
PHYSICAL REVIEW D, VOLUME 60, 104046
Stringy probe particle and force balance
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We directly derive the classical equation of motion, which governs the center of mass of a test string, from
the string action. In a certain case, the equation is basically the same as the one derived by Papapetrou, Dixon,
and Wald for a test extended body. We also discuss the force balance using a stringy probe particle for an exact
spinning multisoliton solution of Einstein-Maxwell-dilaton-axion theory. It is well known that the force bal-
ance condition yields the saturation of the Bogomol’nyi type bound in the lowest order. In the present formu-
lation the gyromagnetic ratio of the stringy probe particle is automatically determined to beg52, which is the
same value as the background soliton. As a result we can confirm the force balance via the gravitational
spin-spin interaction.@S0556-2821~99!05620-9#

PACS number~s!: 04.50.1h, 04.25.2g, 04.70.2s, 11.27.1d
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I. INTRODUCTION

The probe technique is useful for studying the appro
mate dynamics of multisoliton systems such as multi-bla
holes. By the term of ‘‘probe’’ we mean a sort of collectiv
coordinate such as the center of mass. The so-called
particle is one of the probes and is governed by the geod
equation. The test particle is frequently used to estimate
gravitational wave from binary systems at an early stage

Among the multisoliton solutions, the Bogomol’ny
Prasad-Sommerfield~BPS! multi-soliton is an important ob-
ject. Its existence is guaranteed by the so-called force
ance. The simplest example is the Majumdar-Papape
~MP! solution @1# in the D54 Einstein-Maxwell theory or
N52 D54 supergravity@2#. It is well known that the elec-
trostatic force balances with the gravitational attractive for
Furthermore, the force balance still holds up to the grav
tional spin-spin and dipole-spin interaction for the Isra
Wilson-Perjes~IWP! solution @3# which becomes the MP
solution in the static limit, that is, the IWP solution is th
spinning version of the MP solution@4#. The force balance
condition yields the saturation of the Bogomol’nyi boun
and the correct gyromagnetic ratiog52 of a spinning
charged test body@4#. We realize, however, that the sam
situation does not hold in the Einstein-Maxwell-dilato
~EMD! system; that is, the force balance condition does
give the correct gyromagnetic ratio@5#. It was shown that the
gyromagnetic ratio of the test body is different from that
the background space-time. This fact may indicate the n
existence of the spinning multisoliton solution in the EM
system. On the other hand, we are aware of an exact solu
of a spinning multisoliton in theD54 Einstein-Maxwell-
dilaton-axion~EMDA! system@6#. Obviously the new essen
tial ingredient is the axion field. Hence, taking account of
contribution from the axion field is important to resolve t
above discrepancy of the gyromagnetic ratio.

In this paper we derive the equation of motion~EOM! for
the center of mass of a string, say ‘‘stringy probe particle
coupled with the general metric and the axion field. Th
may be two different ways to the end at first glance. One
0556-2821/99/60~10!/104046~6!/$15.00 60 1040
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them is the Papapetrou procedure@7# refined by Dixon@8#
and Wald@9#. This approach is based on the local conser
tion low for the energy-momentum tensor and current
gauge fields. We expect that one can derive the EOM for
center of the mass of a string in this procedure although
will not show here. In this paper, we will adopt another a
proach which is expected to be simpler than the Papapet
Dixon-Wald procedure.

The D54 EMDA system describes a low energy strin
theory. The low energy string effective action original
comes from the requirement of the conformal invariance
the two-dimensionals model@10#. It tells us that we should
back to thes model to derive the EOM for a stringy prob
particle. The contribution from the electromagnetic and di
tion field can be obtained by a certain dimensional reduct
and conformal transformation from the string to the Einst
frame.

