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Optimal entropy bound and the self-energy of test objects in the vicinity of a black hole
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Recently Bekenstein and Mayo conjectured an entropy bound for charged rotating objects. On the basis of
the no-hair principle for black holes, they speculate that this bound cannot be improved generically based on
knowledge of other ‘‘quantum numbers,’’ e.g., baryon number, which may be borne by the object. Here we
take a first step in the proof of this conjecture. The proof makes use of a gedanken experiment in which a
massive object endowed with a scalar charge is lowered adiabatically towards a Schwarzschild’s black hole
and then dropped into the black hole from some proper distance above the horizon. Central to the proof is the
intriguing fact that the self-energy of the particle receives no contribution from the scalar charge. Thus the
energy with which the object is assimilated consists of its gravitational energy alone. This of course agrees
with the no-scalar-hair principle for black holes: after the object is assimilated into the black hole, any
knowledge of the scalar field properties is lost. Using the generalized second law, we reach the conclusion that
the original entropy bound was not improved by the knowledge of the scalar charge. At the end we speculate
on whether or not massive vector fields may serve in the tightening of the entropy bound.
@S0556-2821~99!01920-7#

PACS number~s!: 04.70.Dy, 04.70.Bw, 95.30.Sf, 97.60.Lf
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I. INTRODUCTION

A number of years ago Bekenstein proposed a unive
bound on the entropy of a macroscopic object of charac
istic sizeR and energyE. This bound takes the form@1#

S<2pER/\ ~1.1!

~here and henceforth we use units withG5c51). Even
though the bound was originally inferred in the framework
black holes physics, there is independent support for its
lidity. It is readily satisfied for composites of nonrelativist
particles on account of the fact that the entropy of the ass
blage is never far removed from the number of particles
volved. Likewise, the validity of the bound was verified d
rectly both numerically and analytically for free massle
quantum fields encompassed in cavities of various sha
and topologies~see review by Bekenstein and Schiffer@2#!.
Moreover, the entropy bound was recovered by Zaslav
from the properties of the acceleration radiation@3#. With
respect to self-gravitating systems, Sorkin, Wald, and Jiu@4#
afford a convincing indication that the entropy bound~1.1!
holds for thermal radiation on the threshold of gravitation
collapse, while Zaslavskii@5# proves the bound for a system
consisting of a static black hole in equilibrium with therm
radiation in a box. For an object with spins, electric charge
e, maximal characteristics length scaleR and proper energy
E, Bekenstein and Mayo conjectured an improved entro
bound@6#

S<2p
AE2R22s22e2/2

\
, ~1.2!

a synthesis of Zaslavskii’s@7# and Hod’s@8# bounds.

*Electronic address: Mayo@alf.fiz.huji.ac.il
0556-2821/99/60~10!/104044~9!/$15.00 60 1040
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By virtue of the duality of electromagnetism, this optim
bound can be generalized to include the magnetic mono
chargeg; one should merely replacee2→e21g2. In addi-
tion, a deeper question can be set forth about the prospe
giving generic bounds on entropy which are tighter than
conjectured bound~1.2! on account of the object havin
some conserved ‘‘quantum numbers’’ apart frome, g, or s.
The case in point would be a tighter bound for an object w
definite and known baryon number. The aim of this work
to put forward evidence in support of the conjecture@6# that
bound~1.2!, with the extension to magnetic monopole, ca
not be bettered generically. By ‘‘generically’’ we mean with
out knowledge of details about the object’s structure a
dynamics. When these are known, it is possible to comp
by means of statistical mechanics, bounds on the entr
which can be small compared to bound~1.1!—for example,
see Ref.@9#. But if no such information is used, we must g
to the black hole derivation of the entropy bounds. The c
jecture that bound~1.2! cannot be bettered is made speci
cally for this situation.

The structure of the paper is as follows. In Sec. II w
briefly review the subject of entropy bounds as it manif
itself in the arena of black hole physics. In addition, we p
forward the motivation for investigating the issue of entro
bounds with regard to scalar and vector fields. In Sec. III
begin by writing down the action functional for a massi
particle coupled to a massless scalar field. The interac
action is chosen for simplicity and conformal invariance. T
trajectories of test particles on the black hole spacet
background are best characterized by their constants of
motion. In Sec. IV we compute the energy of the particle
the constant of motion associated with the timelike Killin
vector. We thus discuss the contribution of the scalar field
the energy of the test object by working out in closed fo
the scalar potential generated by a stationary point sc
charge in the background of a spherical static black hole.
use a simple procedure to regulate the potential. We find
©1999 The American Physical Society44-1
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AVRAHAM E. MAYO PHYSICAL REVIEW D 60 104044
after the regulation the scalar self-energy vanishes. He
the scalar interaction contributes nought to the energetic
the process. This signifies that the object is assimilated w
its gravitational energy only, e.g., if the process is an ad
batic one, then at the end we are left with a new spher
static black hole, whose mass is equal to the mass of
initial black hole augmented only by the gravitational ener
of the object. The increase of the black hole mass obviou
increases its horizon’s surface area. In Sec. V we analyze
corrections to the area formula and find that the correcti
must vanish in linear theory. The change in horizon area
results from the lowering of the object onto the horizon fu
nishes a derivation from the generalized second law~GSL!
of the entropy bound~1.1!. We conclude by illustrating the
application of the method used here to another problem
entropy bound for a particle coupled to a massive vector fi
with a vanishingly small but nonzero mass.

