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Smearing of propagators by gravitational fluctuations on the Planck scale
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We examine the effects of quantum fluctuations in the gravitational field on the propagator of a spin-zero
matter field. At short range, the propagator is a function of the square of the geodesic distance, and it can be
expressed as an explicit functional of the gravitational field. Calculation of the path integral over the gravita-
tional field is then possible, and this yields a gravitationally modified propagator. A renormalization of the
gravitational constant is required, such that the bare gravitational constant approaches zero. To orderG, the

modified propagator is then2mK1( imAx22L22 i e)/4p2Ax22L22 i e, whereL.Planck length. This result
is consistent with the smeared propagator proposed in a previous paper, and it makes the radiative corrections
in QED and in other field theories finite.@S0556-2821~99!00222-2#

PACS number~s!: 04.60.Gw, 04.621v, 11.10.Gh
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I. INTRODUCTION

In Ref. @1#, we proposed a modification of the Feynm
propagator on the basis of some qualitative consideration
a smearing of the light cone by gravitational quantum flu
tuations on the Planck scale. For a spin-zero particle of m
m, the proposed smeared propagator was

ḠF~x2!5E dl f ~l!GF~x22l!

52
m

4p2 E dl f ~l!
K1~ imAx22l2 i e!

Ax22l2 i e
. ~1!

HereK1 is the modified Bessel function of order 1, andf (l)
is a weight function, or spectral function, whose exact fo
was undetermined. However, on physical grounds the s
tral function was expected to have a peak near the squa
the Planck length, that is, nearl.L

*
2 5\G/c35(1.6

310233cm)2. Causality arguments and the global comm
tativity theorem suggest that only positive values ofl should
be included in the spectral integral; that is, the light co
should be smeared toward the interior of the Minkowski lig
conex250, which implies a reduction of the maximum a
tainable speed of propagation.

For ux2u@L
*
2 , the smeared propagator approaches

conventional Feynman propagator, but forux2u!m2, it ap-
proaches

ḠF~x2!→
i

4p2 E
0

`

dl f ~l!
1

x22l2 i e
. ~2!

This propagator has no singularity atx250, and its Fourier
transform has an effective cutoff at the Planck mass, tha
at up2u.1/L

*
2 5M

*
2 5(1.231019GeV)2. As shown in @1#,
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this leads to finite results for the charge, mass, and w
function renormalizations in QED.

In this paper, we will show from the quantum theory
gravitation that the quantum fluctuations of the gravitatio
field do indeed generate a modification of the short-ran
behavior of the Feynman propagator of just the form p
posed in Eq.~1!. To establish this result, we follow a schem
sketched by Deser a long time ago@2#. Deser conjectured
that a gravitational modification and regularization of t
propagator would emerge from the evaluation of the p
integral

ḠF~x1 ,x2!5N21E DgE Df f~x1!f~x2!

3expF i E d4x L~f!1 i E d4x L~g!G , ~3!

with

N5E DgE Df expF i E d4x L~f!1 i E d4x L~g!G . ~4!

Here*Df and*Dg indicate path integrations over the sc
lar field f(x) and the gravitational fieldgmn(x), and
*d4x L(f) and*d4x L(g) are, respectively, the actions fo
the scalar and gravitational fields.

The obstacle to the implementation of this scheme is t
the evaluation of the path integrals in Eq.~3! is not feasible.
As a first step in such an evaluation, we would have to p
form the path integral overf(x) and, thereby, obtain the
Feynman propagatorGF(x1 ,x2 ;g) in the given geometry
gmn(x). This propagator is a Green’s function in this give
background geometry, and it obeys the differential equat

~2g!21/2]m@~2g!1/2gmn~x2!]nGF~x1 ,x2 ;g!#

1@m21jR~x2!#GF~x1 ,x2 ;g!

52~2g!21/2d4~x12x2!, ~5!
-
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HANS C. OHANIAN PHYSICAL REVIEW D 60 104051
where ]m5]/]x2
m and where the termjR(x2) represents a

nonminimal coupling to the curvature scalar~j5 1
6 for ‘‘con-

formal’’ coupling!. As a second step, we would then perfor
the path integral overgmn(x), to obtain the gravitationally
modified propagator. However, to perform this second p
integral, we need an explicit expression forGF as a func-
tional of gmn(x). In principle, the differential equation~5!
and its boundary conditions determine the dependence oGF
on gmn(x), but in the absence of an explicit expression,
cannot proceed with Deser’s scheme.