The rest of this paper is organized as follows. In Sec.
we derive the EOM for a stringy probe beginning with th
two-dimensionals model. The curved target space-time
ten dimensional. Through the adequate dimensional red
tion to four dimensions we obtain the EOM in the strin
frame. In this formulation the gyromagnetic ratio of a pro
is uniquely determined to beg52. In Sec. III we will give
an argument of the energy bound, so-called Bogomol’
type bound. In Sec. IV, we will discuss the force balan
between a spinning exact solution of theD54 EMDA sys-
tem and a stringy probe particle via the gravitational sp
spin interaction. We confirm that the force balance ho
when the Bogomol’nyi bound is saturated. Finally, we w
give a summary and discussion in Sec. V.

II. STRINGY PROBE PARTICLE

A. Stringy probe particle in ten dimensions

The action of the string coupled with the general met
and axion field is

Sp52
1

2pE dtdsA2det~gab!@GMN~X!gab

1B̂MN~X!eab#]aXM]bXN, ~2.1!
©1999 The American Physical Society46-1
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whereM50,1, . . . ,9 anda50,1. gab , GMN , and B̂MN are
the metric of the world volume of the string, the metric of t
ten-dimensional space-time and the antisymmetric tensor
spectively. In the above we omitted the dilaton term beca
of its small contribution. To obtain the effective action f
the center of the mass of a string, we decomposeXM(t,s)
into the center of mass and the excitation around it as
lows:

XM~t,s!5X̄M~t!1xM~t,s!, ~2.2!

whereX̄M(t)ª(1/p)*0
pdsXM(t,s). Inserting Eq.~2.2! into

Eq. ~2.1! and integrating out of the coordinates, we obtain
the effective action forX̄m(t):

Sp5
1

2E dtFGMN~X̄!Ẋ̄MẊ̄N12GMN^]axM]axN&

12] IGMN~X̄!Ẋ̄M^xI ẋN&1
1

2
] I]JGMN~X̄!^xIxJ& Ẋ̄MẊ̄N

12B̂MN~X̄!^ẋMxN8&12] I B̂MN~X̄!Ẋ̄M^xIxN8&1•••G
~2.3!

5:
1

2E dtLeff~X̄,Ẋ̄,t !, ~2.4!

where

^F~t,s!&ª
1

pE0

p

dsF~t,s!. ~2.5!

Here we assumed that the typical scale of the curvatur
the background space-time is much larger than that of
typical scale of the string. For our present purpose it
enough that the excitation can be approximately describe
the flat metric. The expression is given by

xM~t,s!5
i

2 (
nÞ0

@an
Me22in(t2s)1ãn

Me22in(t1s)#

~2.6!

for a closed string and is inserted into Eq.~2.3!.
From the Euler-Lagrange equation forX̄m,

]Leff

]X̄m
2]tS ]Leff

] Ẋ̄m D 50, ~2.7!

we obtain the formal~EOM! for the center of mass,

D2X̄M

dt2
1G IJ

MnIJ1
1

2
~] IGJN

M 2]NG IJ
M !Ẋ̄JS IN1] IGJN

M Ẋ̄JNIN

2
1

2
ĤIJ

MmIJ2
1

4
~]MĤIJN1]JĤIN

M !Ẋ̄JT IN1•••50,

~2.8!
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whereĤIJKª3] [ IB̂JK] and

MIJ5
i

2 (
nÞ0

1

n
~an

I ãn
J2ãn

I an
J!e24int,

NIJ5
i

2 (
nÞ0

1

n
~an

I ãn
J1ãn

I an
J!e24int,

mIJ52(
nÞ0

~an
I ãn

J2ãn
I an

J!e24int,

nIJ52(
nÞ0

~an
I ãn

J1ãn
I an

J!e24int,

S IJ5SIJ1S̃IJ, T IJ52SIJ1S̃IJ1MIJ,

SIJ5 i (
n51

1

n
~an

I a2n
J 2an

Ja2n
I !,

S̃IJ5 i (
n51

1

n
~ ãn

I ã2n
J 2ãn

Jã2n
I !.