II. ENTROPY BOUNDS IN THE FRAMEWORK
OF BLACK HOLE PHYSICS: THE STATE OF THE ART

In its original form, the entropy bound~1.1! is saturated
by the Schwarzschild black hole. This prompted the obs
vation @1# that the Schwarzschild black hole is the most e
tropic object for given size and energy. But the Kerr bla
hole’s entropy falls below bound~1.1! ~this will be true for
any reasonable interpretation of the radiusR of the non-
spherical Kerr hole!.

This asymmetric state of affairs motivated Hod@8# to
search for a tighter bound on entropy for objects with an
lar momentum which is saturated by the Kerr hole. Hod
peats Bekenstein’s derivation@10,11# of the minimal incre-
ment in Kerr-Newman~KN! horizon area that is caused b
an object’s infall. That derivation applied the idea
Christodoulou@12# together with Carter’s@13,14# integrals
of the Lorentz equations of motion to a particle of rest m
m and radiusR moving in a KN background. The minima
growth in horizon area was deduced from the conserva
laws and the relation they establish between the chang
black hole parameters and the energy and orbital ang
momentum of a particle in an orbit, such that the particl
center of mass can get to distanceR from the horizon. Re-
markably, it turns out that the minimal area growth is ind
pendent of the black hole parameters. Becausem can be
identified with the total proper energy of the object, bou
~1.1! follows from the minimal area growth and the GSL.

The particle’s spin was not taken into account in Carte
integrals. Hod refers instead to Hojman and Hojman’s@15#
integrals of motion for a neutral object with spins moving on
a KN background. Repeating the argument that led to
original entropy bound~1.1! and appealing to the GSL a
lows Hod to infer the entropy bound~1.2! with e50.

Recently many researches closed in on the derivation
Zaslavskii’s@7# proposed bound for charged objects. Tho
derivations focused on absorption of the relevant object b
black hole, and on the concomitant change in horizon a
Hod @16# makes use of the thermodynamics of a Schwar
child black hole, while Bekenstein and Mayo@6# makes use
of the thermodynamics of a Reissner-Nordstro¨m ~RN! black
10404
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hole. Linet @17# utilizes the thermodynamics of a KN blac
hole, with similar results. At the center of the derivation li
the fact that a charged particle in a black hole’s vicinity
affected by not only the Lorentz force from the black hole
electromagnetic field and by the Abraham-Lorentz-Dirac
diation reaction force, but also by the force originating fro
the black hole’s polarization by the particle’s electric fiel
Now it is known that a particle at rest in a static black ho
background does not radiate~despite its being accelerated!.
For that reason, one can expect the radiation reaction forc
vanish. This suggests that we should focus on an object l
ered slowly from a large distance to the horizon. Under th
circumstances, it is possible to suppose that only the gr
tational, Coulomb, and polarization forces act upon it. T
approach allows the authors mentioned above to de
Zaslavskii’s bound by use of the GSL. Now,if, as it is some-
times claimed, the GSL functions independently of entro
bounds, there should not have been reason for this unu
effect ~black hole polarization! to supply precisely the miss
ing element in the derivation of the entropy bound f
charged objects from the GSL. This is yet another dem
stration that the GSL provides a valid road to entro
bounds.

A useful by-product of the mentioned chain of genera
zations is the revelation that the entropy bound is indep
dent of the type of black hole employed in the calculatio
Thus, it seems that one may choose the Schwarzschild sp
time as the simplest settings for the study of entropy boun

Bound ~1.2! has one more merit; any KN black hol
~massm, chargeq, and angular momentumj ) saturates it.
The horizon area of such a black hole is@14#

A54p~r 1
2 1 j 2/m2!; r 1[m1~m22 j 2/m22q2!1/2.

~2.1!

Substitutingr 1 , squaring as required, and cancelling term
gives

A52p~4mr12q2!

52p@4m„~r 1
2 1 j 2/m2!2 j 2/m2

…

1/22q2#. ~2.2!

In light of Eq. ~2.1! it is reasonable to interpret (r 1
2

1 j 2/m2)1/2 as the radiusR of the hole. Incorporating this in
the last equation and dividing by 4\ gives for the black hole
entropy

SBH5
2p

\
@~m2R22 j 2!1/22q2/2#. ~2.3!

If we identify m↔E, q↔e and j↔s, this is exactly the
upper bound of Eq.~1.2!. Hence the KN black hole saturate
the proposed entropy bound. This property would be los
the bound were modified. Hence we adopt it in the giv
form.

Finally, we arrive at the principal issue we hope to elu
date in this work.

Question: Is it possible to improve bound~1.2! generi-
cally based on the knowledge of other ‘‘quantum number
which may be borne by the object? The no-hair conjectur
4-2
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OPTIMAL ENTROPY BOUND AND THE SELF-ENERGY . . . PHYSICAL REVIEW D60 104044
central to our reasoning. A large amount of work has ce
fied that a stationary black hole can have just a few par
eters. The irrefutable ones are mass, charge, magnetic m
pole, and angular momentum. Skyrmion number is
possible addition@18#, but one whose physical significance
unclear@11#. Other candidates@19–21# are associated with
unstable black holes@22#. The technique we propose to use
perturbative in nature. So it stand to reason to focus only
black holes which remain stable despite the outside per
bations. On that account, we concentrate on the KN bl
holes with parametersm, q, g, and j.

