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Smearing of propagators by gravitational fluctuations on the Planck scale
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We examine the effects of quantum fluctuations in the gravitational field on the propagator of a spin-zero
matter field. At short range, the propagator is a function of the square of the geodesic distance, and it can be
expressed as an explicit functional of the gravitational field. Calculation of the path integral over the gravita-
tional field is then possible, and this yields a gravitationally modified propagator. A renormalization of the
gravitational constant is required, such that the bare gravitational constant approaches zero. &) tireler
modified propagator is thea mK,(imyx2—L2—i€)/4m2\x2— L2— i€, whereL=Planck length. This result
is consistent with the smeared propagator proposed in a previous paper, and it makes the radiative corrections
in QED and in other field theories finiteS0556-282(199)00222-2

PACS numbse(s): 04.60.Gw, 04.62v, 11.10.Gh

[. INTRODUCTION this leads to finite results for the charge, mass, and wave
function renormalizations in QED.

In Ref.[1], we proposed a modification of the Feynman In this paper, we will show from the quantum theory of
propagator on the basis of some qualitative considerations gravitation that the quantum fluctuations of the gravitational
a smearing of the light cone by gravitational quantum fluc-field do indeed generate a modification of the short-range
tuations on the Planck scale. For a spin-zero particle of magdsehavior of the Feynman propagator of just the form pro-
m, the proposed smeared propagator was posed in Eq(1). To establish this result, we follow a scheme

sketched by Deser a long time a®|. Deser conjectured

— 5 that a gravitational modification and regularization of the
Gr(x )=f dX F(N)GE(X“ =) propagator would emerge from the evaluation of the path
integral
m Ki(imyx®?—\—ie)
=——2Jd)\f()\) ) _
aAm x2—\—ie GF(xl,x2)=N‘1f Dgf D ¢(x1) p(x2)

HereK, is the modified Bessel function of order 1, af{(d) . .

is a weight function, or spectral function, whose exact form XeXF{'f d*x L( ¢)+'f d*x E(g)}, )
was undetermined. However, on physical grounds the spec-

tral function was expected to have a peak near the square @fith

the Planck length, that is, neak=L2=%G/c®=(1.6

x 10" 3cm)?. Causality arguments and the global commu-

tativity theorem suggest that only positive values\afhould sz DgJ D¢ex;{ij d*x £(¢)+iJ d*x L(g)}. (4
be included in the spectral integral; that is, the light cone

should be smeared toward the interior of the Minkowski light o , )
conex?=0, which implies a reduction of the maximum at- Here f[D ¢ and [ Dg indicate path integrations over the sca-

tainable speed of propagation. lar field ¢(x) and the gravitational fieldg,,(x), and

4 4 : :
For |x2|>Li, the smeared propagator approaches the(d X L(¢) and [d x.£(_g) are, respectively, the actions for
the scalar and gravitational fields.

conventional Feynman propagator, but faf|<m?, it ap- ) . . .
y propag fa] P The obstacle to the implementation of this scheme is that

proaches the evaluation of the path integrals in E) is not feasible.
i . 1 As a first step in such an evaluation, we would have to per-
EF(XZ)H—f dr f(\) . 2) form the path integral ovetb(x) and, thereby, obtain the
472 Jo X2—N—ie Feynman propagatoBg(X;,X,;g) in the given geometry

9.,(X). This propagator is a Green’s function in this given
This propagator has no singularity xet=0, and its Fourier background geometry, and it obeys the differential equation
transform has an effective cutoff at the Planck mass, that is,
at [p?|=11L%=M3 =(1.2x10"GeV)’. As shown in[1], (=9) Y20,[(—9) "% (x,) 3,Gr(X1.,%72:9)]
+[M?+ ER(X2) IGE(X1,X2;9)