We can bypass this obstacle if instead of trying to find
full propagator, we focus on its short-range behavior. In t
case it is possible to write down an explicit expression
GF as a functional ofgmn by taking advantage of the know
general properties of the differential equation~5!. This is a
linear partial differential equation of the second order, a
whenx2 is nearx1 , the solution of such a differential equa
tion has the Hadamard elementary form

GF~x1 ,x2 ;g!5
U

s
1V ln s1W, ~6!

wheres5s(x1 ,x2) is one-half of the square of the geodes
distance between the pointsx1 andx2 , andU, V, andW are
regular functions ofx1 and x2 , that is, functions without
singularities asx2→x1 . The functionsU, V, andW can be
developed in a Hadamard expansion@3,4# or a DeWitt-
Schwinger expansion@5,6#. In either case, forx2→x1 , the
dominant, singular terms in Eq.~6! are

GF~x1 ,x2 ;g!→
i

8p2~s2 i e!
2

i

16p2 Fm22S 1

6
2j D

3R~x1!G ln
1

2
m2s. ~7!

The functions(x1 ,x2) is a functional of the metric tenso
gmn , and as we will see in Sec. II, this functional can
expressed in an explicit form as a perturbation series in
cending powers of the gravitational field. Thus the subst
tion of Eq.~7! into Eq.~3! leads to a calculable path integra

The technique for expressingGF in terms ofs, ands in
terms ofgmn was introduced by Ford@7# in an investigation
of the modifications of the photon propagator caused b
fluctuating background of gravitational waves. Ford cons
ered only fluctuations arising from ‘‘squeezed
gravitational-wave states. He did not investigate the cas
the vacuum state, which contains divergences which req
renormalization. Ford used operator methods rather than
integrals in his calculation, and he adopted a transverse,
covariant gauge. This is unsuitable for the treatment
vacuum fluctuations, since the final result must necessa
be Lorentz invariant. By the use of path integrals instead
operator methods and by taking advantage of the Fadd
Popov gauge-fixing procedure, we can maintain Lorentz
variance throughout the calculation. Furthermore, Ford d
in detail only with the linear terms (}hmn) in the functional
s; he mentioned the quadratic terms (}hmnhab) briefly and
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then decided to ignore them. As we will see below, for t
vacuum fluctuations, the quadratic terms are dominant—t
contribution to the propagator is much larger than that of
linear terms.

In Sec. II we begin with an evaluation ofs up to terms of
second order in the gravitational field. In Sec. III we calc
late the path integral*Dg for the propagator~7!. A renor-
malization of the gravitational constant is required to ma
the effects of the fluctuations of the spacetime geometry
nite. In Sec. IV we examine the modifications of the gravit
propagator caused by quantum fluctuations of the ma
fields, and we deal with the consequent renormalization
the gravitational constant and with the short-range beha
of the graviton propagator. The result is a mutual regulari
tion of the propagators of matter fields and of the gravi
tional field: The quantum fluctuations of the gravitation
field regularize the propagator of the matter fields, while
quantum fluctuations of the matter fields regularize
propagator of the gravitational field. In Sec. V we discu
applications to QED. And in Sec. VI we briefly discuss t
difficulties arising from higher-order contributions to th
path integral.

II. SQUARE OF THE GEODESIC DISTANCE

To express the square of the geodesic distance betw
two pointsx1 andx2 as a functional of the metric tensor, w
begin with the formula given by Synge@8#:

2s~x1 ,x2!5gmn~x1!Um~x1!Un~x1!, ~8!

where Um(x1) is the tangent vectordxm/du at x1 for the
geodesic connecting the points, andu is an affine paramete
for this geodesic, normalized in such a way thatx1 corre-
sponds tou50 andx2 corresponds tou51. We can deter-
mine Um by integrating the geodesic equation. This seco
order differential equation can be written as a pair of fir
order differential equations,

dUm

du
1Gab

m UaUb50 ~9!

and

dxm

du
5Um ~10!

or, equivalently, as a pair of integral equations,

Um~u!5nm2E
0

u

du8Gab
m UaUb ~11!

and

xm~u!5x1
u1E

0

u

du8Um, ~12!
1-2
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wherenm5Um(0) is a constant. These integral equations c
be solved by successive approximations, starting with
zeroth approximationUm5Dxm5x2

m2x1
m . Details are given

in the Appendix. Adopting the usual definition for the grav
tational fieldhmn ,

gmn5hmn1A16pGhmn , ~13!
s
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we obtain the result

s5
1

2
hmnDxmDxn1A16pGA1116pG~A21A28!, ~14!

where
A15
1

2
DxmDxnE

0

1

du hmn , ~15!