In Ref. @6#, Bekenstein and Mayo give arguments agai
the prospect of obtaining generic bounds on entropy, wh
are tighter than bound~1.2! on account of the object havin
an extra additive conserved global quantity such as baryo
lepton numbers. Also excluded are short range fields, suc
the short range,W-boson mediated, weak force. The thi
and last case considered is when the extra additive qua
carried by the objectb is the source of a long-range fiel
schematically denoted byB. For example,B can be a scala
field with presumably small or zero mass, or a massive v
tor field with vanishingly small but nonzero mass. The ran
may be finite but large in comparison to the size of a typi
object. For a massive scalar or vector field this means,
on the one hand the Compton wavelength of the object it
must be very small on the scale of the hole, and on the o
the scale of the hole must be small compared with the ra
of the field. This is granted by the smallness of the fiel
mass. Now the area formula may differ from the usual a
formula for a KN black hole by terms depending onb, be-
cause of the perturbation thatB’s energy-momentum tenso
exerts on the metric. UnlessB is a gauge field which remain
massless in the classical~or low energy! limit, we cannot
rule out such dependence. This is because Birkhoff–t
theorems exist only for massless vector fields, and from
point of view, the electromagnetic field is the only one. Th
while the area stays constant during the descent as req
by the adiabatic theorem,m may change by a quantity o
O(b2). The sign of this quantity is vague without a speci
model. Likewise, the energy with which the object is assim
lated into the black hole will presumably have a term
O(b2). Indeed, as before this term may be positive here.
it does not follow that the effect ofb is to subdue the growth
of the horizon area. This is because the indefinite sign of
correction to the area formula. Without calculating line
corrections to the metric, one cannot judge whether
change in area is incremented or depressed byb’s presence.
In the following sections these questions will be precis
phrased and answered.

III. ACTION OF A MASSIVE PARTICLE COUPLED
TO A CONFORMAL SCALAR FIELD

We use the signature$2,1,1,1% and denote the time
like coordinate outside the black hole, presumed to b
spherical static one, byx0. The simplest parameter indepe
dent action functional for a particle of rest massm coupled to
a conformal massless scalar fieldF is
10404
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S52E ~m1bF!A2gab

dxa

dl

dxb

dl
dl, ~3.1!

whereb, a constant, is the coupling strength,l is a param-
eter, andxa(l) is the trajectory of the particle. The term
proportional tom is the action for a free particle; that pro
portional tob is the interaction action. The interaction ch
sen here is the most natural one in that the source ter
generates for the wave equation forF is independent ofF
itself. Furthermore, the interaction action is invariant und
the conformal transformationgmn→V2gmn , F→FV21,
whereV is an arbitrary function. Since the free field actio
possesses the same invariance@23# it follows that the wave
equation with a source will be conformally invariant. Thu
the coupling envisaged here, apart from being the simp
one, is singled out by its invariance properties. The sa
cannot be said about the once popular derivative coupli
(}F ,adxa/dl) @24# which is known to be unphysical on
grounds of lack of renormalizability.

In a sense, the coupling as chosen in Eq.~3.1! is the
analog of minimal coupling in electromagnetism. Howev
it should be noted that the analogy with the electromagn
case stops here; conservation of charge is not obligatory
consistency of the Klein-Gordon equation, so there is no
stacle to permittingb to vary. However, here we suppos
throughout thatb is constant.

Variation of S with respect toxn gives the equation of
motion

~m1bF!
D2xn

dl2 5H 1

2
~m1bF!

d

dl
lnJ2bF ,a

dxa

dl J dxn

dl

2bJF ,n, ~3.2!

where J52gab(dxa/dl)(dxb/dl). Since the actionS is
invariant under a change of the parameterl, we are at liberty
to impose a condition onJ to fix the choice ofl. Two
choices are of interest here. If we setJ51, l becomes
proper timet, and Eq.~3.2! takes the form

~m1bF!
D2xn

dt2 52bH F ,n1F ,a

dxa

dt

dxn

dt J . ~3.3!

A second useful choice isJ5(11bF/m)2 which makes the
coefficient ofdxn/dl in Eq. ~3.2! to vanish. In this casel is
just an affine parameter. The equation of motion is

D2xn

dl2 52
b

m S 11
b

m
F DF ,n. ~3.4!

In addition we have

2gab

dxa

dl

dxb

dl
5S dt

dl D 2

5S 11
b

m
F D 2

~3.5!

which shows that in regions of weakF, l is essentially
proper time.
4-3
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IV. THE ENERGETICS OF THE PROCESS IS
UNAFFECTED BY THE SCALAR FIELD

Consider now a test scalar charge moving in the ba
ground of black hole spacetime which possesses a symm
represented by a Killing vectorja. So j (a;b)50 andjaF ,a
50. The scalar-charge trajectory, that of a particle obey
the equation of motion Eq.~3.2!, is best characterized by it
constants of motion. It is easy to show from Eq.~3.3! and
Eq. ~3.4! that

E[2ja

dxa

dt
~m1bF!,

E[2ja

dxa

dl
~4.1!

are constants of the motion in the proper time parametr
tions and in the affine parameter parametrizations, res
tively. Note thatE5mE. The stationarity of the envisage
background fixes the form of the timelike Killing vector t
be ja5d t

a for which E reduces to

E52~m1bF!g0b

dxb

dt
. ~4.2!