*Current address: P.O. Box 370, Charlotte, VT 05445. Email ad-
dress: 72613.3066@compuserve.com =—(—9) ¥25%x;—x,), (5
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where d,=d/ox5 and where the tern§R(x,) represents a then decided to ignore them. As we will see below, for the
nonminimal coupling to the curvature sca(ge ¢ for “con-  vacuum fluctuations, the quadratic terms are dominant—their
formal” coupling). As a second step, we would then perform contribution to the propagator is much larger than that of the
the path integral oveg,,(x), to obtain the gravitationally linear terms.
modified propagator. However, to perform this second path In Sec. Il we begin with an evaluation efup to terms of
integral, we need an explicit expression B as a func- second order in the gravitational field. In Sec. Ill we calcu-
tional of g,,,(x). In principle, the differential equatiots)  late the path integraJDg for the propagato(7). A renor-
and its boundary conditions determine the dependenG-of malization of the gravitational constant is required to make
ong,,(x), but in the absence of an explicit expression, Wethe effects of the fluctugtions of the_ _spa_cetime geometr_y fi-
cannot proceed with Deser’s scheme. nite. In Sec. IV we examine the modifications of the graviton
We can bypass this obstacle if instead of trying to find thepropagator caused by quantum fluctuations of the matter
full propagator, we focus on its short-range behavior. In thafields, and we deal with the consequent renormalization of
case it is possible to write down an explicit expression forthe gravitational constant and with the short-range behavior
Ge as a functional 0§, by taking advantage of the known of the graviton propagator. The result is a mutual regulariza-
general properties of the differential equatic®. This is a  tion of the propagators of matter fields and of the gravita-
linear partial differential equation of the second order, andional field: The quantum fluctuations of the gravitational

whenx, is nearx,, the solution of such a differential equa- field regularize the propagator of the matter fields, while the
tion has the Hadamard elementary form guantum fluctuations of the matter fields regularize the

propagator of the gravitational field. In Sec. V we discuss

U applications to QED. And in Sec. VI we briefly discuss the

GF(X1,X2:9)=;+V|H o+W, (6) difficulties arising from higher-order contributions to the
path integral.

whereo = a(X4,X,) is one-half of the square of the geodesic

distance between the pointg andx,, andU, V, andW are Il. SQUARE OF THE GEODESIC DISTANCE
regular functions ofx; and x,, that is, functions without
singularities ax,—x;. The functionsU, V, andW can be
developed in a Hadamard expansif®4] or a DeWitt-

Schwinger expansiofb,6]. In either case, fox,—X;, the

To express the square of the geodesic distance between
two pointsx; andx, as a functional of the metric tensor, we
begin with the formula given by Syndé&]:

dominant, singular terms in E¢6) are 20(X1,%2) =0,,,(X) UH(Xx1)U(Xy), 8
i i , [ where U#(x,) is the tangent vectodx“/du at x, for the
Gr(X1,X2:9)— 8ni(o—ic) 1672 m=— 5_5 geodesic connecting the points, amis an affine parameter
for this geodesic, normalized in such a way tlatcorre-
1 sponds tou=0 andx, corresponds tai=1. We can deter-
X R(x1) |n5 ma. (1) mine U* by integrating the geodesic equation. This second-

order differential equation can be written as a pair of first-

The functiona(X4,X,) is a functional of the metric tensor order differential equations,

du»,» and as we will see in Sec. I, this functional can be

expressed in an explicit form as a perturbation series in as- du

cending powers of the gravitational field. Thus the substitu-

tion of Eq.(7) into Eq.(3) leads to a calculable path integral. du
The technique for expressir@g in terms ofo, ando in

terms ofg,,, was introduced by Forfi7] in an investigation

of the modifications of the photon propagator caused by a

fluctuating background of gravitational waves. Ford consid- dx

ered only fluctuations arising from ‘“squeezed” — —ym (10)

gravitational-wave states. He did not investigate the case of du

the vacuum state, which contains divergences which require .

renormalization. Ford used operator methods rather than paffl: €quivalently,

integrals in his calculation, and he adopted a transverse, non- y

covariant gauge. This is unsuitable for the treatment of U“(u)=n”—f du’Fg‘ﬁU“Uﬁ (11)

vacuum fluctuations, since the final result must necessarily 0

be Lorentz invariant. By the use of path integrals instead of

operator methods and by taking advantage of the Faddee@d

Popov gauge-fixing procedure, we can maintain Lorentz in-

variance throughout the calculation. Furthermore, Ford dealt

in detail only with the linear terms>h,,,) in the functional XH(U) = XU+ fudU'U’“, (12)

o; he mentioned the quadratic termsi{(,,h,z) briefly and 0

+T%,U°UP=0 ©)

as a pair of integral equations,
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wheren*=U#(0) is a constant. These integral equations carwe obtain the result

be solved by successive approximations, starting with the

zeroth approximatiot)#= Ax*=x45—x/ . Detalls are given 1

in the Appendix. Adopting the usual definition for the gravi- o= 5 7, AXFAX"+ V167G A+ 167G (A +A;), (14
tational fieldh,,,

