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Fully general relativistic simulation of coalescing binary neutron stars: Preparatory tests
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We present our first successful numerical results of 3D general relativistic simulations in which the Einstein
equation and the hydrodynamic equations are fully solved. This paper is especially devoted to simulations of
test problems such as spherical dust collapse, stability test of perturbed spherical stars, and preservation of
(approximatg equilibrium states of rapidly rotating neutron star and/or corotating binary neutron stars. These
test simulations confirm that simulations of coalescing binary neutron stars are feasible in a numerical relativity
code. It is illustrated that using our numerical code, simulations of these problems, in particular those of
corotating binary neutron stars, can be performed stably and fairly accurately for a couple of dynamical time
scales. These numerical results indicate that our formulation for solving the Einstein field equation and hydro-
dynamic equations is robust and makes it possible to perform a realistic simulation of coalescing binary
neutron stars for a long time from the innermost circular orbit up to formation of a black hole or neutron star.
[S0556-282(199)01822-9

PACS numbd(s): 04.25.Dm, 04.30-w, 04.40.Dg

I. INTRODUCTION adequate to obtain the quasiequilibrium configuration, taking
into account the effects of the deformation of the neutron
The coalescence of binary neutron stars is one of the mostars, but assuming that emission of gravitational waves is
promising sources for planned kilometer size laser interfernegligible. In this research field, an effort has been made
ometers such as the Laser Interferometric Gravitationatecently, yielding gradually successful resulfs-9].
Wave ObservatoryLIGO) [1,2], VIRGO [3], GEO[4], and With the further emission of gravitational waves, the bi-
TAMA [5], which will be in operation within the next five nary neutron stars approach the ISCO. Upon reaching the
years. When a signal of gravitational waves is detected froniSCO, they behave in a dynamical manner. For the theoreti-
binary neutron stars, it will provide not only the first chancecal study of such a dynamical stage, no approximation for
to observe highly relativistic objects in a dynamical motion,general relativity is applicable because the system is domi-
but also a wide variety of physical information of binary nated by highly general relativistic gravity and hydrody-
neutron stars including their mass, spin, radius, and innemamic effects. In this respect, numerical relativistic simula-
most stable circular orbiiSCO) [2]. The signal of gravita- tion is the only promising method for a theoretical study.
tional waves from such compact objects will be analyzed Numerical relativity also plays an important role for a
using matched filter techniques to extract the physical infortheoretical study of the origin oy-ray bursts(GRB9 be-
mation. To apply this technique, theoretical templates oftause the short rise times of the bursts imply that their cen-
gravitational waveforms are needg2l. This fact has moti- tral sources have to be relativistic objeft®]. Recently, at
vated an intense theoretical effort for preparing such temleast some of GRBs have been turned out to be of cosmo-
plates. logical origin [11]. In cosmological GRBs, the central
The orbital evolution of binary neutron stars can be di-sources must provide a large amount of the enerdy0®!
vided into three stages: inspiraling stage, intermediate stagergs in a very short time scale of the order of msec to sec. It
and dynamical stage. For the study of the inspiraling stage ihas been suggested that the merger of binary neutron stars
which their orbital radius is much larger than the stellar ra-could be a likely candidate for the powerful central source
dius (R) and neutron stars are in quasiperiodic states, grady40]. The typical scenario is based on the assumption that a
ally decreasing the orbital radius as a result of emission o$ystem composed of a rotating black hole and a surrounding
gravitational waves, a post Newtonian approximation ismassive disk is formed after the merger. To clarify whether
powerful. Much effort has been made towards obtaining auch a scenario is correct, numerical simulations have been
template of high-order post Newtonian corrections, provid-performed including effects of emission by gravitational ra-
ing many recent satisfactory resul8. diation and/or neutrinos and adopting a realistic equation of
When the orbital radius of the binary neutron stars destate for the neutron stafd2]. So far, the results in the
creases to a fevR as a consequence of gravitational wavenumerical simulations have not supported such a scenario
emission, the effect of the multipole moments of each neuf12]; i.e., the evidence that a massive disk is formed around
tron star induced by the tidal field from the companion starthe black hole has not been found. However, all the simula-
cannot be ignored. Even at this stage, the emission time scal®mns have been performed in the Newtonian or post New-
of gravitational waves is still much longer than the orbital tonian approximations. Needless to say, general relativistic
period. In this intermediate stage between the inspiraling andffects can play a very important role in the mergers between
dynamical stages, the binary can be assumed to be in a quasivo neutron stars. To obtain the true answer, therefore, a
hydrostatic equilibrium state. For a theoretical study, it isfully general relativistic simulation is necessary.
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Much effort has been paid toward constructing a reliabledenote spatial components—3) and spacetime components
numerical relativity code which makes it possible to clarify (0—3), respectively. As spatial coordinates, we use the Car-
the evolution of merging binary neutron stars and the gravitesian coordinatesx“=(x,y,z) with r=\X?>+y?+72.
tational waveform emitted by them. Several projects in thedj;(=6") denotes the Kronecker delta.
world such as those by Nakamura and Oohag14] and by
the Washington University grodfd5] are in progress, but no Il. FORMULATION
satisfactory results have been reported yet.

To perform a numerical simulation of coalescing binary
neutron stars for a long time from the ISCO to the formation Our code solves the coupled equations of the Einstein
of a black hole or new neutron star, it is necessary to choosequation and relativistic hydrodynamic equations. Our for-
appropriate gauge conditions which make it possible to permulation for solving the Einstein equation has been de-
form the long-time-scale simulation stably and to extractscribed in detail in previous papef47,18,18. Since we
gravitational waves accurately. In a previous pdd&], we  adopt the same formulation, only changing the matter source,
performed fully general relativistic simulations of coalescingwe here only review the basic equations.
binary clusters using collisionless particles as the matter We write the line element in the form
source of the Einstein equation. For the simulation, we used
the approximate minimum distortion gauge and approximate ds’=g,,,dx“dx"
maximal slicing conditions as the spatial and time coordinate (2 ky 4 +2 Ay A
conditions(see Sec. Il B We found that these gauge condi- (ma+ BT+ 2B dxdts ydxdx, (2.1
tions are robust enough to allow for stable and long-timeywhere gw’ayﬂi (,Bi:')’ijﬁj)’ and y;; are the 4D metric,

scale simulations of merging clusters as well as for the fairlyjapse function, shift vector, and 3D spatial metric, respec-
accurate extraction of gravitational waves. In this paper, Wejvely. Following previous paperkl7,18,16, we define the

perform simulations adopting the same gauge conditions anguantities to be solved in numerical computation as
formulation for the Einstein equation and incorporating a

A. Basic equations

solver of the relativistic hydrodynamic equations. We dem- v=de{ yij)zelz‘f’, (2.2
onstrate the robustness of our formulation, presenting suc-
cessful numerical results of 3D hydrodynamic simulations. 'Zyijze*w%j [ie., de(';,ij)zl], (2.3

In particular, this paper is devoted to simulations of test
problems. The purpose here is to ensure that numerical simu- _ 1
lations of coalescing binary neutron stars for a long time AijEe4‘/’<Kij— §)/in'|§
scale from the ISCO to the formation of a black hole or

neutron star are feasible in our formulation and numericalNhereK” is the extrinsic curvature arkK its trace. We note
code. The test problems presented in this paper are a spher| ! k

o X . . that indi A All i '
cal dust collapse, stability test of spherical stars in eqwllb-thaNt |nd|ceE i(_m'l and/forA a.re raised and.lowered In terms
rium states, excitation of quadrupole oscillations of per-Of 7 andy". In the numerical computation, we solve for
turbed spherical stars, preservation of stable rapidly rotating;; , A;;, ¢, and K',j instead ofy;; andK;; . Hereafter, we
stars in equilibrium states, and preservation of ﬁ_orc_)tatmg t_"UseVM, D,, andD; as the covariant derivatives with respect
e e ot g, v andy respectvely.
test problems are feasible with our code, indicating the fea- As the matter source of the Einstein equation, we adopt a

>St P . - o 9 .~ perfect fluid. In this case, the energy momentum tensor is
sibility of forthcoming realistic simulations of coalescing bi- written as
nary neutron stars.

The paper is organized as follows. In Sec. II, our formu- T,,=(p+pe+P)u,u,+Pg,,, (2.5

lation for solving the Einstein field equations as well as rela-

tivigtic hydrodynamic qugtions is described. We also dewherep, ¢, P, and u, are the rest mass density, specific
scribe the gauge conditions and the numerical methoghternal energy density, pressure, and four-velocity, respec-
employed in this paper briefly. In Sec. lll, we describe testijvely. Hereafter, we assume an equation of state in the form
problems which should be carried out to check the accuracp=(I"—1)pe, wherel is a constant.

and performance of a numerical r8|atiVity code for SOlVing The hydrodynamic equations are Composed of the conti-

the COUp|Ed equations CompOSEd of the Einstein and hydquun:y, Eu|er, and energYor entropy equationsy which are
dynamic equations. Then, we present the numerical resuligerived from

for the test simulations. In Sec. IV, we present numerical

, (2.9

results of the merger of corotating binary neutron stars as an V,.(pu¥)=0, (2.6)
example. Section V is devoted to a summary. Throughout
this paper, we adopt the uniG=c=My=1 wheregG, c, YV, T,=0, 2.7
andM 5 denote the gravitational constant, speed of light, and
the solar mass, respectively. Hence, the units of length, time, uky,T;,=0. (2.9

mass, and density are 1.477 km, 4.82I0 © sec, 1.989
x10* g, and 6.17% 10" g/cn?. Latin and Greek indices We write their explicit forms as
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Oipy +i(pev)=0, (2.9 Eq. (2.1) we cannot obtain the correct solution when a
shock is formed. Thus, the artificial viscosity terms are added
9Py U) + 3i(py UV in Egs.(2.10 and(2.11) for some problems in which a shock

is formed and plays an important role during the evolution of
the system(see Appendix A

Oncel]i is obtained,w(=au®) is determined from the
normalization relation of the four-velocity, which can be

= — ae6¢(9kP—p* Whﬁka_ a1(9kﬁ]

ae *Uu; . 2ah(w?-1) written as
Y ———— k|,
2wh w rel 5
—A4~ii N 2 €
(2.10 w?=1+e 4¢7|JUin 1+ Wl . (219
*
oe, +di(e,v)=0, (2.11

The Einstein equation is split into the constraint and evo-
where d,=dldx*, p, =pwe®®, h=1+e+P/p, w=alU’, lution equations. The Hamiltonian and momentum constraint

ak: hl.lk, e, = (ps)llfweﬁqﬁ’ andVi(EUi/UO) is written as equations are written as