This corresponds to the usual notion of energy as meas
at infinity. Its first term expands tom1 1

2 m(dx/dt)2 in the
Newtonian limit. The second term2bF is thus the scalar
potential energy.

In our gedanken experiment the object of rest massm and
scalar chargeb, idealized as spherically symmetric, is su
pended by some means to keep it from falling freely, and
slowly lowered radially towards the black hole. Of cours
the forces restraining its fall change its energy measure
infinity as it is lowered. The idea is to bring the object
close to the horizon as possible, and then drop it in, inferr
from the energy measured at infinity at its last prefall po
tion the increase in horizon area that this causes.
complication—the Unruh-Wald buoyancy in acceleration
diation@25,26#—may cause the object to float neutrally som
distance from the horizon, thus arresting the contempla
descent. But as demonstrated by Bekenstein@27–29#, pro-
vided the number of relevant particle species in nature is
large~which seems to be true in our universe!, and provided
the object is macroscopic and composed of parts that o
quantum mechanics, the buoyancy is negligible all the w
to very near the horizon, and makes no practical differenc
the energy budget of the process.

Correct toO(b2) the metric may be taken as Schwarz
child’s. In isotropic coordinates it is

ds252S 12m/2r

11m/2r D 2

~dx0!21S 11
m

2r D 4

3@dr21r2~du21sin2 u df2!#. ~4.3!

We see that the horizon resides atr5m/2. Because the ob
ject is nearly stationary, its four-velocity, which we norma
ize to 21, must have the form dxa/dt
10404
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21/2,0,0,0%. Substitution in Eq.~4.2! from the met-

ric gives for the energy, when the object’s c.m. is atr5a
andu50,

E5S 12
m

2aD S 11
m

2aD 21

~m1bF!r5a,u50. ~4.4!

As elucidated by Vilenkin@30# and corroborated by Smith
and Will @31#, by contrast to the situation in flat spacetime,
the presence of a Schwarzschild black hole the self-energ
an electric charge measured at infinity is modified. As
intend to show, this is surprisinglynot so for the scalar field.

Equation~A7! of the Appendix givesF(r,u), the scalar
potential due to a stationary~or nearly so! point scalar charge
of strengthb in the background of a spherical black hol
This expression, accurate toO(b2), is the scalar analog of an
early brilliant solution by Copson@32# who found the electric
field resulting from a charge in the Schwarzschild bac
ground. The solution~A7! was also found independently b
Linet @33#.

F(r,u) naturally diverges atr5a andu50, the position
of the scalar charge. Thus if we want to use it for our fin
object, we must regulate the potential before going to
limit r→a andu→0 as required by formula~4.4!.

The simplest procedure is as follows~compare with Ref.
@6#!. We reexpressF in terms of new coordinates$%,q,f%
centered on the charge, rather than on the black hole ce
as was the case for$r,u,f%, but sharing the same polar axi
This implies the substitutions

r cosu→a1% cosq,

r→Aa21%212a% cosq. ~4.5!

A small metric sphere of proper radiusR located at$r,u%
5$a,0% is the coordinate sphere%5(11m/2a)22R;;q.
Since% is the coordinate distance from the charge it mak
sense to expandF in a Laurent series in%:

F52
b

%~11m/2a!2
2

b

a~11m/2a!2

cosq

~2a/m!221
1O~% !.

~4.6!

The divergent term in Eq.~4.6! corresponds to the scala
potential of the chargeb in flat spacetime; there we expe
F52b%21. A factor (11m/2a)22 is required to convert
the coordinate distance% to proper distance. Thus when tak
ing the limit r→a andu→0 (%→0) of F, we must discard
the first term in the right-hand side~RHS! of Eq. ~4.6!.

Our spherically symmetric finite object samples all dire
tions about its center without discrimination. Because
metric also looks isotropic in coordinates$%,q,f%, we must
thus average out the second term in the RHS of Eq.~4.6!
over all anglesq andf; as a result its contribution vanishe
Terms ofO(%) vanish as the size of the object shrinks. Th
the entire scalar contribution toE vanishes. This result wa
also found independently by Zelnikov and Frolov@34#,
Wiseman@35#, and Burko@36#. Substituting this in Eq.~4.4!
we find
4-4
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E5mS 12
m

2aD S 11
m

2aD 21

1OS b3

m2D , ~4.7!

where we have included the next higher order correction
the energy due to the coupling to the scalar field.

When the object is near the horizon, the proper dista
from its CM to the horizon is

l[E
m/2

a

~grr!1/2dr'4~a2m/2!1O@~a2m/2!2#.

~4.8!

Expressinga in Eq. ~4.7! in terms ofl by means of Eq.~4.8!
we get

E5S m l

4mD F11OS l

mD G1OS b3

m2D . ~4.9!