9uv= Myt V167Gh,,, (13)  where
|
1 1
Alzz AXH*AX fo duh,,, (15)
1 1 1 u
A=—3 Ax"Ax"‘AxBJ0 duf0 du'h, hw,p—Ax“Ax”‘Axﬁf0 duj0 du'h,h,,

1 1 1 8 1 1 u
_ v a K _ N v o ’ p
+2Ax AX*AX fodufod ap,ﬁfodvh,( 2Ax AXVAX fodu hMV,pfodu h,

1 1 1 1 1 1 1
+ = AX“AXVAx“f duuh,,, f du'h,+ = Ax“Ax"f du hmf dv h,”— - Ax*Ax"h,,(0)h,%(0), (16)
2 0 Mmv,p 2 0 0 2 M
and

3 1 u 1 v
== Ax”Ax”‘Ax"Ax"f duf du’'h,,, Bf du'h,,?— 2 Ax”‘AxﬁAx"Ax”f duf du’haB,Vf dvf dv'h,,”
0 o Jo

1 1 v 1 1 u 4
2 Ax“Ax”Ax“Axﬁf du uhwpf dvf0 dv'h,g?+ 1 Ax”Ax”Ax‘*Axﬁfo du h’”"pfo du’ fou du'h,g”. (17

All of the integrals in Eqs(15)—(17) are to be understood as For the calculation of the path integral, it is convenient to
line integrals along the straight line from to x,; for in-  write Eq.(7) as an exponential

stance, in an integration over the integrand is to be evalu-
ated at the pointix,+(1—u)x,. Equation(14) is valid for

arbitrarily large separations of the pointg and x,, but it Gr(X1,%2:0)= = ! S 5 mzlni m2s (18)
assumes that the gravitational fields are weak, so perturba- 8w (oc—ie) 16m 2
tion theory is applicable.
The quantitiesA;, A,, and A, differ in their behavior 1 <ds
upon path integration: A; gives logarithmically divergent =" 1642 0 2
contributions to the path integrady, gives quadratically di-
vergent contributions, ané, gives even worse divergent xexf —im2s—i(o—ie€)/2s]. (19

contributions. However, as we will see, the contributions

from_A2 cancel. This leaves the contributions frdm as the Equations(18) and (19) differ by a fractional amount of the
dominant terms, and these can be reduced to a finite value der of m2cr, which is negligible ifo is small. The path
assuming that the bare gravitational constant approaCh‘?ﬁtegral(S) th,en becomes

zero. With this renormalization of the gravitational constant,
the logarithmic contributions from\; disappear.

lll. PATH INTEGRAL FOR THE SMEARED F(Xl,Xz) mf th exp{—lm S
PROPAGATOR ™ 0
For the sake of simplicity, in the following calculation we —i(o'—ie)/ZS-i-if dx E(g)}
provisionally ignore the linear termA; in Eq. (14), and we

consider the contribution from this term later, at the end of
the calculation. Likewise, we provisionally ignore the term _ j J Dhexd —im2s
«R(x,) in Eq. (7) and we consider its contribution later. 167-er 0
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(X,—X1)? A

L2 Y 16nGi—

4s 2s

A, +A)
—167iG +ifd“x£(g) ,
2s
(20)
with

N’=f Dhexp{iJ' d“xﬁ(g)}. (21)
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i
71 _
D,u.vaB(X'X’)_ - 4’7T2(X_XI)2 (77,ua771/[3+ nﬂﬂnva

- 7];“/77(15)- (28)

Here it is assumed that the gauge problem that arises in the
inversion of D has been handled by the Faddeev-Popov pro-
cedure[10]. Each of the terms imA, contains contracted
derivativesh,,,/*(u)h,z ,(u") of the gravitational field; cor-
responding to this;- 2 Tr D~ 16D receives a contribution

1
———— x5 (X =x") % 8 (X = Xq).