SIJ and S̃IJ are the angular momentum of the right-movin
and left-moving excitations, respectively. For the later co
parison we assume that the left-moving excitations is abs
that is,

ãn
M50, ~2.9!

and this implies

nIJ5mIJ5MIJ5NIJ5S̃IJ50. ~2.10!

This circumstance corresponds to that of the soliton wh
will be discussed later in Sec. IV.

As a result, Eq.~2.8! can be simplified in the form

D2X̄M

dt2
1

1

2
~] IGJN

M 2]NGJI
M !Ẋ̄JSIN1

1

4
~]MĤIJN

1]JĤNI
M !Ẋ̄JSIN1•••50 ~2.11!

in ten dimensions. The second term may come from
(10)RJIN

M Ẋ̄JSIN and stands for the gravitational spin-spin i
teraction. The third term is just what we wanted and e
presses the axion-spin interaction term occurred due to
‘‘additional ingredient,’’ axion field. As we will show later
the term is essential for the force balance in the respect w
the spin-spin interactions. We expect that the equat
should be derived by the Papapetrou-Dixon-Wald appro
too. Beside the axion term, the above equation is basic
identical with the higher-dimensional version of one o
tained in Refs.@7–9#.

B. Stringy probe particle in four dimensions

Next, we derive the EOM for a stringy probe particle
four dimensions. To this end we now remember that the f
dimensional low energy effective string action for the metr
6-2
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electromagnetic, axion, and dilaton fields can be derived b
certain dimensional reduction of the ten-dimensional low
ergy string action:

S105E d10xe22fA2GFRG14GMN]Mf]Nf

2
1

12
GMNGIJGKLĤMIKĤNJLG . ~2.12!

The actual procedure is given by@11#

Gmn5gSmn1AmAn , G4m5Am , G4451,

Gab5dab , G4a5Gma50, ~2.13!

and

B̂mn5Bmn , B̂4m5Am , ~2.14!

where m50,1,2,3 anda55,6,7,8,9. In the above we im
posed that all of the above fields do not depend on the c
dinatesx4;x9. We obtain the action in the string frame

S45E d4xe22fA2gSFRS14gS
mn]mf]nf

2
1

12
e24fgS

mngS
abgS

rsHmarHnbs

2
1

2
e22fgS

mngS
abFmaFnbG , ~2.15!

whereHmna53] [mBna]13A[mFna] . To obtain the action in
the Einstein frame we have to take the conformal trans
mation as

gSmn5e2fgmn . ~2.16!

Then we obtain the action of the EMDA system

S45E d4xA2gFR22gmn]mf]nf

2
1

12
gmngabgrse24fHmarHnbs

1
1

2
e22fgmngabFmaFnbG . ~2.17!

Now we can write down the EOM in terms of the fou
dimensional quantities defined by Eqs.~2.13! and ~2.14!. In
the string frame, the EOM for a stringy probe particle
immediately written as
10404
a
-
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]t
2X̄m1 (4)Gab

m ~X̄!Ẋ̄aẊ̄b1~ Ẋ̄41AaẊ̄a!Ẋ̄nFn
m

2
1

2
]mFab~ Ẋ̄41ArẊ̄r!Sab

1
1

2
~]a

(4)Gnb
m 2]b

(4)Gna
m !Ẋ̄nSab

2
1

4
~]mHanb2]nHab

m !Ẋ̄nSab1OS 1

r 5D 50. ~2.18!

In the above expression, we can show thatẊ̄41AaẊ̄a is
approximately conserved. Noting the equation forX̄4,

]t
2X̄42FmnAn~ Ẋ̄41AaẊ̄a!Ẋ̄m1 (4)¹mAnẊ̄mẊ̄n5OS 1

r 4D ,

~2.19!

we can see that

]t~ Ẋ̄41AmẊ̄m!5OS 1

r 4D ~2.20!

holds and we set

Ẋ̄41AmẊ̄m5
q

m
1OS 1

r 4D . ~2.21!

