PHYSICAL REVIEW D, VOLUME 60, 104044

Optimal entropy bound and the self-energy of test objects in the vicinity of a black hole
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Recently Bekenstein and Mayo conjectured an entropy bound for charged rotating objects. On the basis of
the no-hair principle for black holes, they speculate that this bound cannot be improved generically based on
knowledge of other “quantum numbers,” e.g., baryon number, which may be borne by the object. Here we
take a first step in the proof of this conjecture. The proof makes use of a gedanken experiment in which a
massive object endowed with a scalar charge is lowered adiabatically towards a Schwarzschild’'s black hole
and then dropped into the black hole from some proper distance above the horizon. Central to the proof is the
intriguing fact that the self-energy of the particle receives no contribution from the scalar charge. Thus the
energy with which the object is assimilated consists of its gravitational energy alone. This of course agrees
with the no-scalar-hair principle for black holes: after the object is assimilated into the black hole, any
knowledge of the scalar field properties is lost. Using the generalized second law, we reach the conclusion that
the original entropy bound was not improved by the knowledge of the scalar charge. At the end we speculate
on whether or not massive vector fields may serve in the tightening of the entropy bound.
[S0556-2820199)01920-7
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[. INTRODUCTION By virtue of the duality of electromagnetism, this optimal
bound can be generalized to include the magnetic monopole
A number of years ago Bekenstein proposed a universathargeg; one should merely replace®—e?+g?. In addi-
bound on the entropy of a macroscopic object of characterion, a deeper question can be set forth about the prospect of

istic sizeR and energyE. This bound takes the forid] giving generic bounds on entropy which are tighter than the
conjectured bound1.2) on account of the object having
S<27ER/% (1) some conserved “quantum numbers” apart freng, or s.

) ] The case in point would be a tighter bound for an object with
(here and henceforth we use units wi=c=1). Even  gefinite and known baryon number. The aim of this work is
though the bound was originally inferred in the framework of put forward evidence in support of the conject[fthat
black holes physics, there is independent support for its vapound(1.2), with the extension to magnetic monopole, can-
lidity. It is readily satisfied for composites of nonrelativistic ot pe bettered generically. By “generically” we mean with-
particles on account of the fact that the entropy of the assemy ¢ knowledge of details about the object's structure and
blage is never far removed from the number of particles i”'dynamics. When these are known, it is possible to compute,
volved. Likewise, the validity of the bound was verified di- by means of statistical mechanics, bounds on the entropy
rectly both numerically and analytically for free masslessyhich can be small compared to boufidl)—for example,
quantum fields encompassed in cavities of various shapage Ref[9]. But if no such information is used, we must go
and topologiegsee review by Bekenstein and Schiff@). {0 the black hole derivation of the entropy bounds. The con-
Moreover, the entropy bound was recovered by Zaslavskijecture that bound1.2) cannot be bettered is made specifi-
from the properties of the acceleration radiati@®j. With cally for this situation.
respect to self-gravitating systems, Sorkin, Wald, and4ju  The structure of the paper is as follows. In Sec. Il we
afford a convincing indication that the entropy boufidl)  pyiefly review the subject of entropy bounds as it manifest
holds for thermal radiation on the threshold of gravitationalitself in the arena of black hole physics. In addition, we put
collapse, while Zaslavskf5] proves the bound for a system forward the motivation for investigating the issue of entropy
consisting of a static black hole in equilibrium with thermal hoynds with regard to scalar and vector fields. In Sec. Il we
radiation in a box. For an object with spielectric charge  pegin by writing down the action functional for a massive
&, maximal characteristics length scaand proper energy particle coupled to a massless scalar field. The interaction
E, Bekenstein and Mayo conjectured an improved entrop¥yction is chosen for simplicity and conformal invariance. The

bound(6] trajectories of test particles on the black hole spacetime
R background are best characterized by their constants of the

S<2ar E°R"—s"—e“/2 (1.  Motion. In Sec. IV we compute the energy of the particle as