O =)
X—X

(29

To lowest order, the gravitational action is quadratic in the

field variables,

1
f d4x£(g)=—§ f d“xf d*x’ DHYeB(x,x")

XD (X)heg(X"), (22

whereD*"*F is a differential operator that consists of deriva-
tives of delta functions. In an abbreviated symbolic notation
in which each subscript stands for the discrete tensor indices ,
and also for the continuous variabie(see, e.g., Weinberg

[9]), this action can be written as

1
| axci@=-5 i, 9
and the path integral of this action is
f Dhex;{—EiD h,he| =[Det(iD/2m)]" Y2 (24)
2 rstirt's "

In Eq. (20) the quadratic terms G (A,+A})/2s in the
exponent can be regarded as an incremeri?,to
8D;shihg=167G(A,+A))ls. (25

Accordingly, if we ignore the termd\;, the propagato(20)

But according to Eq(17), these terms are multiplied by
(x,—x4)*, which effectively makes them zero.

Next we consider the contributions arising fré¥. The
first two terms inA, involve the product of a field and its
derivative at the same point; the contribution to
—1Trp 16D from these terms is proportional to the first
derivative of the propagatoi28) evaluated atk=x'. This
vanishes if we perform the limit—x’ symmetrically.

' The next four terms yield divergent contributions to
=1TrD 16D, among which the dominant part is

2iG 1 u 1
2 [auflaw—2
s Jo 0 (u—u")

To render this divergent expression finite, we need to set the
gravitational constant equal to zero. Specifically, we assume
that G in Eq. (30) is actually the bare gravitational constant
Gg, and we introduce gprovisiona) regularization in thes’
integral by replacingi—u’ by u—u’+¢€’, where it is under-
stood that the limite’—0 will be taken. Then Eq(30) be-
comes

(30

(31)

To keep this finite, we must takBg= €’?. In Sec. IV we will

can be evaluated from the Corresponding fractional incresee how this conforms with the renormalized graVitational

ment in the right-hand side of E¢R4):

_ 1 »ds
Gr(Xqy,Xo)=——— | — exgd —im?s—i(x,—x4)%/4s
F( 1 2) 167T2 0 52 F[ ( 2 l) ]

x{Defi(D+ 6D)/2w]} Y4 Det(i D/27) ]2

(26)
L[ F{ im?s—i( )24
= — —exXp —Imes—I1(X,—X S
1672 Jo <2 2
1
—ETrD’léD. (27)

We first consider the contributions te 2 TrD~ 16D from
A, . The inverse of the operat@ is the conventional gravi-
ton propagator,

constant observed in gravitational interactions of particles.
Anticipating the result thaGg/€'? is of the order of magni-
tude of the renormalized gravitational const&it we see
that Eq.(31) can be written ashG/4s or ibLi/4s, whereb
is a number of the order of magnitude of 1.

The last term inA, gives another divergent contribution
to —3 TrD 16D involving a propagator evaluated at
=x'. To determine the limitx—x'=0, we take x—x’
=¢'\yG and we let € —0. The contribution to
—1TrD 16D is thenxGg/e’G=1. Therefore the last term
in A, gives a contributior= 7, Ax*Ax”, with a numerical
factor of the order of 1. This contribution simply has the
effect of multiplying the geodesic distance of flat spacetime
by a numerical factor of the order of 1. Physically, this
means that, on the average, the gravitational quantum fluc-
tuations modify the measured distances in spacetime. To re-
store the desirable correspondence between coordinates and
measured distances, we have to rescale our coordinates and
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thereby reset the numerical factor to 1. This rescaling effeca product of propagators of the for(36), with the same
tively eliminates, or compensates, the last terni\jn value ofb for each propagator.