Corrections ofO( l /m) are duly neglected, as are those
O(b3/m2) by virtue of the assumed smallness ofl and b
compared to the large mass of the black hole. The grad
approach to the horizon must stop when the proper dista
from the object’s c.m. to the horizon reaches the obje
radiusR. Hence,

E>
mR

4m
. ~4.10!

V. THE AREA FORMULA AND THE ENTROPY BOUND

As mentioned, our primary concern is with changes in
horizon area. The area formula must be corrected for
perturbation of the metric originating in the object, which
linear approximation should be ofO(m) andO(b2), the first
caused by the energy momentum tensor of the object’s m
and the second by the energy momentum tensor of the s
field. We now argue that the corrections to the area form
actually appear only in the next higher order.

First suppose the areaA was in fact perturbed in linea
approximation toO(m) andO(b2). By spherical symmetry
of the background these corrections would not depend on
direction along which the object was lowered. IfN equal
bodies were lowered, each along a different radial direct
the perturbation would beN times larger by linearity of the
approximation. But if enough bodies were disposed on
spherical shell concentric with the black hole, the metric p
turbation due to the energy momentum tensor ofthe object’s
massat the horizon should tend to zero by Birkhoff’s the
rem @14# that the metric exterior to a spherical black hole
exactly Schwarzschild if the surroundings are spherica
symmetric. We thus get a contradiction unless we admit
the perturbation ofO(m) vanish in linear theory. Any cor-
rections toA must thus be of higher order, such asO(m2),
etc.

What about thescalarperturbation? Since there is no an
log of Birkhoff’s theorem for scalar fields, we must verif
directly that the perturbation to the horizon area formula is
order higher thanO(b2).

As before we assume that a large number of sc
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charges are disposed on a spherical shell concentric with
black hole. By the linearity of the approximation the pertu
bation to the metric from the scalar charge’s field should
of O(b2). Now, a spherically symmetric perturbation to
static spacetime surrounding a black hole can be expre
by

gmn'gmn
(B)1hmn ,

hmndxmdxn52u~r!~dx0!21 f ~r!~dr21r2dV2!,
~5.1!

wheregmn
(B) is the background metric anddV2 is the back-

ground line element on the two-sphere,dV25du2

1sinu2df2.
The horizon area formula is

A5E A2gr5rHdu df, ~5.2!

whereA2g and rH are to be evaluated at the~perturbed!
location of the horizon. The correction toA in linear theory
can be determined by the following procedure. To first a
proximation, the volume element is

g5det~gmn!5eabgdg0agrbguggfd5g(B)~11h!1O~b4!,
~5.3!

where eabgd is the Levi-Civita tensor andh5gab
(B)hab.

Terms ofO(b4) are to be understood as quadratic inh. Us-
ing Eq. ~5.2! for the area formula, we find

A5A(B)S 11
1

2E hr5rHdu df D1O~b4!. ~5.4!

Where does the new horizon reside? The pointr5rH
whereg00 vanishes is to be interpreted as the location of
horizon ~if several zeros exist the location of the horizo
corresponds to the outermost one!. Therefore, correct to
O(b4) the new horizon resides at

rH5rH
(B)1dr5rH

(B)2
h00

~g00
(B)!8

U
r5rH

(B)

1O~b4!. ~5.5!

Hence, correct toO(b2), h in Eq. ~5.4! can be evaluated a
r5rH

(B) .
Now, the field equation forhmn are as follows@14#. First

the Ricci tensor due to the perturbation is

Rab5Rab
(B)1Rab

(1)~h!1O~b4!,

Rab
(1)~h!5

1

2
~2h;ab2hab;g

g1hga;b
g1hgb;a

g!, ~5.6!

whereRab
(B) is the background Ricci tensor, which vanish

for the Schwarzschild spacetime. Next, a useful identity c
be established:

R5hab
;ab2h;

b
b1O~b4!. ~5.7!
4-5
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From the trace of Einstein’s equations,R528pT, where
T52F ,aF ,a is the trace of the energy momentum tensor
the massless spherically symmetric scalar field. It is an
variant of the geometry. By Eq.~A9! of the Appendix with
charge distribution density appropriate for a spherical sy
metric configuration of scalar charges,T is O(b2). The in-
variance ofT and hence ofR signifies that their values at th
perturbed horizon@as given in Eq.~5.5!# which is by all
means a physically regular surface, must both be finite. E
their divergence would give rise to curvature singularity
the horizon, a thing that would render our perturbation
proach invalid. Taylor expandingR(1) aroundr (B) we find

R(1)~rH
(B)1dr!5R(1)~rH

(B)!1@R(1)~rH
(B)!#8dr1O~b6!.

~5.8!

The second term in the RHS of the equation is obviou
O(b4) @see Eq.~5.5!#, hence it cannot cancel any divergen
due to the first term in the r.h.s. of the same equation, wh
is O(b2). To put it in other words, assuming thatR is an
analytic function of the coordinates, its expansion in pow
of b must be bounded term by term. A straightforward c
culation yields

R(1)5F0f 9~r!1
F1f ~r!1F2f 8~r!

~12m/2r!
1

U0u~r!