h ' ' the constant of motion associated with the timelike Killing

vector. We thus discuss the contribution of the scalar field to
a synthesis of Zaslavskii's/] and Hod's[8] bounds. the energy of the test object by working out in closed form
the scalar potential generated by a stationary point scalar
charge in the background of a spherical static black hole. We
*Electronic address: Mayo@alf.fiz.huji.ac.il use a simple procedure to regulate the potential. We find that
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after the regulation the scalar self-energy vanishes. Hendaole. Linet[17] utilizes the thermodynamics of a KN black
the scalar interaction contributes nought to the energetics dfole, with similar results. At the center of the derivation lies
the process. This signifies that the object is assimilated witlthe fact that a charged particle in a black hole’s vicinity is
its gravitational energy only, e.g., if the process is an adiaaffected by not only the Lorentz force from the black hole’s
batic one, then at the end we are left with a new sphericagélectromagnetic field and by the Abraham-Lorentz-Dirac ra-
static black hole, whose mass is equal to the mass of thdiation reaction force, but also by the force originating from
initial black hole augmented only by the gravitational energythe black hole’s polarization by the particle’s electric field.
of the object. The increase of the black hole mass obviouslNow it is known that a particle at rest in a static black hole
increases its horizon’s surface area. In Sec. V we analyze theackground does not radiatdespite its being accelerajed
corrections to the area formula and find that the correction&or that reason, one can expect the radiation reaction force to
must vanish in linear theory. The change in horizon area thatanish. This suggests that we should focus on an object low-
results from the lowering of the object onto the horizon fur-ered slowly from a large distance to the horizon. Under these
nishes a derivation from the generalized second (&8L) circumstances, it is possible to suppose that only the gravi-
of the entropy bound1.1). We conclude by illustrating the tational, Coulomb, and polarization forces act upon it. This
application of the method used here to another problem: aapproach allows the authors mentioned above to derive
entropy bound for a particle coupled to a massive vector fiel@aslavskii's bound by use of the GSL. Noify, as it is some-
with a vanishingly small but nonzero mass. times claimed, the GSL functions independently of entropy
bounds, there should not have been reason for this unusual
effect (black hole polarizationto supply precisely the miss-
Il. ENTROPY BOUNDS IN THE FRAMEWORK ing element in the derivation of the entropy bound for
OF BLACK HOLE PHYSICS: THE STATE OF THE ART charged objects from the GSL. This is yet another demon-

In its original form, the entropy bounel.1) is saturated stration that the GSL provides a valid road to entropy

by the Schwarzschild black hole. This prompted the obser?ounds. _ . _
vation[1] that the Schwarzschild black hole is the most en- A useful by-product of the mentioned chain of generali-
tropic object for given size and energy. But the Kerr blackZations is the revelation that the entropy bound is indepen-

hole’s entropy falls below boun€L.1) (this will be true for dent of the type of black hole employed in the calculations.
any reasonable interpretation of the radRsof the non- Thus, it seems that one may choose the Schwarzschild space-

spherical Kerr holg time as the simplest settings for the study of entropy bounds.

This asymmetric state of affairs motivated Hp8] to Bound (1.2) has one more merit; any KN black hole
search for a tighter bound on entropy for objects with angu{Massm, chargeq, and angular momenturj) saturates it.
lar momentum which is saturated by the Kerr hole. Hod re-The horizon area of such a black holef ist]
peats Bekenstein's derivatidi0,11 of the minimal incre-
ment in Kerr-NewmanKN) horizon area that is caused by
an object’'s infall. That derivation applied the idea of

Christodoulou[12] together With_ Carter=$13,_14] integrals Substitutingr . , squaring as required, and cancelling terms
of the Lorentz equations of motion to a particle of rest mass;

A=4m(ri+j2mP); 1 =m+(m?=jHm?—g?)*2,
2.1

w and radiuskR moving in a KN background. The minimal ves

growth in horizon area was deduced from the conservation A=2m(4mr, —q?)

laws and the relation they establish between the change in

black hole parameters and the energy and orbital angular =2a{4m((ri +j%m?) - j2m»)*2—q?]. (2.2

momentum of a particle in an orbit, such that the particle’s
center of mass can get to distarRdrom the horizon. Re- In light of Eq. (2.1) it is reasonable to interpretr{
markably, it turns out that the minimal area growth is inde-+j*m?)*? as the radiuR of the hole. Incorporating this in
pendent of the black hole parameters. Becausean be the last equation and dividing byk4gives for the black hole
identified with the total proper energy of the object, boundentropy
(1.1) follows from the minimal area growth and the GSL.
The particle’s spin was not taken into account in Carter’s
integrals. Hod refers instead to Hojman and Hojmdi’s]
integrals of motion for a neutral object with sg@moving on
a KN background. Repeating the argument that led to thdf we identify m—E, gq«<e and j«s, this is exactly the
original entropy bound1.1) and appealing to the GSL al- upper bound of Eq(1.2). Hence the KN black hole saturates
lows Hod to infer the entropy bound.2) with e=0. the proposed entropy bound. This property would be lost if
Recently many researches closed in on the derivation dhe bound were modified. Hence we adopt it in the given
Zaslavskii's[7] proposed bound for charged objects. Thoseform.
derivations focused on absorption of the relevant object by a Finally, we arrive at the principal issue we hope to eluci-
black hole, and on the concomitant change in horizon arealate in this work.
Hod [16] makes use of the thermodynamics of a Schwarzs- Question: Is it possible to improve bourid.2) generi-
child black hole, while Bekenstein and Maj®] makes use cally based on the knowledge of other “quantum numbers”
of the thermodynamics of a Reissner-NordstrdRN) black  which may be borne by the object? The no-hair conjecture is