Finally, we consider the contributions arising from the In all of the above we have concentrated on the short-
terms A; and R(x;), which we have ignored so far. The range behavior of the propagator. We expect that the
linear termsA; in Eq. (20) can be eliminated by a change of smeared propagatdB6) will be a good approximation for
variable in the path integrétompletion of the squayeThis  |x2|<<1/m?. At longer ranges, the propagator will differ from
generates a quadratic term and gives a logarithmically diverEq. (36) by terms proportional tan?, m?, etc. These terms
gent contributiorrcGg In €' in the exponent of Eq27). But  are hard or impossible to calculate explicitly, but we expect
this contribution disappears when we perform the renormalthat the conventional Feynman propagator will be a good
ization Gg=€'2G—0 of the gravitational constant. approximation forix2|>1/Mi. If mis a typical particle mass

The term ¢ —&)R(x,) in Eq. (7) causes troubles in the (say, no more than a few hundred Ge¥, then there is a
path integral, because the vacuum expectation value oFide overlap between these ranges|df, and this means
R(x,) is highly divergent, and this divergence is not sup-We have a good approximation for the propagator dtr
pressed by our renormalization of the gravitational constantvalues ofix?|. For instance, we can adopt the smeared propa-
However, we can deal with this problem by a mass renorgator (36) for the rangelx?|<1/mM, and the conventional

malization. We rewrite the bracket in Eq) as Feynman propagator—mKl(imxlxz—i6)/4772 x2—ie for
the range|x?|>1/mM, . At |[x?|=1/mM, , the fractional
deviation between these two expressions is of the order of
only m/M,=10"1% In practice, we can simply adopt the
smeared propagator for all values xf, since it smoothly
where merges into the conventional propagator wie#>1/M?2 .

The advantage of using the smeared propagator for all values

m2 —(3—5 Rrer(X1) (32
ren 6 re 1 H

2 _ o [T of x? is that this results in a simple formula for the Fourier
Mren=M (6 §><R(X1)> (33 transform, valid for all values of the momentum:
and _ _ Ko — VbL2 (p?—m2+ie)]
Gr(p)=—ivbLZ —— . (37
Rrer(X1) = R(X1) = (R(Xy)). (34 VPpS—me+ie

This renormalized curvature scalar has a vacuum expectatiof!!S €xpression permits the calculation of Feynman dia-
value of zero, and it is easy to verify that the vacuum expecd'ams by familiar technique.].
tation value ofR.¢(x1)h,,(x) is also zero, except for terms
of orderG? and higher. Consequently, in the path integral for V. GRAVITON PROPAGATOR; RENORMALIZATION
the propagator, the terms arising from the renormalized cur- OF G
vature scalar involve only contributions of ord&® and
higher. These contributions are similar to the contributions[io
arising from other higher-order corrections #o(see Sec.
VI).

To orderG, the net result is then merely the ter(3i),
which gives a smeared propagator

The regularization of the propagator by quantum fluctua-
ns in the geometry applies to all matter propagators. But it
does not apply to the graviton propagator. The trouble is that
the differential equation for the gravitational field is the Ein-
stein equation

1
_ 1 ~ds R,,— 5 9.,,R=0. (39
Gr(X1,X) =~ — | —5 exd —im?s—i(x,—x;)*/4s rr2 e
167° Jo s
s This is not a linear differential equatidi1], it yields no
+i(bLy +ie)/as] (39 simple equation for the graviton propagator, and we cannot
assume that this propagator has the Hadamard f@m
m Kl[im\/(Xz—Xl)z— bLZ —i€] Hence we must find a different mechanism to regularize the
=—— ) graviton propagator.
4 \/(xz—xl)z— bLf —ie The obvious mechanism arises from quantum fluctuations

(36) of the matter fields. It is known that in a curved spacetime
background, the quantum fluctuations of the matter fields
Evidently, this is of the form proposed in E@l), with a  generate a vacuum energy momentum that alters the matter
spectral functiorf (\) = (A — bLi). action by a constant terifa cosmological constanta term
The result established here for a single propagator can bgroportional to the curvature scal® and a term propor-
easily generalized to the product of several propagators, sudional to the square of the curvature. When these terms are
as occur in a typical Feyman diagram. At short range, eachdded to the usual action for the Einstein equafwith its
of the several propagator will contributecaterm in an ex- bare gravitational constar@g), we obtain a net action for
ponent as in Eq19), and the path integratiofD h will yield the gravitational field12],
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3 the result of a physically motivated alteration of the Lagrang-
5 R*+ 3RWR‘“’> : ian, in contrast to the conventional Pauli-Villars regulariza-
(39) tion, which is a purely formal trick for manipulating diver-
gences. The negative sign of the second term on the right-
where A, B, and C are divergent coefficients. If the diver- hand side of Eq.(43) indicates that this term is the
gences are regularized by point splitting, with a point sepapropagator of a state with negative norm in Hilbert spéce