~n 2
. . u, kKA Al +—(KK2=
vi=—gi+ ay I 2.12 Ri—AijA +3(Kk) 167E, (2.15
whe?
. . . ~ 2
In numerical simulations, we solve Eg§2.9—(2.11) to DiA}—ngKt=8ij, (2.16
evolvep, , l]k, ande, .
The volume integral op, in the three-hypersurface, where
=TwMv — —6¢__
M*Ef dxp, | (2.13 E=T#"n,n,=p,hwe P, (2.17

6

iE_T#Vn,u'yVi:P*e7 ¢ai , (2.18

denotes the total rest mass of the system, which should be
conserved with time. Although the equation fy has the n,=(—«,0), andR;; is the Ricci tensor with respect tg; .
same form as that fop, , the volume integral og, is not Following our previous works, we write the evolution
conserved in the presence of shocks. This implies that usingguations for the geometric variables in the fdrh8,16|

~ - o~ - 2~
(0= B'3) yij=—2aA;+ 7ik:85+ 7jkﬁl,(i_ §7ij:8%(kv (2.19

~ 1 - 1 -
(&t_ﬁléﬁ)Aij :ei4¢ a( R” — —e4¢yin||§) - DiDja— —e4"”yijDkaa>

3 3
KX TRk 4 kR k% 2 k% —44 1.« 29
+a(KiAj = 2AuA) + B A+ B A~ 3 BiAij—8mal € 795 — 37 S|, (2.20
| 1 ko ok
(=B 3l)¢:€(_aKk+ﬁ,k), (2.21)
ek R Fii e Loeky2 k k
(&t_,B 0|)Kk:a A”A +§(Kk) _DkD a+477a(E+S(), (222

whereQ ;= 4;Q for an arbitrary variabl&, and
Si=T*" Y7, =P« € *(Wh) "10u; + ey, P. (2.23

In calculatingR;; andR{ in Eg. (2.20, we have terms of the type such &y, ;; and 8"y, ;. For the evaluation of such
terms, we define the auxiliary variabife = 5“05/” [19,18,14 and solve the evolution equation
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| KjA Kin 1~j| Ak 2 k
((9t—ﬁ (9|)Fi=2a f Aik,j+f,ink_ EA hlj,i+6¢,kAi_§(Kk),i

. ~ ' ~ ~ 2. .
—28%a A+ 8 Bihij o+ ynﬂ',j+ynﬁ',i—§mﬁ',l) S~ 16mal;, (2.24
K

where hij:;,ij_gij and fijz’}ij_gij_ Then, 5kl§,ik’” is Thus, if K}j is zero initially and the convergence is com-
evaluated af; ;. pletely achieved, the maximal slice conditiKr{i=0 is pre-
We define the total angular momentum of the system asserved. Even when the convergence is incomplete Iﬁbd
deviates from zero, the right-hand side of E2}28 enforces
|KE| to approach zero in the local dynamical time scale
~p, 2. Hence, the conditioif=0 is expected to be sat-

N N
J=lim 3 (XAyj—yA)e>*dS
e isfied approximately.

3 66 1 - < To impose the AMD gauge condition, we solve the fol-
:f d°xe>?| xJy —y Jy + E(Ay_AX) lowing simple elliptic type equations:
L (xdy =y T+ o (xd,— y i K AP 229
167 " y X 127 y x A n= —SiXI, (23@

2.2

229 whereA denotes the Laplacian in the flat 3D space, and
where we use Gauss'’s law and Eg.16) to derive the final 4
expression. We also use the following quantity to roughly Sizlewaji+2Aij(5ja_6aﬁi¢)+ _aﬁiKE-
estimate the angular momentum inside a coordinate radius 3

(2.31)

. H i
J(r):f _‘ d3xe6¢(XJy_ny). (2.26 From P; and n, we determines' as
x'|<r

- 1 ‘
B=9o" gPimg(mitPyix ) |- (2.32
B. Gauge conditions

As in a previous papefl6], we adopt an approximate Namely, B' satisfies an elliptic type equation of the form
maximal slice(AMS) condition and an approximate mini-
mum distortion(AI_\/ID) gauge c_ondition as the time ano_l spa- 5”_Aﬁi n Elgkk]: S (2.33
tial gauge conditions, respectively, for most of the simula- 37
tions in this paper. In some test simulations carried out in ) ] . ) )
Sec. Ill, we also use the zero-shift vector gauge condition AS We described in a previous pagdé6], if an action
BX=0 for comparison between two results obtained in dif-
ferent gauge conditions. N . |:f d3x((;5,ij)((;t}kl);,ik;,jl (2.39

To impose the AMS condition, we solve the following
parabolic type equation for ke at each time step until an

: . . ) is minimized with respect t@', we obtain the equation of a
approximate convergence is achieved:

minimum distortion(MD) gauge conditiori20] for 8' as
3y Ina=D,D¥In a+(DyIna)(D¥In a) 1
o1 yD'DiB*+ 3D Dis + R =S, (2.35
—4m(E+S)—A;Al —§(Kt)2+faK§p1’2.
05 whereR;, is the Ricci tensor with respect tg; . Thus, the
(2.27) equation forg' in the AMD gauge condition is obtained by
i neglecting coupling terms betwegh andh;; in Eq. (2.35.
Here\ denotes a control parameter ahydis a constant for  gice the neglected terms are expected to be i@l we

which we assign a constant 0f(1). Assuming that the con- .4 expect that is approximately minimized in the AMD
vergence is achieved and that the right-hand side of Eogauge condition.

(2.27) becomes zero, the evolution equation fof can be The other benefit of the AMD gauge condition is tifat
written as is guaranteed to be small everywhere except in the strong

field region just around a highly relativistic objgdi6]. This

(9= B'a)Ki=—f ,aKip,”. (228 implies that a transverse conditiod’d,y;,=0 approxi-

104052-4



FULLY GENERAL RELATIVISTIC SIMULATION OF . .. PHYSICAL REVIEW D 60 104052

mately holds fory;; in the wave zone, helping the accurate Note that Eq.(2.25 reduces to Eq(2.43 in 3D space in
extraction of gravitational waves near the outer boundariesvhich y;; = &;; and Kt:o.
of the computational domain.

D. Boundary conditions

C. Initial value formalism In this paper, we assume-rotation symmetry around the

Initial conditions are obtained by solving the constraintz axis as well as a plane symmetry with respect tozk€®
equations(2.15 and (2.16). In this paper, we restrict our plane. Hence, we solve equations in a quadrant region
attention to initial conditions in whicth;;(=";;—8;)=0 =x=—L andL>y, z=0 whereL denotes the location of
andKk=0. Then, the basic equations for obtaining the initialthe outer boundaries. We impose the boundary condition in
data are the same as thosd 118,16 as described below. they=0 plane such as

Using the conformal factop=e?, A;=y°A;;, andAl Q(x,02)=0Q(—x,02), (2.42)
=¢PAll, the Hamiltonian and momentum constraint equa-
tions are rewritten in the form Q4(x,02)=—Q"(—x,02),
1. .. = _
Ay=—2mEgP— SRRy, (2.36 Qa(x,02)==Qa(=x.02), (.49
Q“(x,02)=Q*(—x,02),
Al — s
A= By (237 Qu(%.02)=Q,(~x,02), (2.46
After we decomposé\ij in the standard manner as Qap(X,02)=Qap(—x,02), (2.47
N 2 x,02)=— -x,02), 2.4
Aij :Wi,j+Wj,i_ §5lj 5k|Wk,| , (238) QAZ( ) QAZ( ) ( 8)
Q,A%,02)=Q,—x,02), (2.49

tW; 18,1 i
we setW; as[18,16 where A and B=x or y, and Q, Q'(Q;), and Q;; denote

7 1 arbitrary scalar, vector, and tensor quantities, respectively.
Wi=§Bi— §(X,i+ Bk,ix"), (2.39 At the outer boundaries, we impose an approximate out-

going boundary condition foin;; andﬂij [18] as
wherey andB; denote scalar and vector functions. Then, Eq.
(2.37) can be decomposed into two simple elliptic type equa-

tions where we setu=at—e??r. (Even if we simply setu=t

AB —8m] g8 —r, the results do not change significantliylore explicitly,
i=8mJiy”, Eq. (2.50 is rewritten in the form

rQj;(u)=const, (2.50

_ (2.40
Ax=—8mJix"y°.

or
Qij(t,r):(l_T Qij(t—ﬁt,r—ﬁr), (251)
SinceJiz,//s(:p*ﬂi) is nonzero only in the strong field re-
gion, the solution of the momentum constraint equation isvhere 6t is a time step andsr=ae 2%6t. Qjj(t—at,r
accurately obtained. —or) is linearly interpolated from the nearby eight grid
In addition to the constraint equations, we solve an ellipticpoints. We also note that the numerical results are not sensi-
type equation fora to impose the maximal slice condition tjve to the boundary condition d; and we have not found
initially. In conformally flat 3D space, the equation is written 3 significant change in the numerical results even when we
in the form impose the boundary condition with the radial falloff as
O(r ). A possible explanation for this result is that the
Alay)=2may(E+ 28{§)+ga1//*7AijA”. (2.41)  spatial deriviltive ofﬁij, which appears in the evolution
equations foA;; andF;, does not play an important role for
the evolution of the system. On the other hand, numerical
results and the stability of the numerical system are signifi-
cantly dependent on the boundary condition ~f7q[. The
1 . condition defined by Eq.2.51) is one of the best conditions
(Mg)0=f d3x(E¢5+ Too7MiA" |, (242 among those we have tried so far.
T For ¢ and Kﬁ, we impose the following boundary condi-
tions at the outer boundaries:

Jozf d3x(xJy—y ) ¥°. (2.43 (r¢),=0, (2.52

From the initial condition, the total gravitational mass and
angular momentum of the systemtatO are calculated from
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KE=0. 259 O 4
------------------- n+1/2

ForF;, we have tried a number of boundary conditonssuch 4 7,0, F, 0B, p.i,e
asF;=0(r %), F,=0, andg;F;=const atx;=L, and have ~  —___ w12 A, K,
found that the results are weakly dependent on the boundar
condition. We have found that the conditién=0 is preferr & ———— an
able for a long-time-scale numerical evolution, but for ex-  ---ccemmccmmcceae w12 A, Ky
tracting gravitational waves near the outer boundaries, the — » ¥y, 0, F, o, B, p., @, e
condition F;=0(r ) or djFi=const is preferable. In the = ----ecmcmmeeemae n-172
spherical cases, we use the conditigr=0, but we change
the condition case by case for other cases. ) —————— o ¥ 0, F,

It should be noted that all the outer boundary conditions =~ ------------------ w12 A, K 4
described above are only approximate. This implies thatnu- ————— n o, B, p., 9%, e
merical errors such as spurious back reflection and incomin¢ ~ -------=--==------ n-1/2
of gravitational waves will be generated near the outer
boundaries. For precise numerical simulation, apparently, wéd) ————————— o4l Y 0 F
have to adopt more sophisticated outer boundary conditions  ------------------ w12 A, K P, e
as have been proposed and investigated by a couple ¢ — 0 o, B’
groups[21]. Imposing precise outer boundary conditions is =~ -------=--==-----~ n-1/2
one of the important future issues.