A252
1

2
DxmDxaDxbE

0

1

duE
0

u

du8hm
rhab,r2DxmDxaDxbE

0

1

duE
0

u

du8hm
rhra,b

1
1

2
DxnDxaDxkE

0

1

duE
0

u

du8han,bE
0

1

dv hk
b2

1

2
DxmDxnDxaE

0

1

du hmn,rE
0

u

du8ha
r

1
1

2
DxmDxnDxaE

0

1

du uhmn,rE
0

1

du8ha
r1

1

2
DxaDxkE

0

1

du hnaE
0

1

dv hk
n2

1

2
DxmDxnham~0!hn

a~0!, ~16!

and

A285
1

2
DxnDxaDxkDxrE

0

1

duE
0

u

du8hna,bE
0

u8
du9hkr

,b2
3

8
DxaDxbDxkDxrE

0

1

duE
0

u

du8hab,nE
0

1

dvE
0

v
dv8hkr

,n

2
1

4
DxmDxnDxaDxbE

0

1

du uhmn,rE
0

1

dvE
0

v
dv8hab

,r1
1

4
DxmDxnDxaDxbE

0

1

du hmn,rE
0

u

du8E
0

u8
du9hab

,r. ~17!
to
All of the integrals in Eqs.~15!–~17! are to be understood a
line integrals along the straight line fromx1 to x2 ; for in-
stance, in an integration overu, the integrand is to be evalu
ated at the pointux21(12u)x1 . Equation~14! is valid for
arbitrarily large separations of the pointsx1 and x2 , but it
assumes that the gravitational fields are weak, so pertu
tion theory is applicable.

The quantitiesA1 , A2 , and A28 differ in their behavior
upon path integration: A1 gives logarithmically divergen
contributions to the path integral,A2 gives quadratically di-
vergent contributions, andA28 gives even worse divergen
contributions. However, as we will see, the contributio
from A28 cancel. This leaves the contributions fromA2 as the
dominant terms, and these can be reduced to a finite valu
assuming that the bare gravitational constant approa
zero. With this renormalization of the gravitational consta
the logarithmic contributions fromA1 disappear.

III. PATH INTEGRAL FOR THE SMEARED
PROPAGATOR

For the sake of simplicity, in the following calculation w
provisionally ignore the linear termA1 in Eq. ~14!, and we
consider the contribution from this term later, at the end
the calculation. Likewise, we provisionally ignore the ter
}R(x1) in Eq. ~7! and we consider its contribution later.
a-

s

by
es
,

f

For the calculation of the path integral, it is convenient
write Eq. ~7! as an exponential

GF~x1 ,x2 ;g!5
i

8p2~s2 i e!
2

i

16p2 m2 ln
1

2
m2s ~18!

.2
1

16p2 E
0

` ds

s2

3exp@2 im2s2 i ~s2 i e!/2s#. ~19!

Equations~18! and ~19! differ by a fractional amount of the
order of m2s, which is negligible ifs is small. The path
integral ~3! then becomes

ḠF~x1 ,x2!52
1

16p2N8
E

0

` ds

s2 E Dh expF2 im2s

2 i ~s2 i e!/2s1 i E d4x L~g!G
52

1

16p2N8
E

0

` ds

s2 E Dh expF2 im2s
1-3
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HANS C. OHANIAN PHYSICAL REVIEW D 60 104051
2 i
~x22x1!2

4s
2A16pGi

A1

2s

216p iG
A21A28

2s
1 i E d4x L~g!G ,

~20!

with

N85E Dh expF i E d4x L~g!G . ~21!

To lowest order, the gravitational action is quadratic in t
field variables,

E d4x L~g!52
1

2 E d4xE d4x8Dmnab~x,x8!

3hmn~x!hab~x8!, ~22!

whereDmnab is a differential operator that consists of deriv
tives of delta functions. In an abbreviated symbolic notati
in which each subscript stands for the discrete tensor ind
and also for the continuous variablex ~see, e.g., Weinberg
@9#!, this action can be written as

E d4x L~g!52
1

2
Drshrhs ~23!

and the path integral of this action is

E Dh expS 2
1

2
iDrshrhsD5@Det~ iD/2p!#21/2. ~24!

In Eq. ~20! the quadratic terms 16p iG(A21A28)/2s in the
exponent can be regarded as an increment toDrs :

dDrshrhs516pG~A21A28!/s. ~25!

Accordingly, if we ignore the termA1 , the propagator~20!
can be evaluated from the corresponding fractional inc
ment in the right-hand side of Eq.~24!:

ḠF~x1 ,x2!52
1

16p2 E
0

` ds

s2 exp@2 im2s2 i ~x22x1!2/4s#

3$Det@ i ~D1dD!/2p#%21/2@Det~ iD/2p!#1/2

~26!

.2
1

16p2 E0

` ds

s2
expF2 im2s2 i ~x22x1!2/4s

2
1

2
Tr D21dDG . ~27!

We first consider the contributions to2 1
2 TrD21dD from

A28 . The inverse of the operatorD is the conventional gravi-
ton propagator,
10405
e

,
es

-

Dmnab
21 ~x,x8!52

i

4p2~x2x8!2 ~hmahnb1hmbhna

2hmnhab!. ~28!