A+ R+C

J d*x\—g|

Bt 167G,

ration 7— 0, then the coefficients take the form ghos}. This renders the physical interpretation of these states
problematic, if they occur in external lines of Feynman dia-
1 1 grams. But since their mass isM, , we do not have to
A A Boc 2 Cein 7. (40 \worry about this unless the c.m. energy reache¥Gev.

Such energies are attained only at a very early stage in the
The coefficient ofR in Eq. (39) gives us the renormalized, big bang, before the Planck time, 1¥s. At that stage, the

observed gravitational constait3] physics of the universe is likely to be dominated by nonlin-
ear quantum gravity effect@lensely packed black holes of

1 B+ 1 (41) mass=M, ?), and theS-matrix and scattering processes of

167G 167Gy’ elementary particles in asymptotically free states are prob-

ably irrelevant, so the issue of probability conservation for
To attain a finite value oG, we needB— —1/16mGg, and  the ghost states never needs to be fadg]. At ordinary
thereforeGgec 72— 0. In the preceding section we regular- energies, the ghost states occur only in internal lines of Feyn-
ized the divergences by means of a dimensionless paramet@ian diagrams, where they are no more troublesome than the
€', which characterized the point splitting. On dimensionalFaddeev-Popov ghosts needed in internal lines to achieve
grounds, the dimensional and dimensionless point splittingjauge invariance.
parameters must be related by the Planck length, thafis,
*Ge'?. With this, Gg/e' 2 7%/ €' 2 G, as anticipated in the V. APPLICATION TO QED; GAUGE INVARIANCE
preceding sectiofisee Eq.(31)].

The other divergent terms in ER9) must be canceled by In Ref. [1] we used the smeared propagator to calculate
counterterms. It is desirable not to cancel théerm com- the radiative corrections in QED for photons interacting with
pletely, but to retain a finite remainder, so the renormalized® charged spin-field, such as electrons. The second-order
value ofC is of the order of 1. This has the advantage thatradiative corrections are all finite, with numerical values of a
the fourth-order derivatives contained in this term modify thefew percent(roughly the same as those that would be ob-
conventional graviton propagaterl/k? in momentum space tained in a calculation with the conventional Feynman propa-

to gator modified by an invariant cutoff &2 ). In Ref.[1] we
had no definite expression for the spectral funcfipx), but
1 we conjectured that the spectral function is concentrated at
* K2— C’k4/Mi : (42) xzzLi. Equation(36) confirms this conjecture and confirms

the numerical estimate for the radiative corrections. By keep-

whereC’ is a constant of the same order of magnitud@as Ing the radiative corrections finite and Sma”, we avoid a
As shown by Stell§14], the extra two powers of in the well-known inconsistency of conventional QED: the
denominator of Eq(42) are sufficient to render all gravita- charge renormalization factat; is large and negativeZ,
tional Feynman diagrams renormalizalflthough not fi- — —, and consequently the square of the bare charge is
nite). In this way the quantum fluctuations of matter, which negative,ej=e%Z;— —0. Landau and Pomeranchiik7]
contribute theC term, regularize the propagator for the considered this a fatal flaw of perturbative QED, but modern
gravitational field. treatments of QED usually prefer to ignore this issue.
Furthermore, if the graviton of the fourth-derivative gravi- ~ The calculations in Ref{1] suffer from a deficiency in
tational theory is supplemented by supersymmetric partnerghat the vacuum polarization has a gauge-noninvariant part
then the resulting fourth-derivative supersymmetric gravita-of large magnitude=M?2. According to conventional wis-
tional theory is finitd 15]. The contributions from high-order dom, a modification of the electron propagator requires a
loops, which in supersymmetric gravity are divergéand  modification of the photon-electron vertex, to preserve gauge
nonrenormalizable are reduced to finite values by the fourth invariance. In Ref[18] we explored this option, and we
derivatives, and the low-order loops, which in fourth- constructed a modification of the vertex. Physically, the ver-
derivative theory are divergent, are cancelled by supersyntex modification looks like a contribution from charged en-