) —— o+l k%,,(l),Fi pe, %, e
E. Grid and tme step T vz A K ;
- 00n o, B

Throughout this paper, we use a uniform grid, i.8x, _—coco________. 0172
= 9y= 6z=const. We take (R+1,N+1N+1) grid points
in the (x,y,z) direction, respectivelyi.e., N=L/6x). () ————— 4l 7. 0. F, 0, B, p., 0, e

The time stepst must satisfy the stability condition re-  ——----—-oe oo . w12 A, K,
stricted by the Courant criterion for geometric variables. If _—__ n
we neglect the other two directions, the geometric Courant — ——---coceeeemeeeo. 0-1/2

condition in thex' direction is written as L . .
FIG. 1. Schematic picture for a numerical scheme of time evo-

St<lay; 124 g1~ Lox. (2.54 lution of variables from theith to (n+1)th time step.

Since[ayﬁllz—k B'171 is expected to be greater than unity F. Brief summary of numerical methods and evolution scheme

for most cases, we simply set a geometric time step as For solving the equations for geometric variables as well

as for determining the apparent horizon, the same methods as
employed in previous papef48,1€ are used here. The nu-
whereC, is a constant which we choose typically as 0.3 merical method for solving the hydrodynamic equations is

9 - . briefly discussed in Appendix A
Also, 6t must be sufficiently small so that the matter distri- > ' . _ .
bution cannot change by a large fraction amount in one time 1 h€ evolution scheme for the geometric and fluid vari-
step. The time scale is the shortest when the matter distrib@Ples from a time slice atto the next time slice at+ ot is
tion changes in a dynamical time scale as in the case wheas follows(see the schematic Fig):We puty;; , Fi, ¢, a,

Stg=CydX, (2.55

the matter collapses to a singularity. Thus, we simply set gk , 0., v/, ande, ont®, t® tM andﬂij andKk
on tC-V2) (2GR0 4(0=12) \wheret™ denotes the
37 . . . (n+1/2)— (4(n)
st=min| C,, / ot (2.56 co%:illln)ate time _ at the.n_th _tlme step, t (t
32, ¢ +t )/2, andn is a positive integer. Namely, we use the

leapfrog method 23] for the evolution of the geometric vari-
where C,, is a constant for which we choose 0.02—0.04.ables.
Note that the first term on the right-hand side of E256 For a given set of the geometric variangg Fi, ¢, a,
denotes the time for the 'collapse to a §|ngl.JIa'r|ty of a spherizng B and fluid variableg, , 0;, v!, ande, att™, and
cal, homogeneous dust in the Newtonian limit. other geometric variablek;: andKX at ™"~ 12 [stage(1) of
In the case when the density is so high that a black hole’. 9 o g K 9
. . § k (n—1/2) (n+1/2)
seems to be formed, the first term of Hg.56) is smaller ~ Fig. 1, first, A;; andK are evolved front tot
than the second term, but besides such a highly relativistigSing the evolution equatiort2.20) and(2.22 [stage(2) of
case, the second term is smaller and determines the time stépi9- 1l Since the right-hand side of these evolution equa-
We note that the hydrodynamic Courant condition is lesdions includesA;; and Kﬁ which are defined only af"~ %2,
severe than the geometric of#?2], so that we do not con- we use the linear extrapolation method at each spatial grid
sider it. point as
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Ky (M) — 2 ek (n—1/ ky(n—3/
(Kk)(n)_E(Kk)(n 12)—§(Kk)(n %),

(’Aij )(nfl/2)_ %(‘Aij )(n73/2),

N| W

(z\ij)(n):
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In the final step, we determine("*%) and (8")("*1) by
imposing the gauge conditiofistage(6) of Fig. 1]. In solv-
ing their equations, we again use the extrapolation as

(Kt)(n+l): g(KE)(n+l/2)_ %(Kb(n—ua,

to preserve the second order accuracy in time. We note that

in adopting the linear extrapolation, we implicitly make use

of the fact that the time steps &f %) andt(" are approxi-
mately equal.

Once we obtainK{)™*¥? and @;;)("*¥2), the geomet-

ric variablesy;; , ¢, andF; are evolved td("* ) [stage(3)
of Fig. 1]. We also use an extrapolation method such as

3 1

(n+1/2)_ — (n)_ — (n—1)
o 2a Za ,

i + _3 i n_E iy(n—
()= (8= S(B) ",

(Ry)™+i= ;(Zii )+ 1/2)_%@”_ )(n=112)

Since all the quantities are evolved by this stage, we can
derivev' at t(""1) using Eq.(2.12 without any extrapola-
tion.

Ill. TESTS AND RESULTS

Our current priority in numerical relativity is to perform
simulations of the merger of binary neutron stars. Before
carrying out such simulations successfully, it is necessary to
confirm the accuracy and performance of our numerical code
for many different problems. In particular, the following is-

because it is necessary to preserve the second order accura&ties have to be addresséd.The merger will take place for

in time.

Next, the hydrodynamic equations foy , U;, ande, are
evolved tot("*Y). For solving the evolution equations, we
use a Runge-Kutta method of second order accufasy,
i.e., the hydrodynamic equations are solved frof¥ to
t(""2) in the first stepstage(4) of Fig. 1], and using the
fluid variables defined both at” and att(""¥?, those at
t("*1) are subsequently obtained in the second kttgme(5)
of Fig. 1]. Since there appearij ., &, a, B, w, h, andP on
the right-hand side of the relativistic Euler equati¢@10
and we need those &' in the second step for solving
the equation, we use extrapolation and interpolation:

3 1

a(n+l/2): _a(n)_ _a(nfl)’

2
iy(n+ 3 iy(n 1 iy (n—
(BH" A= 2 (BH W= S(BH ",

¢(n+l/2): ;[¢(n+l)+ d)(n)]’

- 1 - -
(y;) (1A= 5[(%])(”“”(%])(”)]7

3 1
(n+1/2)— ~\p(n) _ Z\p(n—1)
W 2W 2W .

P andh att(""¥2 are calculated from, , e, , w, and¢ at
t("*22) optained in the first stefNote thatw("* 1) ¢(*1),
and (8)("*Y have not yet been obtained by this stage.
Once the fluid variables are evolvedtt8*?), Eq. (2.14 is
solved at each spatial grid point for obtainindg”* %) using
the Newton-Raphson meth$@3]. Subsequently, we can ob-
tain P andh att("* 1),

a couple of orbital periods from the time when the binary just
enters inside the ISCO to the formation of a black hole or
neutron star. Can we carry out the simulation stably for a
couple of orbital periods@i) The final product of the merger
will either be a black hole or a neutron star. If the merged
object is unstable against gravitational collapse, a black hole
is formed. Can we judge the stability of the merged object
against the gravitational collapséifi) The formation of a
black hole will be signaled by the appearance of an apparent
horizon. Can we determine the apparent horizon during the
simulations?iv) Can we extract waveforms of gravitational
waves?

To answer these questions, we have performed simula-
tions for a wide variety of test problems.

(1) Spherical collapse of dusPE0) to a black hole: We
compare the results with those obtained in a (Bpherical
symmetrig simulation. We also check whether the apparent
horizon can be found at a correct time and location. This test
confirms that our code can simulate the formation of a black
hole accurately.

(2) Stability of spherical stars: We check that the stability
of spherical stars can be judged in our code, preparing both
stable and unstable stars as initial conditions. We also check
whether our code can provide a correct output on the funda-
mental radial oscillation frequency of perturbed spherical
stars. This test is useful to confirm that we can determine the
stability of the merged object against gravitational collapse.

(3) Quadrupole oscillations of perturbed spherical stars
and emission of gravitational waves: We give a quadrupole
perturbation to a spherical stable star, and check whether we
can obtain the frequency of the fundamental mofienpde
oscillation and extract the waveform of gravitational waves
near the outer boundaries. This test is useful to confirm that
the extraction of gravitational waves near the outer bound-
aries is feasible.

(4) Preservation of rapidly rotating stars in equilibrium
states: We check thapproximate equilibrium states of
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16 b length, and density may be rescaled using the following rule:
o 14 . M, (Mg)—M, C"3(M,C"?),R—RC"
12 - - B
1 a L | T W TR NN N N . pc—>pCC_n and \]—M.]Cn for K—>KC, (31)
0 0.002 0.004 0.006
WE™C T T T T T T T wheren=1/(I'-1) andC is an arbitrary constant. Namely,
{2 E 3 the invariant quantities are only dimensionless quantities
10 b E such as M*K‘”’Zz (Mgrg—“”), RK™™2 p.K" M,/R
8E e E (My/R), andJ/Mj (IIMg).
SEL 1., e A. Test (1): Spherical collapse of dust
0 0.002 0.004 0.006 : - 9P P
Pe We consider a time-symmetric, conformally flat initial
. ) . ) condition for the dust sphere, and adopt the following den-
FIG. 2. Rest mask!, and circumferential radiuR as a function sity profile:
of central densityp. for spherical polytropic stars df=10 and '
I'=5/3 (solid lineg and ofK=200/7 andI’=2 (dotted line$. The r2— rg -1
solid circles denote the equilibrium stars which are used in test px=A l+ex;{ > ” , (3.2
simulations[tests(2) and/or(3)], and the open circles denote the or

critical configuration of stability against gravitational collapse. The

cross in the figure foM, — p. denotes the relation betwedh, /2 where we choose,=4My and 5r2=0.18|\/ls. Ais adjusted
and the maximum density for corotating binary neutron stars inso that the gravitational mass of the system isAE=@.287
approximate quasiequilibrium states which are adopted as initial 10~ 2). In this test, we assign negligible specific internal
conditions in Secs. lllE and IV. energy and pressure, i.e<1 andP<p. Throughout this

rapidly rotating, stable stars can be preserved for a couple Qs-};u bsection, every quantity is shown in the uwig=1 (and

the rotation periods. The simulations are carried out choosing ~1=c).

