evolution of an unstable spherical polytropic star ofrc

52.431023, K510, andG55/3. The solid and dashed lines de
note the results in the zero-shift gauge and AMD gauge conditio
respectively. In these simulations, we reduceK by a factor of 0.1%
or 0.5% initially.
2-10
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check the feasibility of the gravitational wave extraction ne
the outer boundaries. To extract gravitational waveforms,
define@16#

h1[r ~ g̃xx2g̃yy!/2, ~3.5!

h3[r g̃xy , ~3.6!

along thez axis. Since we adopt the AMD gauge conditio
and prepare initial conditions in whichFi50, hi j is approxi-
mately transverse and traceless in the wave zone@16#. As a
result,h1 andh3 are expected to be appropriate measure
gravitational waves. They are also useful to find the ma
mum amplitude of gravitational waves because we treat
problems in which the amplitude is maximum along thez
axis.

In Figs. 9–11, we show a root mean square radius

FIG. 9. xrms
i and a at r 50 as a function of time (trc

1/2) for a
perturbed spherical star ofrc51023, K510, andG55/3 with a
quadrupole perturbation of the1 mode. The solid, dotted, an
dashed lines denotexrms, yrms, andzrms, respectively.

FIG. 10. The same as Fig. 9, but for3 mode perturbation.
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xrms
i [F 1

M*
E d3xr* ~xi !2G1/2

, ~3.7!

as a function of time for the1 and3 mode perturbations for
G55/3 ~Figs. 9 and 10!, and for the1 mode perturbation for
G52 ~Fig. 11!, respectively. In the case of the1 mode
oscillation, xrms ~the solid line! and yrms ~the dotted line!
oscillate with a characteristic period. ForG55/3 and 2, the
oscillation period is;5.5rc

21/2 and;4.7rc
21/2, respectively.

As shown by perturbative studies on stellar pulsations@30#,
the angular frequencies of thef-mode oscillation forG55/3
and 2, andMg /R;0.1 are approximately written as

v.5 1.44AMg

R3 for G55/3,

1.22AMg

R3 for G52.

~3.8!

Or, according to an empirical formula@31#, the angular fre-
quency for the stars ofMg /R;0.1 is also written, irrespec
tive of G, as

v.0.01210.93AMg

R3 . ~3.9!

For G55/3 andrc51023 ~i.e., Mg.1.44 andR.13.1), the
oscillation period is.5.5rc

21/2 in both formulas. ForG52
and rc5331023 ~i.e., Mg.1.25 andR56.99), the period
is .4.7rc

21/2 from Eq. ~3.8! and .5.0rc
21/2 from Eq. ~3.9!.

Thus, our numerical results agree with these perturbative
sults fairly accurately.

On the other hand, the oscillation periods ofzrms ~the
dashed line! for the1 mode perturbation and of all the com
ponents ofxrms

i for the 3 mode perturbation are roughl
;10rc

21/2 for G55/3 and;7rc
21/2 for G52. These are in

agreement with the periods of the fundamental radial os

FIG. 11. The same as Fig. 9, but forrc5331023, G52, and
K5200/p.
2-11
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MASARU SHIBATA PHYSICAL REVIEW D 60 104052
lation and different from those of thef-mode oscillation. This
reflects the fact that they are not relevant for thef-mode
oscillation at linear order.

In Figs. 12 and 13, we showh1 andh3 at zobs524.5~the
solid lines! and 19.5~the dashed lines! for G55/3 as a func-
tion of the retarded time for the1 and 3 mode perturba-
tions. In Fig. 14, we also showh1 andh3 at zobs512.25~the
solid lines! and 9.75~the dashed lines! for G52 for the 1
mode perturbation. As the oscillation frequency of thef
mode shows, the wavelength of gravitational waves is s
eral times larger thanzobs, so that we expect the extracte
waveforms to be different from the asymptotic waveform
However, they appear to constitute a fair description of
asymptotic waveforms, at worst qualitatively, because~a! the
solid and dashed lines approximately agree~i.e., g̃xx2g̃yy

and g̃xy behave approximately asf (t2z)/z along thez axis
wheref denotes a generic function!, ~b! the oscillation period
agrees well with that of thef mode,~c! the order of magni-
tude ofh1 and h3 roughly agrees with that derived by th
quadrupole formula, i.e.,Mgv2;Mg

2A2/R;1023, and ~d!
for the perturbation given by Eq.~3.3!, h3 remains nearly

FIG. 12. h1 and h3 as a function of a retarded time for
perturbed spherical star ofrc51023, K510, andG55/3 with a
quadrupole perturbation of the1 mode. The solid and dashed line
denote those extracted atzobs524.5 and 19.5, respectively.

FIG. 13. The same as Fig. 12, but for3 mode perturbation.
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zero, and for Eq.~3.4!, h1 remains nearly zero, as expecte
by the quadrupole formula. These facts suggest thath1 and
h3 represent~at least approximately! gravitational waves
emitted by the stellar oscillation and indicate the ability
our code to extract gravitational waves near the outer bou
ary. We expect that a simulation of higher resolution wou
produce even more precise gravitational waveforms.

D. Test „4…: Stability of rapidly rotating stars

To carry out this test, we prepare rapidly and rigidly r
tating neutron stars in~approximate! equilibrium states. We
adoptG55/3 and 2, and select stable compact neutron st

To prepare the rotating stars in approximate equilibriu
states, we use a conformal flatness approximation. Then
geometric and hydrostatic equations for solutions of equi
rium states are described as@24#

Dc522p~rhw22P!c52
c5

8
d ikd j l L i j Lkl , ~3.10!