Finally we have

]t
2X̄m1 (4)Gab

m ~X̄!Ẋ̄aẊ̄b1
q

m
Ẋ̄nFn

m2
q

2m
]mFabSab

1
1

2
~]a

(4)Gnb
m 2]b

(4)Gna
m !Ẋ̄nSab2

1

4
~]mHanb

2]nHab
m !Ẋ̄nSab1OS 1

r 5D 50 ~2.22!

in the four-dimensional string frame. Note that we can re
from the above expression that the gyromagnetic ratio of
string probe particle isg52. In the covariant form we may
expect that the equation

D 2X̄m

dt2
2

q

m
Fn

mẊ̄n2
q

2m
(4)¹mFabSab1

1

2
(4)Rnab

m Ẋ̄nSab

2
1

4
~ (4)¹mHanb2 (4)¹nHab

m !Ẋ̄nSab1•••50 ~2.23!

holds, whereD/dtª Ẋ̄m (4)¹m .
We can easily see that the dilaton field has no contri

tions to the leading order of the spin-spin interaction@5#.
Since we are only interested in the force balance via
spin-spin interaction in this paper, we can go on in the str
frame. If one wants to study the force balance in the Einst
frame, one should insert the above conformal transforma
@Eq. ~2.16!# into Eq. ~2.22!. It is, however, well known that
6-3
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the force balance between monopole components yields
saturation of a Bogomol’nyi bound (uQu5A2M , in the
present stringy case!.

III. ENERGY BOUND FOR D54 EINSTEIN-MAXWELL-
DILATON-AXION THEORY

In this section, we give the energy bound argument for
D54 EMDA system in the Einstein frame. This is basica
the same as the proof given in Ref.@13# except for the exis-
tence of the axion field. In four dimensions the axion fie
can be expressed by a scalar field,a, as follows:

Hmna52e4femnab]ba. ~3.1!

Here, bearingN54 D54 supergravity in mind, we define
the supercovariant derivative for a spinore by

¹̂me5¹me2
i

4
e2f]mae1

i

4A2
e2fgrsgmFrse, ~3.2!

where¹meª(]m1Gm)e andGm is the spin connection

Gm52
1

8
en k̂¹men

l̂ @g l̂ ,g k̂#. ~3.3!

In this section¹m stands for the covariant derivative asso
ated with the Einstein metricgmn . The spinore is assumed
to satisfy the modified Witten equationg i¹̂ ie50. Further-
more, we define the Nester-like tensor@14#,

Êmn
ª

1

2
~ ēgmna¹̂ae2¹̂aegmnae!

5Emn2
i

4
e2f]aaēgmnae

2
i

A2
e2fē~Fmn2g5F̃mn!e, ~3.4!

where F̃mn5(1/2)emnabFab . Hereafter we assume thate
has the chirality ofg5e5 i e. This is influenced byN54 D
54 supergravity. The divergence of the Nester-like ten
becomes

¹nÊmn5
1

2
Gn

mVn1¹̂aegmna¹̂be2
1

2
Tn

m~F !Vn

2
1

A2
ef¹n~e22fFmn!ēe2

i

2
]nf]aae2fēgmnae

2
i

A2
ef]nfē~Fmn1g5F̃mn!e, ~3.5!

where

Tmn~F !5e22fS FmrFn
r2

1

4
gmnF2D . ~3.6!

After some tedious calculations we obtain
10404
he

e

r

¹nÊmn5Tn
m~mat!Vn1 ¹̂̄aegmab¹̂be2dlgmdl

1
i

A2
ēJm~mat!e, ~3.7!

whereVm5 ēgme anddl is defined by

dl5
1

A2
S gm]mf1

1

2
e2fgmg5]ma2

i

2A2
gmnFmnD e.

~3.8!