L . . : - We perform the 3D numerical simulation as well as 1D
rigidly and rapidly rotating stars at mass-shedding Ilmlts.(Spherical symmetricsimulation and compare the two re-

;h;ﬁ;ersott:tigrsl%f]f‘tl;g ;:g;fslrir: ;B?ffctigitfoglrjdm?;i;évéstténg Iil\ﬁ%ults. The simulations are carried out in two different spatial
y supp auge conditions, the MD and'=0 gauge conditions. We

adequate to carry out stable and accurate simulations in o ote that in a spherically symmetric case with a conformally

AMD gauge cond|t|on. . . . _flat initial condition, the AMD gauge condition is identical
(5) Preservation of a corotating binary neutron star in a

quasiequilibrium state: We prepare a mildly relativistic coro-With the MD gauge condition because the conditigry;;
tating binary neutron star in an approximate quasiequilibrium=0 holds in both cases throughout the whole evolution.
state obtained assuming a conformally flat 3D geonf@4y. ~ Hence, a comparison can be done without any coordinate
Although we ignoreh;; which is necessary to obtain a true transformation. We use Fhe _maX|maI slice cqndltlon in the
quasiequilibrium configuration, it is at most a second posi.D case and AMS condition in the 3D case. Sigecan be
Newtonian quantity from the post Newtonian point of view kept nearly equal to zero in the AMS condition, we can
[25], and for mildly relativistic binaries, the error is expected consider them as the same slice conditions. We have used a
to be small. This test confirms that an approximate quasigrid with N=60 andéx=0.15 in the 3D simulation.
equilibrium state of a binary neutron star can be preserved First, we show numerical results for thgf=0 case. In

for more than one orbital period. Fig. 3, we showr andp, atr=0 as a function of time. The
In the following subsections, we present the numericadotted and solid lines are the 1D and 3D results, respectively.
results of test§1)—(5) separately. In Fig. 4, we also plotr along thex axis at selected times

In tests(2)—(5), we prepare the equilibrium and/or quasi- (t=12.0, 17.2, and 20)4or the 1D(the solid line$ and 3D
equilibrium states as the initial conditions, adopting a poly-(the solid circles results, respectively. We note that in the
tropic equation of stat®=Kp' with I'=5/3 and/or 2. For 1D simulation, the apparent horizon is foundtat18.6. In

I'=5/3 and 2, we fixk as 10 and 2006#, respectively, to the 3D simulation, it is also found nearly at equal time and
mimic a relation between the rest ma‘ﬂsc and the central the same location. These results show that the 1D and 3D

densityp, for neutron stars. results agree well at least up to the formation of a black hole

In Fig. 2, we showM, and the circumferential radi®of ~ and confirm that it is possible to investigate black hole for-
the spherical equilibrium stars as a function mf for I mation in a spherical symmetric spacetime accurately with
=5/3 and 2, respectively. Fdf=5/3, M, (M) reaches a our formulation and numerical code.

maximum value=1.552 (1.487) ap.=1.85x10 2, and for In the late phaset&23), the accuracy of the 3D results
r=2,M, (Mg) =1.435 (1.306) ap.=5.0x 10 3. Beyond deteriorates. This is because the error increaséﬁ irapidly
the critical densities, the star is unstable. as a consequence of the so-called horizon stretching around

Although we adopt particular units fixing, the mass, the location of the apparent horizon.
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t/ M t/ M

FIG. 3. @ andp, atr=0 as a function of time for a spherical FIG. 5. The same as Fig. 3, but with the MDr AMD) gauge

dust collapse with zero-shift gauge condition. The dotted lines aré:ondlthn. IThe dotted and solid lines denote the 1D and 3D results,
the 1D results, and the solid lines are the 3D results. respectively.

Next, we present numerical results in the Ndnd AMD) ~ €qual to 0, so that the physical grid spacing in the MD gauge
gauge conditions. In Fig. 5, we shawandp, atr=0 asa conditions is 4 times as large as that in te=0 gauge
function of time. In this case, the 1@he dotted linesand ~ condition around =0 att~20. _ .
3D (the solid lineg results agree well by~20. Fortunately, To overcome the coordinate spreading effect without
we could determine the apparent horizon because it i§hanging the gauge condition, we have to take a large num-
formed att~18.6, but the accuracy deteriorates soon afte€r Of grid points around the black hole forming region. The
the formation. This illustrates that the MD gauge condition isSolution to this problem may be to adopt an adaptive mesh
less appropriate than th#=0 gauge condition for the evo- refinement techniqui6] in which we can improve the reso-
lution of the late phase of the gravitational collapse in thelution around the black hole forming region effectively.
simulations performed under identical grid number and spacHowever, since the spreading factor increases rapidly as
ing. The reason is apparently related to the drawback of th&hown in Fig. 6, we have to improve the resolution also
MD gauge condition pointed out {ii6]: In the MD or AMD ~ duickly when using such a technique. We do not think it a
gauge condition wittkk=0, the coordinates spread outward 900d idea to simply rely on such a technique. We consider it
and the proper distance between two neighboring grids inf€cessary to modify the gauge condition. A strategy of the
creases, i.e.d,8>0 (8'>0) andd,¢>0 [cf. Eq. (2.21)], _mod|f|cat|on and the nymencal experiment will be presented
aroundr =0 during gravitational collapses. As a result, the N ©n€ of the forthcoming papef&7].
black hole forming region cannot be well resolved. In Fig. 6,
we show the time evolution o atr=0. It changes from B. Test (2): Stability of spherical stars
0.17 to 0.9 byt=20. Thus, the proper distance between two
neighboring grids increases by a factefl#(t=20)~¢(t=0)]
~4. In the8'=0 gauge condition with£=0, on the other
hand, ¢(x') is constant in time andh;; for r~0 is nearly

In this second test, we prepare spherical equilibrium stars
of a polytropic equation of state &f=5/3. We use two stars
for the test. One is a stable star pf=10"3, M, =1.499,

1.5

1 —— —— —— —— . . LANLIL L L L L L ) I L

0.8

0.6

0.4

0.2
0 B 1 1 Il ‘ 1 1 Il | 1 1 1 | 1 1 1 | 1 0 -I L1 1 | L1 11 | L1 1 | I | L1l I-
0 2 4 6 8 0 5 10 15 20 25
r/ M t/ M
FIG. 4. « along thex axis at selected timed€12.0,17.2, and FIG. 6. ¢ as a function of time for a spherical dust collapse in

20.49) for a spherical dust collapse with zero-shift gauge conditionthe MD (or AMD) gauge condition. The dotted and solid lines
for the 1D resultgthe solid line$ and 3D resultgthe solid circles denote the 1D and 3D results, respectively.
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FTr T 17T L T T 7T LI ™ 0.1 § T T T T ‘ T T T T T T T T T g
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0 5 10 15 20 0 5 10 15

tpl/® tpy/?
FIG. 7. p and @ atr=0 as a function of timetpX? in 3D FIG. 8. p anda atr=0 as a function of timetp? in 3D

numerical evolution of a stable spherical polytropic starpgf  numerical evolution of an unstable spherical polytropic stapof
=103, K=10, andl'=5/3. The solid and dotted lines denote the =2.4x 1073, K=10, and'=5/3. The solid and dashed lines de-
results in the zero-shift gauge condition and the dashed line in thaote the results in the zero-shift gauge and AMD gauge conditions,
AMD gauge condition. In the simulation shown with the dotted respectively. In these simulations, we redicby a factor of 0.1%
line, we reduceK by a factor of 0.5% initially, and in other cases, or 0.5% initially.
we give equilibrium states without any perturbation.
case when the depletion factor of the pressure is larger.

and My=1.440, and the other is an unstable starpgf These results confirm that our code provides correct results.
=2.4X 10*3 M, =1.542, andM,=1.478. In both cases, The time evolutions op and« atr=0 in the two spatial
the total rest mass is slightly Iess than the maximum valuegauge conditions approximately agree with each other except
In Fig. 2, we show with the solid circles and the open circlefor the late phase of the gravitational collapse during which
the locations of the two stars and the star at the critical denthe coordinate spreading effect is severe in the AkéDd
sity of stability, respectively. MD) gauge condition$29]. The overall agreemeriexcept

Here, we again use two spatial gauge conditions: AMDfor the late phasds an important test of consistency because
gauge and3'=0 gauge conditions. In Fig. 7, we show the p anda atr=0 are both gauge-independent quantities.
time evolution of the density (=p,e ®¢/w) and « at r
=0 as a function of time for a stable configuration mf C. Test (3): Quadrupole oscillations
=10 3. These simulations were performed wih=50 and of a perturbed spherical star
6x=0.4. The solid and dotted lines are the results inghe
=0 gauge condition, and the dashed line is in the AMD
gauge condition. The dotted line also denotes the result for
the case in which we give a perturbation to the equmbrlum
configuration by reducing by 0.5% initially. In other cases,
we give the equilibrium state without any changes. Thes

figures clearly illustrate the feasibility of our code to judge
the stability of the spherical stable star and to preserve |§nr(rjnv\ﬂﬁ Iilméjcl)agﬁgsgang\l% ?‘gr ?ndzax re(;:egtjlzlgly 5T/f1e
stably at least in a few oscillation periods irrespective of theest is performed in the AMD gauge condition, and at the

gauge conditions. : i
As shown with the approximate perturbation analysis inOUter boundaries, we s_El;_fO(r ). N .
As the source of the initial quadrupole oscillation, we give

Appendix B[28], the period of the fundamental radial oscil- locit wurbai P
lation is ~10.5; 2. For the pressure-depleted caghe 2 VEIOCTY perturbation o ype

dotted ling, the oscillation period is clearly recognized in M
ui(t=0)=A~\/=3(—x,y,0)

For the third test, we prepare stable spherical stars in
equilibrium states as in te$2). We adoptl’=5/3 and 2 in
%his test, and choose stars in whieh=10"2 for I'=5/3 and

—3><1O‘3 for I'=2, respectively. Fol'=2 andp,=
><10*3 the mass and circumferential radius are 1. 25 and
%. 99, respectivelysee the solid circles in Fig.)2We per-

Fig. 7. This shows that the frequency of the fundamental
radial oscillation can be computed accurately in our code.
In Fig. 8, we show the time evolution ¢f and « at r

=0 for an unstable configuration gf.=2.4x10 3. The
simulations are performed with=50 andéx=0.3. We pre- N
pare pressure-depleted initial conditions in which we reduce — N\ — Mg,