Here it is assumed that the gauge problem that arises in
inversion ofD has been handled by the Faddeev-Popov p
cedure@10#. Each of the terms inA28 contains contracted
derivativeshmn

,r(u)hab,r(u8) of the gravitational field; cor-
responding to this,2 1

2 Tr D21dD receives a contribution

}]r8]
r

1

~x2x8!2 }d4~x2x8!}d4~x22x1!. ~29!

But according to Eq.~17!, these terms are multiplied b
(x22x1)4, which effectively makes them zero.

Next we consider the contributions arising fromA2 . The
first two terms inA2 involve the product of a field and its
derivative at the same point; the contribution
2 1

2 Tr D21dD from these terms is proportional to the fir
derivative of the propagator~28! evaluated atx5x8. This
vanishes if we perform the limitx→x8 symmetrically.

The next four terms yield divergent contributions
2 1

2 TrD21dD, among which the dominant part is

2iG

s
E

0

1

duE
0

u

du8
1

~u2u8!3 . ~30!

To render this divergent expression finite, we need to set
gravitational constant equal to zero. Specifically, we assu
that G in Eq. ~30! is actually the bare gravitational consta
GB , and we introduce a~provisional! regularization in theu8
integral by replacingu2u8 by u2u81e8, where it is under-
stood that the limite8→0 will be taken. Then Eq.~30! be-
comes

iGB

se82 1O S GB

e8
D . ~31!

To keep this finite, we must takeGB}e82. In Sec. IV we will
see how this conforms with the renormalized gravitatio
constant observed in gravitational interactions of particl
Anticipating the result thatGB /e82 is of the order of magni-
tude of the renormalized gravitational constantG, we see
that Eq.~31! can be written asibG/4s or ibL

*
2 /4s, whereb

is a number of the order of magnitude of 1.
The last term inA2 gives another divergent contributio

to 2 1
2 Tr D21dD involving a propagator evaluated atx

5x8. To determine the limitx→x850, we take x2x8
5e8AG and we let e8→0. The contribution to
2 1

2 Tr D21dD is then}GB /e2G.1. Therefore the last term
in A2 gives a contribution.hmnDxmDxn, with a numerical
factor of the order of 1. This contribution simply has th
effect of multiplying the geodesic distance of flat spaceti
by a numerical factor of the order of 1. Physically, th
means that, on the average, the gravitational quantum fl
tuations modify the measured distances in spacetime. To
store the desirable correspondence between coordinates
measured distances, we have to rescale our coordinates
1-4
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thereby reset the numerical factor to 1. This rescaling eff
tively eliminates, or compensates, the last term inA2 .

Finally, we consider the contributions arising from th
terms A1 and R(x1), which we have ignored so far. Th
linear termsA1 in Eq. ~20! can be eliminated by a change
variable in the path integral~completion of the square!. This
generates a quadratic term and gives a logarithmically di
gent contribution}GB ln e8 in the exponent of Eq.~27!. But
this contribution disappears when we perform the renorm
ization GB5e82G→0 of the gravitational constant.

The term (16 2j)R(x1) in Eq. ~7! causes troubles in th
path integral, because the vacuum expectation value
R(x1) is highly divergent, and this divergence is not su
pressed by our renormalization of the gravitational const
However, we can deal with this problem by a mass ren
malization. We rewrite the bracket in Eq.~7! as

Fmren
2 2S 1

6
2j DRren~x1!G , ~32!

where

mren
2 5m22S 1

6
2j D ^R~x1!& ~33!

and

Rren~x1!5R~x1!2^R~x1!&. ~34!

This renormalized curvature scalar has a vacuum expecta
value of zero, and it is easy to verify that the vacuum exp
tation value ofRren(x1)hmn(x) is also zero, except for term
of orderG2 and higher. Consequently, in the path integral
the propagator, the terms arising from the renormalized c
vature scalar involve only contributions of orderG2 and
higher. These contributions are similar to the contributio
arising from other higher-order corrections tos ~see Sec.
VI !.

To orderG, the net result is then merely the term~31!,
which gives a smeared propagator

ḠF~x1 ,x2!52
1

16p2 E
0

` ds

s2 exp@2 im2s2 i ~x22x1!2/4s

1 i ~bL
*
2 1 i e!/4s# ~35!

52
m

4p2

K1@ imA~x22x1!22bL
*
2 2 i e#

A~x22x1!22bL
*
2 2 i e

.

~36!

Evidently, this is of the form proposed in Eq.~1!, with a
spectral functionf (l)5d(l2bL

*
2 ).