2
Sen=7 L(MRP— )22, 2.3
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central to our reasoning. A large amount of work has certi- X¢ dxP
fied that a stationary black hole can have just a few param- S= —J (u+bd) T Kd)\’ (3.1
eters. The irrefutable ones are mass, charge, magnetic mono-

pole,. and a_tpgular momentum. Skyrmpn pum_ber IS a\Nhereb, a constant, is the coupling strengthjs a param-
possible additiofi18], but one whose physical significance is eter, andx“()) is the trajectory of the particle. The term

unclear[11]. Other candidatefl9-21 are associated with ., tional toy is the action for a free particle; that pro-
unstable black hole22]. The technique we propose to Use is o rtional tob is the interaction action. The interaction cho-
perturbative in nature. So it stand to reason to focus only 0Re, here is the most natural one in that the source term it
black holes which remain stable despite the outside perturgenerates for the wave equation fbris independent ofp
bations. On that account, we concentrate on the KN blaclself, Furthermore, the interaction action is invariant under
holes with parametens), g, g, andj. __the conformal transformatiory,,,—Q?g,,, ®—®Q 1

In Ref.[6], Bekenstein and Mayo give arguments againsiyhere() is an arbitrary function. Since the free field action
the prospect of obtaining generic bounds on entropy, whiclyossesses the same invariafizg] it follows that the wave
are tighter than boun(L.2) on account of the object having equation with a source will be conformally invariant. Thus,
an extra additive conserved global quantity such as baryon gpe coupling envisaged here, apart from being the simplest
lepton numbers. Also excludeq are short range fields, suc;h @he, is singled out by its invariance properties. The same
the short rangeW-boson mediated, weak force. The third cannot be said about the once popular derivative coupling
and last case considered is when the extra additive quantit. g _dxe/dn) [24] which is known to be unphysical on
carried by the objecb is the source of a long-range field grounds of lack of renormalizability.
schematically denoted by. For example)5 can be a scalar In a sense, the coupling as chosen in E81) is the
field with presumably small or zero mass, or a massive vecanalog of minimal coupling in electromagnetism. However,
tor field with vanishingly small but nonzero mass. The rang&t should be noted that the analogy with the electromagnetic
may be finite but large in comparison to the size of a typicalsase stops here; conservation of charge is not obligatory for
object. For a massive scalar or vector field this means, th%nsistency of the Klein-Gordon equation, so there is no ob-

must be very small on the scale of the hole, and on the othepgughout thab is constant.

the scale of the hole must be small compared with the range \/ariation of S with respect tox” gives the equation of
of the field. This is granted by the smallness of the field’sygtion

mass. Now the area formula may differ from the usual area

formula for a KN black hole by terms depending bnbe- D2x” dx®) dx”
cause of the perturbation th&ts energy-momentum tensor  (u+ b(I))Wz NN
exerts on the metric. Unledsis a gauge field which remains

massless in the classic&r low energy limit, we cannot —bEd”, (3.2
rule out such dependence. This is because Birkhoff-type

theorems exist only for massless vector fields, and from OWyhere = = —g ﬁ(dxa/d)\)(dxﬁ/d)\)_ Since the actiors is
point of view, the electromagnetic field is the only one. Thus, .,/ iant unde(F a change of the paramatewe are at liberty
while the area stays constant during the descent as requirgg impose a condition ofE to fix the choice of\. Two
by the adiabatic theorerm may change by a quantity of o qices are of interest here. If we sBt=1, A becomes

O(b?). The sign of this quantity is vague without a specific ti d Ea.(3.2) takes the f
model. Likewise, the energy with which the object is assimi-P OPer HMer, an 4:3.2) takes the form

! bd d|H bd
5 (utb®) F=In=—

lated into the black hole will presumably have a term of D2x” dx® dx”
O(b?). Indeed, as before this term may be positive here. But (pt+b®)——=-b{d"+P ,— —] (3.3
it does not follow that the effect df is to subdue the growth dr? “dr dr

of the horizon area. This is because the indefinite sign of the

correction to the area formula. Without calculating linearA second useful choice & = (1+b®/u)? which makes the
corrections to the metric, one cannot judge whether thgoefficient ofdx*/d\ in Eg.(3.2) to vanish. In this casg is
change in area is incremented or depresseti’byresence. just an affine parameter. The equation of motion is

In the following sections these questions will be precisely

phrased and answered. D2x” b b
—=—— |1+ —®|D". (3.4
dx 7 7
lll. ACTION OF A MASSIVE PARTICLE COUPLED In addition we have
TO A CONFORMAL SCALAR FIELD
@ 2 2
We use the signaturg—,+,+,+} and denote the time- —g di d_xﬁ:(ﬁ) :(1+ Eq)) (3.5
like coordinate outside the black hole, presumed to be a B dn dn d\ m '

spherical static one, bx°. The simplest parameter indepen-
dent action functional for a particle of rest masgoupled to  which shows that in regions of weak, \ is essentially
a conformal massless scalar fieldis proper time.
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IV. THE ENERGETICS OF THE PROCESS IS ~{(—doo) “¥2,0,0,0. Substitution in Eq(4.2) from the met-
UNAFFECTED BY THE SCALAR FIELD ric gives for the energy, when the object’s c.m. ispata

Consider now a test scalar charge moving in the backEind 6=0,
ground of black hole spacetime which possesses a symmetry m) 1
€=( 1+ 5| (utb®),_qp-0. (4.9