K by 0.5% and 0.1%. As in the stable case, we use both the Ut=0)=A\ (=Y, =0, 3.4
B'=0 and AMD gauge conditions, and the numerical results

are denoted by the solid and dashed lines, respectively. AshereA is a constant which is set to be 0.082.

shown in Fig. 8, the unstable star collapses into a black hole. As a result of a time-varying mass quadrupole moment of
As one would expect, the star collapses more quickly in thehe star, gravitational waves are emitted. This allows us to

(3.3

or of “ X" type

104052-10



FULLY GENERAL RELATIVISTIC SIMULATION OF . .. PHYSICAL REVIEW D 60 104052

Froor | L | T | T | rrTd 1.95 T T T T T T T T T T T T T T T T
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tpl/2 tpé/Z
FIG. 9. x| cand @ atr=0 as a function of timetp?) for a FIG. 11. The same as Fig. 9, but fpg=3x1073, T=2, and

perturbed spherical star gf,=10"3, K=10, andI'=5/3 with a K=200/r.
quadrupole perturbation of thes mode. The solid, dotted, and

dashed lines denote s, Yrms, andzms, respectively. 12

: (3.7)

) 1 .
XlrmsE[M_J' dgxp*(xl)z
check the feasibility of the gravitational wave extraction near *
the outer boundaries. To extract gravitational waveforms, w

define[16] %s a function of time for the- andx mode perturbations for

I'=5/3 (Figs. 9 and 10 and for the+ mode perturbation for
I'=2 (Fig. 11, respectively. In the case of th¢ mode

=1y 1y)/2, (3.5 oscillation, X, (the solid ling and y,s (the dotted ling
oscillate with a characteristic period. FB=5/3 and 2, the
N =1"Yxy, (3.6)  oscillation period is~5.50, 2 and~4.7p_ *2, respectively.

As shown by perturbative studies on stellar pulsati8@,
along thez axis. Since we adopt the AMD gauge condition the angular frequencies of tlienode oscillation fol"=5/3
and prepare initial conditions in whidk =0, h;; is approxi- ~ and 2, and4/R~0.1 are approximately written as
mately transverse and traceless in the wave 146¢ As a

result,h, andh, are expected to be appropriate measures of My B

gravitational waves. They are also useful to find the maxi- 144\ & for  T'=5/3,

mum amplitude of gravitational waves because we treat the w= (3.8
problems in which the amplitude is maximum along the Mg f =2

axis. Lo2\gs T '

In Figs. 9—11, we show a root mean square radius
Or, according to an empirical formu[&1], the angular fre-

L S quency for the stars d14/R~0.1 is also written, irrespec-
3.6 — — tive of I', as
i ] Mg
35 — - »w=0.012+0.93 " (3.9
:of ¥
E a4l g ForI'=5/3 andp.=10"* (i.e,, My=1.44 andR=13.1), the
4 i oscillation period is=5.50_ ¥ in both formulas. Fol =2
i ] and p,=3x10"3 (i.e., My=1.25 andR=6.99), the period
a3 [ h is =4.7p; 2 from Eq. (3.8 ansz.Opc’l’2 from Eq. (3.9).
- : Thus, our numerical results agree with these perturbative re-
i ] sults fairly accurately.
g0 Lo il b il On the other hand, the oscillation periods of (the
o 5 10 15 20 dashed lingfor the + mode perturbation and of all the com-
tpl/2 ponents ofx;, for the X mode perturbation are roughly
© ~10p, ¥? for T =5/3 and~7p_ Y for '=2. These are in
FIG. 10. The same as Fig. 9, but fsr mode perturbation. agreement with the periods of the fundamental radial oscil-
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FIG. 14. The same as Fig. 12, but far=3X 1073, I'=2, and

FIG. 12. h, and hy as a function of a retarded time for a K=200/r.
perturbed spherical star gf,=103, K=10, andT'=5/3 with a
quadrupole perturbation of the mode. The solid and dashed lines zero, and for Eq(3.4), h, remains nearly zero, as expected
denote those extracted aj,=24.5 and 19.5, respectively. by the quadrupole formula. These facts suggesthhaand

. . o ~ h, represent(at least approximatelygravitational waves
lation and different from those of tfemode oscillation. This  emitted by the stellar oscillation and indicate the ability of
reflects the fact that they are not relevant for famode  our code to extract gravitational waves near the outer bound-
oscillation at linear order. ary. We expect that a simulation of higher resolution would

In Figs. 12 and 13, we shotv, andh, atz,,s=24.5(the  produce even more precise gravitational waveforms.
solid lineg and 19.5(the dashed lingdor I'=5/3 as a func-

tion of the retarded time for the- and X mode perturba-
tions. In Fig. 14, we also shotv, andh, atz,,.~=12.25(the
solid lineg and 9.75(the dashed lingsfor I'=2 for the + To carry out this test, we prepare rapidly and rigidly ro-
mode perturbation. As the oscillation frequency of the tating neutron stars itapproximatg¢ equilibrium states. We
mode shows, the wavelength of gravitational waves is sevadoptl’=5/3 and 2, and select stable compact neutron stars.
eral times larger tham,,,, so that we expect the extracted To prepare the rotating stars in approximate equilibrium
waveforms to be different from the asymptotic waveforms.states, we use a conformal flatness approximation. Then, the
However, they appear to constitute a fair description of thegeometric and hydrostatic equations for solutions of equilib-
asymptotic waveforms, at worst qualitatively, beca(@ehe  rium states are described 4]

solid and dashed lines approximately agtee., yu— vyy 45

and’y,, behave approximately d@§t—z)/z along thez axis Ay=—2mw(phw?—P)y°— gé'kﬁ“ LijLw, (3.10
wheref denotes a generic functigr{b) the oscillation period

agrees well with that of thé mode,(c) the order of magni- 5 5
tude ofh, andh, roughly agrees with that derived by the Alay)=2may’[ph(3w"—2) +5P]

D. Test (4): Stability of rapidly rotating stars

quadrupole formula, i.e.Mgv?~MZA%R~10"3, and (d) Tays
for the perturbation given by Ed3.3), h, remains nearly + T(S'ka“Liij,, (3.1)
EI UL | LU I T TT | LI ‘ T IE
0.002 £ =
E 3 i 1 K Ki 6a _
. 0.00é E = 5IJAB + §B,kj_2|‘jk5 l?ia/_ 7(9“# —16’7Ta’phWUj,
= E =
~0.001 3 (3.12
_0.002 ;_l\ L1 | | | | | | | | I ‘ | I_; h
o
0 ° 1015 =0 — =const, (3.13
_I P UL | T T I LR | L ‘ T IE W
0.002 E 3
XW%AAAE -
= 0 ﬂ :
-0.001 B = = k j
~0.002 — M \/ . \/ i 3 =W e 8y e, (5.49
(“ Zm)pyz w2=1+y *sluu;, (3.15
FIG. 13. The same as Fig. 12, but far mode perturbation. h=1+KIp'1(I'-1), (3.16
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L L L L To suppress the coordinate twisting, the AMD gauge con-
dition is adopted. The shift vectgg® determined in this

gauge condition for the conformal 3D metric?yiﬁ: 6ij)
agrees with that obtained from E.12. This implies that
when a simulation is started, the gauge condition is identical
with that used for obtaining the approximate equilibrium
states. Therefore, we can use the approximate equilibrium
states as the initial conditions without any coordinate trans-
formation.

In this test,F; is set to zero at the outer boundaries. The
grid numberN is set to 54 typically. We also adopte
=76 without changing the grid spacing in some of the fol-

0 0.002 0.004 0.006 lowing simulations, but we did not find a significant differ-
P, ence in the results. This indicates that the outer boundary
condition adopted here is adequate.

FIG. 15. The gravitational mass as a functiorpaitr=0 (p) We have considered two kinds of initial conditions: In
for rotating stars of'=5/3 andK =10, andl'=2 andK=200/7.  ne case, we use the approximate equilibrium configurations
The solid lines denote _rotatlng stars at mass-_she_ddlng limits obgithout any change. In the other case, we initially decrease
talned from exact equations. T_he_ open gnd soll_d circles denote e pressure by reducirig by 1% (i.e., AK/K=1%). Even
tating stars at ma.SS'Shedd'ng "T“'ts obtained using acqnformal ﬂa'i'n the pressure-depleted case, the stars should be stable be-
ness apprOX|mat|qn. The rotating stars we use In this paper Zill’(ex_:luse the gravitational mass ’483—5% smaller than the
marked by the solid circles. maximum mass of the rotating staeee Fig. 15 In Fig. 16,
we show snapshots of the density contours linespforand

L :Zi 5jk(7i,3k+ 5ik<91,3k_ z5ijr7kﬁk . (317 f[he velocity field fqr ¢*,vY) in the equatorial plandeft) and
a 3 in they=0 plane(right) at selected times fakK=0 and for
I'=2 as an exampl&or I'=5/3, we have found that similar
and() denotes the angular velocity of the rotation. figures can be drawnWe also shown andp atr=0 as a

Although the solutions obtained from Ed8.10—(3.13  function oft/P in Fig. 17 Xms andz,,s as a function ot/P
are not exact, we can still expect that they are excellent afin Fig. 18, andJ/J, as a function ott/P in Fig. 19 forAK
proximate solutions as illustrated |82]. As shown in Fig. =0 (the solid line$ and AK/K=1% (the dotted linesand
15, this is the case: We show the gravitational mdgsas a  for I'=5/3 and 2. Because of numerical dissipation at the
function of the central density, for rotating stars at mass- stellar surface, the total angular momentum of the sy$tém
shedding limits obtained from exact equatiofiee solid jn Eq. (2.25] decreases by-2% byt~ 2P in all the simu-

lines) [33] and obtained by the conformal flatness approxi-jations(see Fig. 18 As a resulte atr=0 andx! . decrease

mation(the circles. We have found that the sequences of theanq , at r=0 increases with the time evolution. Also, the

circles almost coincide with the solid lines for mildly rela- gi5rs suffer slight nonaxisymmetriqguadrangular shapele-
tivistic stars ofp.=p; wherep;~0.0015 forl'=5/3 andp;  formation near the surfadsee Fig. 16because we use Car-
~0.003 forI'=2. As the density of the rotating stars in- tesjan coordinates for rotating stars of a spheroidal shape.
creasesi.e., p;=py), the coincidence becomes worse gradu-However, besides these slight changes, the stars remain al-
ally, but even forp,~2p, at which the star seems to be most in stationary states for more than two rotational periods
unstable, the difference between the sequences of circles ags | by the time we terminated these simulations

solid lines is small. _ _ Since the initial conditions adopted are only approximate
We perform the simulations for the rotating stars markedequilibrium states, some oscillations are induced with the

with the solid circles in F|g 15. The relevant quantities fortime evolution. However, the amp"tude is very small and
the rotating stars are shown in Table I. We adaPt  cannot be distinguished from the numerical errors. Thus, the
=0.434 forl’=5/3 andox=0.202 forl' =2 as the grid spac- states of the rotating stars are close to the true equilibrium
ing. With these grid spacings, the major and minor axes opnes. Actually, the absolute value of each componerit; of
the stars are initially covered by 40 and 23—24 grid pointsyemains small and of order 0.05. These results reconfirm
respectively. that the conformal flatness approximation is really a good
approximation for obtaining axisymmetric rotating stars in
TABLE I. The list of the central density., total rest mass equilibrium states.
M, gravitational mas/ g, J/Mé, and rotation pe_riod_P_for ro- For AK/K=1%, a andp atr=0 andxirms oscillate with
tating neutron stars df =5/3 and 2 at mass-shedding limits. the time evolution. The oscillation period is roughly 0.9P for
both I'=5/3 and 2. We deduce that the period denotes a
fundamental quasiradial oscillation period of the rotating
9.94x 1074 1.67 1.60 0.427 397 5/3 stars.
2.77x10°2 1.58 1.45 0.598 163 2 We emphasize that the simulations can be stably carried
out for more than two orbital periods without any instabili-