~12m/2r!4

1
U1u8~r!

~12m/2r!3
1

U2u9~r!

~12m/2r!2
~5.9!

where 85d/dr and Fi and Uj are known functions ofr,
finite at r5rH

(B) . Heregab
(B) is taken as in Eq.~4.3!. An ex-

amination of the expression above confirms that forR to be
finite on the horizon,f (r) must vanish on the horizon at lea
as fast as (12m/2r)2 andu(r) must vanish at least as fa
as (12m/2r)4. What does this suggest for the correction
the horizon area formula, Eq.~5.4!?

Using the metric Eq.~4.3! we work out the expression fo
h with the subsequent simple result

h5
~11m/2r!2

~12m/2r!2 u~r!1
3 f ~r!

~11m/2r!4
. ~5.10!

Considering the fact that we are really interested in the va
of h on the horizon at its background position, namely,r
5rH

(B) , we are faced with the observation thath vanisheson
the horizon. Hence the area formula is left unperturbed
linear approximation: any corrections toA must be of higher
order, such asO(b4), etc. Hence by Eq.~2.1! ~with q5 j
50)

A516pm21O~b4/m2!1O~m2!, ~5.11!

where we have included all possible second order term
the correct dimensions.

The descent of the object, if sufficient slow, is known
be an adiabatic process which causes no change in the
zon area@37#. It follows that to the stated accuracym is
unchanged in the course of the lowering process becauseA is
10404
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preserved. When the object is finally dropped, and absor
by the black hole,m increases byE; after the suspension
machinery has been adiabatically retrieved, we acquire
unperturbed Schwarzschild black hole with massm1E. Cal-
culating its horizon area from Eq.~5.11! and subtracting the
area of what was an unperturbed Schwarzschild black hol
massm, we find the change

DA532pmE1O~E 2!1•••. ~5.12!

Finally substitution of Eq.~4.10! gives

DA>8pmRF11OS mR

m2 D G1•••. ~5.13!

Notice that the black hole parameterm has dropped out from
the dominant terms, in analogy with results for uncharg
objects @10#. The minimum change in black hole entrop
DA/4\ with the equal sign, is thus a property of the obje
itself. The entropy of the object cannot exceed this amou
lest the overall entropy of the world decrease upon the
ject’s assimilation~see Refs.@27–29# for the irrelevancy of
buoyancy corrections in this connection!. We thus find the
bound on the entropy of an object of scalar chargeb, char-
acteristic sizeR and proper energyE5m to coincide with
Bekenstein’s proposal Eq.~1.1!. It was not improved by
knowledge of the object’s scalar charge.

Actually this result can be easily generalized to the c
of an object with massm, endowed with ascalar chargeb
and anelectromagneticchargee, which is assimilated by a
RN black hole with chargeq. In order to include the electro
magnetic effects one should merely add to the action fu
tional ~3.1! an interaction term of the form

Sint5eE Âaẋadt, ~5.14!

where, as in Sec. III,xa(t) denotes the particle’s trajectory
t the proper time, an overdot stands ford/dt, andÂa means
the electromagnetic four-potential with the self-field of t
particle subtracted off and then evaluated at the partic
spacetime position. The energy is now

E52~m1bF!g0bẋb2eS Â0
(q)1

1

2
A0

(e)D . ~5.15!

Here Â0
(q) , linear in q, is produced by the black hole an

A0
(e) , whose source is the object itself, is linear ine. The

factor 1
2 takes care of the fact that the object owes part of

energy to its own field, not to the background one. As befo
E corresponds to the usual notion of energy as measure
infinity.

We require thatq, e, andb be very small on the scale o
m, the mass of the hole. Then, correct toO(e) which we
regard as the same asO(b) and O(q), the metric may be
taken as Schwarzschild’s. Retracing the steps of the der
tion in the previous section we find that the energy of t
object at a proper distance equal to the object’s proper ra
R is
4-6



hi

m
o

g
be
e
o

t t

o
s

op
th
rd
he

o
le
k
h
ly
s
h

fie
on

c
er
n

e
tu

u
in

o-

e
i-
di-
s

gy-
ts
show
ck

tion

ry
le.
at

ori-

o
the

art
r

netic

tor

ht-

he
, of
the
n-
lt
ed
Eq.

q.

ole

OPTIMAL ENTROPY BOUND AND THE SELF-ENERGY . . . PHYSICAL REVIEW D60 104044
E>
2mR1e214eq

8m
. ~5.16!

The scalar field parameter is again missing due the vanis
of the scalar self-energy.

Thus, we can declare that the entropy bound~1.2! is left
intact, not least due to the fact that the Birkhoff’s theore
applies in the case of the electromagnetic field. Coupling
the scalar field to the field generated by the electric char
should not open a loophole in the above claim. This is
cause the corrections to the electromagnetic and scalar fi
due to the scalar-electromagnetic interaction are of sec
order in the coupling constant. Therefore, if we take tha
be of the same order of magnitude asO(b), then these cor-
rections would induce corrections to the area formula
O(b4), which are duly neglected. Moreover, adding a ma
term to the free scalar field action should leave the entr
bound unaltered, provided the Compton wavelength of
scalar field is large on the scale of the black hole. Acco
ingly, terms in the scalar field equation, proportional to t
mass of the field, can be neglected.