1m
2a

represented by a Killing vect@f”. So ¢(,.5=0 and&*® , oa

=0. The scalar-charge trajectory, that of a particle obeying
the equation of motion Eq3.2), is best characterized by its
constants of motion. It is easy to show from E§.3) and
Eq. (3.4) that

As elucidated by Vilenkij30] and corroborated by Smith
and Will [31], by contrast to the situation in flat spacetime, in
the presence of a Schwarzschild black hole the self-energy of

NG an electric charge measured at infinity is modified. As we
=—¢,——(ut+tbd), intend to show, this is surprisinglyot so for the scalar field.
dr Equation(A7) of the Appendix givesb(p, 6), the scalar
potential due to a stationaftgr nearly sg point scalar charge
£, (4.1  of strengthb in the background of a spherical black hole.
dx This expression, accurate @(b?), is the scalar analog of an

early brilliant solution by Copsof82] who found the electric

are constants of the motion in the proper time parametrizaﬁe|d resulting from a charge in the Schwarzschild back-

tions and in the affine parameter parametrizations, reSpeEfround. The solutiortA7) was also found independently by
tively. Note thaté= wE. The stationarity of the envisaged Linet [33].

background fixes the form of the timelike Killing vector to ®(p, 6) naturally diverges gb=a and =0, the position

be £*=6;" for which & reduces to of the scalar charge. Thus if we want to use it for our finite
dx? object, we must regulate the potential before going to the
E=—(u+ bcp)goﬁd__ (4.2 limit p—a and#—0 as required by formulé4.4).
T

The simplest procedure is as followsompare with Ref.

]). We reexpres® in terms of new coordinatefp, 9, ¢}
ntered on the charge, rather than on the black hole center,
as was the case fdp, 6, ¢}, but sharing the same polar axis.
This implies the substitutions

This corresponds to the usual notion of energy as measur%
at infinity. Its first term expands te+ 3 w(dx/dt)? in the
Newtonian limit. The second term b®d is thus the scalar
potential energy.

In our gedanken experiment the object of rest massd p cOSf—a+ o cosd,
scalar chargd, idealized as spherically symmetric, is sus-
pended by some means to keep it from falling freely, and is p— 2%+ o2+ 2ap cosd. (4.5

slowly lowered radially towards the black hole. Of course,
the forces restraining its fall change its energy measured & small metric sphere of proper radiilocated at{p, 6}
infinity as it is lowered. The idea is to bring the object as—(3 0} is the coordinate sphere =(1+m/2a) 2R;V 9.

close to the horizon as possible, and then drop it in, inferringsince p is the coordinate distance from the charge it makes
from the energy measured at infinity at its last prefall posi-sense to expan® in a Laurent series i@:

tion the increase in horizon area that this causes. A

complication—the Unruh-Wald buoyancy in acceleration ra- b b cosd
diation[25,26—may cause the object to float neutrally some & = — 5~ 2 2alm—1 +0(p).
distance from the horizon, thus arresting the contemplated o(1+m/2a)®  a(1+m/2a)? (2a/m)

descent. But as demonstrated by Bekensfgif-29, pro- (4.9

vided the number of relevant particle species in nature is not
large (which seems to be true in our universand provided
the object is macroscopic and composed of parts that ob
guantum mechanics, the buoyancy is negligible all the wa
to very near the horizon, and makes no practical difference t
the energy budget of the process.

Correct toO(b?) the metric may be taken as Schwarzs-
child’s. In isotropic coordinates it is

The divergent term in Eq4.6) corresponds to the scalar
otential of the chargé in flat spacetime; there we expect
=—bp 1. A factor (1+m/2a) ? is required to convert
e coordinate distanag to proper distance. Thus when tak-
ing the limitp—a and#—0 (0—0) of ®, we must discard
the first term in the right-hand sid®RHS) of Eq. (4.6).
Our spherically symmetric finite object samples all direc-
tions about its center without discrimination. Because the
2 m) 4 metric also looks isotropic in coordinatég, 9, ¢}, we must
) (dXO)2+<1+ 2—) thus average out the second term in the RHS of @)

p over all anglesy and ¢; as a result its contribution vanishes.

X[dp2+ p?(d6?+sir d¢?)]. 4.3 Terms ofO() vanish as the size of the object shrinks. Thus

the entire scalar contribution 1 vanishes. This result was
We see that the horizon residespat m/2. Because the ob- also found independently by Zelnikov and Frol¢84],
ject is nearly stationary, its four-velocity, which we normal- Wiseman[35], and Burko[36]. Substituting this in Eq(4.4)
ize to -1, must have the form dx*/dr  we find

1-m/2p

ds’= _(1+ m/2p
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-1
1+

b3 charges are disposed on a spherical shell concentric with the
+O(m7)’ (4.7)  black hole. By the linearity of the approximation the pertur-
bation to the metric from the scalar charge’s field should be
where we have included the next higher order correction t®f O(b?). Now, a spherically symmetric perturbation to a
the energy due to the coupling to the scalar field. static spacetime surrounding a black hole can be expressed
When the object is near the horizon, the proper distanc®Y
from its CM to the horizon is