metry conditions. tities of masdM, and sizeL, , possibly charged black holes.
We can rewrite the modified graviton propagator as Here we want to propose a different and more elegant
solution of the gauge problem. It has been known for some

1 1 1 43 time [19] that the problem of gauge invariance of the

vacuum polarization can be solved by a careful definition of
the current operator. For electrons, the current is defined as

This shows that the modification of the propagator is actuallyan operator produgt= vy, and the two operators on the
a Pauli-Villars regularization. However, this regularization isright-hand side must be defined by point splitting; concomi-

K—C'KYMZ K2 K2-M2/C'
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tantly, an extra term<A* must be added to the current, to quantum fluctuations of the geometry is that the smeared
preserve gauge invariance. With this refinement in the defipropagatoralz does not Sa’[isfy any Simp|e wave equa_tion
nition of the current, the SChWinger terms, which break thEand it is not a Green’s function. Of course, for any given
gauge invariance of the vacuum polarization, are cancellegeometry the Feynman propaga® does satisfy the wave
exactly by seagull terms arising from the extra term in thegquation(5), and it is a Green’s function. But when we av-
current. ThUS, with a Careful, gauge—invariant definition Oferage these propagators over a |arge Variety of different ge-
the current operator, gauge invariance is automatically atometries, there will be no single background geometry and
tained in calculations with the conventional Feynman propang definite wave equation, and no Green's function. How-
gator (and special tricks, such as Pauli-Villars regularizationeyer, if the initial conditions for a propagating wave involve
or dimensional regularization, become superfluous for attaingnly wavelengths much longer than the Planck length, then
ing gauge invariange the smeared propagator can be effectively replaced by the
Since we want to use the smeared propagator in our catonventional Feynman propagator, and this resurrects the
culation, and not the conventional Feynman propagator, howsreen's function. The absence of a solution for the initial
does this help? The answer is that before we perform thgajue problem on the Planck scale merely reflects the ab-
path integration/Dg in Eq. (3)—or in a corresponding eX- sence of a well-defined background geometry on this
pression for the vacuum polarization—we must perform thescale—if there is no well-defined geometry, then the initial
path integration/D ¢, and we can also elect to perform the yalue problem is meaningless. The absence of a well-defined
integrationsf d*x over all the spacetime variables that appearRiemanniah geometry manifests itself in the shift of the
in the construction of the vacuum polarizati®®]. The path  effective light cone in the smeared propagator: instead of a
integration/ D ¢ leads to conventional Feynman propagatorsiight cone §&,— x;)?=0, the smeared propagator has a light
(in the given geometr;_gw,), and if the current has been cone ,—x;)2—bL2=0. We can also recognize such a
defined in the appropriate gauge-invariant way, the integramodification of the geometry from a direct calculation of the
tion over spacetime variables will then result in an automatic;acuum expectation value of the square of the geodesic dis-
cancellation of the gauge-noninvariant part of the vacuumance by means of the path integral(c)
polarization. The subsequent path integratfdng will not o fphg exifd*x£(g)]. The (normalized value of this
resurrect the gauge-noninvariant part, and the final result igath integral has the same form as the expression in the

necessarily gauge invariant. exponent in Eq. (27), that is, (o)=(X—X)%—(i/2)
TrD 16D, except thatdD now does not include the factor
VI. HIGHER-ORDER TERMS 1/s appearing in Eq(25). Upon renormalization of the di-

vergent terms, the result for the expectation value is then
_ In the preceding sections we deal_t (_)nly with the contribuT U>:(X2_X1)2_b|_§, and the light cone deduced from this
tions to the smeared propapator arising from the quadratlg the same as that deduced from the smeared propagator. For
tgrms in the gravitational fleld, and we neglepted all thex2—>x1, the expectation value of the square of the geodesic
higher-order terms. Such higher-order terms arise from takdistance does not approach zero, bLh)Li. This indicates

1{22 nj';l)sri z:?spes flrgr;htealfilrjmccﬁstcsnl\gic%%%rtomrgité%r:i(:ggp31 ter_that even for very small separations between the points, there
y ! ng . are fluctuations of the order dn‘i in the square of the geo-
action terms in the gravitational Lagrangigig).