The result established here for a single propagator ca
easily generalized to the product of several propagators, s
as occur in a typical Feyman diagram. At short range, e
of the several propagator will contribute as term in an ex-
ponent as in Eq.~19!, and the path integration*Dh will yield
10405
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a product of propagators of the form~36!, with the same
value ofb for each propagator.

In all of the above we have concentrated on the sh
range behavior of the propagator. We expect that
smeared propagator~36! will be a good approximation for
ux2u!1/m2. At longer ranges, the propagator will differ from
Eq. ~36! by terms proportional tom2, m4, etc. These terms
are hard or impossible to calculate explicitly, but we exp
that the conventional Feynman propagator will be a go
approximation forux2u@1/M

*
2 . If m is a typical particle mass

~say, no more than a few hundred GeV/c2!, then there is a
wide overlap between these ranges ofux2u, and this means
we have a good approximation for the propagator forall
values ofux2u. For instance, we can adopt the smeared pro
gator ~36! for the rangeux2u,1/mM* and the conventiona

Feynman propagator2mK1( imAx22 i e)/4p2Ax22 i e for
the rangeux2u.1/mM* . At ux2u51/mM* , the fractional
deviation between these two expressions is of the orde
only m/M* .10219. In practice, we can simply adopt th
smeared propagator for all values ofx2, since it smoothly
merges into the conventional propagator whenux2u@1/M

*
2 .

The advantage of using the smeared propagator for all va
of x2 is that this results in a simple formula for the Fouri
transform, valid for all values of the momentum:

ḠF~p!52 iAbL
*
2

K1@2AbL
*
2 ~p22m21 i e!#

Ap22m21 i e
. ~37!

This expression permits the calculation of Feynman d
grams by familiar techniques@1#.

IV. GRAVITON PROPAGATOR; RENORMALIZATION
OF G

The regularization of the propagator by quantum fluctu
tions in the geometry applies to all matter propagators. Bu
does not apply to the graviton propagator. The trouble is t
the differential equation for the gravitational field is the Ei
stein equation

Rmn2
1

2
gmnR50. ~38!

This is not a linear differential equation@11#, it yields no
simple equation for the graviton propagator, and we can
assume that this propagator has the Hadamard form~6!.
Hence we must find a different mechanism to regularize
graviton propagator.

The obvious mechanism arises from quantum fluctuati
of the matter fields. It is known that in a curved spacetim
background, the quantum fluctuations of the matter fie
generate a vacuum energy momentum that alters the m
action by a constant term~a cosmological constant!, a term
proportional to the curvature scalarR, and a term propor-
tional to the square of the curvature. When these terms
added to the usual action for the Einstein equation~with its
bare gravitational constantGB!, we obtain a net action for
the gravitational field@12#,
1-5
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E d4xA2gFA1S B1
1

16pGB
DR1CS 3

2
R213RmnRmnD G ,

~39!

whereA, B, and C are divergent coefficients. If the diver
gences are regularized by point splitting, with a point se
ration t→0, then the coefficients take the form

A}
1

t4 , B}
1

t2 , C} ln t. ~40!

The coefficient ofR in Eq. ~39! gives us the renormalized
observed gravitational constant@13#

1

16pG
5B1

1

16pGB
. ~41!

To attain a finite value ofG, we needB→21/16pGB , and
thereforeGB}t2→0. In the preceding section we regula
ized the divergences by means of a dimensionless param
e8, which characterized the point splitting. On dimension
grounds, the dimensional and dimensionless point split
parameters must be related by the Planck length, that ist2

}Ge82. With this,GB /e82}t2/e82}G, as anticipated in the
preceding section@see Eq.~31!#.

The other divergent terms in Eq.~39! must be canceled by
counterterms. It is desirable not to cancel theC term com-
pletely, but to retain a finite remainder, so the renormaliz
value ofC is of the order of 1. This has the advantage th
the fourth-order derivatives contained in this term modify t
conventional graviton propagator}1/k2 in momentum space
to

}
1

k22C8k4/M
*
2 . ~42!

whereC8 is a constant of the same order of magnitude asC.
As shown by Stelle@14#, the extra two powers ofk in the
denominator of Eq.~42! are sufficient to render all gravita
tional Feynman diagrams renormalizable~although not fi-
nite!. In this way the quantum fluctuations of matter, whi
contribute theC term, regularize the propagator for th
gravitational field.

Furthermore, if the graviton of the fourth-derivative grav
tational theory is supplemented by supersymmetric partn
then the resulting fourth-derivative supersymmetric grav
tional theory is finite@15#. The contributions from high-orde
loops, which in supersymmetric gravity are divergent~and
nonrenormalizable!, are reduced to finite values by the four
derivatives, and the low-order loops, which in fourt
derivative theory are divergent, are cancelled by supers
metry conditions.