VI. SPECULATION: SOURCES OF MASSIVE VECTOR
FIELDS AND THE OPTIMAL ENTROPY BOUND

What about sources of massive vector fields? It turns
that most of the results that were obtained for the mass
scalar and vector fields may be used in this case. Vilen
@30# points out that if instead of the electromagnetic field, t
particle is coupled to a vector-meson field of vanishing
small, but nonzero, mass, then it can be shown that the
force has the same magnitude but opposite direction. T
sharp difference between massive and massless vector
is a result of different boundary conditions at the horiz
surface. The basic idea is as follows.

If the mass of the vector fieldAn is not exactly zero, then
Maxwell equations have to be replaced by Proca’s:

Fab
;b2m2Aa54p j a. ~6.1!

Here and henceforthFab5Ab;a2Aa;b . We assume that the
mass of the vector field is very small, namelym21, the
Compton wavelength of the massive vector field, is mu
larger than any characteristic distance in the problem. Th
fore correct toO(m2m2), the mass term in the equatio
above can be neglected. In solving, letb be the strength of a
charge of the massive vector fieldAn at a distancea from the
black hole, and letm/2!m21. What boundary conditions
must be fulfilled for the consistency of the solution? W
require that invariants associated with the energy-momen
tensor of the fieldAn,

Ts
n 5

1

4p FFsaFna2
1

4
ds

n FabFab

1m2S AsAn2
1

2
ds

n AaAaD G , ~6.2!

be nonsingular at the horizon, any divergence in these wo
induce divergences in the invariants of the geometry via E
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stein’s equations. The case in point would be thatT, the trace
of the energy-momentum~6.2!, which is proportional to the
invariant AaAa, must be bounded everywhere, and the p
tential A0 must vanish at least similar to (r2m/2) as r
→m/2. Thus all the physically meaningful solutions of th
Proca field equation~6.1! must satisfy the boundary cond
tion A0(r5m/2)50. In the case of a massless field, the
vergence ofAaAa at the horizon causes no difficulties a
long as the invariantFabFab is finite. This is easily seen
from Eq. ~6.2! with m50. As usual, we take the chargeb to
be a small parameter in the problem. Then the ener
momentum tensor~6.2! is O(b2). Hence the same argumen
we used in the massless scalar field can be used here to
that the horizon area formula for the Schwarzschild bla
hole is preserved in linear perturbation theory.

Now, since we takem/2!m21, the field of themassive
vector field can be approximated by the solution of themass-
lessvector field equation. The massless vector field equa
was solved many years ago by Copson@32# who calculated
the full electromagnetic four-potential due to a stationa
point charge in the background of a spherical black ho
Making use of this result with the additional requirement th
the zeroth component of the vector field vanish on the h
zon, we corroborate Linet and Leaute@38# by following the
procedure used in Ref.@6# and in the previous sections, t
calculate the self-energy of the massive vector field with
simple result

1

2
bA0

(b)5
b2

a@11m/~2a!#4

m

2a
. ~6.3!

The factor1
2 takes care of the fact that the object owes p

of its energy to its own field. As given earlier by Vilenkin fo
m/2!a and by Linet and Leaute for alla, this self-energy
has the same magnitude as in the case of the electromag
field, but opposite sign. Electric charges arerepelled from
neutral black holes, while the charges of massive vec
fields areattracted to them. The implication of this for the
issue of entropy bounds is of great importance. A straig
forward calculation shows that for constantr.m/2 and a
→m/2, A0→0, namely, as the charge is assimilated, t
massive vector field outside the black hole vanishes. This
course, harmonizes with the no-hair theorem. Since
particle-vector field interaction action is identical to the i
teraction action given in Eq.~5.14! and based on the resu
~6.3!, the minimal assimilation energy for particles coupl
to massive vector fields corresponds to the equal sign in
~5.16! with the replacemente2→2b2 andq→0. Correct to
O(b2), the minimal horizon area growth is given by E
~5.12!. Substitution ofE and dividing by 4\ gives for the
entropy of the object,

S<2p
ER2b2/2

\
, ~6.4!

which is precisely the entropy bound~1.2! with e2→b2 and
s50. Therefore, in a sense, the entropy bound~1.2! was
generalized to include vector-meson chargeb in the same
way that it was generalized to include magnetic monop
4-7
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charge g, e2→e21g21b2. This generalization, however
does not pose any difficulty from a black-hole entropy po
of view, since black holes do not posses this quantum n
ber.