5—1m
“#1 )|tz

9., ~95)+h,,,

|Efmlz(gpp)lfzdp~4(a—m/2)+0[(a—m/2)2]. h,,,dx#dx=—U(p)(dx0)?+ f(p) (dp?+ p?d0?),

4.8 6D

whereg'?) is the background metric andi0? is the back-
ground line element on the two-sphereglQ)?=d#?
+ sin Pd¢?.

b3 The horizon area formula is

HZ) (4.9

Expressinga in Eq. (4.7) in terms ofl by means of Eq(4.8)
we get

I

m

Corrections ofO(lI/m) are duly neglected, as are those of

O(b3/m?) by virtue of the assumed smallness loénd b

here{—g and py are to be evaluated at thperturbed
compared to the Iar'ge mass of the black hole. The gradu'i\{(Y)cation of the horizon. The correction fin linear theory
approach to the horizon must stop when the proper dIStanccean be determined by the following procedure. To first ap-

from the object’'s c.m. to the horizon reaches the object's’ _ ."~ - .
. proximation, the volume element is
radiusR. Hence,

1+0 +0

el
5‘(%

A= f V=0,-,,d0d¢, (5.2

R g=det(g,,) = €"°7°90,9,494,945= 9 (1+h) + O(b),
- (5.3
E=—. (4.10 :

where €*#7? is the Levi-Civita tensor anch=g{}h*?.
V. THE AREA FORMULA AND THE ENTROPY BOUND Terms ofO(b*) are to be understood as quadratichinUs-
ing Eq. (5.2 for the area formula, we find
As mentioned, our primary concern is with changes in the
horizon area. The area formula must be corrected for the
perturbation of the metric originating in the object, which in
linear approximation should be @f(x) andO(b?), the first
caused by the energy momentum tensor of the object’'s mass, Where does the new horizon reside? The pgirtp,,
and the second by the energy momentum tensor of the scalahereg, vanishes is to be interpreted as the location of the
field. We now argue that the corrections to the area formuldnorizon (if several zeros exist the location of the horizon
actually appear only in the next higher order. corresponds to the outermost gné&herefore, correct to
First suppose the are& was in fact perturbed in linear O(b*) the new horizon resides at
approximation toO(u«) and O(b?). By spherical symmetry

A=A® +0(b%. (5.9

1
1+§J hy—,,d0de

of the background these corrections would not depend on the ®) ®  Noo .
direction along which the object was lowered. Nf equal PH=Py +Op=piy " @) +0(b%). (5.5
bodies were lowered, each along a different radial direction, 9oo p=p{P

the perturbation would bdl times larger by linearity of the
approximation. But if enough bodies were disposed on dlence, correct t@(b?), hin Eq. (5.4 can be evaluated at
spherical shell concentric with the black hole, the metric perp=p§3) .
turbation due to the energy momentum tensothef object’s Now, the field equation foh,,, are as followg 14]. First
massat the horizon should tend to zero by Birkhoff’s theo- the Ricci tensor due to the perturbation is
rem[14] that the metric exterior to a spherical black hole is
exactly Schwarzschild if the surroundings are spherically R.s=RE+R)(h)+0(b%),
symmetric. We thus get a contradiction unless we admit that
the perturbation ofO(x) vanish in linear theory. Any cor-
rections toA must thus be of higher order, such @$u?),
etc.

What about thescalarperturbation? Since there is no ana- where R% is the background Ricci tensor, which vanishes
log of Birkhoff's theorem for scalar fields, we must verify for the Schwarzschild spacetime. Next, a useful identity can
directly that the perturbation to the horizon area formula is ofhe established:

order higher tharD(b?).
As before we assume that a large number of scalar R:haﬁ;aﬁ—h; BB+O(b4). (5.7

1
Rg:lg(h) = 5( a h;aﬁ_ haﬁ;yy_l_ hya:B7+ hyﬁ;ay)! (56)
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From the trace of Einstein’s equatiorR=—8=T, where
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preserved. When the object is finally dropped, and absorbed

T=—-® ,®“is the trace of the energy momentum tensor ofby the black holem increases by, after the suspension
the massless spherically symmetric scalar field. It is an inmachinery has been adiabatically retrieved, we acquire an

variant of the geometry. By EqA9) of the Appendix with

unperturbed Schwarzschild black hole with mass £. Cal-

charge distribution density appropriate for a spherical symeulating its horizon area from E@5.11) and subtracting the

metric configuration of scalar chargék,is O(b?). The in-
variance ofT and hence oR signifies that their values at the
perturbed horizodas given in Eq.(5.5] which is by all

means a physically regular surface, must both be finite. Else

area of what was an unperturbed Schwarzschild black hole of
massm, we find the change