We can rewrite the modified graviton propagator as

1

k22C8k4/M
*
2 5

1

k22
1

k22M
*
2 /C8

. ~43!

This shows that the modification of the propagator is actu
a Pauli-Villars regularization. However, this regularization
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the result of a physically motivated alteration of the Lagran
ian, in contrast to the conventional Pauli-Villars regulariz
tion, which is a purely formal trick for manipulating diver
gences. The negative sign of the second term on the ri
hand side of Eq.~43! indicates that this term is the
propagator of a state with negative norm in Hilbert space~a
ghost!. This renders the physical interpretation of these sta
problematic, if they occur in external lines of Feynman d
grams. But since their mass is.M* , we do not have to
worry about this unless the c.m. energy reaches 1019GeV.
Such energies are attained only at a very early stage in
big bang, before the Planck time, 10243s. At that stage, the
physics of the universe is likely to be dominated by nonl
ear quantum gravity effects~densely packed black holes o
mass.M* ?!, and theS-matrix and scattering processes
elementary particles in asymptotically free states are pr
ably irrelevant, so the issue of probability conservation
the ghost states never needs to be faced@16#. At ordinary
energies, the ghost states occur only in internal lines of Fe
man diagrams, where they are no more troublesome than
Faddeev-Popov ghosts needed in internal lines to ach
gauge invariance.

V. APPLICATION TO QED; GAUGE INVARIANCE

In Ref. @1# we used the smeared propagator to calcul
the radiative corrections in QED for photons interacting w
a charged spin-1

2 field, such as electrons. The second-ord
radiative corrections are all finite, with numerical values o
few percent~roughly the same as those that would be o
tained in a calculation with the conventional Feynman pro
gator modified by an invariant cutoff atM

*
2 !. In Ref. @1# we

had no definite expression for the spectral functionf (l), but
we conjectured that the spectral function is concentrate
x2.L

*
2 . Equation~36! confirms this conjecture and confirm

the numerical estimate for the radiative corrections. By ke
ing the radiative corrections finite and small, we avoid
well-known inconsistency of conventional QED: th
charge renormalization factorZ3 is large and negative,Z3
→2`, and consequently the square of the bare charg
negative,eB

25e2/Z3→20. Landau and Pomeranchuk@17#
considered this a fatal flaw of perturbative QED, but mode
treatments of QED usually prefer to ignore this issue.

The calculations in Ref.@1# suffer from a deficiency in
that the vacuum polarization has a gauge-noninvariant
of large magnitude,.M

*
2 . According to conventional wis-

dom, a modification of the electron propagator require
modification of the photon-electron vertex, to preserve ga
invariance. In Ref.@18# we explored this option, and we
constructed a modification of the vertex. Physically, the v
tex modification looks like a contribution from charged e
tities of massM* and sizeL* , possibly charged black holes

Here we want to propose a different and more eleg
solution of the gauge problem. It has been known for so
time @19# that the problem of gauge invariance of th
vacuum polarization can be solved by a careful definition
the current operator. For electrons, the current is defined
an operator productj m5c̄gmc, and the two operators on th
right-hand side must be defined by point splitting; concom
1-6
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tantly, an extra term}Am must be added to the current,
preserve gauge invariance. With this refinement in the d
nition of the current, the Schwinger terms, which break
gauge invariance of the vacuum polarization, are cance
exactly by seagull terms arising from the extra term in
current. Thus, with a careful, gauge-invariant definition
the current operator, gauge invariance is automatically
tained in calculations with the conventional Feynman pro
gator~and special tricks, such as Pauli-Villars regularizati
or dimensional regularization, become superfluous for att
ing gauge invariance!.

Since we want to use the smeared propagator in our
culation, and not the conventional Feynman propagator, h
does this help? The answer is that before we perform
path integration*Dg in Eq. ~3!—or in a corresponding ex
pression for the vacuum polarization—we must perform
path integration*Df, and we can also elect to perform th
integrations*d4x over all the spacetime variables that appe
in the construction of the vacuum polarization@20#. The path
integration*Df leads to conventional Feynman propagat
~in the given geometrygmn ,!, and if the current has bee
defined in the appropriate gauge-invariant way, the integ
tion over spacetime variables will then result in an automa
cancellation of the gauge-noninvariant part of the vacu
polarization. The subsequent path integration*Dg will not
resurrect the gauge-noninvariant part, and the final resu
necessarily gauge invariant.

VI. HIGHER-ORDER TERMS

In the preceding sections we dealt only with the contrib
tions to the smeared propapator arising from the quadr
terms in the gravitational field, and we neglected all t
higher-order terms. Such higher-order terms arise from
ing more steps in the successive approximation fors, and
they also arise from taking into account the nonlinear int
action terms in the gravitational LagrangianL(g).