The mass of the vector-meson fieldm plays an important
role in the validity of the refined entropy bound~6.4!. As
indicated before, the bound~6.4! is correct toO(m2m2). So
if, for example, we consider ther vector-meson (m
5770 MeV), then the mass of the black hole must
smaller thanmPl

2 /m.1015 gr, the mass range for mini blac
holes. However, ifm is large then the mass term in Proca
equations~6.1! cannot be neglected. Nevertheless, the fi
generated byb is now a short range field. Although there
now a contribution to the energy-momentum tensor from t
field, it is localized around the object, and thus can
lumped into its usual energy-momentum tensor. No no
perturbation to the metric arises from this. Hence,b cannot
directly perturb the horizon area formula~2.1!, and som is
unaffected by slow lowering of the object. Furthermore,
novel potential term is contributed toE by the field unless the
particle is already next to the horizon; otherwise the sh
range field does not reach down to the horizon and can
polarize it. Hence the change in horizon area turns out to
b independent, andb cannot appear in a generic entrop
bound. We conclude that the conjecture that the entr
bound

S<2p
AE2R22s22e2/2

\
~6.5!

for an object with spins, chargee, maximal radiusR, and
mass-energyE5m is the tightestgenericbound on entropy,
seems reasonable.
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APPENDIX: FIELD OF SCALAR CHARGE
IN BLACK HOLE BACKGROUND

Here we determineF resulting from a scalar chargeb in
the Schwarzschild background Eq.~4.3!. Using the conven-
tions of Misner, Thorne, and Wheeler@14# we write the
Klein-Gordon equation for the axisymmetric stationa
massless scalar field of a test point scalar chargeb situated at
$r,u%5$a,0% as

@12~m/2r!2#DF1~m2/2r2!rW •¹W F

524pbd~r2a!d~u!d~f!. ~A1!

HereD and¹W are the usual Laplacian and Gradient operat
in flat spacetime, respectively. The potentialF of the scalar
chargeb may be looked for in the form@39#
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Ga
21/2@U01U1Ga1U2Ga

21•••#. ~A2!

Ga here denotes the square of the geodesic distance from
source location in the space whose metric is Eq.~4.3!,
namely, Ga[r21a222ra cosu. U0 , U1 , U2 , . . . , are
analytic functions ofr for r.m/2. Let us scaler by the rule
r→2r/m. Substituting the elementary solution~A2! in Eq.
~A1! and analyzing the first three terms suggests that ins
of determining successively the remainingUn , we should
look for the form

F5B
r

r221
F~g!, g[Ga /~r221!, ~A3!

whereB is a constant to be determind later. Doing so,
observe thatF(g) obeys

2g~g1a221!
d2

dg2F~g!13~2g1a221!
d

dg
F~g!12F~g!

50. ~A4!

Therefore the solution of Eq.~A4! is a linear combination of
@40#

F15
1

AgAg1a221
,

F25
1

AgAg1a221
logS Ag1Ag1a221

Aa221
D . ~A5!

Substituting forg andF in the definition~A3! and rescaling
r←2r/m, we find forF

F15B1

r

AGaG ã

,

F25B2

r

AGaG ã

3 logS AGa1AG ã

A12~m/2r!2~2r/m!~2a/m!A12~m/2a!2D ,

~A6!

whereã[m2/4a.
Our approach is perturbative in nature. Physical invaria

that may be assembled from the energy-momentum of
perturbation must thus be bounded everywhere, includin
the horizon: any divergence would imply divergence of t
curvature invariants. As can be easily verified, every inva
ant of the geometry associated with this solution is prop
tional to (F ,aF ,a)k. Now, sinceF ,0 is assumed to be iden
tically zero and since we are using the metric~4.3!, the
mentioned invariant would be bounded provided the solut
and its gradient are bounded everywhere. Now, both s
tions F1 and F2 vanish at spatial infinity; form/2,a,`
andr→` they areO(1/r). Furthermore, both solutions ar
4-8
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singular at the charge location,$r,u%5$a,0% as required.
However, for a.m/2, F2 diverges logarithmally every
where on the horizon$r5m/2,;u%. We thus reject it as a
physical solution.

The remaining solutionF1 has some intriguing characte
istics. First, for constantr.m/2 and a→m/2, F→0,
namely, as the charge is assimilated, the scalar field out
the black hole vanishes@see Eq. ~A7! below#. This, of
course, agrees with the no-hair theorem for black holes. S
ondly, for constanta.m/2 and r→m/2 the value of the
scalar field is finite. It is true that in the limita→m/2, r
→m/2 and u→0 F1 diverges. But, one should not b
alarmed by this, since this divergence is localized at the p
where the scalar charge touches the horizon,$r,u%5$a
5m/2,0% and does not encompass the whole of the horiz
Furthermore, this divergence can be attributed to our neg
of the self-energy of the particle. We thus infer that the
ementary solution of Eq.~A1! with source at$r,u%5$a,0% is

F~r,u!52b
12~m/2a!

11~m/2a!

r

AGaG ã

~A7!

in which the constantB1 was set by the asymptotic value o
the field at the position of the charge.
10404
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The expression for the scalar fieldF(r,u,f) due to a
chargeb situated at the point$r8,u8,f8% can be obtained
from Eq. ~A7! by a rotation of the axes, which manifest
itself by the simple replacement

cosu→x~u,f;u8f8!

5cosu cosu81sinu sinu8cos~f2f8!. ~A8!

The result is analogous to the one in Eq.~A7! with Gr8→Gr8,u8,f8[r21r8222rr8x(u,f;u8f8). This provides
the means to calculate the scalar field originating from a
arrangement of scalar charges by means of the followi
formula

C~r,u,f!5E F~r,u,f;r8,u8,f8!

3S~r8,u8,f8!A2g d3x8, ~A9!

where S(r8,u8,f8) is the charge distribution density of a
specified scalar charges configuration and the integration
assumed over a constant time slice of the spacetime.
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