AA=32rmE+O(E?) + - - -. (5.12

their divergence would give rise to curvature singularity at _ )
the horizon, a thing that would render our perturbation apFinally substitution of Eq(4.10 gives

proach invalid. Taylor expandinB*) aroundp® we find

R<1><p&?>+6p>=R<l><ps?)>+[R<l><pa?>>]'5p+0<b6(>. )
5.8

The second term in the RHS of the equation is obviousl

AA=8muR|1+0 oo (5.13

Ll
m2

Notice that the black hole parametathas dropped out from
Vthe dominant terms, in analogy with results for uncharged

O(b*) [see Eq(5.5)], hence it cannot cancel any divergenceobjects[10]. The minimum change in black hole entropy,
due to the first term in the r.h.s. of the same equation, whicth A/47 with the equal sign, is thus a property of the object

is O(b?). To put it in other words, assuming thRtis an

itself. The entropy of the object cannot exceed this amount,

analytic function of the coordinates, its expansion in powerdest the overall entropy of the world decrease upon the ob-

of b must be bounded term by term. A straightforward cal
culation yields

Fif(p)+Fof'(p)  Upu(p)
(D= £ g7
RW=Fof"(p) + (1—mi2p) (1—m/2p)*
Uu'(p) Upu"(p) (5.9
(1-mi2p)®  (1-m/2p)?

where '=d/dp and F; and{; are known functions op,
finite atp=p§_'[3). Hereg&Bﬁ) is taken as in Eq4.3). An ex-
amination of the expression above confirms thatRdo be
finite on the horizonf(p) must vanish on the horizon at least
as fast as (+ m/2p)? andu(p) must vanish at least as fast

as (1- m/2p)*. What does this suggest for the correction to

the horizon area formula, E¢5.4)?
Using the metric Eq(4.3) we work out the expression for
h with the subsequent simple result

 (1+m/2p)?
~ (1—mi2p)2YP

3f(p)

(1+m/2p)* (519

Considering the fact that we are really interested in the value

of h on the horizon at its background position, namely,
=p$), we are faced with the observation theavanisheson
the horizon. Hence the area formula is left unperturbed i
linear approximation: any corrections gomust be of higher
order, such a©(b%), etc. Hence by Eq(2.1) (with g=j
=0)

A=16mm?+ O(b*m?)+O(u?), (5.1

-ject’s assimilation(see Refs[27-29 for the irrelevancy of
buoyancy corrections in this connectjowWe thus find the
bound on the entropy of an object of scalar chaogehar-
acteristic sizeR and proper energ¥ = to coincide with
Bekenstein’s proposal Eql1.1). It was not improved by
knowledge of the object’s scalar charge.

Actually this result can be easily generalized to the case
of an object with masg:, endowed with ascalar chargeb

and anelectromagnetichargee, which is assimilated by a
RN black hole with chargg. In order to include the electro-
magnetic effects one should merely add to the action func-
tional (3.1) an interaction term of the form

Sint:ef Aakad T, (514)

where, as in Sec. llix%(7) denotes the particle’s trajectory,

7 the proper time, an overdot stands &d 7, andA, means
the electromagnetic four-potential with the self-field of the
particle subtracted off and then evaluated at the particle’s
spacetime position. The energy is now

&

. (5.1H

. A 1
—(u+ bdb)goﬁxﬁ—e( AW + EAge)

Here AL linear in g, is produced by the black hole and
AP, whose source is the object itself, is linearénThe
factor 3 takes care of the fact that the object owes part of its
energy to its own field, not to the background one. As before,
£ corresponds to the usual notion of energy as measured at
infinity.

We require thay, e, andb be very small on the scale of

where we have included all possible second order terms af, the mass of the hole. Then, correct@e) which we

the correct dimensions.

regard as the same &(b) and O(q), the metric may be

The descent of the object, if sufficient slow, is known to taken as Schwarzschild’'s. Retracing the steps of the deriva-
be an adiabatic process which causes no change in the hotien in the previous section we find that the energy of the

zon area[37]. It follows that to the stated accuraey is
unchanged in the course of the lowering process bedaise

object at a proper distance equal to the object’s proper radius
Ris
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2uR+e’+4eq stein’s equations. The case in point would be thahe trace
— e (5.16  of the energy-momenturt6.2), which is proportional to the
invariant A A%, must be bounded everywhere, and the po-
The scalar field parameter is again missing due the vanishingntial A, must vanish at least similar top-m/2) asp
of the scalar self-energy. —m/2. Thus all the physically meaningful solutions of the
Thus, we can declare that the entropy bouhd®) is left ~ Proca field equatiori6.1) must satisfy the boundary condi-
intact, not least due to the fact that the Birkhoff's theoremtion Ao(p=m/2)=0. In the case of a massless field, the di-
applies in the case of the electromagnetic field. Coupling otergence ofA,A“ at the horizon causes no difficulties as
the scalar field to the field generated by the electric chargelong as the invarianf ,zF“# is finite. This is easily seen
should not open a loophole in the above claim. This is befrom Eq.(6.2) with m=0. As usual, we take the chargdo
cause the corrections to the electromagnetic and scalar field® a small parameter in the problem. Then the energy-
due to the scalar-electromagnetic interaction are of secongiomentum tensai6.2) is O(b?). Hence the same arguments
order in the coupling constant. Therefore, if we take that towe used in the massless scalar field can be used here to show
be of the same order of magnitude @gb), then these cor- that the horizon area formula for the Schwarzschild black
rections would induce corrections to the area formula ofhole is preserved in linear perturbation theory.
O(b*), which are duly neglected. Moreover, adding a mass Now, since we taken/2<m™*, the field of themassive
term to the free scalar field action should leave the entropyector field can be approximated by the solution of rthgss-
bound unaltered, provided the Compton wavelength of thdéessvector field equation. The massless vector field equation
scalar field is large on the scale of the black hole. Accordwas solved many years ago by Copg88] who calculated
ingly, terms in the scalar field equation, proportional to thethe full electromagnetic four-potential due to a stationary