D~ac!52pac5@rh~3w222!15P#

1
7ac5

8
d ikd j l L i j Lkl , ~3.11!

d i j Db i1
1

3
b ,k j

k 22L jkdkiS ] ia2
6a

c
] ic D516parhwuj ,

~3.12!

ah

w
5const, ~3.13!

where

ui5wc4~e izkVxk1d i j b
j !/a, ~3.14!

w2511c24d i j uiuj , ~3.15!

h511KGrG21/~G21!, ~3.16!

FIG. 14. The same as Fig. 12, but forrc5331023, G52, and
K5200/p.
2-12
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Li j 5
1

2aS d jk] ib
k1d ik] jb

k2
2

3
d i j ]kb

kD , ~3.17!

andV denotes the angular velocity of the rotation.
Although the solutions obtained from Eqs.~3.10!–~3.13!

are not exact, we can still expect that they are excellent
proximate solutions as illustrated in@32#. As shown in Fig.
15, this is the case: We show the gravitational massMg as a
function of the central densityrc for rotating stars at mass
shedding limits obtained from exact equations~the solid
lines! @33# and obtained by the conformal flatness appro
mation~the circles!. We have found that the sequences of t
circles almost coincide with the solid lines for mildly rela
tivistic stars ofrc&r t wherer t;0.0015 forG55/3 andr t
;0.003 for G52. As the density of the rotating stars in
creases~i.e., rc*r t), the coincidence becomes worse grad
ally, but even forrc;2r t , at which the star seems to b
unstable, the difference between the sequences of circles
solid lines is small.

We perform the simulations for the rotating stars mark
with the solid circles in Fig. 15. The relevant quantities f
the rotating stars are shown in Table I. We adoptdx
50.434 forG55/3 anddx50.202 forG52 as the grid spac
ing. With these grid spacings, the major and minor axes
the stars are initially covered by 40 and 23–24 grid poin
respectively.

TABLE I. The list of the central densityrc , total rest mass
M* , gravitational massMg , J/Mg

2 , and rotation period P for ro-
tating neutron stars ofG55/3 and 2 at mass-shedding limits.

rc M* Mg J/Mg
2 P G

9.9431024 1.67 1.60 0.427 397 5/3
2.7731023 1.58 1.45 0.598 163 2

FIG. 15. The gravitational mass as a function ofr at r 50 (rc)
for rotating stars ofG55/3 andK510, andG52 andK5200/p.
The solid lines denote rotating stars at mass-shedding limits
tained from exact equations. The open and solid circles denote
tating stars at mass-shedding limits obtained using a conformal
ness approximation. The rotating stars we use in this paper
marked by the solid circles.
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To suppress the coordinate twisting, the AMD gauge c
dition is adopted. The shift vectorbk determined in this

gauge condition for the conformal 3D metric (g̃ i j 5d i j )
agrees with that obtained from Eq.~3.12!. This implies that
when a simulation is started, the gauge condition is ident
with that used for obtaining the approximate equilibriu
states. Therefore, we can use the approximate equilibr
states as the initial conditions without any coordinate tra
formation.

In this test,Fi is set to zero at the outer boundaries. T
grid numberN is set to 54 typically. We also adoptedN
576 without changing the grid spacing in some of the f
lowing simulations, but we did not find a significant diffe
ence in the results. This indicates that the outer bound
condition adopted here is adequate.

We have considered two kinds of initial conditions:
one case, we use the approximate equilibrium configurati
without any change. In the other case, we initially decre
the pressure by reducingK by 1% ~i.e., DK/K51%). Even
in the pressure-depleted case, the stars should be stabl
cause the gravitational mass is;3 –5% smaller than the
maximum mass of the rotating stars~see Fig. 15!. In Fig. 16,
we show snapshots of the density contours lines forr* and
the velocity field for (vx,vy) in the equatorial plane~left! and
in they50 plane~right! at selected times forDK50 and for
G52 as an example~for G55/3, we have found that simila
figures can be drawn!. We also showa andr at r 50 as a
function of t/P in Fig. 17,xrms andzrms as a function oft/P
in Fig. 18, andJ/J0 as a function oft/P in Fig. 19 forDK
50 ~the solid lines! and DK/K51% ~the dotted lines! and
for G55/3 and 2. Because of numerical dissipation at
stellar surface, the total angular momentum of the system@J
in Eq. ~2.25!# decreases by;2% by t;2P in all the simu-
lations~see Fig. 19!. As a result,a at r 50 andxrms

i decrease
and r at r 50 increases with the time evolution. Also, th
stars suffer slight nonaxisymmetric~quadrangular shape! de-
formation near the surface~see Fig. 16! because we use Car
tesian coordinates for rotating stars of a spheroidal sha
However, besides these slight changes, the stars remai
most in stationary states for more than two rotational peri
~i.e., by the time we terminated these simulations!.

Since the initial conditions adopted are only approxim
equilibrium states, some oscillations are induced with
time evolution. However, the amplitude is very small a
cannot be distinguished from the numerical errors. Thus,
states of the rotating stars are close to the true equilibr
ones. Actually, the absolute value of each component ofhi j
remains small and of order;0.05. These results reconfirm
that the conformal flatness approximation is really a go
approximation for obtaining axisymmetric rotating stars
equilibrium states.