One can interpret the fieldl as the dilatino which is a su
perpartner of the dilation field in supergravity. In the deriv
tion of Eq. ~3.7! we used the field equations

Gmn52Tmn~f!12Tmn~a!12Tmn~F !12Tmn~mat!
~3.9!

and

¹n~e22fFmn!1
1

2
F̃mn]na52Jm~mat!, ~3.10!

where

Tmn~f!5]mf]nf2
1

2
gmn]rf]rf ~3.11!

and

Tmn~a!5
e4f

4 S ]ma]na2
1

2
gmn]ra]raD . ~3.12!

We also used the following expression:

dlgmdl5Tn
m~f!Vn2Tn

m~a!Vn2
1

2
Tn

m~F !

2
1

2
e2f]nf]aaēgnmag5e1

i

A2
e2f]nfē~Fmn

1g5F̃mn!e1
i

2A2
e2f]naē~Fmn1g5F̃mn!g5e.

~3.13!

Integrating Eq.~3.7! over the full space volumeV and as-
suming the dominant energy condition, we obtain the
equality

E
S`

dSmnÊmn5E
V
dSm¹nÊmn

5E
V
dSmFTn

m~mat!Vn1¹̂aegmab¹̂be

2dlgmdl1
i

A2
ēJm~mat!eG>0. ~3.14!
6-4
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The left-hand side in the first line of the above can be writ
in the term of several conserved charges, ADM fo
momentum PADM

m , the electric chargeQ, and magnetic
chargeP as follows@12#:

E
S`

dSmnÊmn5 ē0gme0PADM
m 2

1

A2
ē0~Q2g5P!e0 ,

~3.15!

wheree0 is the constant spinor which is identical to the lim
value of e at the spatial infinity. Hence we obtain th
Bogomol’nyi type bound

M>
1

A2
AQ21P2. ~3.16!

In the absence of the magnetic charge,P50, the saturation
of the bound occurs asM5(1/A2)uQu.

IV. FORCE BALANCE VIA GRAVITATIONAL SPIN-SPIN
INTERACTION

In this section we will confirm the force balance betwe
the gravitational spin-spin, dipole-spin and axion-spin int
actions when the Bogomol’nyi type bound is saturated.
we said in Sec. I, the spinning multi-soliton solution exists
theD54 EMDA system. This solution is the straightforwa
extension of the IWP solution and saturates the Bogomol
bound, i.e.,uQu5A2M . We expect that the force balanc
holds via the gravitational spin-spin interaction therein.
check the force balance, we consider the motion of a stri
probe particle on the background geometry of the single s
ton with Q5A2M . In the Einstein frame the single solutio
is given by@6#

ds252e2f~dt1v idxi !21e22fdx2 ~4.1!

and

A5
1

A2
e2f~dt1v idxi !, ~4.2!

wherei 51,2,3 ande i jk] jvk52] ia. In the limit of the slow
rotating the metric, vector potential, and axion field are w
ten as

ds252S 11
2M

r D 21

dt21S 11
2M

r Ddx21
4e i jkJjxk

r 3
dtdxi

1O~a2!, ~4.3!

A.
1

A2
e2fdt2

Q

r 3M
e i jkJjxkdxi , ~4.4!

and

a5
2Jixi

r 3
1O~a2!, ~4.5!
10404
n
-

-
s

i

y
li-

-

wherea is the parameter of the angular momentum so t
JW5(0,0,Ma). One can find the exact expression of the abo
solution in Ref.@6#.

In the order ofO(1/r 3), the spatial components of th
equation of the motion for a probe is given by

]t
2X̄i.2 (4)Gab

i Ẋ̄aẊ̄b1
q

m
Fa

i Ẋ̄a

.2 (4)G00
i 1

q

m
F 0

i

5
1

2
gS

i j ] jgS001
q

m
] iA0

.2S 22A2
q

mD ] if ~4.6!

because ofgS005e2fg0052e4f. Hence we can see the forc
cancellation between the Newtonian-like gravitational a
the Coulombic electrostatic forces whenq5A2m holds.