E=

=

8m

mass of the field, can be neglected. point charge in the background of a spherical black hole.

Making use of this result with the additional requirement that

VI. SPECULATION: SOURCES OF MASSIVE VECTOR the zeroth component of the vector field vanish on the hori-
FIELDS AND THE OPTIMAL ENTROPY BOUND zon, we corroborate Linet and Leau®8] by following the

procedure used in Ref6] and in the previous sections, to

What about sources of massive vector fields? It turns ougalculate the self-energy of the massive vector field with the
that most of the results that were obtained for the masslessimple result

scalar and vector fields may be used in this case. Vilenkin

[30] points out that if instead of the electromagnetic field, the 1 ) b2 m

particle is coupled to a vector-meson field of vanishingly 2PN T A miza ] 2a 6.3
small, but nonzero, mass, then it can be shown that the self

force has the same magnitude but opposite direction. Thighe factor} takes care of the fact that the object owes part
sharp difference between massive and massless vector fielgfits energy to its own field. As given earlier by Vilenkin for
is a result of different boundary conditions at the horizonm/2<a and by Linet and Leaute for ali, this self-energy

surface. The basic idea is as follows. has the same magnitude as in the case of the electromagnetic
If the mass of the vector field, is not exactly zero, then field, but opposite sign. Electric charges aepelled from
Maxwell equations have to be replaced by Proca’s: neutral black holes, while the charges of massive vector
F“B;B—mZA“=41-rj“. ©6.1) fields areattractedto them. The implication of this for the

issue of entropy bounds is of great importance. A straight-

Here and hencefort, ;=Ag.,—A,.5. We assume that the forward calculation shows that for constgmt-m/2 anda
mass of the vector field is very small, namaty %, the —— M2, Ao—0, namely, as the charge is assimilated, the
Compton wavelength of the massive vector field, is mucHMassive vector field outside the black hole vanishes. This, of
larger than any characteristic distance in the problem. Therék0Urse, harmonizes with the no-hair theorem. Since the
fore correct toO(m?m?), the mass term in the equation particle-vector field interaction action is identical to the in-
above can be neglected. In solving, ligbe the strength of a  t€raction action given in E¢5.14 and based on the result
charge of the massive vector field, at a distanca from the ~ (6-3, the minimal assimilation energy for particles coupled
black hole, and lem/2<m~*. What boundary conditions to massive vector fields corresponds to the equal sign in Eq.
, . : 2 2
must be fulfilled for the consistency of the solution? We(5'16) with the replacemen¢”— —b*® andq—0. Correct to

2 - . - - -
require that invariants associated with the energy-momenturf?(P*). the minimal horizon area growth is given by Eq.
tensor of the fieldA,, (5.12). Substitution of¢ and dividing by 4 gives for the

entropy of the object,

1 1
T:;:4_[Fa'a|:ya_ ZgrrFaBFaB ER_ b2/2
™ S< ZWT, (6.9

, (6.2

1
2 v v a
tm (A(,A ~ 59 A ) which is precisely the entropy bouridl.2) with e>—b? and
s=0. Therefore, in a sense, the entropy boudd) was
be nonsingular at the horizon, any divergence in these wouldeneralized to include vector-meson chatgé the same

induce divergences in the invariants of the geometry via Einway that it was generalized to include magnetic monopole

104044-7
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chargeg, e’>—e?+g°+b? This generalization, however, I; Y Ug+U T+ Ul24 - -1, (A2)
does not pose any difficulty from a black-hole entropy point
of view, since black holes do not posses this quantum numF , here denotes the square of the geodesic distance from the
ber. source location in the space whose metric is E43),