The quadratic terms are exceptional in that the path in
gral reduces to a Gaussian integral which can be evalu
analytically. With the inclusion of terms beyond the qu
dratic terms}hh, the path integral~3! becomes a non
Gaussian integral, and its evaluation becomes imposs
except by means of an expansion of the exponential i
series in powers ofh. But for our purposes such an expa
sion is useless, since the path integral then leads to a ser
powers of L

*
2 /(x22x1)2, which does not converge i

u(x22x1)2u!L
*
2 and, therefore, cannot tell us anything abo

the short-range behavior of the propagator. The only obvi
alternative to a power series is a numerical calculation of
path integral. Whether such a numerical calculation is f
sible and how the smeared propagator is modified by hig
order corrections remain open questions.

Although the effect of higher-order corrections is u
known, our second-order results indicate a mutual regu
ization of matter and gravitation: the quantum fluctuatio
of the geometry regularize the propagator for matter fie
and the quantum fluctuations of the matter fields regula
the propagator for gravitons.

One odd aspect of this regularization generated by
10405
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quantum fluctuations of the geometry is that the smea
propagatorḠF does not satisfy any simple wave equati
and it is not a Green’s function. Of course, for any giv
geometry the Feynman propagatorGF does satisfy the wave
equation~5!, and it is a Green’s function. But when we a
erage these propagators over a large variety of different
ometries, there will be no single background geometry a
no definite wave equation, and no Green’s function. Ho
ever, if the initial conditions for a propagating wave involv
only wavelengths much longer than the Planck length, th
the smeared propagator can be effectively replaced by
conventional Feynman propagator, and this resurrects
Green’s function. The absence of a solution for the init
value problem on the Planck scale merely reflects the
sence of a well-defined background geometry on t
scale—if there is no well-defined geometry, then the init
value problem is meaningless. The absence of a well-defi
~Riemannian! geometry manifests itself in the shift of th
effective light cone in the smeared propagator: instead
light cone (x22x1)250, the smeared propagator has a lig
cone (x22x1)22bL

*
2 50. We can also recognize such

modification of the geometry from a direct calculation of t
vacuum expectation value of the square of the geodesic
tance by means of the path integral^s&
}*Dhs exp@i*d4 xL(g)#. The ~normalized! value of this
path integral has the same form as the expression in
exponent in Eq. ~27!, that is, ^s&5(x22x1)22( i /2)
Tr D21dD, except thatdD now does not include the facto
1/s appearing in Eq.~25!. Upon renormalization of the di-
vergent terms, the result for the expectation value is th
^s&5(x22x1)22bL

*
2 , and the light cone deduced from th

is the same as that deduced from the smeared propagato
x2→x1 , the expectation value of the square of the geode
distance does not approach zero, but2bL

*
2 . This indicates

that even for very small separations between the points, th
are fluctuations of the order ofL

*
2 in the square of the geo

desic distance.

APPENDIX

Substitution of the zeroth approximationUm5x2
m2x1

m

into the right-hand side of Eq.~11! gives a first approxima-
tion for Um, which when resubstituted gives the second a
proximation:

Um~u!5nm2nanbE
0

u

Gab
m du8

12nanknrE
0

u

Gab
m du8E

0

u8
Gkr

b du9. ~A1!

Equation~12! then gives

x2
m5x1

m1nm2nanbE
0

1

duE
0

u

Gab
m du8

12nanknrE
0

1

duE
0

u

Gab
m du8E

0

u8
Gkr

b du9. ~A2!
1-7
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This equation can, again, be solved fornm by successive approximations, starting with the zeroth approximationnm5Dxm

5x2
m2x1

m . The second approximation then yields

s5
1

2
gmn~0!Um~0!Un~0!5

1

2
gmn~0!nmnn

5
1

2
hmnDxmDxn1

1

2
hmn~0!DxmDxn1hmnDxmDxaDxbE

0

1

duE
0

u

du8Gab
n 1hmn~0!DxmDxaDxbE

0

1

duE
0

u

du8Gab
n

22hmnDxnDxaDxkDxrE
0

1

duE
0

u

du8Gab
m E

0

u8
du9Gkr

b 12hmnDxnDxaDxkDxrE
0

1

duE
0

u

du8Gab
m E

0

1

dvE
0

v
dv8Gkr

b

1
1

2
hmnDxaDbDxkDxrE

0

1

duE
0

u

du8Gab
m E

0

1

dvE
0

v
dv8Gkr

n 1
1

2
DxmDxaDxbE

0

1

duE
0

u

du8]m~hab,rdxr!, ~A3!

where

dxr~u8!5DxkDxnFu8E
0

1

du9E
0

u9
du-Gkn

r 2E
0

u8
du9E

0

u9
du-Gkn

r G . ~A4!