The quadratic terms are exceptional in that the path inte(—jeSIC distance.

gral reduces to a Gaussian integral which can be evaluated
analytically. With the inclusion of terms beyond the qua- APPENDIX
dratic termsehh, the path integral(3) becomes a non-
Gaussian integral, and its evaluation becomes impossibl
except by means of an expansion of the exponential in
series in powers of. But for our purposes such an expan-
sion is useless, since the path integral then leads to a series
powers of Li/(xz—xl)z, which does not converge if u
|(x,—x1)?|<L2 and, therefore, cannot tell us anything about U“(u)=n“—n“nﬂf I du’
the short-range behavior of the propagator. The only obvious 0
alternative to a power series is a numerical calculation of the u o
path integral. Whether such a numerical calculation is fea- +2n"‘n“n”f Fgﬁdu’f Ffpdu”. (A1)
sible and how the smeared propagator is modified by higher- 0 0
order corrections remain open questions. . .

Although the effect of higher-order corrections is un- Equation(12) then gives
known, our second-order results indicate a mutual regular- N "
ization of matter and gravitation: the quantum fluctuations XE = Xb 4 — n“nﬁJ duf I du’
of the geometry regularize the propagator for matter fields, 0 0
and the quantum fluctuations of the matter fields regularize

the propagator for gravitons. +2nanKan1duJuFu du’fu,l“ﬁ du’. (A2)
One odd aspect of this regularization generated by the 0 o “° o

Substitution of the zeroth approximatiod*=x5—x{'
fhto the right-hand side of Eq11) gives a first approxima-
fon for U#, which when resubstituted gives the second ap-
;?rr]oximation:
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This equation can, again, be solved fot by successive approximations, starting with the zeroth approximatienA x*

=x4—X}". The second approximation then yields

1 1
=3 9, (0OU(0)U*(0)=3 g,,,(0)n“n”

2

1 1 u 1 u
7, AXHAX+ 5 h,.,(0)AX*Ax"+ nwa“Ax"Axﬁfo dufO du'T) s+ hM,,(O)Ax“Ax“AxﬁfO dufO du'T;,

1 u ' 1 u 1 \Y
=27, , AX’AX“AX“AXP | du| du'T'¥ " durh +27,,AX"AX“AX“Ax? | du| du'T#*,| dv| dv'T?
" 0 0 B )y P # 0 0 B Jo 0 P

1
+3 7, AX“APAXAXP

where

OXP(u")=Ax"Ax”

1 u”
u’f du”J d
0 0

1 u 1 \
fduf du’l“ﬁjﬁf dvf dv’
0 0 0 0

v
K

1 1 u
Lt > Ax“Ax“Axﬁfo dufo du’d,(hap ,0%F), (A3)

uwre, - f " du J " durTe, |. (A4)
0 0

Here all of the integrals are to be understood as line integrals along the straight linexfrtomx,; for instance, in an
integration oveuw, the integrand is to be evaluated at the peiri+ (1—u)X;. The deviation of the actual geodesic from the

straight line has been taken into account in these equations

by appropriate Taylor series expansions relative to the straight line.

To second order, the only integral that needs this correction is that in the third term on the first line(88Eand this

correction is written in the last term on the last line.
With

1

5 (n**—/167Ghv)(h

I4,=

aV,B+hBV,a_haB,V)+"' B (AS)

o becomes a functional df,, and its derivative$,, ,. Some of these derivatives can be eliminated by means of the identity

Ax%9 ,F(x)=

wherex=ux,+ (1—u)x;. This permits integration of the total derivative appearing on the right-hand side. The final result is

as stated in Eq14).

dF/du, (A6)
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