Let us confirm the force balance via the gravitation
spin-spin interaction. The spin-spin, dipole-spin, and axio
spin interaction forces are

Fspin
i 52

1

2
R0 jk

i Sjk1OS 1

r 5D , ~4.7!

Fdipole
i 5

q

2m
Sjk (4)¹ iF jk1OS 1

r 5D , ~4.8!

and

Faxion
i 52

1

4
] iH j 0kS

jk1OS 1

r 5D , ~4.9!

respectively. Thus the total force in the order ofO(1/r 4)
becomes

Fspin
i 1Fdipole

i 1Faxion
i 5S 22

qQ

mMD ] iF2J•S13~S• r̂ !~J• r̂ !

r 3 G
1OS 1

r 5D , ~4.10!

whereSi
ª(1/2)e i jkSjk andr̂ªr /r . As we can easily see, th

above total force exactly vanishes when the Bogomol’
type bound is saturated, that is,Q5A2M andq5A2m.

V. SUMMARY AND DISCUSSION

In this paper we derived the equation of motion for
stringy probe particle coupled with the axion field. Its gyr
magnetic ratio is automatically determined in the present
mulation and turns out to beg52. Moreover, we confirmed
that the force balance holds via the gravitational spin-s
interaction when the Bogomol’nyi type bound is saturate
6-5
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The behavior of the probe seems to be related to the e
tence of the multi-soliton solution in theD54 Einstein-
Maxwell-dilaton-axion~EMDA! system.

We investigated the force balance in four dimensions.
we can see the multisoliton solution has naked singularity
the D54 EMDA system@6# as well as the Kerr-Newman
space-time at the saturation of the Bogomol’nyi bound.
the other hand, Horowitz and Sen found a multisoliton so
tion without naked singularity inD.5 dimensions@15#.
They also made the four-dimensional black hole space-t
by taking doubly periodic allays in six dimensions. So t
force balance therein is also important and it seems to
easy to extend our present work to the higher-dimensio
version.

As we moderately said, the value of the gyromagne
ratio is important to discover exact spinning multisoliton s
lutions. Before we try to discover it is advisable to check t
value of probe gyromagnetic ratio, that is, whether the va
gyromagnetic ratio is the same as that of the backgro
soliton or not. If the same, we are able to have a great cha
to discover a new solution. We think that this phrase may
valid for higher-dimensional objects such as the D bra
@16,17#. In addition, one might be going to find an exa
solution of the cosmological spinning multi-black-ho
which should be the extension of the cosmological nonsp
ning multi-black-hole exact solution discovered by Kas
and Traschen@18#. So, we should check the force balance
cosmos.

Our basic equation@Eq. ~2.22!# might be useful to study
the approximate dynamics of a test string in a curved ba
D
,

c
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ground space-time. Taking account of the axion terms is
sential if the string is excited. If the string stays in the grou
state, the motion is simply the geodesic one. In our approa
a test string is assumed to be widely separated from the
tral soliton. If not so, we cannot use the excitation form
Eq. ~2.6! in the flat metric and must consider the time ev
lution due to the strong gravity or tidal forces@19#.

Finally, we should give a comment on the assumption
Eq. ~2.9!. From the analysis given in Sec. IV, we realize th
the stringy probe particle is the test body, similar to the c
tral soliton under the assumption. Namely, the soliton giv
by Eqs. ~4.1! and ~4.2! seems to be related to the righ
moving string state. This is because the solution is in
BPS state and the absence of the left~or right! moving exci-
tation ~oscillation! is essential for the BPS state@20#.

In addition to our present purpose of the force balan
Eq. ~2.8! should be used for general cases having both e
tations. The comparison with the equation derived by
Papapetrou procedure@7# is important because it is not likely
that the extra terms appear in the procedure.

Note added in proof. After the acceptance of this manu
script, the author was informed that a similar argument
that of Sec. III has been done in Ref.@21#.
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