For DK/K51%, a andr at r 50 andxrms
i oscillate with

the time evolution. The oscillation period is roughly 0.9P f
both G55/3 and 2. We deduce that the period denote
fundamental quasiradial oscillation period of the rotati
stars.

We emphasize that the simulations can be stably car
out for more than two orbital periods without any instabi

b-
o-
t-
re
2-13
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FIG. 16. Snapshots of the den
sity contour lines forr* and the
velocity flow for (vx,vy) in the
equatorial plane~left! and in the
y50 plane ~right! for a rotating
star at the mass-shedding lim
and G52 at selected times. The
contour lines are drawn for
r* /r* c51020.3j , where r* c

50.0122 denotesr* at r 50 and
t50, for j 50,1,2, . . . ,10. Vec-
tors indicate the local velocity
field and the maximum length de
notes;0.26c.
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ties and withhi j being kept small. These results clearly de
onstrate that our formulation for solving the Einstein equ
tion is robust even for systems of nonzero angu
momentum and that the coordinate twisting is sufficien
suppressed to a level adequate for long-time-scale sim
tions in our AMD gauge condition.

In this paper, we only perform test simulations usi
stable rotating stars. It is very interesting to perform simu
tions adopting rapidly rotating supramassive neutron star
investigate the stability and the fate of unstable stars@34#.
Such rapidly rotating supramassive neutron stars may be
10405
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r

la-
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to

e-

quently formed as a result of accretion onto a neutron
from a companion star in normal binary systems@35#. How-
ever, such simulations are beyond the scope of this pape
more detailed analysis of the stability of rapidly rotating sta
and of the final fate of unstable stars will be presented
@27#.

E. Test „5…: Corotating binary in an approximate
quasiequilibrium state

In the final test, we adopt a mildly relativistic corotatin
binary neutron star in an approximate quasiequilibrium st
2-14
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FULLY GENERAL RELATIVISTIC SIMULATION OF . . . PHYSICAL REVIEW D 60 104052
as an initial condition. As mentioned in Sec. I, our purpose
the future is to carry out simulations of coalescing bina
neutron stars from the ISCO to formation of a black hole
new neutron star. In the early stage in which the binary
near the ISCO, the radial velocity of each star is expecte
be small, and we can consider the binaries as on approxim
quasiequilibrium orbits rather than on plunging orbits. As t
radial velocity gradually increases, the orbit changes from
near inspiraling one to a plunging one. For a succes
simulation of a coalescing binary neutron star, therefore
nearly quasiequilibrium orbit has to be maintained at le
for ;1 orbital period stably. In this test, we show that this
feasible with our code.

The configuration of a binary neutron star is again o
tained with the assumption of a conformally flat 3D met
and the maximal slice conditionKk

k50 @24#. We prepare a
binary in which the surfaces of two stars come into conta
We adoptG55/3 in this test. The equation of state for su
smallG&2 is not so stiff that binary neutron stars in conta

FIG. 17. a andr(5r* e26f/w) at r 50 as a function oft/P for
G55/3 and 2. The solid and dotted lines denote the results
initial conditions in which no perturbation is added and the press
is depleted, respectively.

FIG. 18. The same as Fig. 17, but forxrms andzrms as a function
of t/P.
10405
n

r
s
to
te

e
a
ul
a
t

-

t.

t

orbits are stable against a hydrodynamic instability@24#.
Since the binary neutron star is not very compact~see Table
II ! and is also far from the ISCO, it can remain on a sta
orbit for a time comparable with the emission time scale
gravitational waves.

Approximate quasiequilibrium states of binary neutr
stars are obtained solving Eqs.~3.10!–~3.13!. The equations
are solved using a numerical method similar to that e
ployed in @36#.

In Fig. 2, we denote, by the cross~of higher density,
rmax51023), the relation between the maximum dens
rmax and half of the total rest massM* /2 for a corotating
binary neutron star in an approximate quasiequilibrium st
which is used as an initial condition of the simulation. W
compared the numerical results on the relation between
maximum density and rest mass with those by Baumg
et al. @24#, and found that they agree within 2% error.
Table II, we also list the relevant quantities of the bina
neutron star. We define an orbital radiusa[Mg

1/3V22/3, and
an approximate ratio of the emission time scale of grav
tional waves to the orbital period as

Rt5
5

128p S a

Mg
D 5/2

5
5

128p
~MgV!25/3, ~3.18!

where we have used the Newtonian expression of the en
and orbital period, and the quadrupole formula for the ene
luminosity of gravitational waves@37#. Since our purpose is
to check the feasibility of our code to preserve the appro

TABLE II. The list of the maximum density, total rest mas
M* , gravitational massMg , J/Mg

2 , coordinate separationa, or-
bital period P, and ratio of the emission time scale of gravitatio
waves to the orbital periodRt for corotating binary neutron stars i
approximate quasiequilibrium states.

rmax M* Mg J/Mg
2 a P Rt

631024 2.84 2.72 1.20 38.3 902 9.2
1023 3.07 2.92 1.11 32.9 694 5.3

r
re

FIG. 19. The same as Fig. 17, but forJ/J0 as a function oft/P.
2-15
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FIG. 20. Snapshots of the den
sity contour lines forr* and the
velocity flow for (vx,vy) in the
equatorial plane for a corotating
binary neutron star ofG55/3 in
nearly quasiequilibrium states
The contour lines are drawn fo
r* /r* max51020.3j , where
r* max50.00305 denotes the
maximum value ofr* at t50, for
j 50,1,2, . . . ,10. Vectors indicate
the local velocity field and the
maximum length denotes;0.23c.
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mate quasiequilibrium state stably, this test should be p
formed for a binary in whichRt.1.