Pe M, My JIME P r
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ties and withh;; being kept small. These results clearly dem-quently formed as a result of accretion onto a neutron star
onstrate that our formulation for solving the Einstein equafrom a companion star in normal binary systef85§]. How-

tion is robust even for systems of nonzero angularever, such simulations are beyond the scope of this paper. A
momentum and that the coordinate twisting is sufficientlymore detailed analysis of the stability of rapidly rotating stars

Suppressed to a level adequate for |0ng_time_sca|e S|mu|@nd of the final fate of unstable stars will be presented in

tions in our AMD gauge condition. [27].

In this paper, we only perform test simulations using
stable rotating stars. It is very interesting to perform simula-
tions adopting rapidly rotating supramassive neutron stars to
investigate the stability and the fate of unstable s{ar. In the final test, we adopt a mildly relativistic corotating
Such rapidly rotating supramassive neutron stars may be frésinary neutron star in an approximate quasiequilibrium state

E. Test (5): Corotating binary in an approximate
quasiequilibrium state
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FIG. 17. « andp(=p, e ®¢/w) atr=0 as a function of/P for
I'=5/3 and 2. The solid and dotted lines denote the results for

initial conditions in which no perturbation is added and the pressure ) o =
is depleted, respectively. orbits are stable against a hydrodynamic instabilidf].

Since the binary neutron star is not very compaeie Table
as an initial condition. As mentioned in Sec. I, our purpose in!!) @nd is also far from the ISCO, it can remain on a stable
the future is to carry out simulations of coalescing binar orbit for a time comparable with the emission time scale of

neutron stars from the ISCO to formation of a black hole ordravitational waves. ,
Approximate quasiequilibrium states of binary neutron

new neutron star. In the early stage in which the binary is . . .
near the ISCO, the radial velocity of each star is expected t§{'S aré obtained solving Ed8.10—(3.13. The equations

be small, and we can consider the binaries as on approximafé€ Solved using a numerical method similar to that em-
quasiequilibrium orbits rather than on plunging orbits. As thePl0Yed in[36]. . .

radial velocity gradually increases, the orbit changes from a In F|g_.32, we deno_te, by the crogsf h|gher densny,_
near inspiraling one to a plunging one. For a successfuPmax—10 ), the relation between the maximum density
simulation of a coalescing binary neutron star, therefore, &max @nd half of the total rest madd,, /2 for a corotating
nearly quasiequilibrium orbit has to be maintained at leasPiNTy neéutron star in an approximate quasiequilibrium state

for ~ 1 orbital period stably. In this test, we show that this is Which is used as an initial condition of the simulation. We
feasible with our code. compared the numerical results on the relation between the

The configuration of a binary neutron star is again ob-Naximum density and rest mass with those by Baumgarte
tained with the assumption of a conformally flat 3D metric €t &l- [24], and found that they agree within 2% error. In
and the maximal slice conditiokX=0 [24]. We prepare a Table Il, we also list the relevant quantme? of the binary

. . H P 1/3 —2/3
binary in which the surfaces of two stars come into contact€utron star. We define an orbital radarsM ™0 "=, and
We adoptl"=5/3 in this test. The equation of state for such @1 @pproximate ratio of the emission time scale of gravita-
smalll"<2 is not so stiff that binary neutron stars in contact tional waves to the orbital period as
5/2

FIG. 19. The same as Fig. 17, but fdfJ, as a function ot/P.

LI I N L O L B L Y R :i i :_(M Q)—5/3 (3 1&
4= x_. — T 1287\ My 1287 ¢ ' ‘
I r=5/3 ] where we have used the Newtonian expression of the energy
- Zrms e — and orbital period, and the quadrupole formula for the energy
3 b T T T | luminosity of gravitational waveg37]. Since our purpose is
Bt 8 to check the feasibility of our code to preserve the approxi-
i Xrms _ . 1 TABLE Il. The list of the maximum density, total rest mass
5 e e i M, , gravitational mas#y, J/M7, coordinate separatioa, or-
L r==2 | bital period P, and ratio of the emission time scale of gravitational
L Zrms _______________ waves to the orbital perioR, for corotating binary neutron stars in
| | | | | ] approximate quasiequilibrium states.
0 0.5 tl/ b 1.5 2 Prmax M, Mg ‘]/MS a P R,
6x10 4 2.84 2.72 1.20 38.3 902 9.2
FIG. 18. The same as Fig. 17, but fgf,s andz,,,s as a function 103 3.07 2.92 1.11 329 694 5.3

of t/P.
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mate quasiequilibrium state stably, this test should be peraction of gravitational waves is not precisely taken into ac-
formed for a binary in whichirR,>1. count in the following simulation. A large simulation &f

In the numerical simulation, we adopt the AMD gauge >\, is one of the future issues.
condition to sufficiently suppress the coordinate twisting. As  In Fig. 20, we show snapshots of the density contour lines
we discussed in Sec. IlID, the gauge conditiontatd is  for p, and velocity field for ¢*,vY) in the equatorial plane
identical with that used for obtaining the approximate quasiat selected times fdi= 116, while in Fig. 21, we show;,
equilibrium state, so that we do not have to carry out a coas a function ot/P. We note that if the binary remains in a
ordinate transformation at=0.

In this subsection, we adopt the grid spacing &s L
=0.927, varying the grid numbét as 76 and 116. With this = Y
setup, the major diameter of each star is covered by 30 grid 15
points initially. ForN=76 and 116L (=N&x) is only ~0.2 L
and 0.3 times as large as the wavelength of gravitational "
waves, h\g,=7/{). For a precise simulation, the outer . 10
boundary should be located in the wave zone so that E
>Ngw- This is because we should impose an outgoing
boundary condition fory; andA;;, and in the system of
binary neutron stars, the existence of gravitational waves S
plays an important role for the evolution of the system. We

X

T 'lllll o

— ]
have found that the present incomplete treatment for the out- -
going boundary conditions seems to produce numerical er- il e
rors (see below for a further discussijorHowever, for im- 0 0 02 04 06 08 1 1.2
posing the boundary condition in the wave zone with the t /P

uniform grid, it is necessary to take a very large grid number

N=400. That is not feasible with the present computational FIG. 21.x! . as a function ot/P of a corotating binary neutron
resources on supercomputers. In this paper, we performtar in an approximate quasiequilibrium state. The solid, dotted, and
simulations overlooking the deficits. Thus, the radiation re-dashed lines denote s, Yms, andz;ms.
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FIG. 23. h, andhy as a function of a retarded time of a coro-

. S . . tating binary neutron star in an approximate quasiequilibrium state.
quasiequilibrium state, the orbital period should be kept tOl'he solid and dotted lines denote those extractetj,gt 106.6 and

~P, the curves foxys and y,ms should be Cf)mp'ete sine 85.3 forN=116, respectively, and the dashed lines those extracted
curves, and,,s should be a constant. From Figs. 20 and 21 ,4; Zop=69.5 forN=76.

it is evident that the state of a binary neutron star fluctuates

from the initial state with time. The fluctuations seem to be . . . .
mainly due to the numerical error discussed below. Beside§Onsistent with what is inferred from a post Newtonian study

the spurious numerical effect, the binary neutron star is kegt22] in which hj; has magnitude of order (Mgy/a)2.] Since

in an approximate quasiequilibrium circular orbit forl or-  hjj becomes nonzero, it could slightly affect the quasiequi-

bital periods stably. librium configuration of binary neutron stars. However, this
There appear to be two candidates for the numerical errofloes not seem to be a serious perturbation for the present

One is the numerical dissipation of the angular momentum amildly relativistic case.

the stellar surfacg38] which was already pointed out in test  In Fig. 23, we showh; andh, as a function ot/P. The

(4). This is a simple consequence of insufficient resolutionsolid and dotted lines are extractedzgt.~=106.6 and 85.3

As a result, the orbital radius decreases. The other candidafer N=116, and the dashed line aj,=69.5 forN=76. As

is the incomplete treatment of the outgoing boundary condimentioned before, we extract them at(0.2-0.3\ gy, SO

tions. As mentioned before, we impose an approximate outthat they only indicate approximate asymptotic waveforms.

going boundary condition fo?yij and Rij not in the wave Nevertheless, we find that they behave in a periodic manner

zone. From this incomplete treatment, the angular momenand that the period approximately agrees with the orbital

tum seems to go out and come in inaccurately from the outgseriod. Furthermore, the solid and dotted lines agree very

boundaries. As a result, the orbital radius increases and devell, implying that the waves propagate at the speed of light.

creases. To illustrate the fac/Jy as a function oft/P is  These facts indicate that the approximate waveforms consti-

depicted in Fig. 22. From this figure, we can recognize thatyte a fair description of the asymptotic ones.

the angular momentum increases and decreases with time by There are, however, differences from what is expected in

~+3% of the total angular momentum. We note that théyhe asymptotic waveforms. The first one is found in the long-

angular momentum should be monotonically dissipated b30vavelength modulatiorfapparent especially if . ), which

gravitatio.nal radiatipn by a.‘bOUt 2% c.)f the total aqgulqr MO-should not appear in the correct waveforms. The modulation
mentum in one orbital period according to the estimation by

th d e f o H th ical its d Is larger for the simulation with smalléM, indicating that it
€ quadrupole formuia. However, the numerical resulls dq -4 sed in the outer boundaries. The second difference is
not reflect this effect accurately.