Here all of the integrals are to be understood as line integrals along the straight line fromx1 to x2 ; for instance, in an
integration overu, the integrand is to be evaluated at the pointux21(12u)x1 . The deviation of the actual geodesic from th
straight line has been taken into account in these equations by appropriate Taylor series expansions relative to the str
To second order, the only integral that needs this correction is that in the third term on the first line of Eq.~A3!, and this
correction is written in the last term on the last line.

With

Gab
m 5

1

2
~hmn2A16pGhmn!~han,b1hbn,a2hab,n!1¯ , ~A5!

s becomes a functional ofhmn and its derivativeshmn,a . Some of these derivatives can be eliminated by means of the ide

Dxa]aF~x!5dF/du, ~A6!

wherex5ux21(12u)x1 . This permits integration of the total derivative appearing on the right-hand side. The final re
as stated in Eq.~14!.
re
v.

n

tial
ere,

e
ent
m.

y.
e

d

@1# H. C. Ohanian, Phys. Rev. D55, 5140~1997!.
@2# S. Deser, Rev. Mod. Phys.29, 417 ~1957!.
@3# P. R. Garabedian,Partial Differential Equations~Wiley, New

York, 1964!, Sec. 5.2.
@4# S. L. Adler, J. Lieberman, and Y. J. Ng, Ann. Phys.~N.Y.!

106, 279 ~1977!.
@5# B. DeWitt, in Relativity, Groups, and Topology, edited by B.

DeWitt and C. DeWitt~Gordon and Breach, New York, 1964!,
pp. 739–745.

@6# S. M. Christensen, Phys. Rev. D14, 2490~1976!.
@7# L. H. Ford, Phys. Rev. D51, 1692~1995!.
@8# J. L. Synge,Relativity: The General Theory~North-Holland,

Amsterdam, 1971!, p. 47~ff !.
@9# S. Weinberg,The Quantum Theory of Fields~Cambridge Uni-

versity Press, Cambridge, England, 1995!, Vol. 1, Chap. 9.
@10# L. D. Faddeev and V. N. Popov, Phys. Lett.25B, 29 ~1967!.

Details of the application of this procedure to gravitons a
given in C. J. Isham, A. Salam, and J. Strathdee, Phys. Re
3, 1805~1971!.

@11# If we treat a~weak! gravitational-wave field as a perturbatio
10405
D

of a fixed classical background, we obtain a linear differen
equation in that background. But this does not help us h
since any attempt at rearranging the path integral*Dg into a
double path integral**Dg0Dh over the background and th
perturbation would mean that we are adopting two independ
gravitational fields, with a doubling of the degrees of freedo

@12# B. DeWitt, in Relativity, Groups, and Topology, edited by B.
DeWitt and C. DeWitt~Gordon and Breach, New York, 1964!,
p. 817. In Eq.~39!, a total divergence (2g)1/2R,m

;m has been
omitted, and a termRabmnRabmn has been eliminated by
means of the Gauss-Bonnet identity for Euclidean topolog

@13# A negative value ofB is required for the cancellation of th
divergences inB and 1/GB . The sign ofB depends on the

signs oft2 and of (16 2j), sinceB}( 1
6 2j)/t2. Hencet2 must

be taken spacelike if (16 2j).0 and timelike if (16 2j),0.
The conformal casej5

1
6 does not lend itself to the propose

renormalization.
@14# K. S. Stelle, Phys. Rev. D16, 953 ~1977!.
@15# K. S. Stelle, inQuantum Theory of Gravity, edited by S. M.
1-8



SR

J.

we
les

opa-

SMEARING OF PROPAGATORS BY GRAVITATIONAL . . . PHYSICAL REVIEW D 60 104051
Christensen~Hilger, Bristol, 1984!.
@16# A. Strominger, inQuantum Theory of Gravity@15#.
@17# L. D. Landau and I. Pomeranchuk, Dokl. Akad. Nauk SS

102, 489 ~1955!.
@18# H. C. Ohanian, Nuovo Cimento A110, 751 ~1997!.
@19# See, e.g., K. Johnson, inLectures on Particles and Field

Theory, edited by K. Johnson, D. B. Lichtenberg,
Schwinger, and S. Weinberg~Prentice-Hall, Englewood Cliffs,
10405
NJ, 1964!, Sec. 2.2, or S. L. Adler, inLectures on Elementary
Particles and Quantum Field Theory, edited by S. Deser, M.
Grisaru, and H. Pendleton~MIT Press, Cambridge, MA, 1970!,
Sec. 6.1.

@20# For the gauge-invariant part of the vacuum polarization,
elect to perform the integrations over the spacetime variab
last, so that we can garner the benefits of the smeared pr
gator.
1-9