In the numerical simulation, we adopt the AMD gau
condition to sufficiently suppress the coordinate twisting.
we discussed in Sec. III D, the gauge condition att50 is
identical with that used for obtaining the approximate qua
equilibrium state, so that we do not have to carry out a
ordinate transformation att50.

In this subsection, we adopt the grid spacing asdx
50.927, varying the grid numberN as 76 and 116. With this
setup, the major diameter of each star is covered by 30
points initially. ForN576 and 116,L (5Ndx) is only ;0.2
and 0.3 times as large as the wavelength of gravitatio
waves, lgw[p/V. For a precise simulation, the oute
boundary should be located in the wave zone so thaL
@lgw . This is because we should impose an outgo
boundary condition forg̃ i j and Ãi j , and in the system o
binary neutron stars, the existence of gravitational wa
plays an important role for the evolution of the system. W
have found that the present incomplete treatment for the
going boundary conditions seems to produce numerical
rors ~see below for a further discussion!. However, for im-
posing the boundary condition in the wave zone with
uniform grid, it is necessary to take a very large grid num
N>400. That is not feasible with the present computatio
resources on supercomputers. In this paper, we perf
simulations overlooking the deficits. Thus, the radiation
10405
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action of gravitational waves is not precisely taken into a
count in the following simulation. A large simulation ofL
.lgw is one of the future issues.

In Fig. 20, we show snapshots of the density contour lin
for r* and velocity field for (vx,vy) in the equatorial plane
at selected times forN5116, while in Fig. 21, we showxrms

i

as a function oft/P. We note that if the binary remains in

FIG. 21. xrms
i as a function oft/P of a corotating binary neutron

star in an approximate quasiequilibrium state. The solid, dotted,
dashed lines denotexrms, yrms, andzrms.
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FULLY GENERAL RELATIVISTIC SIMULATION OF . . . PHYSICAL REVIEW D 60 104052
quasiequilibrium state, the orbital period should be kept
;P, the curves forxrms and yrms should be complete sin
curves, andzrms should be a constant. From Figs. 20 and 2
it is evident that the state of a binary neutron star fluctua
from the initial state with time. The fluctuations seem to
mainly due to the numerical error discussed below. Besi
the spurious numerical effect, the binary neutron star is k
in an approximate quasiequilibrium circular orbit for*1 or-
bital periods stably.

There appear to be two candidates for the numerical er
One is the numerical dissipation of the angular momentum
the stellar surface@38# which was already pointed out in te
~4!. This is a simple consequence of insufficient resoluti
As a result, the orbital radius decreases. The other cand
is the incomplete treatment of the outgoing boundary con
tions. As mentioned before, we impose an approximate
going boundary condition forg̃ i j and Ãi j not in the wave
zone. From this incomplete treatment, the angular mom
tum seems to go out and come in inaccurately from the o
boundaries. As a result, the orbital radius increases and
creases. To illustrate the fact,J/J0 as a function oft/P is
depicted in Fig. 22. From this figure, we can recognize t
the angular momentum increases and decreases with tim
;63% of the total angular momentum. We note that t
angular momentum should be monotonically dissipated
gravitational radiation by about 2% of the total angular m
mentum in one orbital period according to the estimation
the quadrupole formula. However, the numerical results
not reflect this effect accurately.

Despite these errors, however, the binary neutron sta
preserved in a approximate quasiequilibrium orbit for mo
than one orbital periodstably. This seems to imply that we
are choosing an adequate gauge condition and formulatio
the Einstein equation. We therefore expect that if we co
perform a simulation taking a sufficient number of gr
points to impose the outer boundary conditions in the w
zone and to improve the resolution, it would be possible
perform the simulation not only stably, but also accurate

During the evolution,hi j deviates from zero and gradual
reaches a finite amplitude. The maximum absolute value
each component is of order;0.05 by;P. @This is roughly

FIG. 22. J/J0 as a function oft/P of a corotating binary neutron
star in an approximate quasiequilibrium state.
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consistent with what is inferred from a post Newtonian stu
@25# in which hi j has magnitude of order;(Mg /a)2.# Since
hi j becomes nonzero, it could slightly affect the quasieq
librium configuration of binary neutron stars. However, th
does not seem to be a serious perturbation for the pre
mildly relativistic case.

In Fig. 23, we showh1 andh3 as a function oft/P. The
solid and dotted lines are extracted atzobs5106.6 and 85.3
for N5116, and the dashed line atzobs569.5 forN576. As
mentioned before, we extract them at;(0.2–0.3)lgw , so
that they only indicate approximate asymptotic waveform
Nevertheless, we find that they behave in a periodic man
and that the period approximately agrees with the orb
period. Furthermore, the solid and dotted lines agree v
well, implying that the waves propagate at the speed of lig
These facts indicate that the approximate waveforms con
tute a fair description of the asymptotic ones.