Despite these errors, however, the binary neutron star ifsOund in the irregular, nonperiodic w_aveforms in the early
preserved in a approximate quasiequilibrium orbit for more>t29€ f‘.mSZObS' These_\{vayes are emitted be??‘%se we S.e.t an
than one orbital periodtably. This seems to imply that we apprOX|.mate quaS|eqU|I|br|u.m. state. as the initial cgndmon
are choosing an adequate gauge condition and formulation &glectingh;; . The first radiation will be the relaxation of
the Einstein equation. We therefore expect that if we couldn® System to the true quasiequilibrium state. To avoid this
perform a simulation taking a sufficient number of grid Shortcoming, we have to prepare more realistic quasiequilib-
points to impose the outer boundary conditions in the wavdium states, adopting a formalism in whitth is appropri-
zone and to improve the resolution, it would be possible tcately taken into account. The third difference is found in the
perform the simulation not only stably, but also accurately. amplitude: For the case where two point particles of equal
During the evolutionh;; deviates from zero and gradually mass are in a circular orbit, the maximum amplitudes of
reaches a finite amplitude. The maximum absolute value oindhy in the post Newtonian approximation can be written

each component is of order0.05 by~P. [This is roughly ~ as[39]

FIG. 22.J/J, as a function of/P of a corotating binary neutron
star in an approximate quasiequilibrium state.
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~ 17 ~qp 1991Z, pmadt=0)=10"3, the central density of the merged object
Mgx| 1= gX+2mx™"= ZaanX, (319 for t=1.6P is~1.4x 102, which is nearly the maximum
allowed density along the sequence of stable neutron stars of
wherex=(M4Q)?=. Using this formula, the maximum value K=10 andI'=5/3 (cf. Figs. 2 and 1b This indicates that
. i ~ ) the new neutron star is expected to be located near the criti-
of h, andh, in the binary ofMy=2.92 andx=0.0887 is 5| hoint of stability against gravitational collapse and that a
0.24. (Note that in the quadrupole formula, itis 0.2&ince  pjack hole could be formed in the merger of more massive
the convergence of the post Newtonian formulaXer0.1is  neutron stars.
not very good, we should take into account an error of In Fig. 29, we show the fraction of the rest mass inside a
~10%. Even if we consider such an error, the amplitudecoordinate radius defined as
obtained in the numerical simulation is found to be some-
what smaller than that derived from E@.19. The reason
seems again to be due to the incomplete treatment of the M, (1) 1
outgoing boundary condition &t~ (0.2—0.3\ gy M EM—j  pedix 4.1

In summary, we can perform simulations of corotating * * J x| <r
binary neutron stars in an approximate quasiequilibrium state
stably and fairly accurately, and extract gravitational wavess a function of time fopp,,(t=0)=10"° (the solid lines
with ~10% error even in the present restricted grid numbersand pma{t=0)=6x10"* (the dashed lings The figures
However, to improve the accuracy for gravitational wave-show that=96% and=97% of the matter are inside
forms, it is necessary to adopt more sophisticated boundary 18(=6Mg) for ppa(t=0)=10"° andr=20.4(=7.5M)
conditions[21], to take a larger number of grid points, and to for pma(t=0)=6x10"*, forming the new neutron stars.
prepare a more realistic quasiequilibrium state as the initialhus, only a small fraction of the matter can spread outward
condition. These issues will be addressed in future simulato form a halo around the central objects. We also find that
tions. J(r=18)~0.85); for pn(t=0)=10"2 and J(r=24.4

=9M ) ~0.85]5 for pna{t=0)=6x10"* In both cases,

IV. MERGER OF COROTATING BINARY NEUTRON J/Mg of the newly formed neutron stars seems royghl;/,

STARS: A DEMONSTRATION and that appears to be one of the reasons for which the neu-
tron stars do not collapse to become a black hole.

In this section, we show numerical results of the merger In Fig. 30, we showh, andh, as a function oft/P for
between two neutron stars as a demonstration that such simthe two cases. FOp,{(t=0)=10 % and 6x10°%, zy
lations are feasible. We again adopt corotating binary neu=106.6 and 126.2, respectively. In both caseg
tron stars off' =5/3 in contact and in approximate quasiequi- =0.3\gy- In the early phase, their amplitudes gradually in-
librium orbits. Two binaries shown in Table (br in Fig. 2  crease as their orbital radii decrease. The amplitudes reach
with crossegare prepared as the initial conditions: One is thetheir maxima when the neutron stars merge. Since the bina-
same as that adopted in Sec. IIlE, and the other is a lesges change their configuration to nearly axisymmetric ones
relativistic one in which the initial maximum density of each soon after the mergers, the amplitudes drop quickly, leaving
star is 6<10 % To accelerate the merger, we artificially quasiperiodic waves of small amplitude which result from
reduce the angular momentum by 5% in the initial stage; i.e.small nonaxisymmetric perturbations. Since the equation of
we reduce the initial values af, andu, by 5% uniformly.  state is not stiff enough to allow for the bar-mode instability

In this section, we adoptl=116. to set in[40], the amplitudes will monotonically fall in the
In Figs. 24 and 25, we show snapshots of the densityemission time scale of gravitational waves. Ff,{t=0)
contours lines fop, and the velocity field forg*,v¥) inthe =103, the amplitude rises and falls more sharply than for

equatorial plane fopya(t=0)=10 % and 6x10™%, respec- p,.(t=0)=6x10*, because a higher density merged ob-
tively. Since we artificially reduce the angular momentum ofject is formed more rapidly due to the stronger relativistic
the system at=0, the neutron stars approach each other t@ravity. However, the overall waveforms of the two cases
merge soon after the simulations start. For both types otlosely resemble each other and no significant difference is
initial data att=0.5P (P denotes the orbital period of the found besides the difference of their amplitude and fre-
quasiequilibrium states without the angular momentumguency. This indicates that the waveforms only weakly de-
depletion, the neutron stars begin to merge, forming spiralpend on the compaction of original neutron stars if black
arms, and byt~1.5P, new neutron stars which are nearlyholes are not formed after the merger.

axisymmetric are formed. In Figs. 26 and 27, we show snap- It is interesting to consider the evolution after the forma-
shots of the density contour lines fpg in they=0 plane at tion of a newly formed, differentially rotating massive neu-
t=1.62P forp,{t=0)=10"3, and att=1.59P forp,{t tron star ofJ/MS~1 such as those obtained in the above
=0)=6x10* In Fig. 28, we also show the angular veloc- simulations. Since the mass of such neutron sfdvk,

ity Q=(xvY—yv¥)/(x*+y?) along thex andy axes in the ~(2.5-3M] is much larger than the maximum allowed
equatorial plane at=1.62P forp,(t=0)=10 2 and att mass of the original neutron stars of zero angular momentum
=1.59P for pma(t=0)=6X10 4 respectively. These re- (Mg~1.5Mg), the new star is strongly supported by the
sults show that the final products are rapidly alifferen-  rapid rotation. Hence, if the angular momentum is slightly
tially rotating, highly flattened neutron stars. For the casalissipated or transported outward, they could collapse to be-
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come black holes eventually. As discussed4], there are  time scaler,~10-100 sec after formation. According to
many processes which contribute to the angular momenturf41], however, the contraction will not lead to a black hole
dissipation and the angular momentum redistribution, e.g.because]/MS will remain ~1 even after a large amount of
neutrino emission, magnetic radiation, viscous dissipationpeutrino emissior{41]. Moreover, even in the cas#M?
and gravitational radiation. Since each process can affect 1, the maximum allowed mass of neutron stars after cool-
others in a complicated manner, it is difficult to give a pre-ing may not change significantly if a realistic equation of
cise analysis. Here, we present a rough and conservative uptate is taken into accoup2]. The bulk viscosity could play
per limit of the time scale for collapse to become a blacka dominant role when the merged object has a high tempera-
hole. ture [43] and high nonaxisymmetry. Although the tempera-
Since it will be cooled mainly by neutrino emissip#il],  ture could be sufficiently high just after its formation, the
the new neutron star will first contract on a neutrino emissiomrmerged object seems to remain nearly axisymmetric during
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the early stage as suggested by the simulations in this papenerged object could then be dissipated by the magnetic di-
Therefore, the neutron star could not collapse-jn pole radiation rather efficiently. The dissipation time scale of
Nevertheless, the newly formed neutron star is only in @&he angular momentum is estimated[44]
quasiequilibrium state and is continuously driven away from
the equilibrium state. As a result, the neutron star will even-
tually collapse to a black hole either because of magnetic
fields or because of viscosity. An important role in fact could
be played by magnetic fields if the neutron stars before the (106 cm 2(0-30 2
merger had magnetic fields ef10'2 G. It seems likely that “ITR RO/
the strength of magnetic fields of the newly formed neutron
star could become larger than their initial strength0'> G~ where B denotes the typical strength of the magnetic field.
due to the compression of matter during the merger and/or it§hus, the newly formed neutron star could collapse to a
differential rotation[10]. The angular momentum of the black hole within a year iB is larger than 18 G.

3
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FIG. 28. The angular velocity along theaxis (the solid ling
FIG. 26. The density contour lines fpf, inthey=0 plane after  anqy axis (the dotted ling at t=1.62P forp.,(t=0)=10"2 and
the merger (=1.62P) of a corotating binary neutron star Bf  3jong thex axis (the dashed lineandy axis (the dot-dashed lineat
=5/3 and ppa{t=0)=10"3. The contour lines are drawn for {—1 59p fOrpma(t=0)=6x10"4.
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.. . nsR 3Mg Pc
If the magnetic field is not very large, on the other hand, )
the dissipation by shear viscosity may play a dominant role T 10°cm
for the evolution of the newly formed neutron star. If shear 108 K R |’ (4.3

viscosity is present, the differential rotation is forced into
rigid rotation in a viscous time scale. In this case, the angulajyhere we useys=347p%4T 2 [43] as the shear viscosity of
momentum around the central region is transported to th@eutron star matter, an@ denotes the temperature which
outer parts and the centrifugal force around the central regiogould be dropped by neutrino emission fromti® 16°—° K
is weakened. Because it has a very large mass which is proir ~1 yr[45]. It should be noted that even if the magnitude
ably the nearly maximum allowed mass for the differentialof magnetic fields is not very large, they could be at the
rotation law, the neutron star might collapse as a result of therigin of an effective viscosity. This is because the differen-
outward transport of the angular momentum. If the micro-tial rotation of the star could cause a shearing instability,
scopic viscosity is dominant, the dissipation time scale cariesulting in a change of the magnetic field configuration and
be estimated as outward transport of the angular moment{#6]. The effec-
tive viscous time scale, thus, might be much shorter than that
of Eq. (4.3.
We also have to consider the effect of gravitational wave
emission due to the bar modd0,41] or r mode[47], by
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FIG. 27. The same as Fig. 26, but fof,,(t=0)=6x10"* at FIG. 29. Fraction of the rest mass inside a coordinate radiiss
t=1.59P. The contour lines are drawn fpg /p, ma=10%3,  a function oft/P for p,,(t=0)=10"2 (solid lineg and 6x10 *
wherep, ma=0.00143, forj=0,1,2...,10. (dashed lines
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T R L periods in our numerical code. These results indicate that

0.2 a //‘\\ / B numerical simulations of binary neutron stars for a long time
+ ok WIS NAY N from their ISCO to mergers are feasible.