The mass of the vector-meson fietuplays an important namely, I',=p?+a®—2pacosf. Uy, U;, U,, ..., are
role in the validity of the refined entropy bour(8.4). As  analytic functions op for p>m/2. Let us scale by the rule
indicated before, the boun@.4) is correct toO(m?m?). So p—2p/m. Substituting the elementary soluti¢A2) in Eq.
if, for example, we consider the vector-meson 1 (A1) and analyzing the first three terms suggests that instead
=770 MeV), then the mass of the black hole must beof determining successively the remainikl,, we should
smaller tharm3/m=10'° gr, the mass range for mini black look for the form
holes. However, ifn is large then the mass term in Proca’s
equations(6.1) cannot be neglected. Nevertheless, the field
generated by is now a short range field. Although there is
now a contribution to the energy-momentum tensor from this
field, it is localized around the object, and thus can bevhereB is a constant to be determind later. Doing so, we
lumped into its usual energy-momentum tensor. No novepPbserve thaf(y) obeys
perturbation to the metric arises from this. Henlbesannot 42 q
directly perturb the horizon area formu(a.1), and som is 2_ 2_ 1y
unaffected by slow lowering of the object. Furthermore, n027(7/+a 1)WFW)+3(27+6‘ 1)d7F(Y)+2F(7)
novel potential term is contributed &by the field unless the ~0 (A4)
particle is already next to the horizon; otherwise the short '
range field does not reach down to the horizon and cannGferefore the solution of EqA4) is a linear combination of
polarize it. Hence the change in horizon area turns out to bF40]
b independent, andd cannot appear in a generic entropy

P=BiF(0, y=Tal(pP-1).  (A3)

bound. We conclude that the conjecture that the entropy 1
bound Fi=———,
\/;\/eraz—l
JEPRE=— %2
S<27 z (6.5 _ 1 [yt yrai-1 )
= 10 .
2 yy+ai-1 J vai-1

for an object with spins, chargee, maximal radiusR, and
mass-energ¥ = u is the tightesgenericbound on entropy,

Substituting fory andF in the definition(A3) and rescaling
seems reasonable.

p<—2p/m, we find for ®
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APPENDIX: FIELD OF SCALAR CHARGE V1—(mi2p)4(2p/m)(2a/m)\1—(m/2a)?)’
IN BLACK HOLE BACKGROUND (AB)

Here we determin@ resulting from a scalar chardein ~
the Schwarzschild background E@.3). Using the conven- Wherea=m®/4a. o S
tions of Misner, Thorme, and Wheel¢l4] we write the Our approach is perturbative in nature. Physical invariants
Klein-Gordon equation for the axisymmetric stationarythat may be assembled from the energy-momentum of the
massless scalar field of a test point scalar chargjeuated at perturbation must thus be bounded everywhere, including at

{p,0}={a,0} as the horizon: any divergence would imply divergence of the
curvature invariants. As can be easily verified, every invari-
[1—(M/2p)2]AD +(m22p2) -V ant of the geometry associated with this solution is propor-
tional to (CID,QCD'”‘)". Now, sinced 4 is assumed to be iden-
=—47bé(p—a)s(0)5(¢p). (Al) tically zero and since we are using the met(t3), the

R mentioned invariant would be bounded provided the solution
HereA andV are the usual Laplacian and Gradient operatorand its gradient are bounded everywhere. Now, both solu-
in flat spacetime, respectively. The potentialof the scalar tions ®; and ®, vanish at spatial infinity; fom/2<a<w~
chargeb may be looked for in the form39] and p—oo they areO(1/p). Furthermore, both solutions are

104044-8
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singular at the charge locatiofp,6}={a,0} as required.
However, fora>m/2, ¥, diverges logarithmally every-
where on the horizodp=m/2,¥ §}. We thus reject it as a
physical solution.

The remaining solutiod®; has some intriguing character-
istics. First, for constantp>m/2 and a—m/2, ®—0,

PHYSICAL REVIEW [B0 104044

The expression for the scalar fieftl(p,6,¢) due to a
chargeb situated at the poinfp’,6’,¢’} can be obtained
from Eq. (A7) by a rotation of the axes, which manifests
itself by the simple replacement

cosf— x(6,¢p;0'¢")

namely, as the charge is assimilated, the scalar field outside
the black hole vanishegsee Eq.(A7) below]. This, of
course, agrees with the no-hair theorem for black holes. Sec-
ondly, for constanta>m/2 and p—m/2 the value of the
scalar field is finite. It is true that in the lima—m/2, p
—m/2 and #—0 &, diverges. But, one should not be

=cosfcosh’ +sinfsinf’' cofp—¢'). (A8)

The result is analogous to the one in HA7) with ',

—T g9 =p?+p'>=2pp'x(0,4;0'¢'). This provides
O S . . . the means to calculate the scalar field originating from any
alarmed by this, since this divergence is localized at the poin rrangement of scalar charges by means of the following
where the scalar charge touches the horizgm,0}={a formula

=m/2,0} and does not encompass the whole of the horizon.
Furthermore, this divergence can be attributed to our neglect
of the self-energy of the particle. We thus infer that the el-

ementary solution of EQA1) with source a{p, 6} ={a,0} is

1-(m/2za) p
1+(m/2a) T,y

in which the constanB; was set by the asymptotic value of
the field at the position of the charge.

®(p,0)=—b (A7)

‘I’(Pﬁ,(ﬁ):f O(p,0.¢;p",0",¢")

X3X(p',0', " )IN—gd, (A9)
whereX(p',0’,¢') is the charge distribution density of a
specified scalar charges configuration and the integration is
assumed over a constant time slice of the spacetime.
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