There are, however, differences from what is expected
the asymptotic waveforms. The first one is found in the lon
wavelength modulation~apparent especially inh1!, which
should not appear in the correct waveforms. The modula
is larger for the simulation with smallerN, indicating that it
is caused in the outer boundaries. The second differenc
found in the irregular, nonperiodic waveforms in the ea
stage fort&zobs. These waves are emitted because we se
approximate quasiequilibrium state as the initial conditi
neglectinghi j . The first radiation will be the relaxation o
the system to the true quasiequilibrium state. To avoid t
shortcoming, we have to prepare more realistic quasiequ
rium states, adopting a formalism in whichhi j is appropri-
ately taken into account. The third difference is found in t
amplitude: For the case where two point particles of eq
mass are in a circular orbit, the maximum amplitudes ofh1

andh3 in the post Newtonian approximation can be writt
as @39#

FIG. 23. h1 andh3 as a function of a retarded time of a coro
tating binary neutron star in an approximate quasiequilibrium st
The solid and dotted lines denote those extracted atzobs5106.6 and
85.3 forN5116, respectively, and the dashed lines those extra
at zobs569.5 forN576.
2-17
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Mgx̃F12
17

8
x̃12p x̃3/22

15917

2880
x̃2G , ~3.19!

wherex̃5(MgV)2/3. Using this formula, the maximum valu
of h1 and h3 in the binary ofMg52.92 andx̃50.0887 is
0.24. ~Note that in the quadrupole formula, it is 0.26.! Since
the convergence of the post Newtonian formula forx̃;0.1 is
not very good, we should take into account an error
;10%. Even if we consider such an error, the amplitu
obtained in the numerical simulation is found to be som
what smaller than that derived from Eq.~3.19!. The reason
seems again to be due to the incomplete treatment of
outgoing boundary condition atL;(0.2–0.3)lgw .

In summary, we can perform simulations of corotati
binary neutron stars in an approximate quasiequilibrium s
stably and fairly accurately, and extract gravitational wav
with ;10% error even in the present restricted grid numbe
However, to improve the accuracy for gravitational wav
forms, it is necessary to adopt more sophisticated bound
conditions@21#, to take a larger number of grid points, and
prepare a more realistic quasiequilibrium state as the in
condition. These issues will be addressed in future sim
tions.

IV. MERGER OF COROTATING BINARY NEUTRON
STARS: A DEMONSTRATION

In this section, we show numerical results of the mer
between two neutron stars as a demonstration that such s
lations are feasible. We again adopt corotating binary n
tron stars ofG55/3 in contact and in approximate quasieq
librium orbits. Two binaries shown in Table II~or in Fig. 2
with crosses! are prepared as the initial conditions: One is t
same as that adopted in Sec. III E, and the other is a
relativistic one in which the initial maximum density of eac
star is 631024. To accelerate the merger, we artificial
reduce the angular momentum by 5% in the initial stage;
we reduce the initial values ofux anduy by 5% uniformly.
In this section, we adoptN5116.

In Figs. 24 and 25, we show snapshots of the den
contours lines forr* and the velocity field for (vx,vy) in the
equatorial plane forrmax(t50)51023 and 631024, respec-
tively. Since we artificially reduce the angular momentum
the system att50, the neutron stars approach each othe
merge soon after the simulations start. For both types
initial data at t*0.5P ~P denotes the orbital period of th
quasiequilibrium states without the angular moment
depletion!, the neutron stars begin to merge, forming spi
arms, and byt;1.5P, new neutron stars which are nea
axisymmetric are formed. In Figs. 26 and 27, we show sn
shots of the density contour lines forr* in they50 plane at
t51.62P forrmax(t50)51023, and att51.59P forrmax(t
50)5631024. In Fig. 28, we also show the angular velo
ity V[(xvy2yvx)/(x21y2) along thex and y axes in the
equatorial plane att51.62P forrmax(t50)51023 and att
51.59P for rmax(t50)5631024, respectively. These re
sults show that the final products are rapidly anddifferen-
tially rotating, highly flattened neutron stars. For the ca
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rmax(t50)51023, the central density of the merged obje
for t.1.6P is;1.431023, which is nearly the maximum
allowed density along the sequence of stable neutron sta
K510 andG55/3 ~cf. Figs. 2 and 15!. This indicates that
the new neutron star is expected to be located near the c
cal point of stability against gravitational collapse and tha
black hole could be formed in the merger of more mass
neutron stars.

In Fig. 29, we show the fraction of the rest mass insid
coordinate radius defined as

M* ~r !

M*
[

1

M*
E

uxi u,r
r* d3x ~4.1!

as a function of time forrmax(t50)51023 ~the solid lines!
and rmax(t50)5631024 ~the dashed lines!. The figures
show that.96% and.97% of the matter are insider
518(.6Mg) for rmax(t50)51023 and r 520.4(.7.5Mg)
for rmax(t50)5631024, forming the new neutron stars
Thus, only a small fraction of the matter can spread outw
to form a halo around the central objects. We also find t
J(r 518);0.85J0 for rmax(t50)51023 and J(r 524.4
59Mg);0.85J0 for rmax(t50)5631024. In both cases,
J/Mg

2 of the newly formed neutron stars seems roughly;1,
and that appears to be one of the reasons for which the
tron stars do not collapse to become a black hole.

In Fig. 30, we showh1 andh3 as a function oft/P for
the two cases. Forrmax(t50)51023 and 631024, zobs
.106.6 and 126.2, respectively. In both cases,zobs
.0.3lgw . In the early phase, their amplitudes gradually
crease as their orbital radii decrease. The amplitudes re
their maxima when the neutron stars merge. Since the b
ries change their configuration to nearly axisymmetric on
soon after the mergers, the amplitudes drop quickly, leav
quasiperiodic waves of small amplitude which result fro
small nonaxisymmetric perturbations. Since the equation
state is not stiff enough to allow for the bar-mode instabil
to set in@40#, the amplitudes will monotonically fall in the
emission time scale of gravitational waves. Forrmax(t50)
51023, the amplitude rises and falls more sharply than
rmax(t50)5631024, because a higher density merged o
ject is formed more rapidly due to the stronger relativis
gravity. However, the overall waveforms of the two cas
closely resemble each other and no significant differenc
found besides the difference of their amplitude and f
quency. This indicates that the waveforms only weakly d
pend on the compaction of original neutron stars if bla
holes are not formed after the merger.