/ ] Since we could not take a sufficiently large number of

J grid points to impose the outer boundaries in the wave zone
ce b by 0 as well as to resolve each neutron star precisely, numerical
0 0.5 1 1.5 errors are unavoidably included in the results. In particular,
S e e e e e e A e e we feel that the radiation reaction effect due to gravitational
02 /\ A - wave emission could not be taken into account precisely. For

¥ / LA N ]

-02 [

a more accurate computation of the radiation reaction effect,
we will have to adopt a numerical technique such as a nested
grid technique which effectively makes the computational
L region bigger or to impose sophisticated boundary conditions
0 0.5 1 1.5 at the outer boundarig®1], unless computational power is
(t-z,) / P improved soon. These issues should be pursued in future
works. We emphasize, however, that besides the error in-
FIG. 30.h, andh, as a function of retarded time in the merger duced by the incomplete treatment of the outgoing boundary
of corotating binary neutron stars pf,.,{t=0)=10"2(solid lines  conditions as well as the numerical dissipation due to the
and 6x 10 * (dashed lines restricted resolution, the simulation can be performed stably
and fairly accurately. If we can accept such a small effiar
which the nonaxisymmetric perturbation may grow, contrib-example, say=5% error in the angular momentyrthe
uting to the dissipation of the angular momentum or the recode can be used for the investigation of many interesting
distribution of the differential rotation. Such effects are problems even at present.
likely to be important, in particular after the newly formed In this paper, we have paid attention only to test prob-
neutron star contracts due to the neutrino emission, becausems. Since we consider binary neutron stars of mildly large
in such a stage the ratio of the rotational kinetic energy to theompaction parameter and smHll the final products of the
binding energy could become large0.14) due to the con- merger are not black holes. A black hole may be more easily
traction[41] and/or the equation of state could be stiff ( formed for larged” and preliminary simulations indicate that
=1.8[40]) enough to allow for the bar-mode deformations. this is the case. One of the most interesting and important
Since there are too many uncertain aspects such as the initigsues in numerical relativity is to clarify the criterion for the
amplitude of the nonaxisymmetric perturbation and interacformation of black holes. In a forthcoming papet9], we
tion with viscosity[48], the dissipation time scales cannot be will perform simulations of corotating binary neutron stars of
estimated in a simple manner. However, it is likely that sucha largel’~2, in which a black hole could be formed more
effects contribute to the dissipation of the angular momeneasily.
tum and make the time scale shorter. We can then conclude It is well known, however, that the corotating velocity
that the newly formed supramassive neutron &fat could  field is not realistic for binary neutron stars because the vis-
be formed will eventually collapse to a black hole in the cosity of the neutron stars is not large enough to achieve the
time scale~10"! yr as a result of one of the above dissipa- corotation[50]. Instead, the irrotational velocity field is con-
tion processes. sidered to be a more realistic of0]. For making a realistic
The argument presented here suggests that the strengthrabdel of the final phase of binary neutron stars, it is neces-
the magnetic field of the newly formed neutron star is one ofsary to perform simulations for irrotational binary neutron
the key parameters for the evolution. It may well be impor-stars.
tant to investigate the evolution of the magnetic field during Fortunately, several groups have just recently developed
the merger, incorporating a solver of the magnetic field equanumerical methods for obtaining an approximate quasiequi-
tion. librium state of irrotational binary neutron stars in a confor-
mal flatness approximatiofi7—9], providing more realistic
models of binary neutron stars. Namely, an initial condition
V. SUMMARY has already been prepared. In the next §4&h we will also

In this paper, we present our first successful results of&'Ty out simulations adopting the approximate quasiequilib-
numerical simulations carried out using a fully general relafium _states of irrotational binary neutron stars as the initial
tivistic 3D hydrodynamic code. We have performed a widecondition.
variety of simulations for test problems toward more realistic
simulations of_coalescing _binary neutron stars and have con- ACKNOWLEDGMENTS
firmed it possible to obtain solutions for the test problems
fairly accurately. In particular, we have illustrated that it is  The author thanks T. Baumgarte, Y. Kojima, T. Naka-
possible to preserve an approximate quasiequilibrium state afura, K. Oohara, L. Rezzolla, M. Sasaki, and S. Shapiro for
a mildly relativistic binary neutron star as well as to performhelpful conversations and discussions. He also thanks T.
simulations of the merger between two corotating neutrorBaumgarte and L. Rezzolla for reading this manuscript and
stars to be new neutron stars stably for a couple of orbitaproviding valuable comments. Numerical computations were
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APPENDIX A: NUMERICAL METHOD FOR SOLVING
HYDRODYNAMIC EQUATIONS -04 -02 0 0.2 04

To compute the advection in the hydrodynamic equations,

in this paper, we use the second order scheme by van Leer = 0= 3
[51] as Ochara and Nakamura used in their w52 or E ]
as we used in a semirelativistic simulati@8]. As we have -04 -02 0 02 04
shown in Secs. Il and IV, it is possible to perform simula- X

tions of many interesting problems stably and fairly accu- g1 31. Numerical results of, P, andv* for the 1D wall shock

rately for several dynamical time scales using this scheme. If.oplem in special relativity. The solid lines denote the exact solu-
we are interested in problems in which shocks play a veryions, and the open circles are numerical results.

important role, we should use one of the modern shock-
capturing schemes as adopted[i%,54. However, in coa- L )
lescences of binary neutron stars, it seems that shocks do ngjfuation may be crudely compared with the 1D wall shock
play a crucially important role and that they do not changePrlo_blem in whlch we consujer the evolution of a fluid thgt
the results drasticallj12]. We expect that the method em- mmally has a uniform density and pressure, but a velocity
ployed here is suitable for our purpose, although there is stiffield as
room for further improvement.

Since we solve the entropy equation instead of the energy
equation, it is impossible to capture shocks without adding « Vo for x<0,
artificial viscosity. Hence, we add an artificial viscosity using ve= —V, for x>0, (A3)
a method similar to that adopted by Hawley, Smarr, and
Wilson [55]. The following artificial viscosity was included
only in the case when we studied the merger of binary neu

whereV is a positive constant, and =v*=0. The solution
tron stars.

F implicit includ tificial Vi ity ik of the 1D wall shock problem in special relativity can be
or simplicity, we include an artilicial viscosity like a analytically calculated. We have performed test simulations

bulk viscosity and it consequently appears in the evolutionOf this problem, and the value @,;, which well reproduces

equation where the pressure does. As the form of the VISCOURe analytical solution was used in numerical computations.
pressure, we choose

To mimic the collision of two neutron stars, we set initial

r conditions as/;=0.1-0.4 and®/p=0.1 for the test. In Fig.
Cvis—*(5V)2 for Sv<O, 31, we show the results fo¥/y=0.4 and C,s=10 att
Puis= (web®)r—1 (Al)  =0.4. In this test, we sep=1 and 6x=0.005. The solid
0 for Sv=0 lines denote the analytical solution, and the open circles are

the numerical results. Although the well-known spurious 0s-

where 6v=25xd,v¥ and C, is a constant which we phe- Ccillation of p, P, andv* is generated55], the numerical

nomenologically set below. results agree with the analytical solution fairly well.
When including the artificial viscosity, we change the

pressure gradient termi,P on the right-hand side of Eq.

(2.10 into 9, (P+Pys). If we simply regardP,;s as an ad- APPENDIX B: RADIAL OSCILLATION PERIOD

ditional pressure, we should add the following term on the OF SPHERICAL STARS

right-hand side of Eq2.11: We estimate an approximate radial oscillation period of

1 spherical stars using the method presented by Chandrasekhar
— =) TP (web) +a(weth ] (A2) (28]
If we write the line element as

However, as pointed out by Hawley al.[55], the first term,
which includes a time derivative, could cause a numerical .
instability. Hence, we neglect the first term, and only include ds?= —e’dt?+e®dr?+r%dQ, (B1)
the second one.

C.is is determined in a phenomenological manner. In a
merger of binary neutron stars, two neutron stars of nearlyhen the angular frequenay of the radial oscillation for a
equal mass finally collide and a shock will be produced. Thepolytropic star of radiusR is written as[28]
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R o -1
f e(3¢—v)/2phr2§2dﬂ ,
0

where ¢ denotes the component of the Lagrangian dis-
placement. If we substitute an eigenfunctifor the eigen-
value equation, we can obtain a correctHere, we evaluate
o approximately by substituting a trial eigenfunction fér
without solving an eigenvalue equation f@r Following
Chandrasekhaf28], we substitute the approximate eigen-
functions as

X (B2

E=re, (B3)
where b is a constant. In Fig. 32, we showp_'? as a
function of p. for a polytropic star of [',K)=(5/3,10) and
(2,20047) for b= 0 (the solid ling, 1/2 (the dashed ling and
—1/2 (the long dashed line We note that beyond a critical
density, o2 becomes negative in each model, implying that
the star becomes unstable for some oscillation modes. Even
though we use the trial function f@; we can approximately
find the real critical points of stabilityg.~1.85< 103 for
I'=5/3 and~5.0x10 2 for '=2). We also find that the
oscillation frequency in the Newtonian limip{—0) agrees
well with that obtained in the Newtonian theoryrg */
=1.377 forl'=5/3, and 2.187 fof'=2 [56]). Thus, we can
recognize that this approximate method is fairly reliable for
estimatingo approximately.

From the figure, we can judge~0.6(p? for (I',p.)
=(5/3,10 %) ando~ 0.9 for (T, p,) = (2,3x 10" %), and
the resulting oscillation periods are-10.5_*? and
~6.9pgl’2, respectively. These are in good agreement with

the numerical results in Secs. IlIB and Il C.
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