It is interesting to consider the evolution after the form
tion of a newly formed, differentially rotating massive ne
tron star ofJ/Mg

2;1 such as those obtained in the abo
simulations. Since the mass of such neutron stars@Mg
;(2.5–3)M (# is much larger than the maximum allowe
mass of the original neutron stars of zero angular momen
(Mg;1.5M (), the new star is strongly supported by th
rapid rotation. Hence, if the angular momentum is sligh
dissipated or transported outward, they could collapse to
2-18
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FIG. 24. Snapshots of the den
sity contour lines forr* and the
velocity flow for (vx,vy) in the
equatorial plane for a corotating
binary neutron star ofG55/3 and
rmax(t50)51023 for a merging
case. The contour lines are draw
for r* /r* max51020.3j , where
r* max50.00305, for j
50,1,2, . . . ,10. Vectors indicate
the local velocity field and the
length is shown in normalization
of 0.3c. At t51.62P, r* max

.0.011 and rmax.0.0014, re-
spectively.
tu
.g
io
fe
e
u

c

io

o
le
f

ol-
of

era-
a-
e

ring
come black holes eventually. As discussed in@41#, there are
many processes which contribute to the angular momen
dissipation and the angular momentum redistribution, e
neutrino emission, magnetic radiation, viscous dissipat
and gravitational radiation. Since each process can af
others in a complicated manner, it is difficult to give a pr
cise analysis. Here, we present a rough and conservative
per limit of the time scale for collapse to become a bla
hole.

Since it will be cooled mainly by neutrino emission@41#,
the new neutron star will first contract on a neutrino emiss
10405
m
.,

n,
ct
-
p-

k

n

time scaletn;10–100 sec after formation. According t
@41#, however, the contraction will not lead to a black ho
becauseJ/Mg

2 will remain ;1 even after a large amount o
neutrino emission@41#. Moreover, even in the caseJ/Mg

2

,1, the maximum allowed mass of neutron stars after co
ing may not change significantly if a realistic equation
state is taken into account@42#. The bulk viscosity could play
a dominant role when the merged object has a high temp
ture @43# and high nonaxisymmetry. Although the temper
ture could be sufficiently high just after its formation, th
merged object seems to remain nearly axisymmetric du
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FIG. 25. The same as Fig. 24
but for rmax(t50)5631024.
The contour lines are drawn fo
r* /r* max51020.3j , where
r* max50.00143, for j
50,1,2, . . . ,10. At t51.59P, r*
.0.0019 andrmax.631024, re-
spectively.
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the early stage as suggested by the simulations in this pa
Therefore, the neutron star could not collapse intn .

Nevertheless, the newly formed neutron star is only i
quasiequilibrium state and is continuously driven away fr
the equilibrium state. As a result, the neutron star will ev
tually collapse to a black hole either because of magn
fields or because of viscosity. An important role in fact cou
be played by magnetic fields if the neutron stars before
merger had magnetic fields of;1012 G. It seems likely that
the strength of magnetic fields of the newly formed neut
star could become larger than their initial strength*1013 G
due to the compression of matter during the merger and/o
differential rotation @10#. The angular momentum of th
10405
er.

a

-
ic

e

n

its

merged object could then be dissipated by the magnetic
pole radiation rather efficiently. The dissipation time scale
the angular momentum is estimated as@44#

tB;
Mgc3

B2R4V2;23107 secS Mg

3M (
D S 1013 G

B D 2

3S 106 cm

R D 2S 0.3c

RV D 2

, ~4.2!

whereB denotes the typical strength of the magnetic fie
Thus, the newly formed neutron star could collapse to
black hole within a year ifB is larger than 1013 G.
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If the magnetic field is not very large, on the other han
the dissipation by shear viscosity may play a dominant r
for the evolution of the newly formed neutron star. If she
viscosity is present, the differential rotation is forced in
rigid rotation in a viscous time scale. In this case, the ang
momentum around the central region is transported to
outer parts and the centrifugal force around the central reg
is weakened. Because it has a very large mass which is p
ably the nearly maximum allowed mass for the different
rotation law, the neutron star might collapse as a result of
outward transport of the angular momentum. If the mic
scopic viscosity is dominant, the dissipation time scale
be estimated as

FIG. 26. The density contour lines forr* in they50 plane after
the merger (t51.62P) of a corotating binary neutron star ofG
55/3 and rmax(t50)51023. The contour lines are drawn fo
r* /r* max51020.3j , where r* max50.00305 denotesr* at r 50
and t50, for j 50,1,2, . . . ,10.

FIG. 27. The same as Fig. 26, but forrmax(t50)5631024 at
t51.59P. The contour lines are drawn forr* /r* max51020.3j ,
wherer* max50.00143, forj 50,1,2, . . . ,10.
10405
,
e
r

r
e
n
b-
l
e
-
n

tv;
Mg

hsR
;33108 secS Mg

3M (
D S 1015 g/cm3

rc
D 9/4

3S T

108 K
D 2S 106 cm

R D , ~4.3!

where we usehs5347r9/4T22 @43# as the shear viscosity o
neutron star matter, andT denotes the temperature whic
could be dropped by neutrino emission from 1011 to 108 –9 K
in ;1 yr @45#. It should be noted that even if the magnitud
of magnetic fields is not very large, they could be at t
origin of an effective viscosity. This is because the differe
tial rotation of the star could cause a shearing instabil
resulting in a change of the magnetic field configuration a
outward transport of the angular momentum@46#. The effec-
tive viscous time scale, thus, might be much shorter than
of Eq. ~4.3!.

We also have to consider the effect of gravitational wa
emission due to the bar mode@40,41# or r mode @47#, by

FIG. 28. The angular velocity along thex axis ~the solid line!
and y axis ~the dotted line! at t51.62P forrmax(t50)51023 and
along thex axis ~the dashed line! andy axis ~the dot-dashed line! at
t51.59P forrmax(t50)5631024.

FIG. 29. Fraction of the rest mass inside a coordinate radiusr as
a function of t/P for rmax(t50)51023 ~solid lines! and 631024

~dashed lines!.
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which the nonaxisymmetric perturbation may grow, contr
uting to the dissipation of the angular momentum or the
distribution of the differential rotation. Such effects a
likely to be important, in particular after the newly forme
neutron star contracts due to the neutrino emission, bec
in such a stage the ratio of the rotational kinetic energy to
binding energy could become large (*0.14) due to the con-
traction @41# and/or the equation of state could be stiff (G
*1.8 @40#! enough to allow for the bar-mode deformation
Since there are too many uncertain aspects such as the i
amplitude of the nonaxisymmetric perturbation and inter
tion with viscosity@48#, the dissipation time scales cannot
estimated in a simple manner. However, it is likely that su
effects contribute to the dissipation of the angular mom
tum and make the time scale shorter. We can then conc
that the newly formed supramassive neutron star~if it could
be formed! will eventually collapse to a black hole in th
time scale;1061 yr as a result of one of the above dissip
tion processes.

The argument presented here suggests that the streng
the magnetic field of the newly formed neutron star is one
the key parameters for the evolution. It may well be imp
tant to investigate the evolution of the magnetic field dur
the merger, incorporating a solver of the magnetic field eq
tion.

V. SUMMARY

In this paper, we present our first successful results
numerical simulations carried out using a fully general re
tivistic 3D hydrodynamic code. We have performed a wi
variety of simulations for test problems toward more realis
simulations of coalescing binary neutron stars and have c
firmed it possible to obtain solutions for the test proble
fairly accurately. In particular, we have illustrated that it
possible to preserve an approximate quasiequilibrium stat
a mildly relativistic binary neutron star as well as to perfo
simulations of the merger between two corotating neut
stars to be new neutron stars stably for a couple of orb

FIG. 30. h1 andh3 as a function of retarded time in the merg
of corotating binary neutron stars ofrmax(t50)51023 ~solid lines!
and 631024 ~dashed lines!.
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periods in our numerical code. These results indicate
numerical simulations of binary neutron stars for a long tim
from their ISCO to mergers are feasible.

Since we could not take a sufficiently large number
grid points to impose the outer boundaries in the wave z
as well as to resolve each neutron star precisely, nume
errors are unavoidably included in the results. In particu
we feel that the radiation reaction effect due to gravitatio
wave emission could not be taken into account precisely.
a more accurate computation of the radiation reaction eff
we will have to adopt a numerical technique such as a ne
grid technique which effectively makes the computation
region bigger or to impose sophisticated boundary conditi
at the outer boundaries@21#, unless computational power i
improved soon. These issues should be pursued in fu
works. We emphasize, however, that besides the error
duced by the incomplete treatment of the outgoing bound
conditions as well as the numerical dissipation due to
restricted resolution, the simulation can be performed sta
and fairly accurately. If we can accept such a small error~for
example, say,&5% error in the angular momentum!, the
code can be used for the investigation of many interes
problems even at present.

In this paper, we have paid attention only to test pro
lems. Since we consider binary neutron stars of mildly la
compaction parameter and smallG, the final products of the
merger are not black holes. A black hole may be more ea
formed for largerG and preliminary simulations indicate tha
this is the case. One of the most interesting and impor
issues in numerical relativity is to clarify the criterion for th
formation of black holes. In a forthcoming paper@49#, we
will perform simulations of corotating binary neutron stars
a largeG;2, in which a black hole could be formed mor
easily.

It is well known, however, that the corotating veloci
field is not realistic for binary neutron stars because the
cosity of the neutron stars is not large enough to achieve
corotation@50#. Instead, the irrotational velocity field is con
sidered to be a more realistic one@50#. For making a realistic
model of the final phase of binary neutron stars, it is nec
sary to perform simulations for irrotational binary neutro
stars.

Fortunately, several groups have just recently develo
numerical methods for obtaining an approximate quasieq
librium state of irrotational binary neutron stars in a confo
mal flatness approximation@7–9#, providing more realistic
models of binary neutron stars. Namely, an initial conditi
has already been prepared. In the next step@49#, we will also
carry out simulations adopting the approximate quasiequi
rium states of irrotational binary neutron stars as the ini
condition.
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APPENDIX A: NUMERICAL METHOD FOR SOLVING
HYDRODYNAMIC EQUATIONS

To compute the advection in the hydrodynamic equatio
in this paper, we use the second order scheme by van
@51# as Oohara and Nakamura used in their works@14,52# or
as we used in a semirelativistic simulation@53#. As we have
shown in Secs. III and IV, it is possible to perform simul
tions of many interesting problems stably and fairly acc
rately for several dynamical time scales using this schem
we are interested in problems in which shocks play a v
important role, we should use one of the modern sho
capturing schemes as adopted in@15,54#. However, in coa-
lescences of binary neutron stars, it seems that shocks d
play a crucially important role and that they do not chan
the results drastically@12#. We expect that the method em
ployed here is suitable for our purpose, although there is
room for further improvement.

Since we solve the entropy equation instead of the ene
equation, it is impossible to capture shocks without add
artificial viscosity. Hence, we add an artificial viscosity usi
a method similar to that adopted by Hawley, Smarr, a
Wilson @55#. The following artificial viscosity was included
only in the case when we studied the merger of binary n
tron stars.

For simplicity, we include an artificial viscosity like
bulk viscosity and it consequently appears in the evolut
equation where the pressure does. As the form of the visc
pressure, we choose

Pvis5H Cvis

e
*
G

~we6f!G21
~dv !2 for dv,0,

0 for dv>0,

~A1!

wheredv52dx]kv
k and Cvis is a constant which we phe

nomenologically set below.
When including the artificial viscosity, we change th

pressure gradient term]kP on the right-hand side of Eq
~2.10! into ]k(P1Pvis). If we simply regardPvis as an ad-
ditional pressure, we should add the following term on
right-hand side of Eq.~2.11!:

2
1

G
~re!2111/GPvis@] t~we6f!1]k~we6fvk!#. ~A2!

However, as pointed out by Hawleyet al. @55#, the first term,
which includes a time derivative, could cause a numer
instability. Hence, we neglect the first term, and only inclu
the second one.

Cvis is determined in a phenomenological manner. In
merger of binary neutron stars, two neutron stars of ne
equal mass finally collide and a shock will be produced. T
10405
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situation may be crudely compared with the 1D wall sho
problem in which we consider the evolution of a fluid th
initially has a uniform density and pressure, but a veloc
field as

vx5H V0 for x,0,

2V0 for x.0,
~A3!

whereV0 is a positive constant, andvy5vz50. The solution
of the 1D wall shock problem in special relativity can b
analytically calculated. We have performed test simulatio
of this problem, and the value ofCvis which well reproduces
the analytical solution was used in numerical computatio

To mimic the collision of two neutron stars, we set initi
conditions asV050.1–0.4 andP/r50.1 for the test. In Fig.
31, we show the results forV050.4 and Cvis510 at t
50.4. In this test, we setr51 and dx50.005. The solid
lines denote the analytical solution, and the open circles
the numerical results. Although the well-known spurious o
cillation of r, P, and vx is generated@55#, the numerical
results agree with the analytical solution fairly well.

APPENDIX B: RADIAL OSCILLATION PERIOD
OF SPHERICAL STARS

We estimate an approximate radial oscillation period
spherical stars using the method presented by Chandrase
@28#.

If we write the line element as

ds252endt21eFdr̄21 r̄ 2dV, ~B1!

then the angular frequencys of the radial oscillation for a
polytropic star of radiusR is written as@28#

FIG. 31. Numerical results ofr, P, andvx for the 1D wall shock
problem in special relativity. The solid lines denote the exact so
tions, and the open circles are numerical results.
2-23
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s25F4E
0

R

e(F1n)/2r̄
dP

dr̄
j2dr̄

1E
0

R

e(F13n)/2
GP

r̄ 2 H d

dr̄
~ r̄ 2e2n/2j!J 2

dr̄

2E
0

R

e(F1n)/2S dP

dr̄
D 2

r̄ 2j2

rh
dr̄

18pE
0

R

e(3F1n)/2rPhr̄2j2dr̄G

FIG. 32. The angular frequency (src
21/2) of the fundamental

radial oscillation as a function of the central density for spheric
polytropic stars of (K,G)5(10,5/3) and (K,G)5(200/p,2) with
trial functions of the Lagrangian displacement.
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10405
3F E
0

R

e(3F2n)/2rhr̄2j2dr̄G21

, ~B2!

where j denotes ther̄ component of the Lagrangian dis
placement. If we substitute an eigenfunctionj for the eigen-
value equation, we can obtain a corrects. Here, we evaluate
s approximately by substituting a trial eigenfunction forj
without solving an eigenvalue equation forj. Following
Chandrasekhar@28#, we substitute the approximate eige
functions as

j5 r̄ ebn, ~B3!

where b is a constant. In Fig. 32, we showsrc
21/2 as a

function of rc for a polytropic star of (G,K)5(5/3,10) and
(2,200/p) for b50 ~the solid line!, 1/2 ~the dashed line!, and
21/2 ~the long dashed line!. We note that beyond a critica
density,s2 becomes negative in each model, implying th
the star becomes unstable for some oscillation modes. E
though we use the trial function forj, we can approximately
find the real critical points of stability (rc;1.8531023 for
G55/3 and;5.031023 for G52). We also find that the
oscillation frequency in the Newtonian limit (rc→0) agrees
well with that obtained in the Newtonian theory (src

21/2

51.377 forG55/3, and 2.187 forG52 @56#!. Thus, we can
recognize that this approximate method is fairly reliable
estimatings approximately.

From the figure, we can judges;0.60rc
1/2 for (G,rc)

5(5/3,1023) ands;0.91rc
1/2 for (G,rc)5(2,331023), and

the resulting oscillation periods are;10.5rc
21/2 and

;6.9rc
21/2, respectively. These are in good agreement w

the numerical results in Secs. III B and III C.
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